Sample records for selective cd28 blockade

  1. Selective CD28 blockade attenuates CTLA-4–dependent CD8+ memory T cell effector function and prolongs graft survival

    PubMed Central

    Liu, Danya; Badell, I. Raul; Ford, Mandy L.

    2018-01-01

    Memory T cells pose a significant problem to successful therapeutic control of unwanted immune responses during autoimmunity and transplantation, as they are differentially controlled by cosignaling receptors such as CD28 and CTLA-4. Treatment with abatacept and belatacept impede CD28 signaling by binding to CD80 and CD86, but they also have the unintended consequence of blocking the ligands for CTLA-4, a process that may inadvertently boost effector responses. Here, we show that a potentially novel anti-CD28 domain antibody (dAb) that selectively blocks CD28 but preserves CTLA-4 coinhibition confers improved allograft survival in sensitized recipients as compared with CTLA-4 Ig. However, both CTLA-4 Ig and anti-CD28 dAb similarly and significantly reduced the accumulation of donor-reactive CD8+ memory T cells, demonstrating that regulation of the expansion of CD8+ memory T cell populations is controlled in part by CD28 signals and is not significantly impacted by CTLA-4. In contrast, selective CD28 blockade was superior to CTLA-4 Ig in inhibiting IFN-γ, TNF, and IL-2 production by CD8+ memory T cells, which in turn resulted in reduced recruitment of innate CD11b+ monocytes into allografts. Importantly, this superiority was CTLA-4 dependent, demonstrating that effector function of CD8+ memory T cells is regulated by the balance of CD28 and CTLA-4 signaling. PMID:29321374

  2. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates.

    PubMed

    Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard

    2016-01-01

    Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Blockade of interleukin-27 signaling reduces GVHD in mice by augmenting Treg reconstitution and stabilizing Foxp3 expression.

    PubMed

    Belle, Ludovic; Agle, Kimberle; Zhou, Vivian; Yin-Yuan, Cheng; Komorowski, Richard; Eastwood, Daniel; Logan, Brent; Sun, Jie; Ghilardi, Nico; Cua, Daniel; Williams, Calvin B; Gaignage, Melanie; Marillier, Reece; van Snick, Jacques; Drobyski, William R

    2016-10-20

    Reestablishment of competent regulatory pathways has emerged as a strategy to reduce the severity of graft-versus-host disease (GVHD), and recalibrate the effector and regulatory arms of the immune system. However, clinically feasible, cost-effective strategies that do not require extensive ex vivo cellular manipulation have remained elusive. In the current study, we demonstrate that inhibition of the interleukin-27p28 (IL-27p28) signaling pathway through antibody blockade or genetic ablation prevented lethal GVHD in multiple murine transplant models. Moreover, protection from GVHD was attributable to augmented global reconstitution of CD4 + natural regulatory T cells (nTregs), CD4 + induced Tregs (iTregs), and CD8 + iTregs, and was more potent than temporally concordant blockade of IL-6 signaling. Inhibition of IL-27p28 also enhanced the suppressive capacity of adoptively transferred CD4 + nTregs by increasing the stability of Foxp3 expression. Notably, blockade of IL-27p28 signaling reduced T-cell-derived-IL-10 production in conventional T cells; however, there was no corresponding effect in CD4 + or CD8 + Tregs, indicating that IL-27 inhibition had differential effects on IL-10 production and preserved a mechanistic pathway by which Tregs are known to suppress GVHD. Targeting of IL-27 therefore represents a novel strategy for the in vivo expansion of Tregs and subsequent prevention of GVHD without the requirement for ex vivo cellular manipulation, and provides additional support for the critical proinflammatory role that members of the IL-6 and IL-12 cytokine families play in GVHD biology. © 2016 by The American Society of Hematology.

  4. Blockade of interleukin-27 signaling reduces GVHD in mice by augmenting Treg reconstitution and stabilizing Foxp3 expression

    PubMed Central

    Belle, Ludovic; Agle, Kimberle; Zhou, Vivian; Yin-Yuan, Cheng; Komorowski, Richard; Eastwood, Daniel; Logan, Brent; Sun, Jie; Ghilardi, Nico; Cua, Daniel; Williams, Calvin B.; Gaignage, Melanie; Marillier, Reece; van Snick, Jacques

    2016-01-01

    Reestablishment of competent regulatory pathways has emerged as a strategy to reduce the severity of graft-versus-host disease (GVHD), and recalibrate the effector and regulatory arms of the immune system. However, clinically feasible, cost-effective strategies that do not require extensive ex vivo cellular manipulation have remained elusive. In the current study, we demonstrate that inhibition of the interleukin-27p28 (IL-27p28) signaling pathway through antibody blockade or genetic ablation prevented lethal GVHD in multiple murine transplant models. Moreover, protection from GVHD was attributable to augmented global reconstitution of CD4+ natural regulatory T cells (nTregs), CD4+ induced Tregs (iTregs), and CD8+ iTregs, and was more potent than temporally concordant blockade of IL-6 signaling. Inhibition of IL-27p28 also enhanced the suppressive capacity of adoptively transferred CD4+ nTregs by increasing the stability of Foxp3 expression. Notably, blockade of IL-27p28 signaling reduced T-cell–derived-IL-10 production in conventional T cells; however, there was no corresponding effect in CD4+ or CD8+ Tregs, indicating that IL-27 inhibition had differential effects on IL-10 production and preserved a mechanistic pathway by which Tregs are known to suppress GVHD. Targeting of IL-27 therefore represents a novel strategy for the in vivo expansion of Tregs and subsequent prevention of GVHD without the requirement for ex vivo cellular manipulation, and provides additional support for the critical proinflammatory role that members of the IL-6 and IL-12 cytokine families play in GVHD biology. PMID:27488350

  5. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    PubMed Central

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  6. Self-Recognition Sensitizes Mouse and Human Regulatory T Cells to Low-Dose CD28 Superagonist Stimulation.

    PubMed

    Langenhorst, Daniela; Tabares, Paula; Gulde, Tobias; Becklund, Bryan R; Berr, Susanne; Surh, Charles D; Beyersdorf, Niklas; Hünig, Thomas

    2017-01-01

    In rodents, low doses of CD28-specific superagonistic monoclonal antibodies (CD28 superagonists, CD28SA) selectively activate regulatory T cells (Treg). This observation has recently been extended to humans, suggesting an option for the treatment of autoimmune and inflammatory diseases. However, a mechanistic explanation for this phenomenon is still lacking. Given that CD28SA amplify T cell receptor (TCR) signals, we tested the hypothesis that the weak tonic TCR signals received by conventional CD4 + T cells (Tconv) in the absence of cognate antigen require more CD28 signaling input for full activation than the stronger TCR signals received by self-reactive Treg. We report that in vitro , the response of mouse Treg and Tconv to CD28SA strongly depends on MHC class II expression by antigen-presenting cells. To separate the effect of tonic TCR signals from self-peptide recognition, we compared the response of wild-type Treg and Tconv to low and high CD28SA doses upon transfer into wild-type or H-2M knockout mice, which lack a self-peptide repertoire. We found that the superior response of Treg to low CD28SA doses was lost in the absence of self-peptide presentation. We also tested if potentially pathogenic autoreactive Tconv would benefit from self-recognition-induced sensitivity to CD28SA stimulation by transferring TCR transgenic OVA-specific Tconv into OVA-expressing mice and found that low-dose CD28SA application inhibited, rather than supported, their expansion, presumably due to the massive concomitant activation of Treg. Finally, we report that also in the in vitro response of human peripheral blood mononuclear cells to CD28SA, HLA II blockade interferes with the expansion of Treg by low-dose CD28SA stimulation. These results provide a rational basis for the further development of low-dose CD28SA therapy for the improvement of Treg activity.

  7. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade.

    PubMed

    Ezzelarab, Mohamed B; Lu, Lien; Shufesky, William F; Morelli, Adrian E; Thomson, Angus W

    2018-01-01

    Donor-derived regulatory dendritic cell (DCreg) infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag) 4 (CTLA4) and programmed cell death protein 1 (PD1) by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig) is associated with reduced differentiation and development of regulatory T cells (Treg). We hypothesized that upregulation of CTLA4 by donor-reactive CD4 + T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4 + T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4 + CTLA4 hi , but not CD4 + CTLA4 med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4 + CTLA4 hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4 + CTLA4 hi /CD4 + CTLA4 med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4 + CTLA4 hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade.

  8. Donor-Derived Regulatory Dendritic Cell Infusion Maintains Donor-Reactive CD4+CTLA4hi T Cells in Non-Human Primate Renal Allograft Recipients Treated with CD28 Co-Stimulation Blockade

    PubMed Central

    Ezzelarab, Mohamed B.; Lu, Lien; Shufesky, William F.; Morelli, Adrian E.; Thomson, Angus W.

    2018-01-01

    Donor-derived regulatory dendritic cell (DCreg) infusion before transplantation, significantly prolongs renal allograft survival in non-human primates. This is associated with enhanced expression of the immunoregulatory molecules cytotoxic T-lymphocyte-associated antigen (Ag) 4 (CTLA4) and programmed cell death protein 1 (PD1) by host donor-reactive T cells. In rodents and humans, CD28 co-stimulatory pathway blockade with the fusion protein CTLA4:Ig (CTLA4Ig) is associated with reduced differentiation and development of regulatory T cells (Treg). We hypothesized that upregulation of CTLA4 by donor-reactive CD4+ T cells in DCreg-infused recipients treated with CTLA4Ig, might be associated with higher incidences of donor-reactive CD4+ T cells with a Treg phenotype. In normal rhesus monkeys, allo-stimulated CD4+CTLA4hi, but not CD4+CTLA4med/lo T cells exhibited a regulatory phenotype, irrespective of PD1 expression. CTLA4Ig significantly reduced the incidence of CD4+CTLA4hi, but not CD4+CTLA4med/lo T cells following allo-stimulation, associated with a significant reduction in the CD4+CTLA4hi/CD4+CTLA4med/lo T cell ratio. In CTLA4Ig-treated renal allograft recipient monkeys, there was a marked reduction in circulating donor-reactive CD4+CTLA4hi T cells. In contrast, in CTLA4Ig-treated monkeys with DCreg infusion, no such reduction was observed. In parallel, the donor-reactive CD4+CTLA4hi/CD4+CTLA4med/lo T cell ratio was reduced significantly in graft recipients without DCreg infusion, but increased in those given DCreg. These observations suggest that pre-transplant DCreg infusion promotes and maintains donor-reactive CD4+CTLA4hi T cells with a regulatory phenotype after transplantation, even in the presence of CD28 co-stimulation blockade. PMID:29520267

  9. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization.

    PubMed

    Nakamoto, Nobuhiro; Kaplan, David E; Coleclough, Jennifer; Li, Yun; Valiga, Mary E; Kaminski, Mary; Shaked, Abraham; Olthoff, Kim; Gostick, Emma; Price, David A; Freeman, Gordon J; Wherry, E John; Chang, Kyong-Mi

    2008-06-01

    The immunoinhibitory receptor programmed death-1 (PD-1) is up-regulated on dysfunctional virus-specific CD8 T cells during chronic viral infections, and blockade of PD-1/PD-ligand (PD-L) interactions can restore their function. As hepatitis C virus (HCV) persists in the liver with immune-mediated disease pathogenesis, we examined the role of PD-1/PD-L pathway in antigen-specific CD8 T-cell dysfunction in the liver and blood of HCV-infected patients. PD-1 expression and function of circulating CD8 T cells specific for HCV, Epstein-Barr virus, and influenza virus were examined ex vivo and following antigenic stimulation in vitro in patients with acute, chronic, and resolved HCV infection using class I tetramers and flow cytometry. Intrahepatic CD8 T cells were examined from liver explants of chronically HCV-infected transplant recipients. Intrahepatic HCV-specific CD8 T cells from chronically HCV-infected patients were highly PD-1 positive, profoundly dysfunctional, and unexpectedly refractory to PD-1/PD-L blockade, contrasting from circulating PD-1-intermediate HCV-specific CD8 T cells with responsiveness to PD-1/PD-L blockade. This intrahepatic functional impairment was HCV-specific and directly associated with the level of PD-1 expression. Highly PD-1-positive intrahepatic CD8 T cells were more phenotypically exhausted with increased cytotoxic T-lymphocyte antigen 4 and reduced CD28 and CD127 expression, suggesting that active antigen-specific stimulation in the liver induces a profound functional exhaustion not reversible by PD-1/PD-L blockade alone. HCV-specific CD8 T-cell dysfunction and responsiveness to PD-1/PD-L blockade are defined by their PD-1 expression and compartmentalization. These findings provide new and clinically relevant insight to differential antigen-specific CD8 T-cell exhaustion and their functional restoration.

  10. Functional restoration of HCV-specific CD8 T-cells by PD1 blockade is defined by PD1 expression and compartmentalization

    PubMed Central

    Nakamoto, Nobuhiro; Kaplan, David E.; Coleclough, Jennifer; Li, Yun; Kaminski, Mary; Shaked, Abraham; Olthoff, Kim; Gostick, Emma; Price, David A.; Freeman, Gordon J.; Wherry, E. John; Chang, Kyong-Mi

    2008-01-01

    Background & Aims The immuno-inhibitory receptor Programmed Death-1 (PD-1) is upregulated on dysfunctional virus-specific CD8 T-cells during chronic viral infections and blockade of PD-1:PD-ligand (PD-L) interactions can restore their function. As hepatitis C virus (HCV) persists in the liver with immune-mediated disease pathogenesis, we examined the role of PD1/PD-L pathway in antigen-specific CD8 T-cell dysfunction in the liver and blood of HCV-infected patients. Methods PD-1 expression and function of circulating CD8 T-cells specific for HCV, EBV and Flu were examined ex vivo and following antigenic stimulation in vitro in patients with acute, chronic and resolved HCV infection using class I tetramers and flow cytometry. Intrahepatic CD8 T-cells were examined from liver explants of chronically HCV-infected transplant recipients. Results Intrahepatic HCV-specific CD8 T-cells from chronically HCV-infected patients were highly PD-1-positive, profoundly dysfunctional and unexpectedly refractory to PD-1:PD-L blockade, contrasting from circulating PD-1-intermediate HCV-specific CD8 T-cells with responsiveness to PD-1:PD-L blockade. This intrahepatic functional impairment was HCV-specific and directly associated with the level of PD-1 expression. Highly PD-1-positive intrahepatic CD8 T-cells were more phenotypically exhausted with increased cytotoxic T-lymphocyte antigen 4 (CTLA-4) and reduced CD28 and CD127 expression, suggesting that active antigen-specific stimulation in the liver induces a profound functional exhaustion not reversible by PD-1:PD-L blockade alone. Conclusion HCV-specific CD8 T-cell dysfunction and responsiveness to PD-1:PD-L blockade are defined by their PD-1 expression and compartmentalization. These findings provide new and clinically relevant insight to differential antigen-specific CD8 T-cell exhaustion and their functional restoration. PMID:18549878

  11. Toxicological and pharmacological assessment of AGEN1884, a novel human IgG1 anti-CTLA-4 antibody

    PubMed Central

    Gonzalez, Ana; Manrique, Mariana; Chand, Dhan; Savitsky, David; Morin, Benjamin; Breous-Nystrom, Ekaterina; Dupont, Christopher; Ward, Rebecca A.; Mundt, Cornelia; Duckless, Benjamin; Tang, Hao; Findeis, Mark A.; Schuster, Andrea; Waight, Jeremy D.; Underwood, Dennis; Clarke, Christopher; Ritter, Gerd; Merghoub, Taha; Schaer, David; Wolchok, Jedd D.; van Dijk, Marc; Buell, Jennifer S.; Cuillerot, Jean-Marie; Stein, Robert; Drouin, Elise E.

    2018-01-01

    CTLA-4 and CD28 exemplify a co-inhibitory and co-stimulatory signaling axis that dynamically sculpts the interaction of antigen-specific T cells with antigen-presenting cells. Anti-CTLA-4 antibodies enhance tumor-specific immunity through a variety of mechanisms including: blockade of CD80 or CD86 binding to CTLA-4, repressing regulatory T cell function and selective elimination of intratumoral regulatory T cells via an Fcγ receptor-dependent mechanism. AGEN1884 is a novel IgG1 antibody targeting CTLA-4. It potently enhanced antigen-specific T cell responsiveness that could be potentiated in combination with other immunomodulatory antibodies. AGEN1884 was well-tolerated in non-human primates and enhanced vaccine-mediated antigen-specific immunity. AGEN1884 combined effectively with PD-1 blockade to elicit a T cell proliferative response in the periphery. Interestingly, an IgG2 variant of AGEN1884 revealed distinct functional differences that may have implications for optimal dosing regimens in patients. Taken together, the pharmacological properties of AGEN1884 support its clinical investigation as a single therapeutic and combination agent. PMID:29617360

  12. Response to programmed cell death-1 blockade in a murine melanoma syngeneic model requires costimulation, CD4, and CD8 T cells

    PubMed Central

    Moreno, Blanca Homet; Zaretsky, Jesse M.; Garcia-Diaz, Angel; Tsoi, Jennifer; Parisi, Giulia; Robert, Lidia; Meeth, Katrina; Ndoye, Abibatou; Bosenberg, Marcus; Weeraratna, Ashani T.; Graeber, Thomas G.; Comin-Anduix, Begoña; Hu-Lieskovan, Siwen; Ribas, Antoni

    2016-01-01

    The programmed cell death protein 1 (PD-1) limits effector T-cell functions in peripheral tissues and its inhibition leads to clinical benefit in different cancers. To better understand how PD-1 blockade therapy modulates the tumor-host interactions, we evaluated three syngeneic murine tumor models, the BRAFV600E-driven YUMM1.1 and YUMM2.1 melanomas, and the carcinogen-induced murine colon adenocarcinoma MC38. The YUMM cell lines were established from mice with melanocyte-specific BRAFV600E mutation and PTEN loss (BRAFV600E/PTEN-/-). Anti–PD-1 or anti–PD-L1 therapy engendered strong antitumor activity against MC38 and YUMM2.1, but not YUMM1.1. PD-L1 expression did not differ between the three models at baseline or upon interferon stimulation. Whereas mutational load was high in MC38, it was lower in both YUMM models. In YUMM2.1, the antitumor activity of PD-1 blockade had a critical requirement for both CD4 and CD8 T cells, as well as CD28 and CD80/86 costimulation, with an increase in CD11c+CD11b+MHC-IIhigh dendritic cells and tumor associated macrophages in the tumors after PD-1 blockade. Compared to YUMM1.1, YUMM2.1 exhibited a more inflammatory profile by RNA sequencing analysis, with an increase in expression from chemokine-trafficking genes that are related to immune cell recruitment and T-cell priming. In conclusion, response to PD-1 blockade therapy in tumor models requires CD4 and CD8 T cells and costimulation that is mediated by dendritic cells and macrophages. PMID:27589875

  13. CD147 blockade as a potential and novel treatment of graft rejection

    PubMed Central

    Luan, Jing; Zhao, Yu; Zhang, Yang; Miao, Jinlin; Li, Jia; Chen, Zhi-Nan; Zhu, Ping

    2017-01-01

    Cluster of differentiation (CD)147 is highly involved in the T cell activation process. High CD147 expression is observed on the surfaces of activated T cells, particularly CD4+ T cells. In organ transplantation, it is important to prevent graft rejection resulting from the excessive activation of T cells, particularly CD4+ T cells, which exhibit a key role in amplifying the immune response. The present study aimed to investigate the effects of CD147 blockade in vitro and in vivo and used a transplant rejection system to assess the feasibility of utilizing CD147 antibody-based immunosuppressant drugs for the treatment of graft rejection. The effects of CD147 antibodies were evaluated on lymphocyte proliferation stimulated by phytohemagglutinin or CD3/CD28 magnetic beads and in a one-way mixed lymphocyte reaction (MLR) system in vitro. For the in vivo analysis, an allogeneic skin transplantation mouse model was used. CD147 antibodies were effective against lymphocytes, particularly CD4+T lymphocytes, and were additionally effective in the one-way MLR system. In the allogeneic skin transplantation mouse model, the survival of transplanted skin was extended in the CD147 antibody-treated group. Furthermore, the level of inflammatory cell infiltration in transplanted skin was reduced. CD147 blockade decreased the serum levels of interleukin (IL)-17 and the proportions of peripheral blood CD4+ and CD8+ memory T cells. The data demonstrated that CD147 blockade suppressed skin graft rejection, primarily by suppressing CD4+T and memory T cell proliferation, indicating that CD147 exhibits great potential as a target of immunosuppressant drugs. PMID:28849101

  14. CD147 blockade as a potential and novel treatment of graft rejection.

    PubMed

    Luan, Jing; Zhao, Yu; Zhang, Yang; Miao, Jinlin; Li, Jia; Chen, Zhi-Nan; Zhu, Ping

    2017-10-01

    Cluster of differentiation (CD)147 is highly involved in the T cell activation process. High CD147 expression is observed on the surfaces of activated T cells, particularly CD4+ T cells. In organ transplantation, it is important to prevent graft rejection resulting from the excessive activation of T cells, particularly CD4+ T cells, which exhibit a key role in amplifying the immune response. The present study aimed to investigate the effects of CD147 blockade in vitro and in vivo and used a transplant rejection system to assess the feasibility of utilizing CD147 antibody‑based immunosuppressant drugs for the treatment of graft rejection. The effects of CD147 antibodies were evaluated on lymphocyte proliferation stimulated by phytohemagglutinin or CD3/CD28 magnetic beads and in a one‑way mixed lymphocyte reaction (MLR) system in vitro. For the in vivo analysis, an allogeneic skin transplantation mouse model was used. CD147 antibodies were effective against lymphocytes, particularly CD4+T lymphocytes, and were additionally effective in the one‑way MLR system. In the allogeneic skin transplantation mouse model, the survival of transplanted skin was extended in the CD147 antibody‑treated group. Furthermore, the level of inflammatory cell infiltration in transplanted skin was reduced. CD147 blockade decreased the serum levels of interleukin (IL)‑17 and the proportions of peripheral blood CD4+ and CD8+ memory T cells. The data demonstrated that CD147 blockade suppressed skin graft rejection, primarily by suppressing CD4+T and memory T cell proliferation, indicating that CD147 exhibits great potential as a target of immunosuppressant drugs.

  15. Human immunodeficiency virus infection of helper T cell clones. Early proliferative defects despite intact antigen-specific recognition and interleukin 4 secretion.

    PubMed Central

    Laurence, J; Friedman, S M; Chartash, E K; Crow, M K; Posnett, D N

    1989-01-01

    HIV selectively inhibited the proliferative response of clonal CD4+ T lymphocytes to alloantigen while other alloantigen-dependent responses were unperturbed. Specifically, impaired blastogenesis could be dissociated from alloantigen-specific induction of the B cell activation molecule CD23, IL-4 release, and inositol lipid hydrolysis. In addition, membrane expression of pertinent T cell receptor molecules, including CD2, CD3, and T cell antigen receptor (Ti), remained intact. Using two MHC class II-specific human CD4+ helper T cell clones, the proliferative defect was shown to be an early consequence of HIV infection, occurring within 4 d of viral inoculation and preceding increases in mature virion production. It was generalizable to three distinct methods of T cell activation, all independent of antigen-presenting cells: anti-CD3 mediated cross-linking of the CD3/Ti complex; anti-CD2 and phorbol 12-myristic 13-acetate (PMA); and anti-CD28 plus PMA. These abnormalities were not mitigated by addition of exogenous IL-2, even though expression of the IL-2 receptor (CD25) was unaltered. These studies define a selective blockade in T cell function early after HIV exposure that could serve as a model for certain in vivo manifestations of AIDS. PMID:2470786

  16. Impact of Leukocyte Function-Associated Antigen-1 Blockade on Endogenous Allospecific T Cells to Multiple Minor Histocompatibility Antigen Mismatched Cardiac Allograft.

    PubMed

    Kwun, Jean; Farris, Alton B; Song, Hyunjin; Mahle, William T; Burlingham, William J; Knechtle, Stuart J

    2015-12-01

    Blocking leukocyte function-associated antigen (LFA)-1 in organ transplant recipients prolongs allograft survival. However, the precise mechanisms underlying the therapeutic potential of LFA-1 blockade in preventing chronic rejection are not fully elucidated. Cardiac allograft vasculopathy (CAV) is the preeminent cause of late cardiac allograft failure characterized histologically by concentric intimal hyperplasia. Anti-LFA-1 monoclonal antibody was used in a multiple minor antigen-mismatched, BALB.B (H-2B) to C57BL/6 (H-2B), cardiac allograft model. Endogenous donor-specific CD8 T cells were tracked down using major histocompatibility complex multimers against the immunodominant H4, H7, H13, H28, and H60 minor Ags. The LFA-1 blockade prevented acute rejection and preserved palpable beating quality with reduced CD8 T-cell graft infiltration. Interestingly, less CD8 T cell infiltration was secondary to reduction of T-cell expansion rather than less trafficking. The LFA-1 blockade significantly suppressed the clonal expansion of minor histocompatibility antigen-specific CD8 T cells during the expansion and contraction phase. The CAV development was evaluated with morphometric analysis at postoperation day 100. The LFA-1 blockade profoundly attenuated neointimal hyperplasia (61.6 vs 23.8%; P < 0.05), CAV-affected vessel number (55.3 vs 15.9%; P < 0.05), and myocardial fibrosis (grade 3.29 vs 1.8; P < 0.05). Finally, short-term LFA-1 blockade promoted long-term donor-specific regulation, which resulted in attenuated transplant arteriosclerosis. Taken together, LFA-1 blockade inhibits initial endogenous alloreactive T-cell expansion and induces more regulation. Such a mechanism supports a pulse tolerance induction strategy with anti-LFA-1 rather than long-term treatment.

  17. Significant IFNγ responses of CD8+ T cells in CMV-seropositive individuals with autoimmune arthritis.

    PubMed

    Almanzar, Giovanni; Schmalzing, Marc; Trippen, Raimund; Höfner, Kerstin; Weißbrich, Benedikt; Geissinger, Eva; Meyer, Thomas; Liese, Johannes; Tony, Hans-Peter; Prelog, Martina

    2016-04-01

    Latent Cytomegalovirus (CMV) infection accelerates immunosenescence in elderly with reactivations reported in Rheumatoid Arthritis (RA) and abnormal responses towards CMV in Juvenile Idiopathic Arthritis (JIA). Considering the signs of premature T-cell immunosenescence in arthritis patients, the known effect of CMV latency on speeding up many of these signs in an age-dependent manner and the role of CMV on IFNγ-mediated inflammation in healthy elderly and RA, we hypothesized that latent CMV infection accelerates TCR repertoire restriction, loss of CD28, peripheral T-cell proliferation and aberrant IFNγ responses in arthritis patients. Unspecific and CMVpp65-specific IFNγ responses were investigated in peripheral CD8+ T-cells in RA or JIA patients and healthy, age-matched controls. Despite higher prevalence and concentrations of IgG-anti-CMV, arthritis patients showed lower unspecific IFNγ production, lower CD69-mediated activation and lower CD8+ T-cell proliferation. CMV-seropositive RA patients showed higher intracellular IFNγ production and increased proportions of CD28-CD8+ T-cells after specific CMVpp65 long-term stimulation which was not altered by in vitro blockade of TNFα or IL-6. A skewed TCR repertoire towards oligoclonality and less polyclonality was found in JIA. CMVpp65-specific IFNγ production with expansion of CD28-CD8+ T-cells suggests an efficient control of latent CMV regardless of immunosuppressive therapy or in vitro blockade of TNFα or IL-6 in CMV-seropositive arthritis patients. Increased IgG-anti-CMV antibody concentrations and increased proportions of intracellular IFNγ-producing CMVpp65-specific CD8+ T-cells in long-term cultures propose a possibly role of endogenous CMV reactivations boosting antibody levels and a higher possibly CMV-driven IFNγ-mediated inflammatory potential of CD8+ T-cells in arthritis patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. OX40 signaling is involved in the autoactivation of CD4+CD28- T cells and contributes to the pathogenesis of autoimmune arthritis.

    PubMed

    Jiang, Juean; Liu, Cuiping; Liu, Mi; Shen, Yu; Hu, Xiaohan; Wang, Qin; Wu, Jian; Wu, Min; Fang, Qi; Zhang, Xueguang

    2017-03-21

    CD4 + CD28 - T cells exhibit autoreactive potential in autoimmune disorders, including rheumatoid arthritis (RA). It is not well known which costimulator functions as an alternative second signal in the activation of this subset after CD28 expression is downregulated. Tumor necrosis factor receptor superfamily member OX40 is a key costimulator in the activation of T cells. The aim of this study was to investigate the costimulatory effects of OX40 on CD4 + CD28 - T cells in autoimmune arthritis. Clinical samples were collected from patients with RA and control subjects. Collagen-induced arthritis (CIA) was induced with collagen type II (CII) in DBA/1 mice. The CD4 + CD28 - OX40 + T-cell subset and its cytokine production were detected by flow cytometry. After T-cell purification, adoptive transfer was performed in CIA mice. The regulatory role of OX40 was determined by blocking experiments in vitro and in vivo. OX40 and OX40L were abnormally expressed in patients with RA and CIA mice. Further analysis showed that CD4 + CD28 - OX40 + T cells accumulated in patients with RA and in animal models. These cells produced higher levels of proinflammatory cytokines and were closely correlated with the clinicopathological features of the affected individuals. Adoptive transfer of CII-specific CD4 + CD28 - OX40 + T cells remarkably aggravated arthritic development and joint pathology in CIA mice. Moreover, OX40 blockade significantly reduced the proinflammatory responses and ameliorated arthritis development. OX40 acts as an alternative costimulator of CD4 + CD28 - T cells and plays a pathogenic role in autoimmune arthritic development, suggesting that it is a potential target for immunomodulatory therapy of RA.

  19. CD28/B7 deficiency attenuates systolic overload-induced congestive heart failure, myocardial and pulmonary inflammation, and activated T-cell accumulation in the heart and lungs

    PubMed Central

    Wang, Huan; Kwak, Dongmin; Fassett, John; Hou, Lei; Xu, Xin; Burbach, Brandon J.; Thenappan, Thenappan; Xu, Yawei; Ge, Jun-bo; Shimizu, Yoji; Bache, Robert J.; Chen, Yingjie

    2017-01-01

    The inflammatory response regulates congestive heart failure (CHF) development. T-cell activation plays an important role in tissue inflammation. We postulate that CD28 or B7 deficiency inhibits T-cell activation and attenuates CHF development by reducing systemic, cardiac and pulmonary inflammation. We demonstrated that chronic pressure overload-induced end-stage CHF in mice is characterized by profound accumulation of activated effector T-cells (CD3+CD44high cells) in the lungs and a mild but significant increase of these cells in the heart. In knockout (KO) mice lacking either CD28 or B7, there was a dramatic reduction in the accumulation of activated effector T cells in both hearts and lungs of mice under control conditions and after transverse aortic constriction (TAC). CD28 or B7 KO significantly attenuated TAC-induced CHF development, as indicated by less increase of heart and lung weight, and less reduction of LV contractility. CD28 or B7 KO also significantly reduced TAC-induced CD45+ leukocyte, T-cell and macrophage infiltration in hearts and lungs, lowered pro-inflammatory cytokine expression (such as TNF-α and IL-1β) in lungs. Furthermore, CD28/B7 blockade by CTLA4-Ig treatment (250μg/mouse every 3 days) attenuated TAC-induced T cell activation, LV hypertrophy, and LV dysfunction. Our data indicate that CD28/B7 deficiency inhibits activated effector T-cell accumulation, reduces myocardial and pulmonary inflammation, and attenuates the development of CHF. Our findings suggest that strategies targeting T-cell activation may be useful in treating CHF. PMID:27432861

  20. Bacterial Pathogens Induce Abscess Formation by CD4+ T-Cell Activation via the CD28–B7-2 Costimulatory Pathway

    PubMed Central

    Tzianabos, Arthur O.; Chandraker, Anil; Kalka-Moll, Wiltrud; Stingele, Francesca; Dong, Victor M.; Finberg, Robert W.; Peach, Robert; Sayegh, Mohamed H.

    2000-01-01

    Abscesses are a classic host response to infection by many pathogenic bacteria. The immunopathogenesis of this tissue response to infection has not been fully elucidated. Previous studies have suggested that T cells are involved in the pathologic process, but the role of these cells remains unclear. To delineate the mechanism by which T cells mediate abscess formation associated with intra-abdominal sepsis, the role of T-cell activation and the contribution of antigen-presenting cells via CD28-B7 costimulation were investigated. T cells activated in vitro by zwitterionic bacterial polysaccharides (Zps) known to induce abscess formation required CD28-B7 costimulation and, when adoptively transferred to the peritoneal cavity of naïve rats, promoted abscess formation. Blockade of T-cell activation via the CD28-B7 pathway in animals with CTLA4Ig prevented abscess formation following challenge with different bacterial pathogens, including Staphylococcus aureus, Bacteroides fragilis, and a combination of Enterococcus faecium and Bacteroides distasonis. In contrast, these animals had an increased abscess rate following in vivo T-cell activation via CD28 signaling. Abscess formation in vivo and T-cell activation in vitro required costimulation by B7-2 but not B7-1. These results demonstrate that abscess formation by pathogenic bacteria is under the control of a common effector mechanism that requires T-cell activation via the CD28–B7-2 pathway. PMID:11083777

  1. Computational spatiotemporal analysis identifies WAVE2 and Cofilin as joint regulators of costimulation-mediated T cell actin dynamics

    PubMed Central

    Roybal, Kole T.; Buck, Taráz E.; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J.; Ambler, Rachel; Tunbridge, Helen M.; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F.

    2016-01-01

    Fluorescence microscopy is one of the most important tools in cell biology research and it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells; however, given extensive cell-to-cell variation, methods do not currently exist to assemble these data into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. Here, we have developed one such method and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28 and we have determined how CD28 modulates actin dynamics. We imaged actin and eight core actin regulators under conditions where CD28 in the context of a strong TCR signal was engaged or blocked to yield over a thousand movies. Our computational analysis identified diminished recruitment of the activator of actin nucleation WAVE2 and the actin severing protein cofilin to F-actin as the dominant difference upon costimulation blockade. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics upon costimulation blockade. Thus we have developed and validated an approach to quantify protein distributions in time and space for analysis of complex regulatory systems. PMID:27095595

  2. Anti-LINGO-1 has no detectable immunomodulatory effects in preclinical and phase 1 studies

    PubMed Central

    Ranger, Ann; Ray, Soma; Szak, Suzanne; Dearth, Andrea; Allaire, Norm; Murray, Ronald; Gardner, Rebecca; Cadavid, Diego

    2017-01-01

    Objective: To evaluate whether the anti-LINGO-1 antibody has immunomodulatory effects. Methods: Human peripheral blood mononuclear cells (hPBMCs), rat splenocytes, and rat CD4+ T cells were assessed to determine whether LINGO-1 was expressed and was inducible. Anti-LINGO-1 Li81 (0.1–30 μg/mL) effect on proliferation/cytokine production was assessed in purified rat CD4+ T cells and hPBMCs stimulated with antibodies to CD3 +/– CD28. In humans, the effect of 2 opicinumab (anti-LINGO-1/BIIB033; 30, 60, and 100 mg/kg) or placebo IV administrations was evaluated in RNA from blood and CSF samples taken before and after administration in phase 1 clinical trials; paired samples were assessed for differentially expressed genes by microarray. RNA from human CSF cell pellets was analyzed by quantitative real-time PCR for changes in transcripts representative of cell types, activation markers, and soluble proteins of the adaptive/innate immune systems. ELISA quantitated the levels of CXCL13 protein in human CSF supernatants. Results: LINGO-1 is not expressed in hPBMCs, rat splenocytes, or rat CD4+ T cells; LINGO-1 blockade with Li81 did not affect T-cell proliferation or cytokine production from purified rat CD4+ T cells or hPBMCs. LINGO-1 blockade with opicinumab resulted in neither significant changes in immune system gene expression in blood and CSF, nor changes in CXCL13 CSF protein levels (clinical studies). Conclusions: These data support the hypothesis that LINGO-1 blockade does not affect immune function. Classification of evidence: This study provides Class II evidence that in patients with MS, opicinumab does not have immunomodulatory effects detected by changes in immune gene transcript expression. PMID:29259995

  3. Expression and purification of soluble porcine CTLA-4 in yeast Pichia pastoris

    PubMed Central

    Peraino, Jaclyn; Zhang, Huiping; Hermanrud, Christina E.; Li, Guoying; Sachs, David H.; Huang, Christene A.; Wang, Zhirui

    2012-01-01

    Co-stimulation blockade can be used to modulate the immune response for induction of organ transplantation tolerance, treatment of autoimmune disease as well as cancer treatment. Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4), also known as CD152, is an important co-stimulatory molecule which serves as a negative regulator for T cell proliferation and differentiation. CTLA-4/CD28-CD80/CD86 pathway is a critical co-stimulatory pathway for adaptive immune response. T cell activation through the T cell receptor and CD28 leads to increased expression of CTLA-4, an inhibitory receptor for CD80 and CD86. MGH MHC-defined miniature swine provide a unique large animal model useful for preclinical studies of transplantation tolerance and immune regulation. In this study, we have expressed the codon-optimized soluble porcine CTLA-4 in the yeast Pichia pastoris system. The secreted porcine CTLA-4 was captured using Ni-Sepharose 6 fast flow resin and further purified using strong anion exchange resin Poros 50HQ. Glycosylation analysis using PNGase F demonstrated the N-linked glycosylation on Pichia pastoris expressed soluble porcine CTLA-4. To improve the expression level and facilitate the downstream purification we mutated the two potential N-linked glycosylation sites with non-polarized alanines by site-directed mutagenesis. Removal of the two N-glycosylation sites significantly improved the production level from ~2 mg/L to ~8 mg/L. Biotinylated glycosylated and non-N-glycosylated soluble porcine CTLA-4 both bind to a porcine CD80-expressing B-cell lymphoma cell line (KD = 13 nM) and competitively inhibit the binding of an anti-CD80 monoclonal antibody. The availability of soluble porcine CTLA-4, especially the non-N-glycosylated CTLA-4, will provide a very valuable tool for assessing co-stimulatory blockade treatment for translational studies in the clinically relevant porcine model. PMID:22326797

  4. Manipulating memory CD8 T cell numbers by timed enhancement of IL-2 signals1

    PubMed Central

    Kim, Marie T.; Kurup, Samarchith P.; Starbeck-Miller, Gabriel R.; Harty, John T.

    2016-01-01

    Due to the growing burden of tumors and chronic infections, manipulating CD8 T cell responses for clinical use has become an important goal for immunologists. Here, we show that dendritic cell (DC) immunization coupled with relatively early (days 1–3) or late (days 4–6) administration of enhanced IL-2-signals both increase peak effector CD8 T cell numbers, but only early IL-2 signals enhance memory numbers. IL-2 signals delivered at relatively late time points drive terminal differentiation, marked Bim mediated contraction and do not increase memory T cell numbers. In contrast, early IL-2 signals induce effector cell metabolic profiles more conducive to memory formation. Of note, down-regulation of CD80 and CD86 was observed on DCs in vivo following early IL-2 treatment. Mechanistically, early IL-2 treatment enhanced CTLA-4 expression on regulatory T (Treg) cells, and CTLA-4 blockade alongside IL-2 treatment in vivo prevented the decrease in CD80 and CD86, supporting a cell-extrinsic role of CTLA-4 in down-regulating B7-ligand expression on DCs. Finally, DC immunization followed by early IL-2 treatment and αCTLA-4 blockade resulted in lower memory CD8 T cell numbers compared to the DC + early IL-2 treatment group. These data suggest that curtailed signaling through the B7-CD28 co-stimulatory axis during CD8 T cell activation limits terminal differentiation and preserves memory CD8 T cell formation and thus, should be considered in future T cell vaccination strategies. PMID:27439516

  5. Signal one and two blockade are both critical for non-myeloablative murine HSCT across a major histocompatibility complex barrier.

    PubMed

    Langford-Smith, Kia J; Sandiford, Zara; Langford-Smith, Alex; Wilkinson, Fiona L; Jones, Simon A; Wraith, J Ed; Wynn, Robert F; Bigger, Brian W

    2013-01-01

    Non-myeloablative allogeneic haematopoietic stem cell transplantation (HSCT) is rarely achievable clinically, except where donor cells have selective advantages. Murine non-myeloablative conditioning regimens have limited clinical success, partly through use of clinically unachievable cell doses or strain combinations permitting allograft acceptance using immunosuppression alone. We found that reducing busulfan conditioning in murine syngeneic HSCT, increases bone marrow (BM):blood SDF-1 ratio and total donor cells homing to BM, but reduces the proportion of donor cells engrafting. Despite this, syngeneic engraftment is achievable with non-myeloablative busulfan (25 mg/kg) and higher cell doses induce increased chimerism. Therefore we investigated regimens promoting initial donor cell engraftment in the major histocompatibility complex barrier mismatched CBA to C57BL/6 allo-transplant model. This requires full myeloablation and immunosuppression with non-depleting anti-CD4/CD8 blocking antibodies to achieve engraftment of low cell doses, and rejects with reduced intensity conditioning (≤75 mg/kg busulfan). We compared increased antibody treatment, G-CSF, niche disruption and high cell dose, using reduced intensity busulfan and CD4/8 blockade in this model. Most treatments increased initial donor engraftment, but only addition of co-stimulatory blockade permitted long-term engraftment with reduced intensity or non-myeloablative conditioning, suggesting that signal 1 and 2 T-cell blockade is more important than early BM niche engraftment for transplant success.

  6. Durable antitumor responses to CD47 blockade require adaptive immune stimulation

    PubMed Central

    Sockolosky, Jonathan T.; Dougan, Michael; Ingram, Jessica R.; Ho, Chia Chi M.; Kauke, Monique J.; Almo, Steven C.; Ploegh, Hidde L.; Garcia, K. Christopher

    2016-01-01

    Therapeutic antitumor antibodies treat cancer by mobilizing both innate and adaptive immunity. CD47 is an antiphagocytic ligand exploited by tumor cells to blunt antibody effector functions by transmitting an inhibitory signal through its receptor signal regulatory protein alpha (SIRPα). Interference with the CD47–SIRPα interaction synergizes with tumor-specific monoclonal antibodies to eliminate human tumor xenografts by enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP), but synergy between CD47 blockade and ADCP has yet to be demonstrated in immunocompetent hosts. Here, we show that CD47 blockade alone or in combination with a tumor-specific antibody fails to generate antitumor immunity against syngeneic B16F10 tumors in mice. Durable tumor immunity required programmed death-ligand 1 (PD-L1) blockade in combination with an antitumor antibody, with incorporation of CD47 antagonism substantially improving response rates. Our results highlight an underappreciated contribution of the adaptive immune system to anti-CD47 adjuvant therapy and suggest that targeting both innate and adaptive immune checkpoints can potentiate the vaccinal effect of antitumor antibody therapy. PMID:27091975

  7. Selective Expansion of Memory CD4+ T cells By Mitogenic Human CD28 Generates Inflammatory Cytokines and Regulatory T cells

    PubMed Central

    Singh, Manisha; Basu, Sreemanti; Camell, Christina; Couturier, Jacob; Nudelman, Rodolfo J.; Medina, Miguel A.; Rodgers, John R.; Lewis, Dorothy E.

    2009-01-01

    Co-stimulatory signals are important for development of effector and regulatory T cells. In this case, CD28 signaling is usually considered inert in the absence of signaling through the TCR. By contrast, mitogenic rat CD28 mAbs reportedly expand regulatory T cells without TCR stimulation. We found that a commercially available human CD28 mAb (ANC28) stimulated PBMCs without TCR co-ligation or cross-linking; ANC28 selectively expanded CD4+CD25+FoxP3−(T effector) and CD4+CD25+FoxP3+ (Treg) cells. ANC28 stimulated the CD45RO+ CD4+ (memory) population whereas CD45RA+CD4+ (naïve) cells did not respond. ANC28 also induced inflammatory cytokines. Treg induced by ANC28 retain the Treg phenotype longer than did co-stimulated Treg. Treg induced by ANC28 suppressed CD25− T cells through a contact-dependent mechanism. Purity influenced the response of CD4+CD25+ cells because bead-purified CD4+CD25+ cells (85–90% pure) responded strongly to ANC28, whereas 98% pure FACS-sorted CD4+CD25 bright (T-reg) did not respond. Purified CD4+CD25int cells responded similarly to the bead-purified CD4+CD25+ cells. Thus, pre-activated CD4+ T cells (CD25int) respond to ANC28 rather than Treg (CD25bright). The ability of ANC28 to expand both effectors producing inflammatory cytokines as well as suppressive regulatory T cells might be useful for ex vivo expansion of therapeutic T cells. PMID:18446791

  8. [Molecular mechanisms of thymocyte differentiation].

    PubMed

    Kuklina, E M

    2003-01-01

    A review of the main molecular events occurring during differentiation of T-lymphocytes in the thymus: T-cell specialization of early intrathymic precursors, formation and expression of antigen receptor, formation of antigen recognizing cell repertoire, and alpha beta/gamma beta- and CD4/CD8-commitment. The mechanisms of glucocorticoid-induced apoptosis of thymocytes and its blockade during antigen-dependent activation are considered. A special attention is paid to the analysis of intracellular signals underlying the clonal selection of thymocytes.

  9. The role of GluN2B-containing NMDA receptors in short- and long-term fear recall.

    PubMed

    Mikics, Eva; Toth, Mate; Biro, Laszlo; Bruzsik, Biborka; Nagy, Boglarka; Haller, Jozsef

    2017-08-01

    N-methyl-d-aspartate (NMDA) receptors are crucial synaptic elements in long-term memory formation, including the associative learning of fearful events. Although NMDA blockers were consistently shown to inhibit fear memory acquisition and recall, the clinical use of general NMDA blockers is hampered by their side effects. Recent studies revealed significant heterogeneity in the distribution and neurophysiological characteristics of NMDA receptors with different GluN2 (NR2) subunit composition, which may have differential role in fear learning and recall. To investigate the specific role of NMDA receptor subpopulations with different GluN2 subunit compositions in the formation of lasting traumatic memories, we contrasted the effects of general NMDA receptor blockade with GluN2A-, GluN2B-, and GluN2C/D subunit selective antagonists (MK-801, PEAQX, Ro25-6981, PPDA, respectively). To investigate acute and lasting consequences, behavioral responses were investigated 1 and 28days after fear conditioning. We found that MK-801 (0.05 and 0.1mg/kg) decreased fear recall at both time points. GluN2B receptor subunit blockade produced highly similar effects, albeit efficacy was somewhat smaller 28days after fear conditioning. Unlike MK-801, Ro25-6981 (3 and 10mg/kg) did not affect locomotor activity in the open-field. In contrast, GluN2A and GluN2C/D blockers (6 and 20mg/kg PEAQX; 3 and 10mg/kg PPDA, respectively) had no effect on conditioned fear recall at any time point and dose. This sharp contrast between GluN2B- and other subunit-containing NMDA receptor function indicates that GluN2B receptor subunits are intimately involved in fear memory formation, and may provide a novel pharmacological target in post-traumatic stress disorder or other fear-related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis.

    PubMed

    Ramonell, Kimberly M; Zhang, Wenxiao; Hadley, Annette; Chen, Ching-Wen; Fay, Katherine T; Lyons, John D; Klingensmith, Nathan J; McConnell, Kevin W; Coopersmith, Craig M; Ford, Mandy L

    2017-01-01

    Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.

  11. CD200 modulates spinal cord injury neuroinflammation and outcome through CD200R1.

    PubMed

    Lago, Natalia; Pannunzio, Bruno; Amo-Aparicio, Jesús; López-Vales, Rubèn; Peluffo, Hugo

    2018-06-02

    The interaction between CD200 and its receptor CD200R1 is among the central regulators of microglia and macrophage phenotype. However, it remains to be established whether, in the context of a traumatic CNS injury, CD200R1 act as a negative regulator of these particular innate immune cells, and if the exogenous delivery of CD200 may ameliorate neurological deficits. In the present study, we first evaluated whether preventing the local interaction between the pair CD200-CD200R1, by using a selective blocking antibody against CD200R1, has a role on functional and inflammatory outcome after contusion-induced spinal cord injury (SCI) in mice. The injection of the αCD200R1, but not control IgG1, into the lesioned spinal cord immediately after the SCI worsened locomotor performance and exacerbated neuronal loss and demyelination. At the neuroimmunological level, we observed that microglial cells and macrophages showed increased levels of iNOS and Ly6C upon CD200R1 blockade, indicating that the disruption of CD200R1 drove these cells towards a more pro-inflammatory phenotype. Moreover, although CD200R1 blockade had no effect in the initial infiltration of neutrophils into the lesioned spinal cord, it significantly impaired their clearance, which is a key sign of excessive inflammation. Interestingly, intraparenchymal injection of recombinant CD200-His immediately after the injury induced neuroprotection and robust and long-lasting locomotor recovery. In conclusion, this study reveals that interaction of CD200-CD200R1 plays a crucial role in limiting inflammation and lesion progression after SCI, and that boosting the stimulation of this pathway may constitute a new therapeutic approach. Copyright © 2018. Published by Elsevier Inc.

  12. The Effect of Chronic Kidney Disease on T Cell Alloimmunity

    PubMed Central

    Winterberg, Pamela D.; Ford, Mandy L.

    2017-01-01

    Purpose of review Altered differentiation and activation of T cell subsets occur in patients with CKD, but the impact on graft rejection and protective immunity during transplantation are not fully understood. Recent findings Patients with CKD have decreased frequency of naïve T cells, accumulation of activated, terminally differentiated memory cells, and skewed regulatory versus T helper 17 ratio. Naïve and memory T cell subsets do not appear to improve following kidney transplantation. Retained thymic output is associated with acute rejection, while naïve lymphopenia and accumulation of CD8+TEMRA cells correlate with long-term graft dysfunction. CD28null memory cells accumulate during CKD and appear to confer protection against acute rejection under standard immunosuppression and possibly co-stimulation blockade. T cells bearing CD57 are also increased in patients with CKD and may underlie rejection during co-stimulation blockade. Summary The mechanisms by which CKD alters the differentiation and activation status of T cell subsets is poorly understood. Further research is also needed to understand which cell populations mediate rejection under various immunosuppressive regimens. To date, there is little use of animal models of organ failure in transplant immunology research. CKD mouse models may help identify novel pathways and targets to better control alloimmunity in post-transplant. PMID:27926546

  13. Scrutinizing the Expression and Blockade of Inhibitory Molecules Expressed on T Cells from Acute Myeloid Leukemia Patients.

    PubMed

    Abdolmaleki, Mohsen; Mojtabavi, Nazanin; Zavvar, Mahdi; Vaezi, Mohammad; Noorbakhsh, Farshid; Nicknam, Mohammad Hossein

    2018-06-01

    T cell exhaustion is an immunosuppressive mechanism which occurs in chronic viral infections, solid tumors and hematologic malignancies. Exhausted T cell has increased the expression of inhibitory receptors, and functional impairment. In this study, we investigated the expression from some of those inhibitory receptors being Programmed death 1 (PD-1), T cell immunoglobulin and mucin domain containing molecules 3 (TIM-3) and CD244 on T cells from Iranian acute myeloid leukemia (AML) patients. Peripheral blood samples were collected from Iranian newly diagnosed AML patients and flow cytometric analysis was accomplished for cell surface expression of PD-1, TIM-3, and CD244 on T lymphocytes. Functionality and proliferation assay were done in the presence of anti-PD-1 and anti-CD244 blocking antibodies. Immunophenotyping of T cells showed a significant increase of PD-1 and CD244 expression on CD4+ and CD8+ T cells of AML patients. Whereas blockade of PD1 and CD244 increased the proliferation of CD4+ and CD8+ T lymphocytes of AML patients but IFN-γ production was not significantly increased. In conclusion, our data indicate that CD4+ and CD8+ T cells from AML patients appeared to be exhausted and blockade of some immune checkpoints can improve the proliferation of those cells.

  14. Tumor necrosis factor alpha blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells.

    PubMed

    Ma, Hak-Ling; Napierata, Lee; Stedman, Nancy; Benoit, Stephen; Collins, Mary; Nickerson-Nutter, Cheryl; Young, Deborah A

    2010-02-01

    Patients with psoriasis and psoriatic arthritis respond well to tumor necrosis factor alpha (TNFalpha) blockers in general; however, there is now mounting evidence that a small cohort of patients with rheumatoid arthritis who receive TNFalpha blockers develop psoriasis. This study was undertaken to explore the mechanisms underlying TNFalpha blockade-induced exacerbation of skin inflammation in murine psoriasis-like skin disease. Skin inflammation was induced in BALB/c scid/scid mice after they received CD4+CD45RB(high)CD25- (naive CD4) T cells from donor mice. These mice were treated with either anti-interleukin-12 (anti-IL-12)/23p40 antibody or murine TNFRII-Fc fusion protein and were examined for signs of disease, including histologic features, various cytokine levels in the serum, and cytokine or FoxP3 transcripts in the affected skin and draining lymph node (LN) cells. In a separate study, naive CD4+ T cells were differentiated into Th1 or Th17 lineages with anti-CD3/28 magnetic beads and appropriate cytokines in the presence or absence of TNFalpha. Cytokine gene expression from these differentiated cells was also determined. Neutralization of TNFalpha exacerbated skin inflammation and markedly enhanced the expression of the proinflammatory cytokines IL-1beta, IL-6, IL-17, IL-21, and IL-22 but suppressed FoxP3 expression in the skin and reduced the number of FoxP3-positive Treg cells in the draining LNs. TNFalpha also demonstrated a divergent role during priming and reactivation of naive T cells. These results reveal a novel immunoregulatory role of TNFalpha on Th17 and Treg cells in some individuals, which may account for the exacerbation of skin inflammation in some patients who receive anti-TNF treatments.

  15. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma.

    PubMed

    Ma, Si-Rui; Deng, Wei-Wei; Liu, Jian-Feng; Mao, Liang; Yu, Guang-Tao; Bu, Lin-Lin; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-06-07

    Cancer immunotherapy offers a promising approach in cancer treatment. The adenosine A2A receptor (A2AR) could protect cancerous tissues from immune clearance via inhibiting T cells response. To date, the role of A2AR in head and neck squamous cell carcinoma (HNSCC) has not been investigated. Here, we sought to explore the expression and immunotherapeutic value of A2AR blockade in HNSCC. The expression of A2AR was evaluated by immunostaining in 43 normal mucosae, 48 dysplasia and 165 primary HNSCC tissues. The immunotherapeutic value of A2AR blockade was assessed in vivo in genetically defined immunocompetent HNSCC mouse model. Immunostaining of HNSCC tissue samples revealed that increased expression of A2AR on tumor infiltrating immune cells correlated with advanced pathological grade, larger tumor size and positive lymph node status. Elevated A2AR expression was also detected in recurrent HNSCC and HNSCC tissues with induction chemotherapy. The expression of A2AR was found to be significantly correlated with HIF-1α, CD73, CD8 and Foxp3. Furthermore, the increased population of CD4 + Foxp3 + regulatory T cells (Tregs), which partially expressed A2AR, was observed in an immunocompetent mouse model that spontaneously develops HNSCC. Pharmacological blockade of A2AR by SCH58261 delayed the tumor growth in the HNSCC mouse model. Meanwhile, A2AR blockade significantly reduced the population of CD4 + Foxp3 + Tregs and enhanced the anti-tumor response of CD8 + T cells. These results offer a preclinical proof for the administration of A2AR inhibitor on prophylactic experimental therapy of HNSCC and suggest that A2AR blockade can be a potential novel strategy for HNSCC immunotherapy.

  16. Role of Fatty-acid Synthesis in Dendritic Cell Generation and Function

    PubMed Central

    Rehman, Adeel; Hemmert, Keith C.; Ochi, Atsuo; Jamal, Mohsin; Henning, Justin R.; Barilla, Rocky; Quesada, Juan P.; Zambirinis, Constantinos P.; Tang, Kerry; Ego-Osuala, Melvin; Rao, Raghavendra S.; Greco, Stephanie; Deutsch, Michael; Narayan, Suchithra; Pachter, H. Leon; Graffeo, Christopher S.; Acehan, Devrim; Miller, George

    2013-01-01

    Dendritic cells (DC) are professional antigen presenting cells that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of Cleaved Caspase 3 and BCL-xL, and down-regulation of Cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHCII, ICAM-1, B7-1, B7-2 but increased their production of selected pro-inflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacityto activate allogeneic as well as antigen-restricted CD4+ and CD8+ T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune-phenotype and IFN-γ production. Since endoplasmic reticular (ER)-stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAP kinase and Akt signaling. Further, lowering ER-stress by 4-phenylbutyrate mitigated the enhanced immune-stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy. PMID:23536633

  17. Role of fatty-acid synthesis in dendritic cell generation and function.

    PubMed

    Rehman, Adeel; Hemmert, Keith C; Ochi, Atsuo; Jamal, Mohsin; Henning, Justin R; Barilla, Rocky; Quesada, Juan P; Zambirinis, Constantinos P; Tang, Kerry; Ego-Osuala, Melvin; Rao, Raghavendra S; Greco, Stephanie; Deutsch, Michael; Narayan, Suchithra; Pachter, H Leon; Graffeo, Christopher S; Acehan, Devrim; Miller, George

    2013-05-01

    Dendritic cells (DC) are professional APCs that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of cleaved caspase-3 and BCL-xL and downregulation of cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHC class II, ICAM-1, B7-1, and B7-2 but increased their production of selected proinflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacity to activate allogeneic as well as Ag-restricted CD4(+) and CD8(+) T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune phenotype and IFN-γ production. Because endoplasmic reticulum (ER) stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAPK and Akt signaling. Further, lowering ER stress by 4-phenylbutyrate mitigated the enhanced immune stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy.

  18. CD40 ligand blockade induces CD4+ T cell tolerance and linked suppression.

    PubMed

    Honey, K; Cobbold, S P; Waldmann, H

    1999-11-01

    The CD40-CD40 ligand (CD40L) interaction is a key event in the initiation of an adaptive immune response, and as such the therapeutic value of CD40L blockade has been studied in many experimental models of tissue transplantation and autoimmune disease. In rodents, transplantation of allogeneic tissues under the cover of anti-CD40L Abs has resulted in prolonged graft survival but not tolerance. In this report, we show that failure to induce tolerance probably results from the inability of anti-CD40L Abs to prevent graft rejection elicited by the CD8+ T cell subset. When the CD8+ T cell population is controlled independently, using anti-CD8 Abs, then tolerance is possible. Transplantation tolerance induced by anti-CD4 mAbs can often be associated with dominant regulation, manifested as infectious tolerance and linked suppression, both of which are mediated by CD4+ T cells. We show here that CD4+ T cells rendered tolerant using anti-CD40L therapy exhibit the same regulatory property of linked suppression, as demonstrated by their ability to accept grafts expressing third party Ags only if they are expressed in conjunction with the tolerated Ags. This observation of linked suppression reveals a hitherto undocumented consequence of CD40L blockade that suggests the tolerant state is maintained by a dominant regulatory mechanism. Our results suggest that, although anti-CD40L Abs are attractive clinical immunotherapeutic agents, additional therapies to control aggressive CD8+ T cell responses may be required.

  19. In vivo blockade of the PD-1 pathway using soluble rPD-1-Fc enhances CD4+ and CD8+ T cell responses but has limited clinical benefit

    PubMed Central

    Amancha, Praveen K.; Hong, Jung Joo; Rogers, Kenneth; Ansari, Aftab A.; Villinger, Francois

    2013-01-01

    The PD-1/PD-Ligand pathway has been shown to limit cell mediated effector functions during chronic viral infections impeding clearance of pathogens. As a strategy to reverse this exhaustion and increase T cell poly-functionality, PD-1 ligands were blocked in vivo using a recombinant macaque PD1-Fc fusion protein (rPD-1-Fc) in SIVmac239 infected rhesus macaques during the early chronic phase of infection, either alone or in combination with ART. In vitro blockade showed improvement of antigen specific CD4+ and CD8+ T cells from monkeys chronically infected with SIV. Of note, a prolonged 5-day blockade in culture was beneficial for both gag specific CD4+ and CD8+ T cells based on proliferation and dual cytokine production. While the in vivo administration of a recombinant rhesus PD-1 Fc fusion protein (rPD-1-Fc) induced enhanced SIV specific CD4 and CD8 T cell proliferation both in the blood and gut, it failed to alter plasma viremia. However, rPD-1-Fc administration in the context of ART interruption induced a significant delay of viral load rebound. In addition, rPD-1-Fc administration in MamuA*001+ monkeys led to both an increase in the frequencies and Ki67 expression of GagCM9+ CD8+ T cells in the blood and rectal mucosa and poly-functionality of GagCM9+ CD8+ T cells in blood. In conclusion, however, our data suggest that PD-1/PD-Ligand blockade using soluble rPD-1-Fc instead of anti-PD1 Mab, while effective in rescuing the effector function of SIV-specific CD4+ and CD8+ T cells during the early chronic phase of infection, has limited clinical benefit. PMID:24227774

  20. Blockade of αEβ7 integrin suppresses accumulation of CD8+ and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo.

    PubMed

    Zundler, Sebastian; Schillinger, Daniela; Fischer, Anika; Atreya, Raja; López-Posadas, Rocío; Watson, Alastair; Neufert, Clemens; Atreya, Imke; Neurath, Markus F

    2017-11-01

    Therapeutically targeting lymphocyte adhesion is of increasing relevance in IBD. Yet, central aspects of the action of antiadhesion compounds are incompletely understood. We investigated the role of αEβ7 and α4β7 integrins and their blockade by vedolizumab and etrolizumab for trafficking of IBD T lymphocytes in an in vivo model of homing to and retention in the inflamed gut. We explored integrin expression in patients with IBD by flow cytometry and immunohistochemistry, while regulation of integrins was studied in T cell cultures. The functional relevance of integrins was assessed by adhesion assays and a recently established humanised mouse model in dextran sodium sulfate-treated immunodeficient mice. High expression of αEβ7 was noted on CD8 + and CD4 + Th9 cells, while α4β7 was expressed on CD8 + , Th2 and Th17 cells. T cell receptor stimulation and transforming growth factor β were key inducers of αEβ7 on human T cells, while butyric acid suppressed αEβ7. In comparison to α4β7 blockade via vedolizumab, blockade of β7 via etrolizumab surrogate antibody superiorly reduced colonic numbers of CD8 + and Th9 cells in vivo after 3 hours, while no difference was noted after 0.5 hours. AEβ7 expression was higher on CD8 + T cells from patients with IBD under vedolizumab therapy. AEβ7 is of key relevance for gut trafficking of IBD CD8 + T cells and CD4 + Th9 cells in vivo and mainly retention might account for this effect. These findings indicate that blockade of αEβ7 in addition to α4β7 may be particularly effective in intestinal disorders with expansion of CD8 + and Th9 cells such as IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Combining G-CSF with a blockade of adhesion strongly improves the reconstitutive capacity of mobilized hematopoietic progenitor cells.

    PubMed

    Christ, O; Kronenwett, R; Haas, R; Zöller, M

    2001-03-01

    Mobilization of hematopoietic progenitor cells is achieved mainly by application of growth factors and, more recently, by blockade of adhesion. In this report, we describe the advantages of a combined treatment with granulocyte colony-stimulating factor (G-CSF) and anti-VLA4 (CD49d)/anti-CD44 as compared to treatment with the individual components. Mobilization by intravenous injection of anti-CD44, anti-VLA4, or G-CSF was controlled in spleen and bone marrow with regard to frequencies of multipotential colony-forming unit (C-CFU), marrow repopulating ability, long-term reconstitution, recovery of myelopoiesis, and regain of immunocompetence. Mobilization by anti-CD44 had a strong effect on expansion of early progenitor cells in the bone marrow, while the recovery in the spleen was poor. In anti-CD49d-mobilized noncommitted and committed progenitors, progenitor expansion was less pronounced, but settlement in the spleen was quite efficient. Thus, anti-CD44 and anti-CD49d differently influenced mobilization. Accordingly, mobilization and recovery after transfer were improved by combining anti-CD44 with anti-CD49d treatment. Mobilization by G-CSF was most efficient with respect to recovery of progenitor cells in the spleen. However, when transferring G-CSF-mobilized cells, regain of immunocompetence was strongly delayed. This disadvantage could be overridden when progenitor cells were mobilized via blockade of adhesion and when expansion of these mobilized progenitor cells was supported by low-dose G-CSF only during the last 24 hours before transfer. Mobilization of pluripotent progenitor cells via antibody blockade of CD44 or CD49d or via G-CSF relies on distinct mechanisms. Therefore, the reconstitutive capacity of a transplant can be significantly improved by mobilization regimens combining antibody with low-dose G-CSF treatment.

  2. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus.

    PubMed

    Zhang, Yue; Peti-Peterdi, Janos; Müller, Christa E; Carlson, Noel G; Baqi, Younis; Strasburg, David L; Heiney, Kristina M; Villanueva, Karie; Kohan, Donald E; Kishore, Bellamkonda K

    2015-12-01

    P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague-Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI. Copyright © 2015 by the American Society of Nephrology.

  3. Blockade of Treg Cell Differentiation and Function by the Interleukin-21-Mechanistic Target of Rapamycin Axis Via Suppression of Autophagy in Patients With Systemic Lupus Erythematosus.

    PubMed

    Kato, Hiroshi; Perl, Andras

    2018-03-01

    The mechanistic target of rapamycin (mTOR) has become a therapeutic target in systemic lupus erythematosus (SLE). In T cells, mTOR plays a central role in lineage specification, including development of regulatory cells (Treg cells). This study sought to investigate whether mTOR is activated within Treg cells and whether this contributes to the depletion and dysfunction of Treg cells in patients with SLE. Activities of mTOR complexes 1 (mTORC1) and 2 (mTORC2) were examined by quantifying phosphorylation of translation initiation factor 4E-binding protein 1, S6 kinase, and Akt in SLE patients relative to age- and sex-matched female healthy control subjects. Polarization of Treg cells from naive CD4+ T cells was assessed in the presence of interleukin-6 (IL-6), IL-17, and IL-21. The suppressor function of sorted CD4+CD25+ Treg cells was measured by determining their impact on the proliferation of autologous CD4+CD25- responder T cells. Treg cell expression of FoxP3, GATA-3, and CTLA-4 was monitored by flow cytometry. Autophagy was assessed using immunoblotting of light chain 3 lipidation. The effect of mTOR blockade was evaluated by testing the impact of rapamycin treatment on Treg cell function. SLE Treg cells exhibited increased activities of mTORC1 and mTORC2, whereas autophagy, the expression of GATA-3 and CTLA-4, and the suppressor function of Treg cells were diminished. IL-21, but not IL-6 or IL-17, blocked the development of Treg cells. IL-21 stimulated mTORC1 and mTORC2, and it abrogated the autophagy, differentiation, and function of Treg cells. Moreover, IL-21 constrained the expression of GATA-3 and CTLA-4 selectively in Treg cells. In turn, blockade of mTORC1 by 3-day rapamycin treatment enhanced transforming growth factor β production, while dual blockade of mTORC1 and mTORC2 by 4-week rapamycin treatment induced autophagy, restored the expression of GATA-3 and CTLA-4, and corrected Treg cell function. IL-21-driven mTOR activation is a pharmacologically targetable checkpoint of the deficient autophagy that underlies Treg cell dysfunction in SLE. © 2017, American College of Rheumatology.

  4. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness.

    PubMed

    Pedicord, Virginia A; Cross, Justin R; Montalvo-Ortiz, Welby; Miller, Martin L; Allison, James P

    2015-03-01

    During primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization. Collectively, these results reveal that mammalian target of rapamycin inhibition cooperates with rather than antagonizes blockade of CTLA-4, promoting unrestrained effector function and proliferation, and an optimal metabolic program for CD8(+) T cell memory. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. The exhausted CD4+CXCR5+ T cells involve the pathogenesis of human tuberculosis disease.

    PubMed

    Bosco, Munyemana Jean; Wei, Ming; Hou, Hongyan; Yu, Jing; Lin, Qun; Luo, Ying; Sun, Ziyong; Wang, Feng

    2018-06-21

    The CD4 + CXCR5 + T cells have been previously established. However, their decreased frequency during tuberculosis (TB) disease is partially understood. The aim of this study was to explore the depletion of CD4 + CXCR5 + T cells in human TB. The frequency and function of CD4 + CXCR5 + T cells were evaluated in active TB (ATB) patients and healthy control (HC) individuals. The function of CD4 + CXCR5 + T cells was determined after blockade of inhibitory receptors. The frequency of CD4 + CXCR5 + T cells was decreased in ATB patients. The expression of activation markers (HLA-DR and ICOS) and inhibitory receptors (Tim-3 and PD-1) on CD4 + CXCR5 + T cells was increased in ATB group. TB-specific antigen stimulation induced higher expression of inhibitory receptors than phytohemagglutinin stimulation in ATB group. In contrast, TB antigen stimulation did not induce a significantly increased expression of IL-21 and Ki-67 on CD4 + CXCR5 + T cells. However, blockade of inhibitory receptors Tim-3 and PD-1 not only increased the frequency of CD4 + CXCR5 + T cells, but also restored their proliferation and cytokine secretion potential. An increased expression of inhibitory receptors involves the depletion of CD4 + CXCR5 + T cells, and blockade of inhibitory receptors can restore the function of CD4 + CXCR5 + T cells in ATB patients. Copyright © 2018. Published by Elsevier Ltd.

  6. PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8+ T Cell Responses by Preventing Fratricidal Death of Subdominant Clones To Relieve Immunodomination.

    PubMed

    Memarnejadian, Arash; Meilleur, Courtney E; Shaler, Christopher R; Khazaie, Khashayarsha; Bennink, Jack R; Schell, Todd D; Haeryfar, S M Mansour

    2017-11-01

    The interactions between programmed death-1 (PD-1) and its ligands hamper tumor-specific CD8 + T cell (T CD8 ) responses, and PD-1-based "checkpoint inhibitors" have shown promise in certain cancers, thus revitalizing interest in immunotherapy. PD-1-targeted therapies reverse T CD8 exhaustion/anergy. However, whether they alter the epitope breadth of T CD8 responses remains unclear. This is an important question because subdominant T CD8 are more likely than immunodominant clones to escape tolerance mechanisms and may contribute to protective anticancer immunity. We have addressed this question in an in vivo model of T CD8 responses to well-defined epitopes of a clinically relevant oncoprotein, large T Ag. We found that unlike other coinhibitory molecules (CTLA-4, LAG-3, TIM-3), PD-1 was highly expressed by subdominant T CD8 , which correlated with their propensity to favorably respond to PD-1/PD-1 ligand-1 (PD-L1)-blocking Abs. PD-1 blockade increased the size of subdominant T CD8 clones at the peak of their primary response, and it also sustained their presence, thus giving rise to an enlarged memory pool. The expanded population was fully functional as judged by IFN-γ production and MHC class I-restricted cytotoxicity. The selective increase in subdominant T CD8 clonal size was due to their enhanced survival, not proliferation. Further mechanistic studies utilizing peptide-pulsed dendritic cells, recombinant vaccinia viruses encoding full-length T Ag or epitope mingenes, and tumor cells expressing T Ag variants revealed that anti-PD-1 invigorates subdominant T CD8 responses by relieving their lysis-dependent suppression by immunodominant T CD8 To our knowledge, our work constitutes the first report that interfering with PD-1 signaling potentiates epitope spreading in tumor-specific responses, a finding with clear implications for cancer immunotherapy and vaccination. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack.

    PubMed

    Singh, Vibuthi; Erb, Ulrike; Zöller, Margot

    2013-11-15

    A CD44 blockade drives leukemic cells into differentiation and apoptosis by dislodging from the osteogenic niche. Because anti-CD49d also supports hematopoietic stem cell mobilization, we sought to determine the therapeutic efficacy of a joint CD49d/CD44 blockade. To unravel the underlying mechanism, the CD49d(-) EL4 lymphoma was transfected with CD49d or point-mutated CD49d, prohibiting phosphorylation and FAK binding; additionally, a CD44(-) Jurkat subline was transfected with murine CD44, CD44 with a point mutation in the ezrin binding site, or with cytoplasmic tail-truncated CD44. Parental and transfected EL4 and Jurkat cells were evaluated for adhesion, migration, and apoptosis susceptibility in vitro and in vivo. Ligand-binding and Ab-blocking studies revealed CD44-CD49d cooperation in vitro and in vivo in adhesion, migration, and apoptosis resistance. The cooperation depends on ligand-induced proximity such that both CD44 and CD49d get access to src, FAK, and paxillin and via lck to the MAPK pathway, with the latter also supporting antiapoptotic molecule liberation. Accordingly, synergisms were only seen in leukemia cells expressing wild-type CD44 and CD49d. Anti-CD44 together with anti-CD49d efficiently dislodged EL4-CD49d/Jurkat-CD44 in bone marrow and spleen. Dislodging was accompanied by increased apoptosis susceptibility that strengthened low-dose chemotherapy, the combined treatment most strongly interfering with metastatic settlement and being partly curative. Ab treatment also promoted NK and Ab-dependent cellular cytotoxicity activation, which affected leukemia cells independent of CD44/CD49d tail mutations. Thus, mostly owing to a blockade of joint signaling, anti-CD44 and anti-CD49d hamper leukemic cell settlement and break apoptosis resistance, which strongly supports low-dose chemotherapy.

  8. Ipilimumab (Yervoy) and the TGN1412 catastrophe.

    PubMed

    Bakacs, Tibor; Mehrishi, Jitendra N; Moss, Ralph W

    2012-06-01

    The development of the anti-CTLA-4 antibody (ipilimumab; marketed as Yervoy) immune regulatory therapy was based on the premise that "Abrogation of the function of CTLA-4 would permit CD28 to function unopposed and might swing the balance in favor of immune stimulation, tolerance breakdown and tumor eradication…" (Weber, 2009). By now, the vast majority of data collected from more than 4000 patients proves that this prediction was entirely correct. Paradoxically, the successful blockade of immune checkpoints raises the question whether an anti-CTLA-4 antibody could ever become an important therapy against cancer. T cells lost their ability to discriminate between self and non-self. Thus, tolerance to self tissues was broken in ∼70% of the patients. In the recent industry-sponsored phase III clinical trial of ipilimumab, 147 (38.7%) of the patients experienced severe adverse events and 6.8% suffered dose-limiting events (8.4%, in the ipilimumab-alone group). There were 14 deaths related to the study drugs and 7 of these were associated with immune-related adverse events. In contrast, the complete response rate was only 0.2%, in one patient out of 403 who received ipilimumab plus a peptide vaccine. Promoters of ipilimumab appear to be unmindful of the clinical trial catastrophe in London. Then, a humanized "superagonist" anti-CD28 monoclonal antibody, TGN1412, which "preferentially" activated regulatory T cells, at a higher dose, also activated all CD28 positive T cells. This precipitated a "cytokine storm" leading to life-threatening multiple organ failure in the six healthy human volunteers. Neither anti-CD28 nor anti-CTLA-4 therapies rely on antigen-specificity. Both release free antibody into the body against common molecular targets that are expressed on the targeted as well as on the non-targeted T cells. At lower antibody doses specific T cells are preferentially activated. With increasing antibody dose, however, the kinetics of the interaction is pushed in favor of widespread non-specific T cell expansion. Using the law of mass action we calculated that the vast majority of the CTLA-4 receptors on all activated T cells (including melanoma specific T cells) in the phase III clinical trial of ipilimumab will have been saturated. This would explain the runaway immune response observed. The conclusions drawn by the authors of the ipilimumab trial paper could bear an independent inspection and reassessment concerning the validation of the blockade of immune checkpoints as an important therapeutic strategy against cancer. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Promiscuous Foxp3-cre activity reveals a differential requirement for CD28 in Foxp3⁺ and Foxp3⁻ T cells.

    PubMed

    Franckaert, Dean; Dooley, James; Roos, Evelyne; Floess, Stefan; Huehn, Jochen; Luche, Herve; Fehling, Hans Joerg; Liston, Adrian; Linterman, Michelle A; Schlenner, Susan M

    2015-04-01

    Costimulatory signals by CD28 are critical for thymic regulatory T-cell (Treg) development. To determine the functional relevance of CD28 for peripheral Treg post thymic selection, we crossed the widely used Forkhead box protein 3 (Foxp3)-CreYFP mice to mice bearing a conditional Cd28 allele. Treg-specific CD28 deficiency provoked a severe autoimmune syndrome as a result of a strong disadvantage in competitive fitness and proliferation of CD28-deficient Tregs. By contrast, Treg survival and lineage integrity were not affected by the lack of CD28. This data demonstrate that, even after the initial induction requirement, Treg maintain a higher dependency on CD28 signalling than conventional T cells for homeostasis. In addition, we found the Foxp3-CreYFP allele to be a hypomorph, with reduced Foxp3 protein levels. Furthermore, we report here the stochastic activity of the Foxp3-CreYFP allele in non-Tregs, sufficient to recombine some conditional alleles (including Cd28) but not others (including R26-RFP). This hypomorphism and 'leaky' expression of the Foxp3-CreYFP allele should be considered when analysing the conditionally mutated Treg.

  10. Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics.

    PubMed

    Roybal, Kole T; Buck, Taráz E; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J; Ambler, Rachel; Tunbridge, Helen M; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F

    2016-04-19

    Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems. Copyright © 2016, American Association for the Advancement of Science.

  11. Immunotherapy of murine retrovirus-induced acquired immunodeficiency by CD4 T regulatory cell depletion and PD-1 blockade.

    PubMed

    Li, Wen; Green, William R

    2011-12-01

    LP-BM5 retrovirus induces a complex disease featuring an acquired immunodeficiency syndrome termed murine AIDS (MAIDS) in susceptible strains of mice, such as C57BL/6 (B6). CD4 T helper effector cells are required for MAIDS induction and progression of viral pathogenesis. CD8 T cells are not needed for viral pathogenesis, but rather, are essential for protection from disease in resistant strains, such as BALB/c. We have discovered an immunodominant cytolytic T lymphocyte (CTL) epitope encoded in a previously unrecognized LP-BM5 retroviral alternative (+1 nucleotide [nt]) gag translational open reading frame. CTLs specific for this cryptic gag epitope are the basis of protection from LP-BM5-induced immunodeficiency in BALB/c mice, and the inability of B6 mice to mount an anti-gag CTL response appears critical to the initiation and progression of LP-BM5-induced MAIDS. However, uninfected B6 mice primed by LP-BM5-induced tumors can generate CTL responses to an LP-BM5 retrovirus infection-associated epitope(s) that is especially prevalent on such MAIDS tumor cells, indicating the potential to mount a protective CD8 T-cell response. Here, we utilized this LP-BM5 retrovirus-induced disease system to test whether modulation of normal immune down-regulatory mechanisms can alter retroviral pathogenesis. Thus, following in vivo depletion of CD4 T regulatory (Treg) cells and/or selective interruption of PD-1 negative signaling in the CD8 T-cell compartment, retroviral pathogenesis was significantly decreased, with the combined treatment of CD4 Treg cell depletion and PD-1 blockade working in a synergistic fashion to substantially reduce the induction of MAIDS.

  12. HIV-Infected Children Have Elevated Levels of PD-1+ Memory CD4 T Cells With Low Proliferative Capacity and High Inflammatory Cytokine Effector Functions.

    PubMed

    Foldi, Julia; Kozhaya, Lina; McCarty, Bret; Mwamzuka, Mussa; Marshed, Fatma; Ilmet, Tiina; Kilberg, Max; Kravietz, Adam; Ahmed, Aabid; Borkowsky, William; Unutmaz, Derya; Khaitan, Alka

    2017-09-15

    During human immunodeficiency virus (HIV) disease, chronic immune activation leads to T-cell exhaustion. PD-1 identifies "exhausted" CD8 T cells with impaired HIV-specific effector functions, but its role on CD4 T cells and in HIV-infected children is poorly understood. In a Kenyan cohort of vertically HIV-infected children, we measured PD-1+ CD4 T-cell frequencies and phenotype by flow cytometry and their correlation with HIV disease progression and immune activation. Second, in vitro CD4 T-cell proliferative and cytokine responses to HIV-specific and -nonspecific stimuli were assessed with and without PD-1 blockade. HIV-infected children have increased frequencies of PD-1+ memory CD4 T cells that fail to normalize with antiretroviral treatment. These cells are comprised of central and effector memory subsets and correlate with HIV disease progression, measured by viral load, CD4 percentage, CD4:CD8 T-cell ratio, and immune activation. Last, PD-1+ CD4 T cells predict impaired proliferative potential yet preferentially secrete the Th1 and Th17 cytokines interferon-γ and interleukin 17A, and are unresponsive to in vitro PD-1 blockade. This study highlights differences in PD-1+ CD4 T-cell memory phenotype and response to blockade between HIV-infected children and adults, with implications for potential immune checkpoint therapies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Synergism of Cytotoxic T Lymphocyte–Associated Antigen 4 Blockade and Depletion of Cd25+ Regulatory T Cells in Antitumor Therapy Reveals Alternative Pathways for Suppression of Autoreactive Cytotoxic T Lymphocyte Responses

    PubMed Central

    Sutmuller, Roger P.M.; van Duivenvoorde, Leonie M.; van Elsas, Andrea; Schumacher, Ton N.M.; Wildenberg, Manon E.; Allison, James P.; Toes, Rene E.M.; Offringa, Rienk; Melief, Cornelis J.M.

    2001-01-01

    Therapeutic efficacy of a tumor cell–based vaccine against experimental B16 melanoma requires the disruption of either of two immunoregulatory mechanisms that control autoreactive T cell responses: the cytotoxic T lymphocyte–associated antigen (CTLA)-4 pathway or the CD25+ regulatory T (Treg) cells. Combination of CTLA-4 blockade and depletion of CD25+ Treg cells results in maximal tumor rejection. Efficacy of the antitumor therapy correlates with the extent of autoimmune skin depigmentation as well as with the frequency of tyrosinase-related protein 2180–188–specific CTLs detected in the periphery. Furthermore, tumor rejection is dependent on the CD8+ T cell subset. Our data demonstrate that the CTL response against melanoma antigens is an important component of the therapeutic antitumor response and that the reactivity of these CTLs can be augmented through interference with immunoregulatory mechanisms. The synergism in the effects of CTLA-4 blockade and depletion of CD25+ Treg cells indicates that CD25+ Treg cells and CTLA-4 signaling represent two alternative pathways for suppression of autoreactive T cell immunity. Simultaneous intervention with both regulatory mechanisms is therefore a promising concept for the induction of therapeutic antitumor immunity. PMID:11560997

  14. Treatment and prevention of experimental autoimmune myocarditis with CD28 superagonists.

    PubMed

    Wang, Shu; Liu, Jing; Wang, Min; Zhang, Jinghui; Wang, Zhaohui

    2010-01-01

    Experimental autoimmune myocarditis (EAM), a rodent model of human dilated cardiomyopathy (DCM), is mediated by an autoimmune mechanism. We investigated whether a CD28 superagonistic antibody selectively targeting CD4+CD25+ regulatory T cells (T(regs)) provides effective therapy for EAM. Four groups of 5 rats were used. The normal control group was immunized with PBS. The EAM group was immunized with porcine myosin. The experimental group was immunized with myosin and superagonistic CD28 antibody JJ316. The final group was immunized with myosin and an unrelated rat IgG. Autoantibody and IL-10 production, CD4+CD25+ cell levels, Foxp3 expression and cardiac histology were analyzed. Anti-myosin autoantibody levels were higher in the EAM and isotype control groups than the normal control group (p < 0.05), and reduced in the CD28-JJ316 group (p < 0.05). The levels of CD25+CD4+ cells, IL-10 and splenocyte Foxp3 expression were significantly lower in the EAM and isotype control groups versus the CD28-JJ316 group (p < 0.05). Infiltration of inflammatory cells was observed in the EAM and isotype control groups, whereas CD28-JJ316 ameliorated myocarditis. CD28 superagonists could be effective in EAM treatment by up-regulating Foxp3 expression and contributing to CD4+CD25+ T(reg) activation and expansion. The enhancement in IL-10 by CD28 superagonists also ameliorated the disease.

  15. CD103+CD8+ T lymphocytes in non-small cell lung cancer are phenotypically and functionally primed to respond to PD-1 blockade.

    PubMed

    Wang, Peiliang; Huang, Bing; Gao, Yi; Yang, Jianjian; Liang, Zhihui; Zhang, Ni; Fu, Xiangning; Li, Lequn

    2018-03-01

    CD103 + CD8 + tumor infiltrating lymphocytes (TILs) have been linked to prolonged survival in various types of cancer including non-small cell lung cancer (NSCLC). However, the factors associated with the retention of CD103 + CD8 + TILs in lung cancer tissues remain largely unknown. Additionally, the contribution of CD103 + CD8 + TILs to effective PD-1 based immunotherapy has not been fully elucidated. In this study, we identified that the expression levels of E-cadherin and TGF-β were significantly correlated with the distribution and the density of CD103 + TILs in lung cancer tumor tissues. Unexpectedly, we observed that CD103 + CD8 + TILs that expressed higher levels of PD-1 co-express Ki-67. Moreover, CD103 + CD8 + TILs expressed an increased level of T-bet compared to their counterparts, indicating these cells may be better armed for immunotherapy. Lastly, PD-1 pathway blockade led to a significantly increased production of IFN-γ by CD103 + CD8 + TILs, suggesting CD103 + CD8 + TILs could serve as a predictive biomarker for PD-1 based immunotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Interleukin-15 receptor blockade in non-human primate kidney transplantation.

    PubMed

    Haustein, Silke; Kwun, Jean; Fechner, John; Kayaoglu, Ayhan; Faure, Jean-Pierre; Roenneburg, Drew; Torrealba, Jose; Knechtle, Stuart J

    2010-04-27

    Interleukin (IL)-15 is a chemotactic factor to T cells. It induces proliferation and promotes survival of activated T cells. IL-15 receptor blockade in mouse cardiac and islet allotransplant models has led to long-term engraftment and a regulatory T-cell environment. This study investigated the efficacy of IL-15 receptor blockade using Mut-IL-15/Fc in an outbred non-human primate model of renal allotransplantation. Male cynomolgus macaque donor-recipient pairs were selected based on ABO typing, major histocompatibility complex class I typing, and carboxy-fluorescein diacetate succinimidyl ester-based mixed lymphocyte responses. Once animals were assigned to one of six treatment groups, they underwent renal transplantation and bilateral native nephrectomy. Serum creatinine level was monitored twice weekly and as indicated, and protocol biopsies were performed. Rejection was defined as a increase in serum creatinine to 1.5 mg/dL or higher and was confirmed histologically. Complete blood counts and flow cytometric analyses were performed periodically posttransplant; pharmacokinetic parameters of Mut-IL-15/Fc were assessed. Compared with control animals, Mut-IL-15/Fc-treated animals did not demonstrate increased graft survival despite adequate serum levels of Mut-IL-15/Fc. Flow cytometric analysis of white blood cell subgroups demonstrated a decrease in CD8 T-cell and natural killer cell numbers, although this did not reach statistical significance. Interestingly, two animals receiving Mut-IL-15/Fc developed infectious complications, but no infection was seen in control animals. Renal pathology varied widely. Peritransplant IL-15 receptor blockade does not prolong allograft survival in non-human primate renal transplantation; however, it reduces the number of CD8 T cells and natural killer cells in the peripheral blood.

  17. Common γ-chain blocking peptide reduces in vitro immune activation markers in HTLV-1-associated myelopathy/tropical spastic paraparesis.

    PubMed

    Massoud, Raya; Enose-Akahata, Yoshimi; Tagaya, Yutaka; Azimi, Nazli; Basheer, Asjad; Jacobson, Steven

    2015-09-01

    Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive inflammatory myelopathy occurring in a subset of HTLV-1-infected individuals. Despite advances in understanding its immunopathogenesis, an effective treatment remains to be found. IL-2 and IL-15, members of the gamma chain (γc) family of cytokines, are prominently deregulated in HAM/TSP and underlie many of the characteristic immune abnormalities, such as spontaneous lymphocyte proliferation (SP), increased STAT5 phosphorylation in the lymphocytes, and increased frequency and cytotoxicity of virus-specific cytotoxic CD8(+) T lymphocytes (CTLs). In this study, we describe a novel immunomodulatory strategy consisting of selective blockade of certain γc family cytokines, including IL-2 and IL-15, with a γc antagonistic peptide. In vitro, a PEGylated form of the peptide, named BNZ132-1-40, reduced multiple immune activation markers such as SP, STAT5 phosphorylation, spontaneous degranulation of CD8(+) T cells, and the frequency of transactivator protein (Tax)-specific CD8(+) CTLs, thought to be major players in the immunopathogenesis of the disease. This strategy is thus a promising therapeutic approach to HAM/TSP with the potential of being more effective than single monoclonal antibodies targeting either IL-2 or IL-15 receptors and safer than inhibitors of downstream signaling molecules such as JAK1 inhibitors. Finally, selective cytokine blockade with antagonistic peptides might be applicable to multiple other conditions in which cytokines are pathogenic.

  18. Blockade of the Programmed Death-1 Pathway Restores Sarcoidosis CD4+ T-Cell Proliferative Capacity

    PubMed Central

    Braun, Nicole A.; Celada, Lindsay J.; Herazo-Maya, Jose D.; Abraham, Susamma; Shaginurova, Guzel; Sevin, Carla M.; Grutters, Jan; Culver, Daniel A.; Dworski, Ryszard; Sheller, James; Massion, Pierre P.; Polosukhin, Vasiliy V.; Johnson, Joyce E.; Kaminski, Naftali; Wilkes, David S.; Oswald-Richter, Kyra A.

    2014-01-01

    Rationale: Effective therapeutic interventions for chronic, idiopathic lung diseases remain elusive. Normalized T-cell function is an important contributor to spontaneous resolution of pulmonary sarcoidosis. Up-regulation of inhibitor receptors, such as programmed death-1 (PD-1) and its ligand, PD-L1, are important inhibitors of T-cell function. Objectives: To determine the effects of PD-1 pathway blockade on sarcoidosis CD4+ T-cell proliferative capacity. Methods: Gene expression profiles of sarcoidosis and healthy control peripheral blood mononuclear cells were analyzed at baseline and follow-up. Flow cytometry was used to measure ex vivo expression of PD-1 and PD-L1 on systemic and bronchoalveolar lavage–derived cells of subjects with sarcoidosis and control subjects, as well as the effects of PD-1 pathway blockade on cellular proliferation after T-cell receptor stimulation. Immunohistochemistry analysis for PD-1/PD-L1 expression was conducted on sarcoidosis, malignant, and healthy control lung specimens. Measurements and Main Results: Microarray analysis demonstrates longitudinal increase in PDCD1 gene expression in sarcoidosis peripheral blood mononuclear cells. Immunohistochemistry analysis revealed increased PD-L1 expression within sarcoidosis granulomas and lung malignancy, but this was absent in healthy lungs. Increased numbers of sarcoidosis PD-1+ CD4+ T cells are present systemically, compared with healthy control subjects (P < 0.0001). Lymphocytes with reduced proliferative capacity exhibited increased proliferation with PD-1 pathway blockade. Longitudinal analysis of subjects with sarcoidosis revealed reduced PD-1+ CD4+ T cells with spontaneous clinical resolution but not with disease progression. Conclusions: Analogous to the effects in other chronic lung diseases, these findings demonstrate that the PD-1 pathway is an important contributor to sarcoidosis CD4+ T-cell proliferative capacity and clinical outcome. Blockade of the PD-1 pathway may be a viable therapeutic target to optimize clinical outcomes. PMID:25073001

  19. Selective blockade of microRNA processing by Lin-28

    PubMed Central

    Viswanathan, Srinivas R.; Daley, George Q.; Gregory, Richard I.

    2012-01-01

    MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked post-transcriptionally in embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and primary tumors. Here we show that Lin-28, a developmentally regulated RNA-binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we demonstrate that Lin-28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin-28 as a negative regulator of miRNA biogenesis and suggest that Lin-28 may play a central role in blocking miRNA-mediated differentiation in stem cells and certain cancers. PMID:18292307

  20. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  1. Blockade of PD-1/PD-L1 Promotes Adoptive T-Cell Immunotherapy in a Tolerogenic Environment

    PubMed Central

    Kenna, Tony J.; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J.

    2015-01-01

    Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells. PMID:25741704

  2. Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment.

    PubMed

    Blake, Stephen J P; Ching, Alan L H; Kenna, Tony J; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J

    2015-01-01

    Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells.

  3. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.

    PubMed

    Mace, Thomas A; Shakya, Reena; Pitarresi, Jason R; Swanson, Benjamin; McQuinn, Christopher W; Loftus, Shannon; Nordquist, Emily; Cruz-Monserrate, Zobeida; Yu, Lianbo; Young, Gregory; Zhong, Xiaoling; Zimmers, Teresa A; Ostrowski, Michael C; Ludwig, Thomas; Bloomston, Mark; Bekaii-Saab, Tanios; Lesinski, Gregory B

    2018-02-01

    Limited efficacy of immune checkpoint inhibitors in pancreatic ductal adenocarcinoma (PDAC) has prompted investigation into combination therapy. We hypothesised that interleukin 6 (IL-6) blockade would modulate immunological features of PDAC and enhance the efficacy of anti-programmed death-1-ligand 1 (PD-L1) checkpoint inhibitor therapy. Transcription profiles and IL-6 secretion from primary patient-derived pancreatic stellate cells (PSCs) were analyzed via Nanostring and immunohistochemistry, respectively. In vivo efficacy and mechanistic studies were conducted with antibodies (Abs) targeting IL-6, PD-L1, CD4 or CD8 in subcutaneous or orthotopic models using Panc02, MT5 or KPC-luc cell lines; and the aggressive, genetically engineered PDAC model (Kras LSL-G12D , Trp53 LSL-R270H , Pdx1-cre, Brca2 F/F (KPC-Brca2 mice)). Systemic and local changes in immunophenotype were measured by flow cytometry or immunohistochemical analysis. PSCs (n=12) demonstrated prominent IL-6 expression, which was localised to stroma of tumours. Combined IL-6 and PD-L1 blockade elicited efficacy in mice bearing subcutaneous MT5 (p<0.02) and Panc02 tumours (p=0.046), which was accompanied by increased intratumoural effector T lymphocytes (CD62L - CD44 - ). CD8-depleting but not CD4-depleting Abs abrogated the efficacy of combined IL-6 and PD-L1 blockade in mice bearing Panc02 tumours (p=0.0016). This treatment combination also elicited significant antitumour activity in mice bearing orthotopic KPC-luc tumours and limited tumour progression in KPC-Brca2 mice (p<0.001). Histological analysis revealed increased T-cell infiltration and reduced α-smooth muscle actin cells in tumours from multiple models. Finally, IL-6 and PD-L1 blockade increased overall survival in KPC-Brca2 mice compared with isotype controls (p=0.0012). These preclinical results indicate that targeted inhibition of IL-6 may enhance the efficacy of anti-PD-L1 in PDAC. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma.

    PubMed

    Oelsner, Sarah; Friede, Miriam E; Zhang, Congcong; Wagner, Juliane; Badura, Susanne; Bader, Peter; Ullrich, Evelyn; Ottmann, Oliver G; Klingemann, Hans; Tonn, Torsten; Wels, Winfried S

    2017-02-01

    Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications. To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z). Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γ null mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo. Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Fuchs, S; Souroujon, M C

    2001-06-01

    Myasthenia gravis (MG) and experimental autoimmune MG (EAMG) are T cell-dependent Ab-mediated autoimmune disorders, in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1-type cells and costimulatory factors such as CD40 ligand (CD40L) contribute to disease pathogenesis by producing proinflammatory cytokines and by activating autoreactive B cells. In this study we demonstrate the capacity of CD40L blockade to modulate EAMG, and analyze the mechanism underlying this disease suppression. Anti-CD40L Abs given to rats at the chronic stage of EAMG suppress the clinical progression of the autoimmune process and lead to a decrease in the AChR-specific humoral response and delayed-type hypersensitivity. The cytokine profile of treated rats suggests that the underlying mechanism involves down-regulation of AChR-specific Th1-regulated responses with no significant effect on Th2- and Th3-regulated AChR-specific responses. EAMG suppression is also accompanied by a significant up-regulation of CTLA-4, whereas a series of costimulatory factors remain unchanged. Adoptive transfer of splenocytes from anti-CD40L-treated rats does not protect recipient rats against subsequently induced EAMG. Thus it seems that the suppressed progression of chronic EAMG by anti-CD40L treatment does not induce a switch from Th1 to Th2/Th3 regulation of the AChR-specific immune response and does not induce generation of regulatory cells. The ability of anti-CD40L treatment to suppress ongoing chronic EAMG suggests that blockade of CD40L may serve as a potential approach for the immunotherapy of MG and other Ab-mediated autoimmune diseases.

  6. Anti-CD40 antibody-mediated costimulation blockade promotes long-term survival of deep-lamellar porcine corneal grafts in non-human primates.

    PubMed

    Kim, Jaeyoung; Kim, Dong Hyun; Choi, Hyuk Jin; Lee, Hyun Ju; Kang, Hee Jung; Park, Chung-Gyu; Hwang, Eung-Soo; Kim, Mee Kum; Wee, Won Ryang

    2017-05-01

    Corneal xenotransplantation is an effective solution for the shortage of human donor corneas, and the porcine cornea may be a suitable candidate for the donor cornea because of its optical similarity with humans. However, it is necessary to administer additional immunosuppressants to overcome antigenic differences. We aimed to investigate the feasibility of porcine corneas with anti-CD40 antibody-mediated costimulation blockade in a clinically applicable pig-to-non-human primate corneal xenotransplantation model. Five Chinese rhesus macaques underwent deep-lamellar corneal transplantation using clinically acceptable sized (7.5 mm diameter) porcine corneal grafts. The anti-CD40 antibody was intravenously administered on a programmed schedule. Graft survival, central corneal thickness, and intraocular pressure were evaluated. Changes in effector and memory T and B cell subsets and anti-αGal and donor-specific antibodies were investigated in the blood, and the changes in complement levels in the aqueous humor and blood were evaluated. Memory cell profiles in the anti-CD40 antibody-treated group were compared with those from the anti-CD154 antibody-treated group or rejected controls presented in our previous report. The changes in anti-αGal, non-αGal, and donor-specific antibodies after 6 months were compared with baseline values. Anti-CD40 antibody-mediated costimulation blockade resulted in the successful survival of xenocorneal grafts (>389, >382, >236, >201, and >61 days), with 80% reaching 6 months of survival. Injection of anti-CD40 antibody considerably reduced the infiltration of inflammatory cells into the grafts and significantly blocked the complement response in the aqueous humor (P=.0159, Mann-Whitney U test). Systemic expansion of central or effector memory T cells was abrogated in the anti-CD40 antibody-treated primates compared with those in the rejected controls (P<.05, Mann-Whitney U test) or those in the anti-CD154 antibody-treated primates (P>.05, Mann-Whitney U test). The levels of anti-αGal, non-αGal, and donor-specific antibodies at 6 months were not significantly increased compared with baseline levels (P>.05, Wilcoxon signed rank test). An anti-CD40 antibody-mediated blockade appears to be effective immunosuppressive approach for porcine corneal deep-lamellar xenotransplantation in primates. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kδ inhibitors and VIP antagonists

    PubMed Central

    Petersen, Christopher T.; Hassan, Mojibade; Morris, Anna B.; Jeffery, Jasmin; Lee, Kunhee; Jagirdar, Neera; Staton, Ashley D.; Raikar, Sunil S.; Spencer, Harold T.; Sulchek, Todd; Flowers, Christopher R.

    2018-01-01

    Adoptive therapy with ex vivo–expanded genetically modified antigen-specific T cells can induce remissions in patients with relapsed/refractory cancer. The clinical success of this therapy depends upon efficient transduction and expansion of T cells ex vivo and their homing, persistence and cytotoxicity following reinfusion. Lower rates of ex vivo expansion and clinical response using anti-CD19 chimeric antigen receptor (CAR) T cells have been seen in heavily pretreated lymphoma patients compared with B-cell acute lymphoblastic leukemia patients and motivate the development of novel strategies to enhance ex vivo T cell expansion and their persistence in vivo. We demonstrate that inhibition of phosphatidylinositol 3-kinase δ (PI3Kδ) and antagonism of vasoactive intestinal peptide (VIP) signaling partially inhibits the terminal differentiation of T cells during anti-CD3/CD28 bead-mediated expansion (mean, 54.4% CD27+CD28+ T cells vs 27.4% in control cultures; P < .05). This strategy results in a mean of 83.7% more T cells cultured from lymphoma patients in the presence of PI3Kδ and VIP antagonists, increased survival of human T cells from a lymphoma patient in a murine xenograft model, enhanced cytotoxic activity of antigen-specific human CAR T cells and murine T cells against lymphoma, and increased transduction and expansion of anti-CD5 human CAR T cells. PI3Kδ and VIP antagonist-expanded T cells from lymphoma patients show reduced terminal differentiation, enhanced polyfunctional cytokine expression, and preservation of costimulatory molecule expression. Taken together, synergistic blockade of these pathways is an attractive strategy to enhance the expansion and functional capacity of ex vivo–expanded cancer-specific T cells. PMID:29386194

  8. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes.

    PubMed

    Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua

    2011-01-01

    Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. © 2011 Zhang et al.

  9. Promoting Long-Term Survival of Insulin-Producing Cell Grafts That Differentiate from Adipose Tissue-Derived Stem Cells to Cure Type 1 Diabetes

    PubMed Central

    Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua

    2011-01-01

    Background Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Methodology/Principal Findings Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Conclusions/Significance Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. PMID:22216347

  10. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    PubMed

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. IL-6-mediated environmental conditioning of defective Th1 differentiation dampens antitumour immune responses in old age.

    PubMed

    Tsukamoto, Hirotake; Senju, Satoru; Matsumura, Keiko; Swain, Susan L; Nishimura, Yasuharu

    2015-04-07

    Decline in immune function and inflammation concomitantly develop with ageing. Here we focus on the impact of this inflammatory environment on T cells, and demonstrate that in contrast to successful tumour elimination in young mice, replenishment of tumour-specific CD4(+) T cells fails to induce tumour regression in aged hosts. The impaired antitumour effect of CD4(+) T cells with their defective Th1 differentiation in an aged environment is restored by interleukin (IL)-6 blockade or IL-6 deficiency. IL-6 blockade also restores the impaired ability of CD4(+) T cells to promote CD8(+) T-cell-dependent tumour elimination in aged mice, which requires IFN-γ. Furthermore, IL-6-stimulated production of IL-4/IL-21 through c-Maf induction is responsible for impaired Th1 differentiation. IL-6 also contributes to IL-10 production from CD4(+) T cells in aged mice, causing attenuated responses of CD8(+) T cells. These findings suggest that IL-6 serves as an extrinsic factor counteracting CD4(+) T-cell-mediated immunity against tumour in old age.

  12. Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production

    PubMed Central

    Curran, Michael A.; Kim, Myoungjoo; Montalvo, Welby; Al-Shamkhani, Aymen; Allison, James P.

    2011-01-01

    Background The co-inhibitory receptor Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) attenuates immune responses and prevent autoimmunity, however, tumors exploit this pathway to evade the host T-cell response. The T-cell co-stimulatory receptor 4-1BB is transiently upregulated on T-cells following activation and increases their proliferation and inflammatory cytokine production when engaged. Antibodies which block CTLA-4 or which activate 4-1BB can promote the rejection of some murine tumors, but fail to cure poorly immunogenic tumors like B16 melanoma as single agents. Methodology/Principal Findings We find that combining αCTLA-4 and α4-1BB antibodies in the context of a Flt3-ligand, but not a GM-CSF, based B16 melanoma vaccine promoted synergistic levels of tumor rejection. 4-1BB activation elicited strong infiltration of CD8+ T-cells into the tumor and drove the proliferation of these cells, while CTLA-4 blockade did the same for CD4+ effector T-cells. Anti-4-1BB also depressed regulatory T-cell infiltration of tumors. 4-1BB activation strongly stimulated inflammatory cytokine production in the vaccine and tumor draining lymph nodes and in the tumor itself. The addition of CTLA-4 blockade further increased IFN-γ production from CD4+ effector T-cells in the vaccine draining node and the tumor. Anti 4-1BB treatment, with or without CTLA-4 blockade, induced approximately 75% of CD8+ and 45% of CD4+ effector T-cells in the tumor to express the killer cell lectin-like receptor G1 (KLRG1). Tumors treated with combination antibody therapy showed 1.7-fold greater infiltration by these KLRG1+CD4+ effector T-cells than did those treated with α4-1BB alone. Conclusions/Significance This study shows that combining T-cell co-inhibitory blockade with αCTLA-4 and active co-stimulation with α4-1BB promotes rejection of B16 melanoma in the context of a suitable vaccine. In addition, we identify KLRG1 as a useful marker for monitoring the anti-tumor immune response elicited by this therapy. These findings should aid in the design of future trials for the immunotherapy of melanoma. PMID:21559358

  13. Effect of Cytomegalovirus Co-Infection on Normalization of Selected T-Cell Subsets in Children with Perinatally Acquired HIV Infection Treated with Combination Antiretroviral Therapy

    PubMed Central

    Kapetanovic, Suad; Aaron, Lisa; Montepiedra, Grace; Anthony, Patricia; Thuvamontolrat, Kasalyn; Pahwa, Savita; Burchett, Sandra; Weinberg, Adriana; Kovacs, Andrea

    2015-01-01

    Background We examined the effect of cytomegalovirus (CMV) co-infection and viremia on reconstitution of selected CD4+ and CD8+ T-cell subsets in perinatally HIV-infected (PHIV+) children ≥ 1-year old who participated in a partially randomized, open-label, 96-week combination antiretroviral therapy (cART)-algorithm study. Methods Participants were categorized as CMV-naïve, CMV-positive (CMV+) viremic, and CMV+ aviremic, based on blood, urine, or throat culture, CMV IgG and DNA polymerase chain reaction measured at baseline. At weeks 0, 12, 20 and 40, T-cell subsets including naïve (CD62L+CD45RA+; CD95-CD28+), activated (CD38+HLA-DR+) and terminally differentiated (CD62L-CD45RA+; CD95+CD28-) CD4+ and CD8+ T-cells were measured by flow cytometry. Results Of the 107 participants included in the analysis, 14% were CMV+ viremic; 49% CMV+ aviremic; 37% CMV-naïve. In longitudinal adjusted models, compared with CMV+ status, baseline CMV-naïve status was significantly associated with faster recovery of CD8+CD62L+CD45RA+% and CD8+CD95-CD28+% and faster decrease of CD8+CD95+CD28-%, independent of HIV VL response to treatment, cART regimen and baseline CD4%. Surprisingly, CMV status did not have a significant impact on longitudinal trends in CD8+CD38+HLA-DR+%. CMV status did not have a significant impact on any CD4+ T-cell subsets. Conclusions In this cohort of PHIV+ children, the normalization of naïve and terminally differentiated CD8+ T-cell subsets in response to cART was detrimentally affected by the presence of CMV co-infection. These findings may have implications for adjunctive treatment strategies targeting CMV co-infection in PHIV+ children, especially those that are now adults or reaching young adulthood and may have accelerated immunologic aging, increased opportunistic infections and aging diseases of the immune system. PMID:25794163

  14. PD-1 immune checkpoint blockade promotes brain leukocyte infiltration and diminishes cyst burden in a mouse model of Toxoplasma infection.

    PubMed

    Xiao, Jianchun; Li, Ye; Yolken, Robert H; Viscidi, Raphael P

    2018-06-15

    Tissue cysts, the hallmark of chronic Toxoplasma gondii infection, are predominantly located in the brain making clearance of the parasite difficult. Currently available anti-T. gondii drugs are ineffective on cysts and fail to prevent reactivation of latent toxoplasmosis. We examined whether abrogation of inhibitory signaling pathways that maintain T cells in an exhausted state can be exploited for treating T. gondii tissue cysts. By using a mouse model of chronic toxoplasmosis, we showed immune checkpoint blockade directed against the programmed death-1 (PD-1) pathway results in a significant reduction in brain cyst number (77% lower). We showed leukocyte infiltration (CD3+ T cells, CD8+ T cells, and CD11b + cells) in the leptomeninges, choroid plexus, and subependymal tissue, which are known routes of entry of immune cells into the brain, and in proximal brain parenchyma. Our study provides proof of concept for blockade of immune checkpoint inhibitors as a therapy for chronic toxoplasmosis and potentially for other brain pathogens. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL

    PubMed Central

    Vari, Frank; Arpon, David; Keane, Colm; Hertzberg, Mark S.; Talaulikar, Dipti; Jain, Sanjiv; Cui, Qingyan; Han, Erica; Tobin, Josh; Bird, Robert; Cross, Donna; Hernandez, Annette; Gould, Clare; Birch, Simone

    2018-01-01

    Much focus has been on the interaction of programmed cell death ligand 1 (PD-L1) on malignant B cells with programmed cell death 1 (PD-1) on effector T cells in inhibiting antilymphoma immunity. We sought to establish the contribution of natural killer (NK) cells and inhibitory CD163+ monocytes/macrophages in Hodgkin lymphoma (cHL) and diffuse large B-cell lymphoma (DLBCL). Levels of PD-1 on NK cells were elevated in cHL relative to DLBCL. Notably, CD3−CD56hiCD16-ve NK cells had substantially higher PD-1 expression relative to CD3−CD56dimCD16+ cells and were expanded in blood and tissue, more marked in patients with cHL than patients with DLBCL. There was also a raised population of PD-L1-expressing CD163+ monocytes that was more marked in patients with cHL compared with patients with DLBCL. The phenotype of NK cells and monocytes reverted back to normal once therapy (ABVD [doxorubicin 25 mg/m2, bleomycin 10 000 IU/m2, vinblastine 6 mg/m2, dacarbazine 375 mg/m2, all given days 1 and 15, repeated every 28 days] or R-CHOP [rituximab 375 mg/m2, cyclophosphamide 750 mg/m2 IV, doxorubicin 50 mg/m2 IV, vincristine 1.4 mg/m2 (2 mg maximum) IV, prednisone 100 mg/day by mouth days 1-5, pegfilgrastim 6 mg subcutaneously day 4, on a 14-day cycle]) had commenced. Tumor-associated macrophages (TAMs) expressed high levels of PD-L1/PD-L2 within diseased lymph nodes. Consistent with this, CD163/PD-L1/PD-L2 gene expression was also elevated in cHL relative to DLBCL tissues. An in vitro functional model of TAM-like monocytes suppressed activation of PD-1hi NK cells, which was reversed by PD-1 blockade. In line with these findings, depletion of circulating monocytes from the blood of pretherapy patients with cHL and patients with DLBCL enhanced CD3−CD56hiCD16-ve NK-cell activation. We describe a hitherto unrecognized immune evasion strategy mediated via skewing toward an exhausted PD-1-enriched CD3−CD56hiCD16-ve NK-cell phenotype. In addition to direct inhibition of NK cells by the malignant B cell, suppression of NK cells can occur indirectly by PD-L1/PD-L2-expressing TAMs. The mechanism is more prominent in cHL than DLBCL, which may contribute to the clinical sensitivity of cHL to PD-1 blockade. PMID:29449276

  16. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma

    PubMed Central

    Wadkin, James C. R.; Patten, Daniel A.; Kamarajah, Sivesh K.; Shepherd, Emma L.; Novitskaya, Vera; Berditchevski, Fedor; Adams, David H.; Weston, Chris J.

    2017-01-01

    CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention. NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated in chronic liver disease and hepatocellular carcinoma (HCC) and is regulated on endothelium by tissue remodeling and procarcinogenic factors. These regulatory and functional studies identify CD151 as a potential therapeutic target to treat liver fibrosis and HCC. PMID:28473332

  17. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma.

    PubMed

    Wadkin, James C R; Patten, Daniel A; Kamarajah, Sivesh K; Shepherd, Emma L; Novitskaya, Vera; Berditchevski, Fedor; Adams, David H; Weston, Chris J; Shetty, Shishir

    2017-08-01

    CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention. NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated in chronic liver disease and hepatocellular carcinoma (HCC) and is regulated on endothelium by tissue remodeling and procarcinogenic factors. These regulatory and functional studies identify CD151 as a potential therapeutic target to treat liver fibrosis and HCC. Copyright © 2017 the American Physiological Society.

  18. Regulated expression of telomerase activity in human T lymphocyte development and activation

    PubMed Central

    1996-01-01

    Telomerase, a ribonucleoprotein that is capable of synthesizing telomeric repeats, is expressed in germline and malignant cells, and is absent in most normal human somatic cells. The selective expression of telomerase has thus been proposed to be a basis for the immortality of the germline and of malignant cells. In the present study, telomerase activity was analyzed in normal human T lymphocytes. It was found that telomerase is expressed at a high level in thymocyte subpopulations, at an intermediate level in tonsil T lymphocytes, and at a low to undetectable level in peripheral blood T lymphocytes. Moreover, telomerase activity is highly inducible in peripheral T lymphocytes by activation through CD3 with or without CD28 costimulation, or by stimulation with phorbol myristate acetate (PMA)/ionomycin. The induction of telomerase by anti-CD3 plus anti-CD28 (anti-CD3/CD28) stimulation required RNA and protein synthesis, and was blocked by herbimycin A, an inhibitor of S pi protein tyrosine kinases. The immunosuppressive drug cyclosporin A selectively inhibited telomerase induction by PMA/ionomycin and by anti-CD3, but not by anti-CD3/CD28. Although telomerase activity in peripheral T lymphocytes was activation dependent and correlated with cell proliferation, it was not cell cycle phase restricted. These results indicate that the expression of telomerase in normal human T lymphocytes is both developmentally regulated and activation induced. Telomerase may thus play a permissive role in T cell development and in determining the capacity of lymphoid cells for cell division and clonal expansion. PMID:8676067

  19. Specific blockade CD73 alters the 'exhausted' phenotype of T cells in head and neck squamous cell carcinoma.

    PubMed

    Deng, Wei-Wei; Li, Yi-Cun; Ma, Si-Rui; Mao, Liang; Yu, Guang-Tao; Bu, Lin-Lin; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2018-04-16

    The adenosine-induced immunosuppression hampers the immune response toward tumor cells and facilitates the tumor cells to evade immunosurveillance. CD73, an ecto-5-nucleotidase, is the ectoenzyme dephosphorylating extracellular AMP to adenosine. Here, using immunocompetent transgenic head and neck squamous cell carcinoma (HNSCC) mouse model, immune profiling showed high expression of CD73 on CD4 + and CD8 + T cells was associated with an 'exhausted' phenotype. Further, treatment with anti-CD73 monoclonal antibody (mAb) significantly blunted the tumor growth in the mouse model, and the blockade of CD73 reversed the 'exhausted' phenotype of CD4 + and CD8 + T cells through downregulation of total expression of PD-1 and CTLA-4 on T cells. Whereas the population of CD4 + CD73 hi /CD8 + CD73 hi T cells expressed higher CTLA-4 and PD-1 as compared to untreated controls. In addition, the human tissue microarrays showed the expression of CD73 is upregulated on tumor infiltrating immune cells in patients with primary HNSCC. Moreover, CD73 expression is an independent prognostic factor for poor outcome in our cohort of HNSCC patients. Altogether, these findings highlight the immunoregulatory role of CD73 in the development of HNSCC and we propose that CD73 may prove to be a promising immunotherapeutic target for the treatment of HNSCC. This article is protected by copyright. All rights reserved. © 2018 UICC.

  20. TTI-621 (SIRPαFc), a CD47-blocking cancer immunotherapeutic, triggers phagocytosis of lymphoma cells by multiple polarized macrophage subsets.

    PubMed

    Lin, Gloria H Y; Chai, Vien; Lee, Vivian; Dodge, Karen; Truong, Tran; Wong, Mark; Johnson, Lisa D; Linderoth, Emma; Pang, Xinli; Winston, Jeff; Petrova, Penka S; Uger, Robert A; Viller, Natasja N

    2017-01-01

    Tumor-associated macrophages (TAMs) are heterogeneous and can adopt a spectrum of activation states between pro-inflammatory and pro-tumorigenic in response to the microenvironment. We have previously shown that TTI-621, a soluble SIRPαFc fusion protein that blocks the CD47 "do-not-eat" signal, promotes tumor cell phagocytosis by IFN-γ-primed macrophages. To assess the impact of CD47 blockade on diverse types of macrophages that are found within the tumor microenvironment, six different polarized human macrophage subsets (M(-), M(IFN-γ), M(IFN-γ+LPS), M(IL-4), M(HAGG+IL-1β), M(IL-10 + TGFβ)) with distinct cell surface markers and cytokine profiles were generated. Blockade of CD47 using TTI-621 significantly increased phagocytosis of lymphoma cells by all macrophage subsets, with M(IFN-γ), M(IFN-γ+LPS) and M(IL-10 + TGFβ) macrophages having the highest phagocytic response. TTI-621-mediated phagocytosis involves macrophage expression of both the low- and high-affinity Fcγ receptors II (CD32) and I (CD64), respectively. Moreover, macrophages with lower phagocytic capabilities (M(-), M(IL-4), M(HAGG+IL-1β)) could readily be re-polarized into highly phagocytic macrophages using various cytokines or TLR agonists. In line with the in vitro study, we further demonstrate that TTI-621 can trigger phagocytosis of tumor cells by diverse subsets of isolated mouse TAMs ex vivo. These data suggest that TTI-621 may be efficacious in triggering the destruction of cancer cells by a diverse population of TAMs found in vivo and support possible combination approaches to augment the activity of CD47 blockade.

  1. TTI-621 (SIRPαFc), a CD47-blocking cancer immunotherapeutic, triggers phagocytosis of lymphoma cells by multiple polarized macrophage subsets

    PubMed Central

    Chai, Vien; Lee, Vivian; Dodge, Karen; Truong, Tran; Wong, Mark; Johnson, Lisa D.; Linderoth, Emma; Pang, Xinli; Winston, Jeff; Petrova, Penka S.; Viller, Natasja N.

    2017-01-01

    Tumor-associated macrophages (TAMs) are heterogeneous and can adopt a spectrum of activation states between pro-inflammatory and pro-tumorigenic in response to the microenvironment. We have previously shown that TTI-621, a soluble SIRPαFc fusion protein that blocks the CD47 “do-not-eat” signal, promotes tumor cell phagocytosis by IFN-γ-primed macrophages. To assess the impact of CD47 blockade on diverse types of macrophages that are found within the tumor microenvironment, six different polarized human macrophage subsets (M(-), M(IFN-γ), M(IFN-γ+LPS), M(IL-4), M(HAGG+IL-1β), M(IL-10 + TGFβ)) with distinct cell surface markers and cytokine profiles were generated. Blockade of CD47 using TTI-621 significantly increased phagocytosis of lymphoma cells by all macrophage subsets, with M(IFN-γ), M(IFN-γ+LPS) and M(IL-10 + TGFβ) macrophages having the highest phagocytic response. TTI-621-mediated phagocytosis involves macrophage expression of both the low- and high-affinity Fcγ receptors II (CD32) and I (CD64), respectively. Moreover, macrophages with lower phagocytic capabilities (M(-), M(IL-4), M(HAGG+IL-1β)) could readily be re-polarized into highly phagocytic macrophages using various cytokines or TLR agonists. In line with the in vitro study, we further demonstrate that TTI-621 can trigger phagocytosis of tumor cells by diverse subsets of isolated mouse TAMs ex vivo. These data suggest that TTI-621 may be efficacious in triggering the destruction of cancer cells by a diverse population of TAMs found in vivo and support possible combination approaches to augment the activity of CD47 blockade. PMID:29084248

  2. Targeting LAG-3 and PD-1 to Enhance T Cell Activation by Antigen-Presenting Cells

    PubMed Central

    Lichtenegger, Felix S.; Rothe, Maurine; Schnorfeil, Frauke M.; Deiser, Katrin; Krupka, Christina; Augsberger, Christian; Schlüter, Miriam; Neitz, Julia; Subklewe, Marion

    2018-01-01

    Immune checkpoint inhibition has been shown to successfully reactivate endogenous T cell responses directed against tumor-associated antigens, resulting in significantly prolonged overall survival in patients with various tumor entities. For malignancies with low endogenous immune responses, this approach has not shown a clear clinical benefit so far. Therapeutic vaccination, particularly dendritic cell (DC) vaccination, is a strategy to induce T cell responses. Interaction of DCs and T cells is dependent on receptor–ligand interactions of various immune checkpoints. In this study, we analyzed the influence of blocking antibodies targeting programmed cell death protein 1 (PD-1), HVEM, CD244, TIM-3, and lymphocyte activation gene 3 (LAG-3) on the proliferation and cytokine secretion of T cells after stimulation with autologous TLR-matured DCs. In this context, we found that LAG-3 blockade resulted in superior T cell activation compared to inhibition of other pathways, including PD-1/PD-L1. This result was consistent across different methods to measure T cell stimulation (proliferation, IFN-γ secretion), various stimulatory antigens (viral and bacterial peptide pool, specific viral antigen, specific tumor antigen), and seen for both CD4+ and CD8+ T cells. Only under conditions with a weak antigenic stimulus, particularly when combining antigen presentation by peripheral blood mononuclear cells with low concentrations of peptides, we observed the highest T cell stimulation with dual blockade of LAG-3 and PD-1 blockade. We conclude that priming of novel immune responses can be strongly enhanced by blockade of LAG-3 or dual blockade of LAG-3 and PD-1, depending on the strength of the antigenic stimulus. PMID:29535740

  3. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma.

    PubMed

    Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A

    2016-02-01

    Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.

  4. Targeting LAG-3 and PD-1 to Enhance T Cell Activation by Antigen-Presenting Cells.

    PubMed

    Lichtenegger, Felix S; Rothe, Maurine; Schnorfeil, Frauke M; Deiser, Katrin; Krupka, Christina; Augsberger, Christian; Schlüter, Miriam; Neitz, Julia; Subklewe, Marion

    2018-01-01

    Immune checkpoint inhibition has been shown to successfully reactivate endogenous T cell responses directed against tumor-associated antigens, resulting in significantly prolonged overall survival in patients with various tumor entities. For malignancies with low endogenous immune responses, this approach has not shown a clear clinical benefit so far. Therapeutic vaccination, particularly dendritic cell (DC) vaccination, is a strategy to induce T cell responses. Interaction of DCs and T cells is dependent on receptor-ligand interactions of various immune checkpoints. In this study, we analyzed the influence of blocking antibodies targeting programmed cell death protein 1 (PD-1), HVEM, CD244, TIM-3, and lymphocyte activation gene 3 (LAG-3) on the proliferation and cytokine secretion of T cells after stimulation with autologous TLR-matured DCs. In this context, we found that LAG-3 blockade resulted in superior T cell activation compared to inhibition of other pathways, including PD-1/PD-L1. This result was consistent across different methods to measure T cell stimulation (proliferation, IFN-γ secretion), various stimulatory antigens (viral and bacterial peptide pool, specific viral antigen, specific tumor antigen), and seen for both CD4 + and CD8 + T cells. Only under conditions with a weak antigenic stimulus, particularly when combining antigen presentation by peripheral blood mononuclear cells with low concentrations of peptides, we observed the highest T cell stimulation with dual blockade of LAG-3 and PD-1 blockade. We conclude that priming of novel immune responses can be strongly enhanced by blockade of LAG-3 or dual blockade of LAG-3 and PD-1, depending on the strength of the antigenic stimulus.

  5. Differential immune microenvironments and response to immune checkpoint blockade amongst molecular subtypes of murine medulloblastoma

    PubMed Central

    Pham, Christina D.; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M.; Yearley, Jennifer H.; Sayour, Elias J.; Pei, Yanxin; Moore, Colin; McLendon, Roger E.; Huang, Jianping; Sampson, John H.; Wechsler-Reya, Robert; Mitchell, Duane A.

    2016-01-01

    PURPOSE Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma (MB), the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and Group 3 MB for preclinical evaluation in immunocompetent C57BL/6 mice. METHODS AND RESULTS Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid derived suppressor cells and tumor-associated macrophages in murine SHH model tumors compared with Group 3 tumors. However, murine Group 3 tumors had higher percentages of CD8+ PD-1+ T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial Group 3 tumors compared to SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1+ peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3+ T cells within the tumor microenvironment. CONCLUSIONS This is the first immunologic characterization of preclinical models of molecular subtypes of MB and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. PMID:26405194

  6. Adiponectin has a pivotal role in the cardioprotective effect of CP-3(iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice.

    PubMed

    Huynh, David N; Bessi, Valérie L; Ménard, Liliane; Piquereau, Jérôme; Proulx, Caroline; Febbraio, Maria; Lubell, William D; Carpentier, André C; Burelle, Yan; Ong, Huy; Marleau, Sylvie

    2018-02-01

    CD36 is a multiligand receptor involved in lipid metabolism. We investigated the mechanisms underlying the cardioprotective effect of CP-3(iv), an azapeptide belonging to a new class of selective CD36 ligands. The role of CP-3(iv) in mediating cardioprotection was investigated because CD36 signaling leads to activation of peroxisome proliferator-activated receptor-γ, a transcriptional regulator of adiponectin. CP-3(iv) pretreatment reduced infarct size by 54% and preserved hemodynamics in C57BL/6 mice subjected to 30 min coronary ligation and reperfusion but had no effect in CD36-deficient mice. The effects of CP-3(iv) were associated with an increase in circulating adiponectin levels, epididymal fat adiponectin gene expression, and adiponectin transcriptional regulators ( Pparg, Cebpb, Sirt1) after 6 h of reperfusion. Reduced myocardial oxidative stress and apoptosis were observed along with an increase in expression of myocardial adiponectin target proteins, including cyclooxygenase-2, phospho-AMPK, and phospho-Akt. Moreover, CP-3(iv) increased myocardial performance in isolated hearts, whereas blockade of adiponectin with an anti-adiponectin antibody abrogated it. CP-3(iv) exerts cardioprotection against myocardial ischemia and reperfusion (MI/R) injury and dysfunction, at least in part, by increasing circulating and myocardial adiponectin levels. Hence, both paracrine and endocrine effects of adiponectin may contribute to reduced reactive oxygen species generation and apoptosis after MI/R, in a CD36-dependent manner.-Huynh, D. N., Bessi, V. L., Ménard, L., Piquereau, J., Proulx, C., Febbraio, M., Lubell, W. D., Carpentier, A. C., Burelle, Y., Ong, H., Marleau, S. Adiponectin has a pivotal role in the cardioprotective effect of CP-3(iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice.

  7. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells

    PubMed Central

    Quezada, Sergio A.; Peggs, Karl S.; Curran, Michael A.; Allison, James P.

    2006-01-01

    CTL-associated antigen 4 (CTLA4) blockade releases inhibitory controls on T cell activation and proliferation, inducing antitumor immunity in both preclinical and early clinical trials. We examined the mechanisms of action of anti-CTLA4 and a GM-CSF–transduced tumor cell vaccine (Gvax) and their impact on the balance of effector T cells (Teffs) and Tregs in an in vivo model of B16/BL6 melanoma. Tumor challenge increased the frequency of Tregs in lymph nodes, and untreated tumors became infiltrated by CD4+Foxp3– and CD4+Foxp3+ T cells but few CD8+ T cells. Anti-CTLA4 did not deplete Tregs or permanently impair their function but acted in a cell-intrinsic manner on both Tregs and Teffs, allowing them to expand, most likely in response to self antigen. While Gvax primed the tumor-reactive Teff compartment, inducing activation, tumor infiltration, and a delay in tumor growth, the combination with CTLA4 blockade induced greater infiltration and a striking change in the intratumor balance of Tregs and Teffs that directly correlated with tumor rejection. The data suggest that Tregs control both CD4+ and CD8+ T cell activity within the tumor, highlight the importance of the intratumor ratio of effectors to regulators, and demonstrate inversion of the ratio and correlation with tumor rejection during Gvax/anti-CTLA4 immunotherapy. PMID:16778987

  8. Interleukin-21 combined with PD-1 or CTLA-4 blockade enhances antitumor immunity in mouse tumor models

    PubMed Central

    Lewis, Katherine E.; Selby, Mark J.; Masters, Gregg; Valle, Jose; Dito, Gennaro; Curtis, Wendy R.; Garcia, Richard; Mink, Kathy A.; Holdren, Matthew S.; Grosso, Joseph F.; Korman, Alan J.; Jure-Kunkel, Maria

    2018-01-01

    ABSTRACT Recent advances in cancer treatment with checkpoint blockade of receptors such as CTLA-4 and PD-1 have demonstrated that combinations of agents with complementary immunomodulatory effects have the potential to enhance antitumor activity as compared to single agents. We investigated the efficacy of immune-modulatory interleukin-21 (IL-21) combined with checkpoint blockade in several syngeneic mouse tumor models. After tumor establishment, mice were administered recombinant mouse IL-21 (mIL-21) alone or in combination with blocking monoclonal antibodies against mouse PD-1 or CTLA-4. In contrast to monotherapy, IL-21 enhanced antitumor activity of mCTLA-4 mAb in four models and anti-PD-1 mAb in two models, with evidence of synergy for one or both of the combination treatments in the EMT-6 and MC38 models. The enhanced efficacy was associated with increased intratumoral CD8+ T cell infiltrates, CD8+ T cell proliferation, and increased effector memory T cells, along with decreased frequency of central memory CD8+ T cells. In vivo depletion of CD8+ T cells abolished the antitumor activities observed for both combination and monotherapy treatments, further supporting a beneficial role for CD8+ T cells. In all studies, the combination therapies were well tolerated. These results support the hypothesis that the combination of recombinant human IL-21 with CTLA-4 or PD-1 monoclonal antibodies could lead to improved outcomes in cancer patients. PMID:29296539

  9. Synergy of Immune Checkpoint Blockade with a Novel Synthetic Consensus DNA Vaccine Targeting TERT.

    PubMed

    Duperret, Elizabeth K; Wise, Megan C; Trautz, Aspen; Villarreal, Daniel O; Ferraro, Bernadette; Walters, Jewell; Yan, Jian; Khan, Amir; Masteller, Emma; Humeau, Laurent; Weiner, David B

    2018-02-07

    Immune checkpoint blockade antibodies are setting a new standard of care for cancer patients. It is therefore important to assess any new immune-based therapies in the context of immune checkpoint blockade. Here, we evaluate the impact of combining a synthetic consensus TERT DNA vaccine that has improved capacity to break tolerance with immune checkpoint inhibitors. We observed that blockade of CTLA-4 or, to a lesser extent, PD-1 synergized with TERT vaccine, generating more robust anti-tumor activity compared to checkpoint alone or vaccine alone. Despite this anti-tumor synergy, none of these immune checkpoint therapies showed improvement in TERT antigen-specific immune responses in tumor-bearing mice. αCTLA-4 therapy enhanced the frequency of T-bet + /CD44 + effector CD8 + T cells within the tumor and decreased the frequency of regulatory T cells within the tumor, but not in peripheral blood. CTLA-4 blockade synergized more than Treg depletion with TERT DNA vaccine, suggesting that the effect of CTLA-4 blockade is more likely due to the expansion of effector T cells in the tumor rather than a reduction in the frequency of Tregs. These results suggest that immune checkpoint inhibitors function to alter the immune regulatory environment to synergize with DNA vaccines, rather than boosting antigen-specific responses at the site of vaccination. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  10. C5a Receptor (CD88) Blockade Protects against MPO-ANCA GN

    PubMed Central

    Xiao, Hong; Dairaghi, Daniel J.; Powers, Jay P.; Ertl, Linda S.; Baumgart, Trageen; Wang, Yu; Seitz, Lisa C.; Penfold, Mark E.T.; Gan, Lin; Hu, Peiqi; Lu, Bao; Gerard, Norma P.; Gerard, Craig; Schall, Thomas J.; Jaen, Juan C.; Falk, Ronald J.

    2014-01-01

    Necrotizing and crescentic GN (NCGN) with a paucity of glomerular immunoglobulin deposits is associated with ANCA. The most common ANCA target antigens are myeloperoxidase (MPO) and proteinase 3. In a manner that requires activation of the alternative complement pathway, passive transfer of antibodies to mouse MPO (anti-MPO) induces a mouse model of ANCA NCGN that closely mimics human disease. Here, we confirm the importance of C5aR/CD88 in the mediation of anti-MPO–induced NCGN and report that C6 is not required. We further demonstrate that deficiency of C5a-like receptor (C5L2) has the reverse effect of C5aR/CD88 deficiency and results in more severe disease, indicating that C5aR/CD88 engagement enhances inflammation and C5L2 engagement suppresses inflammation. Oral administration of CCX168, a small molecule antagonist of human C5aR/CD88, ameliorated anti-MPO–induced NCGN in mice expressing human C5aR/CD88. These observations suggest that blockade of C5aR/CD88 might have therapeutic benefit in patients with ANCA-associated vasculitis and GN. PMID:24179165

  11. C5a receptor (CD88) blockade protects against MPO-ANCA GN.

    PubMed

    Xiao, Hong; Dairaghi, Daniel J; Powers, Jay P; Ertl, Linda S; Baumgart, Trageen; Wang, Yu; Seitz, Lisa C; Penfold, Mark E T; Gan, Lin; Hu, Peiqi; Lu, Bao; Gerard, Norma P; Gerard, Craig; Schall, Thomas J; Jaen, Juan C; Falk, Ronald J; Jennette, J Charles

    2014-02-01

    Necrotizing and crescentic GN (NCGN) with a paucity of glomerular immunoglobulin deposits is associated with ANCA. The most common ANCA target antigens are myeloperoxidase (MPO) and proteinase 3. In a manner that requires activation of the alternative complement pathway, passive transfer of antibodies to mouse MPO (anti-MPO) induces a mouse model of ANCA NCGN that closely mimics human disease. Here, we confirm the importance of C5aR/CD88 in the mediation of anti-MPO-induced NCGN and report that C6 is not required. We further demonstrate that deficiency of C5a-like receptor (C5L2) has the reverse effect of C5aR/CD88 deficiency and results in more severe disease, indicating that C5aR/CD88 engagement enhances inflammation and C5L2 engagement suppresses inflammation. Oral administration of CCX168, a small molecule antagonist of human C5aR/CD88, ameliorated anti-MPO-induced NCGN in mice expressing human C5aR/CD88. These observations suggest that blockade of C5aR/CD88 might have therapeutic benefit in patients with ANCA-associated vasculitis and GN.

  12. Selective endothelin ETA and dual ET(A)/ET(B) receptor blockade improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease.

    PubMed

    Rafnsson, Arnar; Shemyakin, Alexey; Pernow, John

    2014-11-24

    Endothelin-1 contributes to endothelial dysfunction in patients with atherosclerosis and type 2 diabetes. In healthy arteries the ETA receptor mediates the main part of the vasoconstriction induced by endothelin-1 whilst the ETB receptor mediates vasodilatation. The ETB receptor expression is upregulated on vascular smooth muscle cells in atherosclerosis and may contribute to the increased vasoconstrictor tone and endothelial dysfunction observed in this condition. Due to these opposing effects of the ETB receptor it remains unclear whether ETB blockade together with ETA blockade may be detrimental or beneficial. The aim was therefore to compare the effects of selective ETA and dual ETA/ETB blockade on endothelial function in patients with type 2 diabetes and coronary artery disease. Forearm endothelium-dependent and endothelium-independent vasodilatation was assessed by venous occlusion plethysmography in 12 patients before and after selective ETA or dual ETA/ETB receptor blockade. Dual ETA/ETB receptor blockade increased baseline forearm blood flow by 30±14% (P<0.01) whereas selective ETA blockade did not (14±8%). Both selective ETA blockade and dual ETA/ETB blockade significantly improved endothelium-dependent vasodilatation. The improvement did not differ between the two treatments. There was also an increase in endothelium-independent vasodilatation with both treatments. Dual ETA/ETB blockade did not significantly increase microvascular flow but improved transcutaneous pO2. Both selective ETA and dual ETA/ETB improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease. ETB blockade increases basal blood flow but does not additionally improve endothelium-dependent vasodilatation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals.

    PubMed

    Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M

    1996-10-15

    A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.

  14. Is There Still Room for Cancer Vaccines at the Era of Checkpoint Inhibitors

    PubMed Central

    Karaki, Soumaya; Anson, Marie; Tran, Thi; Giusti, Delphine; Blanc, Charlotte; Oudard, Stephane; Tartour, Eric

    2016-01-01

    Checkpoint inhibitor (CPI) blockade is considered to be a revolution in cancer therapy, although most patients (70%–80%) remain resistant to this therapy. It has been hypothesized that only tumors with high mutation rates generate a natural antitumor T cell response, which could be revigorated by this therapy. In patients with no pre-existing antitumor T cells, a vaccine-induced T cell response is a rational option to counteract clinical resistance. This hypothesis has been validated in preclinical models using various cancer vaccines combined with inhibitory pathway blockade (PD-1-PDL1-2, CTLA-4-CD80-CD86). Enhanced T cell infiltration of various tumors has been demonstrated following this combination therapy. The timing of this combination appears to be critical to the success of this therapy and multiple combinations of immunomodulating antibodies (CPI antagonists or costimulatory pathway agonists) have reinforced the synergy with cancer vaccines. Only limited results are available in humans and this combined approach has yet to be validated. Comprehensive monitoring of the regulation of CPI and costimulatory molecules after administration of immunomodulatory antibodies (anti-PD1/PD-L1, anti-CTLA-4, anti-OX40, etc.) and cancer vaccines should help to guide the selection of the best combination and timing of this therapy. PMID:27827885

  15. CD49a promotes T-cell-mediated hepatitis by driving T helper 1 cytokine and interleukin-17 production

    PubMed Central

    Chen, Yonglin; Peng, Hui; Chen, Yongyan; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2014-01-01

    It is becoming increasingly clear that the T-cell-mediated immune response is important in many diseases. In this study, we used concanavalin A (Con A) -induced hepatitis to investigate the role of CD49a in the molecular and cellular mechanism of the T-cell-mediated immune response. We found that CD49a−/− mice had significantly reduced levels of serum alanine aminotransferase and were protected from Con A-induced hepatitis. CD49a deficiency led to decreased production of interferon-γ (IFN-γ) and interleukin-17A (IL-17A) after Con A injection. Furthermore, we found that hepatic CD4+ T cells and invariant natural killer T cells up-regulated CD49a expression, along with enhanced activation after Con A injection, leading to production of inflammatory cytokines by these T cells. Blockade of CD49a in vivo ameliorated Con A-induced hepatitis with reduced production of IFN-γ and IL-17A. Hence, CD49a promoted Con A-induced hepatitis through enhancing inflammatory cytokine production (IFN-γ and IL-17A) by CD4+ T and invariant natural killer T cells. The protective effect of CD49a blockade antibody suggested a new target therapeutic molecule for intervention of T-cell-mediated liver injury. PMID:24164540

  16. CD4+ CD25+ Regulatory T Cells Impair HIV-1-Specific CD4 T Cell Responses by Upregulating Interleukin-10 Production in Monocytes

    PubMed Central

    Kwon, Douglas S.; Angin, Mathieu; Hongo, Tomoyuki; Law, Kenneth M.; Johnson, Jessica; Porichis, Filippos; Hart, Meghan G.; Pavlik, David F.; Tighe, Daniel P.; Kavanagh, Daniel G.; Streeck, Hendrik; Addo, Marylyn M.

    2012-01-01

    T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14+ monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion. PMID:22496237

  17. Therapeutic PD-L1 and LAG-3 blockade rapidly clears established blood-stage Plasmodium infection

    PubMed Central

    Butler, Noah S.; Moebius, Jacqueline; Pewe, Lecia L.; Traore, Boubacar; Doumbo, Ogobara K.; Tygrett, Lorraine T.; Waldschmidt, Thomas J.; Crompton, Peter D.; Harty, John T.

    2011-01-01

    Plasmodium infection of erythrocytes induces clinical malaria. Parasite-specific CD4+ T cells correlate with reduced parasite burdens and severity of human malaria, and are required to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that P. falciparum infection of humans increased expression of an inhibitory receptor (PD-1) associated with T cell dysfunction. In vivo blockade of PD-L1 and LAG-3 restored CD4+ T cell function, amplified T follicular helper cell and germinal center B cell and plasmablast numbers, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, which can be rescued to enhance parasite control using inhibitory therapies. PMID:22157630

  18. Triazolopyridines as selective JAK1 inhibitors: from hit identification to GLPG0634.

    PubMed

    Menet, Christel J; Fletcher, Stephen R; Van Lommen, Guy; Geney, Raphael; Blanc, Javier; Smits, Koen; Jouannigot, Nolwenn; Deprez, Pierre; van der Aar, Ellen M; Clement-Lacroix, Philippe; Lepescheux, Liên; Galien, René; Vayssiere, Béatrice; Nelles, Luc; Christophe, Thierry; Brys, Reginald; Uhring, Muriel; Ciesielski, Fabrice; Van Rompaey, Luc

    2014-11-26

    Janus kinases (JAK1, JAK2, JAK3, and TYK2) are involved in the signaling of multiple cytokines important in cellular function. Blockade of the JAK-STAT pathway with a small molecule has been shown to provide therapeutic immunomodulation. Having identified JAK1 as a possible new target for arthritis at Galapagos, the compound library was screened against JAK1, resulting in the identification of a triazolopyridine-based series of inhibitors represented by 3. Optimization within this chemical series led to identification of GLPG0634 (65, filgotinib), a selective JAK1 inhibitor currently in phase 2B development for RA and phase 2A development for Crohn's disease (CD).

  19. Comprehensive analysis of cancers of unknown primary for the biomarkers of response to immune checkpoint blockade therapy.

    PubMed

    Gatalica, Zoran; Xiu, Joanne; Swensen, Jeff; Vranic, Semir

    2018-05-01

    Cancer of unknown primary (CUP) accounts for approximately 3% of all malignancies. Avoiding immune destruction is a major cancer characteristic and therapies aimed at immune checkpoint blockade are in use for several specific cancer types. A comprehensive survey of predictive biomarkers to immune checkpoint blockade in CUP were explored in this study. About 389 cases of CUP were analysed for mutations in 592 genes and 52 gene fusions using a massively parallel DNA sequencing platform (next-generation sequencing [NGS]). Total mutational load (TML) and microsatellite instability (MSI) were calculated from NGS data. PD-L1 expression was explored using immunohistochemistry (with 5% cutoff value). High TML was seen in 11.8% (46/389) of tumours. MSI-high (MSI-H) was detected in 7/384 (1.8%) of tumours. Tumour PD-L1 expression was detected in 80/362 CUP (22%). A small proportion of CUP cases harboured genetic alterations of negative predictive biomarkers to immune checkpoint inhibitors (predictors to hyperprogression) including MDM2 gene amplification (2%) and loss of function JAK2 gene mutations (1%). Amplifications of CD274 (PD-L1) and PDCD1LG2 (PD-L2) genes were also rare (1.4% and 0.8%, respectively). The most frequently mutated genes were TP53 (54%), KRAS (22%), ARID1A (13%), PIK3CA (9%), CDKN2A (8%), SMARCA4 (7%) and PBRM1, STK11, APC, RB1 (5%, respectively). Using a multiplex testing approach, 28% of CUP carried one or more predictive biomarkers (MSI-H, PD-L1 and/or TML-H) to the immune checkpoint blockade, providing a novel option for treatment in patients with CUP. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Pathogen stimulation history impacts donor-specific CD8+ T cell susceptibility to costimulation/integrin blockade-based therapy

    PubMed Central

    Badell, IR; Kitchens, WH; Wagener, ME; Lukacher, AE; Larsen, CP; Ford, ML

    2017-01-01

    Recent studies have shown that the quantity of donor-reactive memory T cells is an important factor in determining the relative heterologous immunity barrier posed during transplantation. Here, we hypothesized that the quality of T cell memory also potently influences the response to costimulation blockade-based immunosuppression. Using a murine skin graft model of CD8+ memory T cell-mediated costimulation blockade resistance, we elicited donor-reactive memory T cells using three distinct types of pathogen infections. Strikingly, we observed differential efficacy of a costimulation and integrin blockade regimen based on the type of pathogen used to elicit the donor-reactive memory T cell response. Intriguingly, the most immunosuppression-sensitive memory T cell populations were composed primarily of central memory cells that possessed greater recall potential, exhibited a less differentiated phenotype, and contained more multi-cytokine producers. These data therefore demonstrate that the memory T cell barrier is dependent on the specific type of pathogen infection via which the donor-reactive memory T cells are elicited, and suggest that the immune stimulation history of a given transplant patient may profoundly influence the relative barrier posed by heterologous immunity during transplantation. PMID:26228897

  1. Immune-Regulatory Molecule CD69 Controls Peritoneal Fibrosis

    PubMed Central

    Liappas, Georgios; González-Mateo, Guadalupe Tirma; Sánchez-Díaz, Raquel; Lazcano, Juan José; Lasarte, Sandra; Matesanz-Marín, Adela; Zur, Rafal; Ferrantelli, Evelina; Ramírez, Laura García; Aguilera, Abelardo; Fernández-Ruiz, Elena; Beelen, Robert H.J.; Selgas, Rafael; Sánchez-Madrid, Francisco

    2016-01-01

    Patients with ESRD undergoing peritoneal dialysis develop progressive peritoneal fibrosis, which may lead to technique failure. Recent data point to Th17-mediated inflammation as a key contributor in peritoneal damage. The leukocyte antigen CD69 modulates the setting and progression of autoimmune and inflammatory diseases by controlling the balance between Th17 and regulatory T cells (Tregs). However, the relevance of CD69 in tissue fibrosis remains largely unknown. Thus, we explored the role of CD69 in fibroproliferative responses using a mouse model of peritoneal fibrosis induced by dialysis fluid exposure under either normal or uremic status. We found that cd69−/− mice compared with wild-type (WT) mice showed enhanced fibrosis, mesothelial to mesenchymal transition, IL-17 production, and Th17 cell infiltration in response to dialysis fluid treatment. Uremia contributed partially to peritoneal inflammatory and fibrotic responses. Additionally, antibody–mediated CD69 blockade in WT mice mimicked the fibrotic response of cd69−/− mice. Finally, IL-17 blockade in cd69−/− mice decreased peritoneal fibrosis to the WT levels, and mixed bone marrow from cd69−/− and Rag2−/−γc−/− mice transplanted into WT mice reproduced the severity of the response to dialysis fluid observed in cd69−/− mice, showing that CD69 exerts its regulatory function within the lymphocyte compartment. Overall, our results indicate that CD69 controls tissue fibrosis by regulating Th17-mediated inflammation. PMID:27151919

  2. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    PubMed

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  3. Phenformin Inhibits Myeloid-Derived Suppressor Cells and Enhances the Anti-Tumor Activity of PD-1 Blockade in Melanoma.

    PubMed

    Kim, Sun Hye; Li, Man; Trousil, Sebastian; Zhang, Yaqing; Pasca di Magliano, Marina; Swanson, Kenneth D; Zheng, Bin

    2017-08-01

    Biguanides, such as the diabetes therapeutics metformin and phenformin, have shown antitumor activity both in vitro and in vivo. However, their potential effects on the tumor microenvironment are largely unknown. Here we report that phenformin selectively inhibits granulocytic myeloid-derived suppressor cells in spleens of tumor-bearing mice and ex vivo. Phenformin induces production of reactive oxygen species in granulocytic myeloid-derived suppressor cells, whereas the antioxidant N-acetylcysteine attenuates the inhibitory effects of phenformin. Co-treatment of phenformin enhances the effect of anti-PD-1 antibody therapy on inhibiting tumor growth in the BRAF V600E/PTEN-null melanoma mouse model. Combination of phenformin and anti PD-1 cooperatively induces CD8 + T-cell infiltration and decreases levels of proteins that are critical for immune suppressive activities of myeloid-derived suppressor cells. Our findings show a selective, inhibitory effect of phenformin on granulocytic myeloid-derived suppressor cell-driven immune suppression and support that phenformin improves the anti-tumor activity of PD-1 blockade immunotherapy in melanoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. CD155T/TIGIT Signaling Regulates CD8+ T-cell Metabolism and Promotes Tumor Progression in Human Gastric Cancer.

    PubMed

    He, Weiling; Zhang, Hui; Han, Fei; Chen, Xinlin; Lin, Run; Wang, Wei; Qiu, Haibo; Zhuang, Zhenhong; Liao, Qi; Zhang, Weijing; Cai, Qinbo; Cui, Yongmei; Jiang, Wenting; Wang, Han; Ke, Zunfu

    2017-11-15

    The T-cell surface molecule TIGIT is an immune checkpoint molecule that inhibits T-cell responses, but its roles in cancer are little understood. In this study, we evaluated the role TIGIT checkpoint plays in the development and progression of gastric cancer. We show that the percentage of CD8 T cells that are TIGIT + was increased in gastric cancer patients compared with healthy individuals. These cells showed functional exhaustion with impaired activation, proliferation, cytokine production, and metabolism, all of which were rescued by glucose. In addition, gastric cancer tissue and cell lines expressed CD155, which bound TIGIT receptors and inactivated CD8 T cells. In a T cell-gastric cancer cell coculture system, gastric cancer cells deprived CD8 T cells of glucose and impaired CD8 T-cell effector functions; these effects were neutralized by the additional glucose or by TIGIT blockade. In gastric cancer tumor cells, CD155 silencing increased T-cell metabolism and IFNγ production, whereas CD155 overexpression inhibited T-cell metabolism and IFNγ production; this inhibition was neutralized by TIGIT blockade. Targeting CD155/TIGIT enhanced CD8 T-cell reaction and improved survival in tumor-bearing mice. Combined targeting of TIGIT and PD-1 further enhanced CD8 T-cell activation and improved survival in tumor-bearing mice. Our results suggest that gastric cancer cells inhibit CD8 T-cell metabolism through CD155/TIGIT signaling, which inhibits CD8 T-cell effector functions, resulting in hyporesponsive antitumor immunity. These findings support the candidacy of CD155/TIGIT as a potential therapeutic target in gastric cancer. Cancer Res; 77(22); 6375-88. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells

    PubMed Central

    Whang, Katherine A.; LeGall, Camille; Cragnolini, Juan J.; Bierie, Brian; Gostissa, Monica; Grotenbreg, Gijsbert M.; Bhan, Atul; Weinberg, Robert A.

    2017-01-01

    Immunotherapy using checkpoint-blocking antibodies against targets such as CTLA-4 and PD-1 can cure melanoma and non–small cell lung cancer in a subset of patients. The presence of CD8 T cells in the tumor correlates with improved survival. We show that immuno–positron emission tomography (immuno-PET) can visualize tumors by detecting infiltrating lymphocytes and, through longitudinal observation of individual animals, distinguish responding tumors from those that do not respond to therapy. We used 89Zr-labeled PEGylated single-domain antibody fragments (VHHs) specific for CD8 to track the presence of intratumoral CD8+ T cells in the immunotherapy-susceptible B16 melanoma model in response to checkpoint blockade. A 89Zr-labeled PEGylated anti-CD8 VHH detected thymus and secondary lymphoid structures as well as intratumoral CD8 T cells. Animals that responded to CTLA-4 therapy showed a homogeneous distribution of the anti-CD8 PET signal throughout the tumor, whereas more heterogeneous infiltration of CD8 T cells correlated with faster tumor growth and worse responses. To support the validity of these observations, we used two different transplantable breast cancer models, yielding results that conformed with predictions based on the antimelanoma response. It may thus be possible to use immuno-PET and monitor antitumor immune responses as a prognostic tool to predict patient responses to checkpoint therapies. PMID:28666979

  6. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients.

    PubMed

    Kamphorst, Alice O; Pillai, Rathi N; Yang, Shu; Nasti, Tahseen H; Akondy, Rama S; Wieland, Andreas; Sica, Gabriel L; Yu, Ke; Koenig, Lydia; Patel, Nikita T; Behera, Madhusmita; Wu, Hong; McCausland, Megan; Chen, Zhengjia; Zhang, Chao; Khuri, Fadlo R; Owonikoko, Taofeek K; Ahmed, Rafi; Ramalingam, Suresh S

    2017-05-09

    Exhausted T cells in chronic infections and cancer have sustained expression of the inhibitory receptor programmed cell death 1 (PD-1). Therapies that block the PD-1 pathway have shown promising clinical results in a significant number of advanced-stage cancer patients. Nonetheless, a better understanding of the immunological responses induced by PD-1 blockade in cancer patients is lacking. Identification of predictive biomarkers is a priority in the field, but whether peripheral blood analysis can provide biomarkers to monitor or predict patients' responses to treatment remains to be resolved. In this study, we analyzed longitudinal blood samples from advanced stage non-small cell lung cancer (NSCLC) patients ( n = 29) receiving PD-1-targeted therapies. We detected an increase in Ki-67+ PD-1+ CD8 T cells following therapy in ∼70% of patients, and most responses were induced after the first or second treatment cycle. This T-cell activation was not indiscriminate because we observed only minimal effects on EBV-specific CD8 T cells, suggesting that responding cells may be tumor specific. These proliferating CD8 T cells had an effector-like phenotype (HLA-DR + , CD38 + , Bcl-2 lo ), expressed costimulatory molecules (CD28, CD27, ICOS), and had high levels of PD-1 and coexpression of CTLA-4. We found that 70% of patients with disease progression had either a delayed or absent PD-1+ CD8 T-cell response, whereas 80% of patients with clinical benefit exhibited PD-1+ CD8 T-cell responses within 4 wk of treatment initiation. Our results suggest that peripheral blood analysis may provide valuable insights into NSCLC patients' responses to PD-1-targeted therapies.

  7. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1–targeted therapy in lung cancer patients

    PubMed Central

    Kamphorst, Alice O.; Pillai, Rathi N.; Yang, Shu; Nasti, Tahseen H.; Sica, Gabriel L.; Yu, Ke; Koenig, Lydia; Patel, Nikita T.; Behera, Madhusmita; Wu, Hong; McCausland, Megan; Chen, Zhengjia; Zhang, Chao; Khuri, Fadlo R.; Owonikoko, Taofeek K.; Ahmed, Rafi; Ramalingam, Suresh S.

    2017-01-01

    Exhausted T cells in chronic infections and cancer have sustained expression of the inhibitory receptor programmed cell death 1 (PD-1). Therapies that block the PD-1 pathway have shown promising clinical results in a significant number of advanced-stage cancer patients. Nonetheless, a better understanding of the immunological responses induced by PD-1 blockade in cancer patients is lacking. Identification of predictive biomarkers is a priority in the field, but whether peripheral blood analysis can provide biomarkers to monitor or predict patients’ responses to treatment remains to be resolved. In this study, we analyzed longitudinal blood samples from advanced stage non–small cell lung cancer (NSCLC) patients (n = 29) receiving PD-1–targeted therapies. We detected an increase in Ki-67+ PD-1+ CD8 T cells following therapy in ∼70% of patients, and most responses were induced after the first or second treatment cycle. This T-cell activation was not indiscriminate because we observed only minimal effects on EBV-specific CD8 T cells, suggesting that responding cells may be tumor specific. These proliferating CD8 T cells had an effector-like phenotype (HLA-DR+, CD38+, Bcl-2lo), expressed costimulatory molecules (CD28, CD27, ICOS), and had high levels of PD-1 and coexpression of CTLA-4. We found that 70% of patients with disease progression had either a delayed or absent PD-1+ CD8 T-cell response, whereas 80% of patients with clinical benefit exhibited PD-1+ CD8 T-cell responses within 4 wk of treatment initiation. Our results suggest that peripheral blood analysis may provide valuable insights into NSCLC patients’ responses to PD-1–targeted therapies. PMID:28446615

  8. The effects of lower than conventional doses of oral nadolol on relative beta 1/beta 2-adrenoceptor blockade.

    PubMed

    Wheeldon, N M; McDevitt, D G; Lipworth, B J

    1994-08-01

    1. The aim of the present study was to evaluate the relative beta 1/beta 2 antagonist selectivity of the beta-adrenoceptor blocker nadolol, in lower than conventional clinical doses. 2. Eight normal volunteers received single oral doses of either placebo (PL), nadolol 5 mg (N5), 20 mg (N20) or 80 mg (N80) in a single-blind, randomised crossover design. beta 1-adrenoceptor antagonism was assessed by attenuation of exercise tachycardia, and beta 2-adrenoceptor blockade by effects on salbutamol-induced chronotropic, hypokalaemic and finger tremor responses. The relative percentage attenuation of beta 2 and beta 1-mediated responses was calculated and expressed as beta 2:beta 1 selectivity ratios. 3. Nadolol produced dose-related reductions in exercise tachycardia in keeping with increasing beta 1-adrenoceptor blockade; mean % reduction (95% CI) compared with placebo: N5 10.7 (6.6 to 14.8), N20 21.4 (17.3 to 25.4), N80 38.9 (34.8 to 42.9). However, even the lowest dose of nadolol (5 mg) produced almost complete blunting of beta 2-mediated effects and significantly increase exercise hyperkalaemia; peak exercise hyperkalaemia (mmol l-1) (means and 95% CI): PL 4.88 (4.68 to 5.07), N5 5.36 (5.17 to 5.55), N20 5.48 (5.28 to 5.67), N80 5.42 (5.22 to 5.61). beta 2:beta 1 selectivity ratios significantly increased as the dose of nadolol was reduced. 4. These data suggest that whereas in the clinical dose range nadolol behaves as a non-selective beta-adrenoceptor antagonist, as the dose is reduced this drug demonstrates an increasing degree of selectivity for the beta 2-adrenoceptor.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. T-Cell Receptor- and CD28-induced Vav1 activity is required for the accumulation of primed T cells into antigenic tissue

    PubMed Central

    David, Rachel; Ma, Liang; Ivetic, Aleksandar; Takesono, Aya; Ridley, Anne J.; Chai, Jian-Guo; Tybulewicz, Victor; Marelli-Berg, Federica M.

    2016-01-01

    Localization of primed T cells to antigenic tissue is essential for the development of effective immunity. Together with tissue-selective homing molecules, T-cell receptor (TCR)- and CD28-mediated signals have been shown to promote transendothelial migration of specific T cells into non-lymphoid antigen-rich tissue tissue. However, the cellular and molecular requirements for T-cell accumulation to target tissue following their recruitment are largely undefined. The guanine nucleotide exchange factor (GEF) Vav1 has an integral role in coupling TCR and CD28 to signalling pathways that regulate T cell activation and migration. Here, we have investigated the contribution of TCR- and CD28-induced Vav1 activity to the trafficking and localization of primed HY-specific CD4+ T cells to antigenic sites. Severe migratory defects displayed by Vav1-/- T cells in vitro were fully compensated by a combination of shear flow and chemokines, leading to normal recruitment of Vav1-/- T cells in vivo. In contrast, Vav1-/- T-cell retention into antigen-rich tissue was severely impaired, reflecting their inability to engage in sustained TCR- and CD28-mediated interactions with tissue-resident antigen-presenting cells (APCs). This novel function of APC-induced, TCR- and CD28-mediated Vav1 activity in the regulation of effector T-cell immunity highlights its potential as a therapeutic target in T-cell-mediated tissue damage. PMID:19060239

  10. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1).

    PubMed

    Fuller, Michael J; Callendret, Benoit; Zhu, Baogong; Freeman, Gordon J; Hasselschwert, Dana L; Satterfield, William; Sharpe, Arlene H; Dustin, Lynn B; Rice, Charles M; Grakoui, Arash; Ahmed, Rafi; Walker, Christopher M

    2013-09-10

    Hepatitis C virus (HCV) persistence is facilitated by exhaustion of CD8+ T cells that express the inhibitory receptor programmed cell death 1 (PD-1). Blockade of PD-1 signaling improves in vitro proliferation of HCV-specific T lymphocytes, but whether antiviral function can be restored in infected individuals is unknown. To address this question, chimpanzees with persistent HCV infection were treated with anti-PD-1 antibodies. A significant reduction in HCV viremia was observed in one of three treated animals without apparent hepatocellular injury. Viremia rebounded in the responder animal when antibody treatment was discontinued. Control of HCV replication was associated with restoration of intrahepatic CD4+ and CD8+ T-cell immunity against multiple HCV proteins. The responder animal had a history of broader T-cell immunity to multiple HCV proteins than the two chimpanzees that did not respond to PD-1 therapy. The results suggest that successful PD-1 blockade likely requires a critical threshold of preexisting virus-specific T cells in liver and warrants consideration of therapeutic vaccination strategies in combination with PD-1 blockade to broaden narrow responses. Anti-PD-1 immunotherapy may also facilitate control of other persistent viruses, notably the hepatitis B virus where options for long-term control of virus replication are limited.

  11. Gene Therapy for Liver Transplantation Using Adenoviral Vectors: CD40–CD154 Blockade by Gene Transfer of CD40Ig Protects Rat Livers from Cold Ischemia and Reperfusion Injury

    PubMed Central

    Ke, Bibo; Shen, Xiu-Da; Gao, Feng; Busuttil, Ronald W.; Löwenstein, Pedro R.; Castro, Maria G.; Kupiec-Weglinski, Jerzy W.

    2010-01-01

    Liver injury induced by ischemia/reperfusion (I/R) is the prime factor in delayed or loss graft function following transplantation. CD4+ T lymphocytes are key cellular mediators of antigen-independent inflammatory response triggered by I/R. We attempted to modulate rat liver I/R injury by targeted gene therapy with CD40Ig, which blocks the CD40–CD154 costimulation pathway. One hundred percent of Ad-CD40Ig-pretreated orthotopic liver transplants (OLTs) subjected to 24 h of cold (4°C) ischemia survived >14 days (vs 50% in untreated/Ad-β-gal groups). Ad-CD40Ig treatment decreased sGOT levels and depressed neutrophil infiltration, compared with controls. These functional data correlated with histological Suzuki’s grading of hepatic injury, which in untreated/Ad-β-gal groups showed severe necrosis (>60%) and moderate to severe sinusoidal congestion; the Ad-CD40Ig-pretreated group revealed minimal sinusoidal congestion/necrosis. Unlike in controls, OLT expression of mRNA coding for IL-2/IFN-γ remained depressed, whereas that of IL-4/IL-13 reciprocally increased in the Ad-CD40Ig group. Ad-CD40Ig reduced frequency of TUNEL+ cells and proapoptotic Caspase-3, but enhanced antioxidant HO-1 and antiapoptotic Bcl-2/Bcl-xl expression. Thus, prolonged blockade of CD40–CD154 by CD40Ig exerts potent cytoprotection against hepatic I/R injury. These results provide the rationale for a novel gene therapy approach to maximize the organ donor pool through the safer use of liver transplants exposed to prolonged cold ischemia. PMID:14741776

  12. Aspirin inhibits surface glycoprotein IIb/IIIa, P-selectin, CD63, and CD107a receptor expression on human platelets.

    PubMed

    McKenzie, Marcus E; Malinin, Alex I; Bell, Christopher R; Dzhanashvili, Alex; Horowitz, Eric D; Oshrine, Benjamin R; Atar, Dan; Serebruany, Victor L

    2003-04-01

    Platelet inhibition after aspirin therapy reduces the risk for the development of acute coronary syndromes. However, the mechanism by which aspirin affect platelets other than by prostaglandin blockade is unclear. We sought to determine the in vitro effects of aspirin on the surface expression of nine platelet receptors using whole blood flow cytometry. Blood from 24 healthy volunteers was incubated for 30 min with 1.8 and 7.2 mg/l phosphate-buffered saline-diluted acetylsalicylic acid in the presence or absence of apyrase. Platelet serotonin release, and the surface expression of platelet receptors with or without apyrase were determined using the following monoclonal antibodies: anit-CD41 [glycoprotein (GP)IIb/IIIa], CD42b (GPIb), CD62p (P-selectin), CD51/CD61 (vitronectin receptor), CD31 [platelet/endothelial cellular adhesion molecule-1 (PECAM-1)], CD107a [lysosomal associated membrane protein (LAMP)-1], CD107b (LAMP-2), CD63 (LIMP or LAMP-3), and CD151 (PETA-3). Samples were then immediately fixed with 2% paraformaldehyde, and run on the flow cytometer within 48 h. Aspirin does not affect serotonin release from human platelets. Dose-dependent inhibition of GPIIb/IIIa, P-selectin, CD63, and CD107a receptor expression was observed in the aspirin-treated whole-blood samples. Apyrase potentiates the effects of aspirin, and independently inhibits PECAM-1. In addition to the known effect of irreversibly inhibiting platelet cyclooxygenase-1, thereby blocking thromboxane A(2) synthesis, it appears that aspirin exhibits direct effects on selective major platelet receptors.

  13. Role of the K(Ca)3.1 K+ channel in auricular lymph node CD4+ T-lymphocyte function of the delayed-type hypersensitivity model.

    PubMed

    Ohya, Susumu; Nakamura, Erina; Horiba, Sayuri; Kito, Hiroaki; Matsui, Miki; Yamamura, Hisao; Imaizumi, Yuji

    2013-07-01

    The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) modulates the Ca(2+) response through the control of the membrane potential in the immune system. We investigated the role of K(Ca)3.1 on the pathogenesis of delayed-type hypersensitivity (DTH) in auricular lymph node (ALN) CD4(+) T-lymphocytes of oxazolone (Ox)-induced DTH model mice. The expression patterns of K(Ca)3.1 and its possible transcriptional regulators were compared among ALN T-lymphocytes of three groups [non-sensitized (Ox-/-), Ox-sensitized, but non-challenged (Ox+/-) and Ox-sensitized and -challenged (Ox+/+)] using real-time polymerase chain reaction, Western blotting and flow cytometry. KCa 3.1 activity was measured by whole-cell patch clamp and the voltage-sensitive dye imaging. The effects of K(Ca)3.1 blockade were examined by the administration of selective K(Ca)3.1 blockers. Significant up-regulation of K(Ca)3.1a was observed in CD4(+) T-lymphocytes of Ox+/- and Ox+/+, without any evident changes in the expression of the dominant-negative form, K(Ca)3.1b. Negatively correlated with this, the repressor element-1 silencing transcription factor (REST) was significantly down-regulated. Pharmacological blockade of K(Ca)3.1 resulted in an accumulation of the CD4(+) T-lymphocytes of Ox+/+ at the G0/G1 phase of the cell cycle, and also significantly recovered not only the pathogenesis of DTH, but also the changes in the K(Ca)3.1 expression and activity in the CD4(+) T-lymphocytes of Ox+/- and Ox+/+. The up-regulation of K(Ca)3.1a in conjunction with the down-regulation of REST may be involved in CD4(+) T-lymphocyte proliferation in the ALNs of DTH model mice; and K(Ca)3.1 may be an important target for therapeutic intervention in allergy diseases such as DTH. © 2013 The British Pharmacological Society.

  14. Bone Marrow Derived Myeloid Cells Orchestrate Antiangiogenic Resistance in Glioblastoma through Coordinated Molecular Networks

    PubMed Central

    Achyut, B.R.; Shankar, Adarsh; Iskander, ASM; Ara, Roxan; Angara, Kartik; Zeng, Peng; Knight, Robert A.; Scicli, Alfonso G; Arbab, Ali S.

    2015-01-01

    Glioblastoma (GBM) is a hypervascular and malignant form of brain tumors. Anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in clinical and preclinical studies, which resulted into marked hypoxia and recruited bone marrow derived cells (BMDCs) to the tumor microenvironment (TME). In vivo animal models to track BMDCs and investigate molecular mechanisms in AAT resistance are rare. We exploited recently established chimeric mouse to develop orthotopic U251 tumor, which uses as low as 5×106 GFP+ BM cells in athymic nude mice and engrafted >70% GFP+ cells within 14 days. Our unpublished data and published studies have indicated the involvement of immunosuppressive myeloid cells in therapeutic resistance in glioma. Similarly, in the present study, vatalanib significantly increased CD68+ myeloid cells, and CD133+, CD34+ and Tie2+ endothelial cell signatures. Therefore, we tested inhibition of CSF1R+ myeloid cells using GW2580 that reduced tumor growth by decreasing myeloid (Gr1+ CD11b+ and F4/80+) and angiogenic (CD202b+ and VEGFR2+) cell signatures in TME. CSF1R blockade significantly decreased inflammatory, proangiogenic and immunosuppressive molecular signatures compared to vehicle, vatalanib or combination. TCK1 or CXCL7, a potent chemoattractant and activator of neutrophils, was observed as most significantly decreased cytokine in CSF1R blockade. ERK MAPK pathway was involved in cytokine network regulation. In conclusion, present study confirmed the contribution of myeloid cells in GBM development and therapeutic resistance using chimeric mouse model. We identified novel molecular networks including CXCL7 chemokine as a promising target for future studies. Nonetheless, survival studies are required to assess the beneficial effect of CSF1R blockade. PMID:26404753

  15. IL-7 receptor blockade following T cell depletion promotes long-term allograft survival

    PubMed Central

    Mai, Hoa-Le; Boeffard, Françoise; Longis, Julie; Danger, Richard; Martinet, Bernard; Haspot, Fabienne; Vanhove, Bernard; Brouard, Sophie; Soulillou, Jean-Paul

    2014-01-01

    T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti–IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4– and anti-CD8–mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation. PMID:24569454

  16. Combination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cells

    PubMed Central

    Kosaka, Akemi; Ohkuri, Takayuki

    2014-01-01

    Malignant gliomas are heavily infiltrated by immature myeloid cells that mediate immuno-suppression. Agonistic CD40 monoclonal antibody (mAb) has been shown to activate myeloid cells and promote antitumor immunity. Our previous study has also demonstrated blockade of cyclooxygenase-2 (COX-2) reduces immunosuppressive myeloid cells, thereby suppressing glioma development in mice. We therefore hypothesized that a combinatory strategy to modulate myeloid cells via two distinct pathways, i.e., CD40/CD40L stimulation and COX-2 blockade, would enhance anti-glioma immunity. We used three different mouse glioma models to evaluate therapeutic effects and underlying mechanisms of a combination regimen with an agonist CD40 mAb and the COX-2 inhibitor celecoxib. Treatment of glioma-bearing mice with the combination therapy significantly prolonged survival compared with either anti-CD40 mAb or celecoxib alone. The combination regimen promoted maturation of CD11b+ cells in both spleen and brain, and enhanced Cxcl10 while suppressing Arg1 in CD11b+Gr-1+ cells in the brain. Anti-glioma activity of the combination regimen was T-cell dependent because depletion of CD4+ and CD8+ cells in vivo abrogated the anti-glioma effects. Furthermore, the combination therapy significantly increased the frequency of CD8+ T-cells, enhanced IFN-γ-production and reduced CD4+CD25+Foxp3+ T regulatory cells in the brain, and induced tumor-antigen-specific T-cell responses in lymph nodes. Our findings suggest that the combination therapy of anti-CD40 mAb with celecoxib enhances anti-glioma activities via promotion of type-1 immunity both in myeloid cells and T-cells. PMID:24878890

  17. Reduction in CD4 central memory T-cell subset in costimulation modulator abatacept-treated patients with recent-onset type 1 diabetes is associated with slower C-peptide decline.

    PubMed

    Orban, Tihamer; Beam, Craig A; Xu, Ping; Moore, Keith; Jiang, Qi; Deng, Jun; Muller, Sarah; Gottlieb, Peter; Spain, Lisa; Peakman, Mark

    2014-10-01

    We previously reported that continuous 24-month costimulation blockade by abatacept significantly slows the decline of β-cell function after diagnosis of type 1 diabetes. In a mechanistic extension of that study, we evaluated peripheral blood immune cell subsets (CD4, CD8-naive, memory and activated subsets, myeloid and plasmacytoid dendritic cells, monocytes, B lymphocytes, CD4(+)CD25(high) regulatory T cells, and invariant NK T cells) by flow cytometry at baseline and 3, 6, 12, 24, and 30 months after treatment initiation to discover biomarkers of therapeutic effect. Using multivariable analysis and lagging of longitudinally measured variables, we made the novel observation in the placebo group that an increase in central memory (CM) CD4 T cells (CD4(+)CD45R0(+)CD62L(+)) during a preceding visit was significantly associated with C-peptide decline at the subsequent visit. These changes were significantly affected by abatacept treatment, which drove the peripheral contraction of CM CD4 T cells and the expansion of naive (CD45R0(-)CD62L(+)) CD4 T cells in association with a significantly slower rate of C-peptide decline. The findings show that the quantification of CM CD4 T cells can provide a surrogate immune marker for C-peptide decline after the diagnosis of type 1 diabetes and that costimulation blockade may exert its beneficial therapeutic effect via modulation of this subset. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. LAG-3 confers a competitive disadvantage upon antiviral CD8+ T cell responses1

    PubMed Central

    Cook, Kevin D.; Whitmire, Jason K.

    2016-01-01

    Ongoing clinical trials are evaluating the benefits of systemic blockade of lymphocyte activation gene-3 (LAG-3) signals to improve immunity to tumors. Those studies are founded on the well-established inhibitory role of LAG-3 in regulating CD8+ T cells during chronic virus infection and anti-tumor responses. However, the T cell response in LAG-3 deficient mice is similar in size and function to that in wild type animals, suggesting LAG-3 has nuanced immune-regulatory functions. We performed a series of adoptive transfer experiments in mice to better understand the T cell-intrinsic functions of LAG-3 in the regulation of CD8+ T cell responses. Our results indicate that LAG-3 expression by CD8+ T cells inhibits their competitive fitness and results in a slightly reduced rate of cell division in comparison to LAG-3 deficient cells. This cell-intrinsic effect of LAG-3 was consistent across both acute and chronic virus infections. These data show that LAG-3 directly modulates the size of the T cell response and support the use of LAG-3 blockade regimens to enhance CD8+ T cell responses. PMID:27206765

  19. LAG-3 Confers a Competitive Disadvantage upon Antiviral CD8+ T Cell Responses.

    PubMed

    Cook, Kevin D; Whitmire, Jason K

    2016-07-01

    Ongoing clinical trials are evaluating the benefits of systemic blockade of lymphocyte activation gene-3 (LAG-3) signals to improve immunity to tumors. Those studies are founded on the well-established inhibitory role of LAG-3 in regulating CD8(+) T cells during chronic virus infection and antitumor responses. However, the T cell response in LAG-3-deficient mice is similar in size and function to that in wild type animals, suggesting LAG-3 has nuanced immune-regulatory functions. We performed a series of adoptive transfer experiments in mice to better understand the T cell-intrinsic functions of LAG-3 in the regulation of CD8(+) T cell responses. Our results indicate that LAG-3 expression by CD8(+) T cells inhibits their competitive fitness and results in a slightly reduced rate of cell division in comparison with LAG-3-deficient cells. This cell-intrinsic effect of LAG-3 was consistent across both acute and chronic virus infections. These data show that LAG-3 directly modulates the size of the T cell response and support the use of LAG-3 blockade regimens to enhance CD8(+) T cell responses. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Redirecting T Cells to Glypican-3 with 4-1BB Zeta Chimeric Antigen Receptors Results in Th1 Polarization and Potent Antitumor Activity

    PubMed Central

    Li, Wenpeng; Guo, Linjie; Rathi, Purva; Marinova, Ekaterina; Gao, Xiuhua; Wu, Meng-Feng; Liu, Hao; Dotti, Gianpietro; Gottschalk, Stephen; Metelitsa, Leonid S.; Heczey, Andras

    2017-01-01

    T cells engineered to express CD19-specific chimeric antigen receptors (CARs) have shown breakthrough clinical successes in patients with B-cell lymphoid malignancies. However, similar therapeutic efficacy of CAR T cells in solid tumors is yet to be achieved. In this study we systematically evaluated a series of CAR constructs targeting glypican-3 (GPC3), which is selectively expressed on several solid tumors. We compared GPC3-specific CARs that encoded CD3ζ (Gz) alone or with costimulatory domains derived from CD28 (G28z), 4-1BB (GBBz), or CD28 and 4-1BB (G28BBz). All GPC3-CARs rendered T cells highly cytotoxic to GPC3-positive hepatocellular carcinoma, hepatoblastoma, and malignant rhabdoid tumor cell lines in vitro. GBBz induced the preferential production of Th1 cytokines (interferon γ/granulocyte macrophage colony-stimulating factor) while G28z preferentially induced Th2 cytokines (interleukin-4/interleukin-10). Inclusion of 4-1BB in G28BBz could only partially ameliorate the Th2-polarizing effect of CD28. 4-1BB induced superior expansion of CAR T cells in vitro and in vivo. T cells expressing GPC3-CARs incorporating CD28, 4-1BB, or both induced sustained tumor regressions in two xenogeneic tumor models. Thus, GBBz CAR endows T cells with superior proliferative potential, potent antitumor activity, and a Th1-biased cytokine profile, justifying further clinical development of GBBz CAR for immunotherapy of GPC3-positive solid tumors. PMID:27530312

  1. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis.

    PubMed

    Stagg, John; Divisekera, Upulie; Duret, Helene; Sparwasser, Tim; Teng, Michele W L; Darcy, Phillip K; Smyth, Mark J

    2011-04-15

    CD73 is a cell-surface enzyme that suppresses immune responses by producing extracellular adenosine. In this study, we employed CD73 gene-targeted mice to investigate the role of host-derived CD73 on antitumor immunity and tumor cell metastasis. We found that CD73 ablation significantly suppressed the growth of ovalbumin-expressing MC38 colon cancer, EG7 lymphoma, AT-3 mammary tumors, and B16F10 melanoma. The protective effect of CD73 deficiency on primary tumors was dependent on CD8(+) T cells and associated with an increased frequency of antigen-specific CD8(+) T cells in peripheral blood and tumors and increased antigen-specific IFN-γ production. Replicate studies in bone marrow chimeras established that both hematopoietic and nonhematopoietic expression of CD73 was important to promote tumor immune escape. Using adoptive reconstitution of T regulatory cell (Treg)-depleted DEREG (depletion of regulatory T cells) mice, we demonstrated that part of the protumorigenic effect of Tregs was dependent on their expression of CD73. CD73-deficient mice were also protected against pulmonary metastasis of B16F10 melanoma cells after intravenous injection. Unexpectedly, we found that the prometastatic effect of host-derived CD73 was dependent on CD73 expression on nonhematopoietic cells. CD73 expression on nonhematopoietic cells, most likely endothelial cells, was critical for promoting lung metastasis in a manner independent from immunosuppressive effects. Notably, in vivo blockade of CD73 with a selective inhibitor or anti-CD73 monoclonal antibody significantly reduced tumor growth and metastasis of CD73-negative tumors. Taken together, our findings indicate that CD73 may be targeted at multiple levels to induce anticancer effects including at the level of tumor cells, Tregs, and nonhematopoietic cells. ©2011 AACR.

  2. BONE MARROW–DERIVED DENDRITIC CELL PROGENITORS (NLDC 145+, MHC CLASS II+, B7–1dim, B7–2−) INDUCE ALLOANTIGEN-SPECIFIC HYPORESPONSIVENESS IN MURINE T LYMPHOCYTES12

    PubMed Central

    Lu, Lina; McCaslin, Delbert; Starzl, Thomas E.; Thomson, Angus W.

    2010-01-01

    The functional maturation of dendritic cells (DC) and other antigen-presenting cells is believed to reflect the upregulation of cell surface major histocompatibility complex (MHC) class II and other T cell co-stimulatory molecules, especially the CD28 ligands B7–1 (CD80) and B7–2 (CD86). In this study, we propagated cells exhibiting characteristics of DC precursors from the bone marrow (BM) of BIO mice (H-2b; I-A1) in response to granulocyte-macrophage colony stimulating factor (GM-CSF). The methods used were similar to those employed previously to propagate DC progenitors from normal mouse liver. Cells expressing DC lineage markers (NLDC 145+, 33D1+ N418+) harvested from 8–10-day GM-CSF stimulated BM cell cultures were CD45+, heat-stable antigen+, CD54+, CD44+, MHC class II+, B7–1dim but B7–2− (costimulatory molecule-deficient). Supplementation of cultures with interleukin-4 (IL-4) in addition to GM-CSF however, resulted in marked upregulation of MHC class II and B7–2 expression. These latter cells exhibited potent allostimulatory activity in primary mixed leukocyte cultures. In contrast, the cells stimulated with GM-CSF alone were relatively weak stimulators and induced alloantigen-specific hyporesponsiveness in allogeneic T cells (C3H; H-2k; I-E+) detected upon re-stimulation in secondary MLR. This was associated with blockade of IL-2 production. Reactivity to third-party stimulators was intact. The hyporesponsiveness induced by the GM-CSF stimulated, costimulatory molecule-deficient cells was prevented by incorporation of anti-CD28 monoclonal antibody in the primary MLR and was reversed by addition of IL-2 to restimulated T cells. The findings show that MHC class II+ B7–2− cells with a DC precursor phenotype can induce alloantigen-specific hyporesponsiveness in vitro. Under the appropriate conditions, such costimulatory molecule-deficient cells could contribute to the induction of donor-specific unresponsiveness in vivo. PMID:8545887

  3. Level of soluble CD30 after kidney transplantation correlates with acute rejection episodes.

    PubMed

    Yang, J L; Hao, H J; Zhang, B; Liu, Y X; Chen, S; Na, Y Q

    2008-12-01

    Measurement of soluble CD30 (sCD30) levels may predict acute rejection episodes (ARE). To explore the value of sCD30 after transplantation, we tested serum sCD30 levels in 58 kidney transplant cases at 1 day before and 7 and 28 days after transplantation by enzyme-linked immunosorbent assay (ELISA). The incidences of ARE after kidney transplantation were recorded simultaneously. Meanwhile, 31 healthy individuals were selected as a control group. The results showed a relationship between sCD30 level in serum before kidney transplantation and the incidence of ARE. However, the relationship was more significant between serum sCD30 levels at day 7 after kidney transplantation and the incidence of ARE. There was no obvious relationship between serum sCD30 levels at day 28 after kidney transplantation and the incidence of ARE. These results suggested that the level of sCD30 at day 7 posttransplantation provides valuable data to predict ARE.

  4. Local Delivery of OncoVEXmGM-CSF Generates Systemic Antitumor Immune Responses Enhanced by Cytotoxic T-Lymphocyte-Associated Protein Blockade.

    PubMed

    Moesta, Achim K; Cooke, Keegan; Piasecki, Julia; Mitchell, Petia; Rottman, James B; Fitzgerald, Karen; Zhan, Jinghui; Yang, Becky; Le, Tiep; Belmontes, Brian; Ikotun, Oluwatayo F; Merriam, Kim; Glaus, Charles; Ganley, Kenneth; Cordover, David H; Boden, Andrea M; Ponce, Rafael; Beers, Courtney; Beltran, Pedro J

    2017-10-15

    Purpose: Talimogene laherparepvec, a new oncolytic immunotherapy, has been recently approved for the treatment of melanoma. Using a murine version of the virus, we characterized local and systemic antitumor immune responses driving efficacy in murine syngeneic models. Experimental Design: The activity of talimogene laherparepvec was characterized against melanoma cell lines using an in vitro viability assay. Efficacy of OncoVEX mGM-CSF (talimogene laherparepvec with the mouse granulocyte-macrophage colony-stimulating factor transgene) alone or in combination with checkpoint blockade was characterized in A20 and CT-26 contralateral murine tumor models. CD8 + depletion, adoptive T-cell transfers, and Enzyme-Linked ImmunoSpot assays were used to study the mechanism of action (MOA) of systemic immune responses. Results: Treatment with OncoVEX mGM-CSF cured all injected A20 tumors and half of contralateral tumors. Viral presence was limited to injected tumors and was not responsible for systemic efficacy. A significant increase in T cells (CD3 + /CD8 + ) was observed in injected and contralateral tumors at 168 hours. Ex vivo analyses showed these cytotoxic T lymphocytes were tumor-specific. Increased neutrophils, monocytes, and chemokines were observed in injected tumors only. Importantly, depletion of CD8 + T cells abolished all systemic efficacy and significantly decreased local efficacy. In addition, immune cell transfer from OncoVEX mGM-CSF -cured mice significantly protected from tumor challenge. Finally, combination of OncoVEX mGM-CSF and checkpoint blockade resulted in increased tumor-specific CD8 + anti-AH1 T cells and systemic efficacy. Conclusions: The data support a dual MOA for OncoVEX mGM-CSF that involves direct oncolysis of injected tumors and activation of a CD8 + -dependent systemic response that clears injected and contralateral tumors when combined with checkpoint inhibition. Clin Cancer Res; 23(20); 6190-202. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Blockade of CD354 (TREM-1) Ameliorates Anti-GBM-Induced Nephritis.

    PubMed

    Du, Yong; Wu, Tianfu; Zhou, Xin J; Davis, Laurie S; Mohan, Chandra

    2016-06-01

    CD354, Triggering Receptor of Myeloid Cells-1 (TREM-1), is a potent amplifier of myeloid immune responses. Our goal was to determine the expression and function of TREM-1 in immune-mediated nephritis. An anti-glomerular basement membrane antibody (anti-GBM)-induced nephritis model was employed, where mice were sensitized with rabbit IgG followed by anti-GBM serum to induce disease. Anti-GBM-treated 129x1/svJ mice developed severe nephritis whereas C57BL/6 (B6) mice were resistant to disease. Anti-GBM disease resulted in elevated renal TREM-1 messenger RNA (mRNA) and protein levels and increased urine TREM-1 levels in 129x1/svJ. TREM-1 blockade with an inhibitory peptide, LP17, inhibited proteinuria and renal disease as measured by glomerulonephritis class, severity of tubulointerstitial disease, crescent formation, and inflammatory cell infiltrates. In sum, TREM-1 is upregulated in renal inflammation and plays a vital role in driving disease. Thus, TREM-1 blockade emerges as a potential therapeutic avenue for immune-mediated renal diseases such as lupus nephritis.

  6. Inhibitory Phenotype of HBV-Specific CD4+ T-Cells Is Characterized by High PD-1 Expression but Absent Coregulation of Multiple Inhibitory Molecules

    PubMed Central

    Kurktschiev, Peter; Schraut, Winfried; Zachoval, Reinhart; Wendtner, Clemens; Wächtler, Martin; Spannagl, Michael; Denk, Gerald; Ulsenheimer, Axel; Bengsch, Bertram; Pircher, Hanspeter; Diepolder, Helmut M.; Grüner, Norbert H.; Jung, Maria-Christina

    2014-01-01

    Background T-cell exhaustion seems to play a critical role in CD8+ T-cell dysfunction during chronic viral infections. However, up to now little is known about the mechanisms underlying CD4+ T-cell dysfunction during chronic hepatitis B virus (CHB) infection and the role of inhibitory molecules such as programmed death 1 (PD-1) for CD4+ T-cell failure. Methods The expression of multiple inhibitory molecules such as PD-1, CTLA-4, TIM-3, CD244, KLRG1 and markers defining the grade of T-cell differentiation as CCR7, CD45RA, CD57 and CD127 were analyzed on virus-specific CD4+ T-cells from peripheral blood using a newly established DRB1*01-restricted MHC class II Tetramer. Effects of in vitro PD-L1/2 blockade were defined by investigating changes in CD4+ T-cell proliferation and cytokine production. Results CD4+ T-cell responses during chronic HBV infection was characterized by reduced Tetramer+CD4+ T-cell frequencies, effector memory phenotype, sustained PD-1 but low levels of CTLA-4, TIM-3, KLRG1 and CD244 expression. PD-1 blockade revealed individualized patterns of in vitro responsiveness with partly increased IFN-γ, IL-2 and TNF-α secretion as well as enhanced CD4+ T-cell expansion almost in treated patients with viral control. Conclusion HBV-specific CD4+ T-cells are reliably detectable during different courses of HBV infection by MHC class II Tetramer technology. CD4+ T-cell dysfunction during chronic HBV is basically linked to strong PD-1 upregulation but absent coregulation of multiple inhibitory receptors. PD-L1/2 neutralization partly leads to enhanced CD4+ T-cell functionality with heterogeneous patterns of CD4+ T-cell rejunivation. PMID:25144233

  7. CD8+T cells expressing both PD-1 and TIGIT but not CD226 are dysfunctional in acute myeloid leukemia (AML) patients.

    PubMed

    Wang, Mengjie; Bu, Jin; Zhou, Maohua; Sido, Jessica; Lin, Yu; Liu, Guanfang; Lin, Qiwen; Xu, Xiuzhang; Leavenworth, Jianmei W; Shen, Erxia

    2018-05-01

    Acute myeloid leukemia (AML) is one of the most common types of leukemia among adults with an overall poor prognosis and very limited treatment management. Immune checkpoint blockade of PD-1 alone or combined with other immune checkpoint blockade has gained impressive results in murine AML models by improving anti-leukemia CD8 + T cell function, which has greatly promoted the strategy to utilize combined immune checkpoint inhibitors to treat AML patients. However, the expression profiles of these immune checkpoint receptors, such as co-inhibitory receptors PD-1 and TIGIT and co-stimulatory receptor CD226, in T cells from AML patients have not been clearly defined. Here we have defined subsets of CD8 + and CD4 + T cells in the peripheral blood (PB) from newly diagnosed AML patients and healthy controls (HCs). We have observed increased frequencies of PD-1- and TIGIT- expressing CD8 + T cells but decreased occurrence of CD226-expressing CD8 + T cells in AML patients. Further analysis of these CD8 + T cells revealed a unique CD8 + T cell subset that expressed PD-1 and TIGIT but displayed lower levels of CD226 was associated with failure to achieve remission after induction chemotherapy and FLT3-ITD mutations which predict poor clinical prognosis in AML patients. Importantly, these PD-1 + TIGIT + CD226 - CD8 + T cells are dysfunctional with lower expression of intracellular IFN-γ and TNF-α than their counterparts in HCs. Therefore, our studies revealed that an increased frequency of a unique CD8 + T cell subset, PD-1 + TIGIT + CD226 - CD8 + T cells, is associated with CD8 + T cell dysfunction and poor clinical prognosis of AML patients, which may reveal critical diagnostic or prognostic biomarkers and direct more efficient therapeutic strategies. Copyright © 2017. Published by Elsevier Inc.

  8. A pancreatic tumor-specific biomarker characterized in humans and mice as an immunogenic onco-glycoprotein is efficient in dendritic cell vaccination

    PubMed Central

    Collignon, Aurélie; Perles-Barbacaru, Adriana Teodora; Robert, Stéphane; Silvy, Françoise; Martinez, Emmanuelle; Crenon, Isabelle; Germain, Sébastien; Garcia, Stéphane; Viola, Angèle; Lombardo, Dominique

    2015-01-01

    Oncofetal fucose-rich glycovariants of the pathological bile salt-dependent lipase (pBSDL) appear during human pancreatic oncogenesis and are detected by themonoclonal antibody J28 (mAbJ28). We aimed to identify murine counterparts onpancreatic ductal adenocarcinoma (PDAC) cells and tissue and investigate the potential of dendritic cells (DC) loaded with this unique pancreatic tumor antigen to promote immunotherapy in preclinical trials. Pathological BSDLs purified from pancreatic juices of patients with PDAC were cleaved to generate glycosylated C-terminal moieties (C-ter) containing mAbJ28-reactive glycoepitopes. Immunoreactivity of the murine PDAC line Panc02 and tumor tissue to mAbJ28 was detected by immunohistochemistry and flow cytometry. C-ter-J28+ immunization promoted Th1-dominated immune responses. In vitro C-ter-J28+-loaded DCskewed CD3+ T-cells toward Th1 polarization. C-ter-J28+-DC-vaccinations selectively enhanced cell immunoreactivity to Panc02, as demonstrated by CD4+- and CD8+-T-cell activation, increased percentages of CD4+- and CD8+-T-cells and NK1.1+ cells expressing granzyme B, and T-cell cytotoxicity. Prophylactic and therapeutic C-ter-J28+-DC-vaccinations reduced ectopic Panc02-tumor growth, provided long-lasting protection from Panc02-tumor development in 100% of micebut not from melanoma, and attenuated progression of orthotopic tumors as revealed by MRI. Thusmurine DC loaded with pancreatic tumor-specific glycoepitope C-ter-J28+ induce efficient anticancer adaptive immunity and represent a potential adjuvant therapy for patients afflicted with PDAC. PMID:26405163

  9. A Preclinical Consortium Approach for Assessing the Efficacy of Combined Anti-CD3 Plus IL-1 Blockade in Reversing New-Onset Autoimmune Diabetes in NOD Mice

    PubMed Central

    Gill, Ronald G.; Pagni, Philippe P.; Kupfer, Tinalyn; Wasserfall, Clive H.; Deng, Songyan; Posgai, Amanda; Manenkova, Yulia; Bel Hani, Amira; Straub, Laura; Bernstein, Philip; Atkinson, Mark A.; Herold, Kevan C.; von Herrath, Matthias; Staeva, Teodora; Ehlers, Mario R.; Nepom, Gerald T.

    2016-01-01

    There is an ongoing need to develop strategic combinations of therapeutic agents to prevent type 1 diabetes (T1D) or to preserve islet β-cell mass in new-onset disease. Although clinical trials using candidate therapeutics are commonly based on preclinical studies, concern is growing regarding the reproducibility as well as the potential clinical translation of reported results using animal models of human disorders. In response, the National Institutes of Health Immune Tolerance Network and JDRF established a multicenter consortium of academic institutions designed to assess the efficacy and intergroup reproducibility of clinically applicable immunotherapies for reversing new-onset disease in the NOD mouse model of T1D. Predicated on prior studies, this consortium conducted coordinated, prospective studies, using joint standard operating procedures, fixed criteria for study entry, and common reagents, to optimize combined anti-CD3 treatment plus interleukin-1 (IL-1) blockade to reverse new-onset disease in NOD mice. We did not find that IL-1 blockade with anti–IL-1β monoclonal antibody or IL-1trap provided additional benefit for reversing new-onset disease compared with anti-CD3 treatment alone. These results demonstrate the value of larger, multicenter preclinical studies for vetting and prioritizing therapeutics for future clinical use. PMID:26718498

  10. Functional and phenotypic characterization of CD8+CD28+ and CD28- T cells in atopic individuals sensitized to Dermatophagoides pteronyssinus.

    PubMed

    Lourenço, O; Fonseca, A M; Paiva, A; Arosa, F A; Taborda-Barata, L

    2006-01-01

    CD8+ T suppressor cells may play a role in immunoregulation. Recent studies have characterized this population by the lack of the CD28 molecule. These CD8+CD28 T cells differ phenotypically and functionally from CD8 + CD28 + T cells. Little is known about CD8 + CD28 cells in atopy. Our aim was to analyze the phenotype and functional properties of CD8 + CD28T cells in atopic and non-atopic individuals. Peripheral blood mononuclear cells (PBMC) were obtained after density gradient centrifugation. CD8 + CD28 and CD8 + CD28 + T cells were isolated using immunomagnetic beads. Relative percentages of these cells and expression of several phenotypic markers were analyzed by flow cytometry. Proliferation was assessed by thymidine incorporation in isolated populations and in co-cultures with PBMC using Dermatophagoides pteronyssinus as stimulus. Cytokine synthesis was evaluated in culture supernatants by cytometric bead array. The relative percentages of CD8+CD28 T cells and their phenotypic expression in atopic and non-atopic volunteers were not significantly different. However, CD8 + CD28 T cells showed greater proliferation than did CD8+CD28+ T cells when stimulated with D. pteronyssinus, although cytokine synthesis patterns were similar. CD8+CD28 co-cultures with PBMC showed greater proliferation than CD8+CD28+ T cell co-cultures, but cytokine synthesis patterns were not different. Our data confirm phenotypic and functional differences between CD28+ and CD28 T cells, irrespective of atopic status. Purified human CD8+CD28 T cells, freshly isolated from peripheral blood, do not have suppressor properties on allergen-specific proliferation or on cytokine synthesis in PBMC.

  11. Subunit vaccine H56/CAF01 induces a population of circulating CD4 T cells that traffic into the Mycobacterium tuberculosis-infected lung.

    PubMed

    Woodworth, J S; Cohen, S B; Moguche, A O; Plumlee, C R; Agger, E M; Urdahl, K B; Andersen, P

    2017-03-01

    The capacity of CD4 T cells to protect against Mycobacterium tuberculosis (Mtb) is governed by their ability to localize to the lung site of infection. Subunit vaccine H56/CAF01, a liposome-adjuvanted fusion protein of Mtb antigens Ag85B, ESAT-6, and Rv2660, conferred durable protection and elicited polyfunctional CD4 T cells that preferentially localized to the lung parenchyma. These lung-resident T cells had reduced KLRG1 and increased CXCR3 expression, an intermediate state of Th1 differentiation that has been associated with Mtb protection. Importantly, KLGR1 - CXCR3 + cells were also enriched in the lung vasculature and peripheral circulation of vaccinated animals, but not controls. Moreover, S1P1R blockade rapidly cleared this population from the blood and adoptive transfer of T cells recovered from the vasculature of vaccinated, but not control, mice efficiently trafficked into the Mtb-infected lung parenchyma. Thus, durable immunity elicited by H56/CAF01 vaccination is associated with the maintenance of circulating CD4 T cells that selectively home to the lung parenchyma.

  12. Chimeric antigen receptor-engineered cytokine-induced killer cells overcome treatment resistance of pre-B-cell acute lymphoblastic leukemia and enhance survival.

    PubMed

    Oelsner, Sarah; Wagner, Juliane; Friede, Miriam E; Pfirrmann, Verena; Genßler, Sabrina; Rettinger, Eva; Buchholz, Christian J; Pfeifer, Heike; Schubert, Ralf; Ottmann, Oliver G; Ullrich, Evelyn; Bader, Peter; Wels, Winfried S

    2016-10-15

    Pre-emptive cancer immunotherapy by donor lymphocyte infusion (DLI) using cytokine-induced killer (CIK) cells may be beneficial to prevent relapse with a reduced risk of causing graft-versus-host-disease. CIK cells are a heterogeneous effector cell population including T cells (CD3(+) CD56(-) ), natural killer (NK) cells (CD3(-) CD56(+) ) and natural killer T (T-NK) cells (CD3(+) CD56(+) ) that exhibit non-major histocompatibility complex (MHC)-restricted cytotoxicity and are generated by ex vivo expansion of peripheral blood mononuclear cells in the presence of interferon (IFN)-γ, anti-CD3 antibody, interleukin-2 (IL-2) and interleukin-15 (IL-15). To facilitate selective target-cell recognition and enhance specific cytotoxicity against B-cell acute lymphoblastic leukemia (B-ALL), we transduced CIK cells with a lentiviral vector encoding a chimeric antigen receptor (CAR) that carries a composite CD28-CD3ζ domain for signaling and a CD19-specific scFv antibody fragment for cell binding (CAR 63.28.z). In vitro analysis revealed high and specific cell killing activity of CD19-targeted CIK/63.28.z cells against otherwise CIK-resistant cancer cell lines and primary B-ALL blasts, which was dependent on CD19 expression and CAR signaling. In a xenograft model in immunodeficient mice, treatment with CIK/63.28.z cells in contrast to therapy with unmodified CIK cells resulted in complete and durable molecular remissions of established primary pre-B-ALL. Our results demonstrate potent antileukemic activity of CAR-engineered CIK cells in vitro and in vivo, and suggest this strategy as a promising approach for adoptive immunotherapy of refractory pre-B-ALL. © 2016 UICC.

  13. CTLA4 Promotes Tyk2-STAT3-Dependent B-cell Oncogenicity.

    PubMed

    Herrmann, Andreas; Lahtz, Christoph; Nagao, Toshikage; Song, Joo Y; Chan, Wing C; Lee, Heehyoung; Yue, Chanyu; Look, Thomas; Mülfarth, Ronja; Li, Wenzhao; Jenkins, Kurt; Williams, John; Budde, Lihua E; Forman, Stephen; Kwak, Larry; Blankenstein, Thomas; Yu, Hua

    2017-09-15

    CTL-associated antigen 4 (CTLA4) is a well-established immune checkpoint for antitumor immune responses. The protumorigenic function of CTLA4 is believed to be limited to T-cell inhibition by countering the activity of the T-cell costimulating receptor CD28. However, as we demonstrate here, there are two additional roles for CTLA4 in cancer, including via CTLA4 overexpression in diverse B-cell lymphomas and in melanoma-associated B cells. CTLA4-CD86 ligation recruited and activated the JAK family member Tyk2, resulting in STAT3 activation and expression of genes critical for cancer immunosuppression and tumor growth and survival. CTLA4 activation resulted in lymphoma cell proliferation and tumor growth, whereas silencing or antibody-blockade of CTLA4 in B-cell lymphoma tumor cells in the absence of T cells inhibits tumor growth. This inhibition was accompanied by reduction of Tyk2/STAT3 activity, tumor cell proliferation, and induction of tumor cell apoptosis. The CTLA4-Tyk2-STAT3 signal pathway was also active in tumor-associated nonmalignant B cells in mouse models of melanoma and lymphoma. Overall, our results show how CTLA4-induced immune suppression occurs primarily via an intrinsic STAT3 pathway and that CTLA4 is critical for B-cell lymphoma proliferation and survival. Cancer Res; 77(18); 5118-28. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Vaccination against CD99 inhibits atherogenesis in low-density lipoprotein receptor-deficient mice.

    PubMed

    van Wanrooij, Eva J A; de Vos, Paula; Bixel, M Gabriele; Vestweber, Dietmar; van Berkel, Theo J C; Kuiper, Johan

    2008-06-01

    Murine CD99 was recently found to be expressed on leukocytes and endothelial cells, where it is concentrated at inter-endothelial contacts. Blockade of CD99 by specific antibodies inhibits leukocyte extravasation to inflamed sites in vivo. The aim of the present study is to show the role of CD99 in atherosclerosis using a CD99 vaccination protocol to block the function of CD99 during atherosclerosis. We constructed a DNA vaccine against CD99 by cloning the extracellular domain of murine CD99 into pcDNA3. Vaccination was performed by oral administration of attenuated Salmonella typhimurium transformed with pcDNA3-CD99. This vaccination results in a CD99-specific, CD8-mediated cytotoxic response and subsequent reduction of CD99-expressing cells. We showed that CD99 is expressed on vascular endothelium overlying atherosclerotic plaques and found that CD99 expression is upregulated during western-type diet feeding. CD99 vaccination induced the formation of CD8-positive T cells that were cytotoxic against cells transfected with pcDNA3-CD99. Activation of CD8(+) T cells was demonstrated by a 30% increase in CD8(+)CD69(+) double-positive T cells in spleen and mediastinal lymph nodes. Furthermore, lymphocytes isolated from CD99-vaccinated mice specifically lysed CD99-expressing cells. More importantly, vaccination against CD99 attenuated atherosclerotic lesion formation in the aortic valve leaflets by 38% and in the carotid artery by 69% compared with mice that were vaccinated with a control vector. Furthermore, a lower number of cells were found in atherosclerotic lesions, implying that fewer leukocytes were recruited to these sites. These observations were accompanied by a decrease in CD99 expression on leukocytes. We conclude that vaccination against CD99 decreases atherogenesis by the selective removal of CD99-expressing cells, which could reduce leukocyte recruitment into atherosclerotic lesions and attenuate atherogenesis.

  15. B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity.

    PubMed

    Yonesaka, Kimio; Haratani, Koji; Takamura, Shiki; Sakai, Hitomi; Kato, Ryoji; Takegawa, Naoki; Takahama, Takayuki; Tanaka, Kaoru; Hayashi, Hidetoshi; Takeda, Masayuki; Kato, Sigeki; Maenishi, Osamu; Sakai, Kazuko; Chiba, Yasutaka; Okabe, Takafumi; Kudo, Keita; Hasegawa, Yoshikazu; Kaneda, Hiroyasu; Yamato, Michiko; Hirotani, Kenji; Miyazawa, Masaaki; Nishio, Kazuto; Nakagawa, Kazuhiko

    2018-06-01

    Purpose: Anti-programmed-death-1 (PD-1) immunotherapy improves survival in non-small cell lung cancer (NSCLC), but some cases are refractory to treatment, thereby requiring alternative strategies. B7-H3, an immune-checkpoint molecule, is expressed in various malignancies. To our knowledge, this study is the first to evaluate B7-H3 expression in NSCLCs treated with anti-PD-1 therapy and the therapeutic potential of a combination of anti-PD-1 therapy and B7-H3 targeting. Experimental Design: B7-H3 expression was evaluated immunohistochemically in patients with NSCLC ( n = 82), and its relationship with responsiveness to anti-PD-1 therapy and CD8 + tumor-infiltrating lymphocytes (TILs) was analyzed. The antitumor efficacy of dual anti-B7-H3 and anti-programmed death ligand-1 (PD-L1) antibody therapy was evaluated using a syngeneic murine cancer model. T-cell numbers and functions were analyzed by flow cytometry. Results: B7-H3 expression was evident in 74% of NSCLCs and was correlated critically with nonresponsiveness to anti-PD-1 immunotherapy. A small number of CD8 + TILs was observed as a subpopulation with PD-L1 tumor proportion score less than 50%, whereas CD8 + TILs were still abundant in tumors not expressing B7-H3. Anti-B7-H3 blockade showed antitumor efficacy accompanied with an increased number of CD8 + TILs and recovery of effector function. CD8 + T-cell depletion negated antitumor efficacy induced by B7-H3 blockade, indicating that improved antitumor immunity is mediated by CD8 + T cells. Compared with a single blocking antibody, dual blockade of B7-H3 and PD-L1 enhanced the antitumor reaction. Conclusions: B7-H3 expressed on tumor cells potentially circumvents CD8 + -T-cell-mediated immune surveillance. Anti-B7-H3 immunotherapy combined with anti-PD-1/PD-L1 antibody therapy is a promising approach for B7-H3-expressing NSCLCs. Clin Cancer Res; 24(11); 2653-64. ©2018 AACR . ©2018 American Association for Cancer Research.

  16. HIV-specific cytotoxic T lymphocyte precursors exist in a CD28-CD8+ T cell subset and increase with loss of CD4 T cells.

    PubMed

    Lewis, D E; Yang, L; Luo, W; Wang, X; Rodgers, J R

    1999-06-18

    To determine whether the CD28-CD8+ T cells that develop during HIV infection contain HIV-specific cytotoxic precursor cells. CD8 subpopulations from six asymptomatic HIV-positive adults, with varying degrees of CD4 T cell loss, were sorted by flow cytometry and HIV-specific precursor cytotoxic T lymphocyte frequencies were measured. Three populations of CD8 T cells were tested: CD28+CD5-- T cells, CD28-CD57+ T cells (thought to be memory cells) and CD28-CD57- T cells (function unknown). Sorted CD8 subsets were stimulated with antigen presenting cells expressing HIV-1 Gag/Pol molecules. Cytotoxic T cell assays on Gag/Pol expressing 51Cr-labeled Epstein-Barr virus transformed autologous B cells lines or control targets were performed after 2 weeks. Specific lysis and precursor frequencies were calculated. Both CD28 positive and CD28-CD57+ populations contained appreciable numbers of precursors (9-1720 per 10(6) CD8+ T cells). However, the CD28-CD57- population had fewer precursors in five out of six people studied. More CD28 positive HIV-specific cytotoxic T lymphocyte precursors were found in patients with CD4:CD8 ratios > 1, whereas more CD28-CD57+ precursors were found in patients whose CD4:CD8 ratios were < 1 (r2, 0.68). Memory HIV-specific precursor cytotoxic T lymphocytes are found in both CD28 positive and CD28-CD8+ cells, however, a CD28-CD57- subpopulation had fewer. Because CD28-CD57+ cells are antigen-driven with limited diversity, the loss of CD28 on CD8 T cells during disease progression may reduce the response to new HIV mutations; this requires further testing.

  17. Evaluation of innate and adaptive immunity contributing to the antitumor effects of PD1 blockade in an orthotopic murine model of pancreatic cancer

    PubMed Central

    D'Alincourt Salazar, Marcela; Manuel, Edwin R.; Tsai, Weimin; D'Apuzzo, Massimo; Goldstein, Leanne; Blazar, Bruce R.; Diamond, Don J.

    2016-01-01

    ABSTRACT Despite the clinical success of anti-PD1 antibody (α-PD1) therapy, the immune mechanisms contributing to the antineoplastic response remain unclear. Here, we describe novel aspects of the immune response involved in α-PD1-induced antitumor effects using an orthotopic KrasG12D/p53R172H/Pdx1-Cre (KPC) model of pancreatic ductal adenocarcinoma (PDA). We found that positive therapeutic outcome involved both the innate and adaptive arms of the immune system. Adoptive transfer of total splenocytes after short-term (3 d) but not long-term (28 d) PD1 blockade significantly extended survival of non-treated tumor-bearing recipient mice. This protective effect appeared to be mostly mediated by T cells, as adoptive transfer of purified natural killer (NK) cells and/or granulocyte receptor 1 (Gr1)+ cells or splenocytes depleted of Gr1+ cells and NK cells did not exhibit transferrable antitumor activity following short-term PD1 blockade. Nevertheless, splenic and tumor-derived CD11b+Gr1+ cells and NK cells showed significant persistence of α-PD1 bound to these cells in the treated primary recipient mice. We observed that short-term inhibition of PD1 signaling modulated the profiles of multifunctional cytokines in the tumor immune-infiltrate, including downregulation of vascular endothelial growth factor A (VEGF-A). Altogether, the data suggest that systemic blockade of PD1 results in rapid modulation of antitumor immunity that differs in the tumor microenvironment (TME) when compared to the spleen. These results demonstrate a key role for early immune-mediated events in controlling tumor progression in response to α-PD1 treatment and warrant further investigation into the mechanisms governing responses to the therapy at the innate-adaptive immune interface. PMID:27471630

  18. [Immunological balance of CD8+CD28+/CD8+CD28- T lymphocytes can predict gastrointestinal hemorrhage in patients with inflammatory bowel disease].

    PubMed

    Dai, Shi-Xue; Gu, Hong-Xiang; Wu, Gang; Zhong, Tao; Jian, Hong-Jian; Zhan, Yong-le; Zhang, Min-Hai; Gao, Yong; Xu, Jun; Chen, Dong-Sheng; Liao, Guang-Jie; Feng, Yan-Ling; Liu, Hong-Bo; Zou, Ying; Chi, Hong-Gang

    2016-12-20

    To evaluate the sensitivity and specificity of CD8 + CD28 + /CD8 + CD28 - T lymphocyte balance in predicting the gastrointestinal hemorrhage (GH) in patients with inflammatory bowel disease (IBD). Forty-nine IBD patients, including 30 with ulcerous colitis (UC) and 19 with Crohn's disease (CD), were enrolled to test peripheral blood CD8 + CD28 + and CD8 + CD28 - T cells using flow cytometry. All the patients were followed up for one year. The receiver-operating characteristic (ROC) curves were used to test the efficiency of CD8 + CD28 + /CD8 + CD28 - T lymphocyte balance to predict GH. The differences in lasting time of remission (LTR) under different factors were compared using Kaplan-Meier survival analysis, and the correlation between CD8 + T lymphocytes and the factors were analyzed. The utilization rates of immunosuppressant, steroids, and biological agent (BA) were significantly higher in CD patients than in UC patients (P=0.003, 0.043 and 0.002, respectively). The frequencies of CD8 + CD28 + T cells were obviously higher in UC patients than those in CD patients (t=3.022, P=0.004). CD8 + CD28 + T cells, CD8 + CD28 - T cells, and especially CD8 + CD28 + /CD8 + CD28 - ratio (area under curve of 0.977, P=0.000; cut-off value of 1.14 [13.95%/12.24%] with a sensitivity of 93.3% and a specificity of 91.2%) showed good efficiencies in predicting GH (P<0.01). The mean and median of LTR of IBD patients who did not receive BA or surgical treatment were significantly longer (Χ 2 =9.730, P=0.002; Χ 2 =15.981, P=0.000). CD8 + CD28 + /CD8 + CD28 - ratio was significantly related to both BA (P=0.009) and surgery (P=0.038). Both decreased CD8 + CD28 + T cells and elevated CD8 + CD28 - T cells are closely correlated with GH, and their ratio can predict the occurrence of GH with a high sensitivity and specificity and is correlated with BA and surgery at the cut-off value of 1.14.

  19. Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid derived suppressor cells with a selective inhibitor of PI3Kδ/γ

    PubMed Central

    Davis, Ruth J.; Moore, Ellen C.; Clavijo, Paul E.; Friedman, Jay; Cash, Harrison; Chen, Zhong; Silvin, Chris; Van Waes, Carter; Allen, Clint

    2017-01-01

    Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity f tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. PMID:28364000

  20. Colony stimulating factor 1 receptor blockade improves the efficacy of chemotherapy against human neuroblastoma in the absence of T lymphocytes.

    PubMed

    Webb, Matthew W; Sun, Jianping; Sheard, Michael A; Liu, Wei-Yao; Wu, Hong-Wei; Jackson, Jeremy R; Malvar, Jemily; Sposto, Richard; Daniel, Dylan; Seeger, Robert C

    2018-04-17

    Tumor-associated macrophages can promote growth of cancers. In neuroblastoma, tumor-associated macrophages have greater frequency in metastatic versus loco-regional tumors, and higher expression of genes associated with macrophages helps to predict poor prognosis in the 60% of high-risk patients who have MYCN-non-amplified disease. The contribution of cytotoxic T-lymphocytes to anti-neuroblastoma immune responses may be limited by low MHC class I expression and low exonic mutation frequency. Therefore, we modelled human neuroblastoma in T-cell deficient mice to examine whether depletion of monocytes/macrophages from the neuroblastoma microenvironment by blockade of CSF-1R can improve the response to chemotherapy. In vitro, CSF-1 was released by neuroblastoma cells, and topotecan increased this release. In vivo, neuroblastomas formed by subcutaneous co-injection of human neuroblastoma cells and human monocytes into immunodeficient NOD/SCID mice had fewer human CD14 + and CD163 + cells and mouse F4/80 + cells after CSF-1R blockade. In subcutaneous or intra-renal models in immunodeficient NSG or NOD/SCID mice, CSF-1R blockade alone did not affect tumor growth or mouse survival. However, when combined with cyclophosphamide plus topotecan, the CSF-1R inhibitor BLZ945, either without or with anti-human and anti-mouse CSF-1 mAbs, inhibited neuroblastoma growth and synergistically improved mouse survival. These findings indicate that depletion of tumor-associated macrophages from neuroblastomas can be associated with increased chemotherapeutic efficacy without requiring a contribution from T-lymphocytes, suggesting the possibility that combination of CSF-1R blockade with chemotherapy might be effective in patients who have limited anti-tumor T-cell responses. © 2018 UICC.

  1. Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma

    PubMed Central

    Merryman, Reid W.; Kim, Haesook T.; Zinzani, Pier Luigi; Carlo-Stella, Carmelo; Ansell, Stephen M.; Perales, Miguel-Angel; Avigdor, Abraham; Halwani, Ahmad S.; Houot, Roch; Marchand, Tony; Dhedin, Nathalie; Lescaut, Willy; Thiebaut-Bertrand, Anne; François, Sylvie; Stamatoullas-Bastard, Aspasia; Rohrlich, Pierre-Simon; Labussière Wallet, Hélène; Castagna, Luca; Santoro, Armando; Bachanova, Veronika; Bresler, Scott C.; Srivastava, Amitabh; Kim, Harim; Pesek, Emily; Chammas, Marie; Reynolds, Carol; Ho, Vincent T.; Antin, Joseph H.; Ritz, Jerome; Soiffer, Robert J.

    2017-01-01

    Anti–programmed cell death protein 1 (PD-1) monoclonal antibodies are being increasingly tested in patients with advanced lymphoma. Following treatment, many of those patients are likely to be candidates for allogeneic hematopoietic stem cell transplant (HSCT). However, the safety and efficacy of HSCT may be affected by prior PD-1 blockade. We conducted an international retrospective analysis of 39 patients with lymphoma who received prior treatment with a PD-1 inhibitor, at a median time of 62 days (7-260) before HSCT. After a median follow-up of 12 months, the 1-year cumulative incidences of grade 2-4 and grade 3-4 acute graft-versus-host disease (GVHD) were 44% and 23%, respectively, whereas the 1-year incidence of chronic GVHD was 41%. There were 4 treatment-related deaths (1 from hepatic sinusoidal obstruction syndrome, 3 from early acute GVHD). In addition, 7 patients developed a noninfectious febrile syndrome shortly after transplant requiring prolonged courses of steroids. One-year overall and progression-free survival rates were 89% (95% confidence interval [CI], 74-96) and 76% (95% CI, 56-87), respectively. One-year cumulative incidences of relapse and nonrelapse mortality were 14% (95% CI, 4-29) and 11% (95% CI, 3-23), respectively. Circulating lymphocyte subsets were analyzed in 17 patients. Compared with controls, patients previously treated with PD-1 blockade had significantly decreased PD-1+ T cells and decreased ratios of T-regulatory cells to conventional CD4 and CD8 T cells. In conclusion, HSCT after PD-1 blockade appears feasible with a low rate of relapse. However, there may be an increased risk of early immune toxicity, which could reflect long-lasting immune alterations triggered by prior PD-1 blockade. PMID:28073785

  2. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T cell infiltration into pancreatic tumors

    PubMed Central

    Soares, Kevin C.; Rucki, Agnieszka A.; Wu, Annie A.; Olino, Kelly; Xiao, Qian; Chai, Yi; Wamwea, Anthony; Bigelow, Elaine; Lutz, Eric; Liu, Linda; Yao, Sheng; Anders, Robert A.; Laheru, Daniel; Wolfgang, Christopher L.; Edil, Barish H.; Schulick, Richard D.; Jaffee, Elizabeth M.; Zheng, Lei

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis due to late detection and resistance to conventional therapies. Published studies show that the PDA tumor microenvironment (TME) is predominantly infiltrated with immune suppressive cells and signals that if altered, would allow effective immunotherapy. However, single-agent checkpoint inhibitors including agents that alter immune suppressive signals in other human cancers such as cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death 1 (PD-1) and its ligand PD-L1, have failed to demonstrate objective responses when given as single agents to PDA patients. We recently reported that inhibition of the CTLA-4 pathway when given together with a T cell inducing vaccine gives objective responses in metastatic PDA patients. In this study, we evaluated blockade of the PD-1/PD-L1 pathway. We found that PD-L1 is weakly expressed at a low frequency in untreated human and murine PDAs but treatment with a GM-CSF secreting PDA vaccine (GVAX) significantly upregulates PD-L1 membranous expression after treatment of tumor bearing mice. In addition, combination therapy with vaccine and PD-1 antibody blockade improved murine survival compared to PD-1 antibody monotherapy or GVAX therapy alone. Furthermore, PD-1 blockade increased effector CD8+ T lymphocytes and tumor-specific interferon-γ production of CD8+ T cells in the TME. Immunosuppressive pathways, including regulatory T cells (Tregs) and CTLA-4 expression on T cells were overcome by the addition of vaccine and low dose cyclophosphamide to PD-1 blockade. Collectively, our study supports combining PD-1 or PD-L1 antibody therapy with a T cell inducing agent for PDA treatment. PMID:25415283

  3. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4+ T Cell Proliferation.

    PubMed

    Celada, Lindsay J; Rotsinger, Joseph E; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene; Drake, Wonder P

    2017-01-01

    Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4 + T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4 + T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1 + CD4 + T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = -0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4 + T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression.

  4. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4+ T Cell Proliferation

    PubMed Central

    Celada, Lindsay J.; Rotsinger, Joseph E.; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene

    2017-01-01

    Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4+ T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4+ T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1+ CD4+ T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = −0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4+ T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression. PMID:27564547

  5. Role of PD-1 during effector CD8 T cell differentiation.

    PubMed

    Ahn, Eunseon; Araki, Koichi; Hashimoto, Masao; Li, Weiyan; Riley, James L; Cheung, Jeanne; Sharpe, Arlene H; Freeman, Gordon J; Irving, Bryan A; Ahmed, Rafi

    2018-05-01

    PD-1 (programmed cell death-1) is the central inhibitory receptor regulating CD8 T cell exhaustion during chronic viral infection and cancer. Interestingly, PD-1 is also expressed transiently by activated CD8 T cells during acute viral infection, but the role of PD-1 in modulating T cell effector differentiation and function is not well defined. To address this question, we examined the expression kinetics and role of PD-1 during acute lymphocytic choriomeningitis virus (LCMV) infection of mice. PD-1 was rapidly up-regulated in vivo upon activation of naive virus-specific CD8 T cells within 24 h after LCMV infection and in less than 4 h after peptide injection, well before any cell division had occurred. This rapid PD-1 expression by CD8 T cells was driven predominantly by antigen receptor signaling since infection with a LCMV strain with a mutation in the CD8 T cell epitope did not result in the increase of PD-1 on antigen-specific CD8 T cells. Blockade of the PD-1 pathway using anti-PD-L1 or anti-PD-1 antibodies during the early phase of acute LCMV infection increased mTOR signaling and granzyme B expression in virus-specific CD8 T cells and resulted in faster clearance of the infection. These results show that PD-1 plays an inhibitory role during the naive-to-effector CD8 T cell transition and that the PD-1 pathway can also be modulated at this stage of T cell differentiation. These findings have implications for developing therapeutic vaccination strategies in combination with PD-1 blockade.

  6. Functional differences between PD-1+ and PD-1- CD4+ effector T cells in healthy donors and patients with glioblastoma multiforme

    PubMed Central

    Lucca, Liliana E.; Lerner, Benjamin A.; Gunel, Murat; Raddassi, Khadir; Coric, Vlad; Hafler, David A.; Love, J. Christopher

    2017-01-01

    Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) have been highly successful in the treatment of cancer. While PD-1 expression has been widely investigated, its role in CD4+ effector T cells in the setting of health and cancer remains unclear, particularly in the setting of glioblastoma multiforme (GBM), the most aggressive and common form of brain cancer. We examined the functional and molecular features of PD-1+CD4+CD25—CD127+Foxp3—effector cells in healthy subjects and in patients with GBM. In healthy subjects, we found that PD-1+CD4+ effector cells are dysfunctional: they do not proliferate but can secrete large quantities of IFNγ. Strikingly, blocking antibodies against PD-1 did not rescue proliferation. RNA-sequencing revealed features of exhaustion in PD-1+ CD4 effectors. In the context of GBM, tumors were enriched in PD-1+ CD4+ effectors that were similarly dysfunctional and unable to proliferate. Furthermore, we found enrichment of PD-1+TIM-3+ CD4+ effectors in tumors, suggesting that co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial. RNA-sequencing of blood and tumors from GBM patients revealed distinct differences between CD4+ effectors from both compartments with enrichment in multiple gene sets from tumor infiltrating PD-1—CD4+ effectors cells. Enrichment of these gene sets in tumor suggests a more metabolically active cell state with signaling through other co-receptors. PD-1 expression on CD4 cells identifies a dysfunctional subset refractory to rescue with PD-1 blocking antibodies, suggesting that the influence of immune checkpoint inhibitors may involve recovery of function in the PD-1—CD4+ T cell compartment. Additionally, co-blockade of PD-1 and TIM-3 in GBM may be therapeutically beneficial. PMID:28880903

  7. Decreased CD8+CD28+/CD8+CD28- T cell ratio can sensitively predict poor outcome for patients with complicated Crohn disease.

    PubMed

    Dai, Shi-Xue; Gu, Hong-Xiang; Lin, Qian-Yi; Wu, Yan-Kun; Wang, Xiao-Yan; Huang, Shao-Zhuo; Xing, Tiao-Si; Chen, Min-Hua; Zhang, Qing-Fang; Zheng, Zhong-Wen; Sha, Wei-Hong

    2017-06-01

    Crohn disease (CD) with complications such as penetrating, stricturing, and perianal disease is called complicated CD. The aim of this study is to test the efficiency with which the CD8CD28/CD8CD28 cell balance can predict a subsequent active stage in patients with newly diagnosed complicated CD.Seventeen patients with complicated CD and 48 CD patients with no complications were enrolled. Blood CD8 T cells were tested from all of the 65 newly diagnosed CD patients upon enrollment. The potential risk factors were compared between the 2 groups. A 30-week follow-up was performed, and the efficiency of the CD8 cell balance at predicting active CD was analyzed using receiver-operating characteristic curves. The cumulative remission lasting rates (CRLRs) were analyzed using the Kaplan-Meier method.Compared with the control CD group, patients with complicated CD were predominantly male and younger in age; they also had lower body mass indices (BMIs), higher Crohn disease activity indices (CDAIs), higher immunosuppressant and steroid prescription rates, and significantly higher surgical rates. The CD8CD28/CD8CD28 balance was associated with BMI, CDAI, steroids, and surgery. The CD8CD28/CD8CD28 ratios were significantly lower at week 0 and on the 6th, 22nd, and 30th week during follow-up with a shorter lasting time of remission for the complicated CD patients. The CD8CD28/CD8CD28 ratio could accurately predict the active stage for the patients with complicated CD, and the highest sensitivity (89.2%) and specificity (85.3%) were found when the ratio was 1.03. Treatment with steroids and surgery, along with a significantly lower CD8CD28/CD8CD28 ratio and lower CRLRs, was closely related to a worse outcome for the patients with complicated CD.Patients requiring steroids and surgery experience more severe disease activity and thus a disequilibrated immunological balance, which could be the main reason for a decreased CD8CD28/CD8CD28 ratio. This ratio can sensitively predict the active stage for patients with complicated CD, and more care should be taken when this ratio is <1.03.

  8. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12.

    PubMed

    Bozeman, Erica N; He, Sara; Shafizadeh, Yalda; Selvaraj, Periasamy

    2016-01-01

    Immunotherapeutic approaches have emerged as promising strategies to treat various cancers, including breast cancer. A single approach, however, is unlikely to effectively combat the complex, immune evasive strategies found within the tumor microenvironment, thus novel, effective combination treatments must be explored. In this study, we investigated the efficacy of a combination therapy consisting of PD-L1 immune checkpoint blockade and whole cell vaccination in a HER-2 positive mouse model of breast cancer. We demonstrate that tumorigenicity is completely abrogated when adjuvanted with immune stimulatory molecules (ISMs) B7-1 and a cell-surface anchored (GPI) form of IL-12 or GM-CSF. Irradiated cellular vaccines expressing the combination of adjuvants B7-1 and GPI-IL-12 completely inhibited tumor formation which was correlative with robust HER-2 specific CTL activity. However, in a therapeutic setting, both cellular vaccination and PD-L1 blockade induced only 10-20% tumor regression when administered alone but resulted in 50% tumor regression as a combination therapy. This protection was significantly hindered following CD4 or CD8 depletion indicating the essential role played by cellular immunity. Collectively, these pre-clinical studies provide a strong rationale for further investigation into the efficacy of combination therapy with tumor cell vaccines adjuvanted with membrane-anchored ISMs along with PD-L1 blockade for the treatment of breast cancer.

  9. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12

    PubMed Central

    Bozeman, Erica N; He, Sara; Shafizadeh, Yalda; Selvaraj, Periasamy

    2016-01-01

    Immunotherapeutic approaches have emerged as promising strategies to treat various cancers, including breast cancer. A single approach, however, is unlikely to effectively combat the complex, immune evasive strategies found within the tumor microenvironment, thus novel, effective combination treatments must be explored. In this study, we investigated the efficacy of a combination therapy consisting of PD-L1 immune checkpoint blockade and whole cell vaccination in a HER-2 positive mouse model of breast cancer. We demonstrate that tumorigenicity is completely abrogated when adjuvanted with immune stimulatory molecules (ISMs) B7-1 and a cell-surface anchored (GPI) form of IL-12 or GM-CSF. Irradiated cellular vaccines expressing the combination of adjuvants B7-1 and GPI-IL-12 completely inhibited tumor formation which was correlative with robust HER-2 specific CTL activity. However, in a therapeutic setting, both cellular vaccination and PD-L1 blockade induced only 10–20% tumor regression when administered alone but resulted in 50% tumor regression as a combination therapy. This protection was significantly hindered following CD4 or CD8 depletion indicating the essential role played by cellular immunity. Collectively, these pre-clinical studies provide a strong rationale for further investigation into the efficacy of combination therapy with tumor cell vaccines adjuvanted with membrane-anchored ISMs along with PD-L1 blockade for the treatment of breast cancer. PMID:26308597

  10. Ordered CdTe/CdS Arrays for High-Performance Solar Cells

    NASA Astrophysics Data System (ADS)

    Zubía, David; López, Cesar; Rodríguez, Mario; Escobedo, Arev; Oyer, Sandra; Romo, Luis; Rogers, Scott; Quiñónez, Stella; McClure, John

    2007-12-01

    The deposition of uniform arrays of CdTe/CdS heterostructures suitable for solar cells via close-spaced sublimation is presented. The approach used to create the arrays consists of two basic steps: the deposition of a patterned growth mask on CdS, and the selective-area deposition of CdTe. CdTe grains grow selectively on the CdS but not on the SiO2 due to the differential surface mobility between the two surfaces. Furthermore, the CdTe mesas mimic the size and shape of the window opening in the SiO2. Measurements of the current density in the CdTe were high at 28 mA/cm2. To our knowledge, this is the highest reported current density for these devices. This implies that either the quantum efficiency is very high or the electrons generated throughout the CdTe are being concentrated by the patterned structure analogous to solar concentration. The enhancement in crystal uniformity and the relatively unexplored current concentration phenomenon could lead to significant performance improvements.

  11. CD28 T-cell costimulatory molecule expression in pemphigus vulgaris.

    PubMed

    Alecu, M; Ursaciuc, C; Surcel, M; Coman, G; Ciotaru, D; Dobre, M

    2009-03-01

    CD28 superfamily of immune costimulatory molecules could play an important role in autotolerance control. CD28 costimulation seems to be necessary for regulatory T cell (Treg) activation and successive suppressive activities involved in autoimmunity protection. This study investigates CD28 expression, especially inducible costimulator fraction, on T lymphocytes in pemphigus vulgaris (PV) patients. CD28 expression on T lymphocytes was assessed in 16 PV patients during acute attack. All patients and 10 healthy control subjects were tested for lymphocyte populations, T-cell subpopulations (T-CD4+, T-CD8+), Treg and CD28 expression on T-cell subpopulations. T, B and natural killer cells average values in PV patients were close to the control group values. Compared with control group, PV values showed lower Treg (2.2% compared with 4.7%), slightly decreased CD4+ CD28+ T cells (91% compared with 95%), higher CD4+ CD28- T cells (9% compared with 5%), decreased CD8+ CD28+ T cells (57% and 73%, respectively) and significantly enhanced CD8+ CD28- T cells (43% compared with 27%). These data suggest that Treg-mediated suppressor T-cell effects could be diminished in PV, together with an abnormal or ineffective subsequent helper T-cell suppression. CD28 high expression on helper T cells and low expression on suppressor T cells are arguments for a potential CD28 role in PV autoimmune response mechanism.

  12. Clinical response to PD-1 blockade correlates with a sub-fraction of peripheral central memory CD4+ T cells in patients with malignant melanoma.

    PubMed

    Takeuchi, Yoshiko; Tanemura, Atsushi; Tada, Yasuko; Katayama, Ichiro; Kumanogoh, Atsushi; Nishikawa, Hiroyoshi

    2018-02-03

    Cancer immunotherapy that blocks immune checkpoint molecules, such as PD-1/PD-L1, unleashes dysfunctional antitumor T-cell responses and has durable clinical benefits in various types of cancers. Yet its clinical efficacy is limited to a small proportion of patients, highlighting the need for identifying biomarkers that can predict the clinical response by exploring antitumor responses crucial for tumor regression. Here, we explored comprehensive immune-cell responses associated with clinical benefits using PBMCs from patients with malignant melanoma treated with anti-PD-1 monoclonal antibody. Pre- and post-treatment samples were collected from two different cohorts (discovery set and validation set) and subjected to mass cytometry assays that measured the expression levels of 35 proteins. Screening by high dimensional clustering in the discovery set identified increases in three micro-clusters of CD4+ T cells, a subset of central memory CD4+ T cells harboring the CD27+FAS-CD45RA-CCR7+ phenotype, after treatment in long-term survivors, but not in non-responders. The same increase was also observed in clinical responders in the validation set. We propose that increases in this subset of central memory CD4+ T cells in peripheral blood can be potentially used as a predictor of clinical response to PD-1 blockade therapy in patients with malignant melanoma. © The Japanese Society for Immunology. 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    PubMed

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  14. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    PubMed Central

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  15. Blockade of CD26 signaling inhibits human osteoclast development.

    PubMed

    Nishida, Hiroko; Suzuki, Hiroshi; Madokoro, Hiroko; Hayashi, Mutsumi; Morimoto, Chikao; Sakamoto, Michiie; Yamada, Taketo

    2014-11-01

    Bone remodeling is maintained by the delicate balance between osteoblasts (OBs) and osteoclasts (OCs). However, the role of CD26 in regulating bone remodeling has not yet been characterized. We herein show that CD26 is preferentially expressed on normal human OCs and is intensely expressed on activated human OCs in osteolytic bone alterations. Macrophage-colony stimulating factor (M-CSF) and soluble receptor activator of NF-κB ligand (sRANKL) induced human OC differentiation, in association with CD26 expression on monocyte-macrophage lineage cells. CD26 expression was accompanied by increased phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which is crucial for early human OC differentiation. The humanized anti-CD26 monoclonal antibody, huCD26mAb, impaired the formation and function of tartrate-resistant acid phosphatase (TRAP)/CD26 positive multi-nucleated (nuclei > 3) OCs with maturation in the manner of dose-dependency. It was revealed that huCD26mAb inhibits early OC differentiation via the inactivation of MKK3/6, p38 MAPK and subsequent dephosphorylation of microphthalmia-associated transcription factor (mi/Mitf). These inhibitions occur immediately after RANKL binds to RANK on the human OC precursor cells and were demonstrated using the OC functional assays. huCD26mAb subsequently impaired OC maturation and bone resorption by suppressing the expression of TRAP and OC fusion proteins. In addition, p38 MAPK inhibitor also strongly inhibited OC formation and function. Our results suggest that the blockade of CD26 signaling impairs the development of human functional OCs by inhibiting p38 MAPK-mi/Mitf phosphorylation pathway and that targeting human OCs with huCD26mAb may have therapeutic potential for the treatment of osteolytic lesions following metastasis to alleviate bone destruction and reduce total skeletal-related events (SREs). © 2014 American Society for Bone and Mineral Research.

  16. B and T Lymphocyte Attenuator Down-regulation by HIV-1 Depends on Type I Interferon and Contributes to T-Cell Hyperactivation

    PubMed Central

    Zhang, Zheng; Xu, Xiangsheng; Lu, Jiyun; Zhang, Shuye; Gu, Lanlan; Fu, Junliang; Jin, Lei; Li, Haiying; Zhao, Min; Zhang, Jiyuan; Wu, Hao; Su, Lishan; Fu, Yang-Xin

    2011-01-01

    Background. Nonspecific T-cell hyperactivation is the main driving force for human immunodeficiency virus (HIV)–1 disease progression, but the reasons why the excess immune response is not properly shut off are poorly defined. Methods. Eighty-five HIV-1–infected individuals were enrolled to characterize B and T lymphocyte attenuator (BTLA) expression and function. Infection and blockade assays were used to dissect the factors that influenced BTLA signaling in vitro. Results. BTLA expression on overall CD4+ and CD8+ T cells was progressively decreased in HIV-1 infection, which was directly correlated with disease progression and CD4+ T-cell differentiation and activation. BTLA+CD4+ T cells from HIV-1–infected patients also displayed an altered immune status, which was indicated by reduced expression of naive markers but increased activation and exhaustion markers. Cross-linking of BTLA can substantially decrease CD4+ T-cell activation in vitro. This responsiveness of CD4+ T cells to BTLA-mediated inhibitory signaling was further found to be impaired in HIV-1–infected patients. Furthermore, HIV-1 NL4-3 down-regulated BTLA expression on CD4+ T cells dependent on plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α. Blockade of IFN-α or depletion of pDCs prevents HIV-1-induced BTLA down-regulation. Conclusions. HIV-1 infection potentially impairs BTLA-mediated signaling dependent on pDC-derived IFN-α, which may contribute to broad T-cell hyperactivation induced by chronic HIV-1 infection. PMID:21592997

  17. T cell costimulation blockade promotes transplantation tolerance in combination with sirolimus and post-transplantation cyclophosphamide for haploidentical transplantation in children with severe aplastic anemia.

    PubMed

    Jaiswal, Sarita Rani; Bhakuni, Prakash; Zaman, Shamsuz; Bansal, Satish; Bharadwaj, Priyanka; Bhargava, Sneh; Chakrabarti, Suparno

    2017-08-01

    We conducted a pilot study employing extended T cell costimulation blockade (COSBL) with Abatacept along with sirolimus and post-transplantation cyclophosphamide (PTCy) in 10 patients (median age 12) with severe aplastic anemia (SAA). Nine patients engrafted in the COSBL group, compared to all 10 patients (median 14 vs 13days) treated on PTCy protocols without abatacept (CONTROL group). The incidence of acute graft-versus-host disease (GVHD) was 10.5% in the COSBL group compared to 50% in the CONTROL group (p=0.04). Chronic GVHD (12.5% vs 56%, p=0.02) and CMV reactivation (30% vs 80%, p=0.03) were also reduced in the COSBL group. T and NK cell subset analysis revealed higher CD56 bright CD16 - NK cells in the CONTROL group (p=0.004), but similar CD56 dim CD16 + NK cells in both groups at day+30. Tregs (CD4 + CD25 + CD127 dim/- FoxP3+) were markedly higher in the COSBL group at day+30 (8.4% vs 1.1%) and the trend was maintained through day+90 (p<0.01). The GVHD and Disease-free survival at one year in the COSBL group was 80% vs. 30% in the CONTROL group (p=0.05). Our preliminary findings suggest that COSBL in combination with PTCy and sirolimus might augment transplantation tolerance in children with SAA, probably due to synergistic effect on early recovery of Tregs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Role of positive selection of thymoma-associated T cells in the pathogenesis of myasthenia gravis.

    PubMed

    Inada, Keiji; Okumura, Meinoshin; Shiono, Hiroyuki; Inoue, Masayoshi; Kadota, Yoshihisa; Ohta, Mitsunori; Matsuda, Hikaru

    2005-06-01

    A human thymoma is a thymic epithelial neoplasm and is characterized by its frequent association with myasthenia gravis. The histological characteristic of thymoma is coexistence of a large number of lymphocytes, including CD4(+)CD8(+) double positive T cells, phenotypes of the cortical thymocytes. To elucidate the role of these T lymphocytes in the pathogenesis of thymoma-associated myasthenia gravis, we examined the usage of alphabeta or gammadelta T cell receptor of the T lymphocytes in thymoma in conjunction with the positive selection event. Thymomas were obtained from 28 patients. Nine patients were associated with myasthenia gravis. Lymphocytes were freshly isolated from the tumor tissue and were subjected to four-color flow cytometric analysis. The average proportion of TCRalphabeta(+) cells in thymomas associated with myasthenia gravis was 47.0% and was significantly higher (P = 0.0008) than that without myasthenia gravis (23.4%). Positive selection event was then examined in terms of CD69, a positive selection marker. The mean proportion of TCRalphabeta(+)CD69(+)CD4(+)CD8(-) cells in the myasthenic thymomas (8.22%) was significantly greater (P = 0.015) than the nonmyasthenic thymomas (2.99%). On the other hand, there was not a significant difference in the mean proportion of TCRalphabeta(+)CD69(+)CD4(-)CD8(+) cells between the myasthenic and the nonmyasthenic thymomas. The possible role of development of TCRalphabeta(+) T cells, especially the role of positive selection of TCRalphabeta(+)CD4(+)CD8(-) T cells in thymoma, was suggested in the pathogenesis of thymoma-associated myasthenia gravis.

  19. Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors.

    PubMed

    Hall, MacLean; Liu, Hao; Malafa, Mokenge; Centeno, Barbara; Hodul, Pamela J; Pimiento, José; Pilon-Thomas, Shari; Sarnaik, Amod A

    2016-01-01

    We evaluated whether tumor infiltrating lymphocytes (TIL) could be expanded from surgically resected tumors from pancreatic cancer patients. Tumors were resected from pancreatic cancer patients. Tumors were minced into fragments and cultured in media containing high dose interleukin-2 (IL-2) for up to 6 weeks. T cell phenotype, activation markers, and reactivity were measured. TIL expansion was measured in 19 patient samples. The majority of these TIL were CD4 + T cells and were highly activated. Purified CD8 + T cells produced IFN-γ in response to HLA-matched pancreatic tumor targets. PD-1 blockade and 4-1BB stimulation were demonstrated as effective strategies to improve effective TIL yield, including the production of tumor-reactive pancreatic TIL. TIL expanded from pancreatic tumors are functional and able to respond to pancreatic tumor associated antigens. PD-1 blockade, 41BB stimulation, and CD8 + T cell enrichment are effective strategies to improve TIL yield and tumor reactivity. These results support the development of adoptive cell therapy strategies using TIL for the treatment of pancreatic cancer.

  20. Balance of CD8+ CD28+ / CD8+ CD28- T lymphocytes is vital for patients with ulcerative colitis.

    PubMed

    Dai, Shi-Xue; Wu, Gang; Zou, Ying; Feng, Yan-Ling; Liu, Hong-Bo; Feng, Jin-Shan; Chi, Hong-Gang; Lv, Ru-Xi; Zheng, Xue-Bao

    2013-01-01

    Immune balances are important for many diseases including ulcerative colitis (UC). This study aimed to explore the role of the balance between CD8+ CD28+ and CD8+ CD28- T lymphocytes for the immunological pathogenesis of UC. Sixteen patients with UC, 16 patients with irritable bowel syndrome (IBS) and 15 healthy volunteers were enrolled. The frequencies of CD8+ CD28+ and CD8+CD28- T lymphocytes in peripheral blood and colon tissue were tested using flow cytometry and immunofluorescent, respectively. The cytokines of the two lymphocytes were detected by protein chips and ELISA. The expression of the signal transducers, the JAK3 and STAT6, as well the transcription factors, the NFATc2 and GATA3, was all detected by both western blot and immunohistochemistry. For UC patients, the frequencies of CD8+ CD28+ T lymphocytes, together with the ratios of CD8+ CD28+ / CD8+ CD28- T lymphocytes in blood and colon tissue, were significantly lower than those in both IBS patients and healthy volunteers. But the frequencies of CD8+ CD28- T lymphocytes in blood and colon tissue of the UC patients were significantly higher than the other two groups. The concentration of IL-7 and -13, and the expression of JAK3 and STAT6 in UC patients, were significantly lower when compared with the other two groups. Conversely, the concentration of IL-12p40 and -15, and the expression of GATA3 and NFATc2 in UC patients, were significantly higher than both IBS and control group. The balance of CD8+ CD28+ / CD8+ CD28- T lymphocytes plays a vital role in UC, while the balance tilt towards CD8+ CD28+ T lymphocytes is beneficial for patients with UC.

  1. Regulatory function of cytomegalovirus-specific CD4{sup +}CD27{sup -}CD28{sup -} T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovar-Salazar, Adriana; Patterson-Bartlett, Julie; Jesser, Renee

    2010-03-15

    CMV infection is characterized by high of frequencies of CD27{sup -}CD28{sup -} T cells. Here we demonstrate that CMV-specific CD4{sup +}CD27{sup -}CD28{sup -} cells are regulatory T cells (T{sub R}). CD4{sup +}CD27{sup -}CD28{sup -} cells sorted from CMV-stimulated PBMC of CMV-seropositive donors inhibited de novo CMV-specific proliferation of autologous PBMC in a dose-dependent fashion. Compared with the entire CMV-stimulated CD4{sup +} T-cell population, higher proportions of CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} expressed FoxP3, TGFbeta, granzyme B, perforin, GITR and PD-1, lower proportions expressed CD127 and PD1-L and similar proportions expressed CD25, CTLA4, Fas-L and GITR-L. CMV-CD4{sup +}CD27{sup -}CD28{sup -}more » T{sub R} expanded in response to IL-2, but not to CMV antigenic restimulation. The anti-proliferative effect of CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} significantly decreased after granzyme B or TGFbeta inhibition. The CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} of HIV-infected and uninfected donors had similar phenotypes and anti-proliferative potency, but HIV-infected individuals had higher proportions of CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R}. The CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} may contribute to the downregulation of CMV-specific and nonspecific immune responses of CMV-infected individuals.« less

  2. IRF5, PTPN22, CD28, IL2RA, KIF5A, BLK and TNFAIP3 genes polymorphisms and lupus susceptibility in a cohort from the Egypt Delta; relation to other ethnic groups.

    PubMed

    Elghzaly, Ashraf A; Metwally, Shereen S; El-Chennawi, Farha A; Elgayaar, Maha A; Mosaad, Youssef M; El-Toraby, Ehab E; Hegab, Mohsen M; Ibrahim, Saleh M

    2015-07-01

    To replicate a single nucleotide polymorphism (SNP) of known genes for lupus (IRF5 rs10488631, PTPN22 rs2476601, BLK rs2736340 and TNFAIP3 rs5029939) and other autoimmune diseases (CD28 rs1980422, IL2RA rs2104286 and KIF5A rs1678542) on a newly studied Egyptian cohort to investigate the genetic disparity with different studied ethnic groups in relation to lupus susceptibility. 170 Egyptian patients from Egypt Delta with SLE and 241 matched healthy controls were genotyped by Taqman real time PCR for the selected SNPs. The results revealed significant association with IRF5 (p<0.0001) and PTPN22 (p=0.008) and insignificant association with KIF5A, CD28, IL2RA, BLK and TNFAIP3 genes. This study may provide an additional evidence for the association between IRF5 and PTPN22 and lupus susceptibility and may exclude it for CD28, IL2RA, and KIF5A. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  3. Failure of transplantation tolerance induction by autologous regulatory T cells in the pig-to-non-human primate islet xenotransplantation model.

    PubMed

    Shin, Jun-Seop; Min, Byoung-Hoon; Kim, Jong-Min; Kim, Jung-Sik; Yoon, Il Hee; Kim, Hyun Je; Kim, Yong-Hee; Jang, Jae Yool; Kang, Hee Jung; Lim, Dong-Gyun; Ha, Jongwon; Kim, Sang-Joon; Park, Chung-Gyu

    2016-07-01

    Islet allotransplantation is a promising way to treat some type 1 diabetic (T1D) patients with frequent hypoglycemic unawareness, and islet xenotransplantation is emerging to overcome the problem of donor organ shortage. Our recent study showing reproducible long-term survival of porcine islets in non-human primates (NHPs) allows us to examine whether autologous regulatory T-cell (Treg) infusion at peri-transplantation period would induce transplantation tolerance in xenotransplantation setting. Two diabetic rhesus monkeys were transplanted with porcine islets from wild-type adult Seoul National University (SNU) miniature pigs with immunosuppression by anti-thymoglobulin (ATG), cobra venom factor, anti-CD154 monoclonal antibody (mAb), and sirolimus. CD4(+) CD25(high) CD127(low) autologous regulatory T cells from the recipients were isolated, ex vivo expanded, and infused at the peri-transplantation period. Blood glucose and porcine C-peptide from the recipients were measured up to 1000 days. Maintenance immunosuppressants including a CD40-CD154 blockade were deliberately discontinued to confirm whether transplantation tolerance was induced by adoptively transferred Tregs. After pig islet transplantation via portal vein, blood glucose levels of diabetic recipients became normalized and maintained over 6 months while in immunosuppressive maintenance with a CD40-CD154 blockade and sirolimus. However, the engrafted pig islets in the long-term period were fully rejected by activated immune cells, particularly T cells, when immunosuppressants were stopped, showing a failure of transplantation tolerance induction by autologous Tregs. Taken together, autologous Tregs infused at the peri-transplantation period failed to induce transplantation tolerance in pig-to-NHP islet xenotransplantation setting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. In the absence of its cytosolic domain, the CD28 molecule still contributes to T cell activation

    PubMed Central

    Morin, Stéphanie; Giroux, Valentin; Favre, Cédric; Bechah, Yassina; Auphan-Anezin, Nathalie; Roncagalli, Romain; Mège, Jean-Louis; Olive, Daniel; Malissen, Marie; Nunes, Jacques

    2015-01-01

    The CD28 costimulatory receptor has a pivotal role in T cell biology as this molecule amplifies T cell receptor (TCR) signals to provide an efficient immune T cell response. There is a large debate about how CD28 mediates these signals. Here, we designed a CD28 gene targeted knock-in mouse strain lacking the cytoplasmic tail of CD28. As is the case in CD28-deficient (CD28 knock-out) mice, regulatory T cell homeostasis and T cell activation are altered in these CD28 knock-in mice. Unexpectedly, the presence of a CD28 molecule deprived of its cytoplasmic tail could partially induce some early activation events in T cells such as signaling events or expression of early activation markers. These results unravel a new mechanism of T cell costimulation by CD28, independent of its cytoplasmic tail. PMID:25725801

  5. Interactions between peripheral blood CD8 T lymphocytes and intestinal epithelial cells (iEC).

    PubMed

    Arosa, F A; Irwin, C; Mayer, L; de Sousa, M; Posnett, D N

    1998-05-01

    Intestinal intraepithelial lymphocytes (iIEL) are primarily CD8 cells and most of them have a CD28- phenotype, the phenotype of effector cytotoxic T cells. We asked whether the predominance of CD8+CD28- T cells in the gut may result from peripheral blood T cells preferentially migrating to the iIEL compartment and adhering to iEC. Compared with CD4 cells, adhesion of resting CD8+ T cells to iEC cell lines was significantly higher. Adhesion could be blocked with a MoAb to gp180, a molecule expressed on iEC which is known to interact with CD8/lck. No significant difference in the level of adhesion was observed between CD8+CD28+ and CD8+CD28- T cells. Thus CD8 cells may preferentially migrate to the iIEL compartment, but loss of CD28 expression could occur in situ after migration. Consistent with this hypothesis, the CD8+CD28- cells became enriched after co-culturing T cells with iEC cell lines and primary iEC. Induction of the CD8+CD28- phenotype in cord blood and adult T cells was observed in co-cultures with iEC and also with mitogens and superantigens. In the latter case, CD28 down-modulation was seen specifically in the Vbeta subset targeted by the superantigen, indicating that loss of CD28 expression is a direct result of T cell receptor (TCR)-mediated stimulation. The combined results suggest that CD8+CD28- T cells are antigen experienced T cells, and that they may have a survival advantage in the presence of gut epithelial cells in vitro. This may contribute to the predominance of CD8+CD28- T cells in the iIEL compartment.

  6. IL-21 Is an Antitolerogenic Cytokine of the Late-Phase Alloimmune Response

    PubMed Central

    Petrelli, Alessandra; Carvello, Michele; Vergani, Andrea; Lee, Kang Mi; Tezza, Sara; Du, Ming; Kleffel, Sonja; Chengwen, Liu; Mfarrej, Bechara G.; Hwu, Patrick; Secchi, Antonio; Leonard, Warren J.; Young, Deborah; Sayegh, Mohamed H.; Markmann, James F.; Zajac, Allan J.; Fiorina, Paolo

    2011-01-01

    OBJECTIVE Interleukin-21 (IL-21) is a proinflammatory cytokine that has been shown to affect Treg/Teff balance. However, the mechanism by which IL-21 orchestrates alloimmune response and interplays with Tregs is still unclear. RESEARCH DESIGN AND METHODS The interplay between IL-21/IL-21R signaling, FoxP3 expression, and Treg survival and function was evaluated in vitro in immunologically relevant assays and in vivo in allogenic and autoimmune models of islet transplantation. RESULTS IL-21R expression decreases on T cells and B cells in vitro and increases in the graft in vivo, while IL-21 levels increase in vitro and in vivo during anti-CD3/anti-CD28 stimulation/allostimulation in the late phase of the alloimmune response. In vitro, IL-21/IL-21R signaling (by using rmIL-21 or genetically modified CD4+ T cells [IL-21 pOrf plasmid–treated or hIL-21-Tg mice]) enhances the T-cell response during anti-CD3/anti-CD28 stimulation/allostimulation, prevents Treg generation, inhibits Treg function, induces Treg apoptosis, and reduces FoxP3 and FoxP3-dependent gene transcripts without affecting FoxP3 methylation status. In vivo targeting of IL-21/IL-21R expands intragraft and peripheral Tregs, promotes Treg neogenesis, and regulates the antidonor immune response, whereas IL-21/IL-21R signaling in Doxa-inducible ROSA-rtTA-IL-21-Tg mice expands Teffs and FoxP3− cells. Treatment with a combination of mIL-21R.Fc and CTLA4-Ig (an inhibitor of the early alloimmune response) leads to robust graft tolerance in a purely alloimmune setting and prolonged islet graft survival in NOD mice. CONCLUSIONS IL-21 interferes with different checkpoints of the FoxP3 Treg chain in the late phase of alloimmune response and, thus, acts as an antitolerogenic cytokine. Blockade of the IL-21/IL-21R pathway could be a precondition for tolerogenic protocols in transplantation. PMID:22013017

  7. CD28-Negative CD4+ and CD8+ T Cells in Antiretroviral Therapy–Naive HIV-Infected Adults Enrolled in Adult Clinical Trials Group Studies

    PubMed Central

    Tassiopoulos, Katherine; Landay, Alan; Collier, Ann C.; Connick, Elizabeth; Deeks, Steven G.; Hunt, Peter; Lewis, Dorothy E.; Wilson, Cara; Bosch, Ronald

    2012-01-01

    Background Individuals infected with human immunodeficiency virus (HIV) have higher risk than HIV-negative individuals for diseases associated with aging. T-cell senescence, characterized by expansion of cells lacking the costimulatory molecule CD28, has been hypothesized to mediate these risks. Methods We measured the percentage of CD28−CD4+ and CD8+ T cells from HIV-infected treatment-naive adults from 5 Adult Clinical Trials Group (ACTG) antiretroviral therapy (ART) studies and the ALLRT (ACTG Longitudinal Linked Randomized Trials) cohort, and from 48 HIV-negative adults. Pretreatment and 96-week posttreatment %CD28− cells were assessed using linear regression for associations with age, sex, race/ethnicity, CD4 count, HIV RNA, ART regimen, and hepatitis C virus (HCV) infection. Results In total, 1291 chronically HIV-infected adults were studied. Pretreatment, lower CD4 count was associated with higher %CD28−CD4+ and %CD28−CD8+ cells. For CD8+ cells, younger age and HCV infection were associated with a lower %CD28−. ART reduced %CD28− levels at week 96 among virally suppressed individuals. Older age was strongly predictive of higher %CD28−CD8+. Compared to HIV-uninfected individuals, HIV-infected individuals maintained significantly higher %CD28−. Conclusions Effective ART reduced the proportion of CD28− T cells. However, levels remained abnormally high and closer to levels in older HIV-uninfected individuals. This finding may inform future research of increased rates of age-associated disease in HIV-infected adults. PMID:22448010

  8. Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy.

    PubMed

    Xiong, Zhengming; Ampudia-Mesias, Elisabet; Shaver, Rob; Horbinski, Craig M; Moertel, Christopher L; Olin, Michael R

    2016-09-01

    There are over 400 ongoing clinical trials using tumor-derived vaccines. This approach is especially attractive for many types of brain tumors, including glioblastoma, yet so far the clinical response is highly variable. One contributor to poor response is CD200, which acts as a checkpoint blockade, inducing immune tolerance. We demonstrate that, in response to vaccination, glioma-derived CD200 suppresses the anti-tumor immune response. In contrast, a CD200 peptide inhibitor that activates antigen-presenting cells overcomes immune tolerance. The addition of the CD200 inhibitor significantly increased leukocyte infiltration into the vaccine site, cytokine and chemokine production, and cytolytic activity. Our data therefore suggest that CD200 suppresses the immune system's response to vaccines, and that blocking CD200 could improve the efficacy of cancer immunotherapy.

  9. Human mesenchymal stromal cells enhance the immunomodulatory function of CD8+CD28− regulatory T cells

    PubMed Central

    Liu, Qiuli; Zheng, Haiqing; Chen, Xiaoyong; Peng, Yanwen; Huang, Weijun; Li, Xiaobo; Li, Gang; Xia, Wenjie; Sun, Qiquan; Xiang, Andy Peng

    2015-01-01

    One important aspect of mesenchymal stromal cells (MSCs)-mediated immunomodulation is the recruitment and induction of regulatory T (Treg) cells. However, we do not yet know whether MSCs have similar effects on the other subsets of Treg cells. Herein, we studied the effects of MSCs on CD8+CD28− Treg cells and found that the MSCs could not only increase the proportion of CD8+CD28− T cells, but also enhance CD8+CD28−T cells' ability of hampering naive CD4+ T-cell proliferation and activation, decreasing the production of IFN-γ by activated CD4+ T cells and inducing the apoptosis of activated CD4+ T cells. Mechanistically, the MSCs affected the functions of the CD8+CD28− T cells partially through moderate upregulating the expression of IL-10 and FasL. The MSCs had no distinct effect on the shift from CD8+CD28+ T cells to CD8+CD28− T cells, but did increase the proportion of CD8+CD28− T cells by reducing their rate of apoptosis. In summary, this study shows that MSCs can enhance the regulatory function of CD8+CD28− Treg cells, shedding new light on MSCs-mediated immune regulation. PMID:25482073

  10. Melatonin: Antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection.

    PubMed

    Brazão, Vânia; Santello, Fabricia H; Colato, Rafaela P; Mazotti, Tamires T; Tazinafo, Lucas F; Toldo, Míriam Paula A; do Vale, Gabriel T; Tirapelli, Carlos R; do Prado, José C

    2017-08-01

    The purpose of this study was to investigate the effects of melatonin on selected biomarkers of innate and humoral immune response as well as the antioxidant/oxidant status (superoxide dismutase-SOD and reduced glutathione levels (GSH) to understand whether age-related changes would influence the development of acute Trypanosoma cruzi (T. cruzi) infection. Young- (5 weeks) and middle-aged (18 months) Wistar rats were orally treated with melatonin (gavage) (05 mg/kg/day), 9 days after infection. A significant increase in both SOD activity and GSH levels was found in plasma from all middle-aged melatonin-treated animals. Melatonin triggered enhanced expression of major histocompatibility class II (MHC-II) antigens on antigen-presenting cell (APC) and peritoneal macrophages in all treated animals. High levels of CD4 + CD28-negative T cells (*P<.05) were detected in middle-aged control animals. Melatonin induced a significant reduction (***P<.001) in CD28-negative in CD4 + and CD8 + T cells in middle-aged control animals. Contrarily, the same group displayed upregulated CD4 + CD28 + T and CD8 + CD28 + T cells. Melatonin also triggered an upregulation of CD80 and CD86 expression in all young-treated groups. Significant percentages of B and spleen dendritic cells in middle-aged infected and treated animals were observed. Our data reveal new features of melatonin action in inhibiting membrane lipid peroxidation, through the reduction in 8-isoprostane, upregulating the antioxidant defenses and triggering an effective balance in the antioxidant/oxidant status during acute infection. The ability of melatonin to counteract the immune alterations induced by aging added further support to its use as a potential therapeutic target not only for T. cruzi infection but also for other immunocompromised states. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Reactive Oxygen Species and Their Implications on CD4+ T Cells in Type 1 Diabetes.

    PubMed

    Previte, Dana M; Piganelli, Jon D

    2017-11-28

    Previous work has indicated that type 1 diabetes (T1D) pathology is highly driven by reactive oxygen species (ROS). One way in which ROS shape the autoimmune response demonstrated in T1D is by promoting CD4 + T cell activation and differentiation. As CD4 + T cells are a significant contributor to pancreatic β cell destruction in T1D, understanding how ROS impact their development, activation, and differentiation is critical. Recent Advances: CD4 + T cells themselves generate ROS via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and electron transport chain activity. Moreover, T cells can also be exposed to exogenous ROS generated by other immune cells (e.g., macrophages and dendritic cells) and β cells. Genetically modified animals and ROS inhibitors have demonstrated that ROS blockade during activation results in CD4 + T cell hyporesponsiveness and reduced diabetes incidence. Critical Issues and Future Directions: Although the majority of studies with regard to T1D and CD4 + T cells have been done to examine the influence of redox on CD4 + T cell activation, this is not the only circumstance in which a T cell can be impacted by redox. ROS and redox have also been shown to play roles in CD4 + T cell-related tolerogenic mechanisms, including thymic selection and regulatory T cell-mediated suppression. However, the effect of these mechanisms with respect to T1D pathogenesis remains elusive. Therefore, pursuing these avenues may provide valuable insight into the global role of ROS and redox in autoreactive CD4 + T cell formation and function. Antioxid. Redox Signal. 00, 000-000.

  12. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T

    PubMed Central

    Yoon, Dok Hyun; Osborn, Mark J.; Tolar, Jakub; Kim, Chong Jai

    2018-01-01

    Chimeric antigen receptor (CAR) T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade. PMID:29364163

  13. ERK-dependent T cell receptor threshold calibration in rheumatoid arthritis.

    PubMed

    Singh, Karnail; Deshpande, Pratima; Pryshchep, Sergey; Colmegna, Inés; Liarski, Vladimir; Weyand, Cornelia M; Goronzy, Jörg J

    2009-12-15

    Immune responses to citrullinated neoantigens and clinical efficacy of costimulation blockade indicate a general defect in maintaining T cell tolerance in rheumatoid arthritis (RA). To examine whether TCR threshold calibration contributes to disease pathogenesis, signaling in RA T cells was quantified. RA patients had a selective increase in ERK phosphorylation compared with demographically matched controls due to a mechanism distal of Ras activation. Increased ERK responses included naive and memory CD4 and CD8 T cells and did not correlate with disease activity. The augmented ERK activity delayed SHP-1 recruitment to the TCR synapse and sustained TCR-induced Zap70 and NF-kappaB signaling, facilitating responses to suboptimal stimulation. Increased responsiveness of the ERK pathway was also a characteristic finding in the SKG mouse model of RA where it preceded clinical symptoms. Treatment with subtherapeutic doses of a MEK-1/2 inhibitor delayed arthritis onset and reduced severity, suggesting that increased ERK phosphorylation predisposes for autoimmunity and can be targeted to prevent disease.

  14. Higher Body Mass Index Is Associated With Greater Proportions of Effector CD8+ T Cells Expressing CD57 in Women Living With HIV.

    PubMed

    Reid, Michael J A; Baxi, Sanjiv M; Sheira, Lila A; Landay, Alan L; Frongillo, Edward A; Adedimeji, Adebola; Cohen, Mardge H; Wentz, Eryka; Gustafson, Deborah R; Merenstein, Daniel; Hunt, Peter W; Tien, Phyllis C; Weiser, Sheri D

    2017-08-15

    A low proportion of CD28CD8 T cells that express CD57 is associated with increased mortality in HIV infection. The effect of increasing body mass index (BMI) changes in the proportion of CD57CD28CD8 T cells among HIV-infected individuals on antiretroviral therapy is unknown. In a US cohort of HIV-infected women, we evaluated associations of BMI and waist circumference with 3 distinct CD8 T cell phenotypes: % CD28CD57CD8 T cells, % CD57 of CD28CD8 T cells, and % CD28 of all CD8 T cells. Multivariable linear regression analysis was used to estimate beta coefficients for each of 3 T-cell phenotypes. Covariates included HIV parameters (current and nadir CD4, current viral load), demographics (age, race, income, and study site), and lifestyle (tobacco and alcohol use) factors. Of 225 participants, the median age was 46 years and 50% were obese (BMI >30 m/kg). Greater BMI and waist circumference were both associated with higher % CD28CD57CD8 T cells and % CD57 of all CD28CD8 T cells in multivariable analysis, including adjustment for HIV viral load (all P < 0.05). The association between greater BMI and the overall proportion of CD28 CD8 cells in fully adjusted models (0.078, 95% confidence interval: -0.053 to 0.209) was not significant. In this analysis, greater BMI and waist circumference are associated with greater expression of CD57 on CD28CD8 T cells and a greater proportion of CD57CD28 CD8 T cells. These findings may indicate that increasing BMI is immunologically protective in HIV-infected women. Future research is needed to understand the prognostic importance of these associations on clinical outcomes.

  15. Molecular cloning and characterization of the full-length cDNA encoding the tree shrew (tupaia belangeri) CD28

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyan; Yan, Yan; Wang, Sha; Wang, Qinying; Shi, Jian; Shao, Zhanshe; Dai, Jiejie

    2017-11-01

    CD28 is one of the most important co-stimulatory molecules expressed by naive and primed T cells. The tree shrews (Tupaia belangeri), as an ideal animal model for analyzing mechanism of human diseases receiving extensive attentions, demands essential research tools, in particular in the study of cellular markers and monoclonal antibodies for immunological studies. However, little is known about tree shrew CD28 (tsCD28) until now. In this study, a 663 bp of the full-length CD28 cDNA, encoding a polypeptide of 220 amino acids was cloned from tree shrew spleen lymphocytes. The nucleotide sequence of the tsCD28 showed 85%, 76%, and 75% similarities with human, rat, and mouse, respectively, which showed the affinity relationship between tree shrew and human is much closer than between human and rodents. The open reading frame (ORF) sequence of tsCD28 gene was predicted to be in correspondence with the signal sequence, immunoglobulin variable-like (IgV) domain, transmembrane domain and cytoplasmic tail, respectively.We also analyzed its molecular characteristics with other mammals by using biology software such as Clustal W 2.0 and so forth. Our results showed that tsCD28 contained many features conserved in CD28 genes from other mammals, including conserved signal peptide and glycosylation sites, and several residues responsible for binding to the CD28R, and the tsCD28 amino acid sequence were found a close genetic relationship with human and monkey. The crystal structure and surface charge revealed most regions of tree shrew CD28 molecule surface charges are similar as human. However, compared with human CD28 (hCD28) regions, in some areas, the surface positive charge of tsCD28 was less than hCD28, which may affect antibody binding. The present study is the first report of cloning and characterization of CD28 in tree shrew. This study provides a theoretical basis for the further study the structure and function of tree shrew CD28 and utilize tree shrew as an effective animal model of human disease.

  16. A long-lasting oral preformulation of the angiotensin II AT1 receptor antagonist losartan.

    PubMed

    De Paula, Washington X; Denadai, Ângelo M L; Braga, Aline N G; Shastri, V Prasad; Pinheiro, Sérgio V B; Frezard, Frederic; Santos, Robson A S; Sinisterra, Ruben D

    2018-05-10

    Losartan (Los), a non-peptidic orally active agent, reduces arterial pressure through specific and selective blockade of angiotensin II receptor AT1. However, this widely used AT1 antagonist presents low bioavailability and needs once or twice a day dosage. In order to improve its bioavailability, we used the host: guest strategy based on β-cyclodextrin (βCD). The results suggest that Los included in βCD showed a typical pulsatile release pattern after oral administration to rats, with increasing the levels of plasma of Los. In addition, the inclusion compound presented oral efficacy for 72 h, in contrast to Los alone, which shows antagonist effect for only 6 h. In transgenic (mREN2)L27 rats, the Los/βCD complex reduced blood pressure for about 6 d, whereas Los alone reduced blood pressure for only 2 d. More importantly, using this host: guest strategy, sustained release of Los for over a week via the oral route can be achieved without the need for encapsulation in a polymeric carrier. The proposed preformulation increased the efficacy reducing the dose or spacing between each dose intake.

  17. Blockade of Syk ameliorates the development of murine sclerodermatous chronic graft-versus-host disease.

    PubMed

    Le Huu, Doanh; Kimura, Hiroshi; Date, Mutsumi; Hamaguchi, Yasuhito; Hasegawa, Minoru; Hau, Khang Tran; Fujimoto, Manabu; Takehara, Kazuhiko; Matsushita, Takashi

    2014-06-01

    Murine sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) is a model for human Scl-cGVHD and systemic sclerosis (SSc). Syk is expressed in most of hematopoietic cells, fibroblasts, and endothelial cells. Syk is a protein tyrosine kinase that has an important role in transmitting signals from a variety of cell surface receptors. This study aims to investigate the effect of R788 (fostamatinib sodium), an oral prodrug that is rapidly converted to a potent inhibitor of Syk, R406, on Scl-cGVHD. R788 was orally administered twice a day to allogeneic recipients from day 14 to day 42 after bone marrow transplantation (BMT). In vitro, proliferation of GVHD-derived CD4(+) T cells and CD11b(+) cells was analyzed by R406. Allogeneic BMT increased Syk phosphorylation in T, B, and CD11b(+) cells. The administration of R788 attenuated severity and fibrosis of Scl-cGVHD. The elevated expressions of CXCR4 on T cells, B cells, and CD11b(+) cells were significantly down-regulated by R788 treatment. R788 reduced memory CD4(+) T cells (CD44(hi)CD62L(-)CD4(+)). R406 inhibited proliferation of GVHD CD4(+) T cells and CD11b(+) cells in vitro. In addition, R788 treatment, inhibited proliferation of CD11b(+) cells in Scl-cGVHD mice. R788 treatment also reduced skin mRNA expressions of MCP-1, MIP-1α, IFN-γ, IL-13, IL-17A, and TGF-β1, but not influenced RANTES, CXCL12, and TFN-α. Blockade of Syk suppressed migration factor of immune cells and antigen-specific memory CD4(+) T cells and proliferation and activation of GVHD CD4(+) T cells and CD11b(+) cells. The current studies suggested that Syk inhibitor is a potential candidate for use in treating patients with Scl-cGVHD and SSc. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Interactions between peripheral blood CD8 T lymphocytes and intestinal epithelial cells (iEC)

    PubMed Central

    Arosa, F A; Irwin, C; Mayer, L; De Sousa, M; Posnett, D N

    1998-01-01

    Intestinal intraepithelial lymphocytes (iIEL) are primarily CD8 cells and most of them have a CD28− phenotype, the phenotype of effector cytotoxic T cells. We asked whether the predominance of CD8+ CD28− T cells in the gut may result from peripheral blood T cells preferentially migrating to the iIEL compartment and adhering to iEC. Compared with CD4 cells, adhesion of resting CD8+ T cells to iEC cell lines was significantly higher. Adhesion could be blocked with a MoAb to gp180, a molecule expressed on iEC which is known to interact with CD8/lck. No significant difference in the level of adhesion was observed between CD8+ CD28+ and CD8+ CD28− T cells. Thus CD8 cells may preferentially migrate to the iIEL compartment, but loss of CD28 expression could occur in situ after migration. Consistent with this hypothesis, the CD8+ CD28− cells became enriched after co-culturing T cells with iEC cell lines and primary iEC. Induction of the CD8+ CD28− phenotype in cord blood and adult T cells was observed in co-cultures with iEC and also with mitogens and superantigens. In the latter case, CD28 down-modulation was seen specifically in the Vβ subset targeted by the superantigen, indicating that loss of CD28 expression is a direct result of T cell receptor (TCR)-mediated stimulation. The combined results suggest that CD8+ CD28− T cells are antigen experienced T cells, and that they may have a survival advantage in the presence of gut epithelial cells in vitro. This may contribute to the predominance of CD8+ CD28− T cells in the iIEL compartment. PMID:9649184

  19. Ex vivo PD-L1/PD-1 pathway blockade reverses dysfunction of circulating CEA specific T cells in pancreatic cancer patients

    PubMed Central

    Chen, Y; Xue, SA; Behboudi, S; Mohammad, GH; Pereira, SP; Morris, EC

    2017-01-01

    Carcinoembryonic antigen (CEA) is a candidate target for cellular immunotherapy of pancreatic cancer (PC). In this study, we have characterised the antigen-specific function of autologous cytotoxic T lymphocytes (CTL) specific for the HLA-A2 restricted peptide, pCEA691–699, isolated from the peripheral T cell repertoire of PC patients and sought to determine if ex vivo PD-L1 & TIM3 blockade could enhance CTL function. CD8+ T cell lines were generated from peripheral blood mononuclear cells (PBMCs) of 18 HLA-A2+ patients with PC and from 15 healthy controls. In vitro peptide specific responses were evaluated by flow cytometry after staining for intracellular cytokine production and CSFE cytotoxicity assays using pancreatic cancer cell lines as targets. Cytokine secreting functional CEA691-specific CTL lines were successfully generated from 10 of 18PC patients, with two CTL lines able to recognise and kill both CEA691 peptide-loaded T2 cells and CEA+ HLA-A2+ pancreatic cancer cell lines. In the presence of ex vivo PD-L1 blockade, functional CEA691-specific CD8+ T cell responses, including IFN-γ secretion and proliferation, were enhanced and this effect was more pronounced on Ag-specific T cells isolated from tumor draining lymph nodes. These data demonstrate that CEA691-specific CTL can be readily expanded from the self-restricted T cell repertoire of PC patients and that their function can be enhanced by PD-L1 blockade. PMID:28710313

  20. Predictors of responses to immune checkpoint blockade in advanced melanoma.

    PubMed

    Jacquelot, N; Roberti, M P; Enot, D P; Rusakiewicz, S; Ternès, N; Jegou, S; Woods, D M; Sodré, A L; Hansen, M; Meirow, Y; Sade-Feldman, M; Burra, A; Kwek, S S; Flament, C; Messaoudene, M; Duong, C P M; Chen, L; Kwon, B S; Anderson, A C; Kuchroo, V K; Weide, B; Aubin, F; Borg, C; Dalle, S; Beatrix, O; Ayyoub, M; Balme, B; Tomasic, G; Di Giacomo, A M; Maio, M; Schadendorf, D; Melero, I; Dréno, B; Khammari, A; Dummer, R; Levesque, M; Koguchi, Y; Fong, L; Lotem, M; Baniyash, M; Schmidt, H; Svane, I M; Kroemer, G; Marabelle, A; Michiels, S; Cavalcanti, A; Smyth, M J; Weber, J S; Eggermont, A M; Zitvogel, L

    2017-09-19

    Immune checkpoint blockers (ICB) have become pivotal therapies in the clinical armamentarium against metastatic melanoma (MMel). Given the frequency of immune related adverse events and increasing use of ICB, predictors of response to CTLA-4 and/or PD-1 blockade represent unmet clinical needs. Using a systems biology-based approach to an assessment of 779 paired blood and tumor markers in 37 stage III MMel patients, we analyzed association between blood immune parameters and the functional immune reactivity of tumor-infiltrating cells after ex vivo exposure to ICB. Based on this assay, we retrospectively observed, in eight cohorts enrolling 190 MMel patients treated with ipilimumab, that PD-L1 expression on peripheral T cells was prognostic on overall and progression-free survival. Moreover, detectable CD137 on circulating CD8 + T cells was associated with the disease-free status of resected stage III MMel patients after adjuvant ipilimumab + nivolumab (but not nivolumab alone). These biomarkers should be validated in prospective trials in MMel.The clinical management of metastatic melanoma requires predictors of the response to checkpoint blockade. Here, the authors use immunological assays to identify potential prognostic/predictive biomarkers in circulating blood cells and in tumor-infiltrating lymphocytes from patients with resected stage III melanoma.

  1. Studies Introducing Costimulation Blockade for Vascularized Composite Allografts in Non-Human Primates

    PubMed Central

    Freitas, AM; Samy, KP; Farris, AB; Leopardi, FV; Song, M; Stempora, L; Strobert, EA; Jenkins, JA; Kirk, AD; Cendales, LC

    2016-01-01

    Vascularized composite allografts (VCAs) are technically feasible. Similar to other organ transplants, VCAs are hampered by the toxicity and incomplete efficacy associated with conventional immunosuppression. Complications attributable to calcineurin inhibitors remain prevalent in the clinical cases reported to date, and these loom particularly large given the non-lifesaving nature of VCAs. Additionally, acute rejection remains almost ubiquitous, albeit controllable with current agents. Costimulation blockade offers the potential to provide prophylaxis from rejection without the adverse consequences of calcineurin-based regimens. In this study, we used a non-human-primate model of VCA in conjunction with immunosuppressive regimens containing combinations of B7-specific costimulation blockade with and without adhesion blockade with LFA3-Ig to determine what adjunctive role these agents could play in VCA transplantation when combined with more conventional agents. Compared to tacrolimus, the addition of belatacept improved rejection free allograft survival. The combination with LFA3-Ig reduced CD2hi memory T cells, however did not provide additional protection against allograft rejection and hindered protective immunity. Histology paralleled clinical histopathology and Banff grading. These data provide the basis for the study of costimulation blockade in VCA in a relevant preclinical model. PMID:26139552

  2. A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells.

    PubMed

    Moeller, Maria; Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Tanner, Jane E; Cerutti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K

    2004-05-01

    T cells engineered to express single-chain antibody receptors that incorporate TCR-zeta and cluster designation (CD)28 signaling domains (scFv-alpha-erbB2-CD28-zeta) can be redirected in vivo to cancer cells that lack triggering costimulatory molecules. To assess the contribution of CD28 signaling to the function of the scFv-CD28-zeta receptor, we expressed a series of mutated scFv-CD28-zeta receptors directed against erbB2. Residues known to be critical for CD28 signaling were mutated from tyrosine to phenylalanine at position 170 or proline to alanine at positions 187 and 190. Primary mouse T cells expressing either of the mutant receptors demonstrated impaired cytokine (IFN-gamma and GM-CSF) production and decreased proliferation after antigen ligation in vitro and decreased antitumor efficacy in vivo compared with T cells expressing the wild-type scFv-CD28-zeta receptor, suggesting a key signaling role for the CD28 component of the scFv-CD28-zeta receptor. Importantly, cell surface expression, binding capacity and cytolytic activity mediated by the scFv-CD28-zeta receptor were not diminished by either mutation. Overall, this study has definitively demonstrated a functional role for the CD28 component of the scFv-CD28-zeta receptor and has shown that incorporation of costimulatory activity in chimeric scFv receptors is a powerful approach for improving adoptive cancer immunotherapy.

  3. Blockade of the Kv1.3 K+ Channel Enhances BCG Vaccine Efficacy by Expanding Central Memory T Lymphocytes.

    PubMed

    Singh, Dhiraj Kumar; Dwivedi, Ved Prakash; Ranganathan, Anand; Bishai, William R; Van Kaer, Luc; Das, Gobardhan

    2016-11-01

    Tuberculosis is the oldest known infectious disease, yet there is no effective vaccine against adult pulmonary tuberculosis. Emerging evidence indicates that T-helper 1 and T-helper 17 cells play important roles in host protection against tuberculosis. However, tuberculosis vaccine efficacy in mice is critically dependent on the balance between antigen-specific central memory T (Tcm) and effector memory T (Tem) cells. Specifically, a high Tcm/Tem cell ratio is essential for optimal vaccine efficacy. Here, we show that inhibition of Kv1.3, a potassium channel preferentially expressed by Tem cells, by Clofazimine selectively expands Tcm cells during BCG vaccination. Furthermore, mice that received clofazimine after BCG vaccination exhibited significantly enhanced resistance against tuberculosis. This superior activity against tuberculosis could be adoptively transferred to naive, syngeneic mice by CD4 + T cells. Therefore, clofazimine enhances Tcm cell expansion, which in turn provides improved vaccine efficacy. Thus, Kv1.3 blockade is a promising approach for enhancing the efficacy of the BCG vaccine in humans. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Context- and Cell-Dependent Effects of Delta-Like 4 Targeting in the Bone Marrow Microenvironment

    PubMed Central

    Remédio, Leonor; Carvalho, Tânia; Caiado, Francisco; Bastos-Carvalho, Ana; Martins, Diana; Duarte, António; Yagita, Hideo; Dias, Sergio

    2012-01-01

    Delta-like 4 (Dll4) is a ligand of the Notch pathway family which has been widely studied in the context of tumor angiogenesis, its blockade shown to result in non-productive angiogenesis and halted tumor growth. As Dll4 inhibitors enter the clinic, there is an emerging need to understand their side effects, namely the systemic consequences of Dll4:Notch blockade in tissues other than tumors. The present study focused on the effects of systemic anti-Dll4 targeting in the bone marrow (BM) microenvironment. Here we show that Dll4 blockade with monoclonal antibodies perturbs the BM vascular niche of sub-lethally irradiated mice, resulting in increased CD31+, VE-Cadherin+ and c-kit+ vessel density, and also increased megakaryocytes, whereas CD105+, VEGFR3+, SMA+ and lectin+ vessel density remained unaltered. We investigated also the expression of angiocrine genes upon Dll4 treatment in vivo, and demonstrate that IGFbp2, IGFbp3, Angpt2, Dll4, DHH and VEGF-A are upregulated, while FGF1 and CSF2 are reduced. In vitro treatment of endothelial cells with anti-Dll4 reduced Akt phosphorylation while maintaining similar levels of Erk 1/2 phosphorylation. Besides its effects in the BM vascular niche, anti-Dll4 treatment perturbed hematopoiesis, as evidenced by increased myeloid (CD11b+), decreased B (B220+) and T (CD3+) lymphoid BM content of treated mice, with a corresponding increase in myeloid circulating cells. Moreover, anti-Dll4 treatment also increased the number of CFU-M and -G colonies in methylcellulose assays, independently of Notch1. Finally, anti-Dll4 treatment of donor BM improved the hematopoietic recovery of lethally irradiated recipients in a transplant setting. Together, our data reveals the hematopoietic (BM) effects of systemic anti-Dll4 treatment result from qualitative vascular changes and also direct hematopoietic cell modulation, which may be favorable in a transplant setting. PMID:23285048

  5. SPAK kinase is a substrate and target of PKCθ in T-cell receptor-induced AP-1 activation pathway

    PubMed Central

    Li, Yingqiu; Hu, Junru; Vita, Randi; Sun, Binggang; Tabata, Hiroki; Altman, Amnon

    2004-01-01

    Protein kinase C-θ (PKCθ) plays an important role in T-cell activation via stimulation of AP-1 and NF-κB. Here we report the isolation of SPAK, a Ste20-related upstream mitogen-activated protein kinase (MAPK), as a PKCθ-interacting kinase. SPAK interacted with PKCθ (but not with PKCα) via its 99 COOH-terminal residues. TCR/CD28 costimulation enhanced this association and stimulated the catalytic activity of SPAK. Recombinant SPAK was phosphorylated on Ser-311 in its kinase domain by PKCθ, but not by PKCα. The magnitude and duration of TCR/CD28-induced endogenous SPAK activation were markedly impaired in PKCθ-deficient T cells. Transfected SPAK synergized with constitutively active PKCθ to activate AP-1, but not NF-κB. This synergistic activity, as well as the receptor-induced SPAK activation, required the PKCθ-interacting region of SPAK, and Ser-311 mutation greatly reduced these activities of SPAK. Conversely, a SPAK-specific RNAi or a dominant-negative SPAK mutant inhibited PKCθ- and TCR/CD28-induced AP-1, but not NF-κB, activation. These results define SPAK as a substrate and target of PKCθ in a TCR/CD28-induced signaling pathway leading selectively to AP-1 (but not NF-κB) activation. PMID:14988727

  6. Blockade of PD-1/B7-H1 Interaction Restores Effector CD8+ T Cell Responses in a Hepatitis C Virus Core Murine Model1

    PubMed Central

    Lukens, John R.; Cruise, Michael W.; Lassen, Matthew G.; Hahn, Young S.

    2010-01-01

    The impaired function of CD8+ T cells is characteristic of hepatitis C virus (HCV) persistent infection. HCV core protein has been reported to inhibit CD8+ T cell responses. To determine the mechanism of the HCV core in suppressing Ag-specific CD8+ T cell responses, we generated a transgenic mouse, core(+) mice, where the expression of core protein is directed to the liver using the albumin promoter. Using a recombinant adenovirus to deliver Ag, we demonstrated that core(+) mice failed to clear adenovirus-LacZ (Ad-LacZ) infection in the liver. The effector function of LacZ-specific CD8+ T cells was particularly impaired in the livers of core(+) mice, with suppression of IFN-γ, TNF-α, and granzyme B production by CD8+ T cells. In addition, the impaired CD8+ T cell responses in core(+) mice were accompanied by the enhanced expression of the inhibitory receptor programmed death-1 (PD-1) by LacZ-specific CD8+ T cells and its ligand B7-H1 on liver dendritic cells following Ad-LacZ infection. Importantly, blockade of the PD-1/B7-H1 inhibitory pathway (using a B7-H1 blocking antibody) in core(+) mice enhanced effector function of CD8+ T cells and cleared Ad-LacZ-infection as compared with that in mice treated with control Ab. This suggests that the regulation of the PD-1/B7-H1 inhibitory pathway is crucial for HCV core-mediated impaired T cell responses and viral persistence in the liver. This also suggests that manipulation of the PD-1/B7-H1 pathway may be a potential immunotherapy to enhance effector T cell responses during persistent HCV infection. PMID:18354211

  7. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juntao; Mao, Zhangfan; Huang, Jie

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatmentsmore » that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were enhanced when combined with GSI. Interestingly, this effect was especially significant in CD133+ cells, suggesting that Notch pathway blockade may be a useful CSC-targeted therapy in lung cancer.« less

  8. Clinical-scale selection and viral transduction of human naïve and central memory CD8+ T cells for adoptive cell therapy of cancer patients.

    PubMed

    Casati, Anna; Varghaei-Nahvi, Azam; Feldman, Steven Alexander; Assenmacher, Mario; Rosenberg, Steven Aaron; Dudley, Mark Edward; Scheffold, Alexander

    2013-10-01

    The adoptive transfer of lymphocytes genetically engineered to express tumor-specific antigen receptors is a potent strategy to treat cancer patients. T lymphocyte subsets, such as naïve or central memory T cells, selected in vitro prior to genetic engineering have been extensively investigated in preclinical mouse models, where they demonstrated improved therapeutic efficacy. However, so far, this is challenging to realize in the clinical setting, since good manufacturing practices (GMP) procedures for complex cell sorting and genetic manipulation are limited. To be able to directly compare the immunological attributes and therapeutic efficacy of naïve (T(N)) and central memory (T(CM)) CD8(+) T cells, we investigated clinical-scale procedures for their parallel selection and in vitro manipulation. We also evaluated currently available GMP-grade reagents for stimulation of T cell subsets, including a new type of anti-CD3/anti-CD28 nanomatrix. An optimized protocol was established for the isolation of both CD8(+) T(N) cells (CD4(-)CD62L(+)CD45RA(+)) and CD8(+) T(CM) (CD4(-)CD62L(+)CD45RA(-)) from a single patient. The highly enriched T cell subsets can be efficiently transduced and expanded to large cell numbers, sufficient for clinical applications and equivalent to or better than current cell and gene therapy approaches with unselected lymphocyte populations. The GMP protocols for selection of T(N) and T(CM) we reported here will be the basis for clinical trials analyzing safety, in vivo persistence and clinical efficacy in cancer patients and will help to generate a more reliable and efficacious cellular product.

  9. Peripheral Frequency of CD4+ CD28− Cells in Acute Ischemic Stroke

    PubMed Central

    Tuttolomondo, Antonino; Pecoraro, Rosaria; Casuccio, Alessandra; Di Raimondo, Domenico; Buttà, Carmelo; Clemente, Giuseppe; Corte, Vittoriano della; Guggino, Giuliana; Arnao, Valentina; Maida, Carlo; Simonetta, Irene; Maugeri, Rosario; Squatrito, Rosario; Pinto, Antonio

    2015-01-01

    Abstract CD4+ CD28− T cells also called CD28 null cells have been reported as increased in the clinical setting of acute coronary syndrome. Only 2 studies previously analyzed peripheral frequency of CD28 null cells in subjects with acute ischemic stroke but, to our knowledge, peripheral frequency of CD28 null cells in each TOAST subtype of ischemic stroke has never been evaluated. We hypothesized that CD4+ cells and, in particular, the CD28 null cell subset could show a different degree of peripheral percentage in subjects with acute ischemic stroke in relation to clinical subtype and severity of ischemic stroke. The aim of our study was to analyze peripheral frequency of CD28 null cells in subjects with acute ischemic stroke in relation to TOAST diagnostic subtype, and to evaluate their relationship with scores of clinical severity of acute ischemic stroke, and their predictive role in the diagnosis of acute ischemic stroke and diagnostic subtype We enrolled 98 consecutive subjects admitted to our recruitment wards with a diagnosis of ischemic stroke. As controls we enrolled 66 hospitalized patients without a diagnosis of acute ischemic stroke. Peripheral frequency of CD4+ and CD28 null cells has been evaluated with a FACS Calibur flow cytometer. Subjects with acute ischemic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to control subjects without acute ischemic stroke. Subjects with cardioembolic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to subjects with other TOAST subtypes. We observed a significant relationship between CD28 null cells peripheral percentage and Scandinavian Stroke Scale and NIHSS scores. ROC curve analysis showed that CD28 null cell percentage may be useful to differentiate between stroke subtypes. These findings seem suggest a possible role for a T-cell component also in acute ischemic stroke clinical setting showing a different peripheral frequency of CD28 null cells in relation of each TOAST subtype of stroke. PMID:25997053

  10. Circulating CD4+CD28null and extra-thymic CD4+CD8+ double positive T cells are independently associated with disease damage in systemic lupus erythematosus patients.

    PubMed

    Ugarte-Gil, M F; Sánchez-Zúñiga, C; Gamboa-Cárdenas, R V; Aliaga-Zamudio, M; Zevallos, F; Tineo-Pozo, G; Cucho-Venegas, J M; Mosqueira-Riveros, A; Medina, M; Perich-Campos, R A; Alfaro-Lozano, J L; Rodriguez-Bellido, Z; Alarcón, G S; Pastor-Asurza, C A

    2016-03-01

    To determine whether circulating CD4+CD28null and extra-thymic CD4+CD8+ double positive (DP) T cells are independently associated with damage accrual in systemic lupus erythematosus (SLE) patients. This cross-sectional study was conducted between September 2013 and April 2014 in consecutive SLE patients from our Rheumatology Department. CD4+CD28null and CD4+CD8+ DP T-cell frequencies were analyzed by flow-cytometry. The association of damage (SLICC/ACR Damage Index, SDI) and CD4+CD28null and CD4+CD8+ DP T cells was examined by univariable and multivariable Poisson regression models, adjusting for possible confounders. All analyses were performed using SPSS 21.0. Patients' (n = 133) mean (SD) age at diagnosis was 35.5 (16.8) years, 124 (93.2%) were female; all were mestizo (mixed Caucasian and Amerindian ancestry). Disease duration was 7.4 (6.8) years. The SLE Disease Activity Index was 5.5 (4.2), and the SDI 0.9 (1.2). The percentages of CD4+CD28null and CD4+CD8+ DP T cells were 17.1 (14.4) and 0.4 (1.4), respectively. The percentage of CD4+CD28null and CD4+CD8+ DP T cells were positively associated with a higher SDI in both univariable (rate ratio (RR) 1.02, 95% confidence interval (CI): 1.01-1.03 and 1.17, 95% CI: 1.07-1.27, respectively; p < 0.001 for both) and multivariable analyses RR 1.02, 95% CI: 1.01-1.03, p = 0.001 for CD4+CD28null T cells and 1.28, 95% CI: 1.13-1.44, p < 0.001 for CD4+CD8+ DP T cells). Only the renal domain remained associated with CD4+CD28null in multivariable analyses (RR 1.023 (1.002-1.045); p = 0.034). In SLE patients, CD4+CD28null and CD4+CD8+ DP T cells are independently associated with disease damage. Longitudinal studies are warranted to determine the predictive value of these associations. © The Author(s) 2015.

  11. Opioid Challenge Evaluation of Blockade by Extended-Release Naltrexone in Opioid-Abusing Adults: Dose-Effects and Time-Course

    PubMed Central

    Bigelow, George E.; Preston, Kenzie L.; Schmittner, John; Dong, Qunming; Gastfriend, David R.

    2013-01-01

    Background Oral naltrexone's effectiveness as an opioid antagonist has been limited due to poor patient adherence. A long-acting naltrexone formulation may be beneficial. This study evaluated the effects of extended-release injectable naltrexone (XR-NTX), targeted for a one-month duration of action, in blocking opioid agonist challenge effects in humans. Methods Outpatient non-dependent opioid abusers (N=27) were randomly assigned to a single double-blind IM administration of 75, 150, or 300 mg XR-NTX. To assess the extent of opioid blockade, hydromorphone challenges (0, 3, 4.5, 6 mg IM in ascending order at 1-hr intervals [up to 13.5 mg total]) were given at pretreatment baseline and on days 7, 14, 21, 28, 42, and 56. Opioid blockade was assessed via (1) tolerability of the ascending hydromorphone doses; (2) Visual Analog Scale (VAS) ratings of subjective opioid effects and (3) pupil diameter. Effects on the VAS and pupils were assessed via the slope of the time-action function over ascending hydromorphone doses, with zero slope indicating complete blockade. Results Blockade of the VAS “any drug effect” response to 3 mg hydromorphone was complete for 14, 21, and 28 days, respectively, for the XR-NTX doses of 75, 150 and 300 mg. Subjective effects were more readily blocked than was pupil constriction. Higher hydromorphone doses produced only modest increases in agonist effects. With the 300 mg XR-NTX dose the slope of VAS responses remained at or near zero for one month even with maximal cumulative hydromorphone dosing. Conclusions These data quantify the month-long opioid blockade underlying XR-NTX's efficacy in opioid dependence treatment. PMID:22079773

  12. Intratumoral Infection with Murine Cytomegalovirus Synergizes with PD-L1 Blockade to Clear Melanoma Lesions and Induce Long-term Immunity

    PubMed Central

    Erkes, Dan A; Xu, Guangwu; Daskalakis, Constantine; Zurbach, Katherine A; Wilski, Nicole A; Moghbeli, Toktam; Hill, Ann B; Snyder, Christopher M

    2016-01-01

    Cytomegalovirus is an attractive cancer vaccine platform because it induces strong, functional CD8+ T-cell responses that accumulate over time and migrate into most tissues. To explore this, we used murine cytomegalovirus expressing a modified gp100 melanoma antigen. Therapeutic vaccination by the intraperitoneal and intradermal routes induced tumor infiltrating gp100-specific CD8+ T-cells, but provided minimal benefit for subcutaneous lesions. In contrast, intratumoral infection of established tumor nodules greatly inhibited tumor growth and improved overall survival in a CD8+ T-cell-dependent manner, even in mice previously infected with murine cytomegalovirus. Although murine cytomegalovirus could infect and kill B16F0s in vitro, infection was restricted to tumor-associated macrophages in vivo. Surprisingly, the presence of a tumor antigen in the virus only slightly increased the efficacy of intratumoral infection and tumor-specific CD8+ T-cells in the tumor remained dysfunctional. Importantly, combining intratumoral murine cytomegalovirus infection with anti-PD-L1 therapy was synergistic, resulting in tumor clearance from over half of the mice and subsequent protection against tumor challenge. Thus, while a murine cytomegalovirus-based vaccine was poorly effective against established subcutaneous tumors, direct infection of tumor nodules unexpectedly delayed tumor growth and synergized with immune checkpoint blockade to promote tumor clearance and long-term protection. PMID:27434584

  13. Enhancement of soluble CD28 levels in the serum of Graves' disease.

    PubMed

    Sun, Zhongwen; Yi, Lixian; Tao, Hong; Huang, Jingfang; Jin, Zhenghong; Xiao, Yang; Feng, Caiyun; Sun, Jing

    2014-01-01

    Graves' disease is an autoimmune disease of the thyroid gland mediated by T cells. CD28, a member of costimulatory molecules, plays a pivotal role in regulating T-cell responses. Plasma-soluble CD28 is one form of CD28 in peripheral blood. To investigate the concentrations of soluble CD28 in patients with Graves' disease, we used a sensitive dual monoclonal antibody sandwich enzyme-linked immunosorbent assay (ELISA) to detect the soluble form of CD28. Our results suggested that mean concentrations of soluble CD28 in plasma of patients with Graves' disease were 1.79 ±1.52 ng/ml, and levels of soluble CD28 in healthy subjects were only 0.83 ±1.35 ng/ml. Concentrations of soluble CD28 detected in patients with Graves' disease were significantly higher than those of healthy subjects (p < 0.01). Moreover, there was a significant positive correlation between the concentrations of soluble CD28 in plasma and levels of FT3 (r = 0.663), FT4 (r = 0.624) and TRAb (r = 0.728) in serum, but a negative correlation was found between sCD28 levels and TSH (r = -0.726). Through in vitro experiments we observed that engagement of soluble CD28 protein and B7-1/B7-2 molecules expressed on dendritic cells could exert the secretion of cytokine IL-6, which may promote the production of autoantibody and aggravate Graves' disease. Therefore, aberrant elevation of plasma-soluble CD28 in patients with Graves' disease may reflect the dysregulation of immune system, and may serve as a useful biomarker in Graves' disease diagnosis.

  14. Blockade of the High-Affinity Interleukin-2 Receptors with Daclizumab High-Yield Process: Pharmacokinetic/Pharmacodynamic Analysis of Single- and Multiple-Dose Phase I Trials.

    PubMed

    Minocha, Mukul; Tran, Jonathan Q; Sheridan, James P; Othman, Ahmed A

    2016-01-01

    Daclizumab high-yield process (DAC HYP) is a humanized monoclonal antibody that selectively blocks the α-subunit (CD25) of the high-affinity interleukin-2 receptors, and has shown robust efficacy as a treatment for multiple sclerosis (MS). This work quantitatively characterized the relationship between DAC HYP serum concentrations and saturation of CD25 expressed on antigen-rich target T cells in blood. Serial pharmacokinetic and 968 CD25 measurements from three double-blind, randomized, placebo-controlled, phase I studies of DAC HYP (50-300 mg subcutaneous and 200-400 mg intravenous doses or placebo) in healthy volunteers (n = 95) were analyzed using nonlinear mixed-effects modeling. CD25 occupancy was determined using flow cytometry and a fluorescently-labeled DAC HYP-competing antibody. CD25 occupancy was described using a direct inhibitory sigmoidal maximum effect (E max) model (where DAC HYP fully inhibited CD25 labeling with competing antibody). Two IC50 (serum concentration corresponding to 50 % of maximal inhibition) parameters were used to describe rapid CD25 saturation at initiation of dosing and apparently slower desaturation during DAC HYP washout. Parameter estimates (95 % bootstrap confidence intervals) were: baseline CD25 labeling, 47 % (45-48); DAC HYP IC50(saturation), 0.023 µg/mL (0.005-0.073); IC50(desaturation) 0.86 µg/mL (0.74-0.98); Hill coefficient 5.6 (4.3-6.8). Based on the developed model, the 150 mg monthly subcutaneous regimen of DAC HYP in subjects with MS is predicted to saturate CD25 on target effector T cells within a few hours of dosing and maintain CD25 saturation during the entire dosing interval. Free CD25 levels return to baseline within 4-6 months of the last DAC HYP dose.

  15. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer

    PubMed Central

    Tan, Marcus C. B.; Goedegebuure, Peter S.; Belt, Brian A.; Flaherty, Brian; Sankpal, Narendra; Gillanders, William E.; Eberlein, Timothy J.; Hsieh, Chyi-Song; Linehan, David C.

    2013-01-01

    Tumors evade immune destruction by actively inducing immune tolerance through the recruitment of CD4+CD25+Foxp3+ regulatory T cells (Treg). We have previously described increased prevalence of these cells in pancreatic adenocarcinoma, but it remains unclear what mechanisms are involved in recruiting Treg into the tumor microenvironment. Here, we postulated that chemokines might direct Treg homing to tumor. We show, in both human pancreatic adenocarcinoma and a murine pancreatic tumor model (Pan02), that tumor cells produce increased levels of ligands for the CCR5 chemokine receptor, and, reciprocally, that CD4+ Foxp3+ Treg, compared with CD4+ Foxp3− effector T cells, preferentially express CCR5. When CCR5/CCL5 signaling is disrupted, either by reducing CCL5 production by tumor cells or by systemic administration of a CCR5 inhibitor (TAK-779), Treg migration to tumors is reduced and tumors are smaller than in control mice. Thus, this study demonstrates the importance of Treg in immune evasion by tumors, how blockade of Treg migration may inhibit tumor growth, and, specifically in pancreatic adenocarcinoma, the role of CCR5 in the homing of tumor-associated Treg. Selective targeting of CCR5/CCL5 signaling may represent a novel immunomodulatory strategy for the treatment of cancer. PMID:19155524

  16. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes.

    PubMed

    Tavano, Regina; Gri, Giorgia; Molon, Barbara; Marinari, Barbara; Rudd, Christopher E; Tuosto, Loretta; Viola, Antonella

    2004-11-01

    In T lymphocytes, the Src family kinase Lck associates lipid rafts and accumulates at the immunological synapse (IS) during T cell stimulation by APCs. Using CD4- or CD28-deficient murine T cells, it was suggested that recruitment of Lck to the IS depends on CD4, whereas CD28 sustains Lck activation. However, in human resting T cells, CD28 is responsible for promoting recruitment of lipid rafts to the IS by an unknown mechanism. Thus, we performed a series of experiments to determine 1) whether Lck is recruited to the IS through lipid rafts; and 2) whether Lck recruitment to the IS of human resting T cells depends on CD4 or on CD28 engagement. We found that CD28, but not CD4, stimulation induced recruitment of Lck into detergent-resistant domains as well as its accumulation at the IS. We also found that Lck recruitment to the IS depends on the CD28 COOH-terminal PxxPP motif. Thus, the CD28-3A mutant, generated by substituting the prolines in positions 208, 211, and 212 with alanines, failed to induce Lck and lipid raft accumulation at the synapse. These results indicate that CD28 signaling orchestrates both Lck and lipid raft recruitment to the IS to amplify T cell activation.

  17. Renin-angiotensin system (RAS) blockade attenuates growth and metastatic potential of renal cell carcinoma in mice.

    PubMed

    Araújo, Wedson F; Naves, Marcelo A; Ravanini, Juliana N; Schor, Nestor; Teixeira, Vicente P C

    2015-09-01

    Renal cell carcinoma (RCC) is the most frequent type of cancer among renal neoplasms in adults and responds poorly to radiotherapy and chemotherapy. There is evidence that blockade of the renin-angiotensin system (RAS) might have antineoplastic effects. The aim of this study was to investigate the effects of RAS blockade on RCC in a murine model. Murine renal cancer cells (Renca) were injected (1 × 10(5)) into the subcapsular space of the left kidney of BALB/c mice (8 wk of age). The animals were divided into 4 groups: a control group (no treatment), angiotensin-receptor blockers group (losartan 100mg/kg/d), angiotensin-converting enzyme inhibitor group (captopril 10mg/kg/d), and angiotensin-receptor blockers +angiotensin-converting enzyme inhibitor group (losartan 100mg/kg/d +captopril 10mg/kg/d). The animals received the drugs by gavage for 21 days after inoculation, beginning 2 days before tumor induction, and were then euthanized. After killing the animals, the kidneys and lungs were removed, weighed, and processed for histopathological and immunohistochemical analyses. Angiogenesis and vascular microvessels were assessed with the antibodies anti-vascular endothelial growth factor and anti-CD34. Angiotensin II-inoculated animals developed renal tumors. Treated animals presented smaller tumors, regardless of the therapeutic regimen, and far fewer lung metastases in both quantity and dimension compared with the controls. The expression of vascular endothelial growth factor and CD34 were significantly decreased in renal tumors of treated animals compared with the controls. Our findings suggest that blockade of RAS decreases tumor proliferation and metastatic capacity of RCC in this experimental model. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients.

    PubMed

    Linedale, Richard; Schmidt, Campbell; King, Brigid T; Ganko, Annabelle G; Simpson, Fiona; Panizza, Benedict J; Leggatt, Graham R

    2017-01-01

    Perineural spread of tumour cells along cranial nerves is a severe complication of primary cutaneous squamous cell carcinomas of the head and neck region. While surgical excision of the tumour is the treatment of choice, removal of all the tumour is often complicated by the neural location and recurrence is frequent. Non-invasive immune treatments such as checkpoint inhibitor blockade may be useful in this set of tumours although little is understood about the immune response to perineural spread of squamous cell carcinomas. Immunohistochemistry studies suggest that perineural tumour contains a lymphocyte infiltrate but it is difficult to quantitate the different proportions of immune cell subsets and expression of checkpoint molecules such as PD-1, Tim-3 and CTLA-4. Using flow cytometry of excised perineural tumour tissue, we show that a T cell infiltrate is prominent in addition to less frequent B cell, NK cell and NKT cell infiltrates. CD8 T cells are more frequent than other T cells in the tumour tissue. Amongst CD8 T cells, the frequency of Tim-3, CTLA-4 and PD-1 expressing cells was significantly greater in the tumour relative to the blood, a pattern that was repeated for Tim-3, CTLA-4 and PD-1 amongst non-CD8 T cells. Using immunohistochemistry, PD-1 and PD-L1-expression could be detected in close proximity amongst perineural tumour tissue. The data suggest that perineural SCC contains a mixture of immune cells with a predominant T cell infiltrate containing CD8 T cells. Elevated frequencies of tumour-associated Tim-3+, CTLA-4+ and PD-1+ CD8 T cells suggests that a subset of patients may benefit from local antibody blockade of these checkpoint inhibitors.

  19. Combined Blockade of T Cell Immunoglobulin and Mucin Domain 3 and Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Results in Durable Therapeutic Efficacy in Mice with Intracranial Gliomas.

    PubMed

    Li, Jinhu; Liu, Xiaodong; Duan, Yijun; Liu, Yueting; Wang, Hongqin; Lian, Shizhong; Zhuang, Guotao; Fan, Yimin

    2017-07-24

    BACKGROUND Glioblastoma multiforme (GBM) evades immune surveillance by inducing immunosuppression via receptor-ligand interactions between immune checkpoint molecules. T cell immunoglobulin and mucin domain 3 (Tim-3) is a key checkpoint receptor responsible for exhaustion and dysfunction of T cells and plays a critical role in immunosuppression. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been recently identified as a heterophilic ligand for Tim-3. MATERIAL AND METHODS We established an intracranial GBM model using C57BL/6 mice and GL261 cells, and treated the mice with single or combined monoclonal antibodies (mAbs) against Tim-3/CEACAM1. The CD4+, CD8+, and regulatory T cells in brain-infiltrating lymphocytes were analyzed using flow cytometry, and the effector function of T cells was assessed using ELISA. We performed a rechallenge by subcutaneous injection of GL261 cells in the "cured" (>90 days post-orthotopic tumor implantation) and naïve mice. RESULTS The mean survival time in the control, anti-Tim-3, anti-CEACAM1, and combined treatment groups was 29.8, 43.4, 42.3, and 86.0 days, respectively, with 80% of the mice in the combined group becoming long-term survivors showing immune memory against glioma cells. Infiltrating CD4+ and CD8+ T cells increased and immunosuppressive Tregs decreased with the combined therapy, which resulted in a markedly elevated ratio of CD4+ and CD8+ cells to Tregs. Additionally, plasma IFN-γ and TGF-β levels were upregulated and downregulated, respectively. CONCLUSIONS Our data indicate that combined blockade of Tim-3 and CEACAM1 generates robust therapeutic efficacy in mice with intracranial tumors, and provides a promising option for GBM immunotherapy.

  20. CD8+CD28+ T cells might mediate injury of cardiomyocytes in acute myocardial infarction.

    PubMed

    Zhang, Lili; Wang, Zhiyan; Wang, Di; Zhu, Jumo; Wang, Yi

    2018-06-07

    CD8 + T cells accumulate in the necrotic myocardium of acute myocardial infarction (AMI). It is unclear whether CD8 + CD28 + T cells, a specific subset of CD8 + T cells, contribute to myocardial injury. In this study, 92 consecutive patients with AMI and 28 healthy control subjects were enrolled. The frequency of CD8 + CD28 + T cells in peripheral blood samples was assayed by flow cytometry. Plasma cardiac troponin I (TNI) and left ventricular ejection fraction (LVEF) were determined. Long-term prognosis of the patients was evaluated by major adverse cardiac and cerebrovascular events (MACCE) over a 12-month follow-up period. Our findings indicated that patients with AMI who presented with high numbers of CD8 + CD28 + T cells had an increased infarction size and aggravated ventricular function. We proposed that cytotoxic CD8 + CD28 + T cell-mediated myocardial necrosis may act as a novel and alternative pathway of AMI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Role of Endorphins in the Pathophysiology of Hemorrhagic and Endotoxic Shock in the Subhuman Primate.

    DTIC Science & Technology

    1985-03-15

    by either a- or e-adrenergic blockade (phenoxybenzamine or metoprolol , respectively) and potentiated by cholinergic receptor *blockade with...which was blocked by e-adrenergic blockade with metoprolol . Naloxone had no effect on plasma catecholamine levels (Table V). The sustained cardiovascular...58±8 213±134 57:5C Shock Saline 19.3:3.7 8.6±2.8 1.4:0.2 Metoprolol 21.1±7.0 5.2t1.3 1.0:0.2 Phenox y- benzamine 9.4:1.5 4.2±0.5 1.0:0.2 Both 14.1±3.5

  2. Lymphocyte senescence in COPD is associated with loss of glucocorticoid receptor expression by pro-inflammatory/cytotoxic lymphocytes.

    PubMed

    Hodge, Greg; Jersmann, Hubertus; Tran, Hai B; Holmes, Mark; Reynolds, Paul N; Hodge, Sandra

    2015-01-09

    Glucocorticoid (GC) resistance is a major barrier in COPD treatment. We have shown increased expression of the drug efflux pump, Pgp1 in cytotoxic/pro-inflammatory lymphocytes in COPD. Loss of lymphocyte co-stimulatory molecule CD28 (lymphocyte senescence) was associated with a further increase in their pro-inflammatory/cytotoxic potential and resistance to GC. We hypothesized that lymphocyte senescence and increased Pgp1 are also associated with down-regulation of the GC receptor (GCR). Blood was collected from 10 COPD and 10 healthy aged-matched controls. Flow cytometry was applied to assess intracellular pro-inflammatory cytokines, CD28, Pgp1, GCR, steroid binding and relative cytoplasm/nuclear GCR by CD28+ and CD28null T, NKT-like cells. GCR localization was confirmed by fluorescent microscopy. COPD was associated with increased numbers of CD28nullCD8+ T and NKT-like cells. Loss of CD28 was associated with an increased percentage of T and NKT-like cells producing IFNγ or TNFα and associated with a loss of GCR and Dex-Fluor staining but unchanged Pgp1. There was a significant loss of GCR in CD8 + CD28null compared with CD8 + CD28+ T and NKT-like cells from both COPD and controls (eg, mean ± SEM 8 ± 3% GCR + CD8 + CD28null T-cells vs 49 ± 5% GCR + CD8 + CD28+ T-cells in COPD). There was a significant negative correlation between GCR expression and IFNγ and TNFα production by T and NKT-like cells(eg, COPD: T-cell IFNγ R = -.615; ) and with FEV1 in COPD (R = -.777). COPD is associated with loss of GCR in senescent CD28null and NKT-like cells suggesting alternative treatment options to GC are required to inhibit these pro-inflammatory/cytotoxic cells.

  3. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming.

    PubMed

    Tian, Lin; Goldstein, Amit; Wang, Hai; Ching Lo, Hin; Sun Kim, Ik; Welte, Thomas; Sheng, Kuanwei; Dobrolecki, Lacey E; Zhang, Xiaomei; Putluri, Nagireddy; Phung, Thuy L; Mani, Sendurai A; Stossi, Fabio; Sreekumar, Arun; Mancini, Michael A; Decker, William K; Zong, Chenghang; Lewis, Michael T; Zhang, Xiang H-F

    2017-04-13

    Blockade of angiogenesis can retard tumour growth, but may also paradoxically increase metastasis. This paradox may be resolved by vessel normalization, which involves increased pericyte coverage, improved tumour vessel perfusion, reduced vascular permeability, and consequently mitigated hypoxia. Although these processes alter tumour progression, their regulation is poorly understood. Here we show that type 1 T helper (T H 1) cells play a crucial role in vessel normalization. Bioinformatic analyses revealed that gene expression features related to vessel normalization correlate with immunostimulatory pathways, especially T lymphocyte infiltration or activity. To delineate the causal relationship, we used various mouse models with vessel normalization or T lymphocyte deficiencies. Although disruption of vessel normalization reduced T lymphocyte infiltration as expected, reciprocal depletion or inactivation of CD4 + T lymphocytes decreased vessel normalization, indicating a mutually regulatory loop. In addition, activation of CD4 + T lymphocytes by immune checkpoint blockade increased vessel normalization. T H 1 cells that secrete interferon-γ are a major population of cells associated with vessel normalization. Patient-derived xenograft tumours growing in immunodeficient mice exhibited enhanced hypoxia compared to the original tumours in immunocompetent humans, and hypoxia was reduced by adoptive T H 1 transfer. Our findings elucidate an unexpected role of T H 1 cells in vasculature and immune reprogramming. T H 1 cells may be a marker and a determinant of both immune checkpoint blockade and anti-angiogenesis efficacy.

  4. Management of benign prostatic hyperplasia with silodosin

    PubMed Central

    Yamanishi, Tomonori; Mizuno, Tomoya; Kamai, Takao; Yoshida, Ken-Ichiro; Sakakibara, Ryuji; Uchiyama, Tomoyuki

    2009-01-01

    It has been reported that blockade of α1A-adrenoceptor (AR) relieves bladder outlet obstruction, while blockade of α1D-AR is believed to alleviate storage symptoms due to detrusor overactivity. Silodosin, (−)-1-(3-hydroxypropyl)-5-[(2R)-2-({2-[2-(2,2,2trifluoroethoxy) phenoxy]ethyl}amino)propyl]-2,3-dihydro-1H-indole-7- carboxamide, is a new α1A-AR selective antagonist. Silodosin is highly selective for the α1A-AR subtype, showing an affinity for the α1A-AR that is 583- and 55.5-fold higher than its affinity for the α1B-and α1D-ARs, respectively. In randomized, double-blind, placebo-controlled phase III studies performed in Japan and the United States, silodosin has been shown to be effective for both storage and voiding symptoms associated with benign prostatic hyperplasia. Early effects of silodosin (after 2–6 hours or day 1) on lower urinary tract symptoms have also been reported. In urodynamic studies, detrusor overactivity disappeared in 40% and improved in 35% of patients after administration. In pressure flow studies, the grade of obstruction on the International Continence Society nomogram showed improvement in 56% of patients. The rate of adverse events in the silodosin, tamsulosin and placebo groups was 88.6%, 82.3%, and 71.6%, respectively. The most common adverse event was (mostly mild) abnormal ejaculation (28.1%). However, few patients (2.8%) discontinued silodosin because of abnormal ejaculation. Orthostatic hypotension showed a similar incidence in the silodosin (2.6%) and placebo (1.5%) groups. In conclusion, silodosin improves detrusor overactivity and obstruction and thus may be effective for both storage and voiding symptoms in patients with benign prostatic hyperplasia. PMID:24198606

  5. Massive infection and loss of CD4+ T cells occurs in the intestinal tract of neonatal rhesus macaques in acute SIV infection.

    PubMed

    Wang, Xiaolei; Rasmussen, Terri; Pahar, Bapi; Poonia, Bhawna; Alvarez, Xavier; Lackner, Andrew A; Veazey, Ronald S

    2007-02-01

    Rapid, profound, and selective depletion of memory CD4+ T cells has now been confirmed to occur in simian immunodeficiency virus (SIV)-infected adult macaques and human immunodeficiency virus (HIV)-infected humans. Within days of infection, marked depletion of memory CD4+ T cells occurs primarily in mucosal tissues, the major reservoir for memory CD4+ T cells in adults. However, HIV infection in neonates often results in higher viral loads and rapid disease progression, despite the paucity of memory CD4+ T cells in the peripheral blood. Here, we examined the immunophenotype of CD4+ T cells in normal and SIV-infected neonatal macaques to determine the distribution of naive and memory T-cell subsets in tissues. We demonstrate that, similar to adults, neonates have abundant memory CD4+ T cells in the intestinal tract and spleen and that these are selectively infected and depleted in primary SIV infection. Within 12 days of SIV infection, activated (CD69+), central memory (CD95+CD28+) CD4+ T cells are marked and persistently depleted in the intestine and other tissues of neonates compared with controls. The results in dicate that "activated" central memory CD4+ T cells are the major target for early SIV infection and CD4+ T cell depletion in neonatal macaques.

  6. Massive infection and loss of CD4+ T cells occurs in the intestinal tract of neonatal rhesus macaques in acute SIV infection

    PubMed Central

    Wang, Xiaolei; Rasmussen, Terri; Pahar, Bapi; Poonia, Bhawna; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2007-01-01

    Rapid, profound, and selective depletion of memory CD4+ T cells has now been confirmed to occur in simian immunodeficiency virus (SIV)–infected adult macaques and human immunodeficiency virus (HIV)–infected humans. Within days of infection, marked depletion of memory CD4+ T cells occurs primarily in mucosal tissues, the major reservoir for memory CD4+ T cells in adults. However, HIV infection in neonates often results in higher viral loads and rapid disease progression, despite the paucity of memory CD4+ T cells in the peripheral blood. Here, we examined the immunophenotype of CD4+ T cells in normal and SIV-infected neonatal macaques to determine the distribution of naive and memory T-cell subsets in tissues. We demonstrate that, similar to adults, neonates have abundant memory CD4+ T cells in the intestinal tract and spleen and that these are selectively infected and depleted in primary SIV infection. Within 12 days of SIV infection, activated (CD69+), central memory (CD95+CD28+) CD4+ T cells are marked and persistently depleted in the intestine and other tissues of neonates compared with controls. The results in dicate that “activated” central memory CD4+ T cells are the major target for early SIV infection and CD4+ T cell depletion in neonatal macaques. PMID:17047153

  7. Immunological role of CD4+CD28null T lymphocytes, natural killer cells, and interferon-gamma in pediatric patients with sickle cell disease: relation to disease severity and response to therapy.

    PubMed

    ElAlfy, Mohsen Saleh; Adly, Amira Abdel Moneam; Ebeid, Fatma Soliman ElSayed; Eissa, Deena Samir; Ismail, Eman Abdel Rahman; Mohammed, Yasser Hassan; Ahmed, Manar Elsayed; Saad, Aya Sayed

    2018-06-20

    Sickle cell disease (SCD) is associated with alterations in immune phenotypes. CD4 + CD28 null T lymphocytes have pro-inflammatory functions and are linked to vascular diseases. To assess the percentage of CD4 + CD28 null T lymphocytes, natural killer cells (NK), and IFN-gamma levels, we compared 40 children and adolescents with SCD with 40 healthy controls and evaluated their relation to disease severity and response to therapy. Patients with SCD steady state were studied, focusing on history of frequent vaso-occlusive crisis, hydroxyurea therapy, and IFN-gamma levels. Analysis of CD4 + CD28 null T lymphocytes and NK cells was done by flow cytometry. Liver and cardiac iron overload were assessed. CD4 + CD28 null T lymphocytes, NK cells, and IFN-gamma levels were significantly higher in patients than controls. Patients with history of frequent vaso-occlusive crisis and those with vascular complications had higher percentage of CD4 + CD28 null T lymphocytes and IFN-gamma while levels were significantly lower among hydroxyurea-treated patients. CD4 + CD28 null T lymphocytes were positively correlated to transfusional iron input while these cells and IFN-gamma were negatively correlated to cardiac T2* and duration of hydroxyurea therapy. NK cells were correlated to HbS and indirect bilirubin. Increased expression of CD4 + CD28 null T lymphocytes highlights their role in immune dysfunction and pathophysiology of SCD complications.

  8. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia.

    PubMed

    Davila, Marco L; Riviere, Isabelle; Wang, Xiuyan; Bartido, Shirley; Park, Jae; Curran, Kevin; Chung, Stephen S; Stefanski, Jolanta; Borquez-Ojeda, Oriana; Olszewska, Malgorzata; Qu, Jinrong; Wasielewska, Teresa; He, Qing; Fink, Mitsu; Shinglot, Himaly; Youssif, Maher; Satter, Mark; Wang, Yongzeng; Hosey, James; Quintanilla, Hilda; Halton, Elizabeth; Bernal, Yvette; Bouhassira, Diana C G; Arcila, Maria E; Gonen, Mithat; Roboz, Gail J; Maslak, Peter; Douer, Dan; Frattini, Mark G; Giralt, Sergio; Sadelain, Michel; Brentjens, Renier

    2014-02-19

    We report on 16 patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) that we treated with autologous T cells expressing the 19-28z chimeric antigen receptor (CAR) specific to the CD19 antigen. The overall complete response rate was 88%, which allowed us to transition most of these patients to a standard-of-care allogeneic hematopoietic stem cell transplant (allo-SCT). This therapy was as effective in high-risk patients with Philadelphia chromosome-positive (Ph(+)) disease as in those with relapsed disease after previous allo-SCT. Through systematic analysis of clinical data and serum cytokine levels over the first 21 days after T cell infusion, we have defined diagnostic criteria for a severe cytokine release syndrome (sCRS), with the goal of better identifying the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the sCRS. Additionally, we found that serum C-reactive protein, a readily available laboratory study, can serve as a reliable indicator for the severity of the CRS. Together, our data provide strong support for conducting a multicenter phase 2 study to further evaluate 19-28z CAR T cells in B-ALL and a road map for patient management at centers now contemplating the use of CAR T cell therapy.

  9. Differential blockade of agonist- and depolarization-induced sup 45 Ca2+ influx in smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallnoefer, A.C.; Cauvin, C.; Lategan, T.W.

    1989-10-01

    ATP stimulated {sup 45}Ca2+ influx in rat aortic smooth muscle cells in a concentration-dependent manner (EC50 = 3.6 +/- 0.5 X 10(-7) M). ADP and GTP were less effective than ATP in stimulating {sup 45}Ca2+ influx; AMP was weakly active and the adenosine agonist 5'-(N-ethyl-carboxamido)-adenosine (NECA) had no effect. ATP gamma S was about equieffective with ATP, whereas alpha,beta-methylene-ATP (APCPP) did not induce {sup 45}Ca2+ influx. Stimulation of {sup 45}Ca2+ influx by ATP was not abolished by the dihydropyridine Ca2+ channel antagonist darodipine (PY 108-068), which completely blocked depolarization-induced {sup 45}Ca2+ influx. Inorganic cations (La3+, Cd2+, Co2+, Ni2+, Mn2+, andmore » Mg2+) were able to inhibit both agonist- and depolarization-induced {sup 45}Ca2+ influx. Cd2+, however, was approximately 20 times more selective in blocking K+-stimulated than agonist-stimulated {sup 45}Ca2+ influx. These data indicate that ATP-stimulated Ca2+ influx in rat aortic smooth muscle cells is resistant to darodipine but is reduced by La3+, Cd2+, and other inorganic blockers of Ca2+ channels.« less

  10. High susceptibility to liver injury in IL-27 p28 conditional knockout mice involves intrinsic interferon-γ dysregulation of CD4+ T cells.

    PubMed

    Zhang, Song; Liang, Ruifang; Luo, Wei; Liu, Chang; Wu, Xiaoli; Gao, Yanan; Hao, Jianlei; Cao, Guangchao; Chen, Xi; Wei, Jun; Xia, Siyuan; Li, Zheng; Wen, Ti; Wu, Yunyun; Zhou, Xinglong; Wang, Puyue; Zhao, Liqing; Wu, Zhengzhou; Xiong, Sidong; Gao, Xiaoming; Gao, Xiang; Chen, Yongyan; Ge, Qing; Tian, Zhigang; Yin, Zhinan

    2013-04-01

    Interleukin (IL)-27, a newly discovered IL-12 family cytokine, is composed of p28 and EBI3. In this study, CD11c-p28(f/f) conditional knockout mice were generated to delete p28 specifically in dendritic cells (DCs). We demonstrated that in the absence of DC-derived p28, these mice were highly susceptible to both low and higher concentrations of concanavalin A (ConA) (5 mg/kg or 10 mg/kg), with extremely early and steady high levels of interferon-γ (IFN-γ) in sera. Neutralizing IFN-γ prevented ConA-induced liver damage in these mice, indicating a critical role of IFN-γ in this pathological process. Interestingly, the main source of the increased IFN-γ in CD11c-p28(f/f) mice was CD4+ T cells, but not natural killer T (NKT) cells. Depletion of CD4+ , but not NK1.1+ , cells completely abolished liver damage, whereas transferring CD4+ T cells from CD11c-p28(f/f) mice, but not from wild-type mice or CD11c-p28(f/f) -IFN-γ(-/-) double knockout mice to CD4(-/-) mice, restored the increased liver damage. Further studies defined higher levels of IFN-γ and T-bet messenger RNA in naïve CD4+ T cells from CD11c-p28(f/f) mice, and these CD4+ T cells were highly responsive to both low and higher concentrations of anti-CD3, indicating a programmed functional alternation of CD4+ T cells. We provide a unique model for studying the pathology of CD4+ T cell-mediated liver injury and reveal a novel function of DC-derived p28 on ConA-induced fulminant hepatitis through regulation of the intrinsic ability for IFN-γ production by CD4+ T cells. Copyright © 2012 American Association for the Study of Liver Diseases.

  11. Impaired Upregulation of the Costimulatory Molecules, CD27 and CD28, on CD4+ T Cells from HIV Patients Receiving ART Is Associated with Poor Proliferative Responses.

    PubMed

    Tanaskovic, Sara; Price, Patricia; French, Martyn A; Fernandez, Sonia

    2017-02-01

    HIV patients beginning antiretroviral therapy (ART) with advanced immunodeficiency often retain low CD4 + T cell counts despite virological control. We examined proliferative responses and upregulation of costimulatory molecules, following anti-CD3 stimulation, in HIV patients with persistent CD4 + T cell deficiency on ART. Aviremic HIV patients with nadir CD4 + T cell counts <100 cells/μL and who had received ART for a median time of 7 (range 1-11) years were categorized into those achieving low (<350 cells/μL; n = 13) or normal (>500 cells/μL; n = 20) CD4 + T cell counts. Ten healthy controls were also recruited. CD4 + T cell proliferation (Ki67) and upregulation of costimulatory molecules (CD27 and CD28) after anti-CD3 stimulation were assessed by flow cytometry. Results were related to proportions of CD4 + T cells expressing markers of T cell senescence (CD57), activation (HLA-DR), and apoptotic potential (Fas). Expression of CD27 and/or CD28 on uncultured CD4 + T cells was similar in patients with normal CD4 + T cell counts and healthy controls, but lower in patients with low CD4 + T cell counts. Proportions of CD4 + T cells expressing CD27 and/or CD28 correlated inversely with CD4 + T cell expression of CD57, HLA-DR, and Fas. After anti-CD3 stimulation, induction of CD27 hi CD28 hi expression was independent of CD4 + T cell counts, but lower in HIV patients than in healthy controls. Induction of CD27 hi CD28 hi expression correlated with induction of Ki67 expression in total, naïve, and CD31 + naïve CD4 + T cells from patients. In HIV patients responding to ART, impaired induction of CD27 and CD28 on CD4 + T cells after stimulation with anti-CD3 is associated with poor proliferative responses as well as greater CD4 + T cell activation and immunosenescence.

  12. T cell Bim levels reflect responses to anti–PD-1 cancer therapy

    PubMed Central

    Dronca, Roxana S.; Liu, Xin; Harrington, Susan M.; Chen, Lingling; Cao, Siyu; Kottschade, Lisa A.; McWilliams, Robert R.; Block, Matthew S.; Nevala, Wendy K.; Thompson, Michael A.; Mansfield, Aaron S.; Park, Sean S.; Markovic, Svetomir N.

    2016-01-01

    Immune checkpoint therapy with PD-1 blockade has emerged as an effective therapy for many advanced cancers; however, only a small fraction of patients achieve durable responses. To date, there is no validated blood-based means of predicting the response to PD-1 blockade. We report that Bim is a downstream signaling molecule of the PD-1 pathway, and its detection in T cells is significantly associated with expression of PD-1 and effector T cell markers. High levels of Bim in circulating tumor-reactive (PD-1+CD11ahiCD8+) T cells were prognostic of poor survival in patients with metastatic melanoma who did not receive anti–PD-1 therapy and were also predictive of clinical benefit in patients with metastatic melanoma who were treated with anti–PD-1 therapy. Moreover, this circulating tumor-reactive T cell population significantly decreased after successful anti–PD-1 therapy. Our study supports a crucial role of Bim in both T cell activation and apoptosis as regulated by PD-1 and PD-L1 interactions in effector CD8+ T cells. Measurement of Bim levels in circulating T cells of patients with cancer may provide a less invasive strategy to predict and monitor responses to anti–PD-1 therapy, although future prospective analyses are needed to validate its utility. PMID:27182556

  13. Basics of cancer immunotherapy.

    PubMed

    Fujioka, Yuki; Nishikawa, Hiroyoshi

    2016-01-01

    The immune system is the body's defense against infectious organisms and other invaders including cancer cells. Cancer immunotherapy, which employs our own immune systems to attack cancer cells, is now emerging as a promising modality of cancer treatment based upon the clinical successes of immune checkpoint blockade and adoptive T cell transfer. In hematologic malignancies, clinical application of anti-PD-1 mAb and CAR (chimeric antigen receptor) T therapy is now being extensively tested in Hodgkin's disease, multiple myeloma, and CD19 + acute lymphocytic leukemia. In sharp contrast to conventional anti-cancer reagents which directly kill cancer cells, cancer immunotherapy activates various types of immune effector cells to attack cancer cells. However, more than half of the treated patients showed no activation of anti-tumor CD8 + killer T cells and CD4 + helper T cells and failed to respond to immune therapies such as immune checkpoint blockade, even when administered in combination regimens. Thus, development of novel immunotherapies to achieve more effective activation of anti-cancer immunity and immuno-monitoring of biomarkers, allowing proper evaluation of immune responses in cancer patients in order to detect responders, are urgent issues. Additionally, we must pay attention to characteristic immunological side effects not observed following treatment with conventional anti-cancer reagents. Herein, we present a summary outline and discuss the future direction of cancer immunotherapy.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsushita, Yuichiro; Ohya, Susumu; Itoda, Haruna

    In T lymphocyte, activation of Kv1.3 channel, the major voltage-dependent K{sup +} channel, is an essential step for cell proliferation in immune responses. Here, effects of anti-CD3 and anti-CD28 antibodies on Kv1.3 current were examined in three types of human T lymphocyte derived cell lines, Jurkat E6-1, p56lck-kinase deficient mutant JCaM.1, and CD45-phosphatase deficient mutant J45.01. Kv1.3 current was partly reduced by CD3 stimulation and more strongly by addition of anti-CD28 antibody in E6-1. In JCaM.1, Kv1.3 current responses to anti-CD28/CD3 antibodies were similar to those in E6-1. In J45.01, CD3 stimulation partly inhibited Kv1.3 current, but the additive reductionmore » by CD28 stimulation was not significant. The inhibition of tyrosine phosphatase in E6-1 abolished the additional inhibition by anti-CD28 antibody in a similar manner as in J45.01. In conclusion, the stimulation of CD28 in addition to CD3 strongly inhibits Kv1.3 current and this additive inhibition is mediated by CD45 activation.« less

  15. CD40 agonist converting CTL exhaustion via the activation of the mTORC1 pathway enhances PD-1 antagonist action in rescuing exhausted CTLs in chronic infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Aizhang; Wang, Rong; Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan

    Expansion of PD-1-expressing CD8{sup +} cytotoxic T lymphocytes (CTLs) and associated CTL exhaustion are chief issues for ineffective virus-elimination in chronic infectious diseases. PD-1 blockade using antagonistic anti-PD-L1 antibodies results in a moderate conversion of CTL exhaustion. We previously demonstrated that CD40L signaling of ovalbumin (OVA)-specific vaccine, OVA-Texo, converts CTL exhaustion via the activation of the mTORC1 pathway in OVA-expressing adenovirus (AdVova)-infected B6 mice showing CTL inflation and exhaustion. Here, we developed AdVova-infected B6 and transgenic CD11c-DTR (termed AdVova-B6 and AdVova-CD11c-DTR) mice with chronic infection, and assessed a potential effect of CD40 agonist on the conversion of CTL exhaustion andmore » on a potential enhancement of PD-1 antagonist action in rescuing exhausted CTLs in our chronic infection models. We demonstrate that a single dose of anti-CD40 alone can effectively convert CTL exhaustion by activating the mTORC1 pathway, leading to CTL proliferation, up-regulation of an effector-cytokine IFN-γ and the cytolytic effect in AdVova-B6 mice. Using anti-CD4 antibody and diphtheria toxin (DT) to deplete CD4{sup +} T-cells and dendritic cells (DCs), we discovered that the CD40 agonist-induced conversion in AdVova-B6 and AdVova-CD11c-DTR mice is dependent upon host CD4{sup +} T-cell and DC involvements. Moreover, CD40 agonist significantly enhances PD-1 antagonist effectiveness in rescuing exhausted CTLs in chronic infection. Taken together, our data demonstrate the importance of CD40 signaling in the conversion of CTL exhaustion and its ability to enhance PD-1 antagonist action in rescuing exhausted CTLs in chronic infection. Therefore, our findings may positively impact the design of new therapeutic strategies for chronic infectious diseases. - Highlights: • Anti-CD40 agonistic Ab can convert CTL exhaustion in chronically infected mice. • The conversion relies on the activation of the mTORC1 pathway in exhausted CTLs. • The conversion depends on the involvement of host DCs and CD4{sup +} T cells. • Anti-CD40 Ab enhances the effect of PD-1 blockade in rescuing CTL exhaustion.« less

  16. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica

    PubMed Central

    Zhou, Sha; Jin, Xin; Li, Yalin; Li, Wei; Chen, Xiaojun; Xu, Lei; Zhu, Jifeng; Xu, Zhipeng; Zhang, Yang; Liu, Feng; Su, Chuan

    2016-01-01

    Background More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1) signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined. Methodology/Principal Findings Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum)-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2) cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver. Conclusions/Significance Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology. PMID:27792733

  17. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation.

    PubMed

    Hobo, Willemijn; Norde, Wieger J; Schaap, Nicolaas; Fredrix, Hanny; Maas, Frans; Schellens, Karen; Falkenburg, J H Frederik; Korman, Alan J; Olive, Daniel; van der Voort, Robbert; Dolstra, Harry

    2012-07-01

    Allogeneic stem cell transplantation (allo-SCT) can cure hematological malignancies by inducing alloreactive T cell responses targeting minor histocompatibility antigens (MiHA) expressed on malignant cells. Despite induction of robust MiHA-specific T cell responses and long-term persistence of alloreactive memory T cells specific for the tumor, often these T cells fail to respond efficiently to tumor relapse. Previously, we demonstrated the involvement of the coinhibitory receptor programmed death-1 (PD-1) in suppressing MiHA-specific CD8(+) T cell immunity. In this study, we investigated whether B and T lymphocyte attenuator (BTLA) plays a similar role in functional impairment of MiHA-specific T cells after allo-SCT. In addition to PD-1, we observed higher BTLA expression on MiHA-specific CD8(+) T cells compared with that of the total population of CD8(+) effector-memory T cells. In addition, BTLA's ligand, herpes virus entry mediator (HVEM), was found constitutively expressed by myeloid leukemia, B cell lymphoma, and multiple myeloma cells. Interference with the BTLA-HVEM pathway, using a BTLA blocking Ab, augmented proliferation of BTLA(+)PD-1(+) MiHA-specific CD8(+) T cells by HVEM-expressing dendritic cells. Notably, we demonstrated that blocking of BTLA or PD-1 enhanced ex vivo proliferation of MiHA-specific CD8(+) T cells in respectively 7 and 9 of 11 allo-SCT patients. Notably, in 3 of 11 patients, the effect of BTLA blockade was more prominent than that of PD-1 blockade. Furthermore, these expanded MiHA-specific CD8(+) T cells competently produced effector cytokines and degranulated upon Ag reencounter. Together, these results demonstrate that BTLA-HVEM interactions impair MiHA-specific T cell functionality, providing a rationale for interfering with BTLA signaling in post-stem cell transplantation therapies.

  18. Pyridostigmine bromide (PYR) alters immune function in B6C3F1 mice.

    PubMed

    Peden-Adams, M M; Dudley, A C; EuDaly, J G; Allen, C T; Gilkeson, G S; Keil, D E

    2004-02-01

    Pyridostigmine bromide (PYR) is an anticholinesterase drug indicated for the treatment of myasthenia gravis and neuromuscular blockade reversal. It acts as a reversible cholinesterase inhibitor and was used as a pretreatment for soldiers during Operation Desert Storm to protect against possible nerve gas attacks. Since that time, PYR has been implicated as a possible causative agent contributing to Gulf War Illness. PYR's mechanism of action has been well-delineated with regards to its effects on the nervous system, yet little is known regarding potential effects on immunological function. To evaluate the effects of PYR on immunological function, adult female B6C3F1 mice were gavaged daily for 14 days with PYR (0, 1, 5, 10, or 20 mg/kg/day). Immune parameters assessed were lymphoproliferation, natural killer cell activity, the SRBC-specific antibody plaque-forming cell (PFC) response, thymus and spleen weight and cellularity, and thymic and splenic CD4/CD8 lymphocyte subpopulations. Exposure to PYR did not alter splenic and thymus weight or splenic cellularity. However, 20 mg PYR/kg/day decreased thymic cellularity with decreases in both CD4+/CD8+ (20 mg/kg/day) and CD4-/CD8- (10 and 20 mg/kg/day) cell types. Functional immune assays indicated that lymphocyte proliferative responses and natural killer cell activity were normal; whereas exposure to PYR significantly decreased primary IgM antibody responses to a T-cell dependent antigen at the 1, 5, 10 and 20 mg/kg treatment levels for 14 days. This is the first study to examine the immunotoxicological effects of PYR and demonstrate that this compound selectively suppresses humoral antibody responses.

  19. The prognostic impact of programmed cell death ligand 1 and human leukocyte antigen class I in pancreatic cancer.

    PubMed

    Imai, Daisuke; Yoshizumi, Tomoharu; Okano, Shinji; Uchiyama, Hideaki; Ikegami, Toru; Harimoto, Norifumi; Itoh, Shinji; Soejima, Yuji; Aishima, Shinichi; Oda, Yoshinao; Maehara, Yoshihiko

    2017-07-01

    Pancreatic ductal adenocarcinoma (PDA) is associated with an immunosuppressive tumor-microenvironment (TME) that supports the growth of tumors and mediates tumors enabling evasion of the immune system. Expression of programmed cell death ligand 1 (PD-L1) and loss of human leukocyte antigen (HLA) class I on tumor cells are methods by which tumors escape immunosurveillance. We examined immune cell infiltration, the expression of PD-L1 and HLA class I by PDA cells, and the correlation between these immunological factors and clinical prognosis. PDA samples from 36 patients were analyzed for HLA class I, HLA-DR, PD-L1, PD-1, CD4, CD8, CD56, CD68, and FoxP3 expression by immunohistochemistry. The correlations between the expression of HLA class I, HLA-DR, PD-L1 or PD-1 and the pattern of tumor infiltrating immune cells or the patients' prognosis were assessed. PD-L1 expression correlated with tumor infiltration by CD68 + and FoxP3 + cells. Low HLA class I expression was an only risk factor for poor survival. PD-L1 negative and HLA class I high-expressing PDA was significantly associated with higher numbers of infiltrating CD8 + T cells in the TME, and a better prognosis. Evaluation of both PD-L1 and HLA class I expression by PDA may be a good predictor of prognosis for patients. HLA class I expression by tumor cells should be evaluated when selecting PDA patients who may be eligible for treatment with PD-1/PD-L1 immune checkpoint blockade therapies. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  20. Costimulatory receptors in a teleost fish: Typical CD28, elusive CTLA4

    USGS Publications Warehouse

    Bernard, D.; Riteau, B.; Hansen, J.D.; Phillips, R.B.; Michel, F.; Boudinot, P.; Benmansour, A.

    2006-01-01

    T cell activation requires both specific recognition of the peptide-MHC complex by the TCR and additional signals delivered by costimulatory receptors. We have identified rainbow trout sequences similar to CD28 (rbtCD28) and CTLA4 (rbtCTLA4). rbtCD28 and rbtCTLA4 are composed of an extracellular Ig-superfamily V domain, a transmembrane region, and a cytoplasmic tail. The presence of a conserved ligand binding site within the V domain of both molecules suggests that these receptors likely recognize the fish homologues of the B7 family. The mRNA expression pattern of rbtCD28 and rbtCTLA4 in naive trout is reminiscent to that reported in humans and mice, because rbtCTLA4 expression within trout leukocytes was quickly up-regulated following PHA stimulation and virus infection. The cytoplasmic tail of rbtCD28 possesses a typical motif that is conserved in mammalian costimulatory receptors for signaling purposes. A chimeric receptor made of the extracellular domain of human CD28 fused to the cytoplasmic tail of rbtCD28 promoted TCR-induced IL-2 production in a human T cell line, indicating that rbtCD28 is indeed a positive costimulator. The cytoplasmic tail of rtrtCTLA4 lacked obvious signaling motifs and accordingly failed to signal when fused to the huCD28 extracellular domain. Interestingly, rbtCTLA4 and rbtCD28 are not positioned on the same chromosome and thus do not belong to a unique costimulatory cluster as in mammals. Finally, oar results raise questions about the origin and evolution of positive and negative costimulation in vertebrate immune systems. Copyright ?? 2006 by The American Association of Immunologists, Inc.

  1. Rheumatoid arthritis synovial fibroblasts produce a soluble form of the interleukin-7 receptor in response to pro-inflammatory cytokines

    PubMed Central

    Badot, V; Durez, P; Van den Eynde, BJ; Nzeusseu-Toukap, A; Houssiau, FA; Lauwerys, BR

    2011-01-01

    Abstract We previously demonstrated that baseline synovial overexpression of the interleukin-7 receptor α-chain (IL-7R) is associated with poor response to tumour necrosis factor (TNF) blockade in rheumatoid arthritis (RA). We found that IL-7R gene expression is induced in fibroblast-like synovial cells (FLS) by the addition of TNF-α, IL-1β and combinations of TNF-α+ IL-1β or TNF-α+ IL-17, thereby suggesting that these cytokines play a role in the resistance to TNF blockade in RA. Because FLS and CD4 T cells also produce a soluble form of IL-7R (sIL-7R), resulting from an alternative splicing of the full-length transcript, we wondered whether expression of sIL-7R is similarly regulated by pro-inflammatory cytokines. We also investigated whether sIL-7R is detectable in the serum of RA patients and associated with response to TNF blockade. RA FLS were cultured in the presence of pro-inflammatory cytokines and sIL-7R concentrations were measured in culture supernatants. Similarly, sIL-7R titres were measured in sera obtained from healthy individuals, early untreated RA patients with active disease and disease-modifying anti-rheumatic drug (DMARD)-resistant RA patients prior to initiation of TNF-blockade. Baseline serum sIL-7R titres were correlated with validated clinical measurements of disease activity. We found that exposure of RA FLS to pro-inflammatory cytokines (TNF-α, IL-1β and combinations of TNF-α and IL-1β or TNF-α and IL-17) induces sIL-7R secretion. Activated CD4 T cells also produce sIL-7R. sIL-7R serum levels are higher in RA patients as compared to controls. In DMARD-resistant patients, high sIL-7R serum concentrations are strongly associated with poor response to TNF-blockade. In conclusion, sIL-7R is induced by pro-inflammatory cytokines in RA FLS. sIL-7R could qualify as a new biomarker of response to therapy in RA. PMID:21129157

  2. Effector T lymphocytes in well-nourished and malnourished infected children

    PubMed Central

    Nájera, O; González, C; Cortés, E; Toledo, G; Ortiz, R

    2007-01-01

    The mechanisms involved in impaired immunity in malnourished children are not well understood. CD4+ CD62L– and CD8+ CD28– do not express the naive cell markers CD62L and CD28, suggesting that they function as effector T cells. Using a flow cytometry-based analysis we examined the proportions of CD4+ CD62L– and CD8+ CD28– T cell subsets in well-nourished infected (WNI) and malnourished infected (MNI) children. Here we report that WNI children had a higher percentage of CD4+ CD62L– (11·1 ± 1·0) and CD8+ D28– (40·2 ± 5·0) T cell subsets than healthy (6·5 ± 1·0 and 23·9 ± 4·8) and MNI children (7·4 ± 1·1 and 23·1 ± 6·2, respectively) (P < 0·5). Data suggest that WNI children respond efficiently against pathogenic microbes. In contrast, relatively low numbers of circulating of CD4+ CD62L– and CD8+ CD28– T cells in MNI children may represent an ineffective response to infection. Levels of effector T cells in children with gastrointestinal infections versus those suffering from respiratory infections were also significantly different within the WNI group. While WNI children with gastrointestinal infections had higher absolute and relative values of CD8+, and CD8+ CD28– T subsets, by those with respiratory infections had higher values of CD4+ lymphocytes. However, due to the small number of subjects examined, our results in WNI children should be interpreted with caution and confirmed using a larger sample size. Our data suggest that altered expression of CD62L and CD28 receptors may contribute to impaired T cell function observed in MNI children. PMID:17362263

  3. Anomalies of the CD8+ T cell pool in haemochromatosis: HLA-A3-linked expansions of CD8+CD28- T cells.

    PubMed

    Arosa, F A; Oliveira, L; Porto, G; da Silva, B M; Kruijer, W; Veltman, J; de Sousa, M

    1997-03-01

    The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28- T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population 'to expand', coinciding with an 'expansion' of CD8+ CD28- T cells in peripheral blood of HLA-A3+ but not HLA-A3- HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28- T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH.

  4. Anomalies of the CD8+ T cell pool in haemochromatosis: HLA-A3-linked expansions of CD8+CD28− T cells

    PubMed Central

    AROSA, F A; OLIVEIRA, L; PORTO, G; DA SILVA, B M; KRUIJER, W; VELTMAN, J; DE SOUSA, M

    1997-01-01

    The present study consists of a phenotypic and functional characterization of peripheral blood T lymphocytes in a group of 21 patients with hereditary haemochromatosis (HH), an MHC class I-linked genetic disease resulting in iron overload, and a group of 30 healthy individuals, both HLA-phenotyped. The HH patients studied showed an increased percentage of CD8+ CD28− T cells with a corresponding reduction in the percentage of CD8+ CD28+ T cells in peripheral blood relative to healthy blood donors. No anomalies of CD28 expression were found in the CD4+ subset. The presence of the HLA-A3 antigen but not age accounted for these imbalances. Thus, an apparent failure of the CD8+ CD28+ T cell population ‘to expand’, coinciding with an ‘expansion’ of CD8+ CD28− T cells in peripheral blood of HLA-A3+ but not HLA-A3− HH patients was observed when compared with the respective HLA-A3-matched control group. A significantly higher percentage of HLA-DR+ but not CD45RO+ cells was also found within the peripheral CD8+ T cell subset in HH patients relative to controls. Phytohaemagglutinin (PHA) stimulation of peripheral blood mononuclear cells (PBMC) for 5 days showed: (i) that CD8+ CD28+ T cells both in controls and HH were able to expand in vitro; (ii) that CD8+ CD28− T cells decreased markedly after activation in controls but not in HH patients. Moreover, functional studies showed that CD8+ cytotoxic T lymphocytes (CTL) from HH patients exhibited a diminished cytotoxic activity (approx. two-fold) in standard 51Cr-release assays when compared with CD8+ CTL from healthy controls. The present results provide additional evidence for the existence of phenotypic and functional anomalies of the peripheral CD8+ T cell pool that may underlie the clinical heterogeneity of this iron overload disease. They are of particular relevance given the recent discovery of a novel mutated MHC class I-like gene in HH. PMID:9067531

  5. The oncolytic peptide LTX-315 overcomes resistance of cancers to immunotherapy with CTLA4 checkpoint blockade

    PubMed Central

    Yamazaki, T; Pitt, J M; Vétizou, M; Marabelle, A; Flores, C; Rekdal, Ø; Kroemer, G; Zitvogel, L

    2016-01-01

    Intratumoral immunotherapies aim at reducing local immunosuppression, as well as reinstating and enhancing systemic anticancer T-cell functions, without inducing side effects. LTX-315 is a first-in-class oncolytic peptide-based local immunotherapy that meets these criteria by inducing a type of malignant cell death that elicits anticancer immune responses. Here, we show that LTX-315 rapidly reprograms the tumor microenvironment by decreasing the local abundance of immunosuppressive Tregs and myeloid-derived suppressor cells and by increasing the frequency of polyfunctional T helper type 1/type 1 cytotoxic T cells with a concomitant increase in cytotoxic T-lymphocyte antigen-4 (CTLA4) and drop in PD-1 expression levels. Logically, in tumors that were resistant to intratumoral or systemic CTLA4 blockade, subsequent local inoculation of LTX-315 cured the animals or caused tumor regressions with abscopal effects. This synergistic interaction between CTLA4 blockade and LTX-315 was reduced upon blockade of the β-chain of the interleukin-2 receptor (CD122). This preclinical study provides a strong rationale for administering the oncolytic peptide LTX-315 to patients who are receiving treatment with the CTLA4 blocking antibody ipilimumab. PMID:27082453

  6. Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing.

    PubMed

    Wang, Yu-Hong; Yu, Xu-Hui; Luo, Shan-Shun; Han, Hui

    2015-01-01

    Ageing brings about the gradual deterioration of the immune system, also known as immunosenescence. The role of non-coding circular RNA in immunosenescence is under studied. Using circular RNA microarray data, we assembled Comparison groups (C1, C2, C3 and C4) that allowed us to compare the circular RNA expression profiles between CD28(+)CD8(+) T cells and CD28(-)CD8(+) T cells isolated from healthy elderly or adult control subjects. Using a step-wise biomathematical strategy, the differentially-expressed circRNAs were identified in C1 (CD28(+)CD8(+) vs CD28(-)CD8(+)T cells in the elderly) and C4 (CD28(-)CD8(+)T cells in the elderly vs in the adult), and the commonly-expressed circRNA species from these profiles were optimized as immunosenescence biomarkers. Four overlapping upregulated circular RNAs (100550, 100783, 101328 and 102592) expressed in cross-comparison between C1 and C4 were validated using quantitative polymerase chain reaction. Of these, only circular RNA100783 exhibited significant validation. None of the down-regulated circular RNAs were expressed in the C1 and the C4 cross-comparisons. Therefore, we further predicted circular RNA100783-targeted miRNA-gene interactions using online DAVID annotation. The analysis revealed that a circular RNA100783-targeted miRNA-mRNA network may be involved in alternative splicing, the production of splice variants, and in the regulation of phosphoprotein expression. Considering the hypothesis of splicing-related biogenesis of circRNAs, we propose that circular RNA100783 may play a role in phosphoprotein-associated functions duringCD28-related CD8(+) T cell ageing. This study is the first to employ circular RNA profiling to investigate circular RNA-micro RNA interactions in ageing human CD8(+)T cell populations and the accompanying loss of CD28 expression. The overlapping expression of circular RNA100783 may represent a novel biomarker for the longitudinal tracking ofCD28-related CD8(+) T cell ageing and global immunosenescence.

  7. Platelet sequestration and activation during GalTKO.hCD46 pig lung perfusion by human blood is primarily mediated by GPIb, GPIIb/IIIa, and von Willebrand Factor.

    PubMed

    Burdorf, L; Riner, A; Rybak, E; Salles, I I; De Meyer, S F; Shah, A; Quinn, K J; Harris, D; Zhang, T; Parsell, D; Ali, F; Schwartz, E; Kang, E; Cheng, X; Sievert, E; Zhao, Y; Braileanu, G; Phelps, C J; Ayares, D L; Deckmyn, H; Pierson, R N; Azimzadeh, A M; Dandro, Amy; Karavi, Kasinath

    2016-05-01

    Here, we ask whether platelet GPIb and GPIIb/IIIa receptors modulate platelet sequestration and activation during GalTKO.hCD46 pig lung xenograft perfusion. GalTKO.hCD46 transgenic pig lungs were perfused with heparinized fresh human blood. Results from perfusions in which αGPIb Fab (6B4, 10 mg/l blood, n = 6), αGPIIb/IIIa Fab (ReoPro, 3.5 mg/l blood, n = 6), or both drugs (n = 4) were administered to the perfusate were compared to two additional groups in which the donor pig received 1-desamino-8-d-arginine vasopressin (DDAVP), 3 μg/kg (to pre-deplete von Willebrand Factor (pVWF), the main GPIb ligand), with or without αGPIb (n = 6 each). Platelet sequestration was significantly delayed in αGPIb, αGPIb+DDAVP, and αGPIb+αGPIIb/IIIa groups. Median lung "survival" was significantly longer (>240 vs. 162 min reference, p = 0.016), and platelet activation (as CD62P and βTG) were significantly inhibited, when pigs were pre-treated with DDAVP, with or without αGPIb Fab treatment. Pulmonary vascular resistance rise was not significantly attenuated in any group, and was associated with residual thromboxane and histamine elaboration. The GPIb-VWF and GPIIb/IIIa axes play important roles in platelet sequestration and coagulation cascade activation during GalTKO.hCD46 lung xenograft injury. GPIb blockade significantly reduces platelet activation and delays platelet sequestration in this xenolung rejection model, an effect amplified by adding αGPIIb/IIIa blockade or depletion of VWF from pig lung. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. A ligand-specific blockade of the integrin Mac-1 selectively targets pathologic inflammation while maintaining protective host-defense.

    PubMed

    Wolf, Dennis; Anto-Michel, Nathaly; Blankenbach, Hermann; Wiedemann, Ansgar; Buscher, Konrad; Hohmann, Jan David; Lim, Bock; Bäuml, Marina; Marki, Alex; Mauler, Maximilian; Duerschmied, Daniel; Fan, Zhichao; Winkels, Holger; Sidler, Daniel; Diehl, Philipp; Zajonc, Dirk M; Hilgendorf, Ingo; Stachon, Peter; Marchini, Timoteo; Willecke, Florian; Schell, Maximilian; Sommer, Björn; von Zur Muhlen, Constantin; Reinöhl, Jochen; Gerhardt, Teresa; Plow, Edward F; Yakubenko, Valentin; Libby, Peter; Bode, Christoph; Ley, Klaus; Peter, Karlheinz; Zirlik, Andreas

    2018-02-06

    Integrin-based therapeutics have garnered considerable interest in the medical treatment of inflammation. Integrins mediate the fast recruitment of monocytes and neutrophils to the site of inflammation, but are also required for host defense, limiting their therapeutic use. Here, we report a novel monoclonal antibody, anti-M7, that specifically blocks the interaction of the integrin Mac-1 with its pro-inflammatory ligand CD40L, while not interfering with alternative ligands. Anti-M7 selectively reduces leukocyte recruitment in vitro and in vivo. In contrast, conventional anti-Mac-1 therapy is not specific and blocks a broad repertoire of integrin functionality, inhibits phagocytosis, promotes apoptosis, and fuels a cytokine storm in vivo. Whereas conventional anti-integrin therapy potentiates bacterial sepsis, bacteremia, and mortality, a ligand-specific intervention with anti-M7 is protective. These findings deepen our understanding of ligand-specific integrin functions and open a path for a new field of ligand-targeted anti-integrin therapy to prevent inflammatory conditions.

  9. Expression of CXCR6 on CD8(+) T cells was up-regulated in allograft rejection.

    PubMed

    Jiang, Xiaofeng; Sun, Wenyu; Zhu, Lei; Guo, Dawei; Jiang, Honglei; Ma, Dongyan; Jin, Junzhe; Zhao, Yu; Liang, Jian

    2010-02-01

    CXCL16/SR-PSOX is a novel transmembrane-type chemokine, which was also identified as a novel scavenger receptor for oxidized low density lipoprotein. Its receptor CXCR6 expresses on activated CD8(+) T cells, type 1-polarized CD4(+), and constitutively expresses on NKT cells. Moreover, it has been shown that CXCL16 accumulated activated CD8(+) T cells to sites of inflammation. To date, the effect of CXCL16 (SR-PSOX)/CXCR6 on CD8(+) T cells and its role in allograft rejection/acceptance are not well understood. In the current study, we show that rejected allografts showed higher expressions of CXCR6 and CXCL16. More importantly, expression of CXCR6 on CD8(+) T cells was also up-regulated by rejection. However, the blockade of CXCL16(SR-PSOX)/CXCR6 interaction could not inhibit cytotoxic activity of CD8(+) T cells, and therefore, could not prolong the cardiac graft survival time. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Pig kidney transplantation in baboons: anti-Gal(alpha)1-3Gal IgM alone is associated with acute humoral xenograft rejection and disseminated intravascular coagulation.

    PubMed

    Bühler, L; Yamada, K; Kitamura, H; Alwayn, I P; Basker, M; Appel, J Z; Colvin, R B; White-Scharf, M E; Sachs, D H; Robson, S C; Awwad, M; Cooper, D K

    2001-12-15

    Kidneys harvested from miniature swine or pigs transgenic for human decay-accelerating factor (hDAF) were transplanted into baboons receiving an anti-CD154 monoclonal antibody (mAb) and either a whole body irradiation (WBI)- or cyclophosphamide (CPP)-based immunosuppressive regimen. Group 1 baboons (n=3) underwent induction therapy with WBI and thymic irradiation, pretransplantation antithymocyte globulin, and immunoadsorption of anti-Gal(alpha)1-3Gal (Gal) antibody (Ab). After transplantation of a miniature swine kidney, maintenance therapy comprised cobra venom factor, mycophenolate mofetil, and an anti-CD154 mAb (for 14-28 days). In group 2 (n=2), WBI was replaced by CPP in the induction protocol. Group 3 (n=3) animals received the group 2 regimen, but underwent transplantation with hDAF pig kidneys. Group 1 and 2 animals developed features of disseminated intravascular coagulation (DIC), with reductions of fibrinogen and platelets and increases of prothrombin time, partial thromboplastin time, and fibrin split products. Graft survival was for 6-13 days. Histology showed mild acute humoral xenograft rejection (AHXR) of the kidneys, but severe rejection of the ureters. Group 3 animals developed features of DIC in two of three cases during the fourth week, with AHXR in the third case. Graft survival was for 28 (n=1) or 29 (n=2) days. Histology of day 15 biopsy specimens showed minimal focal mononuclear cellular infiltrates, with predominantly CD3+ cells. By days 28 and 29, kidneys showed mild-to-moderate features of AHXR. In all groups, the humoral response was manifest by reappearance of anti-Gal IgM below baseline level, with no or low return of anti-Gal IgG. All excised kidneys showed IgM deposition, but no complement and no or minimal IgG deposition. No baboon showed a rebound of anti-Gal Ab immediately after excision of the graft, and anti-Gal Ab increased over pretransplantation levels only when anti-CD154 mAb was discontinued. DIC was observed with WBI- or CPP-based therapy, and after miniature swine or hDAF kidney transplantation. AHXR+/-DIC was observed in all recipients even in the absence of complement and no or low levels of anti-Gal IgG, but was significantly delayed in the hDAF recipients. These results confirm our earlier observation that CD154 blockade prevents T cell-dependent sensitization in baboons to pig antigens, but that baseline natural anti-Gal Ab production is not inhibited. We suggest that IgM deposition, even in the absence of IgG and complement, leads to endothelial cell activation with the development of DIC, even when there are only minimal histologic changes of AHXR.

  11. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    NASA Astrophysics Data System (ADS)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  12. CD28 in thymocyte development and peripheral T cell activation in mice exposed to suspended particulate matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drela, Nadzieja; Zesko, Izabela; Jakubowska, Martyna

    2006-09-01

    The CD28:B7 signaling pathway is very important for the activity of mature peripheral T lymphocytes and thymocyte development. The proper development of thymocytes into mature single positive CD4{sup +}and CD8{sup +} T cells is crucial for almost all immune functions. In naturally occurring conditions, T cells maturation in the thymus is influenced by environmental agents. The expression of CD28 and the distribution of CD28{sup low/high} thymocytes have been examined at various stages of thymocyte development in BALB/c mice exposed to air-suspended particulate matter (ASM). Acute exposure to ASM resulted in the decrease of CD28 expression in the total thymocyte population.more » The increase of the percentage of CD28{sup low} and the decrease of CD28{sup high} thymocytes were observed, which may account for the acceleration of thymocyte development under the conditions of elevated risk resulting from the exposure of animals to environmental xenobiotics. ASM exposure resulted in the increase of the level of proliferation of lymph node T cells induced by anti-CD3 and anti-CD28 monoclonal antibodies activation despite normal expression of CD28 molecule. In contrast, the level of proliferation of spleen T cells was lowered or normal dependently of the concentration of stimuli used for activation. Results of these studies demonstrate that acute exposure of mice to ASM can result in the progression of two contrasting processes in the immune system: upregulation of thymocyte development, which contributes to the maintenance of peripheral T cell pool, and over-activation of lymph node lymphocytes, which may lead to uncontrolled immunostimulation.« less

  13. Blockade of bovine PD-1 increases T cell function and inhibits bovine leukemia virus expression in B cells in vitro

    PubMed Central

    2013-01-01

    Programmed death-1 (PD-1) is a known immunoinhibitory receptor that contributes to immune evasion of various tumor cells and pathogens causing chronic infection, such as bovine leukemia virus (BLV) infection. First, in this study, to establish a method for the expression and functional analysis of bovine PD-1, hybridomas producing monoclonal antibodies (mAb) specific for bovine PD-1 were established. Treatment with these anti-PD-1 mAb enhanced interferon-gamma (IFN-γ) production of bovine peripheral blood mononuclear cells (PBMC). Next, to examine whether PD-1 blockade by anti-PD-1 mAb could upregulate the immune reaction during chronic infection, the expression and functional analysis of PD-1 in PBMC isolated from BLV-infected cattle with or without lymphoma were performed using anti-PD-1 mAb. The frequencies of both PD-1+ CD4+ T cells in blood and lymph node and PD-1+ CD8+ T cells in lymph node were higher in BLV-infected cattle with lymphoma than those without lymphoma or control uninfected cattle. PD-1 blockade enhanced IFN-γ production and proliferation and reduced BLV-gp51 expression and B-cell activation in PBMC from BLV-infected cattle in response to BLV-gp51 peptide mixture. These data show that anti-bovine PD-1 mAb could provide a new therapy to control BLV infection via upregulation of immune response. PMID:23876077

  14. Costimulatory receptors in jawed vertebrates: Conserved CD28, odd CTLA4 and multiple BTLAs

    USGS Publications Warehouse

    Bernard, D.; Hansen, J.D.; Du, Pasquier L.; Lefranc, M.-P.; Benmansour, A.; Boudinot, P.

    2007-01-01

    CD28 family of costimulatory receptors is comprised of molecules with a single V-type extracellular Ig domain, a transmembrane and an intracytoplasmic region with signaling motifs. CD28 and cytotoxic T lymphocyte antigen-4 (CTLA4) homologs have been recently identified in rainbow trout. Other sequences similar to mammalian CD28 family members have now been identified using teleost, Xenopus and chicken databases. CD28- and CTLA4 homologs were found in all vertebrate classes whereas inducible costimulatory signal (ICOS) was restricted to tetrapods, and programmed cell death-1 (PD1) was limited to mammals and chicken. Multiple B and T Lymphocyte Attenuator (BTLA) sequences were found in teleosts, but not in Xenopus or in avian genomes. The intron/exon structure of btlas was different from that of cd28 and other members of the family. The Ig domain encoded in all the btla genes has features of the C-type structure, which suggests that BTLA does not belong to the CD28 family. The genomic localization of these genes in vertebrate genomes supports the split between the BTLA and CD28 families. ?? 2006 Elsevier Ltd. All rights reserved.

  15. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires

    NASA Astrophysics Data System (ADS)

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current-voltage ( I- V) characteristics show two distinct power law regions from 360 down to 60 K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100 K, and the corresponding carrier mobility, trap energy, and trap concentration are also obtained. However, the I-V data exhibit some features of the Coulomb blockade effect below 80 K.

  16. Production and first-in-man use of T cells engineered to express a HSVTK-CD34 sort-suicide gene.

    PubMed

    Zhan, Hong; Gilmour, Kimberly; Chan, Lucas; Farzaneh, Farzin; McNicol, Anne Marie; Xu, Jin-Hua; Adams, Stuart; Fehse, Boris; Veys, Paul; Thrasher, Adrian; Gaspar, Hubert; Qasim, Waseem

    2013-01-01

    Suicide gene modified donor T cells can improve immune reconstitution after allogeneic haematopoietic stem cell transplantation (SCT), but can be eliminated in the event of graft versus host disease (GVHD) through the administration of prodrug. Here we report the production and first-in-man use of mismatched donor T cells modified with a gamma-retroviral vector expressing a herpes simplex thymidine kinase (HSVTK):truncated CD34 (tCD34) suicide gene/magnetic selection marker protein. A stable packaging cell line was established to produce clinical grade vector pseudotyped with the Gibbon Ape Leukaemia Virus (GALV). T cells were transduced in a closed bag system following activation with anti-CD3/CD28 beads, and enriched on the basis of CD34 expression. Engineered cells were administered in two escalating doses to three children receiving T-depleted, CD34 stem cell selected, mismatched allogeneic grafts. All patients had pre-existing viral infections and received chemotherapy conditioning without serotherapy. In all three subjects cell therapy was tolerated without acute toxicity or the development of acute GVHD. Circulating gene modified T cells were detectable by flow cytometry and by molecular tracking in all three subjects. There was resolution of virus infections, concordant with detectable antigen-specific T cell responses and gene modified cells persisted for over 12 months. These findings highlight the suitability of tCD34 as a GMP compliant selection marker and demonstrate the feasibility, safety and immunological potential of HSVTK-tCD34 suicide gene modified donor T cells. ClinicalTrials.gov NCT01204502

  17. Selective T cell-depleted haploidentical hematopoietic stem cell transplantation for relapsed/refractory neuroblastoma.

    PubMed

    Liu, Anthony P Y; Lee, Pamela P W; Kwok, Janette S Y; Leung, Rock Y Y; Chiang, Alan K S; Ha, Shau-Yin; Cheuk, Daniel K L; Chan, Godfrey C F

    2018-06-19

    Relapsed/refractory NB carries a bleak outcome, warranting novel treatment options. HaploHSCT induces a graft-versus-NB effect via natural killer cell alloreactivity. Review of patients with relapsed/refractory NB who underwent haploHSCT with ex vivo T-cell depletion in our unit from 2013 through 2018. Ten patients were identified (male=5; median age at haploHSCT=6.45 y, range: 3.49-11.02 y). Indications were relapsed in 7 and refractoriness in 3; disease status at haploHSCT was CR in 2, PR in 6, and PD in 2. All patients received peripheral blood stem cell grafts after ex vivo T-cell depletion (CD3/CD19-depletion=1; TCR-αβ/CD19-depletion=4; CD3/CD45RA-depletion=4; and TCR-αβ/CD45RA-depletion=1). Conditioning regimens were fludarabine-based. Neutrophils engrafted on median D + 10 (range: D + 9 to +13), and platelets engrafted (≥20 × 10 9 /L) on median D + 8 (range: D + 5 to D + 14). Early T- and NK-cell recovery were evident. Of the 10 patients, acute rejection developed in 1 (who died of PD despite rescue HSCT), and 1 died of sepsis before engraftment; 8 experienced full donor-chimerism post-HSCT. Among the 8, 6 experienced CR, 1 died of PD, and 1 died of pulmonary hypertensive crisis before evaluation. At publication, 4 were in remission (2.8, 7.4, 28.5, and 58.9 months). No significant GvHD occurred. HaploHSCT with selective ex vivo T-cell depletion may be a safe and useful salvage strategy for relapsed/refractory NB. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. T cell activation and proliferation following acute exercise in human subjects is altered by storage conditions and mitogen selection.

    PubMed

    Siedlik, Jacob A; Deckert, Jake A; Benedict, Stephen H; Bhatta, Anuja; Dunbar, Amanda J; Vardiman, John P; Gallagher, Philip M

    2017-07-01

    Recent work investigating exercise induced changes in immunocompetence suggests that some of the ambiguity in the literature is resultant from different cell isolation protocols and mitogen selection. To understand this effect, we compared post-exercise measures of T cell activation and proliferation using two different stimulation methods (costimulation through CD28 or stimulation with phytohaemagglutinin [PHA]). Further, we investigated whether exercise induced changes are maintained when T cell isolation from whole blood is delayed overnight in either a room temperature or chilled (4°C) environment. As expected, an increased proliferation response was observed post-exercise in T cells isolated from whole blood of previously trained individuals immediately after blood collection. Also, cells stimulated with PHA after resting overnight in whole blood were not adversely impacted by the storage conditions. In contrast, allowing cells to rest overnight in whole blood prior to stimulation through CD28, lessened the proliferation observed by cells following exercise rendering both the room temperature and chilled samples closer to the results seen in the control condition. Changes in early markers of activation (CD25), followed a similar pattern, with activation in PHA stimulated cells remaining fairly robust after overnight storage; whereas cell activation following stimulation through CD3+CD28 was disproportionately decreased by the influence of overnight storage. These findings indicate that decisions regarding cell stimulation methods need to be paired with the timeline for T cell isolation from whole blood. These considerations will be especially important for field based studies of immunocompetence where there is a delay in getting whole blood samples to a lab for processing as well as clinical applications where a failure to isolate T cells in a timely manner may result in loss of the response of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Expansions of CD8+CD28- and CD8+TcRVbeta5.2+ T cells in peripheral blood of heavy alcohol drinkers.

    PubMed

    Arosa, F A; Porto, G; Cabeda, J M; Lacerda, R; Resende, D; Cruz, E; Cardoso, C; Fonseca, M; Simões, C; Rodrigues, P; Bravo, F; Oliveira, J C; Alves, H; Fraga, J; Justiça, B; de Sousa, M

    2000-04-01

    Despite heavy alcohol consumption, only a low percentage of heavy drinkers develop liver disease. Imbalances in T-cell subsets and iron metabolism parameters are common findings in heavy drinkers, yet the possible role played by discrete T-lymphocyte subsets under heavy alcohol consumption remains unclear. To gain new insights into the possible role played by T lymphocytes during alcohol consumption, characterization of CD28 expression and TcR repertoire in peripheral blood CD4+ and CD8+ T cells by two and three-color flow cytometry was performed. A group of heavy alcohol drinkers (AHD, n = 71) and a group of age-matched controls (n = 81), both HLA-phenotyped and HFE-genotyped, constituted the groups under study. Marked expansions of CD28- T cells within the CD8+ but not the CD4+ T-cell pool were observed in AHD compared with controls. These CD8+CD28- expansions were paralleled by expansions of CD8+ T cells bearing specific TcR Valpha/beta chains, namely VP5.2. Moreover, AHD, but not controls, carrying the H63D mutation in the HFE gene showed significantly higher percentages of CD28- T cells within the CD8+ T-cell pool than AHD carrying the normal HFE gene. Finally, high numbers of CD8+CD28- T cells in AHD were associated with lower levels of the liver-related enzymes ALT and GGT. This study showed that under active ethanol consumption, expansions of discrete CD8+ T-cell subsets occur within the CD8+ T-cell pool, that molecules of the MHC-class I locus seem to influence the extent of the expansions, and that high numbers of CD8+CD28- T cells are associated with low levels of liver enzymes in AHD.

  20. Superagonistic CD28 antibody induces donor-specific tolerance in rat renal allografts.

    PubMed

    Azuma, H; Isaka, Y; Li, X; Hünig, T; Sakamoto, T; Nohmi, H; Takabatake, Y; Mizui, M; Kitazawa, Y; Ichimaru, N; Ibuki, N; Ubai, T; Inamoto, T; Katsuoka, Y; Takahara, S

    2008-10-01

    The ultimate goal of organ transplantation is to establish graft tolerance where CD4+CD25+FOXP3+ regulatory T (Treg) cells play an important role. We examined whether a superagonistic monoclonal antibody specific for CD28 (CD28 SA), which expands Treg cells in vivo, would prevent acute rejection and induce tolerance using our established rat acute renal allograft model (Wistar to Lewis). In the untreated or mouse IgG-treated recipients, graft function significantly deteriorated with marked destruction of renal tissue, and all rats died by 13 days with severe azotemia. In contrast, 90% of recipients treated with CD28 SA survived over 100 days, and 70% survived with well-preserved graft function until graft recovery at 180 days. Analysis by flow cytometry and immunohistochemistry demonstrated that CD28 SA induced marked infiltration of FOXP3+ Treg cells into the allografts. Furthermore, these long-surviving recipients showed donor-specific tolerance, accepting secondary (donor-matched) Wistar cardiac allografts, but acutely rejecting third-party BN allografts. We further demonstrated that adoptive transfer of CD4+CD25+ Treg cells, purified from CD28 SA-treated Lewis rats, significantly prolonged allograft survival and succeeded in inducing donor-specific tolerance. In conclusion, CD28 SA treatment successfully induces donor-specific tolerance with the involvement of Treg cells, and thus the therapeutic value of this approach warrants further investigation and preclinical studies.

  1. IL-21 sustains CD28 expression on IL-15-activated human naive CD8+ T cells.

    PubMed

    Alves, Nuno L; Arosa, Fernando A; van Lier, René A W

    2005-07-15

    Human naive CD8+ T cells are able to respond in an Ag-independent manner to IL-7 and IL-15. Whereas IL-7 largely maintains CD8+ T cells in a naive phenotype, IL-15 drives these cells to an effector phenotype characterized, among other features, by down-regulation of the costimulatory molecule CD28. We evaluated the influence of the CD4+ Th cell-derived common gamma-chain cytokine IL-21 on cytokine-induced naive CD8+ T cell activation. Stimulation with IL-21 did not induce division and only slightly increased IL-15-induced proliferation of naive CD8+ T cells. Strikingly, however, IL-15-induced down-modulation of CD28 was completely prevented by IL-21 at the protein and transcriptional level. Subsequent stimulation via combined TCR/CD3 and CD28 triggering led to a markedly higher production of IL-2 and IFN-gamma in IL-15/IL-21-stimulated cells compared with IL-15-stimulated T cells. Our data show that IL-21 modulates the phenotype of naive CD8+ T cells that have undergone IL-15 induced homeostatic proliferation and preserves their responsiveness to CD28 ligands.

  2. Combining a CD20 Chimeric Antigen Receptor and an Inducible Caspase 9 Suicide Switch to Improve the Efficacy and Safety of T Cell Adoptive Immunotherapy for Lymphoma

    PubMed Central

    Budde, Lihua E.; Berger, Carolina; Lin, Yukang; Wang, Jinjuan; Lin, Xubin; Frayo, Shani E.; Brouns, Shaunda A.; Spencer, David M.; Till, Brian G.; Jensen, Michael C.; Riddell, Stanley R.; Press, Oliver W.

    2013-01-01

    Modification of T cells with chimeric antigen receptors (CAR) has emerged as a promising treatment modality for human malignancies. Integration of co-stimulatory domains into CARs can augment the activation and function of genetically targeted T cells against tumors. However, the potential for insertional mutagenesis and toxicities due to the infused cells have made development of safe methods for removing transferred cells an important consideration. We have genetically modified human T cells with a lentiviral vector to express a CD20-CAR containing both CD28 and CD137 co-stimulatory domains, a “suicide gene” relying on inducible activation of caspase 9 (iC9), and a truncated CD19 selectable marker. Rapid expansion (2000 fold) of the transduced T cells was achieved in 28 days after stimulation with artificial antigen presenting cells. Transduced T cells exhibited effective CD20-specific cytotoxic activity in vitro and in a mouse xenograft tumor model. Activation of the iC9 suicide switch resulted in efficient removal of transduced T cells both in vitro and in vivo. Our work demonstrates the feasibility and promise of this approach for treating CD20+ malignancies in a safe and more efficient manner. A phase I clinical trial using this approach in patients with relapsed indolent B-NHL is planned. PMID:24358223

  3. Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma.

    PubMed

    Budde, Lihua E; Berger, Carolina; Lin, Yukang; Wang, Jinjuan; Lin, Xubin; Frayo, Shani E; Brouns, Shaunda A; Spencer, David M; Till, Brian G; Jensen, Michael C; Riddell, Stanley R; Press, Oliver W

    2013-01-01

    Modification of T cells with chimeric antigen receptors (CAR) has emerged as a promising treatment modality for human malignancies. Integration of co-stimulatory domains into CARs can augment the activation and function of genetically targeted T cells against tumors. However, the potential for insertional mutagenesis and toxicities due to the infused cells have made development of safe methods for removing transferred cells an important consideration. We have genetically modified human T cells with a lentiviral vector to express a CD20-CAR containing both CD28 and CD137 co-stimulatory domains, a "suicide gene" relying on inducible activation of caspase 9 (iC9), and a truncated CD19 selectable marker. Rapid expansion (2000 fold) of the transduced T cells was achieved in 28 days after stimulation with artificial antigen presenting cells. Transduced T cells exhibited effective CD20-specific cytotoxic activity in vitro and in a mouse xenograft tumor model. Activation of the iC9 suicide switch resulted in efficient removal of transduced T cells both in vitro and in vivo. Our work demonstrates the feasibility and promise of this approach for treating CD20(+) malignancies in a safe and more efficient manner. A phase I clinical trial using this approach in patients with relapsed indolent B-NHL is planned.

  4. Late onset azotemia from RAAS blockade in CKD patients with normal renal arteries and no precipitating risk factors.

    PubMed

    Onuigbo, Macaulay A C; Onuigbo, Nnonyelum T C

    2008-01-01

    Despite proven renoprotection from RAAS blockade and its increased application since the early 1990s, we have experienced an increasing CKD/ESRD epidemic, especially among U.S. diabetics. Consequently, some concerns regarding iatrogenic azotemia from RAAS blockade have surfaced. We hypothesized that susceptible CKD patients with normal renal arteries on conventional angiography, including MRA, but who have microvascular arteriolar narrowing in the renal circulation - mimicking large vessel renal artery stenosis, even without precipitating risk factors - could experience worsening azotemia after periods of time exceeding three months on stable doses of RAAS blockade. Between September 2002 and February 2005, as part of a larger prospective study of renal failure in CKD patients on RAAS blockade, we studied five patients with >25% higher serum creatinine and normal MRA without precipitating factors. RAAS blockade was discontinued. eGFR by MDRD was monitored. Five Caucasians (M:F = 1:4; age 68 years) were enrolled and followed-up at 29.6 months. The duration of RAAS blockade at enrollment was 34.6 months. The baseline eGFR had decreased from 28.4 +/- 7.1 to 17.0 +/- 7.4 ml/min/1.73 m(2) BSA (p < 0.001) at enrollment. One required temporary hemodialysis; no deaths occurred. eGFR increased from 17.0 +/- 7.4 to 24.6 +/- 9.5 ml/min/1.73 m(2) BSA (p = 0.009), 29.6 (20-43) months after stopping the RAAS blockade. We conclude that worsening azotemia occurs in susceptible CKD patients on stable doses of RAAS blockade after long periods of time, despite normal renal arteries without precipitating risk factors. We submit that microvascular renal arteriolar narrowing is the pathophysiologic mechanism. These observations call for further study.

  5. Comparative Analysis of the Magnitude, Quality, Phenotype and Protective Capacity of SIV Gag-Specific CD8+ T Cells Following Human-, Simian- and Chimpanzee-Derived Recombinant Adenoviral Vector Immunisation

    PubMed Central

    Quinn, Kylie M.; Costa, Andreia Da; Yamamoto, Ayako; Berry, Dana; Lindsay, Ross W.B.; Darrah, Patricia A.; Wang, Lingshu; Cheng, Cheng; Kong, Wing-Pui; Gall, Jason G.D.; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A.; Gomez, Carmen E.; Esteban, Mariano; Wyatt, Linda S.; Moss, Bernard; Morgan, Cecilia; Roederer, Mario; Bailer, Robert T.; Nabel, Gary J.; Koup, Richard A.; Seder, Robert A.

    2013-01-01

    Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8+ T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. Here we show low seroreactivity in humans against simian- (sAd11, sAd16), or chimpanzee-derived (chAd3, chAd63) compared to human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype and protective capacity of CD8+ T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 107 to 109 PU), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8+ T cell responses, from most to least as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFNγ+TNFα+IL-2+ and KLRG1+CD127- CD8+ T cells, but strikingly ~30–80% of memory CD8+ T cells co-expressed CD127 and KLRG1. To further optimise CD8+ T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ~60% of total CD8+ T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8+ T cell responses compared to prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory, respectively. PMID:23390298

  6. CD4+CD28null T Cells are related to previous cytomegalovirus infection but not to accelerated atherosclerosis in ANCA-associated vasculitis.

    PubMed

    Slot, Marjan C; Kroon, Abraham A; Damoiseaux, Jan G M C; Theunissen, Ruud; Houben, Alfons J H M; de Leeuw, Peter W; Tervaert, Jan Willem Cohen

    2017-05-01

    Previous studies have suggested an increased risk for cardiovascular events in antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). We analyzed the presence of atherosclerotic damage in patients with AAV in relation to the presence of CD4 + CD28 null T cells and antibodies against cytomegalovirus (CMV) and human Heat-Shock Protein 60 (hHSP60). In this cross-sectional study, patients with inactive AAV were compared with healthy controls (HC). Carotid intima-media thickness (IMT) and aortic pulse-wave velocity (PWV) were measured. In addition, CD4 + CD28 null T cells, anti-CMV, and anti-hHSP60 levels were determined. Forty patients with AAV were included. Patients' spouses were recruited as HC (N = 38). CD4 + CD28 null T cells are present in patients with AAV in a higher percentage (median 3.1, range 0.01-85) than in HC (0.28, 0-36, P < 0.0001). No significant difference in IMT (mm) between patients and controls was detected (mean 0.77 ± standard deviation 0.15 and 0.73 ± 0.11, respectively, P = 0.20). PWV standardized for MAP was increased in AAV patients (9.80 ± 2.50 m/s, compared to 8.72 ± 1.68 in HC, P = 0.04). There was a strong association between a previous CMV infection and the presence and percentage of CD4 + CD28 null T cells (0.33 vs 13.8, P < 0.001). There was no relationship between CD4 + CD28 null T cells and/or a previous CMV infection and IMT or PWV. There was no relation between anti-hHSP60 and CD4 + CD28 null T cells. Increased PWV values suggest atherosclerotic damage in patients with AAV. Plaque size, as determined by IMT, did not differ. CD4 + CD28 null T cells are increased in AAV and related to the previous CMV infection.

  7. A pathway of costimulation that prevents anergy in CD28- T cells: B7- independent costimulation of CD1-restricted T cells

    PubMed Central

    1995-01-01

    A class of molecules that is expressed on antigen presenting cells, exemplified by CD80 (B7), has been found to provide a necessary costimulatory signal for T cell activation and proliferation. CD28 and CTLA4 are the B7 counterreceptors and are expressed on the majority of human CD4+ T cells and many CD8+ T cells. The signal these molecules mediate is distinguished from other costimulatory signals by the finding that T cell recognition of antigen results in a prolonged state of T cell unresponsiveness or anergy, unless these costimulatory molecules are engaged. However, nearly half of the CD8+ and CD4-CD8- T cells lack CD28, and the costimulatory signals required for the activation of such cells are unknown. To understand the pathways of activation used by CD28- T cells, we have examined the costimulatory requirements of antigen-specific CD4-CD8- TCR(+)-alpha/beta circulating T cells that lack the expression of CD28. We have characterized two T cell lines, DN1 and DN6, that recognize a mycobacterial antigen, and are restricted not by major histocompatibility complex class I or II, but by CD1b or CD1c, two members of a family of major histocompatibility complex-related molecules that have been recently implicated in a distinct pathway for antigen presentation. Comparison of antigen-specific cytolytic responses of the DN1 and DN6 T cell lines against antigen-pulsed CD1+ monocytes or CD1+ B lymphoblastoid cell lines (B-LCL) demonstrated that these T cells recognized antigen presented by both types of cells. However, T cell proliferation occurred only when antigen was presented by CD1+ monocytes, indicating that the CD1+ monocytes expressed a costimulatory molecule that the B- LCL transfectants lacked. This hypothesis was confirmed by demonstrating that the T cells became anergic when incubated with the CD1(+)-transfected B-LCL in the presence of antigen, but not in the absence of antigen. The required costimulatory signal occurred by a CD28-independent mechanism since both the CD1+ monocytes and CD1+ B-LCL transfectants expressed B7-1 and B7-2, and DN1 and DN6 lacked surface expression of CD28. We propose that these data define a previously unrecognized pathway of costimulation for T cells distinct from that involving CD28 and its counterreceptors. We suggest that this B7- independent pathway plays a crucial role in the activation and maintenance of tolerance of at least a subset of CD28- T cells. PMID:7500046

  8. α2-adrenergic blockade mimics the enhancing effect of chronic stress on breast cancer progression

    PubMed Central

    Lamkin, Donald M.; Sung, Ha Yeon; Yang, Gyu Sik; David, John M.; Ma, Jeffrey C.Y.; Cole, Steve W.; Sloan, Erica K.

    2014-01-01

    Experimental studies in preclinical mouse models of breast cancer have shown that chronic restraint stress can enhance disease progression by increasing catecholamine levels and subsequent signaling of β-adrenergic receptors. Catecholamines also signal α-adrenergic receptors, and greater α-adrenergic signaling has been shown to promote breast cancer in vitro and in vivo. However, antagonism of α-adrenergic receptors can result in elevated catecholamine levels, which may increase β-adrenergic signaling, because pre-synaptic α2-adrenergic receptors mediate an autoinhibition of sympathetic transmission. Given these findings, we examined the effect of α-adrenergic blockade on breast cancer progression under non-stress and stress conditions (chronic restraint) in an orthotopic mouse model with MDA-MB-231HM cells. Chronic restraint increased primary tumor growth and metastasis to distant tissues as expected, and non-selective α-adrenergic blockade by phentolamine significantly inhibited those effects. However, under non-stress conditions, phentolamine increased primary tumor size and distant metastasis. Sympatho-neural gene expression for catecholamine biosynthesis enzymes was elevated by phentolamine under non-stress conditions, and the non-selective β-blocker propranolol inhibited the effect of phentolamine on breast cancer progression. Selective α2-adrenergic blockade by efaroxan also increased primary tumor size and distant metastasis under non-stress conditions, but selective α1-adrenergic blockade by prazosin did not. These results are consistent with the hypothesis that α2-adrenergic signaling can act through an autoreceptor mechanism to inhibit sympathetic catecholamine release and, thus, modulate established effects of β-adrenergic signaling on tumor progression-relevant biology. PMID:25462899

  9. Characterisation of an epigenetically altered CD4+ CD28+ Kir+ T cell subset in autoimmune rheumatic diseases by multiparameter flow cytometry

    PubMed Central

    Strickland, Faith M; Patel, Dipak; Somers, Emily; Robida, Aaron M; Pihalja, Michael; Swartz, Richard; Marder, Wendy; Richardson, Bruce

    2016-01-01

    Objectives Antigen-specific CD4+ T cells epigenetically modified with DNA methylation inhibitors overexpress genes normally suppressed by this mechanism, including CD11a, CD70, CD40L and the KIR gene family. The altered cells become autoreactive, losing restriction for nominal antigen and responding to self-class II major histocompatibility complex (MHC) molecules without added antigen, and are sufficient to cause a lupus-like disease in syngeneic mice. T cells overexpressing the same genes are found in patients with active lupus. Whether these genes are co-overexpressed on the same or different cells is unknown. The goal of this study was to determine whether these genes are overexpressed on the same or different T cells and whether this subset of CD4+ T cells is also present in patients with lupus and other rheumatic diseases. Methods Multicolour flow cytometry was used to compare CD11a, CD70, CD40L and KIR expression on CD3+CD4+CD28+ T cells to their expression on experimentally demethylated CD3+CD4+CD28+ T cells and CD3+CD4+CD28+ T cells from patients with active lupus and other autoimmune diseases. Results Experimentally demethylated CD4+ T cells and T cells from patients with active lupus have a CD3+CD4+CD28+CD11ahiCD70+CD40LhiKIR+ subset, and the subset size is proportional to lupus flare severity. A similar subset is found in patients with other rheumatic diseases including rheumatoid arthritis, systemic sclerosis and Sjögren's syndrome but not retroperitoneal fibrosis. Conclusions Patients with active autoimmune rheumatic diseases have a previously undescribed CD3+CD4+CD28+CD11ahiCD70+CD40LhiKIR+ T cell subset. This subset may play an important role in flares of lupus and related autoimmune rheumatic diseases, provide a biomarker for disease activity and serve as a novel therapeutic target for the treatment of lupus flares. PMID:27099767

  10. PD-1 Modulates Radiation-Induced Cardiac Toxicity through Cytotoxic T Lymphocytes.

    PubMed

    Du, Shisuo; Zhou, Lin; Alexander, Gregory S; Park, Kyewon; Yang, Lifeng; Wang, Nadan; Zaorsky, Nicholas G; Ma, Xinliang; Wang, Yajing; Dicker, Adam P; Lu, Bo

    2018-04-01

    Combined immune checkpoint blockade has led to rare autoimmune complications, such as fatal myocarditis. Recent approvals of several anti-programmed death 1 (anti-PD-1) drugs for lung cancer treatment prompted ongoing clinical trials that directly combine PD-1 inhibitors with thoracic radiotherapy for locally advanced lung cancer. Overlapping toxicities from either modality have the potential to increase the risk for radiation-induced cardiotoxicity (RICT), which is well documented among patients with Hodgkin's disease and breast cancer. To investigate cardiotoxicity without the compounding pulmonary toxicity from thoracic radiotherapy, we developed a technique to deliver cardiac irradiation (CIR) in a mouse model concurrently with PD-1 blockade to determine the presence of cardiac toxicity by using physiological testing and mortality as end points along with histological analysis. We observed an acute mortality of 30% within 2 weeks after CIR plus anti-PD-1 antibody compared with 0% from CIR plus immunoglobulin G (p = 0.023). Physiological testing demonstrated a reduced left ventricular ejection fraction (p < 0.01) by echocardiogram. Tissue analyses revealed increased immune cell infiltrates within cardiac tissue. Depletion of CD8-positive lymphocytes with anti-CD8 antibody reversed the acute mortality, suggesting that the toxicity is CD8-positive cell-mediated. To validate these findings using a clinically relevant fractionated radiotherapy regimen, we repeated the study by delivering five daily fractions of 6 Gy. Similar mortality, cardiac dysfunction, and histological changes were observed in mice receiving fractionated radiotherapy with concurrent anti-PD-1 therapy. This study provides strong preclinical evidence that radiation-induced cardiotoxicity is modulated by the PD-1 axis and that PD-1 blockade should be administered with careful radiotherapy planning with an effort of reducing cardiac dose. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  11. Epstein-Barr virus effect on frequency of functionally distinct T cell subsets in children with infectious mononucleosis.

    PubMed

    Sulik, Artur; Oldak, Elzbieta; Kroten, Anna; Lipska, Alina; Radziwon, Piotr

    2014-09-01

    Epstein-Barr virus is a common human pathogen which infects the great majority of population worldwide. A striking proliferation of CD8⁺ T cells is an immune response to EBV invasion of B lymphocytes during infectious mononucleosis. The aim of the study was to analyze frequencies of CD28⁺CD95⁻, CD28⁺CD95⁺, CD28⁻CD95⁺ T cell subsets putative naïve (T(N)), central (T(CM)) and effector memory (T(EM)) T cells in children with infectious mononucleosis. Multiparameter flow cytometric analysis of CD4⁺ and CD8⁺ T cell subsets was performed in 19 children with acute infectious mononucleosis. The CD4⁺/CD8⁺ ratio was found to be decreased (0.53) in children with infectious mononucleosis. Median T(N), T(CM), T(EM) frequencies were estimated to be 3.7, 4.5, 15.1% of CD8⁺ and 23, 59.3, 5.5% of CD4⁺ T cells, respectively. In the present study we demonstrated negative correlations between CD8⁺CD28⁺CD95⁺ and CD8⁺CD28⁻CD95⁺ T cells and both VCA IgM antibody titers and disease duration. However, no such correlation was found when subset of CD4⁺ T cells or CD8⁺CD28⁺CD95⁻ cells was compared. We conclude that there is a rapid decrease in the number of memory CD8⁺ T cells in early acute stage of infectious mononucleosis. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK

    NASA Astrophysics Data System (ADS)

    Palma, M.; Scheller, C. P.; Maradan, D.; Feshchenko, A. V.; Meschke, M.; Zumbühl, D. M.

    2017-12-01

    Cooling nanoelectronic devices below 10 mK is a great challenge since thermal conductivities become very small, thus creating a pronounced sensitivity to heat leaks. Here, we overcome these difficulties by using adiabatic demagnetization of both the electronic leads and the large metallic islands of a Coulomb blockade thermometer. This reduces the external heat leak through the leads and also provides on-chip refrigeration, together cooling the thermometer down to 2.8 ± 0.1 mK. We present a thermal model which gives a good qualitative account and suggests that the main limitation is heating due to pulse tube vibrations. With better decoupling, temperatures below 1 mK should be within reach, thus opening the door for μK nanoelectronics.

  13. Curcumin Inhibits CD4+ T Cell Activation, but Augments CD69 Expression and TGF-β1-Mediated Generation of Regulatory T Cells at Late Phase

    PubMed Central

    Kim, Girak; Jang, Mi Seon; Son, Young Min; Seo, Min Ji; Ji, Sang Yun; Han, Seung Hyun; Jung, In Duk; Park, Yeong-Min; Jung, Hyun Jung; Yun, Cheol-Heui

    2013-01-01

    Background Curcumin is a promising candidate for a natural medicinal agent to treat chronic inflammatory diseases. Although CD4+ T cells have been implicated in the pathogenesis of chronic inflammation, whether curcumin directly regulates CD4+ T cells has not been definitively established. Here, we showed curcumin-mediated regulation of CD2/CD3/CD28-initiated CD4+ T cell activation in vitro. Methodology/Principal Findings Primary human CD4+ T cells were stimulated with anti-CD2/CD3/CD28 antibody-coated beads as an in vitro surrogate system for antigen presenting cell-T cell interaction and treated with curcumin. We found that curcumin suppresses CD2/CD3/CD28-initiated CD4+ T cell activation by inhibiting cell proliferation, differentiation and cytokine production. On the other hand, curcumin attenuated the spontaneous decline of CD69 expression and indirectly increased expression of CCR7, L-selectin and Transforming growth factor-β1 (TGF-β1) at the late phase of CD2/CD3/CD28-initiated T cell activation. Curcumin-mediated up-regulation of CD69 at late phase was associated with ERK1/2 signaling. Furthermore, TGF-β1 was involved in curcumin-mediated regulation of T cell activation and late-phase generation of regulatory T cells. Conclusions/Significance Curcumin not merely blocks, but regulates CD2/CD3/CD28-initiated CD4+ T cell activation by augmenting CD69, CCR7, L-selectin and TGF-β1 expression followed by regulatory T cell generation. These results suggest that curcumin could directly reduce T cell-dependent inflammatory stress by modulating CD4+ T cell activation at multiple levels. PMID:23658623

  14. TCR-independent CD28-mediated gene expression in peripheral blood lymphocytes from donors chronically infected with HIV-1.

    PubMed Central

    Wong, J G; Smithgall, M D; Haffar, O K

    1997-01-01

    Complete activation of peripheral blood T cells requires both T-cell receptor (TCR) stimulation and CD28 costimulation. Signalling pathways associated specifically with CD28 are not well understood, however, because ligation of CD28 in the absence of TCR stimulation does not give rise to cellular responses in normal cells. In peripheral blood lymphocytes (PBL) from donors chronically infected with human immunodeficiency virus-1 (HIV-1), CD28 can induce viral replication through an alternative pathway that does not require TCR ligation. We have exploited this observation to study CD28-mediated signal transduction using reverse transcriptase-mediated polymerase chain reaction (RT-PCR) to amplify viral RNA. Independent ligation of CD28 on donor PBL induced expression of the HIV-1 tat gene but not the interleukin-2 (IL-2) gene. Viral induction did not occur following pretreatment of cells with actinomycin D, suggesting it was mediated through transcriptional activation of the viral long terminal repeat (LTR). tat was induced in the presence of the protein kinase C inhibitor H-7, but was inhibited by cyclosporin A. Our results demonstrate that CD28 is linked directly to specific signalling pathways leading to de novo induction of genes in PBL. Images Figure 1 Figure 2 Figure 3 PMID:9135558

  15. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase.

    PubMed

    Kwong, Yok-Lam; Chan, Thomas S Y; Tan, Daryl; Kim, Seok Jin; Poon, Li-Mei; Mow, Benjamin; Khong, Pek-Lan; Loong, Florence; Au-Yeung, Rex; Iqbal, Jabed; Phipps, Colin; Tse, Eric

    2017-04-27

    Natural killer (NK)/T-cell lymphomas failing L-asparaginse regimens have no known salvage and are almost invariably fatal. Seven male patients with NK/T-cell lymphoma (median age, 49 years; range, 31-68 years) for whom a median of 2 (range, 1-5) regimens (including l-asparaginase regimens and allogeneic hematopoietic stem-cell transplantation [HSCT] in 2 cases) failed were treated with the anti-programmed death 1 (PD1) antibody pembrolizumab. All patients responded, according to various clinical, radiologic (positron emission tomography), morphologic, and molecular (circulating Epstein-Barr virus [EBV] DNA) criteria. Two patients achieved complete response (CR) in all parameters. Three patients achieved clinical and radiologic CRs, with two having molecular remission (undetectable EBV DNA) but minimal EBV-encoded RNA-positive cells in lesions comprising predominantly CD3 + CD4 + and CD3 + CD8 + T cells (which ultimately disappeared, suggesting they represented pseudoprogression) and one having detectable EBV DNA despite morphologic CR. Two patients achieved partial response (PR). After a median of 7 (range, 2-13) cycles of pembrolizumab and a follow-up of a median of 6 (range, 2-10) months, all five CR patients were still in remission. The only adverse event was grade 2 skin graft-versus-host disease in one patient with previous allogeneic HSCT. Expression of the PD1 ligand was strong in 4 patients (3 achieving CR) and weak in 1 (achieving PR). PD1 blockade with pembrolizumab was a potent strategy for NK/T-cell lymphomas failing l-asparaginase regimens. © 2017 by The American Society of Hematology.

  16. The Role of TNF Family Molecules Light in Cellular Interaction Between Airway Smooth Muscle Cells and T Cells During Chronic Allergic Inflammation.

    PubMed

    Shi, Fei; Xiong, Yi; Zhang, Yarui; Qiu, Chen; Li, Manhui; Shan, Aijun; Yang, Ying; Li, Binbin

    2018-06-01

    Interaction between T cells and airway smooth muscle (ASM) cells has been identified as an important factor in the development of asthma. LIGHT (known as TNFSF14) -mediated signaling likely contributes to various inflammatory disorders and airway remodeling. The objective of this study was to investigate the roles of LIGHT-mediated pathways in the interaction between ASM cells and T cells during chronic allergic inflammation. Mice were sensitized and challenged by ovalbumin (OVA) to induce chronic airway allergic inflammation. The control group received PBS only. The histological features and LIGHT expressions in lungs were assessed in vivo. Furthermore, T cells and ASM cells derived from the model mice were co-cultured both in the presence and absence of anti-LIGHT Ab for 72 h. The effects of LIGHT blockade on expressions of downstream signaling molecules, proliferation, and apoptosis of ASM cells, differentiation of T cells, and inflammatory cytokines release were evaluated. We demonstrated that LIGHT blockade strikingly inhibited the mRNA and protein expressions of HVEM, c-JUN, and NFκB. Additionally, LIGHT blockade resulted in decreased proliferation and increased apoptosis of ASM cells. Moreover, depletion of LIGHT dramatically reduced the differentiation of CD4 + T cells into Th1, Th2, and Th17 cells, as well as inhibited inflammatory cytokines release including IL-13, TGF-β, and IFN-γ, which are associated with CD4 + T cell differentiation and ASM cell proliferation. LIGHT plays an important role in the interaction between T cells and ASM cells in chronic allergic asthma. Blockade of LIGHT markedly suppressed ASM hyperplasia and inflammatory responses, which might be modulated through HVEM-NFκB or c-JUN pathways. Therefore, targeting LIGHT is a promising therapeutic strategy for airway inflammation and remodeling in chronic allergic asthma.

  17. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes.

    PubMed

    Numnuam, Apon; Chumbimuni-Torres, Karin Y; Xiang, Yun; Bash, Ralph; Thavarungkul, Panote; Kanatharana, Proespichaya; Pretsch, Ernö; Wang, Joseph; Bakker, Eric

    2008-02-01

    We here report on the first example of an aptamer-based potentiometric sandwich assay of proteins. The measurements are based on CdS quantum dot labels of the secondary aptamer, which were determined with a novel solid-contact Cd2+-selective polymer membrane electrode after dissolution with hydrogen peroxide. The electrode exhibited cadmium ion detection limits of 100 pM in 100 mL samples and of 1 nM in 200 microL microwells, using a calcium-selective electrode as a pseudoreference electrode. As a prototype example, thrombin was measured in 200 microL samples with a lower detection limit of 0.14 nM corresponding to 28 fmol of analyte. The results show great promise for the potentiometric determination of proteins at very low concentrations in microliter samples.

  18. PD-1/PD-L1 pathway: an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer.

    PubMed

    Dosset, Magalie; Vargas, Thaiz Rivera; Lagrange, Anaïs; Boidot, Romain; Végran, Frédérique; Roussey, Aurélie; Chalmin, Fanny; Dondaine, Lucile; Paul, Catherine; Marie-Joseph, Elodie Lauret; Martin, François; Ryffel, Bernhard; Borg, Christophe; Adotévi, Olivier; Ghiringhelli, François; Apetoh, Lionel

    2018-01-01

    Chemotherapy is currently evaluated in order to enhance the efficacy of immune checkpoint blockade (ICB) therapy in colorectal cancer. However, the mechanisms by which these drugs could synergize with ICB remains unclear. The impact of chemotherapy on the PD-1/PD-L1 pathway and the resulting anticancer immune responses was assessed in two mouse models of colorectal cancer and validated in tumor samples from metastatic colorectal cancer patients that received neoadjuvant treatment. We demonstrated that 5-Fluorouracil plus Oxaliplatin (Folfox) drove complete tumor cure in mice when combined to anti-PD-1 treatment, while each monotherapy failed. This synergistic effect relies on the ability of Folfox to induce tumor infiltration by activated PD-1 + CD8 T cells in a T-bet dependent manner. This effect was concomitantly associated to the expression of PD-L1 on tumor cells driven by IFN-γ secreted by PD-1+ CD8 T cells, indicating that Folfox triggers tumor adaptive immune resistance. Finally, we observed an induction of PD-L1 expression and high CD8 T cell infiltration in the tumor microenvironment of colorectal cancer patients treated by Folfox regimen. Our study delineates a molecular pathway involved in Folfox-induced adaptive immune resistance in colorectal cancer. The results strongly support the use of immune checkpoint blockade therapy in combination with chemotherapies like Folfox.

  19. Mechanisms of alpha 1-adrenergic vascular desensitization in conscious dogs

    NASA Technical Reports Server (NTRS)

    Kiuchi, K.; Vatner, D. E.; Uemura, N.; Bigaud, M.; Hasebe, N.; Hempel, D. M.; Graham, R. M.; Vatner, S. F.

    1992-01-01

    To investigate the mechanisms of alpha 1-adrenergic vascular desensitization, osmotic minipumps containing either saline (n = 9) or amidephrine mesylate (AMD) (n = 9), a selective alpha 1-adrenergic receptor agonist, were implanted subcutaneously in dogs with chronically implanted arterial and right atrial pressure catheters and aortic flow probes. After chronic alpha 1-adrenergic receptor stimulation, significant physiological desensitization to acute AMD challenges was observed, i.e., pressor and vasoconstrictor responses to the alpha 1-adrenergic agonist were significantly depressed (p < 0.01) compared with responses in the same dogs studied in the conscious state before pump implantation. However, physiological desensitization to acute challenges of the neurotransmitter norepinephrine (NE) (0.1 micrograms/kg per minute) in the presence of beta-adrenergic receptor blockade was not observed for either mean arterial pressure (MAP) (30 +/- 7 versus 28 +/- 5 mm Hg) or total peripheral resistance (TPR) (29.8 +/- 4.9 versus 28.9 +/- 7.3 mm Hg/l per minute). In the presence of beta-adrenergic receptor plus ganglionic blockade after AMD pump implantation, physiological desensitization to NE was unmasked since the control responses to NE (0.1 micrograms/kg per minute) before the AMD pumps were now greater (p < 0.01) than after chronic AMD administration for both MAP (66 +/- 5 versus 32 +/- 2 mm Hg) and TPR (42.6 +/- 10.3 versus 23.9 +/- 4.4 mm Hg/l per minute). In the presence of beta-adrenergic receptor, ganglionic, plus NE-uptake blockade after AMD pump implantation, desensitization was even more apparent, since NE (0.1 micrograms/kg per minute) induced even greater differences in MAP (33 +/- 5 versus 109 +/- 6 mm Hg) and TPR (28.1 +/- 1.8 versus 111.8 +/- 14.7 mm Hg/l per minute). The maximal force of contraction induced by NE in the presence or absence of endothelium was significantly decreased (p < 0.05) in vitro in mesenteric artery rings from AMD pump dogs compared with saline control dogs. Furthermore, alpha 1-adrenergic receptor density, as determined by [3H]prazosin binding in membrane preparations from vessels in the mesentery, was decreased (8.2 +/- 1.0 versus 18.4 +/- 1.4 fmol/mg protein, p < 0.001) without any change in Kd in the AMD pump dogs compared with the saline pump dogs.(ABSTRACT TRUNCATED AT 400 WORDS).

  20. The Effect of Beta Adrenergic Blockade on Ratings of Perceived Exertion.

    DTIC Science & Technology

    1984-01-01

    exrcis is uvo Hughson, et al. (47) investigated the effect of beta blockade using a single, 100-mg oral dose of metoprolol or matched placebo on 12...administered either placebo, propranolol (80 mug) or metoprolol (100 mug) in a double- blind, randomised manner. Before the muscle-strength tests were...The non-selective BABA propranolol and the selective agent metoprolol were compared with a placebo in a double blind cross-over design. Measurements

  1. Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor

    PubMed Central

    Schönfeld, Kurt; Sahm, Christiane; Zhang, Congcong; Naundorf, Sonja; Brendel, Christian; Odendahl, Marcus; Nowakowska, Paulina; Bönig, Halvard; Köhl, Ulrike; Kloess, Stephan; Köhler, Sylvia; Holtgreve-Grez, Heidi; Jauch, Anna; Schmidt, Manfred; Schubert, Ralf; Kühlcke, Klaus; Seifried, Erhard; Klingemann, Hans G; Rieger, Michael A; Tonn, Torsten; Grez, Manuel; Wels, Winfried S

    2015-01-01

    Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy. PMID:25373520

  2. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo

    PubMed Central

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M.; Brennan, Patrick J.; Banerjee, Pinaki P.; Wiener, Susan J.; Orange, Jordan S.; Brenner, Michael B.; Grupp, Stephan A.; Nichols, Kim E.

    2013-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we find that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially-induced by iNKT cell agonists of varying TCR affinities, such as OCH, α-galactosyl ceramide and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of T cell receptor (TCR) signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell-deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T-lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T-lymphoma. PMID:24563871

  3. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo .

    PubMed

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M; Brennan, Patrick J; Banerjee, Pinaki P; Wiener, Susan J; Orange, Jordan S; Brenner, Michael B; Grupp, Stephan A; Nichols, Kim E

    2014-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we found that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially induced by iNKT cell agonists of varying T-cell receptor (TCR) affinities, such as OCH, α-galactosyl ceramide, and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of TCR signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell–deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T lymphoma. ©2013 AACR.

  4. [Importance of the new biologicals and cytokine antagonists in the treatment of juvenile idiopathic arthritis (JIA)].

    PubMed

    Horneff, G

    2005-06-01

    Juvenile idiopathic arthritis is group of diseases of unknown aetiology characterised by the occurrence of chronic arthritis during childhood. Compared to adult onset rheumatoid arthritis, its course is more variable. Increasing knowledge of the inflammatory process as well as in molecular genetics and biotechnology has enable the production of new drugs, the biologicals. These are able to specifically block mechanisms of immune activation and thereby interfere with the inflammatory process. An increasing number of biologicals have been tried in clinical studies in adults suffering from rheumatoid arthritis, psoriasis or psoriasis arthritis and a couple of them were already licensed for treatment. Treatment of juvenile idiopathic arthritis by blockade of tumournecrosis-factor (TNF) using the soluble receptor Etanercept or the monoclonal antibodies Infliximab and Adalimumab showed comparable clinical efficacy. Blockade of TNF therefore already reached a certain place in the therapeutic algorythm for treatment of juvenile idiopathic arthritis. Currently, only Etanercept is licensed for treatment of active juvenile polyarthritis refractory to methotrexate. Studies using Infliximab and Adalimumab will be completed in the near future. However, antibodies blocking TNF may already be used in patients suffering from active uncontrolled chronic uveitis in whom visual impairment is threatening. TNF blockers may also be indicated in juvenile ankylosing spondylitis. The use of further biologicals, the interleukin-1 receptor antagonist Anakinra, Atlizumab (MRA) blocking the receptor for interleukin-6 or Abatacept, an inhibitory ligand of the co-stimulatory T cell membrane molecule CD28, remain experimental and should be preserved for clinical studies.

  5. Clinical Trials Using Anti-CD19/CD28/CD3zeta CAR Gammaretroviral Vector-transduced Autologous T Lymphocytes KTE-C19

    Cancer.gov

    NCI supports clinical trials that test new and more effective ways to treat cancer. Find clinical trials studying anti-cd19/cd28/cd3zeta car gammaretroviral vector-transduced autologous t lymphocytes kte-c19.

  6. ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graft-versus-host disease

    PubMed Central

    Zhang, Jilu; Ramadan, Abdulraouf M.; Griesenauer, Brad; Li, Wei; Turner, Matthew J.; Liu, Chen; Kapur, Reuben; Hanenberg, Helmut; Blazar, Bruce R.; Tawara, Isao; Paczesny, Sophie

    2015-01-01

    Graft-versus-host disease (GVHD) remains a devastating complication after allogeneic hematopoietic cell transplantation (HCT). We previously identified high plasma soluble suppression of tumorigenicity 2 (sST2) as a biomarker of the development of GVHD and death. sST2 sequesters interleukin (IL)-33, limiting its availability to T cells expressing membrane-bound ST2 (mST2) [Th2 cells and ST2+FoxP3+regulatory T cells]. Here, we report that blockade of sST2 in the peri-transplant period with a neutralizing monoclonal antibody (anti-ST2 mAb) reduced GVHD severity and mortality. We identified intestinal stromal cells and T cells as major sources of sST2 during GVHD. ST2 blockade decreased systemic interferon-γ, IL-17, and IL-23 but increased IL-10 and IL-33 plasma levels. ST2 blockade also reduced sST2 production by IL-17–producing T cells while maintaining protective mST2-expressing T cells, increasing the frequency of intestinal myeloid-derived suppressor cells, and decreasing frequency of intestinal CD103 dendritic cells. Finally, ST2 blockade preserved graft-versus-leukemia activity in a model of GFP+MLL-AF9 acute myeloid leukemia. Our findings suggest that ST2 is a therapeutic target for severe GVHD, and that the ST2/IL-33 pathway could be investigated in other T-cell mediated immune disorders with loss of tolerance. PMID:26446957

  7. CD28 co-stimulation restores T cell responsiveness in NOD mice by overcoming deficiencies in Rac-1/p38 mitogen-activated protein kinase signaling and IL-2 and IL-4 gene transcription.

    PubMed

    Zhang, J; Salojin, K V; Delovitch, T L

    2001-03-01

    Previously, we reported that T cell hyporesponsiveness induced by TCR ligation is causal to autoimmune diabetes in NOD mice. Neonatal CD28 co-stimulation reverses T cell hyporesponsiveness and protects NOD mice from diabetes by an IL-4-mediated mechanism, indicating that a deficiency in TCR signaling may be overcome by CD28/B7-2 co-stimulation in NOD T cells. To investigate which co-stimulation-induced signaling events mediate this protection, we analyzed the activity of Ras, Rac-1, mitogen-activated protein kinases (MAPK) and several transcription factors in TCR-activated NOD T cells in the presence or absence of CD28 co-stimulation. We show that CD28 co-stimulation restores normal TCR-induced activation of Rac-1 and p38 MAPK in NOD T cells. Deficiencies in TCR-induced nuclear expression of activating protein (AP)-1 binding proteins as well as activation of AP-1 and NF-AT in the IL-2 and IL-4 P1 promoters are also corrected by CD28 co-stimulation. Thus, CD28 co-stimulation reverses NOD T cell hyporesponsiveness by restoring TCR signaling leading to the activation of AP-1 and NF-AT during IL-2 and IL-4 gene transcription. Our findings provide additional evidence that CD28 co-stimulation amplifies signals delivered by the TCR and further explain the mechanism by which CD28 co-stimulation may protect against autoimmune diabetes.

  8. A subset of virus-specific CD161+ T cells selectively express the multidrug transporter MDR1 and are resistant to chemotherapy in AML

    PubMed Central

    Alsuliman, Abdullah; Muftuoglu, Muharrem; Khoder, Ahmad; Ahn, Yong-Oon; Basar, Rafet; Verneris, Michael R.; Muranski, Pawel; Barrett, A. John; Liu, Enli; Li, Li; Stringaris, Kate; Armstrong-James, Darius; Shaim, Hila; Kondo, Kayo; Imahashi, Nobuhiko; Andersson, Borje; Marin, David; Champlin, Richard E.; Shpall, Elizabeth J.

    2017-01-01

    The establishment of long-lived pathogen-specific T cells is a fundamental property of the adaptive immune response. However, the mechanisms underlying long-term persistence of antigen-specific CD4+ T cells are not well-defined. Here we identify a subset of memory CD4+ T cells capable of effluxing cellular toxins, including rhodamine (Rho), through the multidrug efflux protein MDR1 (also known as P-glycoprotein and ABCB1). Drug-effluxing CD4+ T cells were characterized as CD161+CD95+CD45RA−CD127hiCD28+CD25int cells with a distinct chemokine profile and a Th1-polarized pro-inflammatory phenotype. CD4+CD161+Rho-effluxing T cells proliferated vigorously in response to stimulation with anti-CD3/CD28 beads and gave rise to CD161− progeny in vitro. These cells were also capable of self-renewal and maintained their phenotypic and functional characteristics when cultured with homeostatic cytokines. Multidrug-effluxing CD4+CD161+ T cells were enriched within the viral-specific Th1 repertoire of healthy donors and patients with acute myeloid leukemia (AML) and survived exposure to daunorubicin chemotherapy in vitro. Multidrug-effluxing CD4+CD161+ T cells also resisted chemotherapy-induced cytotoxicity in vivo and underwent significant expansion in AML patients rendered lymphopenic after chemotherapy, contributing to the repopulation of anti-CMV immunity. Finally, after influenza vaccination, the proportion of influenza-specific CD4+ T cells coexpressing CD161 was significantly higher after 2 years compared with 4 weeks after immunization, suggesting CD161 is a marker for long-lived antigen-specific memory T cells. These findings suggest that CD4+CD161+ T cells with rapid efflux capacity contribute to the maintenance of viral-specific memory T cells. These data provide novel insights into mechanisms that preserve antiviral immunity in patients undergoing chemotherapy and have implications for the development of novel immunotherapeutic approaches. PMID:27821506

  9. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires.

    PubMed

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current-voltage (I-V) characteristics show two distinct power law regions from 360 down to 60 K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100 K, and the corresponding carrier mobility, trap energy, and trap concentration are also obtained. However, the I-V data exhibit some features of the Coulomb blockade effect below 80 K.

  10. Monocyte:T cell interaction regulates human T cell activation through a CD28/CD46 crosstalk

    PubMed Central

    Charron, Lauren; Doctrinal, Axelle; Choileain, Siobhan Ni; Astier, Anne L.

    2015-01-01

    T cell activation requires engagement of the T cell receptor and of at least one costimulatory molecule. The key role of CD28 in inducing T cell activation has been reported several decades ago and the molecular mechanisms involved well described. The complement regulator CD46 also acts as a costimulatory molecule for T cells but, in contrast to CD28, has the ability to drive T cell differentiation from producing some IFNγ to secreting some potent anti-inflammatory IL-10, acquiring a so-called Type I regulatory phenotype (Tr1). Proteolytic cleavage of CD46 occurs upon costimulation and is important for T cell activation and IL-10 production. The observation that CD46 cleavage was reduced when PBMC were costimulated compared to purified naive T cells led us to hypothesize that interactions between different cell types within the PBMC were able to modulate the CD46 pathway. We show that CD46 downregulation is also reduced when CD4+ T cells are co-cultured with autologous monocytes. Indeed, monocyte:T cell co-cultures impaired CD46–mediated T cell differentiation and coactivation, by reducing downregulation of surface CD46, lowering induction of the early activation marker CD69, as well as reducing the levels of IL-10 secretion. Blocking of CD86 could partly restore CD69 expression and cytokine secretion, demonstrating that the CD28-CD86 pathway regulates CD46 activation. Direct concomitant ligation of CD28 and CD46 on CD4+ T cells also modulated CD46 expression and regulated cytokine production. These data identify a crosstalk between two main costimulatory pathways and provide novel insights into the regulation of human T cell activation. PMID:25787182

  11. The heritage of pathogen pressures and ancient demography in the human innate-immunity CD209/CD209L region.

    PubMed

    Barreiro, Luis B; Patin, Etienne; Neyrolles, Olivier; Cann, Howard M; Gicquel, Brigitte; Quintana-Murci, Lluís

    2005-11-01

    The innate immunity system constitutes the first line of host defense against pathogens. Two closely related innate immunity genes, CD209 and CD209L, are particularly interesting because they directly recognize a plethora of pathogens, including bacteria, viruses, and parasites. Both genes, which result from an ancient duplication, possess a neck region, made up of seven repeats of 23 amino acids each, known to play a major role in the pathogen-binding properties of these proteins. To explore the extent to which pathogens have exerted selective pressures on these innate immunity genes, we resequenced them in a group of samples from sub-Saharan Africa, Europe, and East Asia. Moreover, variation in the number of repeats of the neck region was defined in the entire Human Genome Diversity Panel for both genes. Our results, which are based on diversity levels, neutrality tests, population genetic distances, and neck-region length variation, provide genetic evidence that CD209 has been under a strong selective constraint that prevents accumulation of any amino acid changes, whereas CD209L variability has most likely been shaped by the action of balancing selection in non-African populations. In addition, our data point to the neck region as the functional target of such selective pressures: CD209 presents a constant size in the neck region populationwide, whereas CD209L presents an excess of length variation, particularly in non-African populations. An additional interesting observation came from the coalescent-based CD209 gene tree, whose binary topology and time depth (approximately 2.8 million years ago) are compatible with an ancestral population structure in Africa. Altogether, our study has revealed that even a short segment of the human genome can uncover an extraordinarily complex evolutionary history, including different pathogen pressures on host genes as well as traces of admixture among archaic hominid populations.

  12. D-1 and D-2 receptor blockade have additive cataleptic effects in mice, but receptor effects may interact in opposite ways.

    PubMed

    Klemm, W R; Block, H

    1988-02-01

    The dopaminergic role of D-1 and D-2 receptors in catalepsy was evaluated using drugs with preferential receptor affinities. The D-1 antagonist, SCH 23390, caused distinct catalepsy in mice at 1, 2, and 10 mg/kg, IP, but not at two lower doses. The selective D-1 blocker, molindone, also caused catalepsy at 5 and 10 mg/kg; and blockade of both receptor types produced additive cataleptogenic effects. Apomorphine (4 mg/kg), which is an agonist for both receptors, potentiated SCH 23390-induced catalepsy much more than it did the catalepsy induced by molindone; the potentiation was produced by higher, not lower, doses of apomorphine. To determine if the apomorphine potentiation was mediated by D-1 or D-2 receptors, we tested selective agonists in mice that were concurrently injected with selective blockers. SCH 23390-induced catalepsy was potentiated by a large dose of the D-2 agonist, bromocriptine. The catalepsy of D-2 blockade with molindone was not potentiated by the D-1 agonist, SKF 38393, which slightly disrupted the catalepsy of D-2 blockade. We conclude that catalepsy is not a simple D-2 blockade phenomenon and that preferential antagonism of either receptor type can cause catalepsy. Catalepsy is most profound when both receptor types are blocked. Dopamine agonists, in large concentrations, are known to promote movements, and thus it is not surprising that they tend to disrupt catalepsy.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Radiotherapy-Induced Anti-Tumor Immunity Contributes to the Therapeutic Efficacy of Irradiation and Can Be Augmented by CTLA-4 Blockade in a Mouse Model

    PubMed Central

    Yoshimoto, Yuya; Suzuki, Yoshiyuki; Mimura, Kousaku; Ando, Ken; Oike, Takahiro; Sato, Hiro; Okonogi, Noriyuki; Maruyama, Takanori; Izawa, Shinichiro; Noda, Shin-ei; Fujii, Hideki; Kono, Koji; Nakano, Takashi

    2014-01-01

    Purpose There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL) activity. Methods and Materials C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C) cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD) was defined as the time (in days) for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. Results In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days) and prolonged median survival time (MST) to 59 days (versus 28 days in the non-irradiated group). CD8(+) cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days). Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days), while anti-FR4 and anti-GITR antibodies did not affect efficacy. Conclusions Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4 blockade, may be a promising treatment in combination with radiotherapy. PMID:24686897

  14. Anti-PD-1 Blockade and Stereotactic Radiation Produce Long-Term Survival in Mice With Intracranial Gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Jing; See, Alfred P.; Phallen, Jillian

    2013-06-01

    Purpose: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, and radiation is one of the main treatment modalities. However, cure rates remain low despite best available therapies. Immunotherapy is a promising modality that could work synergistically with radiation, which has been shown to increase antigen presentation and promote a proinflammatory tumor microenvironment. Programmed-death-1 (PD-1) is a surface receptor expressed on activated and exhausted T cells, which mediate T cell inhibition upon binding with its ligand PD-L1, expressed on many tumor types including human GBMs. We tested the combination of anti-PD-1 immunotherapy with stereotactic radiosurgery in amore » mouse orthotopic GBM model. Methods and Materials: We performed intracranial implantation of mouse glioma cell line GL261 transfected with luciferase into C57BL/6 mice. Mice were stratified into 4 treatment groups: (1) control; (2) radiation only; (3) anti-PD-1 antibody only; and (4) radiation plus anti-PD-1 antibody. Overall survival was quantified. The mice were killed on day 21 after implantation to assess immunologic parameters in the brain/tumor, cervical lymph nodes, and spleen. Results: Improved survival was demonstrated with combination anti-PD-1 therapy plus radiation compared with either modality alone: median survival was 25 days in the control arm, 27 days in the anti-PD-1 antibody arm, 28 days in the radiation arm, and 53 days in the radiation plus anti-PD-1 therapy arm (P<.05 by log-rank Mantle-Cox). Long-term survival was seen only in the combined treatment arm, with a fraction (15%-40%) of animals alive at day 180+ after treatment. Immunologic data on day 21 after implantation showed increased tumor infiltration by cytotoxic T cells (CD8+/interferon-γ+/tumor necrosis factor-α+) and decreased regulatory T cells (CD4+/FOXP3) in the combined treatment group compared with the single modality arms. Conclusions: The combination of PD-1 blockade and localized radiation therapy results in long-term survival in mice with orthotopic brain tumors. These studies provide strong preclinical evidence to support combination trials in patients with GBM.« less

  15. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model.

    PubMed

    Yoshimoto, Yuya; Suzuki, Yoshiyuki; Mimura, Kousaku; Ando, Ken; Oike, Takahiro; Sato, Hiro; Okonogi, Noriyuki; Maruyama, Takanori; Izawa, Shinichiro; Noda, Shin-ei; Fujii, Hideki; Kono, Koji; Nakano, Takashi

    2014-01-01

    There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL) activity. C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C) cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD) was defined as the time (in days) for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days) and prolonged median survival time (MST) to 59 days (versus 28 days in the non-irradiated group). CD8(+) cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days). Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days), while anti-FR4 and anti-GITR antibodies did not affect efficacy. Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4 blockade, may be a promising treatment in combination with radiotherapy.

  16. Role of CD28/B7 costimulation in the dexamethasone-induced suppression of IFN-gamma.

    PubMed

    Agarwal, S K; Marshall, G D

    2000-11-01

    In vitro exposure of peripheral blood mononuclear cells (PBMC) to glucocorticoids (GC), at concentrations observed during psychologic stress, induces a shift in the human type 1/type 2 cytokine balance toward a type 2 cytokine response. The mechanisms involved in these cytokine alterations are unknown but likely include modulation of regulatory cytokines or the interaction between the antigen-presenting cell (APC) and T lymphocyte or both. The CD28/B7 costimulation pathway has been reported to modulate the type 1/type 2 cytokine balance and may contribute to the GC-associated cytokine alterations. Therefore, we sought to determine the effect of dexamethasone (Dex) on the expression and function of the human CD28/B7 costimulatory pathway and whether these alterations contribute to the Dex-induced type 1/type 2 cytokine alterations. Dex inhibited the expression of both CD80 and CD86 on THP-1 cells, a human acute monocytic leukemia cell line, as determined by flow cytometry. Dex also inhibited the expression of CD28 and CTLA-4 on phytohemagglutinin (PHA)-stimulated CD3+ T lymphocytes, which was attenuated by the addition of interleukin-12 (IL-12). Lastly, activation of CD28 with anti-CD28 antibody attenuated the Dex-induced decrease in interferon-gamma (IFN-gamma) production by anti-CD3 antibody-stimulated PBMC. These data suggest that Dex induces a modulation of the CD28/B7 costimulatory pathway that contributes to the shift in the type 1/type 2 cytokine balance toward a predominant type 2 cytokine response.

  17. Killer cell immunoglobulin receptor profile on CD4+ CD28− T cells and their pathogenic role in non-dialysis-dependent and dialysis-dependent chronic kidney disease patients

    PubMed Central

    Zal, Behnam; Chitalia, Nihil; Ng, Yin Sing; Trieu, Verna; Javed, Sana; Warrington, Rachelle; Kaski, Juan Carlos; Banerjee, Debasish; Baboonian, Christina

    2015-01-01

    There is a progressive increase in cardiovascular disease with declining renal function, unexplained by traditional risk factors. A CD4+ T-cell subpopulation (CD4+ CD28−), activated by human heat-shock protein 60 (hHSP 60), expands in patients with acute coronary syndrome and is associated with vascular damage. These cells exhibit cytotoxicity via expression of activating killer cell-immunoglobulin-like receptor KIR2DS2, mainly in the absence of inhibitory KIR2DL3. We investigated expansion of these cells and the pathogenic role of the KIR in non-dialysis-dependent chronic kidney disease (NDD-CKD) and end-stage haemodialysis-dependent renal disease (HD-ESRD) patients. CD4+ CD28− cells were present in 27% of the NDD-CKD and HD-ESRD patients (8–11% and 10–11% of CD4+ compartment, respectively). CD4+ CD28− cells were phenotyped for KIR and DAP12 expression. Cytotoxicity was assessed by perforin and pro-inflammatory function by interferon-γ expression on CD4+ CD28− clones (NDD-CKD n = 97, HD-ESRD n = 262). Thirty-four per cent of the CD4+ CD28− cells from NDD-CKD expressed KIR2DS2 compared with 56% in HD-ESRD patients (P = 0·03). However, 20% of clones expressed KIR2DL3 in NDD-CKD compared with 7% in HD-ESRD patients (P = 0·004). DAP12 expression in CD28− 2DS2+ clones was more prevalent in HD-ESRD than NDD-CKD (92% versus 60%; P < 0·001). Only 2DS2+ 2DL3− DAP12+ clones were cytotoxic in response to hHSP 60. CD4+ CD28− cells exhibited increased KIR2DS2, reduced KIR2DL3 and increased DAP12 expression in HD-ESRD compared with NDD-CKD patients. These findings suggest a gradual loss of expression, functionality and protective role of inhibitory KIR2DL3 as well as increased cytotoxic potential of CD4+ C28− cells with progressive renal impairment. Clonal expansion of these T cells may contribute to heightened cardiovascular events in HD-ESRD. PMID:25484131

  18. Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy.

    PubMed

    Kamran, Neha; Kadiyala, Padma; Saxena, Meghna; Candolfi, Marianela; Li, Youping; Moreno-Ayala, Mariela A; Raja, Nicholas; Shah, Diana; Lowenstein, Pedro R; Castro, Maria G

    2017-01-04

    Survival of glioma (GBM) patients treated with the current standard of care remains dismal. Immunotherapeutic approaches that harness the cytotoxic and memory potential of the host immune system have shown great benefit in other cancers. GBMs have developed multiple strategies, including the accumulation of myeloid-derived suppressor cells (MDSCs) to induce immunosuppression. It is therefore imperative to develop multipronged approaches when aiming to generate a robust anti-tumor immune response. Herein, we tested whether combining MDSC depletion or checkpoint blockade would augment the efficacy of immune-stimulatory herpes simplex type-I thymidine kinase (TK) plus Fms-like tyrosine kinase ligand (Flt3L)-mediated immune stimulatory gene therapy. Our results show that MDSCs constitute >40% of the tumor-infiltrating immune cells. These cells express IL-4Rα, inducible nitric oxide synthase (iNOS), arginase, programmed death ligand 1 (PDL1), and CD80, molecules that are critically involved in antigen-specific T cell suppression. Depletion of MDSCs strongly enhanced the TK/Flt3L gene therapy-induced tumor-specific CD8 T cell response, which lead to increased median survival and percentage of long-term survivors. Also, combining PDL1 or CTLA-4 immune checkpoint blockade greatly improved the efficacy of TK/Flt3L gene therapy. Our results, therefore, indicate that blocking MDSC-mediated immunosuppression holds great promise for increasing the efficacy of gene therapy-mediated immunotherapies for GBM. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  19. Involvement of high mobility group box-1 in imiquimod-induced psoriasis-like mice model.

    PubMed

    Chen, Tao; Fu, Li-Xin; Guo, Zai-Pei; Yin, Bin; Cao, Na; Qin, Sha

    2017-05-01

    In the previous work, we have indicated that HMGB1, a pro-inflammatory cytokine, is closely associated with the pathogenesis of psoriasis. To further clarify the role of HMGB1 in the pathogenesis of psoriasis, we investigated the direct function of HMGB1 application and HMGB1 blockade in imiquimod (IMQ)-induced psoriatic mouse model in this study. Mice were treated with imiquimod (IMQ) to induce psoriasis-like inflammation, and consecutively injected with recombinant HMGB1 or phosphate-buffered saline (PBS) i.d. Abundant cytoplasmic expression of HMGB1 was observed in lesional skin from IMQ-treated skin. The injection of HMGB1 into the IMQ-treated skin further aggravated the psoriasis-like disease, enhanced the infiltration of CD3 + T cells, myeloperoxidase + neutrophils and CD11c + dendritic cells, increased the number of γδ T cells, and upregulated the mRNA expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-17 compared with the PBS injection. Finally, by using anti-HMGB1 monoclonal antibody or HMGB1 inhibitor glycyrrhizin, we indicated that HMGB1 blockade reduced the number of γδ T cells, suppressed the mRNA expression of IL-6, TNF-α, IFN-γ and IL-17, and moderated clinical and histological evolvement in the IMQ-treated skin. Our data suggest that HMGB1 may act as a pro-inflammatory cytokine, and contribute to the development of IMQ-induced psoriasis-like inflammation. HMGB1 blockade may represent a new direction in the suppression of psoriasis. © 2016 Japanese Dermatological Association.

  20. Effects of drospirenone-ethinylestradiol and/or metformin on CD4(+)CD28(null) T lymphocytes frequency in women with hyperinsulinemia having polycystic ovary syndrome: a randomized clinical trial.

    PubMed

    Moro, Francesca; Morciano, Andrea; Tropea, Anna; Sagnella, Francesca; Palla, Carola; Scarinci, Elisa; Ciardulli, Andrea; Martinez, Daniela; Familiari, Alessandra; Liuzzo, Giovanna; Tritarelli, Alessandra; Cosentino, Nicola; Niccoli, Giampaolo; Crea, Filippo; Lanzone, Antonio; Apa, Rosanna

    2013-12-01

    To evaluate the long-term effects of drospirenone (DRSP)/ethinylestradiol (EE) alone, metformin alone, and DRSP/EE-metformin on CD4(+)CD28(null) T lymphocytes frequency, a cardiovascular risk marker, in patients with hyperinsulinemic polycystic ovary syndrome (PCOS). Randomized clinical trial. Ninety three patients with hyperinsulinemic PCOS were age matched and body mass index matched and randomized to receive a 6 months daily treatment with DRSP (3 mg)/EE (0.03 mg), or metformin (1500 mg), or DRSP/EE combined with metformin. CD4(+)CD28(null) T-cell frequencies. The DRSP/EE and metformin groups did not show any significant change in the CD4(+)CD28(null) frequency compared to the baseline. Interestingly, a statistically significant decrease in CD4(+)CD28(null) frequency occurred after 6 months of DRSP/EE-metformin (median 3-1.5; P < .01). Of note, this statistically significant association was confirmed after adjusting for baseline values in DRSP/EE-metformin group by analysis of covariance (P < .05). In women with hyperinsulinemic PCOS, combined therapy with DRSP/EE and metformin may reduce cardiovascular risk.

  1. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins*

    PubMed Central

    Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki

    2017-01-01

    Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. PMID:27927989

  2. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins.

    PubMed

    Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki

    2017-01-20

    Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. PD-1–Mediated Attrition of Polyfunctional Memory CD8+ T Cells in Chronic Toxoplasma Infection

    PubMed Central

    Bhadra, Rajarshi; Gigley, Jason P.; Khan, Imtiaz A.

    2012-01-01

    We reported earlier that during chronic toxoplasmosis CD8+ T cells become functionally exhausted with concomitant PD-1 upregulation, leading to eventual host mortality. However, how immune exhaustion specifically mediates attrition of CD8 polyfunctionality, a hallmark of potent T-cell response, during persistent infections has not been addressed. In this study, we demonstrate that PD-1 is preferentially expressed on polyfunctional memory CD8+ T cells, which renders them susceptible to apoptosis. In vitro blockade of the PD-1–PD-L1 pathway dramatically reduces apoptosis of polyfunctional and interferon γ+/granzyme B− memory but not effector CD8+ T cells. In summary, the present report underscores the critical role of the PD-1–PD-L1 pathway in mediating attrition of this important CD8+ T-cell subset and addresses the mechanistic basis of how αPD-L1 therapy reinvigorates polyfunctional CD8 response during chronic infections. The conclusions of this study can have profound immunotherapeutic implications in combating recrudescent toxoplasmosis as well other chronic infections. PMID:22539813

  4. Simplified process for the production of anti-CD19-CAR engineered T cells

    PubMed Central

    Tumaini, Barbara; Lee, Daniel W.; Lin, Tasha; Castiello, Luciano; Stroncek, David F.; Mackall, Crystal; Wayne, Alan; Sabatino, Marianna

    2014-01-01

    Background Adoptive Immunotherapy using chimeric antigen receptor (CAR) engineered T cells specific for CD19 has shown promising results for the treatment of B cell lymphomas and leukemia. This therapy involves the transduction of autologous T cells with a viral vector and the subsequent cell expansion. Here, we describe a new, simplified method to produce anti-CD19-CAR T cells. Methods T cells were isolated from peripheral blood mononuclear cell (PBMC) with anti-CD3/anti-CD28 paramagnetic beads. After 2 days, the T cells were added to culture bags pre-treated with RetroNectin and loaded with the retroviral anti-CD19 CAR vector. The cells, beads and vector were incubated for 24 hours and then a second transduction was performed. No spinoculation was used. Cells were then expanded for an additional 9 days. Results The method was validated using 2 PBMC products from a patient with B-CLL and one PBMC product from a healthy subject. The 2 PBMC products from the B-CLL patient contained 11.4% and 12.9% T cells. The manufacture process led to final products highly enriched in T cells with a mean CD3+ cell content of 98%, a mean expansion of 10.6 fold and a mean transduction efficiency of 68%. Similar results were obtained from the PBMCs of the first 4 ALL patients treated at our institution. Discussion We developed a simplified semi-closed system for the initial selection, activation, transduction and expansion of T cells using anti-CD3/anti-CD28 beads and bags, to produce autologous anti-CD19 CAR transduced T cells to support an ongoing clinical trial. PMID:23992830

  5. Cross-linking of CD81 by HCV-E2 protein inhibits human intrahepatic plasmacytoid dendritic cells response to CpG-ODN

    PubMed Central

    Tu, Zhengkun; Zhang, Ping; Li, Haijun; Niu, Junqi; Jin, Xia; Su, Lishan

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) are reported to be defective in HCV-infected patients, the mechanisms of which remain poorly understood. We isolated liver derived mononuclear cells (LMNCs) and pDCs from normal liver tissues of benign tumor dissections and liver transplant donors. Isolated pDCs and LMNCs were cultured with precoated HCV envelop protein E2 (HCV-E2) or anti-CD81 mAb in the presence of CpG-ODN. Our results show that cross-linking of CD81 by either HCV-E2 or anti-CD81 mAb inhibits IFN-α secretion in CpG-induced pDCs; down-regulates HLA-DR, CD80 and CD86 expression in pDCs; and suppresses CpG-ODN induced proliferation and survival of pDCs. The blockade of CD81 by soluble anti-CD81 antibody restores pDCs response to CpG-ODN. These results suggest that HCV E2 protein interacts with CD81 to inhibit pDC maturation, activation, and IFN-α production, and may thereby contribute to the impaired innate anti-viral immune response in HCV infection. PMID:23954883

  6. Combined renin-angiotensin-aldosterone system blockade and statin therapy effectively reduces the risk of cerebrovascular accident in autosomal dominant polycystic kidney disease: a nationwide population-based cohort study

    PubMed Central

    Sung, Pei-Hsun; Chiang, Hsin-Ju; Lee, Mel S.; Chiang, John Y.; Yip, Hon-Kan; Yang, Yao-Hsu

    2017-01-01

    Fairly limited data reported the incidence and risk of cerebrovascular accident (CVA) in autosomal dominant polycystic kidney disease (ADPKD). Additionally, little is known regarding the therapeutic impact of renin-angiotensin-aldosterone system (RAAS) blockade and statin on reducing the occurrence of CVA in ADPKD. We utilized the data from Taiwan National Health Insurance Research Database (NHIRD) to perform a population-based cohort study (1997-2013). A total of 2,647 patients with ADPKD were selected from 1,000,000 general population after excluding patients with age<18, renal replacement therapy and concomitant diagnosis of CVA. Additionally, non-ADPKD subjects were assigned as comparison group by matching study cohort with age, gender, income and urbanization in 1:10 ratio (n=26,470). The results showed that ADPKD group had significantly higher frequency rate and cumulative incidence of CVA as compared with the non-ADPKD group (8.73% v.s. 3.93%, p<0.0001). Furthermore, the frequencies of both hemorrhagic and ischemic strokes were also significantly higher in the ADPKD than non-ADPKD group (all p-values <0.0001). After adjusting for age, gender and atherosclerotic risk factors with multivariate analysis, ADPKD independently carried 2.34- and 5.12-fold risk for occurrence of CVA and hemorrhagic stroke (95% CI: 2.02-2.72 and 4.01-6.54), respectively. Combination therapy [adjusted (a) HR=0.19, 95% CI: 0.11-0.31] was superior to either RAAS blockade (aHR=0.37, 95% CI, 0.28-0.5) or statin (aHR=0.44, 95% CI, 0.24-0.79) alone for reducing the CVA occurrence in the ADPKD population. In conclusion, ADPKD was associated with an increased risk of CVA occurrence. Combined RAAS blockade and statin therapy effectively reduces the risk of CVA in ADPKD. PMID:28977886

  7. CD8+CD28- T cells: certainties and uncertainties of a prevalent human T-cell subset.

    PubMed

    Arosa, Fernando A

    2002-02-01

    Human peripheral blood CD8+ T cells comprise cells that are in different states of differentiation and under the control of complex homeostatic processes. In a number of situations ranging from chronic inflammatory conditions and infectious diseases to ageing, immunodeficiency, iron overload and heavy alcohol intake, major phenotypic changes, usually associated with an increase in CD8+ T cells lacking CD28 expression, take place. CD8+CD28- T cells are characterized by a low proliferative capacity to conventional stimulation in vitro and by morphological and functional features of activated/memory T cells. Although the nature of the signals that give origin to this T-cell subset is uncertain, growing evidence argues for the existence of an interplay between epithelial cells, molecules with the MHC-class I fold and CD8+ T cells. The possibility that the generation of CD8+CD28- T cells is the combination of TCR/CD3zeta- and regulatory factor-mediated signals as a result of the sensing of modifications of the internal environment is discussed.

  8. Divergent response profile in activated cord blood T cells from first-born child implies birth-order-associated in utero immune programming.

    PubMed

    Kragh, M; Larsen, J M; Thysen, A H; Rasmussen, M A; Wolsk, H M; Bisgaard, H; Brix, S

    2016-03-01

    First-born children are at higher risk of developing a range of immune-mediated diseases. The underlying mechanism of 'birth-order effects' on disease risk is largely unknown, but in utero programming of the child's immune system may play a role. We studied the association between birth order and the functional response of stimulated cord blood T cells. Purified cord blood T cells were polyclonally activated with anti-CD3-/anti-CD28-coated beads in a subgroup of 28 children enrolled in the COPSAC2010 birth cohort. Expression levels of seven activation markers on helper and cytotoxic T cells as well as the percentage of CD4(+) CD25(+) T cells were assessed by flow cytometry. Production of IFN-γ, TNF-α, IL-17, IL-4, IL-5, IL-13, and IL-10 was measured in the supernatants. IL-10 secretion (P = 0.007) and CD25 expression on CD4(+) helper T cells (P = 0.0003) in the activated cord blood T cells were selectively reduced in first-born children, while the percentage of circulating CD4(+) CD25(+) cord blood T cells was independent of birth order. First-born infants display a reduced anti-inflammatory profile in T cells at birth. This possible in utero 'birth-order' T-cell programming may contribute to later development of immune-mediated diseases by increasing overall immune reactivity in first-born children as compared to younger siblings. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis.

    PubMed

    Gainor, Justin F; Shaw, Alice T; Sequist, Lecia V; Fu, Xiujun; Azzoli, Christopher G; Piotrowska, Zofia; Huynh, Tiffany G; Zhao, Ling; Fulton, Linnea; Schultz, Katherine R; Howe, Emily; Farago, Anna F; Sullivan, Ryan J; Stone, James R; Digumarthy, Subba; Moran, Teresa; Hata, Aaron N; Yagi, Yukako; Yeap, Beow Y; Engelman, Jeffrey A; Mino-Kenudson, Mari

    2016-09-15

    PD-1 inhibitors are established agents in the management of non-small cell lung cancer (NSCLC); however, only a subset of patients derives clinical benefit. To determine the activity of PD-1/PD-L1 inhibitors within clinically relevant molecular subgroups, we retrospectively evaluated response patterns among EGFR-mutant, anaplastic lymphoma kinase (ALK)-positive, and EGFR wild-type/ALK-negative patients. We identified 58 patients treated with PD-1/PD-L1 inhibitors. Objective response rates (ORR) were assessed using RECIST v1.1. PD-L1 expression and CD8(+) tumor-infiltrating lymphocytes (TIL) were evaluated by IHC. Objective responses were observed in 1 of 28 (3.6%) EGFR-mutant or ALK-positive patients versus 7 of 30 (23.3%) EGFR wild-type and ALK-negative/unknown patients (P = 0.053). The ORR among never- or light- (≤10 pack years) smokers was 4.2% versus 20.6% among heavy smokers (P = 0.123). In an independent cohort of advanced EGFR-mutant (N = 68) and ALK-positive (N = 27) patients, PD-L1 expression was observed in 24%/16%/11% and 63%/47%/26% of pre-tyrosine kinase inhibitor (TKI) biopsies using cutoffs of ≥1%, ≥5%, and ≥50% tumor cell staining, respectively. Among EGFR-mutant patients with paired, pre- and post-TKI-resistant biopsies (N = 57), PD-L1 expression levels changed after resistance in 16 (28%) patients. Concurrent PD-L1 expression (≥5%) and high levels of CD8(+) TILs (grade ≥2) were observed in only 1 pretreatment (2.1%) and 5 resistant (11.6%) EGFR-mutant specimens and was not observed in any ALK-positive, pre- or post-TKI specimens. NSCLCs harboring EGFR mutations or ALK rearrangements are associated with low ORRs to PD-1/PD-L1 inhibitors. Low rates of concurrent PD-L1 expression and CD8(+) TILs within the tumor microenvironment may underlie these clinical observations. Clin Cancer Res; 22(18); 4585-93. ©2016 AACRSee related commentary by Gettinger and Politi, p. 4539. ©2016 American Association for Cancer Research.

  10. Anti-inflammatory effects of Artemisia princeps in antigen-stimulated T cells and regulatory T cells.

    PubMed

    Chang, Sung Ho; Jung, Eun Jung; Park, Youn Hee; Lim, Dong Gyun; Ko, Na Young; Choi, Wahn Soo; Her, Erk; Kim, Soo Hyun; Choi, Kang Duk; Bae, Jae Ho; Kim, Sun Hee; Kang, Chi Dug; Han, Duck Jong; Kim, Song Cheol

    2009-08-01

    The aim was to investigate the anti-inflammatory effects of Artemisia princeps extract on the activity of anti-CD3/CD28-stimulated CD4(+)CD25(-) T cells and antigen-expanded regulatory T cells. CD4(+)CD25(-) T cells were activated with coated anti-CD3 and anti-CD28 and cultured in the presence or absence of various concentrations of A. princeps extract. The cultures were pulsed on Day 6 with [(3)H]thymidine and, after harvesting the cells, [(3)H]thymidine incorporation was measured. For analysis of interleukin-2 and interferon-gamma secreted from CD4(+)CD25(-) T cells, culture supernatants were collected on Days 2 and 6. For the analysis of interleukin-10 secreted from the CD4(+)CD25(-) T cells and expanded regulatory T cells, supernatants were collected after 2 and 7 days, respectively. Cytokine levels were determined using an enzyme-linked immunosorbent assay. Potential medicinal components of the A. princeps extract were determined using gas chromatography-mass spectrometry. A. princeps (30 microg/ml) effectively suppressed proliferation of CD4(+)CD25(-) T cells that were stimulated with anti-CD3/CD28 without causing cytotoxicity in spleen cells incubated under conditions lacking antigen stimulation. A. princeps inhibited production of the pro-inflammatory cytokines interleukin-2 and interferon-gamma in anti-CD3/CD28-stimulated CD4(+)CD25(-) T cells. Also, the extract slightly increased production of the anti-inflammatory cytokine interleukin-10 in these cells. In regulatory T cells expanded by anti-CD3/CD28, A. princeps increased production of interleukin-10 and Foxp3. The results suggest that A. princeps may be useful in the treatment of autoimmune diseases and organ transplantation rejection by inhibiting proliferation of inflammatory T cells, suppressing inflammatory processes in antigen-stimulated CD4(+)CD25(-) T cells and increasing activity of expanded regulatory T cells.

  11. Assigning Cytomegalovirus (CMV) Status in Children Awaiting Organ Transplant: Viral Shedding, CMV-Specific T-cells and CD27-CD28-CD4+ T-cells.

    PubMed

    Burton, Catherine E; Sester, Martina; Robinson, Joan L; Eurich, Dean T; Preiksaitis, Jutta K; Urschel, Simon

    2018-05-24

    Passive antibodies, maternal or transfusion-acquired, make serologic determination of pre-transplant cytomegalovirus (CMV) status unreliable. We evaluated 3 assays un-affected by passive antibodies, in assignment of CMV infection status in children awaiting solid organ transplant and in controls: i) CMV Nucleic Acid Amplification Testing (NAAT), quantification of ii) CMV-specific CD4+T-cells, and iii) CD27-CD28-CD4+T-cells. Our results highlight that CMV NAAT, from urine and oropharynx, is useful in confirming positive CMV status. Detection of CMV-specific CD4+T-cells was sensitive and specific in children >18 months but was less sensitive in children <12 months. CD27-CD28- CD4+T-cells are not likely useful in CMV risk-stratification in children.

  12. Regulation of CD4 T cells and their effects on immunopathological inflammation following viral infection.

    PubMed

    Bhattacharyya, Mitra; Madden, Patrick; Henning, Nathan; Gregory, Shana; Aid, Malika; Martinot, Amanda J; Barouch, Dan H; Penaloza-MacMaster, Pablo

    2017-10-01

    CD4 T cells help immune responses, but knowledge of how memory CD4 T cells are regulated and how they regulate adaptive immune responses and induce immunopathology is limited. Using adoptive transfer of virus-specific CD4 T cells, we show that naive CD4 T cells undergo substantial expansion following infection, but can induce lethal T helper type 1-driven inflammation. In contrast, memory CD4 T cells exhibit a biased proliferation of T follicular helper cell subsets and were able to improve adaptive immune responses in the context of minimal tissue damage. Our analyses revealed that type I interferon regulates the expansion of primary CD4 T cells, but does not seem to play a critical role in regulating the expansion of secondary CD4 T cells. Strikingly, blockade of type I interferon abrogated lethal inflammation by primary CD4 T cells following viral infection, despite that this treatment increased the numbers of primary CD4 T-cell responses. Altogether, these data demonstrate important aspects of how primary and secondary CD4 T cells are regulated in vivo, and how they contribute to immune protection and immunopathology. These findings are important for rational vaccine design and for improving adoptive T-cell therapies against persistent antigens. © 2017 John Wiley & Sons Ltd.

  13. Tumor-Repopulating Cells Induce PD-1 Expression in CD8+ T Cells by Transferring Kynurenine and AhR Activation.

    PubMed

    Liu, Yuying; Liang, Xiaoyu; Dong, Wenqian; Fang, Yi; Lv, Jiadi; Zhang, Tianzhen; Fiskesund, Roland; Xie, Jing; Liu, Jinyan; Yin, Xiaonan; Jin, Xun; Chen, Degao; Tang, Ke; Ma, Jingwei; Zhang, Huafeng; Yu, Jing; Yan, Jun; Liang, Huaping; Mo, Siqi; Cheng, Feiran; Zhou, Yabo; Zhang, Haizeng; Wang, Jing; Li, Jingnan; Chen, Yang; Cui, Bing; Hu, Zhuo-Wei; Cao, Xuetao; Xiao-Feng Qin, F; Huang, Bo

    2018-03-12

    Despite the clinical successes fostered by immune checkpoint inhibitors, mechanisms underlying PD-1 upregulation in tumor-infiltrating T cells remain an enigma. Here, we show that tumor-repopulating cells (TRCs) drive PD-1 upregulation in CD8 + T cells through a transcellular kynurenine (Kyn)-aryl hydrocarbon receptor (AhR) pathway. Interferon-γ produced by CD8 + T cells stimulates release of high levels of Kyn produced by TRCs, which is transferred into adjacent CD8 + T cells via the transporters SLC7A8 and PAT4. Kyn induces and activates AhR and thereby upregulates PD-1 expression. This Kyn-AhR pathway is confirmed in both tumor-bearing mice and cancer patients and its blockade enhances antitumor adoptive T cell therapy efficacy. Thus, we uncovered a mechanism of PD-1 upregulation with potential tumor immunotherapeutic applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. [Anti-PD-1 antibody: basics and clinical application].

    PubMed

    Tanaka, Yoshimasa; Okamura, Haruki

    2013-09-01

    Although the treatment of cancer with monoclonal antibodies has long been pursued, T cell-directed immunotherapy has met with limited success. Recently, much attention has been devoted to the blockade of PD-1 signaling to activate an immune response to cancer. PD-1, a protein expressed on T cells, is a member of the CD28 superfamily, and it transmits coinhibitory signals upon engagement with its ligands PD-L1 and PD-L2. Accumulating evidence suggests that the PD-1 system plays pivotal roles in the regulation of autoimmunity, transplantation immunity, infectious immunity, and tumor immunity. Because the interaction of PD-1 with its ligands occurs in the effector phase of killer T cell responses in peripheral blood, anti-PD-1 and anti-PD-L1 monoclonal antibodies are ideal as specific agents to augment T cell responses to tumors with fewer adverse events than with the inhibition of CTLA-4, because the interaction of CTLA-4 with its ligands occurs in the priming phase of T cell responses within lymph nodes. In recent phase I clinical trials, objective responses were observed in patients with melanoma, renal cell carcinoma, and non-small cell lung cancer who underwent immunotherapy with an anti-PD-1 monoclonal antibody. In addition, the antitumor activity of an anti-PD-L1 monoclonal antibody was observed in patients with melanoma, renal cell carcinoma, non-small cell lung cancer, and ovarian cancer. The next frontier of immunotherapy targeting the PD-1 axis is to define patient selection criteria and explore combination therapy with other therapeutic manipulations such as adoptive immunotherapies.

  15. Age-related peculiarities of contractile activity of rat myocardium during blockade of hyperpolarization-activated currents.

    PubMed

    Zefirov, T L; Gibina, A E; Sergejeva, A M; Ziyatdinova, N I; Zefirov, A L

    2007-09-01

    Contractile activity of atrial and ventricular myocardial strips isolated from rats of various age was examined under conditions of blockade of non-selective hyperpolarization-activated cation currents. Addition of ZD7288, a blocker of non-selective hyperpolarization-activated cation currents, to the perfusion solution increased the contraction force of atrial and ventricular strips in 1-, 8-, and 20-week rats, but produced an opposite effect on contractile activity of atrial and ventricular strips in 3-week rats.

  16. Impaired Tumor-infiltrating T Cells in Patients with COPD Impacts Lung Cancer Response to PD-1 Blockade.

    PubMed

    Biton, Jérôme; Ouakrim, Hanane; Dechartres, Agnès; Alifano, Marco; Mansuet-Lupo, Audrey; Si, Han; Halpin, Rebecca; Creasy, Todd; Bantsimba-Malanda, Claudie; Arrondeau, Jennifer; Goldwasser, François; Boudou-Rouquette, Pascaline; Fournel, Ludovic; Roche, Nicolas; Burgel, Pierre-Régis; Goc, Jeremy; Devi-Marulkar, Priyanka; Germain, Claire; Dieu-Nosjean, Marie-Caroline; Cremer, Isabelle; Herbst, Ronald; Damotte, Diane

    2018-03-08

    Patients with chronic obstructive pulmonary disease (COPD) have a higher prevalence of lung cancer. The chronic inflammation associated with COPD probably promotes the earliest stages of carcinogenesis. However, once tumors have progressed to malignancy, the impact of COPD on the tumor immune microenvironment remains poorly defined, and its effects on immune-checkpoint blockers' efficacy are still unknown. To study the impact of COPD on the immune contexture of non-small cell lung cancer (NSCLC). We performed in depth immune profiling of lung tumors by immunohistochemistry and we determined its impact on patients' survival (n=435). Tumor-infiltrating T lymphocyte (TILs) exhaustion by flow cytometry (n=50) was also investigated. The effectiveness of an anti-PD-1 treatment (nivolumab) was evaluated in 39 advanced-stage NSCLC patients. All data were analyzed according to patients' COPD status. Measurments and Main Results: Remarkably, COPD severity is positively correlated with the coexpression of PD-1/TIM-3 by CD8 T cells. In agreement, we observed a loss of CD8 T cell-associated favorable clinical outcome in COPD+ patients. Interestingly, a negative prognostic value of PD-L1 expression by tumor cells was observed only in highly CD8 T cell-infiltrated tumors of COPD+ patients. Finally, data obtained on 39 advanced-stage NSCLC patients treated by an anti-PD-1 antibody showed longer progression free survival in COPD+ patients, and also that the association between the severity of smoking and the response to nivolumab was preferentially observed in COPD+ patients. COPD is associated with an increased sensitivity of CD8 TILs to immune escape mechanisms developed by tumors, thus suggesting a higher sensitivity to PD-1 blockade in patients with COPD.

  17. Therapeutic blockade of LIGHT interaction with HVEM and LTβR attenuates in vivo cytotoxic allogeneic responses

    PubMed Central

    del Rio, Maria-Luisa; Fernandez-Renedo, Carlos; Scheu, Stefanie; Pfeffer, Klaus; Shintani, Yasushi; Kronenberg, Mitchell; Chaloin, Olivier; Schneider, Pascal; Rodriguez-Barbosa, Jose-Ignacio

    2016-01-01

    Background TNF/TNFR superfamily members conform a group of molecular interaction pathways of essential relevance during the process of T cell activation and differentiation towards effector cells and particularly for the maintenance phase of the immune response. Specific blockade of these interacting pathways, such as CD40/CD40L, contributes to modulate the deleterious outcome of allogeneic immune responses. We postulated that antagonizing the interaction of LIGHT expression on activated T cells with its receptors, HVEM and LTβR may decrease T cell-mediated allogeneic responses. Methods A flow cytometry competition assay was designed to identify anti-LIGHT monoclonal antibodies capable to prevent the interaction of mouse LIGHT with its receptors expressed on transfected cells. An antibody with the desired specificity was evaluated in a short-term in vivo allogeneic cytotoxic assay and tested for its ability to detect endogenous mouse LIGHT. Results We provide evidence for the first time that in mice, as previously described in humans, LIGHT protein is rapidly and transiently expressed after T cell activation, and this expression was stronger on CD8 T cells than on CD4 T cells. Two anti-LIGHT antibodies prevented interactions of mouse LIGHT with its two known receptors HVEM and LTβR. In vivo administration of anti-LIGHT antibody (clone 10F12) ameliorated host anti-donor short-term cytotoxic response in WT B6 mice, although to a lesser extent than that observed in LIGHT-deficient mice. Conclusions The therapeutic targeting of LIGHT may contribute to achieve a better control of cytotoxic responses refractory to current immunosuppressive drugs in transplantation. PMID:25226173

  18. Lack of weight gain after angiotensin AT1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1–7)/ Mas-dependent pathway

    PubMed Central

    Schuchard, Johanna; Winkler, Martina; Stölting, Ines; Schuster, Franziska; Vogt, Florian M; Barkhausen, Jörg; Thorns, Christoph; Santos, Robson A; Bader, Michael; Raasch, Walter

    2015-01-01

    Background and Purpose Angiotensin AT1 receptor antagonists induce weight loss; however, the mechanism underlying this phenomenon is unknown. The Mas receptor agonist angiotensin-(1-7) is a metabolite of angiotensin I and of angiotensin II. As an agonist of Mas receptors, angiotensin-(1-7) has beneficial cardiovascular and metabolic effects. Experimental Approach We investigated the anti-obesity effects of transgenically overexpressed angiotensin-(1-7) in rats. We secondly examined whether weight loss due to telmisartan (8 mg·kg−1·d−1) in diet-induced obese Sprague Dawley (SD) rats can be blocked when the animals were co-treated with the Mas receptor antagonist A779 (24 or 72 μg·kg−1·d−1). Key Results In contrast to wild-type controls, transgenic rats overexpressing angiotensin-(1-7) had 1.) diminished body weight when they were regularly fed with chow; 2.) were protected from developing obesity although they were fed with cafeteria diet (CD); 3.) showed a reduced energy intake that was mainly related to a lower CD intake; 5.) remained responsive to leptin despite chronic CD feeding; 6.) had a higher, strain-dependent energy expenditure, and 7.) were protected from developing insulin resistance despite CD feeding. Telmisartan-induced weight loss in SD rats was partially antagonized after a high, but not a low dose of A779. Conclusions and Implications Angiotensin-(1-7) regulated food intake and body weight and contributed to the weight loss after AT1 receptor blockade. Angiotensin-(1-7)-like agonists may be drug candidates for treating obesity. PMID:25906670

  19. Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV.

    PubMed

    Zhang, C; Wu, S; Xue, X; Li, M; Qin, X; Li, W; Han, W; Zhang, Y

    2008-01-01

    Blockade of the programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) pathway can delay tumor growth and prolong the survival of tumor-bearing mice. The extracellular immunoglobulin (Ig) V domain of PD-1 is important for the interaction between PD-1 and PD-L1, suggesting that PD-1-IgV may be a potential target for anti-tumor immunotherapy. The extracellular sequence of human PD-1-IgV (hPD-1-IgV) was expressed in Escherichia coli and purified. The anti-tumor effect of hPD-1-IgV on tumor-bearing mice was tested. hPD-1-IgV recombinant protein could bind PD-L1 at molecular and cellular levels and enhance Cytotoxic T Lymphocyte (CTL) activity and anti-tumor effect on tumor-bearing mice in vivo. The percentage of CD4(+)CD25(+) T cells in tumor-bearing mice was decreased compared with control mice after administration of the recombinant protein. Our results suggest that inhibition of the interaction between PD-1 and PD-L1 by hPD-1-IgV may be a promising strategy for specific tumor immunotherapy.

  20. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection

    PubMed Central

    Wang, Yang; Zhong, Huiling; Xie, Xiaodan; Chen, Crystal Y.; Huang, Dan; Shen, Ling; Zhang, Hui; Chen, Zheng W.; Zeng, Gucheng

    2015-01-01

    Molecular mechanisms for T-cell immune responses modulated by T cell-inhibitory molecules during tuberculosis (TB) infection remain unclear. Here, we show that active human TB infection up-regulates CD244 and CD244 signaling-associated molecules in CD8+ T cells and that blockade of CD244 signaling enhances production of IFN-γ and TNF-α. CD244 expression/signaling in TB correlates with high levels of a long noncoding RNA (lncRNA)-BC050410 [named as lncRNA-AS-GSTT1(1-72) or lncRNA-CD244] in the CD244+CD8+ T-cell subpopulation. CD244 signaling drives lncRNA-CD244 expression via sustaining a permissive chromatin state in the lncRNA-CD244 locus. By recruiting polycomb protein enhancer of zeste homolog 2 (EZH2) to infg/tnfa promoters, lncRNA-CD244 mediates H3K27 trimethylation at infg/tnfa loci toward repressive chromatin states and inhibits IFN-γ/TNF-α expression in CD8+ T cells. Such inhibition can be reversed by knock down of lncRNA-CD244. Interestingly, adoptive transfer of lncRNA-CD244–depressed CD8+ T cells to Mycobacterium tuberculosis (MTB)-infected mice reduced MTB infection and TB pathology compared with lncRNA-CD244–expressed controls. Thus, this work uncovers previously unidentified mechanisms in which T cell-inhibitory signaling and lncRNAs regulate T-cell responses and host defense against TB infection. PMID:26150504

  2. Premature cell senescence and T cell receptor-independent activation of CD8T cells in Juvenile Idiopathic Arthritis*

    PubMed Central

    Dvergsten, Jeffrey A.; Mueller, Robert G.; Griffin, Patricia; Abedin, Sameem; Pishko, Allyson; Michel, Joshua J.; Rosenkranz, Margalit E.; Reed, Ann M.; Kietz, Daniel A.; Vallejo, Abbe N.

    2013-01-01

    Objectives CD8T cells lacking CD28 were originally reported by Wedderburn and colleagues as a characteristic feature of JIA, but the relevance of these unusual cells to JIA remains to be elucidated. Because of recent evidence that CD28 loss is typical of terminally differentiated lymphocytes, we examined for functional subsets of CD8T cells in JIA. Methods Following informed consent/assent, blood and/or waste synovial fluid were collected from children with definite diagnosis of JIA (n = 98). De-identified blood (n = 33) and cord blood (n = 13) samples from healthy donors were also collected. CD8T and CD4T cells were screened for novel receptors, and where indicated, bioassays were performed to determine functional relevance of the identified receptor. Results Patients had a naïve T cell compartment with shortened telomeres, and their entire T cell pool had reduced proliferative capacity. They had an over abundance of CD31+CD28null CD8T cells, which was a significant feature of oligoarticular JIA (n = 62) compared to polyarticular JIA (n = 36). CD31+CD28null CD8T cells had limited mitotic capacity, and expressed high levels of the senescence antigens γH2Ax and/or p16. Ligation of CD31, independent of the TCR, sufficiently induced tyrosine phosphorylation, vesicle exocytosis, and production of IFN-γ and IL-10. Conclusion These data provide the first evidence for cell senescence, represented by CD31+CD28null CD8T cells, in the pathophysiology of JIA. Activation of these unusual cells in a TCR-independent manner suggests they are maladaptive, and could be potential targets for immunotherapy. PMID:23686519

  3. Intrathecal oxybuprocaine and proxymetacaine produced potent and long-lasting spinal anesthesia in rats.

    PubMed

    Hung, Ching-Hsia; Wang, Jhi-Joung; Chen, Yu-Chung; Chu, Chin-Chen; Chen, Yu-Wen

    2009-05-01

    Proxymetacaine and oxybuprocaine were clinically used for topical ocular anesthesia but never for spinal anesthesia, and therefore spinal anesthetic effects of proxymetacaine and oxybuprocaine were performed and compared with bupivacaine and lidocaine. After rats were injected intrathecally with proxymetacaine, oxybuprocaine, bupivacaine, and lidocane, dose-response curves were constructed. We evaluated the potencies (ED(50)) and durations (time to full recovery) of proxymetacaine and oxybuprocaine on spinal blockades of motor function, proprioception, and nociception and compared with bupivacaine and lidocaine in rats. We found that proxymetacaine and oxybuprocaine acted like bupivacaine or lidocaine and produced dose-related spinal blockades of motor function, proprioception and nociception. On the ED(50) basis, the ranks of potencies in motor, proprioception, and nociception were proxymetacaine>oxybuprocaine>bupivacaine>lidocaine (P<0.01 for the differences). On an equipotent basis (ED(20), ED(50), ED(80)), oxybuprocaine and bupivacaine produced similarly longer spinal blockades than did proxymetacaine or lidocaine (P<0.05 for the differences). Intrathecal proxymetacaine, oxybuprocaine, and bupivacaine also produced longer sensory blockade than motor blockade. These data demonstrated that oxybuprocaine and proxymetacaine produced more potent spinal blockades, when compared with bupivacaine or lidocaine. Oxybuprocaine and bupivacaine with a more sensory-selective action over motor blockade produced longer spinal blockade than did proxymetacaine or lidocaine.

  4. Sorption and selective chromatographic properties of isomer-selective composite sorbent based on a eutectic mixture of nematic liquid crystals and perbenzoylated β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Onuchak, L. A.; Kapralova, T. S.; Kuraeva, Yu. G.; Belousova, Z. P.; Stepanova, R. F.

    2015-12-01

    Mesomorphic, sorption, and selective properties of a three-component sorbent based on a mixture of nematic ( N) liquid crystals of 4-methoxy-4'-ethoxyazoxybenzene (MEAB) and 4,4'-diethoxyazoxybenzene (azoxyphenetol, AOP) of an eutectic composition and heptakis-(2,3,6-tri- O-benzoyl)-β-cyclodextrin (Bz-β-CD) are studied. For 30 organic compounds of different classes with linear and cyclic molecular structures, including optical isomers of limonene, pinene, camphene, and butanediol-2,3, thermodynamic functions are determined for their gas-phase sorption using a three-component MEAB-AOP-Bz-β- CD sorbent (62: 28: 10 wt %). It is found that the investigated sorbent possesses high structural selectivity (αp/m = 1.128-1.059, 100-130°C, N) and moderate enantioselectivity (1.07-1.02) within a broad temperature range (95-170°C) including both mesomorphic and isotropic phases of the sorbent. It is shown that the enantioselectivity of the sorbent is apparent under conditions of both increasing retention when a chiral Bz-β-CD additive is introduced into the MEAB-AOP system (limonenes, pinenes, camphenes) and decreasing retention (butanediols-2,3).

  5. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis

    PubMed Central

    2012-01-01

    Background Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Methods To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Results Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. Conclusions We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS. PMID:22480370

  6. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis.

    PubMed

    Agrawal, Smriti M; Silva, Claudia; Wang, Janet; Tong, Jade Pui-Wai; Yong, V Wee

    2012-04-05

    Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS.

  7. Hypothermia inhibits expression of CD11b (MAC-1) and CD162 (PSGL-1) on monocytes during extracorporeal circulation.

    PubMed

    Swoboda, Stefanie; Gruettner, Joachim; Lang, Siegfried; Wendel, Hans-Peter; Beyer, Martin E; Griesel, Eva; Hoffmeister, Hans-Martin; Walter, Thomas

    2013-01-01

    The aim of the present study was to investigate the effect of different hypothermic temperatures on the expression of cellular adhesion molecules on leukocytes. Circulation of blood from six volunteers was performed in an extracorporeal circulation model at 36°C, 28°C and 18°C for 30 minutes. Expression of CD11b, CD54 and CD162 on monocytes was measured using flow cytometry. Expression of CD11b significantly decreased at 18°C and at 28°C compared to 36°C. A significant reduction of CD162 expression was found at 18°C compared to 28°C and 36°C and at 28°C compared to 36°C. No association was found between temperature and expression of CD54. Expression of CD11b and CD162 on monocytes has a temperature-dependent regulation, with decreased expression during hypothermia, which may result in an inhibition of leukocyte-endothelial and leukocyte-platelet interaction. This beneficial effect may influence the extracorporeal circulation-related inflammatory response and tissue damage.

  8. [111In-DOTA]LTT-SS28, a first pansomatostatin radioligand for in vivo targeting of somatostatin receptor-positive tumors.

    PubMed

    Maina, Theodosia; Cescato, Renzo; Waser, Beatrice; Tatsi, Aikaterini; Kaloudi, Aikaterini; Krenning, Eric P; de Jong, Marion; Nock, Berthold A; Reubi, Jean Claude

    2014-08-14

    Radiolabeled pansomatostatin-like analogues are expected to enhance the diagnostic sensitivity and to expand the clinical indications of currently applied sst2-specific radioligands. In this study, we present the somatostatin mimic [DOTA]LTT-SS28 {[(DOTA)Ser1,Leu8,D-Trp22,Tyr25]SS28} and its 111In radioligand. [DOTA]LTT-SS28 exhibited a pansomatostatin-like profile binding with high affinity to all five hsst1-hsst5 subtypes (IC50 values in the lower nanomolar range). Furthermore, [DOTA]LTT-SS28 behaved as an agonist at hsst2, hsst3, and hsst5, efficiently stimulating internalization of the three receptor subtypes. Radioligand [111In-DOTA]LTT-SS28 showed good stability in the mouse bloodstream. It displayed strong and specific uptake in AR42J tumors 4 h postinjection (9.3±1.6% ID/g vs 0.3±0.0% ID/g during sst2 blockade) in mice. Significant and specific uptake was also observed in HEK293-hsst2-, HEK293-hsst3-, and HEK293-hsst5-expressing tumors (4.43±1.5, 4.88±1.1, and <3% ID/g, respectively, with values of <0.5% ID/g during receptor blockade). In conclusion, the somatostatin mimic [111In-DOTA]LTT-SS28 specifically localizes in sst2-, sst3-, and sst5-expressing xenografts in mice showing promise for multi-sst1-sst5 targeted tumor imaging.

  9. Bone marrow derived M2 macrophages protected against lipopolysaccharide-induced acute lung injury through inhibiting oxidative stress and inflammation by modulating neutrophils and T lymphocytes responses.

    PubMed

    Wang, Fang; Fu, Xiazhen; Wu, Xinwan; Zhang, Jianhai; Zhu, Jiali; Zou, Yun; Li, Jinbao

    2018-06-05

    Acute lung injury (ALI) is characterized by aggravated inflammatory responses and the subsequent alveolar-capillary injury for which there are no specific therapies available currently. The present study was designed to investigate the protective roles of bone marrow derived M 2 macrophages (M 2 BMDMs) in lipopolysaccharide (LPS) induced ALI. M 2 BMDMs were obtained from bone marrow cells stimulated with M-CSF and IL-4. Mice received M 2 BMDMs intratracheally 3 h after LPS administration. Histology and wet/dry (W/D) weight ratio, activated immune cells and total protein were detected. Cytokines production were measured in vivo and vitro study. The effects of PD-L1 blockade on M 2 BMDMs were calculated. The results showed that M 2 BMDMs administration reduced the infiltration of neutrophils, inhibited the oxidative stress, while increased the counts of CD3 + T lymphocytes as well as CD4 + CD25 + regulatory T lymphocytes. Further, M 2 BMDMs suppressed the TNF-α, IL-1β and IL-6 production, while increased the IL-10 production. Blockade of PD-L1/PD-1 pathway reversed cytokines production of M 2 BMDMs in the BALF. These findings indicated that M 2 BMDMs might be a promising therapeutic strategy for LPS-induced ALI through inhibiting oxidative stress and inflammation by modulating neutrophils and T lymphocytes responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. VCAM-1 blockade delays disease onset, reduces disease severity and inflammatory cells in an atopic dermatitis model.

    PubMed

    Chen, Lin; Lin, Shao-xia; Amin, Sanober; Overbergh, Lut; Maggiolino, Giacomo; Chan, Lawrence S

    2010-01-01

    We investigated the functions of critical adhesion molecules ICAM-1 and VCAM-1 in a keratin-14 IL-4-transgenic (Tg) mouse model of atopic dermatitis, the skin lesions of which are characterized by prominent inflammatory cell infiltration, significantly increased mRNAs and proteins of ICAM-1, VCAM-1, E-selectin, P-selectin, L-selectin, and PSGL-1, and significantly increased numbers of dermal vessels expressing these adhesion molecules. We tested the hypotheses that deletion or blockade of these molecules may impede the inflammation by examining the disease progresses in the Tg mice crossed with ICAM-1-knockout mice and Tg mice received anti-VCAM-1-neutralizing antibody. Although the findings of the ICAM-1-knockout Tg mice (Tg/ICAM-1(-/-)) developed skin lesions similar to wide-type ICAM-1 Tg mice (Tg/ICAM-1(+/+)) were surprising, a compensatory mechanism may account for it: the frequency of VCAM-1 ligand, CD49d, on CD3(+) T cells in the lesional skin significantly increased in the Tg/ICAM-1(-/-) mouse, compared with the Tg/ICAM-1(+/+) mice. In contrast, anti-VCAM-1-treated Tg/ICAM-1(-/-) or Tg/ICAM-1(+/+) mice had significantly delayed onset of skin inflammation compared with isotype antibody-treated groups. Moreover, anti-VCAM-1 significantly reduced the skin inflammation severity in Tg/ICAM-1(+/+) mice, accompanied with reduction of mast cell, eosinophil, and CD3(+) T cell infiltration. VCAM-1 is more critical in developing skin inflammation in this model.

  11. Mechanisms of the priming effect of low doses of lipopoly-saccharides on leukocyte-dependent platelet aggregation in whole blood.

    PubMed

    Montrucchio, Giuseppe; Bosco, Ornella; Del Sorbo, Lorenzo; Fascio Pecetto, Paolo; Lupia, Enrico; Goffi, Alberto; Omedè, Paola; Emanuelli, Giorgio; Camussi, Giovanni

    2003-11-01

    Several studies focused on the ability of bacterial lipopolysac-charides (LPS) in triggering platelet and/or leukocyte activation. The aim of this study was to investigate the molecular mechanisms involved in the aggregation of platelets and in their interaction with leukocytes in whole blood after stimulation with low doses of LPS. LPS did not directly induce platelet aggregation in whole blood, but they primed the aggregation of platelets induced by epinephrine, adenosine diphosphate and arachidonic acid. As shown by cytofluorimetry, platelets neither bind FITC-LPS, nor express the LPS-receptors CD14 and toll-like receptor 4 (TLR4). On the contrary, LPS primed monocytes and to a lesser extent polymorphonuclear neutrophils to adhere to platelets. Both platelet-leukocyte interaction and platelet aggregation in whole blood were inhibited by blockade of CD14 and TLR4. Moreover, the interaction between platelets and leukocytes was inhibited by P-selectin, and by blockade of PAF and reactive oxygen species, suggesting a role of P-selectin and of leukocyte-derived mediators. In conclusion, these results elucidate the mechanisms leading to platelet activation and interaction with leukocytes triggered by LPS. They suggest that the activation of platelets by LPS is mainly dependent on leukocytes and especially monocytes as a result of CD14 and TLR4 engagement. Moreover, we found that leukocyte-platelet interaction was triggered by the synthesis of PAF and the generation of oxygen radicals that induced upregulation of surface expression of P-selectin.

  12. VIPhyb, an antagonist of vasoactive intestinal peptide receptor, enhances cellular antiviral immunity in murine cytomegalovirus infected mice.

    PubMed

    Li, Jian-Ming; Darlak, Kasia A; Southerland, Lauren; Hossain, Mohammad S; Jaye, David L; Josephson, Cassandra D; Rosenthal, Hilary; Waller, Edmund K

    2013-01-01

    Vasoactive intestinal peptide (VIP) is a neuropeptide hormone that suppresses Th1-mediated cellular immunity. We previously reported that VIP-knockout (VIP-KO) mice have enhanced cellular immune responses and increased survival following murine cytomegalovirus (mCMV) infection in C57BL/6 mice. In this study, we tested whether treatment with a VIP receptor antagonistic peptide protects C57BL/6 and BALB/c mice from mCMV-infection. One week of daily subcutaneous injections of VIPhyb was non-toxic and did not alter frequencies of immune cell subsets in non-infected mice. VIPhyb administration to mCMV-infected C57BL/6 and BALB/c mice markedly enhanced survival, viral clearance, and reduced liver and lung pathology compared with saline-treated controls. The numbers of effector/memory CD8+ T-cells and mature NK cells were increased in VIPhyb-treated mice compared with PBS-treated groups. Pharmacological blockade of VIP-receptor binding or genetic blockade of VIP-signaling prevented the up-regulation of PD-L1 and PD-1 expression on DC and activated CD8+ T-cells, respectively, in mCMV-infected mice, and enhanced CD80, CD86, and MHC-II expression on conventional and plasmacytoid DC. VIPhyb-treatment increased type-I IFN synthesis, numbers of IFN-γ- and TNF-α-expressing NK cells and T-cells, and the numbers of mCMV-M45 epitope-peptide-MHC-I tetramer CD8+ T-cells following mCMV infection. VIP-treatment lowered the percentage of Treg cells in spleens compared with PBS-treated WT mice following mCMV infection, while significantly decreasing levels of serum VEGF induced by mCMV-infection. The mice in all treated groups exhibited similar levels of anti-mCMV antibody titers. Short-term administration of a VIP-receptor antagonist represents a novel approach to enhance innate and adaptive cellular immunity in a murine model of CMV infection.

  13. Immune checkpoints PVR and PVRL2 are prognostic markers in AML and their blockade represents a new therapeutic option.

    PubMed

    Stamm, Hauke; Klingler, Felix; Grossjohann, Eva-Maria; Muschhammer, Jana; Vettorazzi, Eik; Heuser, Michael; Mock, Ulrike; Thol, Felicitas; Vohwinkel, Gabi; Latuske, Emily; Bokemeyer, Carsten; Kischel, Roman; Dos Santos, Cedric; Stienen, Sabine; Friedrich, Matthias; Lutteropp, Michael; Nagorsen, Dirk; Wellbrock, Jasmin; Fiedler, Walter

    2018-05-31

    Immune checkpoints are promising targets in cancer therapy. Recently, poliovirus receptor (PVR) and poliovirus receptor-related 2 (PVRL2) have been identified as novel immune checkpoints. In this investigation we show that acute myeloid leukemia (AML) cell lines and AML patient samples highly express the T-cell immunoreceptor with Ig and ITIM domains (TIGIT) ligands PVR and PVRL2. Using two independent patient cohorts, we could demonstrate that high PVR and PVRL2 expression correlates with poor outcome in AML. We show for the first time that antibody blockade of PVR or PVRL2 on AML cell lines or primary AML cells or TIGIT blockade on immune cells increases the anti-leukemic effects mediated by PBMCs or purified CD3 + cells in vitro. The cytolytic activity of the BiTE® antibody construct AMG 330 against leukemic cells could be further enhanced by blockade of the TIGIT-PVR/PVRL2 axis. This increased immune reactivity is paralleled by augmented secretion of Granzyme B by immune cells. Employing CRISPR/Cas9-mediated knockout of PVR and PVRL2 in MV4-11 cells, the cytotoxic effects of antibody blockade could be recapitulated in vitro. In NSG mice reconstituted with human T cells and transplanted with either MV4-11 PVR/PVRL2 knockout or wildtype cells, prolonged survival was observed for the knockout cells. This survival benefit could be further extended by treating the mice with AMG 330. Therefore, targeting the TIGIT-PVR/PVRL2 axis with blocking antibodies might represent a promising future therapeutic option in AML.

  14. Selective Matrix (Hyaluronan) Interaction with CD44 and RhoGTPase Signaling Promotes Keratinocyte Functions and Overcomes Age-related Epidermal Dysfunction

    PubMed Central

    Bourguignon, Lilly Y.W.; Wong, Gabriel; Xia, Weiliang; Man, Mao-Qiang; Holleran, Walter M.; Elias, Peter M.

    2013-01-01

    Background Mouse epidermal chronologic aging is closely associated with aberrant matrix (hyaluronan, HA) -size distribution/production and impaired keratinocyte proliferation/differentiation, leading to a marked thinning of the epidermis with functional consequence that causes a slower recovery of permeability barrier function. Objective The goal of this study is to demonstrate mechanism-based, corrective therapeutic strategies using topical applications of small HA (HAS) and/or large HA (HAL) [or a sequential small HA (HAS) and large HA(HAL) (HAs-»HAL) treatment] as well as RhoGTPase signaling perturbation agents to regulate HA/CD44-mediated signaling, thereby restoring normal epidermal function, and permeability barrier homeostasis in aged mouse skin. Methods A number of biochemical, cell biological/molecular, pharmacological and physiological approaches were used to investigate matrix HA-CD44-mediated RhoGTPase signaling in regulating epidermal functions and skin aging. Results In this study we demonstrated that topical application of small HA (HAS) promotes keratinocyte proliferation and increases skin thickness, while it fails to upregulate keratinocyte differentiation or permeability barrier repair in aged mouse skin. In contrast, large HA (HAL) induces only minimal changes in keratinocyte proliferation and skin thickness, but restores keratinocyte differentiation and improves permeability barrier function in aged epidermis. Since neither HAS nor HAL corrects these epidermal defects in aged CD44 knock-out mice, CD44 likely mediates HA-associated epidermal functions in aged mouse skin. Finally, blockade of Rho-kinase activity with Y27632 or protein kinase-Nγ activity with Ro31-8220 significantly decreased the HA (HAS or HAL)-mediated changes in epidermal function in aged mouse skin. Conclusion The results of our study show first that HA application of different sizes regulates epidermal proliferation, differentiation and barrier function in aged mouse skin. Second, manipulation of matrix (HA) interaction with CD44 and RhoGTPase signaling could provide further novel therapeutic approaches that could be targeted for the treatment of various aging-related skin disorders. PMID:23790635

  15. Induction of hapten-specific tolerance of human CD8+ urushiol (poison ivy)-reactive T lymphocytes.

    PubMed

    Kalish, R S; Wood, J A

    1997-03-01

    The interaction of CD28 with B7 molecules (CD80 or CD86) is an essential second signal for both the activation of CD4+ T cells through the T-cell receptor and the prevention of anergy. We studied the requirement of hapten-specific human CD8+ cells for CD28 co-stimulation in recognition of hapten, and anergy induction. Urushiol, the immunogenic hapten of poison ivy (Toxicodendron radicans), elicits a predominantly CD8+ T-cell response. Autologous PBMC were pre-incubated with urushiol prior to fixation by paraformaldehyde. Fixed antigen-presenting cells were unable to present urushiol to human CD8+ urushiol-specific T cells. Addition of anti-CD28, however, overcame this antigen-presenting defect, enabling CD8+ cells to proliferate. Fixation of antigen-presenting cells prevents upregulation of B7, and addition of anti-CD28 substitutes for this signal. Proliferation of CD8+ T cells in response to urushiol was blocked by CTLA4Ig, a recombinant fusion protein that blocks CD28/B7 interactions. Preincubation of urushiol-specific CD8+ cells with fixed PBMC + urushiol for 7 d induced anergy. Anergic CD8+ cells were viable and able to proliferate in response to IL-2, but not in response to urushiol. Induction of anergy required the presence of urushiol, and pre-incubation with irradiated PBMC + urushiol did not have this effect. It is proposed that anergy was induced by presentation of urushiol by fixed PBMC, in the absence of adequate co-stimulation signals. Induction of anergy by blocking of co-stimulation could potentially induce clinical hyposensitization to haptens.

  16. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints

    PubMed Central

    Llosa, Nicolas J.; Cruise, Michael; Tam, Ada; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Taube, Janis M.; Blosser, Lee; Fan, Hongni; Wang, Hao; Luber, Brandon; Zhang, Ming; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Sears, Cynthia L.; Anders, Robert A.; Pardoll, Drew M.; Housseau, Franck

    2014-01-01

    We examined the immune microenvironment of primary colorectal cancer (CRC) using immunohistochemistry, laser capture microdissection/qRT-PCR, flow cytometry and functional analysis of tumor infiltrating lymphocytes. A subset of CRC displayed high infiltration with activated CD8+ CTL as well as activated Th1 cells characterized by IFN-γ production and the Th1 transcription factor Tbet. Parallel analysis of tumor genotypes revealed that virtually all of the tumors with this active Th1/CTL microenvironment had defects in mismatch repair, as evidenced by microsatellite instability (MSI). Counterbalancing this active Th1/CTL microenvironment, MSI tumors selectively demonstrated highly up-regulated expression of multiple immune checkpoints, including five – PD-1, PD-L1, CTLA-4, LAG-3 and IDO – currently being targeted clinically with inhibitors. These findings link tumor genotype with the immune microenvironment, and explain why MSI tumors are not naturally eliminated despite a hostile Th1/CTL microenvironment. They further suggest that blockade of specific checkpoints may be selectively efficacious in the MSI subset of CRC. PMID:25358689

  17. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition

    PubMed Central

    Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily

    2016-01-01

    B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040

  18. Enalapril and losartan are more effective than carvedilol in preventing dilated cardiomyopathy in the Syrian cardiomyopathic hamster.

    PubMed

    Crespo, Maria J; Cruz, Nildris; Altieri, Pablo I; Escobales, Nelson

    2008-09-01

    To assess the role of the renin-angiotensin (RAS) and adrenergic systems in the development and progression of dilated cardiomyopathy in the Syrian cardiomyopathic hamster (SCH), echocardiographic parameters were evaluated in 6-month-old animals after 5 months of treatment with enalapril (25 mg/kg/day) plus losartan (10 mg/kg/day), or with carvedilol (1 mg/kg/day). Cardiac output indexes (COI) increased by 53% after RAS blockade and by 20% after beta-blockade in SCH. Moreover, LVEDV and LVESV decreased 30% and 62%, respectively (P < .05) during RAS blockade, whereas ejection fraction (EF) increased by 48%. By contrast, carvedilol reduced LVESV by only 28% (P < .05) and increased EF by only 15% (P < .05). These results suggest that RAS activation plays a critical role in the development of cardiac dysfunction in SCH and that suppression of RAS may be more effective than beta-blockade in retarding the development of cardiomyopathy in SCH. Owing to timing (pre-heart failure stage) and to the single dose protocol, the implications of this study for human subjects remain to be clarified.

  19. Effects of horizontal body casting on the baroreceptor reflex control of heart rate

    NASA Technical Reports Server (NTRS)

    Billman, G. E.; Dickey, D. T.; Sandler, H.; Stone, H. L.

    1982-01-01

    The purpose of this study was to investigate the effects of long-term horizontal body position on baroreceptor reflex control of heart rate. Six male rhesus monkeys (6.2-9.4 kg) were given bolus injections of 4.0 microgram/kg, phenylephrine during each of the following conditions: awake, anesthetized (10 mg/kg ketamine HCl), and after beta-blockade (1 mg/kg propranolol HCl) before, 7, 14, and 28 days after being placed in a horizontal body cast. R-R interval vs. systolic arterial pressure was plotted, and the slope was determined by least-squares-fit linear regression. Baroreceptor slope was significantly reduced by 7 days of horizontal body position and remained attenuated throughout the 28-day restraint period both before and after beta-receptor blockade. These data are consistent with the thesis that prolonged exposure to a zero-gravity environment impairs autonomic reflex regulation of the cardiovascular system.

  20. CD44v10, osteopontin and lymphoma growth retardation by a CD44v10-specific antibody.

    PubMed

    Megaptche, Amelie Pajip; Erb, Ulrike; Büchler, Markus Wolfgang; Zöller, Margot

    2014-09-01

    Blockade of CD44 is considered a therapeutic option for the elimination of leukemia-initiating cells. However, the application of anti-panCD44 can be burdened by severe side effects. We determined whether these side effects could be avoided by replacing anti-panCD44 with CD44 variant isoform (CD44v)-specific antibodies in CD44v-positive hematological malignancies using the EL4 thymoma and CD44v10-transfected EL4 (EL4-v10) as models. Subcutaneous growth of EL4 and EL4-v10 was equally well inhibited by the anti-panCD44 and anti-CD44v10 antibodies, respectively. Ex vivo analysis indicated that natural killer cytotoxicity and antibody-dependent cellular cytotoxicity were the main effector mechanisms. Under local inflammation, the efficacy of anti-CD44v10 prolonged the survival time twofold compared with untreated, EL4-v10 tumor-bearing mice, and this was due to inflammation-induced expression of osteopontin (OPN). A high level of OPN in EL4-v10 tumors supported leukocyte recruitment and tumor-infiltrating T-cell activation. Taken together, in hematological malignancies expressing CD44v, anti-panCD44 can be replaced by CD44v-specific antibodies without a loss in efficacy. Furthermore, CD44v10-specific antibodies appear particularly advantageous in cutaneous leukemia therapy, as CD44v10 binding of OPN drives leukocyte recruitment and activation.

  1. Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma.

    PubMed

    Kearl, Tyce J; Jing, Weiqing; Gershan, Jill A; Johnson, Bryon D

    2013-06-01

    Early phase clinical trials targeting the programmed death receptor-1/ligand-1 (PD-1/PD-L1) pathway to overcome tumor-mediated immunosuppression have reported promising results for a variety of cancers. This pathway appears to play an important role in the failure of immune reactivity to malignant plasma cells in multiple myeloma patients, as the tumor cells express relatively high levels of PD-L1, and T cells show increased PD-1 expression. In the current study, we demonstrate that PD-1/PD-L1 blockade with a PD-L1-specific Ab elicits rejection of a murine myeloma when combined with lymphodepleting irradiation. This particular combined approach by itself has not previously been shown to be efficacious in other tumor models. The antitumor effect of lymphodepletion/anti-PD-L1 therapy was most robust when tumor Ag-experienced T cells were present either through cell transfer or survival after nonmyeloablative irradiation. In vivo depletion of CD4 or CD8 T cells completely eliminated antitumor efficacy of the lymphodepletion/anti-PD-L1 therapy, indicating that both T cell subsets are necessary for tumor rejection. Elimination of myeloma by T cells occurs relatively quickly as tumor cells in the bone marrow were nearly nondetectable by 5 d after the first anti-PD-L1 treatment, suggesting that antimyeloma reactivity is primarily mediated by preactivated T cells, rather than newly generated myeloma-reactive T cells. Anti-PD-L1 plus lymphodepletion failed to improve survival in two solid tumor models, but demonstrated significant efficacy in two hematologic malignancy models. In summary, our results support the clinical testing of lymphodepletion and PD-1/PD-L1 blockade as a novel approach for improving the survival of patients with multiple myeloma.

  2. Concurrent, but not sequential, PD-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, castration-resistant prostate cancer.

    PubMed

    McNeel, Douglas G; Eickhoff, Jens C; Wargowski, Ellen; Zahm, Christopher; Staab, Mary Jane; Straus, Jane; Liu, Glenn

    2018-05-22

    T-cell checkpoint inhibitors have demonstrated dramatic clinical activity against multiple cancer types, however little activity in patients with prostate cancer. Conversely, an anti-tumor vaccine was approved for the treatment of prostate cancer, having demonstrated an improvement in overall survival, despite few objective disease responses. In murine studies, we found that PD-1 expression on CD8+ T cells increased following anti-tumor vaccination, and that PD-1/PD-L1 blockade at the time of immunization elicited greater anti-tumor responses. Based on these data we initiated a pilot trial evaluating the immunological and clinical efficacy of a DNA encoding prostatic acid phosphatase (PAP) when delivered in combination with pembrolizumab. 26 patients were treated for 12 weeks with vaccine and received pembrolizumab either during this time or during the subsequent 12 weeks. Adverse events included grade 2 and 3 fatigue, diarrhea, thyroid dysfunction, and hepatitis. Median time to radiographic progression was not different between study arms. 8/13 (62%) of patients treated concurrently, and 1/12 (8%, p=0.01) of patients treated sequentially, experienced PSA declines from baseline. Of these, two were over 50% and one was a complete PSA response. No confirmed CR or PR were observed, however 4/5 patients treated concurrently had measurable decreases in tumor volume at 12 weeks. PSA declines were associated with the development of PAP-specific Th1-biased T cell immunity and CD8+ T cell infiltration in metastatic tumor biopsy specimens. These data are the first report of a clinical trial demonstrating that the efficacy of an anti-tumor vaccine can be augmented by concurrent PD-1 blockade.

  3. Loss of CD28 on Peripheral T Cells Decreases the Risk for Early Acute Rejection after Kidney Transplantation

    PubMed Central

    Dedeoglu, Burç; Meijers, Ruud W. J.; Klepper, Mariska; Hesselink, Dennis A.; Baan, Carla C.; Litjens, Nicolle H. R.; Betjes, Michiel G. H.

    2016-01-01

    Background End-stage renal disease patients have a dysfunctional, prematurely aged peripheral T-cell system. Here we hypothesized that the degree of premature T-cell ageing before kidney transplantation predicts the risk for early acute allograft rejection (EAR). Methods 222 living donor kidney transplant recipients were prospectively analyzed. EAR was defined as biopsy proven acute allograft rejection within 3 months after kidney transplantation. The differentiation status of circulating T cells, the relative telomere length and the number of CD31+ naive T cells were determined as T-cell ageing parameters. Results Of the 222 patients analyzed, 30 (14%) developed an EAR. The donor age and the historical panel reactive antibody score were significantly higher (p = 0.024 and p = 0.039 respectively) and the number of related donor kidney transplantation was significantly lower (p = 0.018) in the EAR group. EAR-patients showed lower CD4+CD28null T-cell numbers (p<0.01) and the same trend was observed for CD8+CD28null T-cell numbers (p = 0.08). No differences regarding the other ageing parameters were found. A multivariate Cox regression analysis showed that higher CD4+CD28null T-cell numbers was associated with a lower risk for EAR (HR: 0.65, p = 0.028). In vitro, a significant lower percentage of alloreactive T cells was observed within CD28null T cells (p<0.001). Conclusion Immunological ageing-related expansion of highly differentiated CD28null T cells is associated with a lower risk for EAR. PMID:26950734

  4. Evaluation of spinal anesthesia blockade time with 0.5% hyperbaric bupivacaine, with or without sufentanil, in chronic opioid users: a randomized clinical trial.

    PubMed

    Sadeghi, Mostafa; Yekta, Reza Atef; Azimaraghi, Omid; Barzin, Gilda; Movafegh, Ali

    2016-01-01

    The primary outcome of this study was to evaluate the effect of adding sufentanil to hyperbaric bupivacaine on duration of sensory blockade of spinal anesthesia in chronic opioid users in comparison with non-addicts. Sixty patients scheduled for orthopedic surgery under spinal anesthesia were allocated into four groups: group 1 (no history of opium use who received intrathecal hyperbaric bupivacaine along with 1mL saline as placebo); group 2 (no history of opium use who received intrathecal bupivacaine along with 1mL sufentanil [5μg]); group 3 (positive history of opium use who received intrathecal bupivacaine along with 1mL saline as placebo) and group 4 (positive history of opium use who received intrathecal bupivacaine along with 1mL sufentanil [5μg]). The onset time and duration of sensory and motor blockade were measured. The duration of sensory blockade in group 3 was 120±23.1min which was significantly less than other groups (G1=148±28.7, G2=144±26.4, G4=139±24.7, p=0.007). The duration of motor blockade in group 3 was 145±30.0min which was significantly less than other groups (G1=164±36.0, G2=174±26.8, G4=174±24.9, p=0.03). Addition of 5μg intrathecal sufentanil to hyperbaric bupivacaine in chronic opioid users lengthened the sensory and motor duration of blockade to be equivalent to blockade measured in non-addicts. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. [Evaluation of spinal anesthesia blockade time with 0.5% hyperbaric bupivacaine, with or without sufentanil, in chronic opioid users: a randomized clinical trial].

    PubMed

    Sadeghi, Mostafa; Yekta, Reza Atef; Azimaraghi, Omid; Barzin, Gilda; Movafegh, Ali

    2016-01-01

    The primary outcome of this study was to evaluate the effect of adding sufentanil to hyperbaric bupivacaine on duration of sensory blockade of spinal anesthesia in chronic opioid users in comparison with non-addicts. Sixty patients scheduled for orthopedic surgery under spinal anesthesia were allocated into four groups: group 1 (no history of opium use who received intrathecal hyperbaric bupivacaine along with 1mL saline as placebo); group 2 (no history of opium use who received intrathecal bupivacaine along with 1mL sufentanil [5μg]); group 3 (positive history of opium use who received intrathecal bupivacaine along with 1mL saline as placebo) and group 4 (positive history of opium use who received intrathecal bupivacaine along with 1mL sufentanil [5μg]). The onset time and duration of sensory and motor blockade were measured. The duration of sensory blockade in group 3 was 120±23.1min which was significantly less than other groups (G1=148±28.7, G2=144±26.4, G4=139±24.7, p=0.007). The duration of motor blockade in group 3 was 145±30.0min which was significantly less than other groups (G1=164±36.0, G2=174±26.8, G4=174±24.9, p=0.03). Addition of 5μg intrathecal sufentanil to hyperbaric bupivacaine in chronic opioid users lengthened the sensory and motor duration of blockade to be equivalent to blockade measured in non-addicts. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  6. PD-1 and Tim-3 Pathways Regulate CD8+ T Cells Function in Atherosclerosis.

    PubMed

    Qiu, Ming-Ke; Wang, Song-Cun; Dai, Yu-Xin; Wang, Shu-Qing; Ou, Jing-Min; Quan, Zhi-Wei

    2015-01-01

    T cell-mediated immunity plays a significant role in the development of atherosclerosis (AS). There is increasing evidence that CD8+ T cells are also involved in AS but their exact roles remain unclear. The inhibitory receptors programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain 3 (Tim-3) are well known inhibitory molecules that play a crucial role in regulating CD8+ T cell activation or tolerance. Here, we demonstrate that the co-expression of PD-1 and Tim-3 on CD8+ T cells is up-regulated in AS patients. PD-1+ Tim-3+ CD8+ T cells are enriched for within the central T (TCM) cell subset, with high proliferative activity and CD127 expression. Co-expression of PD-1 and Tim-3 on CD8+ T cells is associated with increased anti-atherogenic cytokine production as well as decreased pro-atherogenic cytokine production. Blockade of PD-1 and Tim-3 results in a decrease of anti-atherogenic cytokine production by PD-1+ Tim-3+ CD8+ T cells and in an augmentation of TNF-α and IFN-γ production. These findings highlight the important role of the PD-1 and Tim-3 pathways in regulating CD8+ T cells function in human AS.

  7. PD-1 and Tim-3 Pathways Regulate CD8+ T Cells Function in Atherosclerosis

    PubMed Central

    Qiu, Ming-Ke; Wang, Song-Cun; Dai, Yu-Xin; Wang, Shu-Qing; Ou, Jing-Min; Quan, Zhi-Wei

    2015-01-01

    T cell-mediated immunity plays a significant role in the development of atherosclerosis (AS). There is increasing evidence that CD8+ T cells are also involved in AS but their exact roles remain unclear. The inhibitory receptors programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain 3 (Tim-3) are well known inhibitory molecules that play a crucial role in regulating CD8+ T cell activation or tolerance. Here, we demonstrate that the co-expression of PD-1 and Tim-3 on CD8+ T cells is up-regulated in AS patients. PD-1+ Tim-3+ CD8+ T cells are enriched for within the central T (TCM) cell subset, with high proliferative activity and CD127 expression. Co-expression of PD-1 and Tim-3 on CD8+ T cells is associated with increased anti-atherogenic cytokine production as well as decreased pro-atherogenic cytokine production. Blockade of PD-1 and Tim-3 results in a decrease of anti-atherogenic cytokine production by PD-1+ Tim-3+ CD8+ T cells and in an augmentation of TNF-α and IFN-γ production. These findings highlight the important role of the PD-1 and Tim-3 pathways in regulating CD8+ T cells function in human AS. PMID:26035207

  8. PD-1(HIGH) Follicular CD4 T Helper Cell Subsets Residing in Lymph Node Germinal Centers Correlate with B Cell Maturation and IgG Production in Rhesus Macaques.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2014-01-01

    CD4+ T follicular helper (TFH) cells guide development and maturation of B cells and are crucial for effective antibody responses. Here we found rhesus macaque TFH cells, defined as CXCR5+CD4 T cells, contain two major populations: PD-1(INT) and PD-1(HIGH) cells. Of these, PD-1(HIGH)CD4+ T cells highly co-express ICOS but little CCR7, and reside in lymph node germinal centers (GCs), but not in blood. These cells secrete IL-21 and express transcriptional factor Bcl-6 at higher levels than CXCR5+PD-1(INT)CD4+ T cells. In addition, the frequency of PD-1(HIGH)CD4+ T cells is low in lymph nodes of newborns, but increases with age. Levels of PD-1(HIGH)CD4+ T cells correlate with mature B cells in lymph nodes, and PD-1 blockade in PD-1(HIGH)CD4+ T and B cell co-cultures significantly inhibits IgG production. In summary, PD-1(HIGH)CD4+ T cells residing in GC represent a specific TFH subset that contributes to maturation of B cells and IgG production.

  9. Exercise-induced hand tremor: a possible test for beta 2-adrenoceptor selectivity in man?

    PubMed Central

    Abila, B; Wilson, J F; Marshall, R W; Richens, A

    1986-01-01

    The effects of intravenous doses of propranolol, sotalol, timolol, atenolol and placebo on exercise-induced tachycardia and exercise-induced increases in hand tremor were assessed in four healthy volunteers. All active drugs produced significant reductions in exercise-induced tachycardia. Exercise caused consistent significant increases in hand tremor which were blocked by the three non-cardioselective drugs but not by atenolol or placebo. The blockade of exercise-induced hand tremor is suggested as a possible test for the assessment of the selectivity of beta-adrenoceptor blockade in man. PMID:2874824

  10. Costimulatory Function of Cd58/Cd2 Interaction in Adaptive Humoral Immunity in a Zebrafish Model.

    PubMed

    Shao, Tong; Shi, Wei; Zheng, Jia-Yu; Xu, Xiao-Xiao; Lin, Ai-Fu; Xiang, Li-Xin; Shao, Jian-Zhong

    2018-01-01

    CD58 and CD2 have long been known as a pair of reciprocal adhesion molecules involved in the immune modulations of CD8 + T and NK-mediated cellular immunity in humans and several other mammals. However, the functional roles of CD58 and CD2 in CD4 + T-mediated adaptive humoral immunity remain poorly defined. Moreover, the current functional observations of CD58 and CD2 were mainly acquired from in vitro assays, and in vivo investigation is greatly limited due to the absence of a Cd58 homology in murine models. In this study, we identified cd58 and cd2 homologs from the model species zebrafish ( Danio rerio ). These two molecules share conserved structural features to their mammalian counterparts. Functionally, cd58 and cd2 were significantly upregulated on antigen-presenting cells and Cd4 + T cells upon antigen stimulation. Blockade or knockdown of Cd58 and Cd2 dramatically impaired the activation of antigen-specific Cd4 + T and mIgM + B cells, followed by the inhibition of antibody production and host defense against bacterial infections. These results indicate that CD58/CD2 interaction was required for the full activation of CD4 + T-mediated adaptive humoral immunity. The interaction of Cd58 with Cd2 was confirmed by co-immunoprecipitation and functional competitive assays by introducing a soluble Cd2 protein. This study highlights a new costimulatory mechanism underlying the regulatory network of adaptive immunity and makes zebrafish an attractive model organism for the investigation of CD58/CD2-mediated immunology and disorders. It also provides a cross-species understanding of the evolutionary history of costimulatory signals from fish to mammals as a whole.

  11. CD4 T cell subsets in the Mucosa are CD28+Ki-67−HLA-DR−CD69+ but show differential infection based on α4β7 receptor expression during acute SIV infection

    PubMed Central

    Kader, Muhamuda; Bixler, Sandra; Roederer, Mario; Veazey, Ronald; Mattapallil, Joseph J.

    2009-01-01

    Background CD4 T cell depletion in the mucosa has been well documented during acute HIV and SIV infections. The demonstration the HIV/SIV can use the α4β7 receptor for viral entry suggests that these viruses selectively target CD4 T cells in the mucosa that express high levels of α4β7 receptor. Methods Mucosal samples obtained from SIV infected rhesus macaques during the early phase of infection were used for immunophenotypic analysis. CD4 T cell subsets were sorted based on the expression of β7 and CD95 to quantify the level of SIV infection in different subsets of CD4 T cells. Changes in IL-17, IL-21, IL-23 and TGFβ mRNA expression was determined using Taqman PCR. Results CD4 T cells in the mucosa were found to harbor two major population of cells; ~25% of CD4 T cells expressed the α4+β7hi phenotype, whereas the rest of the 75% expressed an α4+β7int phenotype. Both the subsets were predominantly CD28+Ki-67− HLA-DR− but CD69+, and expressed detectable levels of CCR5 on their surface. Interestingly, however, α4+β7hiCD4 T cells were found to harbor more SIV than the α4+β7int subsets at day 10 pi. Early infection was associated with a dramatic increase in the expression of IL-17, and IL-17 promoting cytokines IL-21, IL-23, and TGFβ that stayed high even after the loss of mucosal CD4 T cells. Conclusions Our results suggest that the differential expression of the α4β7 receptor contributes to the differences in the extent of infection in CD4 T cell subsets in the mucosa. Early infection associated dysregulation of the IL-17 network in mucosal tissues involves other non-Th-17 cells that likely contributes to the pro-inflammatory environment in the mucosa during acute stages of SIV infection. PMID:19863675

  12. Prevotella jejuni sp. nov., isolated from the small intestine of a child with coeliac disease.

    PubMed

    Hedberg, Maria E; Israelsson, Anne; Moore, Edward R B; Svensson-Stadler, Liselott; Wai, Sun Nyunt; Pietz, Grzegorz; Sandström, Olof; Hernell, Olle; Hammarström, Marie-Louise; Hammarström, Sten

    2013-11-01

    Five obligately anaerobic, Gram-stain-negative, saccharolytic and proteolytic, non-spore-forming bacilli (strains CD3 : 27, CD3 : 28(T), CD3 : 33, CD3 : 32 and CD3 : 34) are described. All five strains were isolated from the small intestine of a female child with coeliac disease. Cells of the five strains were short rods or coccoid cells with longer filamentous forms seen sporadically. The organisms produced acetic acid and succinic acid as major metabolic end products. Phylogenetic analysis based on comparative 16S rRNA gene sequence analysis revealed close relationships between CD3 : 27, CD3 : 28(T) and CD3 : 33, between CD3 : 32 and Prevotella histicola CCUG 55407(T), and between CD3 : 34 and Prevotella melaninogenica CCUG 4944B(T). Strains CD3 : 27, CD3 : 28(T) and CD3 : 33 were clearly different from all recognized species within the genus Prevotella and related most closely to but distinct from P. melaninogenica. Based on 16S rRNA, RNA polymerase β-subunit (rpoB) and 60 kDa chaperonin protein subunit (cpn60) gene sequencing, and phenotypic, chemical and biochemical properties, strains CD3 : 27, CD3 : 28(T) and CD3 : 33 are considered to represent a novel species within the genus Prevotella, for which the name Prevotella jejuni sp. nov. is proposed. Strain CD3 : 28(T) ( = CCUG 60371(T) = DSM 26989(T)) is the type strain of the proposed novel species. All five strains were able to form homologous aggregates, in which tube-like structures were connecting individual bacteria cells. The five strains were able to bind to human intestinal carcinoma cell lines at 37 °C.

  13. Prevotella jejuni sp. nov., isolated from the small intestine of a child with coeliac disease

    PubMed Central

    Israelsson, Anne; Moore, Edward R. B.; Svensson-Stadler, Liselott; Wai, Sun Nyunt; Pietz, Grzegorz; Sandström, Olof; Hernell, Olle; Hammarström, Marie-Louise

    2013-01-01

    Five obligately anaerobic, Gram-stain-negative, saccharolytic and proteolytic, non-spore-forming bacilli (strains CD3 : 27, CD3 : 28T, CD3 : 33, CD3 : 32 and CD3 : 34) are described. All five strains were isolated from the small intestine of a female child with coeliac disease. Cells of the five strains were short rods or coccoid cells with longer filamentous forms seen sporadically. The organisms produced acetic acid and succinic acid as major metabolic end products. Phylogenetic analysis based on comparative 16S rRNA gene sequence analysis revealed close relationships between CD3 : 27, CD3 : 28T and CD3 : 33, between CD3 : 32 and Prevotella histicola CCUG 55407T, and between CD3 : 34 and Prevotella melaninogenica CCUG 4944BT. Strains CD3 : 27, CD3 : 28T and CD3 : 33 were clearly different from all recognized species within the genus Prevotella and related most closely to but distinct from P. melaninogenica. Based on 16S rRNA, RNA polymerase β-subunit (rpoB) and 60 kDa chaperonin protein subunit (cpn60) gene sequencing, and phenotypic, chemical and biochemical properties, strains CD3 : 27, CD3 : 28T and CD3 : 33 are considered to represent a novel species within the genus Prevotella, for which the name Prevotella jejuni sp. nov. is proposed. Strain CD3 : 28T ( = CCUG 60371T = DSM 26989T) is the type strain of the proposed novel species. All five strains were able to form homologous aggregates, in which tube-like structures were connecting individual bacteria cells. The five strains were able to bind to human intestinal carcinoma cell lines at 37 °C. PMID:23793857

  14. Captopril and the intestinal response to hemorrhagic shock.

    PubMed

    Rosenfeld, L M; Cooper, H S

    1982-09-01

    In order to help clarify the role of the renin-angiotensin system in the evolution of the post-hemorrhagic circulatory shock syndrome, captopril, a potent inhibitor of the conversion of angiotensin I to angiotensin II, was infused into a hemorrhagic shock model in the cat. The hemorrhage protocol had arterial blood withdrawn until a mean arterial blood pressure (MABP) of 40 mm Hg developed. Oligemia was maintained for a period of 2.5 hr, after which time, all remaining shed blood was reinfused and the cats observed for an additional 2 hr. Coincident with the large reduction in MABP, superior mesenteric artery flow (SMAF) was similarly reduced as recorded by a noncannulating electromagnetic flow probe fitted around the artery. Post-oligemic plasma activities of cathepsin D (CD) and alkaline phosphatase (AP) were elevated 11-fold and 3-fold respectively; intestinal morphological damage was graded at 2.8 +/- 0.6 on a 0-4 scale of increasing severity (control: 0.03 +/- 0.02). Captopril was administered at an initial priming dose of 0.5 mg/kg followed by a continuous infusion of 0.5 mg/kg/hr. Improved post-reinfusion maintenance of MABP and SMAF was noted. Plasma elevations in enzyme activity were more moderate: 8-fold for CD, 1.5-fold for AP. Intestinal morphologic damage was graded at 2.5 +/- 0.3. Blockade of angiotensin II formation by captopril thus demonstrated beneficial effects on post-oligemic hemodynamic status and on the degree of cellular enzyme release without significant improvement in intestinal morphology.

  15. Prognostic value of CD8CD45RO tumor infiltrating lymphocytes in patients with extrahepatic cholangiocarcinoma

    PubMed Central

    Kim, Richard; Coppola, Domenico; Wang, Emilie; Chang, Young Doo; Kim, Yuhree; Anaya, Daniel; Kim, Dae Won

    2018-01-01

    Cholangiocarcinoma is a malignancy arising from the biliary tract epithelial cells with poor prognosis. Tumor infiltrating lymphocytes (TIL)s and programmed cell death receptor ligand 1 (PD-L1) have a prognostic impact in various solid tumors. We aimed to investigate TILs and PD-L1 expression and their clinical relevance in cholangiocarcinoma. Tumor samples from 44 patients with resected and histologically verified extrahepatic cholangiocarcinoma were evaluated for CD8, CD45RO and PD-L1 expression, and their correlations with clinicopathological data and survival data were analyzed. Total 44 extrahepatic cholangiocarcinoma tissues were evaluated. CD8+ tumor infiltrating lymphocytes (TIL)s were observed in 30 (68%) tumors. Among them, 14 had CD8+CD45RO+ TILs. PD-L1 was expressed on cancer cells in 10 (22.7%) tumors in 34 evaluable extrahepatic cholangiocarciniomas. The presence of CD8+ TILs or CD8+CD45RO+ TILs was not associated with clinical staging or tumor differentiation. Extrahepatic cholangiocarcinoma with CD8+CD45RO+ TILs had longer overall survival (OS) on univariate (P = 0.013) and multivariate (P = 0.012) analysis. Neither CD8+TIL nor PD-L1 expression on cancer cells correlated significantly with OS. These results add to the understanding of the clinical features associated with CD8 TILs and PD-L1 expression in extrahepatic cholangiocarcinoma, and they support the potential rationale of using PD-1 blockade immunotherapy in cholangiocarcinoma.

  16. Blockade of HERG human K+ channels and IKr of guinea-pig cardiomyocytes by the antipsychotic drug clozapine.

    PubMed

    Lee, So-Young; Kim, Young-Jin; Kim, Kyong-Tai; Choe, Han; Jo, Su-Hyun

    2006-06-01

    Clozapine, a commonly used antipsychotic drug, can induce QT prolongation, which may lead to torsades de pointes and sudden death. To investigate the arrhythmogenic side effects of clozapine, we studied the impact of clozapine on human ether-a-go-go-related gene (HERG) channels expressed in Xenopus oocytes and HEK293 cells, and on the delayed rectifier K(+) currents of guinea-pig cardiomyocytes. Clozapine dose-dependently decreased the amplitudes of the currents at the end of voltage steps, and the tail currents of HERG. The IC(50) for the clozapine blockade of HERG currents in Xenopus oocytes progressively decreased relative to depolarization (39.9 microM at -40 mV, 28.3 microM at 0 mV and 22.9 microM at +40 mV), whereas the IC(50) for the clozapine-induced blockade of HERG currents in HEK293 cells at 36 degrees C was 2.5 microM at +20 mV. The clozapine-induced blockade of HERG currents was time dependent: the fractional current was 0.903 of the control at the beginning of the pulse, but declined to 0.412 after 4 s at a test potential of 0 mV. The clozapine-induced blockade of HERG currents was use-dependent, exhibiting more rapid onset and greater steady state blockade at higher frequencies of activation, with a partial relief of blockade observed when the frequency of activation was decreased. In guinea-pig ventricular myocytes held at 36 degrees C, treatment with 1 and 5 microM clozapine blocked the rapidly activating delayed rectifier K(+) current (I(Kr)) by 24.7 and 79.6%, respectively, but did not significantly block the slowly activating delayed rectifier K(+) current (I(Ks)). Our findings collectively suggest that blockade of HERG currents and I(Kr), but not I(Ks), may contribute to the arrhythmogenic side effects of clozapine.

  17. Blockade of HERG human K+ channels and IKr of guinea-pig cardiomyocytes by the antipsychotic drug clozapine

    PubMed Central

    Lee, So-Young; Kim, Young-Jin; Kim, Kyong-Tai; Choe, Han; Jo, Su-Hyun

    2006-01-01

    Clozapine, a commonly used antipsychotic drug, can induce QT prolongation, which may lead to torsades de pointes and sudden death. To investigate the arrhythmogenic side effects of clozapine, we studied the impact of clozapine on human ether-a-go-go-related gene (HERG) channels expressed in Xenopus oocytes and HEK293 cells, and on the delayed rectifier K+ currents of guinea-pig cardiomyocytes. Clozapine dose-dependently decreased the amplitudes of the currents at the end of voltage steps, and the tail currents of HERG. The IC50 for the clozapine blockade of HERG currents in Xenopus oocytes progressively decreased relative to depolarization (39.9 μM at −40 mV, 28.3 μM at 0 mV and 22.9 μM at +40 mV), whereas the IC50 for the clozapine-induced blockade of HERG currents in HEK293 cells at 36°C was 2.5 μM at +20 mV. The clozapine-induced blockade of HERG currents was time dependent: the fractional current was 0.903 of the control at the beginning of the pulse, but declined to 0.412 after 4 s at a test potential of 0 mV. The clozapine-induced blockade of HERG currents was use-dependent, exhibiting more rapid onset and greater steady state blockade at higher frequencies of activation, with a partial relief of blockade observed when the frequency of activation was decreased. In guinea-pig ventricular myocytes held at 36°C, treatment with 1 and 5 μM clozapine blocked the rapidly activating delayed rectifier K+ current (IKr) by 24.7 and 79.6%, respectively, but did not significantly block the slowly activating delayed rectifier K+ current (IKs). Our findings collectively suggest that blockade of HERG currents and IKr, but not IKs, may contribute to the arrhythmogenic side effects of clozapine. PMID:16633353

  18. Targeting peripheral blood pro-inflammatory cytotoxic lymphocytes by inhibiting CD137 expression: novel potential treatment for COPD.

    PubMed

    Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N; Hodge, Sandra

    2014-05-15

    We have shown that chronic obstructive pulmonary disease (COPD) is associated with increased production of pro-inflammatory cytokines and the cytotoxic mediator, granzyme B by peripheral blood steroid resistant CD28nullCD137 + CD8+ T cells and granzyme B by NKT-like and NK cells. We hypothesized that we could target these pro-inflammatory/cytotoxic lymphocytes by inhibiting co-stimulation through CD137. Isolated PBMC from patients with COPD and healthy controls were stimulated with phytohaemagglutinin (PHA) ± blocking anti-CD137 ± 10(-6) M methylprednislone (MP) (±stimulatory anti-CD137 ± control antibodies). Pro-inflammatory cytokine profiles and expression of granzyme B, by T, NKT-like CD28 ± subsets and NK cells were determined using flow cytometry. There was a significant decrease in the percentage of T, NKT-like subsets and NK cells producing IFNγ, TNFα and granzyme B in all subjects in the presence of anti-CD137 blocking antibody compared with PHA alone (eg, 60% decrease in CD8 + granzyme B + cells) or MP. Stimulatory anti-CD137 was associated with an increase in the percentage of pro-inflammatory/cytotoxic cells. The inhibitory effect of anti-CD137 on IFNγ, TNFα and granzyme B production by CD28null cells was greater than by CD28+ cells. Blocking CD137 expression is associated with downregulation of IFNγ, TNFα and granzyme B by CD8+ T and NKT-like and NK cells. Targeting CD137 may have novel therapeutic implications for patients with COPD.

  19. PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response?

    PubMed Central

    Xu-Monette, Zijun Y.; Zhang, Mingzhi; Li, Jianyong; Young, Ken H.

    2017-01-01

    PD-1–PD-L1 interaction is known to drive T cell dysfunction, which can be blocked by anti-PD-1/PD-L1 antibodies. However, studies have also shown that the function of the PD-1–PD-L1 axis is affected by the complex immunologic regulation network, and some CD8+ T cells can enter an irreversible dysfunctional state that cannot be rescued by PD-1/PD-L1 blockade. In most advanced cancers, except Hodgkin lymphoma (which has high PD-L1/L2 expression) and melanoma (which has high tumor mutational burden), the objective response rate with anti-PD-1/PD-L1 monotherapy is only ~20%, and immune-related toxicities and hyperprogression can occur in a small subset of patients during PD-1/PD-L1 blockade therapy. The lack of efficacy in up to 80% of patients was not necessarily associated with negative PD-1 and PD-L1 expression, suggesting that the roles of PD-1/PD-L1 in immune suppression and the mechanisms of action of antibodies remain to be better defined. In addition, important immune regulatory mechanisms within or outside of the PD-1/PD-L1 network need to be discovered and targeted to increase the response rate and to reduce the toxicities of immune checkpoint blockade therapies. This paper reviews the major functional and clinical studies of PD-1/PD-L1, including those with discrepancies in the pathologic and biomarker role of PD-1 and PD-L1 and the effectiveness of PD-1/PD-L1 blockade. The goal is to improve understanding of the efficacy of PD-1/PD-L1 blockade immunotherapy, as well as enhance the development of therapeutic strategies to overcome the resistance mechanisms and unleash the antitumor immune response to combat cancer. PMID:29255458

  20. PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response?

    PubMed

    Xu-Monette, Zijun Y; Zhang, Mingzhi; Li, Jianyong; Young, Ken H

    2017-01-01

    PD-1-PD-L1 interaction is known to drive T cell dysfunction, which can be blocked by anti-PD-1/PD-L1 antibodies. However, studies have also shown that the function of the PD-1-PD-L1 axis is affected by the complex immunologic regulation network, and some CD8 + T cells can enter an irreversible dysfunctional state that cannot be rescued by PD-1/PD-L1 blockade. In most advanced cancers, except Hodgkin lymphoma (which has high PD-L1/L2 expression) and melanoma (which has high tumor mutational burden), the objective response rate with anti-PD-1/PD-L1 monotherapy is only ~20%, and immune-related toxicities and hyperprogression can occur in a small subset of patients during PD-1/PD-L1 blockade therapy. The lack of efficacy in up to 80% of patients was not necessarily associated with negative PD-1 and PD-L1 expression, suggesting that the roles of PD-1/PD-L1 in immune suppression and the mechanisms of action of antibodies remain to be better defined. In addition, important immune regulatory mechanisms within or outside of the PD-1/PD-L1 network need to be discovered and targeted to increase the response rate and to reduce the toxicities of immune checkpoint blockade therapies. This paper reviews the major functional and clinical studies of PD-1/PD-L1, including those with discrepancies in the pathologic and biomarker role of PD-1 and PD-L1 and the effectiveness of PD-1/PD-L1 blockade. The goal is to improve understanding of the efficacy of PD-1/PD-L1 blockade immunotherapy, as well as enhance the development of therapeutic strategies to overcome the resistance mechanisms and unleash the antitumor immune response to combat cancer.

  1. Functional reprogramming of human prostate cancer to promote local attraction of effector CD8(+) T cells.

    PubMed

    Muthuswamy, Ravikumar; Corman, John M; Dahl, Kathryn; Chatta, Gurkamal S; Kalinski, Pawel

    2016-09-01

    Local infiltration of CD8(+) T cells (CTLs) in tumor lesions predicts overall clinical outcomes and the clinical benefit of cancer patients from immune checkpoint blockade. In the current study, we evaluated local production of different classes of chemokines in prostate cancer lesions, and the feasibility of their modulation to promote selective entry of CTLs into prostate tumors. Chemokine expression in prostate cancer lesion was analyzed by TaqMan-based quantitative PCR, confocal fluorescence microscopy and ELISA. For ex vivo chemokine modulation analysis, prostate tumor explants from patients undergoing primary prostate cancer resections were cultured for 24 hr, in the absence or presence of the combination of poly-I:C, IFNα, and celecoxib (PAC). The numbers of cells producing defined chemokines in the tissues were analyzed by confocal microscopy. Chemotaxis of effector CD8(+) T cells towards the untreated and PAC-treated tumor explant supernatants were evaluated in a standard in vitro migration assays, using 24 well trans-well plates. The number of effector cells that migrated was enumerated by flow cytometry. Pearson (r) correlation was used for analyzing correlations between chemokines and immune filtrate, while paired two tailed students t-test was used for comparison between treatment groups. Prostate tumors showed uniformly low levels of CTL/NK/Th1-recruiting chemokines (CCL5, CXCL9, CXCL10) but expressed high levels of chemokines implicated in the attraction of myeloid derived suppressor cells (MDSC) and regulatory T cells (Treg ): CCL2, CCL22, and CXCL12. Strong positive correlations were observed between CXCL9 and CXCL10 and local CD8 expression. Tumor expression levels of CCL2, CCL22, and CXCL12 were correlated with intratumoral expression of MDSC/Treg markers: FOXP3, CD33, and NCF2. Treatment with PAC suppressed intratumoral production of the Treg -attractant CCL22 and Treg /MDSC-attractant, CXCL12, while increasing the production of the CTL attractant, CXCL10. These changes in local chemokine production were accompanied by the reduced ability of the ex vivo-treated tumors to attract CD4(+) FOXP3(+) Treg cells, and strongly enhanced attraction of the CD8(+) Granzyme B(+) CTLs. Our data demonstrate that the chemokine environment in prostate cancer can be reprogrammed to selectively enhance the attraction of type-1 effector immune cells and reduce local attraction of MDSCs and Tregs . Prostate 76:1095-1105, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Observation of room temperature negative differential resistance in multi-layer heterostructures of quantum dots and conducting polymers.

    PubMed

    Kannan, V; Kim, M R; Chae, Y S; Ramana, Ch V V; Rhee, J K

    2011-01-14

    Multi-layer heterostructure negative differential resistance devices based on poly-[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conducting polymer and CdSe quantum dots is reported. The conducting polymer MEH-PPV acts as a barrier while CdSe quantum dots form the well layer. The devices exhibit negative differential resistance (NDR) at low voltages. For these devices, strong negative differential resistance is observed at room temperature. A maximum value of 51 for the peak-to-valley ratio of current is reported. Tunneling of electrons through the discrete quantum confined states in the CdSe quantum dots is believed to be responsible for the multiple peaks observed in the I-V measurement. Depending on the observed NDR signature, operating mechanisms are explored based on resonant tunneling and Coulomb blockade effects.

  3. Low expression of CD39+/CD45RA+ on regulatory T cells (Treg) cells in type 1 diabetic children in contrast to high expression of CD101+/CD129+ on Treg cells in children with coeliac disease

    PubMed Central

    Åkesson, K; Tompa, A; Rydén, A; Faresjö, M

    2015-01-01

    Type 1 diabetes (T1D) and coeliac disease are both characterized by an autoimmune feature. As T1D and coeliac disease share the same risk genes, patients risk subsequently developing the other disease. This study aimed to investigate the expression of T helper (Th), T cytotoxic (Tc) and regulatory T cells (Treg) in T1D and/or coeliac disease children in comparison to healthy children. Subgroups of T cells (Th : CD4+ or Tc : CD8+); naive (CD27+CD28+CD45RA+CCR7+), central memory (CD27+CD28+CD45RA−CCR7+), effector memory (early differentiated; CD27+CD28+CD45RA−CCR7− and late differentiated; CD27−CD28−CD45RA−CCR7−), terminally differentiated effector cells (TEMRA; CD27−CD28−CD45RA+CCR7−) and Treg (CD4+CD25+FOXP3+CD127−) cells, and their expression of CD39, CD45RA, CD101 and CD129, were studied by flow cytometry in T1D and/or coeliac disease children or without any of these diseases (reference group). Children diagnosed with both T1D and coeliac disease showed a higher percentage of TEMRA CD4+ cells (P < 0·05), but lower percentages of both early and late effector memory CD8+ cells (P < 0·05) compared to references. Children with exclusively T1D had lower median fluorescence intensity (MFI) of forkhead box protein 3 (FoxP3) (P < 0·05) and also a lower percentage of CD39+ and CD45RA+ within the Treg population (CD4+CD25+FOXP3+CD127−) (P < 0·05). Children with exclusively coeliac disease had a higher MFI of CD101 (P < 0·01), as well as a higher percentage of CD129+ (P < 0·05), in the CD4+CD25hi lymphocyte population, compared to references. In conclusion, children with combined T1D and coeliac disease have a higher percentage of differentiated CD4+ cells compared to CD8+ cells. T1D children show signs of low CD39+/CD45RA+ Treg cells that may indicate loss of suppressive function. Conversely, children with coeliac disease show signs of CD101+/CD129+ Treg cells that may indicate suppressor activity. PMID:25421756

  4. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization

    PubMed Central

    Yoon, Juhan; Oyoshi, Michiko K.; Hoff, Sabine; Chervonsky, Alexander; Oppenheim, Joost J.; Rosenstiel, Philip

    2016-01-01

    Atopic dermatitis (AD) is a Th2-dominated inflammatory skin disease characterized by epidermal thickening. Serum levels of IL-22, a cytokine known to induce keratinocyte proliferation, are elevated in AD, and Th22 cells infiltrate AD skin lesions. We show that application of antigen to mouse skin subjected to tape stripping, a surrogate for scratching, induces an IL-22 response that drives epidermal hyperplasia and keratinocyte proliferation in a mouse model of skin inflammation that shares many features of AD. DC-derived IL-23 is known to act on CD4+ T cells to induce IL-22 production. However, the mechanisms that drive IL-23 production by skin DCs in response to cutaneous sensitization are not well understood. We demonstrate that IL-23 released by keratinocytes in response to endogenous TLR4 ligands causes skin DCs, which selectively express IL-23R, to up-regulate their endogenous IL-23 production and drive an IL-22 response in naive CD4+ T cells that mediates epidermal thickening. We also show that IL-23 is released in human skin after scratching and polarizes human skin DCs to drive an IL-22 response, supporting the utility of IL-23 and IL-22 blockade in AD. PMID:27551155

  5. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Xinchun

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, andmore » improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.« less

  6. CD4+ CD25+ CD127low Regulatory T Cells as Indicator of Rheumatoid Arthritis Disease Activity.

    PubMed

    Khattab, Sahar S; El-Saied, Amany M; Mohammed, Rehab A; Mohamed, Eman E

    2016-06-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by disturbed immune regulation, inducing a progressive cartilage and bone destruction. Despite enrichment of T regulatory cell (T-regs) in synovial fluid, conflicting results are reported concerning T-regs in peripheral blood (PB) of RA patients. To determine possible correlation between the frequency of PB CD4+ CD25+CD127low (T-regs) with RA disease activity. Forty females with RA, classified according to the Disease Activity Score 28 (DAS-28), as highly active, mild-moderate or low disease activity; and 20 age and sex matched healthy controls, were enrolled to study CD4+ CD25+ CD127low T- regs in PB by flow cytometry. Active RA patients had lower frequency of the CD4+ CD25+ CD127low T- regs compared to those with mild-moderate or low disease activity (P <0.001). The frequencies of the T- regs showed negative correlation with the DAS-28 (P<0.01). In conclusion, CD4+ CD25+ CD127low T-regs is significantly lower in highly active RA patients compared to patients with lower activity or controls. Copyright© by the Egyptian Association of Immunologists.

  7. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming

    PubMed Central

    Wagner, Julia A.; Berrien-Elliott, Melissa M.; Schneider, Stephanie E.; Leong, Jeffrey W.; Sullivan, Ryan P.; Jewell, Brea A.; Becker-Hapak, Michelle; Abdel-Latif, Sara; Ireland, Aaron R.; Jaishankar, Devika; King, Justin A.; Vij, Ravi; Clement, Dennis; Goodridge, Jodie; Malmberg, Karl-Johan; Wong, Hing C.; Fehniger, Todd A.

    2017-01-01

    NK cells, lymphocytes of the innate immune system, are important for defense against infectious pathogens and cancer. Classically, the CD56dim NK cell subset is thought to mediate antitumor responses, whereas the CD56bright subset is involved in immunomodulation. Here, we challenge this paradigm by demonstrating that brief priming with IL-15 markedly enhanced the antitumor response of CD56bright NK cells. Priming improved multiple CD56bright cell functions: degranulation, cytotoxicity, and cytokine production. Primed CD56bright cells from leukemia patients demonstrated enhanced responses to autologous blasts in vitro, and primed CD56bright cells controlled leukemia cells in vivo in a murine xenograft model. Primed CD56bright cells from multiple myeloma (MM) patients displayed superior responses to autologous myeloma targets, and furthermore, CD56bright NK cells from MM patients primed with the IL-15 receptor agonist ALT-803 in vivo displayed enhanced ex vivo functional responses to MM targets. Effector mechanisms contributing to IL-15–based priming included improved cytotoxic protein expression, target cell conjugation, and LFA-1–, CD2-, and NKG2D-dependent activation of NK cells. Finally, IL-15 robustly stimulated the PI3K/Akt/mTOR and MEK/ERK pathways in CD56bright compared with CD56dim NK cells, and blockade of these pathways attenuated antitumor responses. These findings identify CD56bright NK cells as potent antitumor effectors that warrant further investigation as a cancer immunotherapy. PMID:28972539

  8. CD4+ Foxp3+ T cells promote aberrant immunoglobulin G production and maintain CD8+ T-cell suppression during chronic liver disease.

    PubMed

    Tedesco, Dana; Thapa, Manoj; Gumber, Sanjeev; Elrod, Elizabeth J; Rahman, Khalidur; Ibegbu, Chris C; Magliocca, Joseph F; Adams, Andrew B; Anania, Frank; Grakoui, Arash

    2017-02-01

    Persistent hepatotropic viral infections are a common etiologic agent of chronic liver disease. Unresolved infection can be attributed to nonfunctional intrahepatic CD8+ T-cell responses. In light of dampened CD8 + T-cell responses, liver disease often manifests systemically as immunoglobulin (Ig)-related syndromes due to aberrant B-cell functions. These two opposing yet coexisting phenomena implicate the potential of altered CD4 + T-cell help. Elevated CD4 + forkhead box P3-positive (Foxp3+) T cells were evident in both human liver disease and a mouse model of chemically induced liver injury despite marked activation and spontaneous IgG production by intrahepatic B cells. While this population suppressed CD8 + T-cell responses, aberrant B-cell activities were maintained due to expression of CD40 ligand on a subset of CD4 + Foxp3+ T cells. In vivo blockade of CD40 ligand attenuated B-cell abnormalities in a mouse model of liver injury. A phenotypically similar population of CD4 + Foxp3+, CD40 ligand-positive T cells was found in diseased livers explanted from patients with chronic hepatitis C infection. This population was absent in nondiseased liver tissues and peripheral blood. Liver disease elicits alterations in the intrahepatic CD4 + T-cell compartment that suppress T-cell immunity while concomitantly promoting aberrant IgG mediated manifestations. (Hepatology 2017;65:661-677). © 2016 by the American Association for the Study of Liver Diseases.

  9. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    PubMed Central

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  10. Cannabinoid reward and aversion effects in the posterior ventral tegmental area are mediated through dissociable opiate receptor subtypes and separate amygdalar and accumbal dopamine receptor substrates.

    PubMed

    Ahmad, Tasha; Laviolette, Steven R

    2017-08-01

    The ventral tegmental area (VTA) and its projections to the basolateral amygdala (BLA) and nucleus accumbens (NAc) are critical for cannabinoid-related motivational effects. Cannabinoid CB1 receptor (CB1R) transmission modulates VTA dopamine (DA) neuron activity and previous reports demonstrate anatomically segregated effects of CB1R transmission in the VTA. However, the underlying pharmacological and anatomical regions responsible for these effects are currently unknown. The objective of the study is to characterize the motivational effects of localized anterior vs. posterior intra-VTA activation vs. blockade of CB1R transmission and the potential role of intra-BLA and intra-NAc DA transmission in these phenomena. Using a conditioned place preference (CPP) procedure, we administered a CB1 agonist (WIN-55,212-2) or antagonist (AM 251) into the posterior VTA (pVTA) or anterior VTA (aVTA) of rats, combined with intra-BLA or intra-NAc DA receptor blockade and intra-VTA co-administration of selective mu vs. kappa opiate-receptor antagonists. Intra-pVTA CB1R activation produced robust rewarding effects through a mu-opiate receptor mechanism whereas CB1R blockade produced conditioned place aversions (CPA) through a kappa-opiate receptor substrate. In contrast, modulation of aVTA CB1R transmission produced no observable effects. Intra-BLA DA receptor blockade prevented the rewarding effects of pVTA CB1R activation, but had no effects on CB1R blockade-induced aversions. In contrast, intra-NAc DA receptor blockade selectively blocked the aversive effects of pVTA CB1R antagonism. Activation vs. blockade of CB1R transmission in the posterior VTA produces bivalent rewarding or aversive effects through separate mu vs. kappa-opiate receptor substrates. These dissociable effects depend on separate DA receptor transmission substrates in the BLA or NAc, respectively.

  11. Norepinephrine infusion with and without alpha-adrenergic blockade by phentolamine increases salivary alpha amylase in healthy men.

    PubMed

    Kuebler, Ulrike; von Känel, Roland; Heimgartner, Nadja; Zuccarella-Hackl, Claudia; Stirnimann, Guido; Ehlert, Ulrike; Wirtz, Petra H

    2014-11-01

    Mental stress reliably induces increases in salivary alpha amylase (sAA), a suggested surrogate marker for sympathetic nervous system (SNS) reactivity. While stress-induced sAA increases correlate with norepinephrine (NE) secretion, a potential mediating role of noradrenergic mechanisms remains unclear. In this study, we investigated for the first time in humans whether a NE-stress-reactivity mimicking NE-infusion with and without alpha-adrenergic blockade by phentolamine would induce changes in sAA. In a single-blind placebo-controlled within-subjects design, 21 healthy men (29-66 years) took part in three different experimental trials varying in terms of substance infusion with a 1-min first infusion followed by a 15-min second infusion: saline-infusion (trial-1), NE-infusion (5 μg/min) without alpha-adrenergic blockade (trial-2), and with phentolamine-induced non-selective blockade of alpha1- and alpha2-adrenergic receptors (trial-3). Saliva samples were collected immediately before, during, and several times after substance infusion in addition to blood pressure and heart rate readings. Experimental trials significantly differed in sAA reactivity to substance-infusion (p=.001) with higher sAA reactivity following NE-infusion with (trial-3; p=.001) and without alpha-adrenergic-blockade (trial-2; p=.004) as compared to placebo-infusion (trial-1); sAA infusion reactivity did not differ between trial-2 and trial-3 (p=.29). Effective phentolamine application was verified by blood pressure and heart rate infusion reactivity. Salivary cortisol was not affected by NE, either with or without alpha-adrenergic-blockade. We found that NE-infusion stimulates sAA secretion, regardless of co-administered non-selective alpha-adrenergic blockade by phentolamine, suggesting that the mechanism underlying stress-induced sAA increases may involve NE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics.

    PubMed

    Silva, Luiz Eduardo Virgilio; Silva, Carlos Alberto Aguiar; Salgado, Helio Cesar; Fazan, Rubens

    2017-03-01

    Analysis of heart rate variability (HRV) by nonlinear approaches has been gaining interest due to their ability to extract additional information from heart rate (HR) dynamics that are not detectable by traditional approaches. Nevertheless, the physiological interpretation of nonlinear approaches remains unclear. Therefore, we propose long-term (60 min) protocols involving selective blockade of cardiac autonomic receptors to investigate the contribution of sympathetic and parasympathetic function upon nonlinear dynamics of HRV. Conscious male Wistar rats had their electrocardiogram (ECG) recorded under three distinct conditions: basal, selective (atenolol or atropine), or combined (atenolol plus atropine) pharmacological blockade of autonomic muscarinic or β 1 -adrenergic receptors. Time series of RR interval were assessed by multiscale entropy (MSE) and detrended fluctuation analysis (DFA). Entropy over short (1 to 5, MSE 1-5 ) and long (6 to 30, MSE 6-30 ) time scales was computed, as well as DFA scaling exponents at short (α short , 5 ≤ n ≤ 15), mid (α mid , 30 ≤ n ≤ 200), and long (α long , 200 ≤ n ≤ 1,700) window sizes. The results show that MSE 1-5 is reduced under atropine blockade and MSE 6-30 is reduced under atropine, atenolol, or combined blockade. In addition, while atropine expressed its maximal effect at scale six, the effect of atenolol on MSE increased with scale. For DFA, α short decreased during atenolol blockade, while the α mid increased under atropine blockade. Double blockade decreased α short and increased α long Results with surrogate data show that the dynamics during combined blockade is not random. In summary, sympathetic and vagal control differently affect entropy (MSE) and fractal properties (DFA) of HRV. These findings are important to guide future studies. NEW & NOTEWORTHY Although multiscale entropy (MSE) and detrended fluctuation analysis (DFA) are recognizably useful prognostic/diagnostic methods, their physiological interpretation remains unclear. The present study clarifies the effect of the cardiac autonomic control on MSE and DFA, assessed during long periods (1 h). These findings are important to help the interpretation of future studies. Copyright © 2017 the American Physiological Society.

  13. NIRS and indocyanine-green-determined muscle blood flow during exercise in humans

    NASA Astrophysics Data System (ADS)

    Boushel, Robert; Ide, Kojiro; Moller-Sorensen, Hasse; Fernandes, Alvito; Pott, Frank; Secher, Niels H.

    1998-01-01

    We present a method for determination of muscle blood flow (MBF) using near infrared spectroscopy (NIRS) with indocyanine green (ICG) as the tracer. MBF was quantified using the integrated arterial [ICG] and the accumulation of ICG in muscle. MBF was determined together with ICG-assessed cardiac output (CO) at rest and during incremental cycling. To further modify CO, the same work loads were performed after cardio-selective beta blockade by metoprolol. In one subject both MBF (9 to 110 ml (DOT) 100 g-1 (DOT) min-1) and CO increased linearly with work rate (8 to 19 l (DOT) min-1). Under beta blockade, both the increase in MBF and CO were lower: 5 to 70 ml (DOT) 100 g-1 (DOT) min-1 and 5 to 161 DOT min-1, respectively. During exercise with and without beta blockade, MBF increased with work load to represent a larger proportion of CO. Also, NIRS could detect an attenuated increase in MBF manifest by the restrained CO during leg exercise after cardio-selective beta blockade. Both observations indicate that NIRS detection of indocyanine green provides an estimate of muscle blood flow over the range from rest to intense exercise.

  14. NIRS and indocyanine-green-determined muscle blood flow during exercise in humans

    NASA Astrophysics Data System (ADS)

    Boushel, Robert; Ide, Kojiro; Moller-Sorensen, Hasse; Fernandes, Alvito; Pott, Frank; Secher, Niels H.

    1997-12-01

    We present a method for determination of muscle blood flow (MBF) using near infrared spectroscopy (NIRS) with indocyanine green (ICG) as the tracer. MBF was quantified using the integrated arterial [ICG] and the accumulation of ICG in muscle. MBF was determined together with ICG-assessed cardiac output (CO) at rest and during incremental cycling. To further modify CO, the same work loads were performed after cardio-selective beta blockade by metoprolol. In one subject both MBF (9 to 110 ml (DOT) 100 g-1 (DOT) min-1) and CO increased linearly with work rate (8 to 19 l (DOT) min-1). Under beta blockade, both the increase in MBF and CO were lower: 5 to 70 ml (DOT) 100 g-1 (DOT) min-1 and 5 to 161 DOT min-1, respectively. During exercise with and without beta blockade, MBF increased with work load to represent a larger proportion of CO. Also, NIRS could detect an attenuated increase in MBF manifest by the restrained CO during leg exercise after cardio-selective beta blockade. Both observations indicate that NIRS detection of indocyanine green provides an estimate of muscle blood flow over the range from rest to intense exercise.

  15. Induction of allograft tolerance through costimulatory blockade: first selection of drugs in vitro.

    PubMed

    Vierboom, Michel P M; Ossevoort, Miriam; Sick, Ella A; Haanstra, Krista; Jonker, Margreet

    2003-01-01

    The development of an in vitro assay predicting the chances of graft survival after treatment with immunoregulatory agents is a major topic in transplantation. Antibodies (Abs) interfering in the costimulatory pathway are promising candidates for the induction of tolerance. To evaluate these antibodies for clinical use studies non-human primates are the only feasible option due to species specificity of the antibodies. Peripheral blood mononuclear cells, isolated from a large panel of rhesus monkeys, were used in a unidirectional mixed lymphocyte reaction to evaluate the ability of antibodies blocking the costimulatory pathway, to affect both primary and secondary proliferative and cytolytic allospecific immune responses in vitro. These blocking antibodies were also used in protocols prolonging allograft survival in a life-supporting kidney allotransplant model in rhesus macaques. The ultimate aim is to establish a correlation between parameters obtained in vitro and the success of transplantation in vivo. The combination of anti-CD80 and anti-CD86 resulted in a complete abrogation of the primary alloresponse as measured in a proliferation assay. Adding anti-CD40 significantly reduced this inhibitory effect although the in vivo effects of this antibody have been shown to be beneficial. The secondary response was most prominently inhibited by the combination of anti-CD80/86. Paradoxically, anti-CD40 alone markedly inhibited the secondary proliferative response, but did not add to the inhibitory effect of the combination of anti-CD80/86. The cytolytic response was inhibited maximally only when CsA was added to the combination of anti-CD80/86. Treatment with monoclonal antibodies alone without immunosuppressive drugs was sufficient to maintain graft survival during the time of treatment in most animals. However, rejection was initiated as soon as the treatment ceased and no tolerance, resulting in long-term graft and patient survival, was established. The complete inhibition of primary alloresponses and the partial inhibition of secondary proliferative alloresponses correlate with prolonged graft survival during treatment, but have no predictive value for the success of tolerance induction for kidney allografts in rhesus monkeys.

  16. Combination Immunotherapy of B16 Melanoma Using Anti–Cytotoxic T Lymphocyte–Associated Antigen 4 (Ctla-4) and Granulocyte/Macrophage Colony-Stimulating Factor (Gm-Csf)-Producing Vaccines Induces Rejection of Subcutaneous and Metastatic Tumors Accompanied by Autoimmune Depigmentation

    PubMed Central

    van Elsas, Andrea; Hurwitz, Arthur A.; Allison, James P.

    1999-01-01

    We examined the effectiveness of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) blockade, alone or in combination with a granulocyte/macrophage colony-stimulating factor (GM-CSF)–expressing tumor cell vaccine, on rejection of the highly tumorigenic, poorly immunogenic murine melanoma B16-BL6. Recently established tumors could be eradicated in 80% (68/85) of the cases using combination treatment, whereas each treatment by itself showed little or no effect. Tumor rejection was dependent on CD8+ and NK1.1+ cells but occurred irrespective of the presence of CD4+ T cells. Mice surviving a primary challenge rejected a secondary challenge with B16-BL6 or the parental B16-F0 line. The same treatment regimen was found to be therapeutically effective against outgrowth of preestablished B16-F10 lung metastases, inducing long-term survival. Of all mice surviving B16-BL6 or B16-F10 tumors after combination treatment, 56% (38/68) developed depigmentation, starting at the site of vaccination or challenge and in most cases progressing to distant locations. Depigmentation was found to occur in CD4-depleted mice, strongly suggesting that the effect was mediated by CTLs. This study shows that CTLA-4 blockade provides a powerful tool to enhance T cell activation and memory against a poorly immunogenic spontaneous murine tumor and that this may involve recruitment of autoreactive T cells. PMID:10430624

  17. Immunomodulation by blockade of the TRANCE co-stimulatory pathway in murine allogeneic islet transplantation

    PubMed Central

    Wojtusciszyn, Anne; Andres, Axel; Morel, Philippe; Charvier, Solange; Armanet, Mathieu; Toso, Christian; Choi, Yongwon; Bosco, Domenico; Berney, Thierry

    2010-01-01

    We explore herein the effect of TRANCE costimulatory pathway blockade on islet survival after allograft transplantation. Expression of TRANCE on murine C57BL/6 (B6) CD4+ T-cells after allogeneic activation was analysed by FACS. The effect of a TRANCE receptor fusion protein (TR-Fc) and anti-CD154 antibody (MR1) on B6 spleen cell proliferation after allogeneic activation was assessed by MLR. Three groups of B6 mice were transplanted with allogeneic islets (DBA2): Control; short-term TR-Fc-treatment (days 0–4); and prolonged TR-Fc-treatment (days -1–13). Donor-specific transfusion (DST) was performed at the time of islet transplantation in one independent experiment. Transplantectomy samples were analyzed by immunohistochemistry. TRANCE expression was upregulated in stimulated CD4+ T-cells in vitro. In MLR experiments, TR-Fc and MR1 both reduced spleen cell proliferation, but less than the combination of both molecules. Short course TR-Fc treatment did not prolong islet graft survival as compared to controls (10.6±1.9 vs 10.7±1.5 days) in contrast to prolonged treatment (20.7±3.2 days; p<0.05). After DST, primary non-function (PNF) was observed in half of control mice, but never in TR-Fc-treated mice. Immunofluorescence staining for Mac-1 showed a clear decrease in macrophage recruitment in the treated groups. TRANCE targeting may be an effective strategy for the prolongation of allogeneic islet graft survival, thanks to its inhibitory effects on costimulatory signals and macrophage recruitment. PMID:19453995

  18. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation.

    PubMed

    van Elsas, A; Hurwitz, A A; Allison, J P

    1999-08-02

    We examined the effectiveness of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade, alone or in combination with a granulocyte/macrophage colony-stimulating factor (GM-CSF)-expressing tumor cell vaccine, on rejection of the highly tumorigenic, poorly immunogenic murine melanoma B16-BL6. Recently established tumors could be eradicated in 80% (68/85) of the cases using combination treatment, whereas each treatment by itself showed little or no effect. Tumor rejection was dependent on CD8(+) and NK1.1(+) cells but occurred irrespective of the presence of CD4(+) T cells. Mice surviving a primary challenge rejected a secondary challenge with B16-BL6 or the parental B16-F0 line. The same treatment regimen was found to be therapeutically effective against outgrowth of preestablished B16-F10 lung metastases, inducing long-term survival. Of all mice surviving B16-BL6 or B16-F10 tumors after combination treatment, 56% (38/68) developed depigmentation, starting at the site of vaccination or challenge and in most cases progressing to distant locations. Depigmentation was found to occur in CD4-depleted mice, strongly suggesting that the effect was mediated by CTLs. This study shows that CTLA-4 blockade provides a powerful tool to enhance T cell activation and memory against a poorly immunogenic spontaneous murine tumor and that this may involve recruitment of autoreactive T cells.

  19. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia

    PubMed Central

    Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo

    2016-01-01

    The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151

  20. Role of the 2B4 Receptor in CD8+ T-Cell-Dependent Immune Control of Epstein-Barr Virus Infection in Mice With Reconstituted Human Immune System Components.

    PubMed

    Chijioke, Obinna; Marcenaro, Emanuela; Moretta, Alessandro; Capaul, Riccarda; Münz, Christian

    2015-09-01

    Patients with X-linked lymphoproliferative (XLP) disease due to deficiency in the adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) are highly susceptible to one specific viral pathogen, the Epstein-Barr virus (EBV). This susceptibility might result from impaired CD8(+) T-cell and natural killer cell responses to EBV infection in these patients. We demonstrate that antibody blocking of the SAP-dependent 2B4 receptor is sufficient to induce XLP-like aggravation of EBV disease in mice with reconstituted human immune system components. CD8(+) T cells require 2B4 for EBV-specific immune control, because 2B4 blockade after CD8(+) T-cell depletion did not further aggravate symptoms of EBV infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. The comparative efficacy and safety of sugammadex and neostigmine in reversing neuromuscular blockade in adults. A Cochrane systematic review with meta-analysis and trial sequential analysis.

    PubMed

    Hristovska, A-M; Duch, P; Allingstrup, M; Afshari, A

    2018-05-01

    We compared the efficacy and safety of sugammadex and neostigmine in reversing neuromuscular blockade in adults. Our outcomes were: recovery time from second twitch to train-of-four ratio > 0.9; recovery time from post-tetanic count 1-5 to train-of-four ratio > 0.9; and risk of composite adverse and serious adverse events. We searched for randomised clinical trials irrespective of publication status and date, blinding status, outcomes reported or language. We included 41 studies with 4206 participants. Time to reversal of neuromuscular blockade from second twitch to a train-of-four ratio > 0.9 was 2.0 min with sugammadex 2 mg.kg -1 and 12.9 min with neostigmine 0.05 mg.kg -1 , with a mean difference (MD) (95%CI)) of 10.2 (8.5-12.0) (I 2  = 84%, 10 studies, n = 835, Grades of Recommendation, Assessment, Development and Evaluation (GRADE): moderate quality). Time to reversal of neuromuscular blockade from a post-tetanic count of 1-5 to a train-of-four ratio > 0.9 was 2.9 min with sugammadex 4 mg.kg -1 and 48.8 min with neostigmine 0.07 mg.kg -1 , with a MD (95%CI) of 45.8 (39.4-52.2) (I 2  = 0%, 2 studies, n = 114, GRADE: low quality). There were significantly fewer composite adverse events in the sugammadex group compared with neostigmine, with a risk ratio (95%CI) of 0.60 (0.49-0.74) (I 2  = 40%, 28 studies, n = 2298, number needed to treat (NNT): 8, GRADE: moderate quality). Specifically, the risk of bradycardia (RR (95%CI) 0.16 (0.07-0.34), n = 1218, NNT: 14, GRADE: moderate quality), postoperative nausea and vomiting (RR (95%CI) 0.52 (0.28-0.97), n = 389, NNT: 16, GRADE: low quality) and overall signs of postoperative residual paralysis (RR (95%CI) 0.40 (0.28-0.57), n = 1474, NNT: 13, GRADE: moderate quality) were all reduced. There was no significant difference regarding the risk of serious adverse events (RR 0.54, 95%CI 0.13-2.25, I 2  = 0%, n = 959, GRADE: low quality). Sugammadex reverses neuromuscular blockade more rapidly than neostigmine and is associated with fewer adverse events. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  2. Targeting CD8+ T-cell tolerance for cancer immunotherapy.

    PubMed

    Jackson, Stephanie R; Yuan, Jinyun; Teague, Ryan M

    2014-01-01

    In the final issue of Science in 2013, the American Association of Science recognized progress in the field of cancer immunotherapy as the 'Breakthrough of the Year.' The achievements were actually twofold, owing to the early success of genetically engineered chimeric antigen receptors (CAR) and to the mounting clinical triumphs achieved with checkpoint blockade antibodies. While fundamentally very different, the common thread of these independent strategies is the ability to prevent or overcome mechanisms of CD8(+) T-cell tolerance for improved tumor immunity. Here we discuss how circumventing T-cell tolerance has provided experimental insights that have guided the field of clinical cancer immunotherapy to a place where real breakthroughs can finally be claimed.

  3. Divide, Conquer, and Sense: CD8+CD28− T Cells in Perspective

    PubMed Central

    Arosa, Fernando A.; Esgalhado, André J.; Padrão, Carolina A.; Cardoso, Elsa M.

    2017-01-01

    Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis. PMID:28096804

  4. Divide, Conquer, and Sense: CD8+CD28- T Cells in Perspective.

    PubMed

    Arosa, Fernando A; Esgalhado, André J; Padrão, Carolina A; Cardoso, Elsa M

    2016-01-01

    Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8 + T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the "signal 2" CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8 + T cells, also known as CD8 + CD28 - , CD8 + KIR + , NK-like CD8 + T cells, or innate CD8 + T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8 + T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.

  5. Lymphocyte senescence in COPD is associated with decreased histone deacetylase 2 expression by pro-inflammatory lymphocytes.

    PubMed

    Hodge, Greg; Jersmann, Hubertus; Tran, Hai B; Roscioli, Eugene; Holmes, Mark; Reynolds, Paul N; Hodge, Sandra

    2015-10-24

    Histone acetyltransferases (HAT) and histone deacetylases (HDAC) are enzymes that upregulate and down-regulate pro-inflammatory gene transcription respectively. HDAC2 is required by corticosteroids to switch off activated inflammatory genes and is reduced in lung macrophages in COPD. We have shown that COPD patients have increased steroid resistant CD28null (senescent) pro-inflammatory T and NKT-like peripheral blood cells (particularly CD8+ subsets) and we hypothesized that these changes would be associated with a loss of HDAC2 from these senescent pro-inflammatory lymphocytes. Blood was collected from 10 COPD and 10 aged-matched controls. Intracellular pro-inflammatory cytokines, IFNγ and TNFα, and expression of CD28, HDAC2 and HAT, were determined in lymphocyte subsets in the presence of ± 5 mg/ml theophylline (HDAC2 activator), 10 μM prednisolone and 2.5 ng/ml cyclosporine A (immunosuppressant), using flow cytometry. There was a loss of HDAC2 from CD28null CD8+ T and NKT-like cells in COPD. There was a significant negative correlation between HDAC2 expression and the percentage of CD28null CD8+ T and NKT-like cells producing IFNγ or TNFα in all subjects (eg, COPD: R = -.763, p < 0.001 for T-cell IFNγ). There was a synergistic upregulation of HDAC2 and associated decrease in pro-inflammatory cytokine production in CD28nullCD8+ T and NKT-like cells in the presence of 5 mg/L theophylline + 10(-6) M prednisolone or 2.5 ng/mL cyclosporine A (CsA). Lymphocyte senescence in COPD is associated with loss of HDAC2 in CD28nullCD8+ T and NKT-like cells. Alternative treatment options such as combined theophylline with low-dose CsA, that inhibit these pro-inflammatory cells, may reduce systemic inflammation in COPD.

  6. Steroid resistance in COPD is associated with impaired molecular chaperone Hsp90 expression by pro-inflammatory lymphocytes.

    PubMed

    Hodge, Greg; Roscioli, Eugene; Jersmann, Hubertus; Tran, Hai B; Holmes, Mark; Reynolds, Paul N; Hodge, Sandra

    2016-10-21

    Corticosteroid resistance is a major barrier to effective treatment of COPD. We have shown that the resistance is associated with decreased expression of glucocorticoid receptor (GCR) by senescent CD28nullCD8+ pro-inflammatory lymphocytes in peripheral blood of COPD patients. GCR must be bound to molecular chaperones heat shock proteins (Hsp) 70 and Hsp90 to acquire a high-affinity steroid binding conformation, and traffic to the nucleus. We hypothesized a loss of Hsp70/90 from these lymphocytes may further contribute to steroid resistance in COPD. Blood was collected from COPD (n = 10) and aged-matched controls (n = 10). To assess response to steroids, cytotoxic mediators, intracellular pro-inflammatory cytokines, CD28, GCR, Hsp70 and Hsp90 were determined in T and NKT-like cells in the presence of ± 10 μM prednisolone and 2.5 ng/mL cyclosporine A (binds to GCR-Hsp70/90 complex) using flow cytometry, western blot and fluorescence microscopy. A loss of expression of Hsp90 and GCR from CD28null CD8+ T and NKT-like cells in COPD was noted (Hsp70 unchanged). Loss of Hsp90 expression correlated with the percentage of CD28null CD8+ T and NKT-like cells producing IFNγ or TNFα in all subjects (eg, COPD: R = -0.763, p = 0.007 for T-cell IFNγ). Up-regulation of Hsp90 and associated decrease in pro-inflammatory cytokine production was found in CD28nullCD8+ T and NKT-like cells in the presence of 10 μM prednisolone and 2.5 ng/mL cyclosporine A. Loss of Hsp90 from cytotoxic/pro-inflammatory CD28nullCD8+ T and NKT-like cells could contribute to steroid resistance in COPD. Combination prednisolone and low-dose cyclosporine A therapy inhibits these pro-inflammatory cells and may reduce systemic inflammation in COPD.

  7. Terminal differentiation of T cells is strongly associated with CMV infection and increased in HIV-positive individuals on ART and lifestyle matched controls

    PubMed Central

    Booiman, Thijs; Wit, Ferdinand W.; Girigorie, Arginell F.; Maurer, Irma; De Francesco, Davide; Sabin, Caroline A.; Harskamp, Agnes M.; Prins, Maria; Franceschi, Claudio; Deeks, Steven G.; Winston, Alan; Reiss, Peter

    2017-01-01

    HIV-1-positive individuals on successful antiretroviral therapy (ART) are reported to have higher rates of age-associated non-communicable comorbidities (AANCCs). HIV-associated immune dysfunction has been suggested to contribute to increased AANCC risk. Here we performed a cross-sectional immune phenotype analysis of T cells in ART-treated HIV-1-positive individuals with undetectable vireamia (HIV-positives) and HIV-1-negative individuals (HIV-negatives) over 45 years of age. In addition, two control groups were studied: HIV negative adults selected based on lifestyle and demographic factors (Co-morBidity in Relation to AIDS, or COBRA) and unselected age-matched donors from a blood bank. Despite long-term ART (median of 12.2 years), HIV-infected adults had lower CD4+ T-cell counts and higher CD8+ T-cell counts compared to well-matched HIV-negative COBRA participants. The proportion of CD38+HLA-DR+ and PD-1+ CD4+ T-cells was higher in HIV-positive cohort compared to the two HIV-negative cohorts. The proportion CD57+ and CD27−CD28− cells of both CD4+ and CD8+ T-cells in HIV-positives was higher compared to unselected adults (blood bank) as reported before but this difference was not apparent in comparison with well-matched HIV-negative COBRA participants. Multiple regression analysis showed that the presence of an increased proportion of terminally differentiated T cells was strongly associated with CMV infection. Compared to appropriately selected HIV-negative controls, HIV-positive individuals on ART with long-term suppressed viraemia exhibited incomplete immune recovery and increased immune activation/exhaustion. CMV infection rather than treated HIV infection appears to have more consistent effects on measures of terminal differentiation of T cells. PMID:28806406

  8. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells

    PubMed Central

    Odorizzi, Pamela M.; Pauken, Kristen E.; Paley, Michael A.; Sharpe, Arlene

    2015-01-01

    Programmed Death-1 (PD-1) has received considerable attention as a key regulator of CD8+ T cell exhaustion during chronic infection and cancer because blockade of this pathway partially reverses T cell dysfunction. Although the PD-1 pathway is critical in regulating established “exhausted” CD8+ T cells (TEX cells), it is unclear whether PD-1 directly causes T cell exhaustion. We show that PD-1 is not required for the induction of exhaustion in mice with chronic lymphocytic choriomeningitis virus (LCMV) infection. In fact, some aspects of exhaustion are more severe with genetic deletion of PD-1 from the onset of infection. Increased proliferation between days 8 and 14 postinfection is associated with subsequent decreased CD8+ T cell survival and disruption of a critical proliferative hierarchy necessary to maintain exhausted populations long term. Ultimately, the absence of PD-1 leads to the accumulation of more cytotoxic, but terminally differentiated, CD8+ TEX cells. These results demonstrate that CD8+ T cell exhaustion can occur in the absence of PD-1. They also highlight a novel role for PD-1 in preserving TEX cell populations from overstimulation, excessive proliferation, and terminal differentiation. PMID:26034050

  9. Characterization of naïve, memory and effector T cells in progressive multiple sclerosis.

    PubMed

    Nielsen, Birgitte Romme; Ratzer, Rikke; Börnsen, Lars; von Essen, Marina Rode; Christensen, Jeppe Romme; Sellebjerg, Finn

    2017-09-15

    We characterized naïve, central memory (CM), effector memory (EM) and terminally differentiated effector memory (TEMRA) CD4 + and CD8 + T cells and their expression of CD49d and CD26 in peripheral blood in patients with multiple sclerosis (MS) and healthy controls. CD26 + CD28 + CD4 + TEMRA T cells were increased in all subtypes of MS, and CD26 + CD28 + CD8 + TEMRA T cells were increased in relapsing-remitting and secondary progressive MS. Conversely, in progressive MS, CD49d + CM T cells were decreased and natalizumab increased the circulating number of all six subsets but reduced the frequency of most subsets expressing CD49d and CD26. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. γδT Cells Exacerbate Podocyte Injury via the CD28/B7-1-Phosphor-SRC Kinase Pathway

    PubMed Central

    Chen, Wanbing; Zhang, Gaofu; Wang, Mo; Yang, Haiping

    2018-01-01

    Primary nephrotic syndrome (PNS) is a devastating pediatric disorder. However, its mechanism remains unclear. Previous studies detected B7-1 in podocytes; meanwhile, γδT cells play pivotal roles in immune diseases. Therefore, this study aimed to assess whether and how γδT cells impact podocytes via the CD28/B7-1 pathway. WT and TCRδ−/− mice were assessed. LPS was used to induce nephropathy. Total γδT and CD28+γδT cells were quantitated in mouse spleen and kidney samples. B7-1 and phosphor-SRC levels in the kidney were detected as well. In vitro, γδT cells from the mouse spleen were cocultured with mouse podocytes, and apoptosis rate and phosphor-SRC expression in podocytes were assessed. Compared with control mice, WT mice with LPS nephropathy showed increased amounts of γδT cells in the kidney. Kidney injury was alleviated in TCRδ−/− mice. Meanwhile, B7-1 and phosphor-SRC levels were increased in the kidney from WT mice with LPS nephropathy. CD28+γδT cells were decreased, indicating CD28 may play a role in LPS nephropathy. Immunofluorescence colocalization analysis revealed a tight association of γδT cells with B7-1 in the kidney. High B7-1 expression was detected in podocytes treated with LPS. Podocytes cocultured with γδT cells showed higher phosphor-SRC and apoptosis rate than other cell groups. Furthermore, CD28/B7-1 blockage with CTLA4-Ig in vitro relieved podocyte injury. γδT cells exacerbate podocyte injury via CD28/B7-1 signaling, with downstream involvement of phosphor-SRC. The CD28/B7-1 blocker CTLA4-Ig prevented progressive podocyte injury, providing a potential therapeutic tool for PNS. PMID:29862277

  11. Involvement of nuclear factor κB in platelet CD40 signaling.

    PubMed

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. CD28 is an Inducible T Cell Surface Antigen that Transduces a Proliferative Signal in CD3(+) Mature Thymocytes

    DTIC Science & Technology

    1990-03-01

    tion of both CD3 thymocytes and peripheral blood fashion by antibodies with specificity directed at con- T cells. This increase was accounted for by a...of mature tamined by the panning technique. Briefly. anti-CD3 antibody was T cells, whereas not directly mitogenic (23), synergizes immobilized on...thymocytes are CD28 . but cultured at a density of I x 10’/ml. When used. anti-CD3 antibody that it is found in high density only on the CD3 5h was

  13. Blockade of LAG3 enhances responses of tumor-infiltrating T cells in mismatch repair-proficient liver metastases of colorectal cancer

    PubMed Central

    Noordam, Lisanne; Sprengers, Dave; Boor, Patrick P. C.; Mancham, Shanta; Menon, Anand G.; Lange, Johan F.; Burger, Pim J. W. A.; Brandt, Alexandra; Galjart, Boris; Kwekkeboom, Jaap; Bruno, Marco J.

    2018-01-01

    ABSTRACT Purpose: Liver metastasis develops in >50% of patients with colorectal cancer (CRC), and is a leading cause of CRC-related mortality. We aimed to identify which inhibitory immune checkpoint pathways can be targeted to enhance functionality of intra-tumoral T-cells in mismatch repair-proficient liver metastases of colorectal cancer (LM-CRC). Methodology: Intra-tumoral expression of multiple inhibitory molecules was compared among mismatch repair-proficient LM-CRC, peritoneal metastases of colorectal cancer (PM-CRC) and primary CRC. Expression of inhibitory molecules was also analyzed on leukocytes isolated from paired resected metastatic liver tumors, tumor-free liver tissues, and blood of patients with mismatch repair-proficient LM-CRC. The effects of blocking inhibitory pathways on tumor-infiltrating T-cell responses were studied in ex vivo functional assays. Results: Mismatch repair-proficient LM-CRC showed higher expression of inhibitory receptors on intra-tumoral T-cells and contained higher proportions of CD8+ T-cells, dendritic cells and monocytes than mismatch repair-proficient primary CRC and/or PM-CRC. Inhibitory receptors LAG3, PD-1, TIM3 and CTLA4 were higher expressed on CD8+ T-cells, CD4+ T-helper and/or regulatory T-cells in LM-CRC tumors compared with tumor-free liver and blood. Antibody blockade of LAG3 or PD-L1 increased proliferation and effector cytokine production of intra-tumoral T-cells isolated from LM-CRC in response to both polyclonal and autologous tumor-specific stimulations. Higher LAG3 expression on intra-tumoral CD8+ T-cells associated with longer progression-free survival of LM-CRC patients. Conclusion: Mismatch repair-proficient LM-CRC may be more sensitive to immune checkpoint inhibitors than mismatch repair-proficient primary CRC. Blocking LAG3 enhances tumor-infiltrating T-cell responses of mismatch repair-proficient LM-CRC, and therefore may be a new promising immunotherapeutic target for LM-CRC.

  14. The macrophage activation marker CD163 is associated with IL28B genotype and hepatic inflammation in chronic hepatitis C virus infected patients.

    PubMed

    Dultz, G; Gerber, L; Zeuzem, S; Sarrazin, C; Waidmann, O

    2016-04-01

    Recent data highlighted the association of the macrophage activation marker CD163 with histological inflammation and fibrosis in chronic hepatitis C virus (HCV) infection. The aim of this study was to investigate the influence of successful antiviral treatment and IL28B genotypes on macrophage activation reflected by CD163 levels in HCV infected patients. In a retrospective cohort study, serum sCD163 levels were correlated with results of liver histopathology, IL28B genotyping and clinical parameters in 329 patients with HCV infection, 15 healthy controls and in 161 patients who achieved a sustained virologic response after antiviral treatment. sCD163 levels were significantly higher in patients with chronic HCV infection in comparison to healthy controls (5202 vs 896 ng/mL, P < 0.001). In the multivariate logistic regression analyses, sCD163 was independently associated with histologically determined inflammation (P = 0.043) but not with fibrosis (P = 0.091). sCD163 dropped significantly after successful antiviral treatment in comparison to baseline values (5202 vs 3093 ng/mL, P < 0.001). In the univariate analyses, sCD163 was significantly associated with IL28B genotype (C/C vs C/T+T/T) with higher values in the C/C group (6098 vs 4812 ng/mL, P = 0.003). In the multivariate logistic regression model, sCD163 levels were significantly associated with IL28B genotype (P = 0.003) and sustained virologic response (SVR) (P < 0.001). Our data support the association of activated liver macrophages with hepatic necroinflammation in chronic HCV infection as sCD163 levels drop rapidly after SVR. The irresponsiveness of IL28B minor genotypes to interferon might be related to a lower level of macrophage activation in these patients. © 2015 John Wiley & Sons Ltd.

  15. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

    PubMed Central

    McGranahan, Nicholas; Furness, Andrew J. S.; Rosenthal, Rachel; Ramskov, Sofie; Lyngaa, Rikke; Saini, Sunil Kumar; Jamal-Hanjani, Mariam; Wilson, Gareth A.; Birkbak, Nicolai J.; Hiley, Crispin T.; Watkins, Thomas B. K.; Shafi, Seema; Murugaesu, Nirupa; Mitter, Richard; Akarca, Ayse U.; Linares, Joseph; Marafioti, Teresa; Henry, Jake Y.; Van Allen, Eliezer M.; Miao, Diana; Schilling, Bastian; Schadendorf, Dirk; Garraway, Levi A.; Makarov, Vladimir; Rizvi, Naiyer A.; Snyder, Alexandra; Hellmann, Matthew D.; Merghoub, Taha; Wolchok, Jedd D.; Shukla, Sachet A.; Wu, Catherine J.; Peggs, Karl S.; Chan, Timothy A.; Hadrup, Sine R.; Quezada, Sergio A.; Swanton, Charles

    2016-01-01

    As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens. PMID:26940869

  16. Fast current blinking in individual PbS and CdSe quantum dots.

    PubMed

    Maturova, Klara; Nanayakkara, Sanjini U; Luther, Joseph M; van de Lagemaat, Jao

    2013-06-12

    Fast current intermittency of the tunneling current through single semiconductor quantum dots was observed through time-resolved intermittent contact conductive atomic force microscopy in the dark and under illumination at room temperature. The current through a single dot switches on and off at time scales ranging from microseconds to seconds with power-law distributions for both the on and off times. On states are attributed to the resonant tunneling of charges from the electrically conductive AFM tip to the quantum dot, followed by transfer to the substrate, whereas off states are attributed to a Coulomb blockade effect in the quantum dots that shifts the energy levels out of resonance conditions due to the presence of the trapped charge, while at the same bias. The observation of current intermittency due to Coulomb blockade effects has important implications for the understanding of carrier transport through arrays of quantum dots.

  17. Tumor-induced CD11b(+) Gr-1(+) myeloid-derived suppressor cells exacerbate immune-mediated hepatitis in mice in a CD40-dependent manner.

    PubMed

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M; Wiltrout, Robert H; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A; Manns, Michael P; Wang, Ena; Marincola, Francesco M; Korangy, Firouzeh; Greten, Tim F

    2015-04-01

    Immunosuppressive CD11b(+) Gr-1(+) myeloid-derived suppressor cells (MDSCs) accumulate in the livers of tumor-bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune-mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α-galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor-free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b(+) Gr-1(+) cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN-γ-dependent upregulation of CD40 on hepatic CD11b(+) Gr-1(+) cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor-induced CD11b(+) Gr-1(+) MDSCs as well as enhanced reactive oxygen species (ROS)-mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40(-/-) tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy

    PubMed Central

    Powell, Daniel J.; Dudley, Mark E.; Robbins, Paul F.; Rosenberg, Steven A.

    2007-01-01

    In humans, the pathways of memory T-cell differentiation remain poorly defined. Recently, adoptive cell transfer (ACT) of tumor-reactive T lymphocytes to metastatic melanoma patients after nonmyeloablative chemotherapy has resulted in persistence of functional, tumor-reactive lymphocytes, regression of disease, and induction of melanocyte-directed autoimmunity in some responding patients. In the current study, longitudinal phenotypic analysis was performed on melanoma antigen–specific CD8+ T cells during their transition from in vitro cultured effector cells to long-term persistent memory cells following ACT to 6 responding patients. Tumor-reactive T cells used for therapy were generally late-stage effector cells with a CD27Lo CD28Lo CD45RA− CD62 ligand− (CD62L−) CC chemokine receptor 7− (CCR7−) interleukin-7 receptor αLo (IL-7RαLo) phenotype. After transfer, rapid up-regulation and continued expression of IL-7Rα in vivo suggested an important role for IL-7R in immediate and long-term T-cell survival. Although the tumor antigen–specific T-cell population contracted between 1 and 4 weeks after transfer, stable numbers of CD27+ CD28+ tumor-reactive T cells were maintained, demonstrating their contribution to the development of long-term, melanoma-reactive memory CD8+ T cells in vivo. At 2 months after transfer, melanoma-reactive T cells persisted at high levels and displayed an effector memory phenotype, including a CD27+ CD28+ CD62L− CCR7− profile, which may explain in part their ability to mediate tumor destruction. PMID:15345595

  19. Have we fallen off target with concerns surrounding dual RAAS blockade?

    PubMed

    Lattanzio, Michael R; Weir, Matthew R

    2010-09-01

    A misinterpretation of the results from ONTARGET (Ongoing Telmisartan alone and in combination with ramipril Global Endpoint Trial) has sparked both efficacy and safety concerns within the nephrology community regarding the utilization of dual RAAS blockade to achieve more desirable renal outcomes. Two important considerations are requisite prior to interpreting these results, specifically: the context of the cohort studied (non-proteinuric CKD patients at low risk of progression) and the inadequate power of the study to assess renal outcomes. The cardiac and renal protection afforded from dual RAAS blockade in select populations, particularly proteinuric CKD and CHF, is supported by literature. Moreover, the response to dual RAAS blockade involving different combinations of ACE inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and direct renin inhibitors, may not be uniform amongst all patient populations. Will we continue to withhold the appropriate medical therapy from certain individuals based on misconstrued data? The proceedings provide a critical analysis of the ONTARGET study and an evidence-based substantiation for the utilization of various forms of dual RAAS blockade in proteinuric kidney disease and beyond.

  20. Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL.

    PubMed

    Wang, Xiuli; Popplewell, Leslie L; Wagner, Jamie R; Naranjo, Araceli; Blanchard, M Suzette; Mott, Michelle R; Norris, Adam P; Wong, ChingLam W; Urak, Ryan Z; Chang, Wen-Chung; Khaled, Samer K; Siddiqi, Tanya; Budde, Lihua E; Xu, Jingying; Chang, Brenda; Gidwaney, Nikita; Thomas, Sandra H; Cooper, Laurence J N; Riddell, Stanley R; Brown, Christine E; Jensen, Michael C; Forman, Stephen J

    2016-06-16

    Myeloablative autologous hematopoietic stem cell transplantation (HSCT) is a mainstay of therapy for relapsed intermediate-grade B-cell non-Hodgkin lymphoma (NHL); however, relapse rates are high. In phase 1 studies designed to improve long-term remission rates, we administered adoptive T-cell immunotherapy after HSCT, using ex vivo-expanded autologous central memory-enriched T cells (TCM) transduced with lentivirus expressing CD19-specific chimeric antigen receptors (CARs). We present results from 2 safety/feasibility studies, NHL1 and NHL2, investigating different T-cell populations and CAR constructs. Engineered TCM-derived CD19 CAR T cells were infused 2 days after HSCT at doses of 25 to 200 × 10(6) in a single infusion. In NHL1, 8 patients safely received T-cell products engineered from enriched CD8(+) TCM subsets, expressing a first-generation CD19 CAR containing only the CD3ζ endodomain (CD19R:ζ). Four of 8 patients (50%; 95% confidence interval [CI]: 16-84%) were progression free at both 1 and 2 years. In NHL2, 8 patients safely received T-cell products engineered from enriched CD4(+) and CD8(+) TCM subsets and expressing a second-generation CD19 CAR containing the CD28 and CD3ζ endodomains (CD19R:28ζ). Six of 8 patients (75%; 95% CI: 35-97%) were progression free at 1 year. The CD4(+)/CD8(+) TCM-derived CD19 CAR T cells (NHL2) exhibited improvement in expansion; however, persistence was ≤28 days, similar to that seen by others using CD28 CARs. Neither cytokine release syndrome nor delayed hematopoietic engraftment was observed in either trial. These data demonstrate the safety and feasibility of CD19 CAR TCM therapy after HSCT. Trials were registered at www.clinicaltrials.gov as #NCT01318317 and #NCT01815749. © 2016 by The American Society of Hematology.

  1. Regulatory T cells generated during cytomegalovirus in vitro stimulation of mononuclear cells from HIV-infected individuals on HAART correlate with decreased lymphocyte proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesser, Renee D.; Li, Shaobing; Weinberg, Adriana

    2006-09-01

    HIV-infected patients fail to fully recover cell-mediated immunity despite HAART. To identify regulatory factors, we studied the phenotype and function of in vitro cytomegalovirus (CMV)-stimulated T cells from HAART recipients. CFSE-measured proliferation showed CD4{sup +} and CD8{sup +} cells dividing in CMV-stimulated cultures. Compared with healthy controls, CMV-stimulated lymphocytes from HAART recipients had lower {sup 3}H-thymidine incorporation; lower IFN{gamma} and TNF{alpha} production; higher CD4{sup +}CD27{sup -}CD28{sup -} and CD8{sup +}CD27{sup -}CD28{sup -} frequencies; lower CD4{sup +}CD25{sup hi}; and higher FoxP3 expression in CD8{sup +}CD25{sup hi} cells. CMV-specific proliferation correlated with higher IFN{gamma}, TNF{alpha} and IL10 levels and higher CD4{sup +}perforin{supmore » +} and CD8{sup +}perforin{sup +} frequencies. Decreased proliferation correlated with higher CD4{sup +}CD27{sup -}CD28{sup -} frequencies and TGF{beta}1 production, which also correlated with each other. Anti-TGF{beta}1 neutralizing antibodies restored CMV-specific proliferation in a dose-dependent fashion. In HIV-infected subjects, decreased proliferation correlated with higher CMV-stimulated CD8{sup +}CD25{sup hi} frequencies and their FoxP3 expression. These data indicate that FoxP3- and TGF{beta}1-expressing regulatory T cells contribute to decreased immunity in HAART recipients.« less

  2. Evidence for a crucial modulating role of the sodium channel in the QTc prolongation related to antipsychotics.

    PubMed

    Silvestre, Jordi S; O'Neill, Michael F; Prous, Josep R

    2014-04-01

    Blockade of the cardiac hERG channel is recognized as the main mechanism underlying the QT prolongation induced by many classes of drugs, including antipsychotics. However, antipsychotics interact with a variety of other pharmacological targets that could also modulate cardiac function. The present study aims to identify those key factors involved in the QT prolongation induced by antipsychotics. The interactions of 28 antipsychotics were measured on a variety of pharmacological targets. Binding affinity (K(i)), functional channel blockade (IC₅₀), and the corresponding ratios to total and free plasma drug concentration were compared with the corrected QT changes (QTc) associated with the therapeutic use of these drugs by multivariable linear regression analysis to determine the best predictors of QTc. Besides confirming hERG as the primary predictor of QTc, all analyses consistently show the concomitant involvement of Na(V)1.5 channel as modulating factor of the QTc related to hERG blockade. In particular, the hERG/Na(V)1.5 ratio explains the 57% of the overall QTc variability associated with antipsychotics. Since it is known that inhibition of late I Na could offset the dysfunctional effects of hERG blockade, we hypothesize the inhibition of late I(Na) as a crucial compensatory mechanism of the QTc associated with antipsychotics and hence an important factor to consider concomitantly with hERG blockade to appraise the arrhythmogenic risk of these drugs more accurately.

  3. Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation.

    PubMed

    Haynes, Nicole M; Trapani, Joseph A; Teng, Michele W L; Jackson, Jacob T; Cerruti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K

    2002-11-15

    A new strategy to improve the therapeutic utility of redirected T cells for cancer involves the development of novel Ag-specific chimeric receptors capable of stimulating optimal and sustained T cell antitumor activity in vivo. Given that T cells require both primary and costimulatory signals for optimal activation and that many tumors do not express critical costimulatory ligands, modified single-chain Ab receptors have been engineered to codeliver CD28 costimulation. In this study, we have compared the antitumor potency of primary T lymphocytes expressing carcinoembryonic Ag (CEA)-reactive chimeric receptors that incorporate either TCR-zeta or CD28/TCR-zeta signaling. Although both receptor-transduced T cell effector populations demonstrated cytolysis of CEA(+) tumors in vitro, T cells expressing the single-chain variable fragment of Ig (scFv)-CD28-zeta chimera had a far greater capacity to control the growth of CEA(+) xenogeneic and syngeneic colon carcinomas in vivo. The observed enhanced antitumor activity of T cells expressing the scFv-CD28-zeta receptor was critically dependent on perforin and the production of IFN-gamma. Overall, this study has illustrated the ability of a chimeric scFv receptor capable of harnessing the signaling machinery of both TCR-zeta and CD28 to augment T cell immunity against tumors that have lost expression of both MHC/peptide and costimulatory ligands in vivo.

  4. Safety and efficacy of intravitreal bevacizumab followed by pegaptanib maintenance as a treatment regimen for age-related macular degeneration.

    PubMed

    Hughes, Mark S; Sang, Delia N

    2006-01-01

    Vascular endothelial growth factor (VEGF)-A, both necessary and sufficient in promoting ocular neovascularization, is an attractive therapeutic target. Combining nonselective and selective VEGF blockade may provide clinical benefit with minimal risks in the treatment of neovascular age-related macular degeneration (AMD). Twenty patients with all subtypes of neovascular AMD and a broad range of baseline vision were treated with intravitreal bevacizumab followed by pegaptanib sodium for 54 weeks. Visual acuity measurements, biomicroscopy, funduscopy, fluorescein angiography, optical coherence tomography, and adverse event assessments were performed. Mean visual acuity improved from approximately 20/200 at baseline to 20/80. All patients experienced an improvement in retinal thickness, ranging from -47 to -297 microns. Adverse events were limited to transient irritation or redness. No significant elevation in intraocular pressure occurred following either bevacizumab or pegaptanib injections. Nonselective VEGF blockade with bevacizumab induction and selective VEGF165 blockade with pegaptanib as maintenance therapies may offer clinically meaningful outcomes with acceptable safety profiles in patients with AMD.

  5. IFN-γ Blocks CD4+CD25+ Tregs and Abolishes Immune Privilege of Minor Histocompatibility Mismatched Corneal Allografts

    PubMed Central

    Cunnusamy, Khrishen; Niederkorn, Jerry Y.

    2014-01-01

    Th1 CD4+ cells are believed to be the primary mediators of corneal allograft rejection. However, rejection of fully allogeneic C57BL/6 corneal allografts soared from 50% to 90% in both INF-γ−/− and anti-IFN-γ-treated BALB/c mice. In contrast, similar deficits in IFN-γ in BALB/c hosts enhanced immune privilege of BALB.B (minor histocompatibility antigen-matched, MHC-mismatched) and NZB (major histocompatibility complex-matched, minor histocompatibility antigen-mismatched) corneal allografts – decreasing rejection from 80% to ~20%. This effect of IFN-γ was independent of CD4+ T cell lineage commitment as both anti-IFN-γ-treated acceptor and rejector mice displayed a Th2 cytokine profile. The presence of IFN-γ prevented the generation of alloantigen-specific CD4+CD25+ Tregs in hosts receiving either MHC only mismatched BALB.B or minor only histocompatibility (minor H)-mismatched NZB corneal allografts. Tregs in these hosts, promoted corneal allograft survival by suppressing Th2 effector cells. By contrast, IFN-γ was necessary for the generation of CD4+CD25+ Tregs that prevented rejection of fully allogeneic C57BL/6 corneal allografts in BALB/c hosts. These findings suggest that MHC-matching in combination with blockade of IFN-γ holds promise as a means of enhancing corneal allograft survival. PMID:24119152

  6. Regulatory Eosinophils Suppress T Cells Partly through Galectin-10.

    PubMed

    Lingblom, Christine; Andersson, Jennie; Andersson, Kerstin; Wennerås, Christine

    2017-06-15

    Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16 hi subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16 hi eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16 neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Partition coefficient of cadmium between organic soils and bean and oat plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddqui, M.F.R.; Courchesne, F.; Kennedy, G.

    Environmental fate models require the partition coefficient data of contaminants among two or more environmental compartments. The bioaccumulation of cadmium (Cd) by bean and oat plants grown on organic soils in a controlled growth chamber was investigated to validate the plant/soil partition coefficient. Total Cd was measured in the soils and in the different parts of the plants. The mean total Cd concentrations for soil cultivated with beans and oats were 0.86 and 0.69 {micro}g/g, respectively. Selective extractants (BaCl{sub 2}, Na-pyrophosphate and HNO{sub 3}-hydroxy) were used to evaluate solid phase Cd species in the soil. In the soil cultivated withmore » bean, BaCl{sub 2} exchangeable, Na-pyrophosphate extractable and HNO{sub 3}-NH{sub 2}OH extractable Cd represented 1.2, 1.6 and 50.9% of total soil Cd, respectively. For the soil cultivated with oats, the same extractants gave values of 1.1, 1.8 and 61.9%. Cd concentration levels in bean plants followed the sequence roots > fruits = stems > leaves (p < 0.01) while the following sequence was observed for oat plants: roots > fruits > stems > leaves (p < 0.05). The partition coefficient for total Cd (Cd{sub Plant tissue}/Cd{sub Soil}) was in the range of 0.28--0.55 for bean plants and 1.03--1.86 for oat plants.« less

  8. CD27/CD70, CD134/CD134 ligand, and CD30/CD153 pathways are independently essential for generation of regulatory cells after intratracheal delivery of alloantigen.

    PubMed

    Aramaki, Osamu; Shirasugi, Nozomu; Akiyama, Yoshinobu; Shibutani, Shintaro; Takayama, Tadatoshi; Shimazu, Motohide; Kitajima, Masaki; Ikeda, Yoshifumi; Okumura, Ko; Yagita, Hideo; Niimi, Masanori

    2003-09-15

    We investigated whether blockade of tumor necrosis factor receptor-ligand pathways could generate regulatory cells induced by intratracheal delivery of alloantigen. CBA (H-2k) mice were pretreated with intratracheal delivery of splenocytes (1x10(7)) from C57BL/10 (H-2b) mice and intraperitoneal administration of monoclonal antibody (mAb) specific for CD70, CD134 ligand (CD134L), CD153, or CD137L. Seven days later, C57BL/10 hearts were transplanted into pretreated CBA mice. Some naive CBA mice underwent adoptive transfer of splenocytes (5x10(7)) from pretreated CBA mice and transplantation of a C57BL/10 heart on the same day. Untreated CBA mice rejected C57BL/10 cardiac grafts acutely (median survival time [MST] 12 days). Pretreatment with intratracheal delivery of C57BL/10 donor splenocytes prolonged graft survival significantly (MST 84 days). Mice given intratracheal delivery of alloantigen plus anti-CD70, anti-CD134L, or anti-CD153 mAb, but not those given intratracheal delivery of alloantigen plus anti-CD137L mAb, rejected their graft acutely (MST 16, 14, 10, and 65 days, respectively). Adoptive transfer of splenocytes from mice pretreated with intratracheal delivery of alloantigen plus anti-CD70, CD134L, or CD153 mAb did not prolong survival of C57BL/10 cardiac grafts in naive secondary CBA recipients (MST 14, 11, and 11 days, respectively), whereas adoptive transfer of splenocytes from mice given intratracheal delivery of alloantigen plus anti-CD137L mAb did (MST 75 days). The CD27/CD70, CD134/CD134L, and CD30/CD153 pathways are independently required for generation of regulatory cells in our model.

  9. [Influence of hydrocortisone and adrenaline against the background of mu- and delta-opiate receptors blockade on local immune response in mice].

    PubMed

    Geĭn, S V; Chizhova, E G; Tendriakova, S P

    2006-07-01

    In the induced phase of the immune response, the immunosuppressive effects of hydrocortisone and adrenaline were enhanced under mu- and delta-opiate receptor blockade. No changes were observed in the effects of hydrocortisone and adrenaline under mu- and delta-opiate receptor blockade in effector phase. In the induced phase of the immune response, selective agonists of mu- and delta-opiate receptors DAGO and DADLE enhanced antibody response, delayed-type hypersensitivity, and reduced the number of cells in the regional lymph node. Thus, our data suggest an equal role of mu- and delta-opiate receptors in regulation of expressiveness of local immune response.

  10. α-1-Antitrypsin (AAT)–modified donor cells suppress GVHD but enhance the GVL effect: a role for mitochondrial bioenergetics

    PubMed Central

    Karoopongse, Ekapun; Lesnikova, Marina; Margineantu, Daciana; Welte, Tobias; Dinarello, Charles A.; Hockenbery, David; Janciauskiene, Sabina; Deeg, H. Joachim

    2014-01-01

    Hematopoietic cell transplantation is curative in many patients. However, graft-versus-host disease (GVHD), triggered by alloreactive donor cells, has remained a major complication. Here, we show an inverse correlation between plasma α-1-antitrypsin (AAT) levels in human donors and the development of acute GVHD in the recipients (n = 111; P = .0006). In murine models, treatment of transplant donors with human AAT resulted in an increase in interleukin-10 messenger RNA and CD8+CD11c+CD205+ major histocompatibility complex class II+ dendritic cells (DCs), and the prevention or attenuation of acute GVHD in the recipients. Ablation of DCs (in AAT-treated CD11c-DTR donors) decreased CD4+CD25+FoxP3+ regulatory T cells to one-third and abrogated the anti-GVHD effect. The graft-versus-leukemia (GVL) effect of donor cells (against A20 tumor cells) was maintained or even enhanced with AAT treatment of the donor, mediated by an expanded population of NK1.1+, CD49B+, CD122+, CD335+ NKG2D-expressing natural killer (NK) cells. Blockade of NKG2D significantly suppressed the GVL effect. Metabolic analysis showed a high glycolysis–high oxidative phosphorylation profile for NK1.1+ cells, CD4+CD25+FoxP3+ T cells, and CD11c+ DCs but not for effector T cells, suggesting a cell type–specific effect of AAT. Thus, via altered metabolism, AAT exerts effective GVHD protection while enhancing GVL effects. PMID:25224412

  11. Host-Derived CD70 Suppresses Murine Graft-versus-Host Disease by Limiting Donor T Cell Expansion and Effector Function.

    PubMed

    Leigh, Nicholas D; O'Neill, Rachel E; Du, Wei; Chen, Chuan; Qiu, Jingxin; Ashwell, Jonathan D; McCarthy, Philip L; Chen, George L; Cao, Xuefang

    2017-07-01

    Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation. CD27 is a TNFR family member expressed on T cells, and its ligand, CD70, is expressed on APCs. The CD27/CD70 costimulatory pathway was shown to be critical for T cell function and survival in viral infection models. However, the role of this pathway in allo-HCT is previously unknown. In this study, we have examined its contribution in GVHD pathogenesis. Surprisingly, Ab blockade of CD70 after allo-HCT significantly increases GVHD. Interestingly, whereas donor T cell- or bone marrow-derived CD70 plays no role in GVHD, host-derived CD70 inhibits GVHD as CD70 -/- hosts show significantly increased GVHD. This is evidenced by reduced survival, more severe weight loss, and increased histopathologic damage compared with wild-type hosts. In addition, CD70 -/- hosts have higher levels of proinflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-17. Moreover, accumulation of donor CD4 + and CD8 + effector T cells is increased in CD70 -/- versus wild-type hosts. Mechanistic analyses suggest that CD70 expressed by host hematopoietic cells is involved in the control of alloreactive T cell apoptosis and expansion. Together, our findings demonstrate that host CD70 serves as a unique negative regulator of allogeneic T cell response by contributing to donor T cell apoptosis and inhibiting expansion of donor effector T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Evaluation of blood T-lymphocyte subpopulations involved in host cellular immunity in dogs with mammary cancer.

    PubMed

    Karayannopoulou, Maria; Anagnostou, Tilemachos; Margariti, Apostolia; Kostakis, Charalampos; Kritsepi-Konstantinou, Maria; Psalla, Dimitra; Savvas, Ioannis

    2017-04-01

    Cancer-bearing patients are often immunosuppressed. In dogs with mammary or other cancers, various alterations in blood cell populations involved in host cellular immunity have been reported; among these cell populations some T-lymphocyte subsets play an important role against cancer. The purpose of the present study was to investigate any alterations in circulating T-lymphocyte subpopulations involved in cellular immunity in bitches with mammary cancer, in comparison to age-matched healthy intact bitches. Twenty eight dogs with mammary cancer and 14 control dogs were included in this study. Twelve out of the 28 bitches had mammary cancer of clinical stage II and 16/28 of stage III. Histological examination revealed that 23/28 animals had carcinomas, 3/28 sarcomas and 2/28 carcinosarcomas. White blood cell, neutrophil and lymphocyte absolute numbers were measured by complete blood count. Furthermore, blood T-lymphocyte population (CD3 + ) and the subpopulations CD4 + , CD8 + and CD5 low+ were assessed by flow cytometry. White blood cell and neutrophil but not lymphocyte absolute numbers were higher (P=0.003 and P=0.001, respectively) in cancer patients than controls. Flow cytometric analysis revealed that the relative percentage of T-lymphocytes (CD3 + ) and of CD4 + , CD8 + subpopulations was lower (the CD4 + /CD8 + ratio was higher), whereas the percentage of CD5 low+ T-cells was higher, in dogs with cancer compared to controls; however, a statistically significant difference was found only in the case of CD8 + T-cells (P=0.014), whereas in the case of the CD4 + /CD8 + ratio the difference almost reached statistical significance (P=0.059). Based on these findings, it can be suggested that, although the absolute number of blood lymphocytes is unchanged, the relative percentages of T-lymphocyte subpopulations involved in host cell-mediated immunity are altered, but only cytotoxic CD8 + T-cells are significantly suppressed, in dogs with mammary cancer of clinical stage II or III compared to age-matched healthy controls. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Indoleamine 2,3-dioxygenase (IDO) and Treg Support are Critical for CTLA4Ig-Mediated Long-term Solid Organ Allograft Survival

    PubMed Central

    Sucher, Robert; Fischler, Klaus; Oberhuber, Rupert; Kronberger, Irmgard; Margreiter, Christian; Ollinger, Robert; Schneeberger, Stefan; Fuchs, Dietmar; Werner, Ernst R.; Watschinger, Katrin; Zelger, Bettina; Tellides, George; Pilat, Nina; Pratschke, Johann; Margreiter, Raimund; Wekerle, Thomas; Brandacher, Gerald

    2011-01-01

    Co-stimulatory blockade of CD28-B7 interaction with CTLA4Ig is a well-established strategy to induce transplantation tolerance. Although previous in vitro studies suggest that CTLA4Ig up-regulates expression of the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) in dendritic cells, the relationship of CTLA4Ig and IDO in in vivo organ transplantation remains unclear. Here we studied if concerted immunomodulation in vivo by CTLA4Ig depends on IDO. C57BL/6 recipients receiving a fully MHC-mismatched BALB/c heart graft treated with CTLA4Ig + donor specific transfusion (DST) showed indefinite graft survival [>100 days] without signs of chronic rejection or donor specific antibody formation. Recipients with long-term surviving grafts had significantly higher systemic IDO activity as compared to rejectors, which markedly correlated with intragraft IDO and Foxp3 levels. IDO inhibition with 1-methyl-DL-tryptophan, either at transplant or at POD 50, abrogated CTLA4Ig+DST-induced long-term graft survival. Importantly, IDO1 knock-out recipients experienced acute rejection and graft survival comparable to controls. In addition, αCD25 mAb-mediated depletion of Tregs resulted in decreased IDO activity and again prevented CTLA4Ig+DST induced indefinite graft survival. Our results suggest that CTLA4Ig-induced tolerance to murine cardiac allografts is critically dependent on synergistic cross-linked interplay of IDO and Tregs. These results have important implications for the clinical development of this co-stimulatory blocker. PMID:22131334

  14. Targeting CD8+ T-cell tolerance for cancer immunotherapy

    PubMed Central

    Jackson, Stephanie R; Yuan, Jinyun; Teague, Ryan M

    2014-01-01

    In the final issue of Science in 2013, the American Association of Science recognized progress in the field of cancer immunotherapy as the ‘Breakthrough of the Year.’ The achievements were actually twofold, owing to the early success of genetically engineered chimeric antigen receptors (CAR) and to the mounting clinical triumphs achieved with checkpoint blockade antibodies. While fundamentally very different, the common thread of these independent strategies is the ability to prevent or overcome mechanisms of CD8+ T-cell tolerance for improved tumor immunity. Here we discuss how circumventing T-cell tolerance has provided experimental insights that have guided the field of clinical cancer immunotherapy to a place where real breakthroughs can finally be claimed. PMID:25290416

  15. Exacerbation of Autoimmune Thyroiditis by CTLA-4 Blockade: A Role for IFNγ-Induced Indoleamine 2, 3-Dioxygenase.

    PubMed

    Sharma, Rajni; Di Dalmazi, Giulia; Caturegli, Patrizio

    2016-08-01

    Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2(h4) mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. NOD-H2(h4) mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2(h4) mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade.

  16. PD-1 blockade enhances elotuzumab efficacy in mouse tumor models

    PubMed Central

    Jhatakia, Amy; Kearney, Alper Y.; Brender, Ty; Maurer, Mark; Henning, Karla; Jenkins, Misty R.; Rogers, Amy J.; Neeson, Paul J.; Korman, Alan J.; Robbins, Michael D.; Graziano, Robert F.

    2017-01-01

    Elotuzumab, a humanized monoclonal antibody that binds human signaling lymphocytic activation molecule F7 (hSLAMF7) on myeloma cells, was developed to treat patients with multiple myeloma (MM). Elotuzumab has a dual mechanism of action that includes the direct activation of natural killer (NK) cells and the induction of NK cell–mediated antibody-dependent cellular cytotoxicity. This study aimed to characterize the effects of elotuzumab on NK cells in vitro and in patients with MM and to determine whether elotuzumab antitumor activity was improved by programmed death receptor-1 (PD-1) blockade. Elotuzumab promoted NK cell activation when added to a coculture of human NK cells and SLAMF7-expressing myeloma cells. An increased frequency of activated NK cells was observed in bone marrow aspirates from elotuzumab-treated patients. In mouse tumor models expressing hSLAMF7, maximal antitumor efficacy of a murine immunoglobulin G2a version of elotuzumab (elotuzumab-g2a) required both Fcγ receptor–expressing NK cells and CD8+ T cells and was significantly enhanced by coadministration of anti–PD-1 antibody. In these mouse models, elotuzumab-g2a and anti–PD-1 combination treatment promoted tumor-infiltrating NK and CD8+ T-cell activation, as well as increased intratumoral cytokine and chemokine release. These observations support the rationale for clinical investigation of elotuzumab/anti–PD-1 combination therapy in patients with MM. PMID:29296719

  17. Signal regulatory protein α associated with the progression of oral leukoplakia and oral squamous cell carcinoma regulates phenotype switch of macrophages.

    PubMed

    Ye, Xiaojing; Zhang, Jing; Lu, Rui; Zhou, Gang

    2016-12-06

    Signal regulatory protein α (SIRPα) is a cell-surface protein expressed on macrophages that are regarded as an important component of the tumor microenvironment. The expression of SIRPα in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), and further explored the role of SIRPα on the phenotype, phagocytosis ability, migration, and invasion of macrophages in OSCC were investigated. The expression of SIRPα in OLK was higher than in OSCC, correlating with the expression of CD68 and CD163 on macrophages. After cultured with the conditioned media of oral cancer cells, the expression of SIRPα on THP-1 cells was decreased gradually. In co-culture system, macrophages were induced into M2 phenotype by oral cancer cells. Blockade of SIRPα inhibited phagocytosis ability and IL-6, TNF-α productions of macrophages. In addition, the proliferation, migration, and IL-10, TGF-β productions of macrophages were upregulated after blockade of SIRPα. Macrophages upregulated the expression of SIRPα and phagocytosis ability, and inhibited the migration and invasion when the activation of NF-κB was inhibited by pyrrolidine dithiocarbamate ammonium (PDTC). Hence, SIRPα might play an important role in the progression of OLK and oral cancer, and could be a pivotal therapeutic target in OSCC by regulating the phenotype of macrophages via targeting NF-κB.

  18. Lipopolysaccharide modulation of a CD14-like molecule on porcine alveolar macrophages

    NASA Technical Reports Server (NTRS)

    Kielian, T. L.; Ross, C. R.; McVey, D. S.; Chapes, S. K.; Blecha, F.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Cluster of differentiation antigen 14 (CD14) functions as a receptor for lipopolysaccharide (LPS) LPS-binding protein (LBP) complexes. Because LPS has varying effects on CD14 expression in vitro, we evaluated CD14 expression in response to LPS with a fully differentiated macrophage phenotype, the alveolar macrophage. By using flow microfluorometric analysis and a radioimmunoassay with an anti-human CD14 monoclonal antibody (My4) that cross-reacts with porcine CD14, we found that macrophages stimulated with LPS for 24 h exhibited a two- to fivefold increase in CD14-like antigen compared with unstimulated cells. At low concentrations of LPS, up-regulation of the CD14-like antigen was dependent on serum; at higher concentrations of LPS, serum was not required. In the absence of serum a 10-fold higher dose of LPS (10 ng/ml) was required to increase CD14-like expression. In addition, LPS-induced CD14-like up-regulation correlated with secretion of tumor necrosis factor-alpha, regardless of serum concentration. Blockade with My4 antibody significantly inhibited LPS-induced tumor necrosis factor-alpha secretion at 1 ng/ml of LPS. However, inhibition decreased as we increased the LPS concentration, suggesting the existence of CD14-independent pathways of macrophage activation in response to LPS. Alternatively, My4 may have a lower affinity for the porcine CD14 antigen than LPS, which may have only partially blocked the LPS-LBP binding site at high concentrations of LPS. Therefore, these data suggest that LPS activation of porcine alveolar macrophages for 24 h increased CD14-like receptor expression. The degree of CD14-like up-regulation was related to LPS concentration, however, activation did not require the presence of serum at high concentrations of LPS.

  19. CD70 encoded by modified vaccinia virus Ankara enhances CD8 T-cell-dependent protective immunity in MHC class II-deficient mice.

    PubMed

    Bathke, Barbara; Pätzold, Juliane; Kassub, Ronny; Giessel, Raphael; Lämmermann, Kerstin; Hinterberger, Maria; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus; Lauterbach, Henning

    2017-12-27

    The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic ® (MVA-BN ® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN ® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN ® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN ® backbone. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  20. Varicella-Zoster Virus-Specific Cellular Immune Responses to the Live Attenuated Zoster Vaccine in Young and Older Adults.

    PubMed

    Weinberg, Adriana; Canniff, Jennifer; Rouphael, Nadine; Mehta, Aneesh; Mulligan, Mark; Whitaker, Jennifer A; Levin, Myron J

    2017-07-15

    The incidence and severity of herpes zoster (HZ) increases with age. The live attenuated zoster vaccine generates immune responses similar to HZ. We compared the immune responses to zoster vaccine in young and older to adults to increase our understanding of the immune characteristics that may contribute to the increased susceptibility to HZ in older adults. Young (25-40 y; n = 25) and older (60-80 y; n = 33) adults had similar magnitude memory responses to varicella-zoster virus (VZV) ex vivo restimulation measured by responder cell-frequency and flow cytometry, but the responses were delayed in older compared with young adults. Only young adults had an increase in dual-function VZV-specific CD4 + and CD8 + T cell effectors defined by coexpression of IFN-γ, IL-2, and CD107a after vaccination. In contrast, older adults showed marginal increases in VZV-specific CD8 + CD57 + senescent T cells after vaccination, which were already higher than those of young adults before vaccination. An increase in VZV-stimulated CD4 + CD69 + CD57 + PD1 + and CD8 + CD69 + CD57 + PD1 + T cells from baseline to postvaccination was associated with concurrent decreased VZV-memory and CD8 + effector responses, respectively, in older adults. Blocking the PD1 pathway during ex vivo VZV restimulation increased the CD4 + and CD8 + proliferation, but not the effector cytokine production, which modestly increased with TIM-3 blockade. We conclude that high proportions of senescent and exhausted VZV-specific T cells in the older adults contribute to their poor effector responses to a VZV challenge. This may underlie their inability to contain VZV reactivation and prevent the development of HZ. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Overcoming Drug Resistant Prostate Cancer with APE1/Ref 1 Blockade

    DTIC Science & Technology

    2016-10-01

    prostate cancer specimens. Genetic knockdown of APE1/Ref-1 disrupts prostate cancer cell growth and survival in cell culture. In addition...inhibition of the redox function selectively of Ref-1 results in cell growth inhibition, with this therapy preferentially inhibiting prostate cancer cell... growth above that in non-cancerous cells. Specific blockade of Ref-1 redox activity in tumors is a novel concept in tumor therapy. If we are successful

  2. c-Met and its ligand hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway induced by CD74.

    PubMed

    Gordin, Maya; Tesio, Melania; Cohen, Sivan; Gore, Yael; Lantner, Frida; Leng, Lin; Bucala, Richard; Shachar, Idit

    2010-08-15

    The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74-HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.

  3. High IL-10 production by aged AIDS patients is related to high frequency of Tr-1 phenotype and low in vitro viral replication.

    PubMed

    Andrade, Regis M; Hygino, Joana; Kasahara, Taissa M; Vieira, Morgana M; Xavier, Luciana F; Blanco, Bernardo; Damasco, Paulo V; Silva, Rodrigo M; Lima, Dirce B; Oliveira, Ariane L; Lemos, Alberto S; Andrade, Arnaldo F B; Bento, Cleonice A M

    2012-10-01

    This work aims to elucidate the effects of age and HIV-1 infection on the frequency and function of T cell subsets in response to HIV-specific and non-specific stimuli. As compared with the younger AIDS group, the frequencies of naive and central memory T cells were significantly lower in aged AIDS patients. Although there was also a dramatic loss of classical CD4(+)FoxP3(+)CD25(+)Treg cells in this patient group, high frequencies of IL-10-producing CD4(+)FoxP3(-) T cells were observed. In our system, the increased production of IL-10 in aged AIDS patients was mainly derived from Env-specific CD4(+)FoxP3(-)CD152(+) T cells. Interestingly, while the blockade of IL-10 activity by monoclonal antibody clearly enhanced the release of IL-6 and IL-1β by Env-stimulated PBMC cultures from aged AIDS patients, this monoclonal antibody enhanced in vitro HIV-1-replication. In conclusion, HIV infection and aging undoubtedly contribute synergistically to a complex immune dysfunction in T cell compartment of HAART-treated older HIV-infected individuals. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Functional Analysis of CD28/B7 and CD40/CD40L Costimulation During the in vivo Type 2 Immune Response

    DTIC Science & Technology

    1995-10-06

    these activation markers on B cells and changes in B cell size (forward light scatter) were analyzed by flow cytometry (Figure 7). B cell surface B7...activation ofnaive CD4+ Th cells requires two signals delivered from antigen presenting cells (APes). The engagement ofthe T cell surface receptor...shown that T cell surface ii molecule CD28, and its homologue CTLA-4, can provide costimulatory signals to 10 cells when they interact with their ligands

  5. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Raveh, L; Souroujon, M C; Fuchs, S

    2001-10-01

    Interleukin-18 (IL-18) is a pleiotropic proinflammatory cytokine that plays an important role in interferon gamma (IFN-gamma) production and IL-12-driven Th1 phenotype polarization. Increased expression of IL-18 has been observed in several autoimmune diseases. In this study we have analyzed the role of IL-18 in an antibody-mediated autoimmune disease and elucidated the mechanisms involved in disease suppression mediated by blockade of IL-18, using experimental autoimmune myasthenia gravis (EAMG) as a model. EAMG is a T cell-regulated, antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1- and Th2-type responses are both implicated in EAMG development. We show that treatment by anti-IL-18 during ongoing EAMG suppresses disease progression. The protective effect can be adoptively transferred to naive recipients and is mediated by increased levels of the immunosuppressive Th3-type cytokine TGF-beta and decreased AChR-specific Th1-type cellular responses. Suppression of EAMG is accompanied by down-regulation of the costimulatory factor CD40L and up-regulation of CTLA-4, a key negative immunomodulator. Our results suggest that IL-18 blockade may potentially be applied for immunointervention in myasthenia gravis.

  6. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  7. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy

    PubMed Central

    Wang, S-C; Li, Y-H; Piao, H-L; Hong, X-W; Zhang, D; Xu, Y-Y; Tao, Y; Wang, Y; Yuan, M-M; Li, D-J; Du, M-R

    2015-01-01

    CD8+ T cells are critical in the balance between fetal tolerance and antiviral immunity. T-cell immunoglobulin mucin-3 (Tim-3) and programmed cell death-1 (PD-1) are important negative immune regulatory molecules involved in viral persistence and tumor metastasis. Here, we demonstrate that Tim-3+PD-1+CD8+ T cells from decidua greatly outnumbered those from peripheral blood during human early pregnancy. Co-culture of trophoblasts with CD8+ T cells upregulated PD-1+ and/or Tim-3+ immune cells. Furthermore, the population of CD8+ T cells co-expressing PD-1 and Tim-3 was enriched within the intermediate memory subset in decidua. This population exhibited high proliferative activity and Th2-type cytokine producing capacity. Blockade of Tim-3 and PD-1 resulted in decreased in vitro proliferation and Th2-type cytokine production while increased trophoblast killing and IFN-γ producing capacities of CD8+ T cells. Pregnant CBA/J females challenged with Tim-3 and/or PD-1 blocking antibodies were more susceptible to fetal loss, which was associated with CD8+ T-cell dysfunction. Importantly, the number and function of Tim-3+PD-1+CD8+ T cells in decidua were significantly impaired in miscarriage. These findings underline the important roles of Tim-3 and PD-1 pathways in regulating decidual CD8+ T-cell function and maintaining normal pregnancy. PMID:25950468

  8. Ikaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease

    PubMed Central

    Toubai, Tomomi; Sun, Yaping; Tawara, Isao; Friedman, Ann; Liu, Chen; Evers, Rebecca; Nieves, Evelyn; Malter, Chelsea; Chockley, Peter; Maillard, Ivan; Winandy, Susan

    2011-01-01

    Host hematopoietically derived APCs play a vital role in the initiation of GVH responses. However, the APC autonomous molecular mechanisms that are critical for the induction of GVHD are not known. We report here that the Ikaros-Notch axis in host hematopoietically derived APCs regulates the severity of acute GVHD across multiple clinically relevant murine models of experimental bone marrow transplantation. In the present study, Ikaros deficiency (Ik−/−) limited to host hematopoietically derived APCs enhanced donor T-cell expansion and intensified acute GVHD, as determined by survival and other GVHD-specific parameters. The Ik−/− conventional CD8+ and CD8−CD11c+ dendritic cells (DCs), the most potent APCs, showed no increase in the expression of activation markers or in response to TLR stimulation compared with wild-type controls. However, Ik−/− DCs demonstrated an enhanced stimulation of allogeneic T cells. Deficiency of Ikaros in the conventional CD8+ and CD8−CD11c+ DCs was associated with an increase in Notch signaling, the blockade of which mitigated the enhanced in vitro and in vivo allostimulatory capacity. Therefore, the Ikaros-Notch axis is a novel pathway that modulates DC biology in general, and targeting this pathway in host hematopoietically derived APCs may reduce GVHD. PMID:21471527

  9. Chimeric PD-1:28 Receptor Upgrades Low-Avidity T cells and Restores Effector Function of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy.

    PubMed

    Schlenker, Ramona; Olguín-Contreras, Luis Felipe; Leisegang, Matthias; Schnappinger, Julia; Disovic, Anja; Rühland, Svenja; Nelson, Peter J; Leonhardt, Heinrich; Harz, Hartmann; Wilde, Susanne; Schendel, Dolores J; Uckert, Wolfgang; Willimsky, Gerald; Noessner, Elfriede

    2017-07-01

    Inherent intermediate- to low-affinity T-cell receptors (TCR) that develop during the natural course of immune responses may not allow sufficient activation for tumor elimination, making the majority of T cells suboptimal for adoptive T-cell therapy (ATT). TCR affinity enhancement has been implemented to provide stronger T-cell activity but carries the risk of creating undesired cross-reactivity leading to potential serious adverse effects in clinical application. We demonstrate here that engineering of low-avidity T cells recognizing a naturally processed and presented tumor-associated antigen with a chimeric PD-1:28 receptor increases effector function to levels seen with high-avidity T cells of identical specificity. Upgrading the function of low-avidity T cells without changing the TCR affinity will allow a large arsenal of low-avidity T cells previously thought to be therapeutically inefficient to be considered for ATT. PD-1:28 engineering reinstated Th1 function in tumor-infiltrating lymphocytes that had been functionally disabled in the human renal cell carcinoma environment without unleashing undesired Th2 cytokines or IL10. Involved mechanisms may be correlated to restoration of ERK and AKT signaling pathways. In mouse tumor models of ATT, PD-1:28 engineering enabled low-avidity T cells to proliferate stronger and prevented PD-L1 upregulation and Th2 polarization in the tumor milieu. Engineered T cells combined with checkpoint blockade secreted significantly more IFNγ compared with T cells without PD-1:28, suggesting a beneficial combination with checkpoint blockade therapy or other therapeutic strategies. Altogether, the supportive effects of PD-1:28 engineering on T-cell function make it an attractive tool for ATT. Cancer Res; 77(13); 3577-90. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Survey of external cephalic version for breech presentation and neuraxial blockade use.

    PubMed

    Weiniger, Carolyn F; Sultan, Pervez; Dunn, Ashley; Carvalho, Brendan

    2016-11-01

    Neuraxial blockade may increase external cephalic version (ECV) success rates. This survey aimed to assess the frequency and characteristics of neuraxial blockade used to facilitate ECV. We surveyed Society for Obstetric Anesthesia and Perinatology members regarding ECV practice using a 15-item survey developed by 3 obstetric anesthesiologists and tested for face validity. The survey was e-mailed in January 2015 and again in February 2015 to the 1056 Society of Obstetric Anesthesiology and Perinatology members. We present descriptive statistics of responses. Our survey response rate was 322 of 1056 (30.5%). Neuraxial blockade was used for ECV always by 18 (5.6%), often by 52 (16.1%), sometimes by 98 (30.4%), rarely by 78 (24.2%), and never by 46 (14.3%) of respondents. An anesthetic sensory block target was selected by 141 (43.8%) respondents, and analgesic by 102 (31.7%) respondents. Epidural drug doses ranged widely, including sufentanil 5-25 μg; lidocaine 1% or 2% 10-20 mL, bupivacaine 0.0625% to 0.5% 6-15 mL, and ropivacaine 0.2% 20 mL. Intrathecal bupivacaine was used by 182 (56.5%) respondents; the most frequent doses were 2.5 mg used by 24 (7.5%), 7.5 mg used by 35 (10.9%), and 12 mg used by 30 (9.3%). Neuraxial blockade is not universally offered to facilitate ECV, and there is wide variability in neuraxial blockade techniques, in drugs and doses administered, and in the sensory blockade (anesthetic or analgesic) targeted. Future studies need to evaluate and remove barriers to allow for more widespread use of neuraxial blockade for pain relief and to optimize ECV success rates. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Recommendations on the use of deep neuromuscular blockade by anaesthesiologists and surgeons. AQUILES (Anestesia QUIrúrgica para Lograr Eficiencia y Seguridad) Consensus.

    PubMed

    Errando-Oyonarte, C L; Moreno-Sanz, C; Vila-Caral, P; Ruiz de Adana-Belbel, J C; Vázquez-Alonso, E; Ramírez-Rodríguez, J M; Veiga-Ruiz, G; Guasch-Arévalo, E; Lora-Tamayo D'Ocón, J I

    2017-02-01

    Neuromuscular blockade enables airway management, ventilation and surgical procedures. However there is no national consensus on its routine clinical use. The objective was to establish the degree of agreement among anaesthesiologists and general surgeons on the clinical use of neuromuscular blockade in order to make recommendations to improve its use during surgical procedures. Multidisciplinary consensus study in Spain. Anaesthesiologists experts in neuromuscular blockade management (n=65) and general surgeons (n=36) were included. Delphi methodology was selected. A survey with 17 final questions developed by a dedicated scientific committee was designed. The experts answered the successive questions in two waves. The survey included questions on: type of surgery, type of patient, benefits/harm during and after surgery, impact of objective neuromuscular monitoring and use of reversal drugs, viability of a multidisciplinary and efficient approach to the whole surgical procedure, focussing on the level of neuromuscular blockade. Five recommendations were agreed: 1) deep neuromuscular blockade is very appropriate for abdominal surgery (degree of agreement 94.1%), 2) and in obese patients (76.2%); 3) deep neuromuscular blockade maintenance until end of surgery might be beneficial in terms of clinical aspects, such as as immobility or better surgical access (86.1 to 72.3%); 4) quantitative monitoring and reversal drugs availability is recommended (89.1%); finally 5) anaesthesiologists/surgeons joint protocols are recommended. Collaboration among anaesthesiologists and surgeons has enabled some general recommendations to be established on deep neuromuscular blockade use during abdominal surgery. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. CMV induces expansion of highly polyfunctional CD4+ T cell subset coexpressing CD57 and CD154.

    PubMed

    Pera, Alejandra; Vasudev, Anusha; Tan, Crystal; Kared, Hassen; Solana, Rafael; Larbi, Anis

    2017-02-01

    CD4 + T cells are essential for human CMV infection control. CMV-specific CD4 + T cells possess antiviral functions and participate in anti-CMV humoral/cellular responses. In the elderly, CMV infection impairs immunity to other viruses and has been traditionally associated with T cell senescence; however, recent results suggest that, in younger people, CMV confers immune protection against other pathogens (heterologous immunity). To shed light on this controversy, we analyzed latent CMV infection effects on the quality of young individuals' immune response, specifically, the presence of polyfunctional T cells through an extensive phenotypic and functional characterization of the CD4 + T cell subset. CD154 expression, degranulation (CD107a), and cytokine production (IFN-γ, TNF-α, and IL-2) as well as T cell phenotype markers (CD57, CD28, and CD27) were analyzed. We demonstrate that CD4 + T cells that coexpress CD57 and CD154, which are exclusively present in CMV-positive individuals, are the most polyfunctional CD4 + subset, whereas CD4 + CD27 + CD28 - T cells associate with lower polyfunctionality. Conversely, the frequency of CD4 + CD28 + T cells correlates with higher polyfunctionality of CD4 + CD57 - T cells from CMV-seronegative individuals and CD4 + CD57 + CD154 + T cells from CMV-seropositive individuals. Thus, polyfunctionality is a property of central memory CD4 + T cells in CMV-seronegative individuals, whereas after CMV infection, polyfunctional T cells become highly differentiated, which allows efficient eradication of infections. We extend previous observations of the impact of CMV on CD8 + T cell functionality to the CD4 + T cell compartment, revealing CD57 as a polyfunctionality marker of T cells which expands after CMV infection. CD57 + T cells have been associated with inflammatory conditions, but their potential role in the response against infectious disease and vaccination should now be investigated. © Society for Leukocyte Biology.

  13. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation.

    PubMed

    Chen, Jun; Joshi, Shailen K; DiDomenico, Stanley; Perner, Richard J; Mikusa, Joe P; Gauvin, Donna M; Segreti, Jason A; Han, Ping; Zhang, Xu-Feng; Niforatos, Wende; Bianchi, Bruce R; Baker, Scott J; Zhong, Chengmin; Simler, Gricelda H; McDonald, Heath A; Schmidt, Robert G; McGaraughty, Steve P; Chu, Katharine L; Faltynek, Connie R; Kort, Michael E; Reilly, Regina M; Kym, Philip R

    2011-05-01

    Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). It is >1000-fold selective over other TRP channels, and is >150-fold selective over 75 other ion channels, enzymes, and G-protein-coupled receptors. Oral dosing of A-967079 produces robust drug exposure in rodents, and exhibits analgesic efficacy in allyl isothiocyanate-induced nocifensive response and osteoarthritic pain in rats (ED(50): 23.2 mg/kg, p.o.). A-967079 attenuates cold allodynia produced by nerve injury but does not alter noxious cold sensation in naive animals, suggesting distinct roles of TRPA1 in physiological and pathological states. Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis

    PubMed Central

    Peres, Raphael Sanches; Liew, Foo Y.; Talbot, Jhimmy; Carregaro, Vanessa; Oliveira, Rene D.; Almeida, Sergio L.; França, Rafael F. O.; Donate, Paula B.; Pinto, Larissa G.; Ferreira, Flavia I. S.; Costa, Diego L.; Demarque, Daniel P.; Gouvea, Dayana Rubio; Lopes, Norberto P.; Queiroz, Regina Helena C.; Silva, Joao Santana; Figueiredo, Florencio; Alves-Filho, Jose Carlos; Cunha, Thiago M.; Ferreira, Sérgio H.; Louzada-Junior, Paulo; Cunha, Fernando Q.

    2015-01-01

    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by joint destruction and severe morbidity. Methotrexate (MTX) is the standard first-line therapy of RA. However, about 40% of RA patients are unresponsive to MTX treatment. Regulatory T cells (Tregs, CD4+CD25+FoxP3+) are thought to play an important role in attenuating RA. To investigate the role of Tregs in MTX resistance, we recruited 122 RA patients (53 responsive, R-MTX; 69 unresponsive, UR-MTX) and 33 healthy controls. Three months after MTX treatment, R-MTX but not UR-MTX showed higher frequency of peripheral blood CD39+CD4+CD25+FoxP3+ Tregs than the healthy controls. Tregs produce adenosine (ADO) through ATP degradation by sequential actions of two cell surface ectonucleotidases: CD39 and CD73. Tregs from UR-MTX expressed a lower density of CD39, produced less ADO, and had reduced suppressive activity than Tregs from R-MTX. In a prospective study, before MTX treatment, UR-MTX expressed a lower density of CD39 on Tregs than those of R-MTX or control (P < 0.01). In a murine model of arthritis, CD39 blockade reversed the antiarthritic effects of MTX treatment. Our results demonstrate that MTX unresponsiveness in RA is associated with low expression of CD39 on Tregs and the decreased suppressive activity of these cells through reduced ADO production. Our findings thus provide hitherto unrecognized mechanism of immune regulation in RA and on mode of action of MTX. Furthermore, our data suggest that low expression of CD39 on Tregs could be a noninvasive biomarker for identifying MTX-resistant RA patients. PMID:25675517

  15. Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis.

    PubMed

    Peres, Raphael Sanches; Liew, Foo Y; Talbot, Jhimmy; Carregaro, Vanessa; Oliveira, Rene D; Almeida, Sergio L; França, Rafael F O; Donate, Paula B; Pinto, Larissa G; Ferreira, Flavia I S; Costa, Diego L; Demarque, Daniel P; Gouvea, Dayana Rubio; Lopes, Norberto P; Queiroz, Regina Helena C; Silva, Joao Santana; Figueiredo, Florencio; Alves-Filho, Jose Carlos; Cunha, Thiago M; Ferreira, Sérgio H; Louzada-Junior, Paulo; Cunha, Fernando Q

    2015-02-24

    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by joint destruction and severe morbidity. Methotrexate (MTX) is the standard first-line therapy of RA. However, about 40% of RA patients are unresponsive to MTX treatment. Regulatory T cells (Tregs, CD4(+)CD25(+)FoxP3(+)) are thought to play an important role in attenuating RA. To investigate the role of Tregs in MTX resistance, we recruited 122 RA patients (53 responsive, R-MTX; 69 unresponsive, UR-MTX) and 33 healthy controls. Three months after MTX treatment, R-MTX but not UR-MTX showed higher frequency of peripheral blood CD39(+)CD4(+)CD25(+)FoxP3(+) Tregs than the healthy controls. Tregs produce adenosine (ADO) through ATP degradation by sequential actions of two cell surface ectonucleotidases: CD39 and CD73. Tregs from UR-MTX expressed a lower density of CD39, produced less ADO, and had reduced suppressive activity than Tregs from R-MTX. In a prospective study, before MTX treatment, UR-MTX expressed a lower density of CD39 on Tregs than those of R-MTX or control (P < 0.01). In a murine model of arthritis, CD39 blockade reversed the antiarthritic effects of MTX treatment. Our results demonstrate that MTX unresponsiveness in RA is associated with low expression of CD39 on Tregs and the decreased suppressive activity of these cells through reduced ADO production. Our findings thus provide hitherto unrecognized mechanism of immune regulation in RA and on mode of action of MTX. Furthermore, our data suggest that low expression of CD39 on Tregs could be a noninvasive biomarker for identifying MTX-resistant RA patients.

  16. B-cell homeostasis requires complementary CD22 and BLyS/BR3 survival signals.

    PubMed

    Smith, Susan H; Haas, Karen M; Poe, Jonathan C; Yanaba, Koichi; Ward, Christopher D; Migone, Thi-Sau; Tedder, Thomas F

    2010-08-01

    Peripheral B-cell numbers are tightly regulated by homeostatic mechanisms that influence the transitional and mature B-cell compartments and dictate the size and clonotypic diversity of the B-cell repertoire. B-lymphocyte stimulator (BLyS, a trademark of Human Genome Sciences, Inc.) plays a key role in regulating peripheral B-cell homeostasis. CD22 also promotes peripheral B-cell survival through ligand-dependent mechanisms. The B-cell subsets affected by the absence of BLyS and CD22 signals overlap, suggesting that BLyS- and CD22-mediated survival are intertwined. To examine this, the effects of BLyS insufficiency following neutralizing BLyS mAb treatment in mice also treated with CD22 ligand-blocking mAb were examined. Combined targeting of the BLyS and CD22 survival pathways led to significantly greater clearance of recirculating bone marrow, blood, marginal zone and follicular B cells than either treatment alone. Likewise, BLyS blockade further reduced bone marrow, blood and spleen B-cell numbers in CD22(-/-) mice. Notably, BLyS receptor expression and downstream signaling were normal in CD22(-/-) B cells, suggesting that CD22 does not directly alter BLyS responsiveness. CD22 survival signals were likewise intact in the absence of BLyS, as CD22 mAb treatment depleted blood B cells from mice with impaired BLyS receptor 3 (BR3) signaling. Finally, enforced BclxL expression, which rescues BR3 impairment, did not affect B-cell depletion following CD22 mAb treatment. Thus, the current studies support a model whereby CD22 and BLyS promote the survival of overlapping B-cell subsets but contribute to their maintenance through independent and complementary signaling pathways.

  17. Normal T-cell activation in elite controllers with preserved CD4+ T-cell counts.

    PubMed

    Bansal, Anju; Sterrett, Sarah; Erdmann, Nathan; Westfall, Andrew O; Dionne-Odom, Jodie; Overton, Edgar T; Goepfert, Paul A

    2015-11-01

    HIV elite controllers suppress HIV viremia without antiretroviral therapy (ART), yet previous studies demonstrated that elite controllers maintain an activated T-cell phenotype. Chronic immune activation has detrimental consequences and thus ART has been advocated for all elite controllers. However, elite controllers are not a clinically homogenous group. Since CD4% is among the best predictors of AIDS-related events, in the current study, we assessed whether this marker can be used to stratify elite controllers needing ART. Sixteen elite controllers were divided into two groups based on CD4% (EC > 40% and EC ≤40%), and T-cell subsets were analyzed for markers of memory/differentiation (CD45RA, CCR7, CD28), activation (CD38/HLA-DR), immunosenescence (CD57), costimulation (CD73, CD28) and exhaustion (PD-1, CD160, Tim-3). Monocyte subsets (CD14, CD16) were also analyzed and sCD14 levels were quantified using ELISA. In the EC group, expression of activation, exhaustion, and immunosensescence markers on T cells were significantly reduced compared with the EC group and similar to the seronegative controls. The EC group expressed higher levels of costimulatory molecules CD28 and CD73 and had lower levels of monocyte activation (HLA-DR expression) with a reduced frequency of inflammatory monocyte (CD14 CD16) subset. Furthermore, the EC group maintained a stable CD4% during a median follow-up of 6 years. Elite controllers with preserved CD4T cells (EC) have normal T-cell and monocyte phenotypes and therefore may have limited benefit from ART. CD4% can be an important marker for evaluating future studies aimed at determining the need for ART in this group of individuals.

  18. Impact of donor- and collection-related variables on product quality in ex utero cord blood banking.

    PubMed

    Askari, Sabeen; Miller, John; Chrysler, Gayl; McCullough, Jeffrey

    2005-02-01

    Optimizing product quality is a current focus in cord blood banking. This study evaluates the role of selected donor- and collection-related variables. Retrospective review was performed of cord blood units (CBUs) collected ex utero between February 1, 2000, and February 28, 2002. Preprocessing volume and total nucleated cell (TNC) counts and postprocessing CD34 cell counts were used as product quality indicators. Of 2084 CBUs, volume determinations and TNC counts were performed on 1628 and CD34+ counts on 1124 CBUs. Mean volume and TNC and CD34+ counts were 85.2 mL, 118.9 x 10(7), and 5.2 x 10(6), respectively. In univariate analysis, placental weight of greater than 500 g and meconium in amniotic fluid correlated with better volume and TNC and CD34+ counts. Greater than 40 weeks' gestation predicted enhanced volume and TNC count. Cesarean section, two- versus one-person collection, and not greater than 5 minutes between placental delivery and collection produced superior volume. Increased TNC count was also seen in Caucasian women, primigravidae, female newborns, and collection duration of more than 5 minutes. A time between delivery of newborn and placenta of not greater than 10 minutes predicted better volume and CD34+ count. By regression analysis, collection within not greater than 5 minutes of placental delivery produced superior volume and TNC count. Donor selection and collection technique modifications may improve product quality. TNC count appears to be more affected by different variables than CD34+ count.

  19. BTLA interaction with HVEM expressed on CD8(+) T cells promotes survival and memory generation in response to a bacterial infection.

    PubMed

    Steinberg, Marcos W; Huang, Yujun; Wang-Zhu, Yiran; Ware, Carl F; Cheroutre, Hilde; Kronenberg, Mitchell

    2013-01-01

    The B and T lymphocyte attenuator (BTLA) is an Ig super family member that binds to the herpes virus entry mediator (HVEM), a TNF receptor super family (TNFRSF) member. Engagement of BTLA by HVEM triggers inhibitory signals, although recent evidence indicates that BTLA also may act as an activating ligand for HVEM. In this study, we reveal a novel role for the BTLA-HVEM pathway in promoting the survival of activated CD8(+) T cells in the response to an oral microbial infection. Our data show that both BTLA- and HVEM-deficient mice infected with Listeria monocytogenes had significantly reduced numbers of primary effector and memory CD8(+) T cells, despite normal proliferation and expansion compared to controls. In addition, blockade of the BTLA-HVEM interaction early in the response led to significantly reduced numbers of antigen-specific CD8(+) T cells. HVEM expression on the CD8(+) T cells as well as BTLA expression on a cell type other than CD8(+) T lymphocytes, was required. Collectively, our data demonstrate that the function of the BTLA-HVEM pathway is not limited to inhibitory signaling in T lymphocytes, and instead, that BTLA can provide crucial, HVEM-dependent signals that promote survival of antigen activated CD8(+) T cell during bacterial infection.

  20. The relationship between the target effective site concentration of rocuronium and the degree of recovery from neuromuscular blockade in elderly patients

    PubMed Central

    Fan, Xiaochong; Ma, Minyu; Li, Zhisong; Gong, Shengkai; Zhang, Wei; Wen, Yuanyuan

    2015-01-01

    Objective: To study the relationship between the target effective site concentration (Ce) of rocuronium and the degree of recovery from neuromuscular blockade in elderly patients. Methods: 50 elderly patients (ASA grade II) scheduled for selective surgical procedure under general anaesthesia were randomly divided into two groups, A and B, with 25 cases in each group. The Ce of rocuronium for intubation was 3 μg·ml-1 in both groups, and the Ce during operation were 0.8 and 1.0 μg·ml-1 in group A and B, respectively. When target controlled infusion of rocuronium was stopped, without the administration of reversal agents for neuromuscular blockade, the relationship between Ce and the first twitch height (T1) was studied by regression analysis. Results: There was a significant linear relationship between Ce and T1, and there was no statistical difference in regression coefficient and interception between group A and B (P>0.05). Conclusion: The degree of recovery from neuromuscular blockade could be judged by the target effective site concentration of rocuronium at the time of reversal from neuromuscular blockade in the elderly patients. PMID:26629159

  1. Regulatory T Cells in Patients with Idiopathic Thrombocytopenic Purpura.

    PubMed

    Akyol Erikçi, Alev; Karagöz, Bülent; Bilgi, Oğuz

    2016-06-05

    Immune thrombocytopenic purpura (ITP) is an immune-mediated bleeding disorder in which platelets are opsonized by autoantibodies and destroyed by an Fc receptor-mediated phagocytosis by the reticuloendothelial system within the spleen. Autoimmune processes are also considered in the pathogenesis of this disorder. CD4+CD25+FoxP3+ regulatory T (Treg) cells and CD8+CD28- Treg cells have roles in autoimmune diseases. We investigated these regulatory cells in ITP patients. We included 22 ITP patients and 16 age-matched healthy subjects. CD4+CD25+FoxP3+ Treg cells and CD8+CD28- cells were investigated by three-color flow cytometry. The ratios of these cell populations to total lymphocytes were calculated. Statistical analysis was carried out with the Mann-Whitney U test. CD4+CD25+ Treg cells were 9.69±3.70% and 12.99±5.58% in patients with ITP and controls, respectively. CD4+CD25highFoxP3+ cells were 27.72±19.74% and 27.55±23.98% in ITP patients and controls, respectively. The percentages of both of these cell types were not statistically significant when compared to the control group. We did not find any differences in ratios of CD4+CD25+FoxP3+ Treg cells or CD8+CD28- T cells in lymphocytes between patients and healthy subjects. We conclude that these circulatory cells are not different in ITP, but further studies are needed to explore the putative roles of these regulatory cells.

  2. Deciphering CD30 ligand biology and its role in humoral immunity

    PubMed Central

    Kennedy, Mary K; Willis, Cynthia R; Armitage, Richard J

    2006-01-01

    Ligands and receptors in the tumour necrosis factor (TNF) and tumour necrosis factor receptor (TNFR) superfamilies have been the subject of extensive investigation over the past 10–15 years. For certain TNFR family members, such as Fas and CD40, some of the consequences of receptor ligation were predicted before the identification and cloning of their corresponding ligands through in vitro functional studies using agonistic receptor-specific antibodies. For other members of the TNFR family, including CD30, cross-linking the receptor with specific antibodies failed to yield many clues about the functional significance of the relevant ligand–receptor interactions. In many instances, the subsequent availability of TNF family ligands in the form of recombinant protein facilitated the determination of biological consequences of interactions with their relevant receptor in both in vitro and in vivo settings. In the case of CD30 ligand (CD30L; CD153), definition of its biological role remained frustratingly elusive. Early functional studies using CD30L+ cells or agonistic CD30-specific antibodies logically focused attention on cell types that had been shown to express CD30, namely certain lymphoid malignancies and subsets of activated T cells. However, it was not immediately clear how the reported activities from these in vitro studies relate to the biological activity of CD30L in the more complex whole animal setting. Recently, results from in vivo models involving CD30 or CD30L gene disruption, CD30L overexpression, or pharmacological blockade of CD30/CD30L interactions have begun to provide clues about the role played by CD30L in immunological processes. In this review we consider the reported biology of CD30L and focus on results from several recent studies that point to an important role for CD30/CD30L interactions in humoral immune responses. PMID:16771849

  3. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection.

    PubMed

    Bolduc, Jean-François; Ouellet, Michel; Hany, Laurent; Tremblay, Michel J

    2017-02-15

    In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4 + T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4 + T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6 + CD4 + T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6 + CD4 + T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6 + CD4 + T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4 + T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6 + CD4 + T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6 + CD4 + T cells to productive HIV-1 infection. Copyright © 2017 American Society for Microbiology.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Jeremy, E-mail: jeremy.meyer@hcuge.ch; Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève; Lacotte, Stéphanie, E-mail: stephanie.lacotte@unige.ch

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yieldedmore » 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic –activated cell sorting step.« less

  5. Regulatory T cells inhibit acute IFN-γ synthesis without blocking T-helper cell type 1 (Th1) differentiation via a compartmentalized requirement for IL-10

    PubMed Central

    Sojka, Dorothy K.; Fowell, Deborah J.

    2011-01-01

    CD4+CD25+Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10–dependent or –independent) subject to the target T-cell stage of activation and its tissue location. PMID:22025707

  6. CD39 improves survival in microbial sepsis by attenuating systemic inflammation

    PubMed Central

    Csóka, Balázs; Németh, Zoltán H.; Törő, Gábor; Koscsó, Balázs; Kókai, Endre; Robson, Simon C.; Enjyoji, Keiichi; Rolandelli, Rolando H.; Erdélyi, Katalin; Pacher, Pál; Haskó, György

    2015-01-01

    Sepsis remains the leading cause of morbidity and mortality in critically ill patients. Excessive inflammation is a major cause of organ failure and mortality in sepsis. Ectonucleoside triphosphate diphosphohydrolase 1, ENTPDase1 (CD39) is a cell surface nucleotide-metabolizing enzyme, which degrades the extracellular purines ATP and ADP, thereby regulating purinergic receptor signaling. Although the role of purinergic receptor signaling in regulating inflammation and sepsis has been addressed previously, the role of CD39 in regulating the host’s response to sepsis is unknown. We found that the CD39 mimic apyrase (250 U/kg) decreased and knockout or pharmacologic blockade with sodium polyoxotungstate (5 mg/kg; IC50 ≈ 10 μM) of CD39 increased mortality of mice with polymicrobial sepsis induced by cecal ligation and puncture. CD39 decreased inflammation, organ damage, immune cell apoptosis, and bacterial load. Use of bone marrow chimeric mice revealed that CD39 expression on myeloid cells decreases inflammation in septic mice. CD39 expression is upregulated during sepsis in mice, as well as in both murine and human macrophages stimulated with Escherichia coli. Moreover, E. coli increases CD39 promoter activity in macrophages. Altogether, these data indicate CD39 as an evolutionarily conserved inducible protective pathway during sepsis. We propose CD39 as a novel therapeutic target in the management of sepsis.—Csóka, B., Németh, Z. H., Törő, G., Koscsó, B., Kókai, E., Robson, S. C., Enjyoji, K., Rolandelli, R. H., Erdélyi, K., Pacher, P., Haskó, G. CD39 improves survival in microbial sepsis by attenuating systemic inflammation. PMID:25318479

  7. Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection

    PubMed Central

    Bizzell, Erica; Madan-Lala, Ranjna

    2017-01-01

    Mycobacterium tuberculosis (Mtb) impairs dendritic cell (DC) functions and induces suboptimal antigen-specific CD4 T cell immune responses that are poorly protective. Mucosal T-helper cells producing IFN-γ (Th1) and IL-17 (Th17) are important for protecting against tuberculosis (TB), but the mechanisms by which DCs generate antigen-specific T-helper responses during Mtb infection are not well defined. We previously reported that Mtb impairs CD40 expression on DCs and restricts Th1 and Th17 responses. We now demonstrate that CD40-dependent costimulation is required to generate IL-17 responses to Mtb. CD40-deficient DCs were unable to induce antigen-specific IL-17 responses after Mtb infection despite the production of Th17-polarizing innate cytokines. Disrupting the interaction between CD40 on DCs and its ligand CD40L on antigen-specific CD4 T cells, genetically or via antibody blockade, significantly reduced antigen-specific IL-17 responses. Importantly, engaging CD40 on DCs with a multimeric CD40 agonist (CD40LT) enhanced antigen-specific IL-17 generation in ex vivo DC-T cell co-culture assays. Further, intratracheal instillation of Mtb-infected DCs treated with CD40LT significantly augmented antigen-specific Th17 responses in vivo in the lungs and lung-draining lymph nodes of mice. Finally, we show that boosting CD40-CD40L interactions promoted balanced Th1/Th17 responses in a setting of mucosal DC transfer, and conferred enhanced control of lung bacterial burdens following aerosol challenge with Mtb. Our results demonstrate that CD40 costimulation by DCs plays an important role in generating antigen-specific Th17 cells and targeting the CD40-CD40L pathway represents a novel strategy to improve adaptive immunity to TB. PMID:28767735

  8. T-Cell Surface Antigens and sCD30 as Biomarkers of the Risk of Rejection in Solid Organ Transplantation.

    PubMed

    Wieland, Eberhard; Shipkova, Maria

    2016-04-01

    T-cell activation is a characteristic of organ rejection. T cells, located in the draining lymph nodes of the transplant recipient, are faced with non-self-molecules presented by antigen presenting cells and become activated. Activated T cells are characterized by up-regulated surface antigens, such as costimulatory molecules, adhesion molecules, chemokine receptors, and major histocompatibility complex class II molecules. Surface antigen expression can be followed by flow cytometry using monoclonal antibodies in either cell function assays using donor-specific or nonspecific stimulation of isolated cells or whole blood and without stimulation on circulating lymphocytes. Molecules such as CD30 can be proteolytically cleaved off the surface of activated cells in vivo, and the determination of the soluble protein (sCD30) in serum or plasma is performed by immunoassays. As promising biomarkers for rejection and long-term transplant outcome, CD28 (costimulatory receptor for CD80 and CD86), CD154 (CD40 ligand), and sCD30 (tumor necrosis factor receptor superfamily, member 8) have been identified. Whereas cell function assays are time-consuming laboratory-developed tests which are difficult to standardize, commercial assays are frequently available for soluble proteins. Therefore, more data from clinical trials have been published for sCD30 compared with the surface antigens on activated T cells. This short review summarizes the association between selected surface antigens and immunosuppression, and rejection in solid organ transplantation.

  9. Increased PD-1+ and TIM-3+ TILs during cetuximab therapy inversely correlates with response in head and neck cancer patients

    PubMed Central

    Jie, Hyun-Bae; Srivastava, Raghvendra M.; Argiris, Athanassios; Bauman, Julie E.; Kane, Lawrence P.; Ferris, Robert L.

    2017-01-01

    Despite emerging appreciation for the important role of immune checkpoint receptors in regulating the effector functions of T cells, it is unknown whether their expression is involved in determining the clinical outcome in response to cetuximab therapy. We examined the expression patterns of immune checkpoint receptors (including PD-1, CTLA-4, and TIM-3) and cytolytic molecules (including granzyme B and perforin) of CD8+ tumor-infiltrating lymphocytes (TILs) and compared them to those of peripheral blood T lymphocytes (PBLs) in patients with head and neck cancer (HNSCC) during cetuximab therapy. The frequency of PD-1 and TIM-3 expression was significantly increased in CD8+ TILs compared to CD8+ PBLs (P = 0.008 and P = 0.02, respectively). This increased CD8+ TIL population co-expressed granzyme B/perforin and PD-1/TIM-3, which suggests a regulatory role for these immune checkpoint receptors in cetuximab-promoting cytolytic activities of CD8+ TIL. Indeed, the increased frequency of PD-1+ and TIM-3+ CD8+ TILs was inversely correlated with clinical outcome of cetuximab therapy. These findings support the use of PD-1 and TIM-3 as biomarkers to reflect immune status of CD8+ T cells in the tumor microenvironment during cetuximab therapy. Blockade of these immune checkpoint receptors might enhance cetuximab-based cancer immunotherapy to reverse CD8+ TIL dysfunction, thus potentially improving clinical outcomes of HNSCC patients. PMID:28408386

  10. PD-1+ CD8+ T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients

    PubMed Central

    Wu, X; Zhang, H; Xing, Q; Cui, J; Li, J; Li, Y; Tan, Y; Wang, S

    2014-01-01

    Background: The blockade of PD-1–PD-L1 pathway is emerging as an effective therapeutic strategy for several advanced cancers. But the immune regulatory role of PD-1–PD-L1 pathway is not clear in colorectal cancer (CRC) patients. This study aims to evaluate the role of PD-1–PD-L1 pathway in CD8+ T-cell functions in tumour-draining lymph nodes (TDLNs) and tumours of CRC patients. Methods: PD-1 expression on CD8+ T cells was examined by flow cytometry, and PD-L1 expression in TDLNs and tumour tissues were examined by immunohistochemistry. Production of IFN-γ, IL-2 and expression of granzyme B, perforin in CD8+ T cells were detected by intracellular staining. Results: PD-1 expression is markedly upregulated on CD8+ T cells in TDLNs and tumours compared with that in peripheral blood. PD-1-expressing CD8+ T cells are competent for production of cytokine (IL-2 and IFN-γ) and perforin in the tumour-free lymph nodes (TFLNs), but exhibit exhausted phenotypes in tumours. In addition, PD-L1 is highly expressed in tumours rather than TFLNs, which is closely correlated with the impairment of IFN-γ production of tumour-infiltrating PD-1+ CD8+ T cells. Conclusions: Our findings suggest a suppressive effect of PD-1 on CD8+ T-cell function in tumours, but not in TFLNs. PMID:25093496

  11. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling

    PubMed Central

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-01-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after αCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve αCD3/CD28-stimulated CD8 cells. Consequently, αCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs. PMID:19740334

  12. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling.

    PubMed

    Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A

    2009-09-01

    Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after alphaCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve alphaCD3/CD28-stimulated CD8 cells. Consequently, alphaCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs.

  13. Behavioral analysis of the consequences of chronic blockade of NMDA-type glutamate receptors in the early postnatal period in rats.

    PubMed

    Latysheva, N V; Raevskii, K S

    2003-02-01

    Considering data on the possible glutamatergic nature of the pathogenesis of schizophrenia, we attempted to model cognitive derangements in animals by chronic blockade of NMDA glutamate receptors. Wistar rats received daily s.c. injections of the non-competitive NMDA glutamate receptor antagonist MK-801 (0.05 mg/kg) from days 7 to day 49 of postnatal life. One day after the antagonist injections given on days 27 and 28 of life, animals of the experimental group showed decreased levels of spontaneous movement and orientational-investigative activity as compared with controls, where there was no change in the elevated locomotor reaction produced in response to the direct action of MK-801. These animals showed decreases in the level of anxiety (on day 40 of life) and derangement in spatial learning with food reinforcement (days 50-54 of life). It is suggested that early neonatal blockade of NMDA glutamate receptors leads to the development in animals of disturbances to situational perception and assessment of incoming sensory information.

  14. Steroid Resistant CD8+CD28null NKT-Like Pro-inflammatory Cytotoxic Cells in Chronic Obstructive Pulmonary Disease.

    PubMed

    Hodge, Greg; Hodge, Sandra

    2016-01-01

    Corticosteroid resistance is a major barrier to effective treatment in chronic obstructive pulmonary disease (COPD), and failure to suppress systemic inflammation in these patients may result in increased comorbidity. Although much of the research to date has focused on the role of macrophages and neutrophils involved in inflammation in the airways in COPD, recent evidence suggests that CD8 + T cells may be central regulators of the inflammatory network in this disease. CD8 + cytotoxic pro-inflammatory T cells have been shown to be increased in the peripheral blood and airways in patients with COPD, whereas smokers that have not progressed to COPD only show an increase in the lungs. Although the mechanisms underlying steroid resistance in these lymphocytes is largely unknown, new research has identified a role for cytotoxic pro-inflammatory CD8 + T-cells and CD8 + natural killer T-like (NKT-like) cells. Increased numbers of these cells and their significant loss of the co-stimulatory molecule CD28 have been shown in COPD, consistent with findings in the elderly and in clinical conditions involving chronic activation of the immune system. In COPD, these senescent cells expressed increased levels of the cytotoxic mediators, perforin and granzyme b, and the pro-inflammatory cytokines, IFNγ and TNFα. They also demonstrated increased cytotoxicity toward lung epithelial cells and importantly were resistant to immunosuppression by corticosteroids compared with their CD28 + counterparts. Further research has shown these cells evade the immunosuppressive effects of steroids via multiple mechanisms. This mini review will focus on cytotoxic pro-inflammatory CD8 + CD28 null NKT-like cells involved in COPD and novel approaches to reverse steroid resistance in these cells.

  15. Steroid Resistant CD8+CD28null NKT-Like Pro-inflammatory Cytotoxic Cells in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Hodge, Greg; Hodge, Sandra

    2016-01-01

    Corticosteroid resistance is a major barrier to effective treatment in chronic obstructive pulmonary disease (COPD), and failure to suppress systemic inflammation in these patients may result in increased comorbidity. Although much of the research to date has focused on the role of macrophages and neutrophils involved in inflammation in the airways in COPD, recent evidence suggests that CD8+ T cells may be central regulators of the inflammatory network in this disease. CD8+ cytotoxic pro-inflammatory T cells have been shown to be increased in the peripheral blood and airways in patients with COPD, whereas smokers that have not progressed to COPD only show an increase in the lungs. Although the mechanisms underlying steroid resistance in these lymphocytes is largely unknown, new research has identified a role for cytotoxic pro-inflammatory CD8+ T-cells and CD8+ natural killer T-like (NKT-like) cells. Increased numbers of these cells and their significant loss of the co-stimulatory molecule CD28 have been shown in COPD, consistent with findings in the elderly and in clinical conditions involving chronic activation of the immune system. In COPD, these senescent cells expressed increased levels of the cytotoxic mediators, perforin and granzyme b, and the pro-inflammatory cytokines, IFNγ and TNFα. They also demonstrated increased cytotoxicity toward lung epithelial cells and importantly were resistant to immunosuppression by corticosteroids compared with their CD28+ counterparts. Further research has shown these cells evade the immunosuppressive effects of steroids via multiple mechanisms. This mini review will focus on cytotoxic pro-inflammatory CD8+CD28null NKT-like cells involved in COPD and novel approaches to reverse steroid resistance in these cells. PMID:28066427

  16. Cannabinoids Inhibit T-cells via Cannabinoid Receptor 2 in an in vitro Assay for Graft Rejection, the Mixed Lymphocyte Reaction

    PubMed Central

    Robinson, Rebecca Hartzell; Meissler, Joseph J.; Breslow-Deckman, Jessica M.; Gaughan, John; Adler, Martin W.; Eisenstein, Toby K.

    2013-01-01

    Cannabinoids are known to have anti-inflammatory and immunomodulatory properties. Cannabinoid receptor 2 (CB2) is expressed mainly on leukocytes and is the receptor implicated in mediating many of the effects of cannabinoids on immune processes. This study tested the capacity of Δ9-tetrahydrocannabinol (Δ9-THC) and of two CB2-selective agonists to inhibit the murine Mixed Lymphocyte Reaction (MLR), an in vitro correlate of graft rejection following skin and organ transplantation. Both CB2-selective agonists and Δ9-THC significantly suppressed the MLR in a dose dependent fashion. The inhibition was via CB2, as suppression could be blocked by pretreatment with a CB2-selective antagonist, but not by a CB1 antagonist, and none of the compounds suppressed the MLR when splenocytes from CB2 deficient mice were used. The CB2 agonists were shown to act directly on T-cells, as exposure of CD3+ cells to these compounds completely inhibited their action in a reconstituted MLR. Further, the CB2-selective agonists completely inhibited proliferation of purified T-cells activated by anti-CD3 and anti-CD28 antibodies. T-cell function was decreased by the CB2 agonists, as an ELISA of MLR culture supernatants revealed IL-2 release was significantly decreased in the cannabinoid treated cells. Together, these data support the potential of this class of compounds as useful therapies to prolong graft survival in transplant patients. PMID:23824763

  17. Genetic Polymorphism at CCL5 Is Associated With Protection in Chagas’ Heart Disease: Antagonistic Participation of CCR1+ and CCR5+ Cells in Chronic Chagasic Cardiomyopathy

    PubMed Central

    Batista, Angelica Martins; Alvarado-Arnez, Lucia Elena; Alves, Silvia Marinho; Melo, Gloria; Pereira, Isabela Resende; Ruivo, Leonardo Alexandre de Souza; da Silva, Andrea Alice; Gibaldi, Daniel; da Silva, Thayse do E. S. Protásio; de Lorena, Virginia Maria Barros; de Melo, Adriene Siqueira; de Araújo Soares, Ana Karine; Barros, Michelle da Silva; Costa, Vláudia Maria Assis; Cardoso, Cynthia C.; Pacheco, Antonio G.; Carrazzone, Cristina; Oliveira, Wilson; Moraes, Milton Ozório; Lannes-Vieira, Joseli

    2018-01-01

    Chronic cardiomyopathy is the main clinical manifestation of Chagas disease (CD), a disease caused by Trypanosoma cruzi infection. A hallmark of chronic chagasic cardiomyopathy (CCC) is a fibrogenic inflammation mainly composed of CD8+ and CD4+ T cells and macrophages. CC-chemokine ligands and receptors have been proposed to drive cell migration toward the heart tissue of CD patients. Single nucleotide polymorphisms (SNPs) in CC-chemokine ligand and receptor genes may determine protein expression. Herein, we evaluated the association of SNPs in the CC-chemokines CCL2 (rs1024611) and CCL5 (rs2107538, rs2280788) and the CCL5/RANTES receptors CCR1 (rs3181077, rs1491961, rs3136672) and CCR5 (rs1799987) with risk and progression toward CCC. We performed a cross-sectional association study of 406 seropositive patients from endemic areas for CD in the State of Pernambuco, Northeast Brazil. The patients were classified as non-cardiopathic (A, n = 110) or cardiopathic (mild, B1, n = 163; severe, C, n = 133). Serum levels of CCL5 and CCL2/MCP-1 were elevated in CD patients but were neither associated with risk/severity of CCC nor with SNP genotypes. After logistic regression analysis with adjustment for the covariates gender and ethnicity, CCL5 −403 (rs2107538) CT heterozygotes (OR = 0.5, P-value = 0.04) and T carriers (OR = 0.5, P-value = 0.01) were associated with protection against CCC. To gain insight into the participation of the CCL5–CCR5/CCR1 axis in CCC, mice were infected with the Colombian T. cruzi strain. Increased CCL5 concentrations were detected in cardiac tissue. In spleen, frequencies of CCR1+ CD8+ T cells and CD14+ macrophages were decreased, while frequencies of CCR5+ cells were increased. Importantly, CCR1+CD14+ macrophages were mainly IL-10+, while CCR5+ cells were mostly TNF+. CCR5-deficient infected mice presented reduced TNF concentrations and injury in heart tissue. Selective blockade of CCR1 (Met-RANTES therapy) in infected Ccr5−/− mice supported a protective role for CCR1 in CCC. Furthermore, parasite antigen stimulation of CD patient blood cells increased the frequency of CCR1+CD8+ T cells and CCL5 production. Collectively, our data support that a genetic variant of CCL5 and CCR1+ cells confer protection against Chagas heart disease, identifying the CCL5-CCR1 axis as a target for immunostimulation. PMID:29696014

  18. Genetic Polymorphism at CCL5 Is Associated With Protection in Chagas' Heart Disease: Antagonistic Participation of CCR1+ and CCR5+ Cells in Chronic Chagasic Cardiomyopathy.

    PubMed

    Batista, Angelica Martins; Alvarado-Arnez, Lucia Elena; Alves, Silvia Marinho; Melo, Gloria; Pereira, Isabela Resende; Ruivo, Leonardo Alexandre de Souza; da Silva, Andrea Alice; Gibaldi, Daniel; da Silva, Thayse do E S Protásio; de Lorena, Virginia Maria Barros; de Melo, Adriene Siqueira; de Araújo Soares, Ana Karine; Barros, Michelle da Silva; Costa, Vláudia Maria Assis; Cardoso, Cynthia C; Pacheco, Antonio G; Carrazzone, Cristina; Oliveira, Wilson; Moraes, Milton Ozório; Lannes-Vieira, Joseli

    2018-01-01

    Chronic cardiomyopathy is the main clinical manifestation of Chagas disease (CD), a disease caused by Trypanosoma cruzi infection. A hallmark of chronic chagasic cardiomyopathy (CCC) is a fibrogenic inflammation mainly composed of CD8 + and CD4 + T cells and macrophages. CC-chemokine ligands and receptors have been proposed to drive cell migration toward the heart tissue of CD patients. Single nucleotide polymorphisms (SNPs) in CC-chemokine ligand and receptor genes may determine protein expression. Herein, we evaluated the association of SNPs in the CC-chemokines CCL2 (rs1024611) and CCL5 (rs2107538, rs2280788) and the CCL5/RANTES receptors CCR1 (rs3181077, rs1491961, rs3136672) and CCR5 (rs1799987) with risk and progression toward CCC. We performed a cross-sectional association study of 406 seropositive patients from endemic areas for CD in the State of Pernambuco, Northeast Brazil. The patients were classified as non-cardiopathic (A, n  = 110) or cardiopathic (mild, B1, n  = 163; severe, C, n  = 133). Serum levels of CCL5 and CCL2/MCP-1 were elevated in CD patients but were neither associated with risk/severity of CCC nor with SNP genotypes. After logistic regression analysis with adjustment for the covariates gender and ethnicity, CCL5 -403 (rs2107538) CT heterozygotes (OR = 0.5, P -value = 0.04) and T carriers (OR = 0.5, P -value = 0.01) were associated with protection against CCC. To gain insight into the participation of the CCL5-CCR5/CCR1 axis in CCC, mice were infected with the Colombian T. cruzi strain. Increased CCL5 concentrations were detected in cardiac tissue. In spleen, frequencies of CCR1 + CD8 + T cells and CD14 + macrophages were decreased, while frequencies of CCR5 + cells were increased. Importantly, CCR1 + CD14 + macrophages were mainly IL-10 + , while CCR5 + cells were mostly TNF + . CCR5-deficient infected mice presented reduced TNF concentrations and injury in heart tissue. Selective blockade of CCR1 (Met-RANTES therapy) in infected Ccr5 -/- mice supported a protective role for CCR1 in CCC. Furthermore, parasite antigen stimulation of CD patient blood cells increased the frequency of CCR1 + CD8 + T cells and CCL5 production. Collectively, our data support that a genetic variant of CCL5 and CCR1 + cells confer protection against Chagas heart disease, identifying the CCL5-CCR1 axis as a target for immunostimulation.

  19. Cytotoxic CD4+ T Cells Drive Multiple Sclerosis Progression.

    PubMed

    Peeters, Liesbet M; Vanheusden, Marjan; Somers, Veerle; Van Wijmeersch, Bart; Stinissen, Piet; Broux, Bieke; Hellings, Niels

    2017-01-01

    Multiple sclerosis (MS) is the leading cause of chronic neurological disability in young adults. The clinical disease course of MS varies greatly between individuals, with some patients progressing much more rapidly than others, making prognosis almost impossible. We previously discovered that cytotoxic CD4+ T cells (CD4+ CTL), identified by the loss of CD28, are able to migrate to sites of inflammation and that they contribute to tissue damage. Furthermore, in an animal model for MS, we showed that these cells are correlated with inflammation, demyelination, and disability. Therefore, we hypothesize that CD4+ CTL drive progression of MS and have prognostic value. To support this hypothesis, we investigated whether CD4+ CTL are correlated with worse clinical outcome and evaluated the prognostic value of these cells in MS. To this end, the percentage of CD4+CD28null T cells was measured in the blood of 176 patients with relapsing-remitting MS (=baseline). Multimodal evoked potentials (EP) combining information on motoric, visual, and somatosensoric EP, as well as Kurtzke expanded disability status scale (EDSS) were used as outcome measurements at baseline and after 3 and 5 years. The baseline CD4+CD28null T cell percentage is associated with EP ( P  = 0.003, R 2  = 0.28), indicating a link between these cells and disease severity. In addition, the baseline CD4+CD28null T cell percentage has a prognostic value since it is associated with EP after 3 years ( P  = 0.005, R 2  = 0.29) and with EP and EDSS after 5 years ( P  = 0.008, R 2  = 0.42 and P  = 0.003, R 2  = 0.27). To the best of our knowledge, this study provides the first direct link between the presence of CD4+ CTL and MS disease severity, as well as its prognostic value. Therefore, we further elaborate on two important research perspectives: 1° investigating strategies to block or reverse pathways in the formation of these cells resulting in new treatments that slow down MS disease progression, 2° including immunophenotyping in prediction modeling studies to aim for personalized medicine.

  20. A Proteomic View at T Cell Costimulation

    PubMed Central

    Hombach, Andreas A.; Recktenwald, Christian V.; Dressler, Sven P.; Abken, Hinrich; Seliger, Barbara

    2012-01-01

    The “two-signal paradigm” in T cell activation predicts that the cooperation of “signal 1,” provided by the T cell receptor (TCR) through engagement of major histocompatility complex (MHC)-presented peptide, with “signal 2″ provided by costimulatory molecules, the prototype of which is CD28, is required to induce T cell effector functions. While the individual signalling pathways are well understood, little is known about global changes in the proteome pattern during TCR/CD28-mediated activation. Therefore, comparative 2-DE-based proteome analyses of CD3+ CD69- resting T cells versus cells incubated with (i) the agonistic anti-CD3 antibody OKT3 mimicking signal 1 in absence or presence of IL-2 and/or with (ii) the agonistic antibody 15E8 triggering CD28-mediated signaling were performed. Differentially regulated spots were defined leading to the identification of proteins involved in the regulation of the metabolism, shaping and maintenance of the cytoskeleton and signal transduction. Representative members of the differentially expressed protein families, such as calmodulin (CALM), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), L-lactate dehydrogenase (LDH), Rho GDP-dissociation inhibitor 2 (GDIR2), and platelet basic protein (CXCL7), were independently verified by flow cytometry. Data provide a detailed map of individual protein alterations at the global proteome level in response to TCR/CD28-mediated T cell activation. PMID:22539942

  1. Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody-Activated Chimeric Antigen Receptor-Modified T Cells.

    PubMed

    Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M

    2017-07-01

    The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target.

    PubMed

    Manguso, Robert T; Pope, Hans W; Zimmer, Margaret D; Brown, Flavian D; Yates, Kathleen B; Miller, Brian C; Collins, Natalie B; Bi, Kevin; LaFleur, Martin W; Juneja, Vikram R; Weiss, Sarah A; Lo, Jennifer; Fisher, David E; Miao, Diana; Van Allen, Eliezer; Root, David E; Sharpe, Arlene H; Doench, John G; Haining, W Nicholas

    2017-07-27

    Immunotherapy with PD-1 checkpoint blockade is effective in only a minority of patients with cancer, suggesting that additional treatment strategies are needed. Here we use a pooled in vivo genetic screening approach using CRISPR-Cas9 genome editing in transplantable tumours in mice treated with immunotherapy to discover previously undescribed immunotherapy targets. We tested 2,368 genes expressed by melanoma cells to identify those that synergize with or cause resistance to checkpoint blockade. We recovered the known immune evasion molecules PD-L1 and CD47, and confirmed that defects in interferon-γ signalling caused resistance to immunotherapy. Tumours were sensitized to immunotherapy by deletion of genes involved in several diverse pathways, including NF-κB signalling, antigen presentation and the unfolded protein response. In addition, deletion of the protein tyrosine phosphatase PTPN2 in tumour cells increased the efficacy of immunotherapy by enhancing interferon-γ-mediated effects on antigen presentation and growth suppression. In vivo genetic screens in tumour models can identify new immunotherapy targets in unanticipated pathways.

  3. Signal transduction, plasma membrane calcium movements, and pigment translocation in freshwater shrimp chromatophores.

    PubMed

    Milograna, Sarah Ribeiro; Bell, Fernanda Tinti; McNamara, John Campbell

    2010-11-01

    Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by ω-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation.

  4. Blocking Indolamine-2,3-Dioxygenase Rebound Immune Suppression Boosts Antitumor Effects of Radio-Immunotherapy in Murine Models and Spontaneous Canine Malignancies.

    PubMed

    Monjazeb, Arta M; Kent, Michael S; Grossenbacher, Steven K; Mall, Christine; Zamora, Anthony E; Mirsoian, Annie; Chen, Mingyi; Kol, Amir; Shiao, Stephen L; Reddy, Abhinav; Perks, Julian R; T N Culp, William; Sparger, Ellen E; Canter, Robert J; Sckisel, Gail D; Murphy, William J

    2016-09-01

    Previous studies demonstrate that intratumoral CpG immunotherapy in combination with radiotherapy acts as an in-situ vaccine inducing antitumor immune responses capable of eradicating systemic disease. Unfortunately, most patients fail to respond. We hypothesized that immunotherapy can paradoxically upregulate immunosuppressive pathways, a phenomenon we term "rebound immune suppression," limiting clinical responses. We further hypothesized that the immunosuppressive enzyme indolamine-2,3-dioxygenase (IDO) is a mechanism of rebound immune suppression and that IDO blockade would improve immunotherapy efficacy. We examined the efficacy and immunologic effects of a novel triple therapy consisting of local radiotherapy, intratumoral CpG, and systemic IDO blockade in murine models and a pilot canine clinical trial. In murine models, we observed marked increase in intratumoral IDO expression after treatment with radiotherapy, CpG, or other immunotherapies. The addition of IDO blockade to radiotherapy + CpG decreased IDO activity, reduced tumor growth, and reduced immunosuppressive factors, such as regulatory T cells in the tumor microenvironment. This triple combination induced systemic antitumor effects, decreasing metastases, and improving survival in a CD8(+) T-cell-dependent manner. We evaluated this novel triple therapy in a canine clinical trial, because spontaneous canine malignancies closely reflect human cancer. Mirroring our mouse studies, the therapy was well tolerated, reduced intratumoral immunosuppression, and induced robust systemic antitumor effects. These results suggest that IDO maintains immune suppression in the tumor after therapy, and IDO blockade promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation. Clin Cancer Res; 22(17); 4328-40. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Interaction of Macrophage Antigen 1 and CD40 Ligand Leads to IL-12 Production and Resistance in CD40-Deficient Mice Infected with Leishmania major.

    PubMed

    Okwor, Ifeoma; Jia, Ping; Uzonna, Jude E

    2015-10-01

    Although some studies indicate that the interaction of CD40 and CD40L is critical for IL-12 production and resistance to cutaneous leishmaniasis, others suggest that this pathway may be dispensable. In this article, we compared the outcome of Leishmania major infection in both CD40- and CD40L-deficient mice after treatment with rIL-12. We show that although CD40 and CD40L knockout (KO) mice are highly susceptible to L. major, treatment with rIL-12 during the first 2 wk of infection causes resolution of cutaneous lesions and control of parasite replication. Interestingly, although treated CD40 KO mice remained healed, developed long-term immunity, and were resistant to secondary L. major challenge, treated CD40L KO reactivated their lesion after cessation of rIL-12 treatment. Disease reactivation in CD40L KO mice was associated with impaired IL-12 and IFN-γ production and a concomitant increase in IL-4 production by cells from lymph nodes draining the infection site. We show that IL-12 production by dendritic cells and macrophages via CD40L-macrophage Ag 1 (Mac-1) interaction is responsible for the sustained resistance in CD40 KO mice after cessation of rIL-12 treatment. Blockade of CD40L-Mac-1 interaction with anti-Mac-1 mAb led to spontaneous disease reactivation in healed CD40 KO mice, which was associated with impaired IFN-γ response and loss of infection-induced immunity after secondary L. major challenge. Collectively, our data reveal a novel role of CD40L-Mac-1 interaction in IL-12 production, development, and maintenance of optimal Th1 immunity in mice infected with L. major. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Deep sequencing and flow cytometric characterization of expanded effector memory CD8+CD57+ T cells frequently reveals T-cell receptor Vβ oligoclonality and CDR3 homology in acquired aplastic anemia.

    PubMed

    Giudice, Valentina; Feng, Xingmin; Lin, Zenghua; Hu, Wei; Zhang, Fanmao; Qiao, Wangmin; Ibanez, Maria Del Pilar Fernandez; Rios, Olga; Young, Neal S

    2018-05-01

    Oligoclonal expansion of CD8 + CD28 - lymphocytes has been considered indirect evidence for a pathogenic immune response in acquired aplastic anemia. A subset of CD8 + CD28 - cells with CD57 expression, termed effector memory cells, is expanded in several immune-mediated diseases and may have a role in immune surveillance. We hypothesized that effector memory CD8 + CD28 - CD57 + cells may drive aberrant oligoclonal expansion in aplastic anemia. We found CD8 + CD57 + cells frequently expanded in the blood of aplastic anemia patients, with oligoclonal characteristics by flow cytometric Vβ usage analysis: skewing in 1-5 Vβ families and frequencies of immunodominant clones ranging from 1.98% to 66.5%. Oligoclonal characteristics were also observed in total CD8 + cells from aplastic anemia patients with CD8 + CD57 + cell expansion by T-cell receptor deep sequencing, as well as the presence of 1-3 immunodominant clones. Oligoclonality was confirmed by T-cell receptor repertoire deep sequencing of enriched CD8 + CD57 + cells, which also showed decreased diversity compared to total CD4 + and CD8 + cell pools. From analysis of complementarity-determining region 3 sequences in the CD8 + cell pool, a total of 29 sequences were shared between patients and controls, but these sequences were highly expressed in aplastic anemia subjects and also present in their immunodominant clones. In summary, expansion of effector memory CD8 + T cells is frequent in aplastic anemia and mirrors Vβ oligoclonal expansion. Flow cytometric Vβ usage analysis combined with deep sequencing technologies allows high resolution characterization of the T-cell receptor repertoire, and might represent a useful tool in the diagnosis and periodic evaluation of aplastic anemia patients. (Registered at clinicaltrials.gov identifiers: 00001620, 01623167, 00001397, 00071045, 00081523, 00961064 ). Copyright © 2018 Ferrata Storti Foundation.

  7. Role of water channel AQP-CD in water retention in SIADH and cirrhotic rats.

    PubMed

    Fujita, N; Ishikawa, S E; Sasaki, S; Fujisawa, G; Fushimi, K; Marumo, F; Saito, T

    1995-12-01

    We determined whether aquaporin of collecting duct (AQP-CD) is involved in pathogenesis of water retention in rats with experimental models of syndrome of inappropriate secretion of antidiuretic hormone (SIADH) and liver cirrhosis. SIADH rats were made by administering 1-desamino-8-D-arginine vasopressin (DDAVP) subcutaneously and providing them with a liquid diet. Serum Na levels decreased to < 120 meq/l on day 2, and hyponatremia persisted throughout the rest of observation period. Six hours after the DDAVP infusion, the expression of AQP-CD mRNA significantly increased by 198%, followed by > 144% increases in its expression during the 14-day observation period. On day 7, the increased expression of AQP-CD mRNA was abolished after the administration of an antidiuretic, nonpeptide arginine vasopressin (AVP) antagonist, OPC-31260, which was closely related to a marked diuresis and a prompt normalization of serum Na levels in SIADH rats. Rats were made cirrhotic by injecting a mixture of carbon tetrachloride and olive oil subcutaneously for 3 mo. The expression of AQP-CD mRNA was increased by 164% in the decompensated cirrhotic rats. The blockade of AVP action by OPC-31260 significantly diminished its expression. These results indicate that water channel AQP-CD plays an important role in water retention in pathological states of SIADH and liver cirrhosis.

  8. Foxp3 Expression is Required for the Induction of Therapeutic Tissue Tolerance1

    PubMed Central

    Regateiro, Frederico S.; Chen, Ye; Kendal, Adrian R.; Hilbrands, Robert; Adams, Elizabeth; Cobbold, Stephen P.; Ma, Jianbo; Andersen, Kristian G.; Betz, Alexander G.; Zhang, Mindy; Madhiwalla, Shruti; Roberts, Bruce; Waldmann, Herman; Nolan, Kathleen F.; Howie, Duncan

    2012-01-01

    CD4+Foxp3+ Treg are essential for immune homeostasis and maintenance of self-tolerance. They are produced in the thymus and also generated de novo in the periphery in a TGFβ dependent manner. Foxp3+ Treg are also required to achieve tolerance to transplanted tissues when induced by co receptor or co stimulation blockade. Using TCR transgenic mice to avoid issues of autoimmune pathology, we show that Foxp3 expression is both necessary and sufficient for tissue tolerance by coreceptor blockade. Moreover, the known need in tolerance induction for TGFβ signalling to T cells can wholly be explained by its role in induction of Foxp3, as such signalling proved dispensable for the suppressive process. We analysed the relative contribution of TGFβ and Foxp3 to the transcriptome of TGFβ-induced Treg and showed that TGFβ elicited a large set of down-regulated signature genes. The number of genes uniquely modulated due to the influence of Foxp3 alone was surprisingly limited. Thus, despite the large genetic influence of TGFβ exposure on iTreg, the crucial Foxp3-influenced signature independent of TGFβ is small. Retroviral mediated conditional nuclear expression of Foxp3 proved sufficient to confer transplant-suppressive potency on CD4+ T cells, and was lost once nuclear Foxp3 expression was extinguished. These data support a dual role for TGFβ and Foxp3 in induced tolerance, where TGFβ stimulates Foxp3 expression, whose sustained expression is then associated with acquisition of tolerance. PMID:22988034

  9. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada.

    PubMed

    Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Constantineau, Simon; Munro, Lara; Labrecque, Michel

    2017-06-03

    The phytoextraction of the trace elements (TEs) As, Cd, Cu, Ni, Pb, and Zn by willow cultivars (Fish Creek, SV1 and SX67) was measured during a 3-year field trial in a mildly contaminated soil. Biomass ranged from 2.8 to 4.4 Mg/ha/year at 30,000 plants/ha. Shoots (62%) were the main component followed by leaves (23%) and roots (15%). Biomass was positively linked to soluble soil dissolved organic carbon, K, and Mg, while TEs, not Cd and Zn, had a negative effect. The TE concentration ranking was: Zn > Cu > Cd > Ni, Pb > As, and distribution patterns were: (i) minima in shoots (As, Ni), (ii) maxima in leaves (Cd, Zn), or (iii) maxima in roots (Cu, Pb). Correlations between soil and plant TE were significant for the six TEs in roots. The amounts extracted were at a maximum for Zn, whereas Fish Creek and SV1 extracted more TE than SX67. More than 60% (91-94% for Cd and Zn) of the total TE was in the aboveground parts. Uptake increased with time because of higher biomass. Fertilization, the selection of cultivars, and the use of complementary plants are required to improve productivity and Cd and Zn uptake.

  10. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders.« less

  11. Interactive Effects of Snps Located Within CD28/B7Pathway and Environment on Susceptibility to Recurrent Spontaneous Abortion.

    PubMed

    Wang, Guiling; Sun, Jing

    2017-01-01

    This study was aimed to explore the interaction between environment and CD28/B7 pathway to provide the potential epidemiology for prevention and treatment of recurrent spontaneous abortion (RSA). The retrospective study included 630 RSA cases and 1320 healthy women during their middle and late prenatal care. Their living environment was investigated, and the influence of environmental factors on pregnancy abortion was analyzed. The genomic DNAs were extracted from the study subjects, and the polymorphisms of CD28 and B7 were analyzed. Finally, the interaction of gene and environment on RSA was analyzed with the logistic regression analyses. The multi-variate regression analysis indicated that vitamin supplement, intake of fresh fruits or vegetables, night shift, staying up late, history miscarriage, as well as history induced abortion were, independently, risk factors for RSA (all P< 0.05). Moreover, rs3116496 (T>C), rs3181098 (G>A) and rs3181100 (G>C) of CD28, rs1915087 (C>T) of B7-2, as well as rs6804441 (A>G) and rs41271391 (G>T) of B7-1 were correlated with modified RSA risk (all P< 0.05). The haplotypes TGT and TAG could also regulate the risk of RSA (both P< 0.05). The synthetic influences of the aforementioned SNPs and environmental factors could also significantly affect the susceptibility to RSA (all P< 0.05). The interaction of environment and SNPs of CD28/B7 pathway on RSA risk was distinct from CD28/B7 pathway or environment alone. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma

    PubMed Central

    Lou, Yanyan; Diao, Lixia; Cuentas, Edwin Roger Parra; Denning, Warren L.; Chen, Limo; Fan, Youhong; Byers, Lauren A.; Wang, Jing; Papadimitrakopoulou, Vassiliki; Behrens, Carmen; Rodriguez, Jaime Canales; Hwu, Patrick; Wistuba, Ignacio I.; Heymach, John V.; Gibbons, Don L.

    2016-01-01

    Purpose Promising results in the treatment of NSCLC have been seen with agents targeting immune checkpoints, such as PD-1 or PD-L1. However, only a select group of patients respond to these interventions. The identification of biomarkers that predict clinical benefit to immune checkpoint blockade is critical to successful clinical translation of these agents. Methods We conducted an integrated analysis of three independent large datasets, including The Cancer Genome Atlas (TCGA) of lung adenocarcinoma and two datasets from MD Anderson Cancer Center, Profiling of Resistance patterns and Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax (named PROSPECT) and Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination (named BATTLE-1). Comprehensive analysis of mRNA gene expression, reverse phase protein array (RPPA), immunohistochemistry and correlation with clinical data were performed. Results Epithelial-mesenchymal transition (EMT) is highly associated with an inflammatory tumor microenvironment in lung adenocarcinoma, independent of tumor mutational burden. We found immune activation co-existent with elevation of multiple targetable immune checkpoint molecules, including PD-L1, PD-L2, PD-1, TIM-3, B7-H3, BTLA and CTLA-4, along with increases in tumor infiltration by CD4+Foxp3+ regulatory T cells in lung adenocarcinomas that displayed an EMT phenotype. Furthermore, we identify B7-H3 as a prognostic marker for NSCLC. Conclusions The strong association between EMT status and an inflammatory tumor microenvironment with elevation of multiple targetable immune checkpoint molecules warrants further investigation of using EMT as a predictive biomarker for immune checkpoint blockade agents and other immunotherapies in NSCLC and possibly a broad range of other cancers. PMID:26851185

  13. Prospective analysis of adoptive TIL therapy in patients with metastatic melanoma: response, impact of anti-CTLA4, and biomarkers to predict clinical outcome.

    PubMed

    Forget, Marie-Andrée; Haymaker, Cara; Hess, Kenneth R; Meng, Yuzhong Jeff; Creasy, Caitlin; Karpinets, Tatiana V; Fulbright, Orenthial J; Roszik, Jason; Woodman, Scott E; Kim, Young Uk; Sakellariou-Thompson, Donastas; Bhatta, Ankit; Wahl, Arely; Flores, Esteban; Thorsen, Shawne T; Tavera, Rene J; Ramachandran, Renjith; Gonzalez, Audrey M; Toth, Christopher; Wardell, Seth; Mansaray, Rahmatu; Patel, Vruti; Carpio, Destiny Joy; Vaughn, Carol S; Farinas, Chantell M; Velasquez, Portia G; Hwu, Wen-Jen; Patel, Sapna P; Davies, Michael A; Diab, Adi; Glitza, Isabella C; Tawbi, Hussein; Wong, Michael K K; Cain, Suzanne; Ross, Merrick I; Lee, Jeffrey E; Gershenwald, Jeffrey E; Lucci, Anthony; Royal, Richard; Cormier, J N; Wargo, Jennifer A; Radvanyi, Laszlo G; Torres Cabala, Carlos A; Beroukhim, Rameen; Hwu, Patrick; Amaria, Rodabe N; Bernatchez, Chantale

    2018-05-30

    Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has consistently demonstrated clinical efficacy in metastatic melanoma. Recent widespread use of checkpoint blockade has shifted the treatment landscape, raising questions regarding impact of these therapies on response to TIL and appropriate immunotherapy sequence. Seventy-four metastatic melanoma patients were treated with autologous TIL and evaluated for clinical response according to irRC, overall survival and progression free survival. Immunologic factors associated with response were also evaluated. Best overall response for the entire cohort was 42%; 47% in 43 checkpoint naïve patients, 38% when patients were exposed to anti-CTLA4 alone (21 patients) and 33% if also exposed to anti-PD1 (9 patients) prior to TIL ACT. Median overall survival was 17.3 months; 24.6 months in CTLA4 naïve patients and 8.6 months in patients with prior CTLA4 blockade. The latter patients were infused with fewer TIL and experienced a shorter duration of response. Infusion of higher numbers of TIL with CD8 predominance and expression of BTLA correlated with improved response in anti-CTLA-4 naive patients, but not in anti-CTLA-4 refractory patients. Baseline serum levels of IL-9 predicted response to TIL ACT, while TIL persistence, tumor recognition and mutation burden did not correlate with outcome. This study demonstrates the deleterious effects of prior exposure to anti-CTLA4 on TIL ACT response and shows that baseline IL-9 levels can potentially serve as a predictive tool to appropriately select sequence for immunotherapies. Copyright ©2018, American Association for Cancer Research.

  14. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK.

    PubMed

    Sagiv-Barfi, Idit; Kohrt, Holbrook E K; Czerwinski, Debra K; Ng, Patrick P; Chang, Betty Y; Levy, Ronald

    2015-03-03

    Monoclonal antibodies can block cellular interactions that negatively regulate T-cell immune responses, such as CD80/CTLA-4 and PD-1/PD1-L, amplifying preexisting immunity and thereby evoking antitumor immune responses. Ibrutinib, an approved therapy for B-cell malignancies, is a covalent inhibitor of BTK, a member of the B-cell receptor (BCR) signaling pathway, which is critical to the survival of malignant B cells. Interestingly this drug also inhibits ITK, an essential enzyme in Th2 T cells and by doing so it can shift the balance between Th1 and Th2 T cells and potentially enhance antitumor immune responses. Here we report that the combination of anti-PD-L1 antibody and ibrutinib suppresses tumor growth in mouse models of lymphoma that are intrinsically insensitive to ibrutinib. The combined effect of these two agents was also documented for models of solid tumors, such as triple negative breast cancer and colon cancer. The enhanced therapeutic activity of PD-L1 blockade by ibrutinib was accompanied by enhanced antitumor T-cell immune responses. These preclinical results suggest that the combination of PD1/PD1-L blockade and ibrutinib should be tested in the clinic for the therapy not only of lymphoma but also in other hematologic malignancies and solid tumors that do not even express BTK.

  15. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells.

    PubMed

    Torres, Angelo; Vargas, Yosselyn; Uribe, Daniel; Jaramillo, Catherine; Gleisner, Alejandra; Salazar-Onfray, Flavio; López, Mercedes N; Melo, Rómulo; Oyarzún, Carlos; San Martín, Rody; Quezada, Claudia

    2016-10-11

    MRP1 transporter correlates positively with glioma malignancy and the Multiple Drug Resistance (MDR) phenotype in Glioblastoma Multiforme (GBM). Evidence shows that the MRP1 transporter is controlled by the adenosine signalling axis. The aim of this study was to identify the role of adenosine on the MDR phenotype in Glioblastoma Stem-like Cells (GSCs), the cell population responsible for the tumorigenic and chemoresistance capabilities of this tumour. We found that GSCs have increased intrinsic capacity to generate extracellular adenosine, thus controlling MRP1 transporter expression and activity via activation of the adenosine A3 receptor (A3AR). We showed PI3K/Akt and MEK/ERK1/2 signaling pathways downstream A3AR to control MRP1 in GSCs. In vitro pharmacological blockade of A3AR had a chemosensitizing effect, enhancing the actions of antitumour drugs and decreasing cell viability and proliferation of GSCs. In addition, we produced an in vivo xenograft model by subcutaneous inoculation of human GSCs in NOD/SCID-IL2Rg null mice. Pharmacological blockade of A3AR generated a chemosensitizing effect, enhancing the effectiveness of the MRP1 transporter substrate, vincristine, reducing tumour size and the levels of CD44 and Nestin stem cell markers as well as the Ki-67 proliferation indicator. In conclusion, we demonstrated the chemosensitizing effect of A3AR blockade on GSCs.

  16. Notch Signaling and Alloreactivity.

    PubMed

    Radojcic, Vedran; Maillard, Ivan

    2016-12-01

    Solid organ and allogeneic hematopoietic cell transplantation have become standard therapeutic interventions that save patient lives and improve quality of life. Our enhanced understanding of transplantation immunobiology has refined clinical management and improved outcomes. However, organ rejection and graft-versus-host disease remain major obstacles to the broader successful application of these therapeutic procedures. Notch signaling regulates multiple aspects of adaptive and innate immunity. Preclinical studies identified Notch signaling as a promising target in autoimmune diseases, as well as after allogeneic hematopoietic cell and solid organ transplantation. Notch was found to be a central regulator of alloreactivity across clinically relevant models of transplantation. Notch inhibition in T cells prevented graft-versus-host disease and organ rejection, establishing organ tolerance by skewing CD4 T helper polarization away from a proinflammatory response toward suppressive regulatory T cells. Notch ligand blockade also dampened alloantibody deposition and prevented chronic rejection through humoral mechanisms. Toxicities of systemic Notch blockade were observed with γ-secretase inhibitors in preclinical and early clinical trials across different indications, but they did not arise upon preclinical targeting of Delta-like Notch ligands, a strategy sufficient to confer full benefits of Notch ablation in T cell alloimmunity. Because multiple clinical grade reagents have been developed to target individual Notch ligands and receptors, the benefits of Notch blockade in transplantation are calling for translation of preclinical findings into human transplantation medicine.

  17. Therapeutic effects of CSF1R-blocking antibodies in multiple myeloma.

    PubMed

    Wang, Q; Lu, Y; Li, R; Jiang, Y; Zheng, Y; Qian, J; Bi, E; Zheng, C; Hou, J; Wang, S; Yi, Q

    2018-01-01

    Our previous studies showed that macrophages (MФs), especially myeloma-associated MФs (MAMs), induce chemoresistance in human myeloma. Here we explored the potential of targeting MФs, by using colony-stimulating factor 1 receptor (CSF1R)-blocking mAbs, to treat myeloma. Our results showed that CSF1R blockade specifically inhibited the differentiation, proliferation and survival of murine M2 MФs and MAMs, and repolarized MAMs towards M1-like MФs in vitro. CSF1R blockade alone inhibited myeloma growth in vivo, by partially depleting MAMs, polarizing MAMs to the M1 phenotype, and inducing a tumor-specific cytotoxic CD4 + T-cell response. Similarly, genetically depleting MФs in myeloma-bearing MM DTR mice retarded myeloma growth in vivo. Furthermore, the combination of CSF1R blockade and chemotherapy such as bortezomib or melphalan displayed an additive therapeutic efficacy against established myeloma. Finally, a fully human CSF1R blocking mAb, similar to its murine counterpart, was able to inhibit the differentiation, proliferation and survival of human MФs. Thus, this study provides the first direct in vivo evidence that MΦs and MAMs are indeed important for myeloma development and progression. Our results also suggest that targeting MAMs by CSF1R blocking mAbs may be promising methods to (re)sensitize myeloma cells to chemotherapy and promote anti-myeloma immune responses in patients.

  18. Effect of β-blockade on lung function, exercise performance and dynamic hyperinflation in people with arterial vascular disease with and without COPD.

    PubMed

    Key, Angela; Parry, Matthew; West, Malcolm A; Asher, Rebecca; Jack, Sandy; Duffy, Nick; Torella, Francesco; Walker, Paul P

    2017-01-01

    β Blockers are important treatment for ischaemic heart disease and heart failure; however, there has long been concern about their use in people with chronic obstructive pulmonary disease (COPD) due to fear of symptomatic worsening of breathlessness. Despite growing evidence of safety and efficacy, they remain underused. We examined the effect of β-blockade on lung function, exercise performance and dynamic hyperinflation in a group of vascular surgical patients, a high proportion of who were expected to have COPD. People undergoing routine abdominal aortic aneurysm (AAA) surveillance were sequentially recruited from vascular surgery clinic. They completed plethysmographically measured lung function and incremental cardiopulmonary exercise testing with dynamic measurement of inspiratory capacity while taking and not taking β blocker. 48 participants completed tests while taking and not taking β blockers with 38 completing all assessments successfully. 15 participants (39%) were found to have, predominantly mild and undiagnosed, COPD. People with COPD had airflow obstruction, increased airway resistance (Raw) and specific conductance (sGaw), static hyperinflation and dynamically hyperinflated during exercise. In the whole group, β-blockade led to a small fall in FEV1 (0.1 L/2.8% predicted) but did not affect Raw, sGaw, static or dynamic hyperinflation. No difference in response to β-blockade was seen in those with and without COPD. In people with AAA, β-blockade has little effect on lung function and dynamic hyperinflation in those with and without COPD. In this population, the prevalence of COPD is high and consideration should be given to case finding with spirometry. NCT02106286.

  19. 4-1BB and CD28 Signaling Plays a Synergistic Role in Redirecting Umbilical Cord Blood T Cells Against B-Cell Malignancies

    PubMed Central

    Tammana, Syam; Huang, Xin; Wong, Marianna; Milone, Michael C.; Ma, Linan; Levine, Bruce L.; June, Carl H.; Wagner, John E.; Blazar, Bruce R.

    2010-01-01

    Abstract Umbilical cord blood (UCB) T cells can be redirected to kill leukemia and lymphoma cells by engineering with a single-chain chimeric antigen receptor (CAR) and thus may have general applications in adoptive cell therapy. However, the role of costimulatory molecules in UCB T-cell activation and effector functions in context with CAR remains elusive. To investigate the effect of costimulatory molecules (4-1BB and CD28) on UCB T cells, we transduced UCB T cells with lentiviral vectors expressing Green Fluorescent Protein (GFP) and CAR for CD19 containing an intracellular domain of the CD3ζ chain and either a 4-1BB (UCB-19BBζ) or a CD28 intracellular domain (UCB-1928ζ), both (UCB-1928BBζ), or neither (UCB-19ζ). We found that UCB-19BBζ and UCB-28BBζ T cells exhibited more cytotoxicity to CD19+ leukemia and lymphoma cell lines than UCB-19ζ and UCB-1928ζ, although differences in secretion of interleukin-2 and interferon-γ by these T cells were not evident. In vivo adoptive transfer of these T cells into intraperitoneal tumor-bearing mice demonstrated that UCB-19BBζ and UCB-1928BBζ T cells mounted the most potent antitumor response. The mice adoptively transferred with UCB-1928BBζ cells survived longer than the mice with UCB-19BBζ. Moreover, UCB-1928BBζ T cells mounted a more robust antitumor response than UCB-19BBζ in a systemic tumor model. Our data suggest a synergistic role of 4-1BB and CD28 costimulation in engineering antileukemia UCB effector cells and implicate a design for redirected UCB T-cell therapy for refractory leukemia. PMID:19719389

  20. Native plant communities in an abandoned Pb-Zn mining area of northern Spain: implications for phytoremediation and germplasm preservation.

    PubMed

    Barrutia, O; Artetxe, U; Hernández, A; Olano, J M; García-Plazaola, J I; Garbisu, C; Becerril, J M

    2011-03-01

    Plants growing on metalliferous soils from abandoned mines are unique because of their ability to cope with high metal levels in soil. In this study, we characterized plants and soils from an abandoned Pb-Zn mine in the Basque Country (northern Spain). Soil in this area proved to be deficient in major macronutrients and to contain toxic levels of Cd, Pb, and Zn. Spontaneously growing native plants (belonging to 31 species, 28 genera, and 15 families) were botanically identified. Plant shoots and rhizosphere soil were sampled at several sites in the mine, and analyzed for Pb, Zn and Cd concentration. Zinc showed the highest concentrations in shoots, followed by Pb and Cd. Highest Zn concentrations in shoots were found in the Zn-Cd hyperaccumulator Thlaspi caerulescens (mean = 18,254 mg Zn kg(-1) DW). Different metal tolerance and accumulation patterns were observed among the studied plant species, thus offering a wide germplasm assortment for the suitable selection of phytoremediation technologies. This study highlights the importance of preserving metalliferous environments as they shelter a unique and highly valuable metallicolous biodiversity.

  1. Gp120/CD4 blocking antibodies are frequently elicited in ART-naïve chronically HIV-1 infected individuals.

    PubMed

    Carrillo, Jorge; Molinos-Albert, Luis Manuel; Rodríguez de la Concepción, Maria Luisa; Marfil, Silvia; García, Elisabet; Derking, Ronald; Sanders, Rogier W; Clotet, Bonaventura; Blanco, Julià

    2015-01-01

    Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine.

  2. Transfer of allogeneic CD4+ T cells rescues CD8+ T cells in anti-PD-L1–resistant tumors leading to tumor eradication

    PubMed Central

    Arina, Ainhoa; Karrison, Theodore; Galka, Eva; Schreiber, Karin; Weichselbaum, Ralph R.; Schreiber, Hans

    2017-01-01

    Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T cell–mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the “exhaustion” markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. PMID:28077434

  3. Gp120/CD4 Blocking Antibodies Are Frequently Elicited in ART-Naïve Chronically HIV-1 Infected Individuals

    PubMed Central

    Carrillo, Jorge; Molinos-Albert, Luis Manuel; de la Concepción, Maria Luisa Rodríguez; Marfil, Silvia; García, Elisabet; Derking, Ronald; Sanders, Rogier W.; Clotet, Bonaventura; Blanco, Julià

    2015-01-01

    Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV-1 vaccine. PMID:25803681

  4. Modulation of Endoplasmic Reticulum Stress Controls CD4+ T-cell Activation and Antitumor Function.

    PubMed

    Thaxton, Jessica E; Wallace, Caroline; Riesenberg, Brian; Zhang, Yongliang; Paulos, Chrystal M; Beeson, Craig C; Liu, Bei; Li, Zihai

    2017-08-01

    The endoplasmic reticulum (ER) is an energy-sensing organelle with intimate ties to programming cell activation and metabolic fate. T-cell receptor (TCR) activation represents a form of acute cell stress and induces mobilization of ER Ca 2+ stores. The role of the ER in programming T-cell activation and metabolic fate remains largely undefined. Gp96 is an ER protein with functions as a molecular chaperone and Ca 2+ buffering protein. We hypothesized that the ER stress response may be important for CD4 + T-cell activation and that gp96 may be integral to this process. To test our hypothesis, we utilized genetic deletion of the gp96 gene Hsp90b1 in a CD4 + T cell-specific manner. We show that gp96-deficient CD4 + T cells cannot undergo activation-induced glycolysis due to defective Ca 2+ mobilization upon TCR engagement. We found that activating naïve CD4 + T cells while inhibiting ER Ca 2+ exchange, through pharmacological blockade of the ER Ca 2+ channel inositol trisphosphate receptor (IP 3 R), led to a reduction in cytosolic Ca 2+ content and generated a pool of CD62L high /CD44 low CD4 + T cells compared with wild-type (WT) matched controls. In vivo IP 3 R-inhibited CD4 + T cells exhibited elevated tumor control above WT T cells. Together, these data show that ER-modulated cytosolic Ca 2+ plays a role in defining CD4 + T-cell phenotype and function. Factors associated with the ER stress response are suitable targets for T cell-based immunotherapies. Cancer Immunol Res; 5(8); 666-75. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis.

    PubMed

    Jy, Wenche; Minagar, Alireza; Jimenez, Joaquin J; Sheremata, William A; Mauro, Lucia M; Horstman, Lawrence L; Bidot, Carlos; Ahn, Yeon S

    2004-09-01

    Elevated plasma endothelial microparticles (EMP) have been documented in MS during exacerbation. However, the role of EMP in pathogenesis of MS remains unclear. We investigated the formation of EMP-monocyte conjugates (EMP-MoC) and their potential role in transendothelial migration of inflammatory cells in MS. EMP-MoC were assayed in 30 MS patients in exacerbation, 20 in remission and in 35 controls. EMP-leukocyte conjugation was investigated flowcytometrically by employing alpha-CD54 or alpha-CD62E for EMP, and alpha-CD45 for leukocytes. EMP-MoC were characterized by identifying adhesion molecules involved and their effect on monocyte function. In vivo (clinical): EMP-MoC were markedly elevated in exacerbation vs. remission and controls, correlating with presence of GD+ MRI lesions. Free CD54+ EMP were not elevated but free CD62E+ EMP were. In vitro: EMP bound preferentially to monocytes, less to neutrophils, but little to lymphocytes. Bound EMP activated monocytes: CD11b expression increased 50% and migration through cerebral endothelial cell layer increased 2.6-fold. Blockade of CD54 reduced binding by 80%. Most CD54+ EMP bound to monocytes, leaving little free EMP, while CD62+ EMP were found both free and bound. These results demonstrated that phenotypic subsets of EMP interacted differently with monocytes. Based on our observations, EMP may enhance inflammation and increase transendothelial migration of monocytes in MS by binding to and activating monocytes through CD54. EMP-MoC were markedly increased in MS patients in exacerbation compared to remission and may serve as a sensitive marker of MS disease activity.

  6. Squamous cell carcinomas escape immune surveillance via inducing chronic activation and exhaustion of CD8+ T Cells co-expressing PD-1 and LAG-3 inhibitory receptors.

    PubMed

    Mishra, Ameet K; Kadoishi, Tanya; Wang, Xiaoguang; Driver, Emily; Chen, Zhangguo; Wang, Xiao-Jing; Wang, Jing H

    2016-12-06

    Squamous cell carcinoma (SCC) is the second commonest type of skin cancer. Moreover, about 90% of head and neck cancers are SCCs. SCCs develop at a significantly higher rate under chronic immunosuppressive conditions, implicating a role of immune surveillance in controlling SCCs. It remains largely unknown how SCCs evade immune recognition. Here, we established a mouse model by injecting tumor cells derived from primary SCCs harboring KrasG12D mutation and Smad4 deletion into wild-type (wt) or CD8-/- recipients. We found comparable tumor growth between wt and CD8-/- recipients, indicating a complete escape of CD8+ T cell-mediated anti-tumor responses by these SCCs. Mechanistically, CD8+ T cells apparently were not defective in infiltrating tumors given their relatively increased percentage among tumor infiltrating lymphocytes (TILs). CD8+ TILs exhibited phenotypes of chronic activation and exhaustion, including overexpression of activation markers, co-expression of programmed cell death 1 (PD-1) and lymphocyte activation gene-3 (LAG-3), as well as TCRβ downregulation. Among CD4+ TILs, T regulatory cells (Tregs) were preferentially expanded. Contradictory to prior findings in melanoma, Treg expansion was independent of CD8+ T cells in our SCC model. Unexpectedly, CD8+ T cells were required for promoting NK cell infiltration within SCCs. Furthermore, we uncovered AKT-dependent lymphocyte-induced PD-L1 upregulation on SCCs, which was contributed greatly by combinatorial effects of CD8+ T and NK cells. Lastly, dual blockade of PD-1 and LAG-3 inhibited the tumor growth of SCCs. Thus, our findings identify novel immune evasion mechanisms of SCCs and suggest that immunosuppressive mechanisms operate in a cancer-type specific and context-dependent manner.

  7. Exacerbation of Autoimmune Thyroiditis by CTLA-4 Blockade: A Role for IFNγ-Induced Indoleamine 2, 3-Dioxygenase

    PubMed Central

    Sharma, Rajni; Di Dalmazi, Giulia

    2016-01-01

    Background: Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2h4 mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. Methods: NOD-H2h4 mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. Results: CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. Conclusions: This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2h4 mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade. PMID:27296629

  8. The rise and fall of the CD28 superagonist TGN1412 and its return as TAB08: a personal account.

    PubMed

    Hünig, Thomas

    2016-09-01

    Two decades ago, we discovered 'superagonistic' monoclonal antibodies specific for the CD28 molecule which are able to polyclonally activate T cells, in particular regulatory T cells, and are therapeutically active in many rodent models of autoimmunity, inflammation, transplantation, and tissue repair. A phase I trial of the human CD28 superagonist TGN1412 failed in 2006 due to an unexpected cytokine release syndrome, but after it became clear that dose-reduction allows to preferentially address regulatory T cells also in humans, clinical development was resumed under the name TAB08. Here, I recount the story of CD28 superagonist development from a personal perspective with an emphasis on the dramatic events during and after the 2006 phase I trial, the reasons for the failure of preclinical research to warn of the impending cytokine storm, and on the research which allowed resumption of clinical development. © 2016 Federation of European Biochemical Societies.

  9. Immunomodulation by memantine in therapy of Alzheimer's disease is mediated through inhibition of Kv1.3 channels and T cell responsiveness

    PubMed Central

    Lowinus, Theresa; Bose, Tanima; Busse, Stefan; Busse, Mandy; Reinhold, Dirk; Schraven, Burkhart; Bommhardt, Ursula H.H.

    2016-01-01

    Memantine is approved for the treatment of advanced Alzheimer's disease (AD) and reduces glutamate-mediated neuronal excitotoxicity by antagonism of N-methyl-D-aspartate receptors. In the pathophysiology of AD immune responses deviate and infectious side effects are observed during memantine therapy. However, the particular effects of memantine on human T lymphocytes are unresolved. Here, we provide evidence that memantine blocks Kv1.3 potassium channels, inhibits CD3-antibody- and alloantigen-induced proliferation and suppresses chemokine-induced migration of peripheral blood T cells of healthy donors. Concurrent with the in vitro data, CD4+ T cells from AD patients receiving therapeutic doses of memantine show a transient decline of Kv1.3 channel activity and a long-lasting reduced proliferative response to alloantigens in mixed lymphocyte reactions. Furthermore, memantine treatment provokes a profound depletion of peripheral blood memory CD45RO+ CD4+ T cells. Thus, standard doses of memantine profoundly reduce T cell responses in treated patients through blockade of Kv1.3 channels. This may normalize deviant immunopathology in AD and contribute to the beneficial effects of memantine, but may also account for the enhanced infection rate. PMID:27462773

  10. Immunomodulation by memantine in therapy of Alzheimer's disease is mediated through inhibition of Kv1.3 channels and T cell responsiveness.

    PubMed

    Lowinus, Theresa; Bose, Tanima; Busse, Stefan; Busse, Mandy; Reinhold, Dirk; Schraven, Burkhart; Bommhardt, Ursula H H

    2016-08-16

    Memantine is approved for the treatment of advanced Alzheimer´s disease (AD) and reduces glutamate-mediated neuronal excitotoxicity by antagonism of N-methyl-D-aspartate receptors. In the pathophysiology of AD immune responses deviate and infectious side effects are observed during memantine therapy. However, the particular effects of memantine on human T lymphocytes are unresolved. Here, we provide evidence that memantine blocks Kv1.3 potassium channels, inhibits CD3-antibody- and alloantigen-induced proliferation and suppresses chemokine-induced migration of peripheral blood T cells of healthy donors. Concurrent with the in vitro data, CD4+ T cells from AD patients receiving therapeutic doses of memantine show a transient decline of Kv1.3 channel activity and a long-lasting reduced proliferative response to alloantigens in mixed lymphocyte reactions. Furthermore, memantine treatment provokes a profound depletion of peripheral blood memory CD45RO+ CD4+ T cells. Thus, standard doses of memantine profoundly reduce T cell responses in treated patients through blockade of Kv1.3 channels. This may normalize deviant immunopathology in AD and contribute to the beneficial effects of memantine, but may also account for the enhanced infection rate.

  11. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes.

    PubMed

    Tsai, Wei-Jern; Chang, Chu-Ting; Wang, Guei-Jane; Lee, Tzong-Huei; Chang, Shwu-Fen; Lu, Shao-Chun; Kuo, Yuh-Chi

    2011-03-25

    Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.

  12. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer

    PubMed Central

    Priceman, Saul J.; Gerdts, Ethan A.; Tilakawardane, Dileshni; Kennewick, Kelly T.; Murad, John P.; Park, Anthony K.; Jeang, Brook; Yamaguchi, Yukiko; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E.; Brown, Christine E.; Forman, Stephen J.

    2018-01-01

    ABSTRACT Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with “on-target off-tumor” activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies. PMID:29308300

  13. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors.

    PubMed

    Haynes, Nicole M; Trapani, Joseph A; Teng, Michèle W L; Jackson, Jacob T; Cerruti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K

    2002-11-01

    Tumor cells are usually weakly immunogenic as they largely express self-antigens and can down-regulate major histocompatability complex/peptide molecules and critical costimulatory ligands. The challenge for immunotherapies has been to provide vigorous immune effector cells that circumvent these tumor escape mechanisms and eradicate established tumors. One promising approach is to engineer T cells with single-chain antibody receptors, and since T cells require 2 distinct signals for optimal activation, we have compared the therapeutic efficacy of erbB2-reactive chimeric receptors that contain either T-cell receptor zeta (TCR-zeta) or CD28/TCR-zeta signaling domains. We have demonstrated that primary mouse CD8(+) T lymphocytes expressing the single-chain Fv (scFv)-CD28-zeta receptor have a greater capacity to secrete Tc1 cytokines, induce T-cell proliferation, and inhibit established tumor growth and metastases in vivo. The suppression of established tumor burden by cytotoxic T cells expressing the CD28/TCR-zeta chimera was critically dependent upon their interferon gamma (IFN-gamma) secretion. Our study has illustrated the practical advantage of engineering a T-cell signaling complex that codelivers CD28 activation, dependent only upon the tumor's expression of the appropriate tumor associated antigen.

  14. Evaluation of peripheral blood T lymphocyte surface activation markers and transcription factors in patients with early stage non-small cell lung cancer.

    PubMed

    Rutkowski, Jacek; Cyman, Marta; Ślebioda, Tomasz; Bemben, Kamila; Rutkowska, Aleksandra; Gruchała, Marcin; Kmieć, Zbigniew; Pliszka, Agnieszka; Zaucha, Renata

    2017-12-01

    Lung cancer cells harboring multiple mutations as a consequence of long-term damage by different etiologic factors are responsible for high immunogenicity. Immune checkpoint inhibitors significantly improve treatment results in non-small cell lung cancer (NSCLC). Unfortunately, the role of T-lymphocytes in early NSCLC has not been sufficiently elucidated. The aim of this study was to characterize peripheral blood T cells expressing several selected surface antigens (CD4, CD8, CD25, CD28, PD-1, CTLA-4) and transcription factors (T-bet, ROR-yt, Fox-P3, GATA-3) in this patient population. The study group (LC) consisted of 80 treatment-naïve patients with T1/2aN0M0 NSCLC and was compared with 40 cancer-free patients matched for non-oncological diseases and demographic parameters (CG). Significantly higher counts of CTLA-4+cells (in both CD4+and CD8+subtypes), a lower proportion of PD-1 expressing cells and a significantly higher percentage of Fox-P3+CD4+cells were found in the LC group. The high proportion of CD4+PD-1+cells significantly correlated with poor outcomes in LC group, while low CD4/CD8 ratio predicted a better prognosis. Based on our results it seems that NSCLC even at early stages of development initiate changes in the proportions of T cells that may have a significant impact on the clinical outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Small Molecule Neuropilin-1 Antagonists Combine Antiangiogenic and Antitumor Activity with Immune Modulation through Reduction of Transforming Growth Factor Beta (TGFβ) Production in Regulatory T-Cells

    PubMed Central

    2018-01-01

    We report the design, synthesis, and biological evaluation of some potent small-molecule neuropilin-1 (NRP1) antagonists. NRP1 is implicated in the immune response to tumors, particularly in Treg cell fragility, required for PD1 checkpoint blockade. The design of these compounds was based on a previously identified compound EG00229. The design of these molecules was informed and supported by X-ray crystal structures. Compound 1 (EG01377) was identified as having properties suitable for further investigation. Compound 1 was then tested in several in vitro assays and was shown to have antiangiogenic, antimigratory, and antitumor effects. Remarkably, 1 was shown to be selective for NRP1 over the closely related protein NRP2. In purified Nrp1+, FoxP3+, and CD25+ populations of Tregs from mice, 1 was able to block a glioma-conditioned medium-induced increase in TGFβ production. This comprehensive characterization of a small-molecule NRP1 antagonist provides the basis for future in vivo studies. PMID:29648813

  16. Phytoavailability and phytovariety codetermine the bioaccumulation risk of heavy metal from soils, focusing on Cd-contaminated vegetable farms around the Pearl River Delta, China.

    PubMed

    Hu, Junli; Wu, Fuyong; Wu, Shengchun; Sun, Xiaolin; Lin, Xiangui; Wong, Ming Hung

    2013-05-01

    Five random vegetable farms were selected to investigate the bioaccumulation risk of heavy metals (HMs) by different type of vegetables around the Pearl River Delta (PRD), China. The concentration order of four major HMs in the surface soil samples was Cd

  17. System identification of closed-loop cardiovascular control: effects of posture and autonomic blockade

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.

    1997-01-01

    We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.

  18. Surface effects on ionic Coulomb blockade in nanometer-size pores

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  19. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    PubMed

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  20. PAR(2) expression in peripheral blood monocytes of patients with rheumatoid arthritis.

    PubMed

    Crilly, A; Burns, E; Nickdel, M B; Lockhart, J C; Perry, M E; Ferrell, P W; Baxter, D; Dale, J; Dunning, L; Wilson, H; Nijjar, J S; Gracie, J A; Ferrell, W R; McInnes, I B

    2012-06-01

    Proteinase-activated receptor 2 (PAR(2)) is a G protein-coupled receptor activated by serine proteinases with proinflammatory activity. A study was undertaken to investigate the presence and functional significance of PAR(2) expression on rheumatoid arthritis (RA)-derived leucocyte subsets. Venous blood was obtained from patients with RA and osteoarthritis (OA) as well as healthy control subjects. Surface expression of PAR(2) on peripheral blood mononuclear cells (PBMCs) was analysed by flow cytometry and interleukin 6 (IL-6) generation by ELISA. Patients with RA had elevated but variable surface expression of PAR(2) on CD14+ monocytes compared with control subjects (median (1st to 3rd quartiles) 1.76% (0.86-4.10%) vs 0.06% (0.03-0.81%), p<0.0001). CD3+ T cells showed a similar pattern with significantly higher PAR(2) expression in patients with RA compared with controls (3.05% (0.36-11.82%) vs 0.08% (0.02-0.28%), p<0.0001). For both subsets, PAR(2) expression was significantly higher (p<0.00001) in patients with high levels of disease activity: PAR(2) expression for both CD14+ and CD3+ cells correlated to C reactive protein and erythrocyte sedimentation rate. Furthermore, in a cohort of patients with newly diagnosed RA, elevated PAR(2) expression in both CD14+ and CD3+ cells was significantly reduced 3 months after methotrexate or sulfasalazine treatment and this reduction correlated significantly with the reduction in the 28-joint Disease Activity Scale score (p<0.05). PAR(2) expression on cells from patients with OA was low, similar to levels seen in control subjects. Generation of IL-6 by monocytes in response to a selective PAR(2) agonist was significantly greater in patients with RA than in patients with OA and control subjects (p<0.05). These findings are consistent with a pathogenic role for PAR(2) in RA.

  1. PAR2 expression in peripheral blood monocytes of patients with rheumatoid arthritis

    PubMed Central

    Crilly, A; Burns, E; Nickdel, M B; Lockhart, J C; Perry, M E; Ferrell, P W; Baxter, D; Dale, J; Dunning, L; Wilson, H; Nijjar, J S; Gracie, J A; Ferrell, W R; McInnes, I B

    2012-01-01

    Objectives Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by serine proteinases with proinflammatory activity. A study was undertaken to investigate the presence and functional significance of PAR2 expression on rheumatoid arthritis (RA)-derived leucocyte subsets. Methods Venous blood was obtained from patients with RA and osteoarthritis (OA) as well as healthy control subjects. Surface expression of PAR2 on peripheral blood mononuclear cells (PBMCs) was analysed by flow cytometry and interleukin 6 (IL-6) generation by ELISA. Results Patients with RA had elevated but variable surface expression of PAR2 on CD14+ monocytes compared with control subjects (median (1st to 3rd quartiles) 1.76% (0.86–4.10%) vs 0.06% (0.03–0.81%), p<0.0001). CD3+ T cells showed a similar pattern with significantly higher PAR2 expression in patients with RA compared with controls (3.05% (0.36–11.82%) vs 0.08% (0.02–0.28%), p<0.0001). For both subsets, PAR2 expression was significantly higher (p<0.00001) in patients with high levels of disease activity: PAR2 expression for both CD14+ and CD3+ cells correlated to C reactive protein and erythrocyte sedimentation rate. Furthermore, in a cohort of patients with newly diagnosed RA, elevated PAR2 expression in both CD14+ and CD3+ cells was significantly reduced 3 months after methotrexate or sulfasalazine treatment and this reduction correlated significantly with the reduction in the 28-joint Disease Activity Scale score (p<0.05). PAR2 expression on cells from patients with OA was low, similar to levels seen in control subjects. Generation of IL-6 by monocytes in response to a selective PAR2 agonist was significantly greater in patients with RA than in patients with OA and control subjects (p<0.05). Conclusions These findings are consistent with a pathogenic role for PAR2 in RA. PMID:22294633

  2. IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion.

    PubMed

    Rölle, Alexander; Pollmann, Julia; Ewen, Eva-Maria; Le, Vu Thuy Khanh; Halenius, Anne; Hengel, Hartmut; Cerwenka, Adelheid

    2014-12-01

    Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C(+) subset and general NK cell recovery rely on signals derived from CD14(+) monocytes. In a coculture system, a subset of CD14(+) cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C(+) subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C(+) NK cells. Together, our results reveal that IL-12, CD14(+) cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C(+) NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C(+) NK cell subset have the potential to be exploited in NK cell-based intervention strategies against viral infections and cancer.

  3. IL-12–producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion

    PubMed Central

    Rölle, Alexander; Pollmann, Julia; Ewen, Eva-Maria; Le, Vu Thuy Khanh; Halenius, Anne; Hengel, Hartmut; Cerwenka, Adelheid

    2014-01-01

    Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C+ subset and general NK cell recovery rely on signals derived from CD14+ monocytes. In a coculture system, a subset of CD14+ cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C+ subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C+ NK cells. Together, our results reveal that IL-12, CD14+ cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C+ NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C+ NK cell subset have the potential to be exploited in NK cell–based intervention strategies against viral infections and cancer. PMID:25384219

  4. Blockade of invariant TCR-CD1d interaction specifically inhibits antibody production against blood group A carbohydrates

    PubMed Central

    Tazawa, Hirofumi; Irei, Toshimitsu; Tanaka, Yuka; Igarashi, Yuka; Tashiro, Hirotaka

    2013-01-01

    Previously, we detected B cells expressing receptors for blood group A carbohydrates in the CD11b+CD5+ B-1a subpopulation in mice, similar to that in blood group O or B in humans. In the present study, we demonstrate that CD1d-restricted natural killer T (NKT) cells are required to produce anti-A antibodies (Abs), probably through collaboration with B-1a cells. After immunization of wild-type (WT) mice with human blood group A red blood cells (A-RBCs), interleukin (IL)-5 exclusively and transiently increased and the anti-A Abs were elevated in sera. However, these reactions were not observed in CD1d−/− mice, which lack NKT cells. Administration of anti-mouse CD1d blocking monoclonal Abs (mAb) prior to immunization abolished IL-5 production by NKT cells and anti-A Ab production in WT mice. Administration of anti-IL-5 neutralizing mAb also diminished anti-A Ab production in WT mice, suggesting that IL-5 secreted from NKT cells critically regulates anti-A Ab production by B-1a cells. In nonobese diabetic/severe combined immunodeficient (NOD/SCID/γcnull) mice, into which peripheral blood mononuclear cells from type O human volunteers were engrafted, administration of anti-human CD1d mAb prior to A-RBC immunization completely inhibited anti-A Ab production. Thus, anti-CD1d treatment might constitute a novel approach that could help in evading Ab-mediated rejection in ABO-incompatible transplant recipients. PMID:23943651

  5. Programmed death 1-mediated T cell exhaustion during visceral leishmaniasis impairs phagocyte function.

    PubMed

    Esch, Kevin J; Juelsgaard, Rachel; Martinez, Pedro A; Jones, Douglas E; Petersen, Christine A

    2013-12-01

    Control of Leishmania infantum infection is dependent upon Th1 CD4(+) T cells to promote macrophage intracellular clearance of parasites. Deficient CD4(+) T cell effector responses during clinical visceral leishmaniasis (VL) are associated with elevated production of IL-10. In the primary domestic reservoir of VL, dogs, we define occurrence of both CD4(+) and CD8(+) T cell exhaustion as a significant stepwise loss of Ag-specific proliferation and IFN-γ production, corresponding to increasing VL symptoms. Exhaustion was associated with a 4-fold increase in the population of T cells with surface expression of programmed death 1 (PD-1) between control and symptomatic populations. Importantly, exhausted populations of CD8(+) T cells and to a lesser extent CD4(+) T cells were present prior to onset of clinical VL. VL-exhausted T cells did not undergo significant apoptosis ex vivo after Ag stimulation. Ab block of PD-1 ligand, B7.H1, promoted return of CD4(+) and CD8(+) T cell function and dramatically increased reactive oxygen species production in cocultured monocyte-derived phagocytes. As a result, these phagocytes had decreased parasite load. To our knowledge, we demonstrate for the first time that pan-T cell, PD-1-mediated, exhaustion during VL influenced macrophage-reactive oxygen intermediate production. Blockade of the PD-1 pathway improved the ability of phagocytes isolated from dogs presenting with clinical VL to clear intracellular parasites. T cell exhaustion during symptomatic canine leishmaniasis has implications for the response to vaccination and therapeutic strategies for control of Leishmania infantum in this important reservoir species.

  6. Adoptive Transfer of IL13Rα2-Specific Chimeric Antigen Receptor T Cells Creates a Pro-inflammatory Environment in Glioblastoma.

    PubMed

    Pituch, Katarzyna C; Miska, Jason; Krenciute, Giedre; Panek, Wojciech K; Li, Gina; Rodriguez-Cruz, Tania; Wu, Meijing; Han, Yu; Lesniak, Maciej S; Gottschalk, Stephen; Balyasnikova, Irina V

    2018-04-04

    In order to fully harness the potential of immunotherapy with chimeric antigen receptor (CAR)-modified T cells, pre-clinical studies must be conducted in immunocompetent animal models that closely mimic the immunosuppressive malignant glioma (MG) microenvironment. Thus, the goal of this project was to study the in vivo fate of T cells expressing CARs specific for the MG antigen IL13Rα2 (IL13Rα2-CARs) in immunocompetent MG models. Murine T cells expressing IL13Rα2-CARs with a CD28.ζ (IL13Rα2-CAR.CD28.ζ) or truncated signaling domain (IL13Rα2-CAR.Δ) were generated by retroviral transduction, and their effector function was evaluated both in vitro and in vivo. IL13Rα2-CAR.CD28.ζ T cells' specificity toward IL13Rα2 was confirmed through cytokine production and cytolytic activity. In vivo, a single intratumoral injection of IL13Rα2-CAR.CD28.ζ T cells significantly extended the survival of IL13Rα2-expressing GL261 and SMA560 glioma-bearing mice; long-term survivors were resistant to re-challenge with IL13Rα2-negative and IL13Rα2-positive tumors. IL13Rα2-CAR.CD28.ζ T cells proliferated, produced cytokines (IFNγ, TNF-α), and promoted a phenotypically pro-inflammatory glioma microenvironment by inducing a significant increase in the number of CD4 + and CD8 + T cells and CD8α + dendritic cells and a decrease in Ly6G + myeloid-derived suppressor cells (MDSCs). Our data underline the significance of CAR T cell studies in immunocompetent hosts and further validate IL13Rα2-CAR T cells as an efficacious therapeutic strategy for MG. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. Expression patterns of programmed death ligand 1 correlate with different microenvironments and patient prognosis in hepatocellular carcinoma.

    PubMed

    Liu, Chao-Qun; Xu, Jing; Zhou, Zhong-Guo; Jin, Li-Lian; Yu, Xing-Juan; Xiao, Gang; Lin, Jie; Zhuang, Shi-Mei; Zhang, Yao-Jun; Zheng, Limin

    2018-06-20

    Recent clinical studies have suggested that programmed death ligand 1 (PD-L1) expression in a tumour could be a potential biomarker for PD-L1/PD-1 blockade therapies. To better characterise PD-L1 expression in hepatocellular carcinoma (HCC), we analysed its expression patterns in 453 HCC patients by double staining for CD68 and PD-L1 using the Tyramide Signal Amplification Systems combined with immunohistochemistry. We also investigated its correlation with clinical features, prognosis and immune status. The results showed that PD-L1 expression on tumour cells (TCs) was negatively associated with patients' overall survival (OS; P = 0.001) and relapse-free survival (RFS; P = 0.006); however, PD-L1 expression on macrophages (Mφs) was positively correlated with OS (P = 0.017). Multivariate analysis revealed that PD-L1 expression on TCs and Mφs were both independent prognostic factors for OS (hazard ratio (HR) = 1.168, P = 0.004 for TC-PD-L1; HR = 0.708, P = 0.003 for Mφ-PD-L1). Further studies showed that Mφ-PD-L1 + tumours exhibited an activated immune microenvironment, with high levels of CD8 + T-cell infiltration and immune-related gene expression. Our study provided a novel methodology to evaluate PD-L1 expression in the tumour microenvironment, which might help to select patients who would benefit from anti-PD-1/PD-L1 immunotherapies.

  8. Metal(loid)-resistant bacteria reduce wheat Cd and As uptake in metal(loid)-contaminated soil.

    PubMed

    Wang, Xiao-Han; Luo, Wei-Wei; Wang, Qi; He, Lin-Yan; Sheng, Xia-Fang

    2018-06-05

    This study characterized the effect of the metal(loid)-resistant bacteria Ralstonia eutropha Q2-8 and Exiguobacterium aurantiacum Q3-11 on Cd and As accumulation in wheat grown in Cd- and As-polluted soils (1 mg kg -1 of Cd + 40 mg kg -1 of As and 2 mg kg -1 of Cd + 60 mg kg -1 of As). The influence of strains Q2-8 and Q3-11 on water-soluble Cd and As and NH 4 + concentration and pH in the soil filtrate were also analyzed. Inoculation with these strains significantly reduced wheat plant Cd (12-32%) and As (9-29%) uptake and available Cd (15-28%) and As (22-38%) contents in rhizosphere soils compared to the controls. Furthermore, these strains significantly increased the relative abundances of the arsM bacterial As metabolism gene and of Fe- and Mn-oxidizing Leptothrix species in rhizosphere soils. Notably, these strains significantly reduced water-soluble Cd and As concentrations and increased pH and NH 4 + concentration in the soil filtrate. These results suggest that these strains increased soil pH and the abundance of genes possibly involved in metal(loid) unavailability, resulting in reduced wheat Cd and As accumulation and highlight the possibility of using bacteria for in situ remediation and safe production of wheat or other food crops in metal(loid)-polluted soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Acid sphingomyelinase mediates human CD4+ T-cell signaling: potential roles in T-cell responses and diseases

    PubMed Central

    Bai, Aiping; Guo, Yuan

    2017-01-01

    Acid sphingomyelinase (ASM) is a lipid hydrolase. By generating ceramide, ASM had been reported to have an important role in regulating immune cell functions inclusive of macrophages, NK cells, and CD8+ T cells, whereas the role of ASM bioactivity in regulation of human CD4+ T-cell functions remained uncertain. Recent studies have provided novel findings in this field. Upon stimulation of CD3 and/or CD28, ASM-dependent ceramide signaling mediates intracellular downstream signal cascades of CD3 and CD28, and regulates CD4+ T-cell activation and proliferation. Meanwhile, CD39 and CD161 have direct interactions with ASM, which mediates downstream signals inclusive of STAT3 and mTOR and thus defines human Th17 cells. Intriguingly, ASM mediates Th1 responses, but negatively regulates Treg functions. In this review, we summarized the pivotal roles of ASM in regulation of human CD4+ T-cell activation and responses. ASM/sphingolipid signaling may be a novel target for the therapy of human autoimmune diseases. PMID:28749465

  10. Chronic alcohol increases CD8+ T-cell immunosenescence in simian immunodeficiency virus-infected rhesus macaques.

    PubMed

    Katz, Paige S; Siggins, Robert W; Porretta, Connie; Armstrong, Megan L; Zea, Arnold H; Mercante, Donald E; Parsons, Christopher; Veazey, Ronald S; Bagby, Gregory J; Nelson, Steve; Molina, Patricia E; Welsh, David A

    2015-12-01

    Activated CD8+ T-cells correlate with viral load and may foretell antiretroviral therapy (ART) failure. HIV infection has been suggested to accelerate immunosenescence through chronic persistent inflammation. Alcohol-use disorders (AUD) are prevalent in persons living with HIV/AIDS (PLWHA). We tested the hypothesis that hazardous alcohol consumption accelerates immune activation and immunosenescence. Immune activation and immunosenescence were examined in CD8+ T lymphocytes (CD3+CD4-CD8+) isolated from intestinal biopsies, axillary lymph nodes, and peripheral blood mononuclear cells (PBMCs) of chronic binge alcohol (CBA)-consuming simian immunodeficiency virus (SIV)-infected male rhesus macaques with and without antiretroviral therapy (ART; CBA/ART+, CBA/ART-) and in PBMCs isolated from a cohort of PLWHA. Polychromatic flow cytometry was used to phenotype cells isolated from intestinal biopsies, lymph nodes, and peripheral blood from rhesus macaques and PLWHA. The Alcohol Use Disorders Identification Test (AUDIT) identified hazardous alcohol drinking in PLWHA. Viral load was determined by RT-qPCR and telomere length was measured using qPCR. PBMC CD8+ T-cell activation (CD38+HLA-DR+) and immunosenescence (CD28-) were increased over baseline levels (857% ± 334, p < 0.05; 398% ± 80, p < 0.05, respectively) only in CBA animals not receiving ART. Viral load correlated with CD8+ T-cell immunosenescence in macaque PBMCs (r(s) = 0.49, p = 0.02). Activated immunosenescent T-cell (CD8+CD38+CD28-) frequencies in PBMCs from PLWHA significantly correlated with AUDIT scores (r(s) = 0.75, p = 0.001), while no correlation was observed with CD4+ T-cell and AUDIT scores (r(s) = -0.24, p = 0.38). Activated immunosenescent T-cells had shorter telomeres than CD8+ T-cells (CD8+CD28+) from PLWHA. Our results suggest that CBA and AUD augment immune activation and immunosenescence in SIV-infected macaques and PLWHA. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The Role of PD-1 Ligand in Immune Evasion by Breast Cancer

    DTIC Science & Technology

    2005-05-01

    with anti-CD11c-PE and either anti-PD-L1-FITC or anti-PD-L2-FITC and an- alyzed by flow cytometry . 1260 BLOCKADE OF PD-L ON DC ENHANCES T CELL... surface staining. . In order to accomplish these epitope blocking studies, we made 300.19 and CHO cells transfected with PD-L1 or PD-L2. For anti...Key Research Accomplishments 1. PD-L1 but not PD-L2 is highly expressed on the cell surface of breast cancer cells but not on normal breast

  12. Pulmonary CCR2+CD4+ T cells are immune regulatory and attenuate lung fibrosis development.

    PubMed

    Milger, Katrin; Yu, Yingyan; Brudy, Eva; Irmler, Martin; Skapenko, Alla; Mayinger, Michael; Lehmann, Mareike; Beckers, Johannes; Reichenberger, Frank; Behr, Jürgen; Eickelberg, Oliver; Königshoff, Melanie; Krauss-Etschmann, Susanne

    2017-11-01

    Animal models have suggested that CCR2-dependent signalling contributes to the pathogenesis of pulmonary fibrosis, but global blockade of CCL2 failed to improve the clinical course of patients with lung fibrosis. However, as levels of CCR2 + CD4 + T cells in paediatric lung fibrosis had previously been found to be increased, correlating with clinical symptoms, we hypothesised that distinct CCR2 + cell populations might either increase or decrease disease pathogenesis depending on their subtype. To investigate the role of CCR2 + CD4 + T cells in experimental lung fibrosis and in patients with idiopathic pulmonary fibrosis and other fibrosis. Pulmonary CCR2 + CD4 + T cells were analysed using flow cytometry and mRNA profiling, followed by in silico pathway analysis, in vitro assays and adoptive transfer experiments. Frequencies of CCR2 + CD4 + T cells were increased in experimental fibrosis-specifically the CD62L - CD44 + effector memory T cell phenotype, displaying a distinct chemokine receptor profile. mRNA profiling of isolated CCR2 + CD4 + T cells from fibrotic lungs suggested immune regulatory functions, a finding that was confirmed in vitro using suppressor assays. Importantly, adoptive transfer of CCR2 + CD4 + T cells attenuated fibrosis development. The results were partly corroborated in patients with lung fibrosis, by showing higher percentages of Foxp3 + CD25 + cells within bronchoalveolar lavage fluid CCR2 + CD4 + T cells as compared with CCR2 - CD4 + T cells. Pulmonary CCR2 + CD4 + T cells are immunosuppressive, and could attenuate lung inflammation and fibrosis. Therapeutic strategies completely abrogating CCR2-dependent signalling will therefore also eliminate cell populations with protective roles in fibrotic lung disease. This emphasises the need for a detailed understanding of the functions of immune cell subsets in fibrotic lung disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. A Novel Chimeric Antigen Receptor Against Prostate Stem Cell Antigen Mediates Tumor Destruction in a Humanized Mouse Model of Pancreatic Cancer

    PubMed Central

    Lagisetty, Kiran H.; Tran, Eric; Zheng, Zhili; Gattinoni, Luca; Yu, Zhiya; Burns, William R.; Miermont, Anne M.; Teper, Yaroslav; Rudloff, Udo; Restifo, Nicholas P.; Feldman, Steven A.; Rosenberg, Steven A.; Morgan, Richard A.

    2014-01-01

    Abstract Despite advances in the understanding of its molecular pathophysiology, pancreatic cancer remains largely incurable, highlighting the need for novel therapies. We developed a chimeric antigen receptor (CAR) specific for prostate stem cell antigen (PSCA), a glycoprotein that is overexpressed in pancreatic cancer starting at early stages of malignant transformation. To optimize the CAR design, we used antigen-recognition domains derived from mouse or human antibodies, and intracellular signaling domains containing one or two T cell costimulatory elements, in addition to CD3zeta. Comparing multiple constructs established that the CAR based on human monoclonal antibody Ha1-4.117 had the greatest reactivity in vitro. To further analyze this CAR, we developed a human pancreatic cancer xenograft model and adoptively transferred CAR-engineered T cells into animals with established tumors. CAR-engineered human lymphocytes induced significant antitumor activity, and unlike what has been described for other CARs, a second-generation CAR (containing CD28 cosignaling domain) induced a more potent antitumor effect than a third-generation CAR (containing CD28 and 41BB cosignaling domains). While our results provide evidence to support PSCA as a target antigen for CAR-based immunotherapy of pancreatic cancer, the expression of PSCA on selected normal tissues could be a source of limiting toxicity. PMID:24694017

  14. Persistent viral infection in humans can drive high frequency low-affinity T-cell expansions

    PubMed Central

    Khan, Naeem; Cobbold, Mark; Cummerson, Joanne; Moss, Paul A H

    2010-01-01

    CD8 T cells that recognize cytomegalovirus (CMV) -encoded peptides can be readily detected by staining with human leucocyte antigen (HLA) –peptide tetramers. These cells are invariably highly differentiated effector memory cells with high avidity T-cell receptors (TCR). In this report we demonstrate an HLA-A*0201 restricted CMV-specific CD8 T-cell response (designated YVL) that represents several percent of the CD8 T-cell subset, yet fails to bind tetrameric major histocompatibility complex (MHC) ligands. However, these tetramer-negative cells are both phenotypically and functionally similar to other CMV-specific CD8 T cells. YVL peptide-specific CD8 T-cell clones were generated and found to be of high avidity in both cytotoxicity and interferon-γ (IFN-γ) assays, and comparable with other CMV peptide-specific CD8 T-cell clones. However, under conditions of CD8 blockade, the response was almost nullified even at very high ligand concentrations. This was also the case in IFN-γ experiments using peripheral blood mononuclear cells stimulated with peptide ex vivo. In contrast, all other CMV specificities (tetramer-positive) displayed minimal or only partial CD8 dependence. This suggests that YVL-specific responses depict a low-affinity TCR–MHC–peptide interaction, that is compensated by substantial CD8 involvement for functional purposes, yet cannot engage multivalent soluble ligands for ex vivo analysis. It is interesting that such a phenomenon is apparent in the face of a persistent virus infection such as CMV, where the responding cells represent an immunodominant response in that individual and may present a highly differentiated effector phenotype. PMID:20722762

  15. An investigation into the selectivity of a novel series of benzoquinolizines for alpha 2-adrenoceptors in vivo.

    PubMed Central

    Paciorek, P. M.; Pierce, V.; Shepperson, N. B.; Waterfall, J. F.

    1984-01-01

    The potencies and selectivities of a novel series of benzoquinolizines for the alpha 2-adrenoceptor have been investigated in the rat in comparison with yohimbine and indoramin. Peripheral postjunctional alpha 2- and alpha 1-adrenoceptor blockade was measured as the reversal of B-HT 933 and methoxamine-induced pressor responses, respectively, in the pithed rat. Peripheral prejunctional alpha 2-adrenoceptor blockade was measured as the reversal of B-HT 933-induced inhibition of an electrically evoked tachycardia in the pithed rat. Central alpha 2-adrenoceptor blockade was measured as a reversal of the hypotension induced in anaesthetized rats by central (i.c.v.) administration of clonidine. Wy 25309, Wy 26392, Wy 26703 and yohimbine (0.3-3 mg kg-1 i.v.) evoked dose-dependent shifts to the right of the dose-response curves to B-HT 933 whilst having minimal effects on the methoxamine dose-response curve. The selectivity for alpha 2-adrenoceptors increased with the dose of antagonist administered. In general, the order of selectivity was Wy 25309 greater than Wy 26392 greater than Wy 26703 greater than yohimbine. Indoramin (1 mg kg-1 i.v.) shifted the methoxamine pressor dose-response curve to the right without affecting the B-HT 933 dose-response curves, confirming its selective alpha 1-antagonist activity. Peripheral administration of all three benzoquinolizines (1-100 micrograms kg-1 i.v.) led to a dose-dependent reversal of the hypotension evoked by central administration of clonidine (500 ng i.c.v.). The reversal was incomplete, higher doses causing a further decrease in blood pressure. (ABSTRACT TRUNCATED AT 250 WORDS) PMID:6329385

  16. Malignant and Tuberculous Pleural Effusions: Immunophenotypic Cellular Characterization

    PubMed Central

    de Aguiar, Lucia Maria Zanatta; Antonangelo, Leila; Vargas, Francisco S.; Zerbini, Maria Cláudia Nogueira; Sales, Maria Mirtes; Uip, David E.; Saldiva, Paulo Hilário Nascimento

    2008-01-01

    INTRODUCTION AND OBJECTIVES Tuberculosis and cancer are the main causes of pleural effusion. Pleural involvement is associated with migration of immune cells to the pleural cavity. We sought to characterize the immunophenotype of leukocytes in the pleural effusion and peripheral blood of patients with tuberculosis or malignancy. METHODS Thirty patients with tuberculosis (14) or malignancy (16) were studied. A control group included 20 healthy blood donors. RESULTS Malignant phycoerythrin pleural effusions showed higher percentages of CD3, CD4, CD3CD45RO, and CD20CD25 lymphocytes and lower percentages of CD3CD25 and CD20HLA-DR when compared to PB lymphocytes. Compared to PB, tuberculous effusions had a higher percentage of lymphocytes that co-expressed CD3, CD4, CD3CD45RO, CD3TCRαβ, CD3CD28, and CD20 and a lower percentage of CD14, CD8 and CD3TCRγδ-positive lymphocytes. Malignant effusions presented higher expression of CD14 whereas tuberculous effusions had higher expression of CD3 and CD3CD95L. Peripheral blood cells from tuberculosis patients showed higher expression of CD14, CD20CD25 and CD3CD95L. Compared with the control cells, tuberculosis and cancer peripheral blood cells presented a lower percentage of CD3CD4 and CD3CD28-positive cells as well as a higher percentage of CD3CD8, CD3CD25 and CD3CD80-positive cells. CONCLUSIONS Tuberculous and malignant peripheral blood is enriched with lymphocytes with a helper/inducer T cell phenotype, which are mainly of memory cells. CD14-positive cells were more frequently found in malignant effusions, while CD3-positive cells expressing Fas ligand were more frequently found in tuberculous effusions. PMID:18925324

  17. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease.

    PubMed

    Hamblin, Terry J; Orchard, Jenny A; Ibbotson, Rachel E; Davis, Zadie; Thomas, Peter W; Stevenson, Freda K; Oscier, David G

    2002-02-01

    Although the presence or absence of somatic mutations in the immunoglobulin variable region (IgV(H)) genes in chronic lymphocytic leukemia (B-CLL) identifies subtypes with very different prognoses, the assay is technically complex and unavailable to most laboratories. CD38 expression has been suggested as a surrogate marker for the 2 subtypes. IgV(H) mutations and CD38 expression in 145 patients with B-CLL with a long follow-up were compared. The 2 assays gave discordant results in 41 patients (28.3%). Multivariate analysis demonstrated that Binet stage, IgV(H) mutations and CD38 were independent prognostic indicators. Median survival time in patients whose cells had unmutated IgV(H) genes and expressed CD38 was 8 years; in those with mutated IgV(H) genes not expressing CD38, it was 26 years. For those with discordant results, median survival time was 15 years. Thus, although CD38 expression does not identify the same 2 subsets as IgV(H) mutations in CLL, it is an independent risk factor that can be used with IgV(H) mutations and clinical stage to select patients with B-CLL with the worst prognoses. Using cryopreserved cells taken at intervals during the course of the disease, however, changes of CD38 expression over time were demonstrated in 10 of 41 patients. Causes of the variation of CD38 expression require further study. Additional prospective studies are required for comparing CD38 expression with other prognostic factors and for taking sequential measurements during the course of the disease.

  18. Effects of mineralocorticoid receptor blockade on empathy in patients with major depressive disorder.

    PubMed

    Wingenfeld, Katja; Kuehl, Linn K; Dziobek, Isabel; Roepke, Stefan; Otte, Christian; Hinkelmann, Kim

    2016-10-01

    The mineralocorticoid receptor (MR) is highly expressed in the hippocampus and prefrontal cortex and is involved in social cognition. We recently found that pharmacological stimulation of the MR enhances emotional empathy but does not affect cognitive empathy. In the current study, we examined whether blockade of the MR impairs empathy in patients with major depressive disorder (MDD) and healthy individuals. In a placebo-controlled study, we randomized 28 patients with MDD without psychotropic medication and 43 healthy individuals to either placebo or 300 mg spironolactone, a MR antagonist. Subsequently, all participants underwent two tests of social cognition, the Multifaceted Empathy Test (MET) and the Movie for the Assessment of Social Cognition (MASC), measuring cognitive and emotional facets of empathy. In the MET, we found no significant main effect of treatment or main effect of group for cognitive empathy but a highly significant treatment by group interaction (p < 0.01). Patients had higher cognitive empathy scores compared to controls in the placebo condition but not after spironolactone. Furthermore, in the spironolactone condition reduced cognitive empathy was seen in MDD patients but not in controls. Emotional empathy was not affected by MR blockade. In the MASC, no effect of spironolactone could be revealed. Depressed patients appear to exhibit greater cognitive empathy compared to healthy individuals. Blockade of MR reduced cognitive empathy in MDD patients to the level of healthy individuals. Future studies should further clarify the impact of MR functioning on different domains of social cognition in psychiatric patients.

  19. α4+β7hiCD4+ Memory T cells Harbor Most Th-17 cells and are Preferentially Infected During Acute SIV Infection

    PubMed Central

    Kader, Muhamuda; Wang, Xiaolei; Piatak, Michael; Lifson, Jeffrey; Roederer, Mario; Veazey, Ronald; Mattapallil, Joseph J.

    2009-01-01

    HIV/SIV are thought to infect minimally activated CD4+ T cells after viral entry. Not much is known about why SIV selectively targets these cells. Here we show that CD4+ T cells that express high levels of the α4β7 heterodimer are preferentially infected very early during the course of SIV infection. At day 2–4 post infection, α4+β7hiCD4+ T cells had ∼ 5x more SIV-gag DNA than β7−CD4+ T cells. α4+β7hiCD4+ T cells displayed a predominantly central memory (CD45RA−CD28+CCR7+) and resting (CD25−CD69−HLA-DR−Ki-67−) phenotype. Though the expression of detectable CCR5 was variable on α4+β7hi and β7−CD4+ T cells, both CCR5+ and CCR5− subsets of α4+β7hi and β7−CD4+ T cells were found to express sufficient levels of CCR5 mRNA suggesting that both these subsets could be efficiently infected by SIV. In line with this, we found similar levels of SIV infection in β7−CD4+CCR5+ and β7−CD4+CCR5− T cells. α4β7hiCD4+ T cells were found to harbor most Th-17 cells that were significantly depleted during acute SIV infection. Taken together, our results show that resting memory α4+β7hiCD4+ T cells in blood are preferentially depleted during acute SIV infection, and the loss of these cells alters the balance between Th-17 and Th-1 responses thereby contributing to disease pathogenesis. PMID:19571800

  20. Enduring abolishment of remote but not recent expression of conditioned fear by the blockade of calcium-permeable AMPA receptors before extinction training.

    PubMed

    Zelena, Dóra; Mikics, Éva; Balázsfi, Diána; Varga, János; Klausz, Barbara; Urbán, Eszter; Sipos, Eszter; Biró, László; Miskolczi, Christina; Kovács, Krisztina; Ferenczi, Szilamér; Haller, József

    2016-06-01

    Calcium-permeable (GluA2 subunit-free) AMPA receptors (CP-AMPAR) play prominent roles in fear extinction; however, no blockers of these receptors were studied in tests relevant to extinction learning so far. The CP-AMPAR antagonist IEM-1460 was administered once before extinction trainings, which were started either 1 or 28 days after fear conditioning (FC). We used a mild extinction protocol that durably decreased but did not abolish conditioned fear. The messenger RNA (mRNA) expression of GluA1 and GluA2 subunits were investigated at both time points in the ventromedial prefrontal cortex (vmPFC) and amygdala. IEM-1460 transiently facilitated extinction 1 day after conditioning, but learned fear spontaneously recovered 4 weeks later. When the extinction protocol was applied 28 days after training, IEM-1460 enhanced extinction memory, moreover abolished conditioned fear for at least a month. The expression of GluA1 and GluA2 mRNAs was increased at both time points in the vmPFC. In the basolateral and central amygdala, the GluA1/GluA2 mRNA ratio increased, suggesting a shift towards the preponderance of GluA1 over GluA2 expression. AMPAR blockade lastingly enhanced the extinction of remote but not recent fear memories. Time-dependent changes in AMPA receptor subunit mRNA expression may explain the differential effects of CP-AMPAR blockade on recent and remote conditioned fear, further supporting the notion that the mechanisms maintaining learned fear change over time. Our findings suggest clinical implications for CP-AMPAR blockers, particularly for acquired anxieties (e.g., post-traumatic stress disorder) which have a slow onset and are durable.

Top