Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, Caroline; Grimaldi, Marina; Boulahtouf, Abdelhay
2014-10-01
Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared tomore » 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater potency for zfERα compared to zfERβs. • The hERα selective agonist 16αL-E2 is the most zfERα selective compound.« less
Zhang, Bin; Zhang, Cheng-Gang; Ji, Lin-Hua; Zhao, Gang; Wu, Zhi-Yong
2018-03-01
The aim of this study is to explore the roles of estrogen receptor (ER) subtypes and corresponding agonists/antagonists on the development of cirrhosis and activation and proliferation of hepatic stellate cells (HSCs). Carbon tetrachloride (CCl 4 )-induced cirrhotic ovariectomized rats were administered non-selective ER agonist (β-estradiol, E2), ER selective agonists (ERα agonist, propylpyrazoletriol; ERβ agonist, diarylpropionitrile [DPN]; and G-protein-coupled ER [GPER] agonist, G1), or E2 + ER selective antagonists (ERα antagonist, MPP; ERβ antagonist, PHTPP; and GPER antagonist, G15) for 12 weeks. The expression of the three ER subtypes in livers and HSCs and the effects of the drugs on hepatic fibrosis, isolated HSCs, and uteri were evaluated. Selective ER agonists/antagonists had various effects on CCl 4 -induced cirrhosis. The cirrhotic rats in the CCl 4 + E2, CCl 4 + DPN, CCl 4 + E2 + MPP, and CCl 4 + E2 + G15 groups presented reduced fibrosis scores, compared with those in the CCl 4 group. The cirrhotic rats in the E2 + PHTPP group presented increased fibrosis scores that similar to those in the CCl 4 group. The ovariectomized rats had enlarged uteri with increased uterus indexes after E2 administration; however, the proliferative effects of E2 were partially blocked by MPP or G15, but not PHTPP. In the in vitro study, DPN attenuated the transformation of quiescent HSCs to activated phenotype, suppressed collagen I, and α-smooth muscle actin expression. DPN also suppressed platelet-derived growth factor-induced proliferation in cultured HSCs, which was reversed by PHTPP. The antifibrogenic effects of estrogen were mediated by ERβ but not ERα or GPER. The ERβ selective agonist exerted a fibrosuppressive effect by inhibiting the activation and proliferation of HSCs, but did not induce uterine hyperplasia. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Hsu, Hsi-Hsien; Kuo, Wei-Wen; Ju, Da-Tong; Yeh, Yu-Lan; Tu, Chuan-Chou; Tsai, Ying-Lan; Shen, Chia-Yao; Chang, Sheng-Huang; Chung, Li-Chin; Huang, Chih-Yang
2014-11-28
To investigate the effects of 17β-estradiol via estrogen receptors (ER) or direct administration of ER agonists on human colorectal cancer. LoVo cells were established from the Bioresource Collection and Research Center and cultured in phenol red-free DMEM (Sigma, United States). To investigate the effects of E2 and/or ER selective agonists on cellular proliferation, LoVo colorectal cells were treated with E2 or ER-selective agonists for 24 h and 48 h and subjected to the MTT (Sigma) assay to find the concentration. And investigate the effects of E2 and/or ER selective agonists on cell used western immunoblotting to find out the diversification of signaling pathways. In order to observe motility and migration the wound healing assay and a transwell chamber (Neuro Probe) plate were tased. For a quantitative measure, we counted the number of migrating cells to the wound area post-wounding for 24 h. We further examined the cellular migration-regulating factors urokinase-type plasminogen activator (u-PA), tissue-type plasminogen activator (t-PA) and matrix metalloproteinase (MMP)-9 in human LoVo cells so gelatin zymography that we used and gelatinolytic activity was visualized by Coomassie blue staining. And these results are presented as means ± SE, and statistical comparisons were made using Student's t-test. The structure was first compared with E2 and ER agonists. We then treated the LoVo cells with E2 and ER agonists (10(-8) mol/L) for 24 h and 48 h and subsequently measured the cell viability using MTT assay. Our results showed that treatment with 17β-estradiol and/or ER agonists in human LoVo colorectal cancer cells activated p53 and then up-regulated p21 and p27 protein levels, subsequently inhibiting the downstream target gene, cyclin D1, which regulates cell proliferation. Taken together, our findings demonstrate the anti-tumorigenesis effects of 17β-estradiol and/or ER agonists and suggest that these compounds may prove to be a potential alternative therapy in the treatment of human colorectal cancer. These results demonstrate that 17β-estradiol and/or ER agonists downregulate migration-related proteins through the p53 signaling pathway in human LoVo colorectal cancer cells. These findings suggest that p53 plays a critical role in the 17β-estradiol and/or ER agonist-mediated protective activity against colorectal cancer progression. In addition, 17β-estradiol and/or ER agonists dramatically inhibited cell migration and reduced the expression of u-PA, t-PA and MMP-9 as well as MMP-2/9 activity in LoVo cells, which regulate cell metastasis. Moreover, we observed that pretreatment with a p53 inhibitor significantly blocked the anti-migration effects of E2 and/or ER agonists on LoVo cells. That E2 and/or ER agonists may impair LoVo cell migration by modulating migration-related factors via the p53 tumor suppressor gene. Direct ER treatment may prove to be an attractive alternative therapy in the treatment of human colorectal tumors in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leanos-Castaneda, Olga; Kraak, Glen van der
2007-10-15
The estrogen-dependent process of vitellogenesis is a key function on oviparous fish reproduction and it has been widely used as an indicator of xenoestrogen exposure. The two estrogen receptor (ER) subtypes, ER{alpha} and ER{beta}, are often co-expressed in the liver of fish. The relative contribution of each ER subtype to modulate vitellogenin production by hepatocytes was studied using selected compounds known to preferentially interact with specific ER subtypes: propyl-pyrazole-triol (PPT) an ER{alpha} selective agonist, methyl-piperidino-pyrazole (MPP) an ER{alpha} selective antagonist, and diarylpropionitrile (DPN) an ER{beta} selective agonist. First, the relative binding affinity of the test compounds to estradiol for rainbowmore » trout hepatic nuclear ER was determined using a competitive ligand binding assay. All the test ligands achieved complete displacement of specific [{sup 3}H]-estradiol binding from the nuclear ER extract. This indicates that the test ligands have the potential to modify the ER function in the rainbow trout liver. Secondly, the ability of the test compounds to induce or inhibit vitellogenin production by primary cultures of rainbow trout hepatocytes was studied. Estradiol and DPN were the only compounds that induced a dose-dependent increase on vitellogenin synthesis. The lack of vitellogenin induction by PPT indicates that ER{alpha} could not have a role on this reproductive process whereas the ability of DPN to induce vitellogenin production supports the participation of ER{beta}. In addition, this hypothesis is reinforced by the results obtained from MPP plus estradiol. On one hand, the absence of suppressive activity of MPP in the estradiol-induced vitellogenin production does not support the participation of ER{alpha}. On the other hand, once blocked ER{alpha} with MPP, the only manifestation of agonist activity of estradiol would be achieved via ER{beta}. In conclusion, the present results indicate that vitellogenin production is mainly mediated through ER{beta}, implying, furthermore that compounds which only exhibit ER{alpha} selectivity are not detected by vitellogenin bioassay.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katayama, Seiichi; Ashizawa, Koji; Gohma, Hiroshi
2006-12-15
The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17{alpha}-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ER{alpha}-selective agonist), diarylpropionitrile (DPN, an ER{beta}-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE inmore » the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ER{alpha}-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ER{beta}-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.« less
Selective estrogen receptor modulation in pancreatic β-cells and the prevention of type 2 diabetes.
Tiano, Joseph; Mauvais-Jarvis, Franck
2012-01-01
We recently showed that the female hormone 17β-estradiol (E2) protects against β-cell failure in rodent models of type 2 diabetes (T2D) by suppressing islet fatty acids and glycerolipids synthesis, thus preventing lipotoxic β-cell failure. E2 anti-lipogenic actions were recapitulated by pharmacological activation of the estrogen receptor (ER)α, ERβ and the G-protein coupled ER (GPER) in cultured rodent and human β-cells. In vivo, in mouse islets, ERα activation inhibited β-cell lipogenesis by suppressing fatty acid synthase expression (and activity) via an extranuclear, estrogen response element (ERE)-independent pathway requiring the signal transducer and activator of transcription 3. Here, we show that in INS-1 insulin-secreting cells, the selective ER modulator (SERM), Raloxifene, behaves both as ER antagonist with regard to nuclear ERE-dependent actions and as an ER agonist with regard to suppressing triglyceride accumulation. This additional finding opens the perspective that SERMs harboring ER agonistic activity in β-cells could have application in postmenopausal prevention of T2D. Additional studies using novel generation SERMs are needed to address this issue.
Weigt, Carmen; Hertrampf, Torsten; Flenker, Ulrich; Hülsemann, Frank; Kurnaz, Pinar; Fritzemeier, Karl Heinrich; Diel, Patrick
2015-11-01
The leptin resistant Zucker diabetic fatty (ZDF) rats are hyperphagic and become obese, but whereas the males develop type 2 diabetes mellitus (T2DM), the females remain euglycaemic. As estrogen deficiency is known to increase the risk of developing T2DM, we evaluated the role of ER subtypes alpha and beta in the development of glucose tolerance in leptin resistant ovariectomized (OVX) ZDF rats. At least six rats per group were treated with either vehicle (OVX), 17β-estradiol (E2), ER subtype-selective agonists (Alpha and Beta), or genistein (Gen) for 17 weeks. At the end of the treatment period a glucose tolerance assay was performed and the metabolic flux of (13)C-glucose for the E2 group was investigated. OVX ZDF rats treated with E2, Alpha, Beta, and Gen tolerated the glucose significantly better than untreated controls. E2 treatment increased absorbance/flux of (13)C-glucose to metabolic relevant tissues such liver, adipose tissue, gastrocnemius, and soleus muscle. Moreover, whereas Alpha treatment markedly increased mRNA expression of GLUT4 in gastrocnemius muscle, Beta treatment resulted in the largest fiber sizes of the soleus muscle. Treatment with Gen increased both the mRNA expression of GLUT 4 and the fiber sizes in the skeletal muscle. In addition, E2 and Alpha treatment decreased food intake and body weight gain. In summary, estrogen-improved glucose absorption is mediated via different molecular mechanisms: while activation of ER alpha seems to stimulate muscular GLUT4 functionality, activation of ER beta results in a hypertrophy of muscle fibers. In addition, selective activation of ER alpha decreased food intake and body weight gain. Our data further indicate that ER subtype-selective agonists and genistein improve systemic glucose tolerance also in the absence of a functional leptin signaling pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling.
Kang, Lianguo; Zhang, Xintian; Xie, Yan; Tu, Yaping; Wang, Dong; Liu, Zhenming; Wang, Zhao-Yi
2010-04-01
Accumulating evidence suggested that an orphan G protein-coupled receptor (GPR)30, mediates nongenomic responses to estrogen. The present study was performed to investigate the molecular mechanisms underlying GPR30 function. We found that knockdown of GPR30 expression in breast cancer SK-BR-3 cells down-regulated the expression levels of estrogen receptor (ER)-alpha36, a variant of ER-alpha. Introduction of a GPR30 expression vector into GPR30 nonexpressing cells induced endogenous ER-alpha36 expression, and cotransfection assay demonstrated that GPR30 activated the promoter activity of ER-alpha36 via an activator protein 1 binding site. Both 17beta-estradiol (E2) and G1, a compound reported to be a selective GPR30 agonist, increased the phosphorylation levels of the MAPK/ERK1/2 in SK-BR-3 cells, which could be blocked by an anti-ER-alpha36-specific antibody against its ligand-binding domain. G1 induced activities mediated by ER-alpha36, such as transcription activation activity of a VP16-ER-alpha36 fusion protein and activation of the MAPK/ERK1/2 in ER-alpha36-expressing cells. ER-alpha36-expressing cells, but not the nonexpressing cells, displayed high-affinity, specific E2 and G1 binding, and E2- and G1-induced intracellular Ca(2+) mobilization only in ER-alpha36 expressing cells. Taken together, our results demonstrated that previously reported activities of GPR30 in response to estrogen were through its ability to induce ER-alpha36 expression. The selective G protein-coupled receptor (GPR)30 agonist G1 actually interacts with ER-alpha36. Thus, the ER-alpha variant ER-alpha36, not GPR30, is involved in nongenomic estrogen signaling.
Hanson, Alicia M; Perera, K L Iresha Sampathi; Kim, Jaekyoon; Pandey, Rajesh K; Sweeney, Noreena; Lu, Xingyun; Imhoff, Andrea; Mackinnon, Alexander Craig; Wargolet, Adam J; Van Hart, Rochelle M; Frick, Karyn M; Donaldson, William A; Sem, Daniel S
2018-06-14
Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A-C estrogens, lacking the B and D estrogen rings. The most potent and selective A-C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC 50 s of 20-30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound's ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A-C estrogen is selective, brain penetrant, and facilitates memory consolidation.
Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.
2016-01-01
The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569
Tong, Qiang; Wu, Liang; Gao, Qing; Ou, Zhou; Zhu, Dongya; Zhang, Yingdong
2016-08-01
Two recent studies demonstrated that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) agonists exerted neuroprotective effects in mouse model of Parkinson's disease (PD). However, the underlying mechanisms remain unknown. Endoplasmic reticulum (ER) stress plays a major role in rotenone-induced dopaminergic neuronal degeneration. In the present study, we explored whether GW501516, a selective and high-affinity PPARβ/δ agonist, could protect the dopaminergic neurons against degeneration and improve PD behavior via suppressing the ER stress in the rotenone rat model of PD. GW501516 was administered intracerebroventricular infusion. Catalepsy and open field tests were used to test catalepsy and locomotor activities. The levels of dopamine and its metabolites were determined using high-performance liquid chromatography. Western blot and immunohistochemistry analysis were performed to assess dopaminergic neuronal degeneration. Quantitative real-time RT-PCR and Western blot analysis were executed to detect ER stress. TUNEL and immunohistochemistry assays were used to detect ER stress-mediated apoptosis. Our results showed that GW501516 ameliorated the catalepsy symptom and increased locomotor activity. Meanwhile, GW501516 partially reversed the loss of dopaminergic neurons. Moreover, GW501516 suppressed the activation of ER stress markers including inositol-requiring enzyme 1α (IRE1α) and caspase-12. Furthermore, GW501516 inhibited caspase-12-mediated neuronal apoptosis. These findings suggest that GW501516 conferred neuroprotection of not only biochemical and pathological attenuation but also behavioral improvement in the rotenone rat model of PD. More importantly, we demonstrated for the first time that suppressing IRE1α-caspase-12-mediated ER stress pathway may represent one potential mechanism underlying the neuroprotective effects of PPARβ/δ agonist in the rotenone rat model of PD.
Sinicropi, Maria Stefania; Lappano, Rosamaria; Caruso, Anna; Santolla, Maria Francesca; Pisano, Assunta; Rosano, Camillo; Capasso, Anna; Panno, Antonella; Lancelot, Jean Charles; Rault, Sylvain; Saturnino, Carmela; Maggiolini, Marcello
2015-01-01
Estrogens control a wide number of aspects of human physiology and play a key role in multiple diseases, including cancer. Estrogens act by binding to and activating the cognate receptor (ER), however numerous studies have revealed that the G protein-coupled receptor named GPR30/GPER mediates also estrogen signals. As ER and GPER share the ability to bind to same compounds, the use of GPER-selective ligands has allowed a better understanding of the biological responses mediated by GPER. In the present study, we designed and synthesized two novel carbazole derivatives and then investigated their ability to interact with and activate the GPER-mediated transduction pathway in breast cancer cells. Both compounds did not activate the classical ER in MCF7 cells, whereas one of the two compounds synthesized triggered through GPER the rapid ERK activation in ER-negative SkBr3 cells, demonstrating a good affinity for GPER in docking studies. The characterization of this novel selective GPER agonist could represent a potential useful tool to provide further insights into the physiopathological role exerted by GPER.
Li, Yin; Birnbaumer, Lutz; Teng, Christina T.
2010-01-01
In selected tissues and cell lines, 17β-estradiol (E2) regulates the expression of estrogen-related receptor α (ERRα), a member of the orphan nuclear receptor family. This effect is thought to be mediated by the estrogen receptor α (ERα). However in the ERα- and ERβ-negative SKBR3 breast cancer cell line, physiological levels of E2 also stimulate ERRα expression. Here, we explored the molecular mechanism that mediates estrogen action in ER-negative breast cancer cells. We observed that E2, the ERα agonist, as well as the ERα antagonists ICI 182,780 and tamoxifen (TAM), a selective ER modulator, stimulate the transcriptional activity of the ERRα gene and increase the production of ERRα protein in SKBR3 cells. Moreover, the ERRα downstream target genes expression and cellular proliferation are also increased. We show further that the G protein-coupled receptor GPR30/GPER-1 (GPER-1) mediates these effects. The GPER-1 specific ligand G-1 mimics the actions of E2, ICI 182,780, and TAM on ERRα expression, and changing the levels of GPER-1 mRNA by overexpression or small interfering RNA knockdown affected the expression of ERRα accordingly. Utilizing inhibitors, we delineate a different downstream pathway for ER agonist and ER antagonist-triggered signaling through GPER-1. We also find differential histone acetylation and transcription factor recruitment at distinct nucleosomes of the ERRα promoter, depending on whether the cells are activated with E2 or with ER antagonists. These findings provide insight into the molecular mechanisms of GPER-1/ERRα-mediated signaling and may be relevant to what happens in breast cancer cells escaping inhibitory control by TAM. PMID:20211987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Verma, Vikas; Sharma, Vikas
Dietary consumption of phytoestrogens like genistein has been linked with lower incidence of prostate cancer. The estradiol-like benzopyran core of genistein confers estrogen receptor-β (ER-β) selectivity that imparts weak anti-proliferative activity against prostate cancer cells. DL-2-[4-(2-piperidinoethoxy)phenyl]-3-phenyl-2H-1-benzopyran (BP), a SERM designed with benzopyran core, targeted androgen independent prostate cancer (PC-3) cells 14-times more potently than genistein, ~ 25% more efficiently than tamoxifen and 6.5-times more actively than ICI-182780, without forfeiting significant specificity in comparison to genistein. BP increased apoptosis (annexin-V and TUNEL labeling), arrested cell cycle, and significantly increased caspase-3 activity along with mRNA expressions of estrogen receptor (ER)-β and FasLmore » (qPCR) in PC-3 cells. In classical ERE-luc reporter assay BP behaved as a potent ER-α antagonist and ER-β agonist. Accordingly, it decreased expression of ER-α target PS2 (P < 0.01) and increased expression of ER-β target TNF-α (P < 0.05) genes in PC-3. ER-β deficient PC-3 (siRNA-transfected) was resistant to apoptotic and anti-proliferative actions of SERMs, including stimulation of FasL expression by BP. BP significantly inhibited phosphorylation of Akt and ERK-1/2, JNK and p38 in PC-3 (immunoblotting), and thus adopted a multi-pathway mechanism to exert a more potent anti-proliferative activity against prostate cancer cells than natural and synthetic SERMs. Its precise ER-subtype specific activity presents a unique lead structure for further optimization. - Highlights: • BP with benzopyran core of genistein was identified for ER-β selective action. • BP was 14-times more potent than genistien in targeting prostate cancer cells. • It behaved as a potent ER-β agonist and ER-α antagonist in gene reporter assays. • BP's anti-proliferative action was inhibited significantly in ER-β deficient cells. • BP — a unique lead structure for further optimization.« less
G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth.
Petrie, Whitney K; Dennis, Megan K; Hu, Chelin; Dai, Donghai; Arterburn, Jeffrey B; Smith, Harriet O; Hathaway, Helen J; Prossnitz, Eric R
2013-01-01
Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the "ERα-selective" agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of "ER-targeted" therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.
Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling
Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.
2018-01-01
Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR-targeted therapies to the clinic. PMID:29435103
Li, Jianxin; Chen, Zhu; Zhou, Xiaobo; Shi, Shuming; Qi, Hongbo; Baker, Philip N; Zhang, Hua
2016-11-01
The proliferation and apoptosis of cells in the placenta play a critical role in preeclampsia (PE) in which estrogen has been implicated via estrogen receptors (ERs). A novel ER, G-protein-coupled receptor 30 (GPR30), has recently been shown to be involved in PE. We investigated the basic levels of proliferation and apoptosis in normal placentae and placentae with PE and compared GPR30 expression levels between the two groups. We demonstrated that low GPR30 expression levels, more apoptosis, and less proliferation were associated with PE. Moreover, our in vitro study showed that both the selective GPR30 agonist G1 and the general ER agonist 17-β-estradiol were able to protect the placenta from hypoxia-reoxygenation injuries, resulting in decreased apoptosis and increased proliferation. Furthermore, this protective effect was abolished by the addition of the selective GPR30 inhibitor G15. These results provide evidence that (1) GPR30 is involved in regulating cell proliferation and apoptosis; (2) pharmacologic upregulation of GPR30 is beneficial for PE management; (3) GPR30 may therefore be an interventional target for pregnancies complicated by PE.
Blesson, Chellakkan Selvanesan; Sahlin, Lena
2012-09-25
Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Castelló-Ruiz, María; Salom, Juan B; Fernández-Musoles, Ricardo; Burguete, María C; López-Morales, Mikahela A; Arduini, Alessandro; Jover-Mengual, Teresa; Hervás, David; Torregrosa, Germán; Alborch, Enrique
2016-10-01
We have previously shown that the selective estrogen receptor modulator, bazedoxifene, improves the consequences of ischemic stroke. Now we aimed to characterize the effects and mechanisms of action of bazedoxifene in cerebral arteries. Male rabbit isolated basilar arteries were used for isometric tension recording and quantitative polymerase chain reaction. Bazedoxifene relaxed cerebral arteries, as 17-β-estradiol, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [estrogen receptor (ER) α agonist], and G1 [G protein-coupled ER (GPER) agonist] did it (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol > bazedoxifene = G1 > 17-β-estradiol). 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist) had no effect. Expression profile of genes encoding for ERα (ESR1), ERβ (ESR2), and GPER was GPER > ESR1 > ESR2. As to the endothelial mechanisms, endothelium removal, N-nitro-L-arginine methyl ester, and indomethacin, did not modify the relaxant responses to bazedoxifene. As to the K channels, both a high-K medium and the Kv blocker, 4-aminopyridine, inhibited the bazedoxifene-induced relaxations, whereas tetraethylammonium (nonselective K channel blocker), glibenclamide (selective KATP blocker) or iberiotoxin (selective KCa blocker) were without effect. Bazedoxifene also inhibited both Ca- and Bay K8644-elicited contractions. Therefore, bazedoxifene induces endothelium-independent relaxations of cerebral arteries through (1) activation of GPER and ERα receptors; (2) increase of K conductance through Kv channels; and (3) inhibition of Ca entry through L-type Ca channels. Such a profile is compatible with the beneficial effects of estrogenic compounds (eg, SERMs) on vascular function and, specifically, that concerning the brain. Therefore, bazedoxifene could be useful in the treatment of cerebral disorders in which the cerebrovascular function is compromised (eg, stroke).
Oestrogen exerts anti-inflammation via p38 MAPK/NF-κB cascade in adipocytes.
Mu, Pan-Wei; Jiang, Ping; Wang, Man-Man; Chen, Yan-Ming; Zheng, Shu-Hui; Tan, Zhi; Jiang, Wei; Zeng, Long-Yi; Wang, Ting-Huai
Oestrogen has anti-inflammatory property in obesity. However, the mechanism is still not defined. To investigate the effect of oestrogen on LPS-induced monocyte chemoattractant protein-1 (MCP-1) production in adipocytes. Lipopolysaccharides (LPS) was used to imitate inflammatory responses and monocyte chemotactic protein-1 (MCP-1) was selected as an inflammatory marker to observe. 17β-Estradiol (E 2 ), SB203580 (SB), pyrrolidine dithiocarbamate (PDTC), pertussis toxin (PTX), wortmannin (WM), p65 siRNA and p38 MAPK siRNA were pre-treated respectively or together in LPS-induced MCP-1. Then p38 MAPK and NF-κB cascade were silenced successively to observe the change of each other. Lastly, oestrogen receptor (ER) α agonist, ERβ agonist and ER antagonist were utilised. LPS-induced MCP-1 largely impaired by pre-treatment with E 2 , SB, PDTC or silencing NF-κB subunit. E 2 inhibited LPS-induced MCP-1 in a time- and dose-dependent manner, which was related to the suppression of p65 translocation to nucleus. Furthermore, LPS rapidly activated p38 MAPK, while E 2 markedly inhibited this activation. It markedly attenuated LPS-stimulated p65 translocation to nucleus and MCP-1 production by transfecting with p38 MAPK siRNA or using p38 MAPK inhibitor. The oestrogen's inhibitory effect was mimicked by the ERα agonist, but not by the ERβ agonist. The inhibition of E 2 on p38 MAPK phosphorylation was prevented by ER antagonist. E 2 inhibits LPS-stimulated MCP-1 in adipocytes. This effect is related to the inhibition of p38 MAPK/NF-κB cascade, and ERα appears to be the dominant ER subtype in these events. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth
Petrie, Whitney K.; Dennis, Megan K.; Dai, Donghai; Arterburn, Jeffrey B.; Smith, Harriet O.; Hathaway, Helen J.; Prossnitz, Eric R.
2013-01-01
Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth. PMID:24379833
In vitro OECD test methods applied to screen the estrogenic effect of chemicals, used in Korea.
Lee, Hee-Seok; Park, Eun-Jung; Han, Songyi; Oh, Gyeong-Yong; Kim, Min-Hee; Kang, Hui-Seung; Suh, Jin-Hyang; Oh, Jae-Ho; Lee, Kwang-Soo; Hwang, Myung-Sil; Moon, Guiim; Hong, Jin-Hwan; Hwang, In-Gyun
2016-09-01
In this study, 27 chemicals found in household products, which became an issue in Korea were screened for the agonistoc and antagonistic effects against human estrogen receptor using official Organization for Economic Cooperation and Development (OECD) in vitro assays, STTA assay using ERα-HeLa-9903 cell line and BG1Luc ER TA assay. In the case of human ER agonist screening by two assays, all tested chemicals did not show agonist effect against ER. In ER antagonist test by BG1Luc ER TA assay, five surfactants α-dodecyl-ω-hydroxypoly(oxyethylene), alcohols C16-18 ethoxylated, nonylphenol, ethoxylated, 3,6,9,12,15,18,21-heptaoxatritriacontan-1-ol, and α-dodecyl-ω-hydroxypoly(oxy-1,2-ethanediyl)) were found to exhibit weak antagonistic activities. The agonist/antagonist effects against human estrogen receptor of various chemicals, used in Korea by OECD test guideline are reported in this study. These results indicated that two OECD in vitro assays will can be applied in Korea by screening of agonistic/antagonistic effects against human ER of various chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yao, Fanrong; Abdel-Rahman, Abdel A
2017-02-01
We documented the dependence of ethanol (EtOH)-evoked myocardial dysfunction on estrogen (E 2 ), and our recent estrogen receptor (ER) blockade study, in proestrus rats, implicated ERα signaling in this phenomenon. However, a limitation of selective pharmacological loss-of-function approach is the potential contribution of the other 2 ERs to the observed effects because crosstalk exists between the 3 ERs. Here, we adopted a "regain"-of-function approach (using selective ER subtype agonists) to identify the ER subtype(s) required for unraveling the E 2 -dependent myocardial oxidative stress/dysfunction caused by EtOH in conscious ovariectomized (OVX) rats. OVX rats received a selective ERα (PPT), ERβ (DPN), or GPER (G1) agonist (10 μg/kg; i.v.) or vehicle 30 minutes before EtOH (1.0 g/kg; infused i.v. over 30 minutes) or saline, and the hemodynamic recording continued for additional 60 minutes. Thereafter, left ventricular tissue was collected for conducting ex vivo molecular/biochemical studies. EtOH had no hemodynamic effects in OVX rats, but reduced the left ventricular contractility index, dP/dt max , and MAP after acute ERα (PPT) or ERβ (DPN) activation. These responses were associated with increases in the phosphorylation of ERK1/2 and eNOS, and in reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the myocardium. GPER activation (G1) only unraveled a modest EtOH-evoked hypotension and elevation in myocardial ROS. PPT enhanced catalase, DPN reduced ALDH2, while G1 had no effect on the activity of either enzyme, and none of the agonists influenced alcohol dehydrogenase or CYP2E1 activities in the myocardium. Blood EtOH concentration (96.0 mg/dl) was significantly reduced following ERα (59.8 mg/dl) or ERβ (62.9 mg/dl), but not GPER (100.3 mg/dl), activation in EtOH-treated OVX rats. ERα and ERβ play major roles in the E 2 -dependent myocardial dysfunction caused by EtOH by promoting combined accumulation of cardiotoxic (ROS and MDA) and cardiodepressant (NOS-derived NO) molecules in female myocardium. Copyright © 2016 by the Research Society on Alcoholism.
Selective estrogen receptor modulators in clinical practice: a safety overview.
Ellis, Amanda J; Hendrick, Vicky M; Williams, Robert; Komm, Barry S
2015-06-01
Selective estrogen receptor (ER) modulators (SERMs) are a class of nonsteroidal compounds that interact with ERs, each with a distinct tissue-specific profile. Depending upon the degree of ER agonism/antagonism at the target tissue, SERMs show efficacy for various indications including osteoporosis, dyspareunia, and breast cancer, and are associated with safety risks. This review describes the safety profile of SERMs (tamoxifen, raloxifene, toremifene, bazedoxifene, lasofoxifene, and ospemifene) and fulvestrant (a pure ER antagonist) from Phase III trials, long-term extension studies, and active comparator studies. Tamoxifen, a first-generation SERM, is indicated for breast cancer prevention and treatment but is associated with serious safety concerns including endometrial cancer, venous thromboembolic events (VTE), and stroke. Toremifene, raloxifene, bazedoxifene, lasofoxifene, and ospemifene present generally improved, though distinctly different, safety profiles compared with tamoxifen, especially with endometrial cancer and stroke. However, the risk of VTE remains a concern for most SERMs. Each SERM presents a unique risk/benefit profile based on varying indications and tissue-specific ER agonist and antagonist effects, making careful patient selection and ongoing patient monitoring crucial aspects of treatment. Future research may focus on identifying new SERMs for endocrine-resistant and endocrine-responsive cancers and post-menopausal symptoms.
Integrated Model of Chemical Perturbations of a Biological ...
We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform (“”assay interference”). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 52 (2.8%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in v
Orihuela, Pedro A; Zuñiga, Lidia M; Rios, Mariana; Parada-Bustamante, Alexis; Sierralta, Walter D; Velásquez, Luis A; Croxatto, Horacio B
2009-11-30
Mating changes the mode of action of 17beta-estradiol (E2) to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER) are required. This change was designated as intracellular path shifting (IPS). Herein, we examined the subcellular distribution of ESR1 and ESR2 (formerly known as ER-alpha and ER-beta) in oviductal epithelial cells of rats on day 1 of cycle (C1) or pregnancy (P1) using immunoelectron microscopy for ESR1 and ESR2. The effect of mating on intraoviductal ESR1 or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain creatine kinase (Ckb) and calbindin 9 kDa (s100g) in rats on C1 or P1 treated with selective agonists for ESR1 (PPT) or ESR2 (DPN). The effect of ER agonists on egg transport was also evaluated on C1 or P1 rats. Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as well as the response to E2. In C1 and P1 rats, PPT increased Ckb while both agonists increased c-fos. DPN increased Ckb and s100g only in C1 and P1 rats, respectively. PPT accelerated egg transport in both groups and DPN accelerated egg transport only in C1 rats. Estrogen receptors present a subcellular distribution compatible with E2 genomic and nongenomic signaling in the oviductal epithelial cells of C1 and P1 although IPS occurs independently of changes in the distribution of ESR1 and ESR2 in the oviductal epithelial cells. Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on E2-induced accelerated egg transport. These findings reveal a profound influence on the ER signaling pathways exerted by mating in the oviduct.
Thammacharoen, Sumpun; Geary, Nori; Lutz, Thomas A; Ogawa, Sonoko; Asarian, Lori
2009-05-01
Eating is modulated by estradiol in females of many species and in women. To further investigate the estrogen receptor mechanism mediating this effect, ovariectomized rats and mice were treated with estradiol benzoate or the estrogen receptor-alpha (ER-alpha)-selective agonist PPT. PPT inhibited eating in rats much more rapidly than estradiol (approximately 2-6 h versus >24 h). In contrast, the latencies to vaginal estrus after PPT and estradiol were similar (>24 h). PPT also inhibited eating within a few hours in wild-type mice, but failed to inhibit eating in transgenic mice deficient in ER-alpha (ERalphaKO mice). PPT, but not estradiol, induced the expression of c-Fos in corticotrophin-releasing hormone (CRH)-expressing cells of the paraventricular nucleus (PVN) of the hypothalamus within 90-180 min in rats. Both PPT and estradiol reduced c-Fos expression in an ER-alpha-containing area of the nucleus of the solitary tract. The anomalously rapid eating-inhibitory effect of PPT suggests that PPT's neuropharmacological effect differs from estradiol's, perhaps because PPT differentially activates membrane versus nuclear ER-alpha or because PPT activates non-ER-alpha membrane estrogen receptors in addition to ER-alpha. The failure of PPT to inhibit eating in ERalphaKO mice, however, indicates that ER-alpha is necessary for PPT's eating-inhibitory action and that any PPT-induced activation of non-ER-alpha estrogen receptors is not sufficient to inhibit eating. Finally, the rapid induction of c-Fos in CRH-expressing cells in the PVN by PPT suggests that PPT elicits a neural response that is similar to that elicited by stress or aversive emotional stimuli.
Xenoestrogenic and dioxin-like activity in blood of East Greenland polar bears (Ursus maritimus).
Erdmann, Simon E; Dietz, Rune; Sonne, Christian; Bechshøft, Thea Ø; Vorkamp, Katrin; Letcher, Robert J; Long, Manhai; Bonefeld-Jørgensen, Eva C
2013-07-01
The aims of the project were to (i) extract the lipophilic persistent organic pollutants (POPs) from the blood of 99 East Greenland polar bears and assess the combined mixture effect on the estrogen receptor (ER) and the aryl hydrocarbon receptor (AhR) mediated transactivity; (ii) To evaluate whether the receptor transactivities were associated with selected POP markers, and (iii) compare the receptor transactivities in polar bears with earlier studies on Greenlandic Inuit. Lipophilic POPs were extracted using a combination of solid-phase extraction (SPE) and high performance liquid chromatography (HPLC). ER mediated transactivity was determined using the ER luciferase reporter MVLN cell assay. The extracts were tested alone (XER) and together with 17β-estradiol (E2) as a physiological mimic (XERcomp). Dioxins and dioxin-like (DL) compounds were extracted by a combination of SPE and the Supelco Dioxin Prep System®. AhR mediated dioxin-like transactivity was determined using the AhR luciferase reporter Hepa 1.12cR cell assay. Agonistic ER transactivity was elicited by 19% of the samples, and a further increased E2 induced ER response was found for 52%, whereas 17% antagonized the E2 induced ER response. Positive correlations were found in subadult bears between XER and several POP biomarkers. XER and XERcomp correlated positively to each other. A total of 91% of the polar bear blood extracts elicited agonistic AhR transactivity. The AhR-TCDD equivalent (AhR-TEQ) median levels were higher among adult bears compared to subadult bears, but not significantly. Copyright © 2013 Elsevier Ltd. All rights reserved.
LeWitt, Peter A; Verhagen Metman, Leo; Rubens, Robert; Khanna, Sarita; Kell, Sherron; Gupta, Suneel
Extended-release (ER) carbidopa-levodopa (CD-LD) (IPX066/RYTARY/NUMIENT) produces improvements in "off" time, "on" time without troublesome dyskinesia, and Unified Parkinson Disease Rating Scale scores compared with immediate-release (IR) CD-LD or IR CD-LD plus entacapone (CLE). Post hoc analyses of 2 ER CD-LD phase 3 trials evaluated whether the efficacy and safety of ER CD-LD relative to the respective active comparators were altered by concomitant medications (dopaminergic agonists, monoamine oxidase B [MAO-B] inhibitors, or amantadine). ADVANCE-PD (n = 393) assessed safety and efficacy of ER CD-LD versus IR CD-LD. ASCEND-PD (n = 91) evaluated ER CD-LD versus CLE. In both studies, IR- and CLE-experienced patients underwent a 6-week, open-label dose-conversion period to ER CD-LD prior to randomization. For analysis, the randomized population was divided into 3 subgroups: dopaminergic agonists, rasagiline or selegiline, and amantadine. For each subgroup, changes from baseline in PD diary measures ("off" time and "on" time with and without troublesome dyskinesia), Unified Parkinson Disease Rating Scale Parts II + III scores, and adverse events were analyzed, comparing ER CD-LD with the active comparator. Concomitant dopaminergic agonist or MAO-B inhibitor use did not diminish the efficacy (improvement in "off" time and "on" time without troublesome dyskinesia) of ER CD-LD compared with IR CD-LD or CLE, whereas the improvement with concomitant amantadine failed to reach significance. Safety and tolerability were similar among the subgroups, and ER CD-LD did not increase troublesome dyskinesia. For patients on oral LD regimens and taking a dopaminergic agonist, and/or a MAO-B inhibitor, changing from an IR to an ER CD-LD formulation provides approximately an additional hour of "good" on time.
LeWitt, Peter A.; Verhagen Metman, Leo; Rubens, Robert; Khanna, Sarita; Kell, Sherron; Gupta, Suneel
2018-01-01
Objectives Extended-release (ER) carbidopa-levodopa (CD-LD) (IPX066/RYTARY/NUMIENT) produces improvements in “off” time, “on” time without troublesome dyskinesia, and Unified Parkinson Disease Rating Scale scores compared with immediate-release (IR) CD-LD or IR CD-LD plus entacapone (CLE). Post hoc analyses of 2 ER CD-LD phase 3 trials evaluated whether the efficacy and safety of ER CD-LD relative to the respective active comparators were altered by concomitant medications (dopaminergic agonists, monoamine oxidase B [MAO-B] inhibitors, or amantadine). Methods ADVANCE-PD (n = 393) assessed safety and efficacy of ER CD-LD versus IR CD-LD. ASCEND-PD (n = 91) evaluated ER CD-LD versus CLE. In both studies, IR- and CLE-experienced patients underwent a 6-week, open-label dose-conversion period to ER CD-LD prior to randomization. For analysis, the randomized population was divided into 3 subgroups: dopaminergic agonists, rasagiline or selegiline, and amantadine. For each subgroup, changes from baseline in PD diary measures (“off” time and “on” time with and without troublesome dyskinesia), Unified Parkinson Disease Rating Scale Parts II + III scores, and adverse events were analyzed, comparing ER CD-LD with the active comparator. Results and Conclusions Concomitant dopaminergic agonist or MAO-B inhibitor use did not diminish the efficacy (improvement in “off” time and “on” time without troublesome dyskinesia) of ER CD-LD compared with IR CD-LD or CLE, whereas the improvement with concomitant amantadine failed to reach significance. Safety and tolerability were similar among the subgroups, and ER CD-LD did not increase troublesome dyskinesia. For patients on oral LD regimens and taking a dopaminergic agonist, and/or a MAO-B inhibitor, changing from an IR to an ER CD-LD formulation provides approximately an additional hour of “good” on time. PMID:29432286
Dey, Prasenjit; Barros, Rodrigo P A; Warner, Margaret; Ström, Anders; Gustafsson, Jan-Åke
2013-12-01
Estrogen and its receptors (ERs) influence many biological processes in physiology and pathology in men and women. ERs are involved in the etiology and/or progression of cancers of the prostate, breast, uterus, ovary, colon, lung, stomach, and malignancies of the immune system. In estrogen-sensitive malignancies, ERβ usually is a tumor suppressor and ERα is an oncogene. ERβ regulates genes in several key pathways including tumor suppression (p53, PTEN); metabolism (PI3K); survival (Akt); proliferation pathways (p45(Skp2), cMyc, and cyclin E); cell-cycle arresting factors (p21(WAF1), cyclin-dependent kinase inhibitor 1 (CDKN1A)), p27(Kip1), and cyclin-dependent kinases (CDKs); protection from reactive oxygen species, glutathione peroxidase. Because they are activated by small molecules, ERs are excellent targets for pharmaceuticals. ERα antagonists have been used for many years in the treatment of breast cancer and more recently pharmaceutical companies have produced agonists which are very selective for ERα or ERβ. ERβ agonists are being considered for preventing progression of cancer, treatment of anxiety and depression, as anti-inflammatory agents and as agents, which prevent or reduce the severity of neurodegenerative diseases.
2009-01-01
Background Mating changes the mode of action of 17beta-estradiol (E2) to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER) are required. This change was designated as intracellular path shifting (IPS). Methods Herein, we examined the subcellular distribution of ESR1 and ESR2 (formerly known as ER-alpha and ER-beta) in oviductal epithelial cells of rats on day 1 of cycle (C1) or pregnancy (P1) using immunoelectron microscopy for ESR1 and ESR2. The effect of mating on intraoviductal ESR1 or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain creatine kinase (Ckb) and calbindin 9 kDa (s100g) in rats on C1 or P1 treated with selective agonists for ESR1 (PPT) or ESR2 (DPN). The effect of ER agonists on egg transport was also evaluated on C1 or P1 rats. Results Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as well as the response to E2. In C1 and P1 rats, PPT increased Ckb while both agonists increased c-fos. DPN increased Ckb and s100g only in C1 and P1 rats, respectively. PPT accelerated egg transport in both groups and DPN accelerated egg transport only in C1 rats. Conclusion Estrogen receptors present a subcellular distribution compatible with E2 genomic and nongenomic signaling in the oviductal epithelial cells of C1 and P1 although IPS occurs independently of changes in the distribution of ESR1 and ESR2 in the oviductal epithelial cells. Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on E2-induced accelerated egg transport. These findings reveal a profound influence on the ER signaling pathways exerted by mating in the oviduct. PMID:19948032
Judson, Richard S.; Magpantay, Felicia Maria; Chickarmane, Vijay; Haskell, Cymra; Tania, Nessy; Taylor, Jean; Xia, Menghang; Huang, Ruili; Rotroff, Daniel M.; Filer, Dayne L.; Houck, Keith A.; Martin, Matthew T.; Sipes, Nisha; Richard, Ann M.; Mansouri, Kamel; Setzer, R. Woodrow; Knudsen, Thomas B.; Crofton, Kevin M.; Thomas, Russell S.
2015-01-01
We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation, and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform (“assay interference”). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 111 (6.1%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in vivo endocrine testing. Finally, this model is generalizable to any molecular pathway for which there are multiple upstream and downstream assays available. PMID:26272952
Stovall, Dale W; Pinkerton, Joann V
2009-04-01
During peri- and postmenopausal stages, the majority of women experience moderate-to-severe vasomotor symptoms, such as hot flashes and night sweats, that interfere with sleep and reduce quality of life. Estrogen alone or in combination with a progestagen has been the standard therapy for such vasomotor symptoms; however, this therapeutic regimen is associated with severe side effects, such as breast cancer or cardiovascular events. To provide a better treatment option for menopausal women, Bionovo Inc is developing the estrogen receptor (ER)beta-selective agonist MF-101. Selective ER agonists can stimulate either ERalpha or ERbeta and induce tissue-specific estrogen-like effects, thus providing a safer alternative to conventional hormone therapy. MF-101 is derived from 22 herbs that are traditionally used in Chinese medicine for the treatment of menopausal symptoms. MF-101 did not promote the growth of breast cancer cells or stimulate uterine growth in preclinical studies and, in a phase II trial, was demonstrated to be safe and more effective in reducing the frequency and severity of hot flashes in postmenopausal women compared with placebo. To confirm the safety and efficacy of MF-101, larger phase III trials were planned for 2009. Although MF-101 appears to be a promising therapeutic, the herbal composition of the drug may be a disadvantage, because of the increased risk of causing allergic reactions in the general population. Studies with the MF-101-isolated active compounds liquiritigen and chalcone demonstrated selectivity for ERbeta, with no induction of proliferative events. If these isolates were demonstrated to be as effective and safe in clinical trials as preliminary data suggest regarding MF-101, these compounds could change the way clinicians treat menopause-associated symptoms.
Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha.
Chakraborty, Sandipan; Biswas, Pradip Kumar
2014-08-01
Tamoxifen-an anti-estrogenic ligand in breast tissues used as a first-line treatment in estrogen receptor (ER)-positive breast cancers-is associated with the development of resistance followed by resumption of tumor growth in about 30 % of cases. Whether tamoxifen assists in proliferation in such cases or whether any ligand-independent pathway to transcription exists is not fully understood; also, no ERα mutants have been detected so far that could lead to tamoxifen resistance. Using in silico conformational analysis of the ERα ligand binding domain (LBD), in the absence and presence of selective agonist (diethylstilbestrol; DES), antagonist (Faslodex; ICI), and selective estrogen receptor modulator (SERM; 4-hydroxy tamoxifen; 4-OHT) ligands, we have elucidated ligand-responsive structural modulations of the ERα-LBD dimer in its agonist and antagonist complexes to address the issue of "tamoxifen resistance". DES and ICI were found to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also led to a stable structure in agonist conformation. However, binding of 4-OHT to the antagonist structure led to a flexible conformation allowing the protein to visit conformations populated by agonists as was evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein exhibited a diminished size of the co-repressor binding pocket in the LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT-bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at the LBD provide crucial structural insights into tamoxifen-resistance that complement our existing understanding.
ER phospholipid composition modulates lipogenesis during feeding and in obesity.
Rong, Xin; Wang, Bo; Palladino, Elisa Nd; de Aguiar Vallim, Thomas Q; Ford, David A; Tontonoz, Peter
2017-10-02
Sterol regulatory element-binding protein 1c (SREBP-1c) is a central regulator of lipogenesis whose activity is controlled by proteolytic cleavage. The metabolic factors that affect its processing are incompletely understood. Here, we show that dynamic changes in the acyl chain composition of ER phospholipids affect SREBP-1c maturation in physiology and disease. The abundance of polyunsaturated phosphatidylcholine in liver ER is selectively increased in response to feeding and in the setting of obesity-linked insulin resistance. Exogenous delivery of polyunsaturated phosphatidylcholine to ER accelerated SREBP-1c processing through a mechanism that required an intact SREBP cleavage-activating protein (SCAP) pathway. Furthermore, induction of the phospholipid-remodeling enzyme LPCAT3 in response to liver X receptor (LXR) activation promoted SREBP-1c processing by driving the incorporation of polyunsaturated fatty acids into ER. Conversely, LPCAT3 deficiency increased membrane saturation, reduced nuclear SREBP-1c abundance, and blunted the lipogenic response to feeding, LXR agonist treatment, or obesity-linked insulin resistance. Desaturation of the ER membrane may serve as an auxiliary signal of the fed state that promotes lipid synthesis in response to nutrient availability.
Estrogenic and serotonergic butenolides from the leaves of Piper hispidum Swingle (Piperaceae)
Michel, Joanna L; Chen, Yegao; Zhang, Hongjie; Huang, Yue; Krunic, Alecjev; Orjala, Jimmy; Veliz, Mario; Soni, Kapil K.; Soejarto, Djaja Doel; Caceres, Armando; Perez, Alice; Mahady, Gail B
2010-01-01
Ethnopharmacological relevance Our previous work has demonstrated that several plants in the Piperaceae family are commonly used by the Q’eqchi Maya of Livingston, Guatemala to treat amenorrhea, dysmenorrhea, and pain. Extracts of Piper hispidum Swingle (Piperaceae), bound to the estrogen (ER) and serotonin (5-HT7) receptors. Aim of the study To investigate the estrogenic and serotonergic activities of P. hispidum extracts in functionalized assays, identify the active chemical constituents in the leaf extract, and test these compounds as agonists or antagonists of ER and 5-HT7. Materials and methods The effects of the P. hispidum leaf extracts were investigated in estrogen reporter gene and endogenous gene assays in MCF-7 cells to determine if the extracts acted as an estrogen agonist or antagonist. In addition, the active compounds were isolated using ER- and 5-HT7 receptor bioassay-guided fractionation. The structures of the purified compounds were identified using high-resolution LC-MS and NMR spectroscopic methods. The ER- and 5-HT7-agonist effects of the purified chemical constituents were tested in a 2ERE-reporter gene assay in MCF-7 cells and in serotonin binding and functionalized assays. Results Three butenolides including one new compound (1) were isolated from the leaves of P. hispidum, and their structures were determined. Compound 1 bound to the serotonin receptor 5-HT7 with IC50 values of 16.1 and 8.3 μM, respectively, and using GTP shift assays, compound 1 was found to be a partial agonist of the 5-HT7 receptor. The P. hispidum leaf extracts, as well as compounds 2 and 3 enhanced the expression of estrogen responsive reporter and endogenous genes in MCF-7 cells, demonstrating estrogen agonist effects. Conclusions Extracts of P. hispidum act as agonists of the ER and 5-HT7 receptors. Compound 1, a new natural product, identified as 9, 10-methylenedioxy-5,6-Z-fadyenolide, was isolated as the 5-HT7 agonist. Compounds 2 and 3 are reported for the first time in P. hispidum, and identified as the estrogen agonists. No inhibition of CYP450 was observed for any of these compounds in concentrations up to 1 μM. These activities are consistent with the Q’eqchi traditional use of the plant for the treatment of disorders associated with the female reproductive cycle. PMID:20304039
Estrogenic and serotonergic butenolides from the leaves of Piper hispidum Swingle (Piperaceae).
Michel, Joanna L; Chen, Yegao; Zhang, Hongjie; Huang, Yue; Krunic, Aleksej; Orjala, Jimmy; Veliz, Mario; Soni, Kapil K; Soejarto, Djaja Doel; Caceres, Armando; Perez, Alice; Mahady, Gail B
2010-05-27
Our previous work has demonstrated that several plants in the Piperaceae family are commonly used by the Q'eqchi Maya of Livingston, Guatemala to treat amenorrhea, dysmenorrhea, and pain. Extracts of Piper hispidum Swingle (Piperaceae), bound to the estrogen (ER) and serotonin (5-HT7) receptors. To investigate the estrogenic and serotonergic activities of Piper hispidum extracts in functionalized assays, identify the active chemical constituents in the leaf extract, and test these compounds as agonists or antagonists of ER and 5-HT7. The effects of the Piper hispidum leaf extracts were investigated in estrogen reporter gene and endogenous gene assays in MCF-7 cells to determine if the extracts acted as an estrogen agonist or antagonist. In addition, the active compounds were isolated using ER- and 5-HT7 receptor bioassay-guided fractionation. The structures of the purified compounds were identified using high-resolution LC-MS and NMR spectroscopic methods. The ER- and 5-HT7-agonist effects of the purified chemical constituents were tested in a 2ERE-reporter gene assay in MCF-7 cells and in serotonin binding and functionalized assays. Three butenolides including one new compound (1) were isolated from the leaves of Piper hispidum, and their structures were determined. Compound 1 bound to the serotonin receptor 5-HT(7) with IC(50) values of 16.1 and 8.3 microM, respectively, and using GTP shift assays, Compound 1 was found to be a partial agonist of the 5-HT(7) receptor. The Piper hispidum leaf extracts, as well as Compounds 2 and 3 enhanced the expression of estrogen responsive reporter and endogenous genes in MCF-7 cells, demonstrating estrogen agonist effects. Extracts of Piper hispidum act as agonists of the ER and 5-HT(7) receptors. Compound 1, a new natural product, identified as 9,10-methylenedioxy-5,6-Z-fadyenolide, was isolated as the 5-HT(7) agonist. Compounds 2 and 3 are reported for the first time in Piper hispidum, and identified as the estrogen agonists. No inhibition of CYP450 was observed for any of these compounds in concentrations up to 1 microM. These activities are consistent with the Q'eqchi traditional use of the plant for the treatment of disorders associated with the female reproductive cycle. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Judson, Richard S; Magpantay, Felicia Maria; Chickarmane, Vijay; Haskell, Cymra; Tania, Nessy; Taylor, Jean; Xia, Menghang; Huang, Ruili; Rotroff, Daniel M; Filer, Dayne L; Houck, Keith A; Martin, Matthew T; Sipes, Nisha; Richard, Ann M; Mansouri, Kamel; Setzer, R Woodrow; Knudsen, Thomas B; Crofton, Kevin M; Thomas, Russell S
2015-11-01
We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation, and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform ("assay interference"). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 111 (6.1%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in vivo endocrine testing. Finally, this model is generalizable to any molecular pathway for which there are multiple upstream and downstream assays available. Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.
Vrechi, Talita A; Crunfli, Fernanda; Costa, Andressa P; Torrão, Andréa S
2018-05-01
Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER). Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin. This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways. Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.
Hashimoto, Kenji
2013-01-01
Epidemiological studies have demonstrated a close relationship between depression and cardiovascular disease (CVD). Although it is known that the central nervous system (CNS) contributes to this relationship, the detailed mechanisms involved in this process remain unclear. Recent studies suggest that the endoplasmic reticulum (ER) molecular chaperone sigma-1 receptor and brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of CVD and depression. Several meta-analysis studies have showed that levels of BDNF in the blood of patients with major depressive disorder (MDD) are lower than normal controls, indicating that blood BDNF might be a biomarker for depression. Furthermore, blood levels of BDNF in patients with CVD are also lower than normal controls. A recent study using conditional BDNF knock-out mice in animal models of myocardial infarction highlighted the role of CNS-mediated mechanisms in the cardioprotective effects of BDNF. In addition, a recent study shows that decreased levels of sigma-1 receptor in the mouse brain contribute to the association between heart failure and depression. Moreover, sigma-1 receptor agonists, including the endogenous neurosteroid dehydroepiandosterone (DHEA) and the selective serotonin reuptake inhibitor (SSRI) fluvoxamine, show potent cardioprotective and antidepressive effects in rodents, via sigma-1 receptor stimulation. Interestingly, agonist activation of sigma-1 receptors increased the secretion of mature BDNF from its precursor proBDNF via chaperone activity in the ER. Given the role of ER stress in the pathophysiology of CVD and MDD, the author will discuss the potential link between sigma-1 receptors and BDNF-TrkB pathway in the pathophysiology of these two diseases. Finally, the author will make a case for potent sigma-1 receptor agonists and TrkB agonists as new potential therapeutic drugs for depressive patients with CVD. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Drug Discovery Partnership for Personalized Breast Cancer Therapy
2013-09-01
structures of ER alpha and beta (with bound agonists or antagonists) and then virtually screen the USDA Phytochemical, Chinese Herbal Medicine , and the FDA...ER agonists and antagonists that are in the registered pharmaceuticals and herbal medicine databases. The 29 analogs obtained have been...Drew, T. Wang, J. Antoon, T. Nguyen, P. Dupart, Y. Wang, M. Zhao, Y.Y. Liu, M. Foroozesh, and B. Beckman, submitted to the Journal of Medicinal
Hyrskyluoto, A; Pulli, I; Törnqvist, K; Huu Ho, T; Korhonen, L; Lindholm, D
2013-01-01
Alterations in mitochondria and increased oxidative stress are associated with the disease progression in Huntington's disease (HD). Endoplasmic reticulum (ER) stress and oxidative damage are linked through the close communication between the ER and mitochondria. Sigma-1 receptor (Sig-1R) is a chaperone protein in the ER that is involved in ER stress regulation, but little is known about its role in HD or the mechanisms for cell protection. Here we show that the Sig-1R agonist, PRE084 increases cell survival and counteracts the deleterious effects caused by N-terminal mutant huntingtin proteins in neuronal PC6.3 cells. Particularly, PRE084 increased the levels of cellular antioxidants by activating the NF-κB pathway that is compromised by the expression of mutant huntingtin proteins. These results show that the Sig-1R agonist has beneficial effects in models of HD and that compounds affecting the Sig-1R may be promising targets for future drug development in HD. PMID:23703391
Movérare-Skrtic, Sofia; Börjesson, Anna E.; Farman, Helen H.; Sjögren, Klara; Windahl, Sara H.; Lagerquist, Marie K.; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes
2014-01-01
The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-20) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-20 mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-20 mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist. PMID:24395795
Movérare-Skrtic, Sofia; Börjesson, Anna E; Farman, Helen H; Sjögren, Klara; Windahl, Sara H; Lagerquist, Marie K; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes
2014-01-21
The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-2(0)) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-2(0) mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-2(0) mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist.
Prediction of in vitro and in vivo oestrogen receptor activity using hierarchical clustering
In this study, hierarchical clustering classification models were developed to predict in vitro and in vivo oestrogen receptor (ER) activity. Classification models were developed for binding, agonist, and antagonist in vitro ER activity and for mouse in vivo uterotrophic ER bindi...
Khalaj, Anna J; Hasselmann, Jonathan; Augello, Catherine; Moore, Spencer; Tiwari-Woodruff, Seema K
2016-06-01
Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury. Published by Elsevier Ltd.
Khalaj, Anna J.; Hasselmann, Jonathan; Augello, Catherine; Moore, Spencer; Tiwari-Woodruff, Seema K.
2017-01-01
Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous myelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires Erk1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN’s neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as anti-inflammatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury. PMID:26776441
2017-01-01
Many women consider botanical dietary supplements (BDSs) as safe alternatives to hormone therapy for menopausal symptoms. However, the effect of BDSs on breast cancer risk is largely unknown. In the estrogen chemical carcinogenesis pathway, P450 1B1 metabolizes estrogens to 4-hydroxylated catechols, which are oxidized to genotoxic quinones that initiate and promote breast cancer. In contrast, P450 1A1 catalyzed 2-hydroxylation represents a detoxification pathway. The current study evaluated the effects of red clover, a popular BDS used for women’s health, and its isoflavones, biochanin A (BA), formononetin (FN), genistein (GN), and daidzein (DZ), on estrogen metabolism. The methoxy estrogen metabolites (2-MeOE1, 4-MeOE1) were measured by LC-MS/MS, and CYP1A1 and CYP1B1 gene expression was analyzed by qPCR. Nonmalignant ER-negative breast epithelial cells (MCF-10A) and ER-positive breast cancer cells (MCF-7) were derived from normal breast epithelial tissue and ER+ breast cancer tissue. Red clover extract (RCE, 10 μg/mL) and isoflavones had no effect on estrogen metabolism in MCF-10A cells. However, in MCF-7 cells, RCE treatments downregulated CYP1A1 expression and enhanced genotoxic metabolism (4-MeOE1/CYP1B1 > 2-MeOE1/CYP1A1). Experiments with the isoflavones showed that the AhR agonists (BA, FN) preferentially induced CYP1B1 expression as well as 4-MeOE1. In contrast, the ER agonists (GN, DZ) downregulated CYP1A1 expression likely through an epigenetic mechanism. Finally, the ER antagonist ICI 182,780 potentiated isoflavone-induced XRE-luciferase reporter activity and reversed GN and DZ induced downregulation of CYP1A1 expression. Overall, these studies show that red clover and its isoflavones have differential effects on estrogen metabolism in “normal” vs breast cancer cells. In breast cancer cells, the AhR agonists stimulate genotoxic metabolism, and the ER agonists downregulate the detoxification pathway. These data may suggest that especially breast cancer patients should avoid red clover and isoflavone based BDSs when making choices for menopausal symptom relief. PMID:28985473
Gründker, Carsten; Günthert, Andreas R; Hellriegel, Martin; Emons, Günter
2004-11-01
The majority of human endometrial (>80%), ovarian (>80%) and breast (>50%) cancers express GnRH receptors. Their spontaneous and epidermal growth-factor-induced proliferation is dose- and time-dependently reduced by treatment with GnRH and its agonists. In this study, we demonstrate that the GnRH agonist triptorelin inhibits estradiol (E2)-induced cancer cell proliferation. The proliferation of quiescent estrogen receptor alpha (ER alpha)-/ER beta-positive, but not of ER alpha-negative/ER beta-positive endometrial, ovarian and breast cancer cell lines, was significantly stimulated (P<0.001) (ANOVA) after treatment with E2 (10(-8) M). This effect was time- and dose-dependently antagonized by simultaneous treatment with triptorelin. The inhibitory effect was maximal at 10(-5) M concentration of triptorelin (P<0.001). In addition, we could show that, in ER alpha-/ER beta-positive cell lines, E2 induces activation of serum response element (SRE) and expression of the immediate early-response gene c-fos. These effects were blocked by triptorelin (P<0.001). E2-induced activation of estrogen-response element (ERE) was not affected by triptorelin. The transcriptional activation of SRE by E2 is due to ER alpha activation of the mitogen-activated protein kinase (MAPK) pathway. This pathway is impeded by GnRH, resulting in a reduction of E2-induced SRE activation and, in consequence, a reduction of E2-induced c-fos expression. This causes downregulation of E2-induced cancer cell proliferation.
Arao, Yukitomo; Hamilton, Katherine J.; Coons, Laurel A.; Korach, Kenneth S.
2013-01-01
A ligand-dependent nuclear transcription factor, ERα has two transactivating functional domains (AF), AF-1 and AF-2. AF-1 is localized in the N-terminal region, and AF-2 is distributed in the C-terminal ligand-binding domain (LBD) of the ERα protein. Helix 12 (H12) in the LBD is a component of the AF-2, and the configuration of H12 is ligand-inducible to an active or inactive form. We demonstrated previously that the ERα mutant (AF2ER) possessing L543A,L544A mutations in H12 disrupts AF-2 function and reverses antagonists such as fulvestrant/ICI182780 (ICI) or 4-hydoxytamoxifen (OHT) into agonists in the AF2ER knock-in mouse. Our previous in vitro studies suggested that the mode of AF2ER activation is similar to the partial agonist activity of OHT for WT-ERα. However, it is still unclear how antagonists activate ERα. To understand the molecular mechanism of antagonist reversal activity, we analyzed the correlation between the ICI-dependent estrogen-responsive element-mediated transcription activity of AF2ER and AF2ER-LBD dimerization activity. We report here that ICI-dependent AF2ER activation correlated with the activity of AF2ER-LBD homodimerization. Prevention of dimerization impaired the ICI-dependent ERE binding and transcription activity of AF2ER. The dislocation of H12 caused ICI-dependent LBD homodimerization involving the F-domain, the adjoining region of H12. Furthermore, F-domain truncation also strongly depressed the dimerization of WT-ERα-LBD with antagonists but not with E2. AF2ER activation levels with ICI, OHT, and raloxifene were parallel with the degree of AF2ER-LBD homodimerization, supporting a mechanism that antagonist-dependent LBD homodimerization involving the F-domain results in antagonist reversal activity of H12-mutated ERα. PMID:23733188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prather, Paul L.; FrancisDevaraj, FeAna; Dates, Centdrika R.
Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam canmore » produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel, efficacious, non-toxic cancer drugs acting via CB1 and/or CB2Rs.« less
Corcoran, Jemma J; Nicholson, Christopher; Sweeney, Michèle; Charnock, Jayne C; Robson, Stephen C; Westwood, Melissa; Taggart, Michael J
2014-05-01
The discrete regulation of vascular tone in the human uterine and placental circulations is a key determinant of appropriate uteroplacental blood perfusion and pregnancy success. Humoral factors such as estrogen, which increases in the placenta and maternal circulation throughout human pregnancy, may regulate these vascular beds as studies of animal arteries have shown that 17β-estradiol, or agonists of estrogen receptors (ER), can exert acute vasodilatory actions. The aim of this study was to compare how acute exposure to ER-specific agonists, and 17β-estradiol, altered human placental and uterine arterial tone in vitro. Uterine and placental arteries were isolated from biopsies obtained from women with uncomplicated pregnancy delivering a singleton infant at term. Vessels were mounted on a wire myograph, exposed to the thromboxane receptor agonist U46619 (10(-6) M), and then incubated with incremental doses (5 min, 0.03-30 µM) of either 17β-estradiol or agonists specific for the ERs ERα (PPT), ERβ (DPN) or the G-protein-coupled estrogen receptor GPER-1 (G1). ERα and ERβ mRNA expression was assessed. 17β-estradiol, PPT and DPN each relaxed myometrial arteries (P < 0.05) in a manner that was partly endothelium-dependent. In contrast, 17β-estradiol or DPN relaxed placental arteries (maximum relaxation to 42 ± 1.1 or 47.6 ± 6.53% of preconstriction, respectively) to a lesser extent than myometrial arteries (to 0.03 ± 0.03 or 8.0 ± 1.0%) and in an endothelial-independent manner whereas PPT was without effect. G1 exposure did not inhibit the constriction of myometrial nor placenta arteries. mRNA expression of ERα and ERβ was greater in myometrial arteries than placental arteries. ER-specific agonists, and 17β-estradiol, differentially modulate the tone of uterine versus placental arteries highlighting that estrogen may regulate human uteroplacental blood flow in a tissue-specific manner.
Xia, Tian; Li, Shuang; Ma, Ruihong; Guan, Sufen; Li, Jiacui; Li, Hongqin; Zhang, Hexin; Lin, Qiu; Zhao, Zhimei; Wang, Baojuan
2017-06-01
Based on the emotional theory of Traditional Chinese Medicine, and combined with the modern medicine theory of psychological stress, a research model of human uterine leiomyoma cells (ULM) was cultured in vitro to determine the effectiveness of adrenergic receptor (AR) agonists in human ULM cell growth. In addition, we studied the functional influence of "liver depression and psychological stress theory" on fibroid formation by intervening in the AR-cAMP-PKA signaling pathway. The intention was to establish a new method to prevent and cure fibroids through "liver depression and psychological stress theory" and provide an experimental basis for the Traditional Chinese Medicine emotional theory. Primary human ULM cells were enriched by collagenase digestion. Immunohistochemistry and hematoxylin and eosin (HE) staining were used for cytological identification. Using this model, we studied intervention using specific AR agonists on ULM cells to observe the influence of "liver depression and psychological stress theory" on estrogen receptor (ER), progesterone receptor (PR), vascular endothelial growth factor (VEGF) and fibroblast growth factors (FGF). Norepinephrine (NE) and epinephrine (E) are adrenergic receptor agonists. They promoted ULM cell proliferation and increased the levels of ER, PR, VEGF and FGF. In contrast, isoproterenol (ISO) inhibited ULM cell proliferation and decreased the levels of ER, PR, VEGF and FGF. The protein expression of cAMP and PKA in ULM cells was reduced and the levels of ER, PR, VEGF and FGF were increased when co-treatment with the α-AR blocker (phentolamine). The β-AR blocker (metoprolol) displayed an opposite effect. AR agonists modulated ER, PR, VEGF and FGF levels in ULM cells in an AR-cAMP-PKA-dependent signaling pathways to influence fibroid occurrence and development. Copyright © 2017. Published by Elsevier B.V.
Pinto, Patrícia I S; Singh, Pratap B; Condeça, João B; Teodósio, Helena R; Power, Deborah M; Canário, Adelino V M
2006-12-27
ICI 182,780 (ICI) belongs to a new class of antiestrogens developed to be pure estrogen antagonists and, in addition to its therapeutic use, it has been used to knock-out estrogen and estrogen receptor (ER) actions in several mammalian species. In the present study, the effects and mechanism of action of ICI were investigated in the teleost fish, sea bream (Sparus auratus). Three independent in vivo experiments were performed in which mature male tilapia (Oreochromis mossambicus) or sea bream received intra-peritoneal implants containing estradiol-17 beta (E2), ICI or a combination of both compounds. The effects of E2 and ICI on plasma calcium levels were measured and hepatic and testicular gene expression of the three ER subtypes, ER alpha, ER beta a and ER beta b, and the estrogen-responsive genes, vitellogenin II and choriogenin L, were analyzed by semi-quantitative RT-PCR in sea bream. E2 treatment caused an increase in calcium levels in tilapia, while ICI alone had no noticeable effect, as expected. However, pretreatment with ICI synergistically potentiated the effect of E2 on plasma calcium in both species. ICI mimicked some E2 actions in gene expression in sea bream liver upregulating ER alpha, vitellogenin II and choriogenin L, although, unlike E2, it did not downregulate ER beta a and ER beta b. In contrast, no effects of E2 or ICI alone were detected in the expression of ERs in testis, while vitellogenin II and choriogenin L were upregulated by E2 but not ICI. Finally, pretreatment with ICI had a synergistic effect on the hepatic E2 down-regulation of ER beta b, but apparently blocked the ER alpha up-regulation by E2. These results demonstrate that ICI has agonistic effects on several typical estrogenic responses in fish, but its actions are tissue-specific. The mechanisms for the ICI agonistic activity are still unknown; although the ICI induced up-regulation of ER alpha mRNA could be one of the factors contributing to the cellular response.
Pinto, Patrícia IS; Singh, Pratap B; Condeça, João B; Teodósio, Helena R; Power, Deborah M; Canário, Adelino VM
2006-01-01
Background ICI 182,780 (ICI) belongs to a new class of antiestrogens developed to be pure estrogen antagonists and, in addition to its therapeutic use, it has been used to knock-out estrogen and estrogen receptor (ER) actions in several mammalian species. In the present study, the effects and mechanism of action of ICI were investigated in the teleost fish, sea bream (Sparus auratus). Methods Three independent in vivo experiments were performed in which mature male tilapia (Oreochromis mossambicus) or sea bream received intra-peritoneal implants containing estradiol-17 beta (E2), ICI or a combination of both compounds. The effects of E2 and ICI on plasma calcium levels were measured and hepatic and testicular gene expression of the three ER subtypes, ER alpha, ER beta a and ER beta b, and the estrogen-responsive genes, vitellogenin II and choriogenin L, were analyzed by semi-quantitative RT-PCR in sea bream. Results E2 treatment caused an increase in calcium levels in tilapia, while ICI alone had no noticeable effect, as expected. However, pretreatment with ICI synergistically potentiated the effect of E2 on plasma calcium in both species. ICI mimicked some E2 actions in gene expression in sea bream liver upregulating ER alpha, vitellogenin II and choriogenin L, although, unlike E2, it did not downregulate ER beta a and ER beta b. In contrast, no effects of E2 or ICI alone were detected in the expression of ERs in testis, while vitellogenin II and choriogenin L were upregulated by E2 but not ICI. Finally, pretreatment with ICI had a synergistic effect on the hepatic E2 down-regulation of ER beta b, but apparently blocked the ER alpha up-regulation by E2. Conclusion These results demonstrate that ICI has agonistic effects on several typical estrogenic responses in fish, but its actions are tissue-specific. The mechanisms for the ICI agonistic activity are still unknown; although the ICI induced up-regulation of ER alpha mRNA could be one of the factors contributing to the cellular response. PMID:17192186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Kenta; Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588; Hirata, Michiko
Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as amore » pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.« less
Zielińska, M; Fichna, J; Bashashati, M; Habibi, S; Sibaev, A; Timmermans, J-P; Storr, M
2017-07-01
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, which occurs more frequently in women than men. The aim of our study was to determine the role of activation of classical estrogen receptors (ER) and novel membrane receptor, G protein-coupled estrogen receptor (GPER) in human and mouse tissue and to assess the possible cross talk between these receptors in the GI tract. Immunohistochemistry was used to determine the expression of GPER in human and mouse intestines. The effect of G-1, a GPER selective agonist, and estradiol, a non-selective ER agonist, on muscle contractility was characterized in isolated preparations of the human and mouse colon. To characterize the effect of G-1 and estradiol in vivo, colonic bead expulsion test was performed. G-1 and estradiol activity on the visceral pain signaling was assessed in the mustard oil-induced abdominal pain model. GPER is expressed in the human colon and in the mouse colon and ileum. G-1 and estradiol inhibited muscle contractility in vitro in human and mouse colon. G-1 or estradiol administered intravenously at the dose of 20 mg/kg significantly prolonged the time to bead expulsion in females. Moreover, G-1 prolonged the time to bead expulsion and inhibited GI hypermotility in both genders. The injection of G-1 or estradiol resulted in a significant reduction in the number of pain-induced behaviors in mice. GPER and ER receptors are involved in the regulation of GI motility and visceral pain. Both may thus constitute an important pharmacological target in the IBS-D therapy. © 2017 John Wiley & Sons Ltd.
Butler, Michael J; Hildebrandt, Ryan P; Eckel, Lisa A
2018-05-25
Many of estradiol's behavioral effects are mediated, at least partially, via extra-nuclear estradiol signaling. Here, we investigated whether two estrogen receptor (ER) agonists, targeting ERα and G protein-coupled ER-1 (GPER-1), can promote rapid anorexigenic effects. Food intake was measured in ovariectomized (OVX) rats at 1, 2, 4, and 22 h following subcutaneous (s.c.) injection of an ERα agonist (PPT; 0-200 μg/kg), a GPER-1 agonist (G-1; 0-1600 μg/kg), and a GPER-1 antagonist (G-36; 0-80 μg/kg). To investigate possible cross-talk between ERα and GPER-1, we examined whether GPER-1 blockade affects the anorexigenic effect of PPT. Feeding was monitored in OVX rats that received s.c. injections of vehicle or 40 μg/kg G-36 followed 30 min later by s.c. injections of vehicle or 200 μg/kg PPT. Selective activation of ERα and GPER-1 alone decreased food intake within 1 h of drug treatment, and feeding remained suppressed for 22 h following PPT treatment and 4 h following G-1 treatment. Acute administration of G-36 alone did not suppress feeding at any time point. Blockade of GPER-1 attenuated PPT's rapid (within 1 h) anorexigenic effect, but did not modulate PPT's ability to suppress food intake at 2, 4 and 22 h. These findings demonstrate that selective activation of ERα produces a rapid (within 1 h) decrease in food intake that is best explained by a non-genomic signaling pathway and thus implicates the involvement of extra-nuclear ERα. Our findings also provide evidence that activation of GPER-1 is both sufficient to suppress feeding and necessary for PPT's rapid anorexigenic effect. Copyright © 2017. Published by Elsevier Inc.
Crider, Amanda; Nelson, Tyler; Davis, Talisha; Fagan, Kiley; Vaibhav, Kumar; Luo, Matthew; Kamalasanan, Sunay; Terry, Alvin V; Pillai, Anilkumar
2018-02-12
Impaired social interaction is a key feature of several major psychiatric disorders including depression, autism, and schizophrenia. While, anatomically, the prefrontal cortex (PFC) is known as a key regulator of social behavior, little is known about the cellular mechanisms that underlie impairments of social interaction. One etiological mechanism implicated in the pathophysiology of the aforementioned psychiatric disorders is cellular stress and consequent adaptive responses in the endoplasmic reticulum (ER) that can result from a variety of environmental and physical factors. The ER is an organelle that serves essential roles in protein modification, folding, and maturation of proteins; however, the specific role of ER stress in altered social behavior is unknown. In this study, treatment with tunicamycin, an ER stress inducer, enhanced the phosphorylation level of inositol-requiring ER-to-nucleus signal kinase 1 (IRE1) and increased X-box-binding protein 1 (XBP1) mRNA splicing activity in the mouse PFC, whereas inhibition of IRE1/XBP1 pathway in PFC by a viral particle approach attenuated social behavioral deficits caused by tunicamycin treatment. Reduced estrogen receptor beta (ERβ) protein levels were found in the PFC of male mice following tunicamycin treatment. Pretreatment with an ERβ specific agonist, ERB-041 significantly attenuated tunicamycin-induced deficits in social behavior, and activation of IRE1/XBP1 pathway in mouse PFC. Moreover, ERB-041 inhibited tunicamycin-induced increases in functional connectivity between PFC and hippocampus in male mice. Together, these results show that ERβ agonist attenuates ER stress-induced deficits in social behavior through the IRE-1/XBP1 pathway.
Phenytoin is an estrogen receptor α-selective modulator that interacts with helix 12.
Fadiel, A; Song, J; Tivon, D; Hamza, A; Cardozo, T; Naftolin, Frederick
2015-02-01
Phenytoin (Dilantin(®); DPH) is used to treat epilepsy but causes estrogen agonist-antagonist-like side effects. We investigated the interaction of phenytoin with estrogen receptors (ERs) α and β by computational molecular docking, ER competition binding, transcriptional assays, and biological actions, comparing outcomes with estradiol (E2), estrone (E1), and tamoxifen (TMX). (1) The DPH docking to 3-dimensional crystal structures of the ERα ligand-binding domain (LBD) showed a high degree of structural complementarity (-57.15 calculated energy units, approximating kcal/mol) with the ligand-binding pocket, including a contact at leucine (L540) in helix 12. Estrogen receptor β showed slightly less favorable interactions (-54.27 kcal/mol), without contacting L450. Estradiol, E1, and TMX contact points with ERα and ERβ do not include L450. (2) Cellular actions: Incubation of cells transfected with ERα or ERβ and a luciferase promoter phenytoin was several orders weaker than E2 as an agonist through ERα and had no effect through ERβ. However, phenytoin at clinical concentrations (10(-11) to 10(-6) mol/L) powerfully antagonized action of E2 on ERα-expressing cells. Similarly, phenytoin at clinically effective concentrations marginally induced alkaline phosphatase by ERα- and ERβ-expressing endometrial cancer cells but at doses well below clinical effectiveness blocked E2-induced alkaline phosphatase. (3) ER competition: In Scatchard plots comparing phenytoin with 17β-estradiol against endometrial cancer cell cytosol E2-alone more effectively displaced labeled E2 than phenytoin, but phenytoin was approximately equimolar effective to E2 in inhibiting E2's displacement of the radiolabel, further confirming that phenytoin is a strong E2 antagonist. At clinically effective concentrations, phenytoin is a strong ERα cell antagonist but a many-fold weaker agonist. Although it interacts with ERβ LBD residues, phenytoin has no effects on ERβ-only expressing cells. Docking studies indicate phenytoin interacts with the ERα LBD at the hinge of helix 12 and could thereby interfere with the entry of other ER ligands or with the mobility of helix 12, either of which actions could explain phenytoin's antagonism of ER-mediated E2 actions. Our results suggest an explanation for the broad profile of phenytoin's actions and raise possibilities for the use of phenytoin or congeners in the clinical management of ERα-dependent conditions. © The Author(s) 2014.
G Protein-Coupled Estrogen Receptor in Energy Homeostasis and Obesity Pathogenesis
Shi, Haifei; Dharshan Senthil Kumar, Shiva Priya; Liu, Xian
2013-01-01
Obesity and its related metabolic diseases have reached a pandemic level worldwide. There are sex differences in the prevalence of obesity and its related metabolic diseases, with men being more vulnerable than women; however, the prevalence of these disorders increases dramatically in women after menopause, suggesting that sex steroid hormone estrogens play key protective roles against development of obesity and metabolic diseases. Estrogens are important regulators of several aspects of metabolism, including body weight and body fat, caloric intake and energy expenditure, and glucose and lipid metabolism in both males and females. Estrogens act in complex ways on their nuclear estrogen receptors (ERs) ERα and ERβ and transmembrane ERs such as G protein-coupled estrogen receptor. Genetic tools, such as different lines of knockout mouse models, and pharmacological agents, such as selective agonists and antagonists, are available to study function and signaling mechanisms of ERs. We provide an overview of the evidence for the physiological and cellular actions of ERs in estrogen-dependent processes in the context of energy homeostasis and body fat regulation and discuss its pathology that leads to obesity and related metabolic states. PMID:23317786
Du, Gui-Qiang; Zhou, Long; Chen, Xiao-Yue; Wan, Xiao-Ping; He, Yin-Yan
2012-04-06
The selective ER modulator tamoxifen (TAM(1)) is the most widely used ER antagonist for treatment of women with hormone-dependent breast tumor. However, long-term treatment is associated with an increased risk of endometrial cancer. The aim of the present study was to demonstrate new insight into the role of G-protein coupled receptor 30 (GPR30) in the activity of TAM, which promoted endometrial cancer. In endometrial cancer cell lines ISHIKAWA and KLE, the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, 17β-estradiol (E2) and G1, a non-steroidal GPR30-specific agonist to promote cell proliferation and invasion was evaluated. All agents above induced high proliferative and invasive effects, while the down-regulation of GPR30 or the interruption of MAPK signal pathway partly or completely prevented the action of the regent. Moreover, the RNA and protein expression of GPR30 was up-regulated by G1, E2 or OHT in both cell lines. The present study provided a new insight into the mechanism involved in the agonistic activity exerted by TAM in the uterus. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh
2013-10-01
Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα bindingmore » affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function. • The results have potential applications to green chemistry. • Models are publicly available for virtual screening via a web portal.« less
GPER modulators: Opportunity Nox on the heels of a class Akt.
Prossnitz, Eric R
2018-02-01
The (patho)physiology of estrogen and its receptors is complex. It is therefore not surprising that therapeutic approaches targeting this hormone include stimulation of its activity through supplementation with either the hormone itself or natural or synthetic agonists, inhibition of its activity through the use of antagonists or inhibitors of its synthesis, and tissue-selective modulation of its activity with biased ligands. The physiology of this hormone is further complicated by the existence of at least three receptors, the classical nuclear estrogen receptors α and β (ERα and ERβ), and the 7-transmembrane G protein-coupled estrogen receptor (GPER/GPR30), with overlapping but distinct pharmacologic profiles, particularly of anti-estrogenic ligands. GPER-selective ligands, as well as GPER knockout mice, have greatly aided our understanding of the physiological roles of GPER. Such ligands have revealed that GPER activation mediates many of the rapid cellular signaling events (including Ca 2+ mobilization, ERK and PI3K/Akt activation) associated with estrogen activity, as opposed to the nuclear ERs that are traditionally described to function as ligand-induced transcriptional factors. Many of the salutary effects of estrogen throughout the body are reproduced by the GPER-selective agonist G-1, which, owing to its minimal effects on reproductive tissues, can be considered a non-feminizing estrogenic compound, and thus of potential therapeutic use in both women and men. On the contrary, until recently GPER-selective antagonists had predominantly found preclinical application in cancer models where estrogen stimulates cell growth and survival. This viewpoint changed recently with the discovery that GPER is associated with aging, particularly that of the cardiovascular system, where the GPER antagonist G36 reduced hypertension and GPER deficiency prevented cardiac fibrosis and vascular dysfunction with age, through the downregulation of Nox1 and as a consequence superoxide production. Thus, similar to the classical ERs, both agonists and antagonists of GPER may be of therapeutic benefit depending on the disease or condition to be treated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lappano, Rosamaria; Rosano, Camillo; Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Dolce, Vincenza; Ponassi, Marco; Felli, Lamberto; Cafeo, Grazia; Kohnke, Franz Heinrich; Abonante, Sergio; Maggiolini, Marcello
2015-01-01
ABSTRACT Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells. PMID:26183213
In vivo effects of a GPR30 antagonist.
Dennis, Megan K; Burai, Ritwik; Ramesh, Chinnasamy; Petrie, Whitney K; Alcon, Sara N; Nayak, Tapan K; Bologa, Cristian G; Leitao, Andrei; Brailoiu, Eugen; Deliu, Elena; Dun, Nae J; Sklar, Larry A; Hathaway, Helen J; Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R
2009-06-01
Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30 (also known as GPER), in addition to classical nuclear estrogen receptors (ER and ER), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized G-1 (1), a selective agonist of GPR30. To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of G15 (2), a G-1 analog that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 revealed that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.
Two novel GPER agonists induce gene expression changes and growth effects in cancer cells.
Lappano, R; Rosano, C; Santolla, M F; Pupo, M; De Francesco, E M; De Marco, P; Ponassi, M; Spallarossa, A; Ranise, A; Maggiolini, M
2012-06-01
Although the action of estrogens has been traditionally explained by the binding to and transactivation of the nuclear estrogen receptor (ER)α and ERβ, recently the G protein-coupled receptor GPR30/GPER has been involved in the rapid estrogen signaling. We investigated the ability of two original molecules, which were named GPER-L1 and GPERL2, to bind to and activate the GPER transduction pathway in cancer cells. Competition assays, docking simulations, transfection experiments, real-time PCR, immunoblotting, gene silencing technology and growth assays were performed to ascertain the selective action of GPER-L1 and GPER-L2 in activating the GPER-mediated signaling. Both compounds, which did not show any ability to bind to and activate the classical ERs, were able to bind to GPER and to trigger the rapid activation of the GPER/EGFR/ERK transduction pathway which led to the up-regulation of GPER-target genes. Notably, GPER-L1 and GPER-L2 induced the proliferation of SkBr3 breast and Ishikawa endometrial cancer cells at nM concentrations through GPER, hence providing further evidence on their capability to elicit relevant biological responses mediated by GPER. The identification and characterization of these novel compounds as selective GPER agonists represent a valuable tool to further dissect the pharmacology of this novel estrogen receptor and to better differentiate the specific functions elicited by each estrogen receptor subtype in cancer cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Satoshi; Sakaguchi, Minoru; Yoneyama, Hiroki
Histamine is involved in various physiological functions, including its neurotransmitter actions in the central nervous system and its action as a causative agent of inflammation, allergic reactions, and gastric acid secretions. Histamine expression and biosynthesis have been detected in breast cancer cells. It was recently suggested that the histamine H{sub 3} receptor (H{sub 3}R) plays a role in the proliferation of breast cancer cells. We recently developed the non-imidazole H{sub 3}R antagonist OUP-186 which exhibited a potent and selective human H{sub 3}R antagonistic activity as well as no activity against the human histamine H{sub 4} receptor (H{sub 4}R). In thismore » study, we compared the effects of OUP-186 on the proliferation of estrogen receptor negative (ER−) breast cancer cells (MDA-MB-231) and ER+ breast cancer cells (MCF7) to the effects of clobenpropit (potent imidazole-containing H{sub 3}R antagonist). OUP-186 and clobenpropit suppressed the proliferation of breast cancer cells. The IC{sub 50} values at 48 h for OUP-186 and clobenpropit were approximately 10 μM and 50 μM, respectively. Furthermore, OUP-186 potently induced cell death by activating caspase-3/7, whereas cell death was only slightly induced by clobenpropit. In addition, OUP-186 treatment blocked the proliferation increase triggered by 100 μM (R)-(-)-α-methylhistamine (H{sub 3}R agonist). The use of 4-methylhistamine (H{sub 4}R agonist) and JNJ10191584 (selective H{sub 4}R antagonist) did not affect breast cancer proliferation. These results indicate that OUP-186 potently suppresses proliferation and induces caspase-dependent apoptotic death in both ER+ and ER-breast cancer cells. - Highlights: • OUP-186, a histamine H{sub 3} receptor antagonist, effects breast cancer cell growth. • OUP-186 potently suppressed proliferation and induced caspase-dependent apoptosis. • OUP-186 may be an effective drug against ER+ and ER− breast cancers.« less
Brennan, Jennifer C; Bassal, Arzoo; He, Guochun; Denison, Michael S
2016-01-01
Estrogenic endocrine-disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, a critical need exists for rapidly detecting these chemicals. The authors developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the US Environmental Protection Agency (USEPA) and Organisation for Economic Co-operation and Development (OECD) as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only 1 of the 2 known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells, and quantitative reverse-transcription polymerase chain reaction confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual-ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα- and ERβ-selective chemicals. © 2015 SETAC.
Brennan, Jennifer C.; Bassal, Arzoo; He, Guochun; Denison, Michael S.
2016-01-01
Estrogenic endocrine disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, there is a critical need for rapidly detecting these chemicals. We developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the USEPA and OECD as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only one of the two known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells and qRT-PCR confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα and ERβ-selective chemicals. PMID:26139245
The impact of 27-hydroxycholesterol on endometrial cancer proliferation.
Gibson, Douglas A; Collins, Frances; Cousins, Fiona L; Esnal Zufiaurre, Arantza; Saunders, Philippa T K
2018-04-01
Endometrial cancer (EC) is the most common gynaecological malignancy. Obesity is a major risk factor for EC and is associated with elevated cholesterol. 27-hydroxycholesterol (27HC) is a cholesterol metabolite that functions as an endogenous agonist for Liver X receptor (LXR) and a selective oestrogen receptor modulator (SERM). Exposure to oestrogenic ligands increases risk of developing EC; however, the impact of 27HC on EC is unknown. Samples of stage 1 EC ( n = 126) were collected from postmenopausal women undergoing hysterectomy. Expression of LXRs ( NR1H3 , LXRα; NR1H2 , LXRβ) and enzymes required for the synthesis ( CYP27A1 ) or breakdown ( CYP7B1 ) of 27HC were detected in all grades of EC. Cell lines originating from well-, moderate- and poorly-differentiated ECs (Ishikawa, RL95, MFE 280 respectively) were used to assess the impact of 27HC or the LXR agonist GW3965 on proliferation or expression of a luciferase reporter gene under the control of LXR- or ER-dependent promoters (LXRE, ERE). Incubation with 27HC or GW3965 increased transcription via LXRE in Ishikawa, RL95 and MFE 280 cells ( P < 0.01). 27HC selectively activated ER-dependent transcription ( P < 0.001) in Ishikawa cells and promoted proliferation of both Ishikawa and RL95 cells ( P < 0.001). In MFE 280 cells, 27HC did not alter proliferation but selective targeting of LXR with GW3965 significantly reduced cell proliferation ( P < 0.0001). These novel results suggest that 27HC can contribute to risk of EC by promoting proliferation of endometrial cancer epithelial cells and highlight LXR as a potential therapeutic target in the treatment of advanced disease. © 2018 The authors.
Fitts, James M; Klein, Robert M; Powers, C Andrew
2011-07-01
Tamoxifen is a selective estrogen receptor (ER) modulator, but it is also a deactivating ligand for estrogen-related receptor-γ (ERRγ) and a full agonist for the G protein-coupled estrogen receptor (GPER). Fulvestrant is a selective ER down-regulator that lacks agonist effects on ERα/ERβ, is inactive on ERRγ, but acts as a full agonist on GPER. Fulvestrant effects on tamoxifen actions on uterine and somatic growth, bone, the growth hormone (GH)-insulin-like growth factor I (IGF-I) axis, and pituitary prolactin were analyzed to pharmacologically discriminate tamoxifen effects that may be mediated by ERα/ERβ versus ERRγ versus GPER. Ovariectomized rats received tamoxifen (0.6 mg/kg/daily) plus fulvestrant at 0, 3, 6, or 12 mg/kg/daily for 5 weeks; controls received vehicle or 6 mg/kg fulvestrant daily. Tamoxifen effects to increase uterine weight, decrease serum IGF-I, increase pituitary prolactin, and increase bone mineral density could be fully blocked by fulvestrant, indicating mediation by ERα/ERβ. Tamoxifen effects to decrease pituitary GH, tibia length, and body weight were only partially blocked by fulvestrant, indicating involvement of mechanisms unrelated to ERα/ERβ. Fulvestrant did not inhibit tamoxifen actions to reduce total pituitary protein, again indicating effects not mediated by ERα/ERβ. Tamoxifen actions to reduce serum GH were mimicked rather than inhibited by fulvestrant, pharmacological features consistent with GPER involvement. However, fulvestrant alone increased IGF-I and also blocked tamoxifen-evoked IGF-I decreases; thus fulvestrant effects on serum GH might reflect increased IGF-I feedback inhibition. Fulvestrant alone had no effect on the other parameters. The findings indicate that mechanisms unrelated to ERα/ERβ contribute to tamoxifen effects on body weight, bone growth, and pituitary function.
Ponnusamy, Suriyan; Tran, Quynh T; Thiyagarajan, Thirumagal; Miller, Duane D; Bridges, Dave; Narayanan, Ramesh
2017-03-01
Non-alcoholic steatohepatitis (NASH) affects 8-10 million people in the US and up to 75% of obese individuals. Despite this, there are no approved oral therapeutics to treat NASH and therefore the need for novel approaches exists. The estrogen receptor β (ER-β)-selective agonist, β-LGND2, inhibits body weight and white adipose tissue, and increases metabolism, resulting in higher energy expenditure and thermogenesis. Due to favorable effects of β-LGND2 on obesity, we hypothesized that β-LGND2 will prevent NASH directly by reducing lipid accumulation in the liver or indirectly by favorably changing body composition. Male C57BL/6 mice fed with high fat diet (HFD) for 10 weeks or methionine choline-deficient diet for four weeks and treated with vehicle exhibited altered liver weights by twofold and increased serum transaminases by 2-6-folds. These changes were not observed in β-LGND2-treated animals. Infiltration of inflammatory cells and collagen deposits, an indication of fibrosis, were observed in the liver of mice fed with HFD for 10 weeks, which were effectively blocked by β-LGND2. Gene expression studies in the liver indicate that pregnane X receptor target genes were significantly increased by HFD, and the increase was inhibited by β-LGND2. On the other hand, metabolomics indicate that bile acid metabolites were significantly increased by β-LGND2. These studies demonstrate that an ER-β agonist might provide therapeutic benefits in NASH by directly modulating the function of xenobiotic and bile acid receptors in the liver, which have important functions in the liver, and indirectly, as demonstrated before, by inhibiting adiposity. Impact statement Over 75-90% of those classified as clinically obese suffer from co-morbidities, the most common of which is non-alcoholic steatohepatitis (NASH). While there are currently no effective treatment approaches for NASH, data presented here provide preliminary evidence that an estrogen receptor β-selective ligand could have the potential to reduce lipid accumulation and inflammation, and protect liver from NASH.
Lappano, Rosamaria; Rosano, Camillo; Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Dolce, Vincenza; Ponassi, Marco; Felli, Lamberto; Cafeo, Grazia; Kohnke, Franz Heinrich; Abonante, Sergio; Maggiolini, Marcello
2015-10-01
Estrogens regulate numerous pathophysiological processes, mainly by binding to and activating estrogen receptor (ER)α and ERβ. Increasing amounts of evidence have recently demonstrated that G-protein coupled receptor 30 (GPR30; also known as GPER) is also involved in diverse biological responses to estrogens both in normal and cancer cells. The classical ER and GPER share several features, including the ability to bind to identical compounds; nevertheless, some ligands exhibit opposed activity through these receptors. It is worth noting that, owing to the availability of selective agonists and antagonists of GPER for research, certain differential roles elicited by GPER compared with ER have been identified. Here, we provide evidence on the molecular mechanisms through which a calixpyrrole derivative acts as a GPER antagonist in different model systems, such as breast tumor cells and cancer-associated fibroblasts (CAFs) obtained from breast cancer patients. Our data might open new perspectives toward the development of a further class of selective GPER ligands in order to better dissect the role exerted by this receptor in different pathophysiological conditions. Moreover, calixpyrrole derivatives could be considered in future anticancer strategies targeting GPER in cancer cells. © 2015. Published by The Company of Biologists Ltd.
Levy, Walkiria; Henkelmann, Bernhard; Bernhöft, Silke; Bovee, Toine; Buegger, Franz; Jakobi, Gert; Kirchner, Manfred; Bassan, Rodolfo; Kräuchi, Norbert; Moche, Wolfgang; Offenthaler, Ivo; Simončič, Primoz; Weiss, Peter; Schramm, Karl-Werner
2011-01-01
Soil samples from remote Alpine areas were analyzed for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans and polychlorinated biphenyls by high-resolution gas chromatography/high-resolution gas spectrometry. Additionally, the EROD micro-assay and a genetically modified yeast estrogen bioassay were carried out to determine persistent aryl hydrocarbon receptors (AhR) and estrogen receptors (ER) agonists, respectively. Regarding the AhR agonists, the toxicity equivalents of analytical and EROD determined values were compared, targeting both altitude of samples and their soil organic content. The ratio between bioassay derived equivalents and analytical determinations suggested no significant contribution of unknown AhR inducers in these sampling sites and some antagonism in soils with relatively high PCB loading. More CYP1A1 expression was induced at the highest sites or about 1400-1500 m a.s.l. along the altitude profiles. Surprisingly, no clear tendencies with the soil organic content were found for dioxin-like compounds. Mean values obtained in the present study were for ER agonists, 2: 0.37±0.12ng 17ß-estradiol EQ g-1 dry soil [corrected] and 6.1 ± 4.2 pg TCDD-EQ g⁻¹ dry soil for AhR agonists. Low bioassay responses with a higher relative amount of ER disrupters than AhR inducers were detected,indicating the higher abundance of estrogen-like than persistent dioxin-like compounds in these forested areas [corrected].
Delmotte, Philippe; Sieck, Gary C
2015-02-01
Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.
Delmotte, Philippe; Sieck, Gary C.
2015-01-01
Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca2+ ([Ca2+]cyt) responses to agonist stimulation and Ca2+ sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca2+]cyt induced by agonists leads to a transient increase in mitochondrial Ca2+ ([Ca2+]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca2+]mito is blunted despite enhanced [Ca2+]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion–ER/SR coupling, decreased mitochondrial Ca2+ buffering, mitochondrial fragmentation, and increased cell proliferation. PMID:25506723
Palomer, Xavier; Capdevila-Busquets, Eva; Garreta, Gerard; Davidson, Mercy M; Vázquez-Carrera, Manuel
2014-01-01
Endoplasmic reticulum (ER) stress has been linked to several cardiovascular diseases, such as atherosclerosis, heart failure and cardiac hypertrophy. ER stress impairs insulin signalling, thus contributing to the development of insulin resistance and diabetes. Since several studies have reported that PPARα may inhibit ER stress, the main aim of this study consisted in investigating whether activation of this nuclear receptor is able to prevent lipid-induced ER stress in cardiac cells, as well as studying the mechanisms involved. A cardiomyocyte cell line of human origin, AC16, was treated with palmitate in the presence or absence of several AMPK and PPARα pharmacological agonists and antagonists. For the in vivo studies, wild-type male mice were fed a standard diet, or a high-fat diet (HFD), for two months. At the end of the experiments, several ER stress markers were assessed in cardiac cells or in the mice hearts, using real-time RT-PCR and Western-blot analyses. The results demonstrate that both palmitate and the HFD induced ER stress in cardiac cells, since they upregulated the expression (ATF3, BiP/GRP78 and CHOP), splicing (sXBP1), and phosphorylation (IRE-1α and eIF2α) of several ER stress markers. Interestingly, treatment with the PPARα agonist Wy-14,643 prevented an increase in the majority of these ER stress markers in human cardiac cells by means of AMPK activation. These data indicate that PPARα activation by Wy-14,643 might be useful to prevent the harmful effects of ER stress and associated cardiovascular diseases in obese patients, and even during diabetic cardiomyopathy, by enhancing AMPK activity. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.
Lin, Mingzhu; Li, Haijun; Zhao, Yan; Cai, Enbo; Zhu, Hongyan; Gao, Yugang; Liu, Shuangli; Yang, He; Zhang, Lianxue; Tang, Guosheng; Wang, Ruiqing
2017-03-31
Phytosterols are a kind of natural component including sitosterol, campesterol, avenasterol, ergosterol (Er) and others. Their main natural sources are vegetable oils and their processed products, followed by grains, by-products of cereals and nuts, and small amounts of fruits, vegetables and mushrooms. In this study, three new Er monoester derivatives were obtained from the reflux reaction with Er: organic acids (furoic acid, salicylic acid and 2-naphthoic acid), 1-Ethylethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride (EDCI) and 4-dimethylaminopyridine (DMAP) in dichloromethane. Their chemical structures were defined by IR and NMR. The present study was also undertaken to investigate the antidepressant-like effects of Er and its derivatives in male adult mice models of depression, and their probable involvement of GABAergic and glutamatergic systems by the forced swim test (FST). The results indicated that Er and its derivatives display antidepressant effects. Moreover, one derivative of Er, ergosteryl 2-naphthoate (ErN), exhibited stronger antidepressant activity in vivo compared to Er. Acute administration of ErN (5 mg/kg, i.p.) and a combination of ErN (0.5 mg/kg, i.p.), reboxetine (2.5 mg/kg, i.p.), and tianeptine (15 mg/kg, i.p.) reduced the immobility time in the FST. Pretreatment with bicuculline (a competitive γ-aminobutyric acid (GABA) antagonist, 4 mg/kg, i.p.) and N -methyl-d-aspartic acid (NMDA, an agonist at the glutamate site, 75 mg/kg, i.p.) effectively reversed the antidepressant-like effect of ErN (5 mg/kg, i.p.). However, prazosin (a α1-adrenoceptor antagonist, 1 mg/kg, i.p.) and haloperidol (a non-selective D2 receptor antagonist, 0.2 mg/kg, i.p.) did not eliminate the reduced immobility time. Altogether, these results indicated that ErN produced antidepressant-like activity, which might be mediated by GABAergic and glutamatergic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori
Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxicmore » compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression via ERα.« less
USDA-ARS?s Scientific Manuscript database
Flavonoid phytochemicals act as both agonists and antagonists of the human estrogen receptors (ERs). While a number of these compounds act by directly binding to the ER, certain phytochemicals, such as the flavonoid compounds chalcone and flavone, elicit antagonistic effects on estrogen signaling in...
The VM7Luc4E2 estrogen receptor (ER) transactivation assay is an OECD approved method (TG 457) for the detection of ER agonists and antagonists, and is also part of the Tox21 high-throughput screening (HTS) portfolio. Despite its international acceptance as a screening assay, imm...
The VM7Luc4E2 estrogen receptor (ER) transactivation assay is an OECD approved method (TG 457) for the detection of ER agonists and antagonists, and is also part of the Tox21 high-throughput screening (HTS) portfolio. Despite international acceptance as a screening assay, immorta...
Li, Jian; Wang, Yafei; Kong, Dongdong; Wang, Jinsheng; Teng, Yanguo; Li, Na
2015-11-01
In the present study, re-combined estrogen receptor (ER) and androgen receptor (AR) gene yeast assays combined with a novel approach based on Monte Carlo simulation were used for evaluation and characterization of soil samples collected from Jilin along the Second Songhua River to assess their antagonist/agonist properties for ER and AR. The results showed that estrogenic activity only occurred in the soil samples collected in the agriculture area, but most soil samples showed anti-estrogenic activities, and the bioassay-derived 4-hydroxytamoxifen equivalents ranged from N.D. to 23.51 μg/g. Hydrophilic substance fractions were determined as potential contributors associated with anti-estrogenic activity in these soil samples. Moreover, none of the soil samples exhibited AR agonistic potency, whereas 54% of the soil samples exhibited AR antagonistic potency. The flutamide equivalents varied between N.D. and 178.05 μg/g. Based on Monte Carlo simulation-related mass balance analysis, the AR antagonistic activities were significantly correlated with the media polar and polar fractions. All of these results support that this novel calculation method can be adopted effectively to quantify and characterize the ER/AR agonists and antagonists of the soil samples, and these data could help provide useful information for future management and remediation efforts.
A new series of estrogen receptor modulators that display selectivity for estrogen receptor beta.
Henke, Brad R; Consler, Thomas G; Go, Ning; Hale, Ron L; Hohman, Dana R; Jones, Stacey A; Lu, Amy T; Moore, Linda B; Moore, John T; Orband-Miller, Lisa A; Robinett, R Graham; Shearin, Jean; Spearing, Paul K; Stewart, Eugene L; Turnbull, Philip S; Weaver, Susan L; Williams, Shawn P; Wisely, G Bruce; Lambert, Millard H
2002-12-05
A series of 1,3,5-triazine-based estrogen receptor (ER) modulators that are modestly selective for the ERbeta subtype are reported. Compound 1, which displayed modest potency and selectivity for ERbeta vs ERalpha, was identified via high-throughput screening utilizing an ERbeta SPA-based binding assay. Subsequent analogue preparation resulted in the identification of compounds such as 21 and 43 that display 25- to 30-fold selectivity for ERbeta with potencies in the 10-30 nM range. These compounds profile as full antagonists at ERbeta and weak partial agonists at ERalpha in a cell-based reporter gene assay. In addition, the X-ray crystal structure of compound 15 complexed with the ligand binding domain of ERbeta has been solved and was utilized in the design of more conformationally restrained analogues such as 31 in an attempt to increase selectivity for the ERbeta subtype.
Sartorello, R; Garcia, C R S
2005-01-01
An increasing number of pathophysiological roles for purinoceptors are emerging, some of which have therapeutic potential. Erythrocytes are an important source of purines, which can be released under physiological and physiopathological conditions, acting on purinergic receptors associated with the same cell or with neighboring cells. Few studies have been conducted on lizards, and have been limited to ATP agonist itself. We have previously shown that the red blood cells (RBCs) of the lizard Ameiva ameiva store Ca2+ in the endoplasmic reticulum (ER) and that the purinergic agonist ATP triggers a rapid and transient increase of [Ca2+]c by mobilization of the cation from internal stores. We also reported the ability of the second messenger IP3 to discharge the ER calcium pool of the ER. Here we characterize the purinoceptor present in the cytoplasmic membrane of the RBCs of the lizard Ameiva ameiva by the selective use of ATP analogues and pyrimidine nucleotides. The nucleotides UTP, UDP, GTP, and ATPgammaS triggered a dose-dependent response, while interestingly 2MeSATP, 2ClATP, alpha, ss-ATP, and ADP failed to do so in a 1- to 200-microm con- centration. The EC50 obtained for the compounds tested was 41.77 microM for UTP, 48.11 microM for GTP, 53.11 microM for UDP, and 30.78 microM for ATPgammaS. The present data indicate that the receptor within the RBCs of Ameiva ameiva is a P2Y4-like receptor due to its pharmacological similarity to the mammalian P2Y4 receptor.
Mitochondrial calcium handling within the interstitial cells of Cajal
Cheng, Leo K.
2014-01-01
The interstitial cells of Cajal (ICC) drive rhythmic pacemaking contractions in the gastrointestinal system. The ICC generate pacemaking signals by membrane depolarizations associated with the release of intracellular calcium (Ca2+) in the endoplasmic reticulum (ER) through inositol-trisphosphate (IP3) receptors (IP3R) and uptake by mitochondria (MT). This Ca2+ dynamic is hypothesized to generate pacemaking signals by calibrating ER Ca2+ store depletions and membrane depolarization with ER store-operated Ca2+ entry mechanisms. Using a biophysically based spatio-temporal model of integrated Ca2+ transport in the ICC, we determined the feasibility of ER depletion timescale correspondence with experimentally observed pacemaking frequencies while considering the impact of IP3R Ca2+ release and MT uptake on bulk cytosolic Ca2+ levels because persistent elevations of free intracellular Ca2+ are toxic to the cell. MT densities and distributions are varied in the model geometry to observe MT influence on free cytosolic Ca2+ and the resulting frequencies of ER Ca2+ store depletions, as well as the sarco-endoplasmic reticulum Ca2+ ATP-ase (SERCA) and IP3 agonist concentrations. Our simulations show that high MT densities observed in the ICC are more relevant to ER establishing Ca2+ depletion frequencies than protection of the cytosol from elevated free Ca2+, whereas the SERCA pump is more relevant to containing cytosolic Ca2+ elevations. Our results further suggest that the level of IP3 agonist stimulating ER Ca2+ release, subsequent MT uptake, and eventual activation of ER store-operated Ca2+ entry may determine frequencies of rhythmic pacemaking exhibited by the ICC across species and tissue types. PMID:24789203
Hajirahimkhan, Atieh; Mbachu, Obinna; Simmler, Charlotte; Ellis, Sarah G; Dong, Huali; Nikolic, Dejan; Lankin, David C; van Breemen, Richard B; Chen, Shao-Nong; Pauli, Guido F; Dietz, Birgit M; Bolton, Judy L
2018-04-27
Postmenopausal women are increasingly using botanicals for menopausal symptom relief due to the increased breast cancer risk associated with traditional estrogen therapy. The deleterious effects of estrogens are associated with estrogen receptor (ER)α-dependent proliferation, while ERβ activation could enhance safety by opposing ERα effects. Three medicinal licorice species, Glycyrrhiza glabra ( G. glabra), G. uralensis, and G. inflata, were studied for their differential estrogenic efficacy. The data showed higher estrogenic potency for G. inflata in an alkaline phosphatase induction assay in Ishikawa cells (ERα) and an estrogen responsive element (ERE)-luciferase assay in MDA-MB-231/β41 breast cancer cells (ERβ). Bioassay-guided fractionation of G. inflata led to the isolation of 8-prenylapigenin (3). Surprisingly, a commercial batch of 3 was devoid of estrogenic activity. Quality control by MS and qNMR revealed an incorrect compound, 4'- O-methylbroussochalcone B (10), illustrating the importance of both structural and purity verification prior to any biological investigations. Authentic and pure 3 displayed 14-fold preferential ERβ agonist activity. Quantitative analyses revealed that 3 was 33 times more concentrated in G. inflata compared to the other medicinal licorice extracts. These data suggest that standardization of G. inflata to 3 might enhance the safety and efficacy of G. inflata supplements used for postmenopausal women's health.
Penatti, Carlos A A; Porter, Donna M; Henderson, Leslie P
2009-01-01
Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which γ-aminobutyric acid type A (GABAA) receptor-mediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABAA receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA). Experiments performed with pharmacological agents and in AR-deficient Tfm mutant mice suggest that the AAS-dependent enhancement of GABAergic transmission in wild type mice is AR-mediated. In AR-deficient mice, the AAS elicited dramatically different effects, decreasing AP frequency, sIPSC amplitude and frequency and the expression of selective GABAA receptor subunit mRNAs. Surprisingly, in the absence of AR signaling, the data indicate that the AAS do not act as ER agonists, but rather suggest a novel in vivo action in which the AAS inhibit aromatase and impair endogenous ER signaling. These results show that the AAS have the capacity to alter neuronal function in the forebrain via multiple steroid signaling mechanisms and suggest that effects of these steroids in the brain will depend not only on the balance of AR- vs. ER-mediated regulation for different target genes, but also on the ability of these drugs to alter steroid metabolism and thus the endogenous steroid milieu. PMID:19812324
A Drug Discovery Partnership for Personalized Breast Cancer Therapy
2014-09-01
agonists or antagonists) and then virtually screen the USDA Phytochemical, Chinese Herbal Medicine , and the FDA Marketed Drug Databases for new estrogens...the basis for potent ER agonists and antagonists that are in the registered pharmaceuticals and herbal medicine databases. The 29 analogs obtained...Tropical Medicine , “LINEs and SINEs differ in their retrotransposition requirements and cellular interactions” 6- Monday November 18, 2013, Dr. Anup
Grassi, Daniela; Lagunas, Natalia; Pinos, Helena; Panzica, GianCarlo; Garcia-Segura, Luis Miguel; Collado, Paloma
2017-01-01
Nitric oxide is produced in the brain by the neuronal nitric oxide synthase (nNOS) and carries out a wide range of functions by acting as a neurotransmitter-like molecule. Gonadal hormones are involved in the regulation of the brain nitrergic system. We have previously demonstrated that estradiol, via classical estrogen receptors (ERs), regulates NOS activity in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus, acting through both ERα and ERβ. Magnocellular and parvocellular neurons in the SON and PVN also express the G protein-coupled ER (GPER). In this study, we have assessed whether GPER is also involved in the regulation of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase in the SON and PVN. Adult female ovariectomized rats were treated with G1, a selective GPER agonist, or with G1 in combination with G15, a selective GPER antagonist. G1 treatment decreased NADPH-diaphorase expression in the SON and in all PVN subnuclei. The treatment with G1 + G15 effectively rescued the G1-dependent decrease in NADPH-diaphorase expression in both brain regions. In addition, the activation of extracellular signal-regulated kinase (ERK) 1/2, one of the kinases involved in the GPER-dependent intracellular signaling pathway and in NOS phosphorylation, was assessed in the same brain nuclei. Treatment with G1 significantly decreased the number of p-ERK 1/2-positive cells in the SON and PVN, while the treatment with G1 + G15 significantly recovered its number to control values. These findings suggest that the activation of GPER in the SON and PVN inhibits the phosphorylation of ERK 1/2, which induces a decrease in NADPH-diaphorase expression. © 2016 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsurugizawa, Tomokazu; Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, Graduate School of Arts and Sciences, University of Tokyo at Komaba, 3-8-1 Meguro, Tokyo 153; Mukai, Hideo
2005-12-02
Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1 nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2 h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but notmore » by MK-801 (NMDA receptor antagonist). ER{alpha} agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ER{beta} agonist DPN did not affect the density of thorns. Note that a 1 nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ER{alpha} was performed using purified RC-19 antibody. The localization of ER{alpha} (67 kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ER{alpha} and MAP kinase.« less
Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E
2014-04-01
Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.
Kontos, Stylianos; Kominea, Athina; Melachrinou, Maria; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia
2010-09-01
To investigate the expression of nuclear factor-kappaB (NF-kappaB) and estrogen receptor-beta (ER-beta) signalling pathways in bladder urothelial carcinoma according to clinicopathological features, in order to elucidate their role during carcinogenesis. Immunohistochemical methodology was carried out on formalin-fixed, paraffin-embedded sections from urinary bladder carcinomas of 140 patients (94 males and 46 females) who underwent transurethral resection of bladder neoplasms. Correlations between ER-beta and NF-kappaB, and tumor grade and T-stage were evaluated, along with demographic data, sex and age. A significant decrease in ER-beta expression in the nucleus of bladder cells during loss of cell differentiation (r(s) = -0.61, P-value < 0.001, test of trend P-value = 0.003) and in muscle invasive carcinomas (T2-T4; test of trend P-value < 0.001) was found. p65 Subunit of NF-kappaB was expressed in the nucleus and in the cytoplasm of bladder epithelial cells. A strong positive association between tumor grade and nuclear expression of NF-kappaB was shown. No correlation between NF-kappaB, nuclear or cytoplasmic staining, with T-stage was observed. An inverse correlation between ER-beta and nuclear p65 immunoreactivity was observed (r(s) = -0.45, P-value < 0.001). There was no correlation with demographic data. Our immunohistochemical study suggests the possible inverse regulation of NF-kappaB and ER-beta transcription factor during bladder carcinogenesis. Selective ER-beta agonists and agents, inhibitors of NF-kappaB, might represent a possible new treatment strategy for bladder urothelial tumors.
Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.
Khalil, Raouf A
2013-12-15
Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.
Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease
Khalil, Raouf A.
2013-01-01
Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797
Madureira, Tânia Vieira; Pinheiro, Ivone; Malhão, Fernanda; Lopes, Célia; Urbatzka, Ralph; Castro, L Filipe C; Rocha, Eduardo
2017-06-01
Peroxisome proliferators cause species-specific effects, which seem to be primarily transduced by peroxisome proliferator-activated receptor alpha (PPARα). Interestingly, PPARα has a close interrelationship with estrogenic signaling, and this latter has already been promptly activated in brown trout primary hepatocytes. Thus, and further exploring this model, we assess here the reactivity of two PPARα agonists in direct peroxisomal routes and, in parallel the cross-interferences in estrogen receptor (ER) mediated paths. To achieve these goals, three independent in vitro studies were performed using single exposures to clofibrate - CLF (50, 500 and 1000μM), Wy-14,643 - Wy (50 and 150μM), GW6471 - GW (1 and 10μM), and mixtures, including PPARα agonist or antagonist plus an ER agonist or antagonist. Endpoints included gene expression analysis of peroxisome/lipidic related genes (encoding apolipoprotein AI - ApoAI, fatty acid binding protein 1 - Fabp1, catalase - Cat, 17 beta-hydroxysteroid dehydrogenase 4 - 17β-HSD4, peroxin 11 alpha - Pex11α, PPARαBb, PPARαBa and urate oxidase - Uox) and those encoding estrogenic targets (ERα, ERβ-1 and vitellogenin A - VtgA). A quantitative morphological approach by using a pre-validated catalase immunofluorescence technique allowed checking possible changes in peroxisomes. Our results show a low responsiveness of trout hepatocytes to model PPARα agonists in direct target receptor pathways. Additionally, we unveiled interferences in estrogenic signaling caused by Wy, leading to an up-regulation VtgA and ERα at 150μM; these effects seem counteracted with a co-exposure to an ER antagonist. The present data stress the potential of this in vitro model for further exploring the physiological/toxicological implications related with this nuclear receptor cross-regulation. Copyright © 2017 Elsevier B.V. All rights reserved.
Ahn, Ki Chang; Zhao, Bin; Chen, Jiangang; Cherednichenko, Gennady; Sanmarti, Enio; Denison, Michael S.; Lasley, Bill; Pessah, Isaac N.; Kültz, Dietmar; Chang, Daniel P.Y.; Gee, Shirley J.; Hammock, Bruce D.
2008-01-01
Background Concerns have been raised about the biological and toxicologic effects of the antimicrobials triclocarban (TCC) and triclosan (TCS) in personal care products. Few studies have evaluated their biological activities in mammalian cells to assess their potential for adverse effects. Objectives In this study, we assessed the activity of TCC, its analogs, and TCS in in vitro nuclear-receptor–responsive and calcium signaling bioassays. Materials and methods We determined the biological activities of the compounds in in vitro, cell-based, and nuclear-receptor–responsive bioassays for receptors for aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), and ryanodine (RyR1). Results Some carbanilide compounds, including TCC (1–10 μM), enhanced estradiol (E2)-dependent or testosterone-dependent activation of ER- and AR-responsive gene expression up to 2.5-fold but exhibited little or no agonistic activity alone. Some carbanilides and TCS exhibited weak agonistic and/or antagonistic activity in the AhR-responsive bioassay. TCS exhibited antagonistic activity in both ER- and AR-responsive bioassays. TCS (0.1–10 μM) significantly enhanced the binding of [3H]ryanodine to RyR1 and caused elevation of resting cytosolic [Ca2+] in primary skeletal myotubes, but carbanilides had no effect. Conclusions Carbanilides, including TCC, enhanced hormone-dependent induction of ER- and AR-dependent gene expression but had little agonist activity, suggesting a new mechanism of action of endocrine-disrupting compounds. TCS, structurally similar to noncoplanar ortho-substituted poly-chlorinated biphenyls, exhibited weak AhR activity but interacted with RyR1 and stimulated Ca2+ mobilization. These observations have potential implications for human and animal health. Further investigations are needed into the biological and toxicologic effects of TCC, its analogs, and TCS. PMID:18795164
Ervin, Kelsy Sharice Jean; Mulvale, Erin; Gallagher, Nicola; Roussel, Véronique; Choleris, Elena
2015-08-01
Social learning is a highly adaptive process by which an animal acquires information from a conspecific. While estrogens are known to modulate learning and memory, much of this research focuses on individual learning. Estrogens have been shown to enhance social learning on a long-term time scale, likely via genomic mechanisms. Estrogens have also been shown to affect individual learning on a rapid time scale through cell-signaling cascades, rather than via genomic effects, suggesting they may also rapidly influence social learning. We therefore investigated the effects of 17β-estradiol and involvement of the estrogen receptors (ERs) using the ERα agonist propyl pyrazole triol, the ERβ agonist diarylpropionitrile, and the G protein-coupled ER 1 (GPER1) agonist G1 on the social transmission of food preferences (STFP) task, within a time scale that focused on the rapid effects of estrogens. General ER activation with 17β-estradiol resulted in a modest facilitation of social learning, with mice showing a preference up to 30min of testing. Specific activation of the GPER1 also rapidly enhanced social learning, with mice showing a socially learned preference up to 2h of testing. ERα activation instead shortened the expression of a socially learned food preference, while ERβ activation had little to no effects. Thus, rapid estrogenic modulation of social learning in the STFP may be the outcome of competing action at the three main receptors. Hence, estrogens' rapid effects on social learning likely depend on the specific ERs present in brain regions recruited during social learning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nayak, Tapan K; Ramesh, Chinnasamy; Hathaway, Helen J; Norenberg, Jeffrey P; Arterburn, Jeffrey B; Prossnitz, Eric R
2014-11-01
Our understanding of estrogen (17β-estradiol, E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial, and ovarian cancers, establishing the importance of noninvasive methods to evaluate GPER expression in vivo. Here, we developed (99m)Tc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor (ER) and for GPER visualization in whole animals. A series of (99m)Tc(I)-labeled nonsteroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10 to 30 nmol/L range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties, whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4-1.1%ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, and mammary tissue), as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first-generation (99m)Tc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/image-guided drug delivery. These studies provide a molecular basis to evaluate GPER expression and function as an ER through in vivo imaging. ©2014 American Association for Cancer Research.
Xiong, Lin; Gao, Ya-Qin; Li, Wei-Hong; Yang, Xiao-Lin; Shimo, Shimo Peter
2015-07-01
A liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) method was established for the simultaneous determination of the levels of 10 β2-agonists in meat. The samples were extracted using an aqueous acidic solution and cleaned up using a Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) technique utilising a DVB-NVP-SO3Na sorbent synthesised in-house. First, the β2-agonist residues were extracted in an aqueous acidic solution, followed by matrix solid-phase dispersion for clean-up. The linearities of the method were R(2)=0.9925-0.9998, with RSDs of 2.7-15.3% and 73.7-103.5% recoveries. Very low limits of detection (LOD) and quantitation (LOQ) of 0.2-0.9 μg/kg and 0.8-3.2 μg/kg, respectively, were achieved for spiked meat. The values obtained were lower than the maximum residue limits (MRLs) established by the EU and China. These results clearly demonstrate the feasibility of the proposed approach. The evaluated method provided reliable screening, quantification and identification of 10 β2-agonists in meat. Copyright © 2015 Elsevier Ltd. All rights reserved.
Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site
NASA Astrophysics Data System (ADS)
Wang, Xizhuo; Wang, Youjun; Zhou, Yandong; Hendron, Eunan; Mancarella, Salvatore; Andrake, Mark D.; Rothberg, Brad S.; Soboloff, Jonathan; Gill, Donald L.
2014-02-01
STIM1 and STIM2 are widely expressed endoplasmic reticulum (ER) Ca2+ sensor proteins able to translocate within the ER membrane to physically couple with and gate plasma membrane Orai Ca2+ channels. Although they are structurally similar, we reveal critical differences in the function of the short STIM-Orai-activating regions (SOAR) of STIM1 and STIM2. We narrow these differences in Orai1 gating to a strategically exposed phenylalanine residue (Phe-394) in SOAR1, which in SOAR2 is substituted by a leucine residue. Remarkably, in full-length STIM1, replacement of Phe-394 with the dimensionally similar but polar histidine head group prevents both Orai1 binding and gating, creating an Orai1 non-agonist. Thus, this residue is critical in tuning the efficacy of Orai activation. While STIM1 is a full Orai1-agonist, leucine-replacement of this crucial residue in STIM2 endows it with partial agonist properties, which may be critical for limiting Orai1 activation stemming from its enhanced sensitivity to store-depletion.
Hirota, Nobuaki; Yasuda, Daisuke; Hashidate, Tomomi; Yamamoto, Teruyasu; Yamaguchi, Satoshi; Nagamune, Teruyuki; Nagase, Takahide; Shimizu, Takao; Nakamura, Motonao
2010-01-01
Several residues are conserved in the transmembrane domains (TMs) of G-protein coupled receptors. Here we demonstrate that a conserved proline, Pro247, in TM6 of platelet-activating factor receptor (PAFR) is required for endoplasmic reticulum (ER) export and trafficking after agonist-induced internalization. Alanine-substituted mutants of the conserved residues of PAFRs, including P247A, were retained in the ER. Because a PAFR antagonist, Y-24180, acted as a pharmacological chaperone to rescue ER retention, this retention is due to misfolding of PAFR. Methylcarbamyl (mc)-PAF, a PAFR agonist, did not increase the cell surface expression of P247A, even though another ER-retained mutant, D63A, was effectively trafficked. Signaling and accumulation of the receptors in the early endosomes were observed in the mc-PAF-treated P247A-expressing cells, suggesting that P247A was trafficked to the cell surface by mc-PAF, and thereafter disappeared from the surface due to aberrant trafficking, e.g. enhanced internalization, deficiency in recycling, and/or accelerated degradation. The aberrant trafficking was confirmed with a sortase-A-mediated method for labeling cell surface proteins. These results demonstrate that the conserved proline in TM6 is crucial for intracellular trafficking of PAFR. PMID:20007715
Wnuk, A; Rzemieniec, J; Lasoń, W; Krzeptowski, W; Kajta, M
2018-03-01
Although benzophenone-3 (BP-3) has frequently been reported to play a role in endocrine disruption, there is insufficient data regarding the impact of BP-3 on the nervous system, including its possible adverse effects on the developing brain. Our study demonstrated that BP-3 caused neurotoxicity and activated apoptosis via an intrinsic pathway involving the loss of mitochondrial membrane potential and the activation of caspases-9 and -3 and kinases p38/MAPK and Gsk3β. These biochemical alterations were accompanied by ROS production, increased apoptotic body formation and impaired cell survival, and by an upregulation of the genes involved in apoptosis. The BP-3-induced effects were tissue-specific and age-dependent with the most pronounced effects observed in neocortical cells at 7 days in vitro. BP-3 changed the messenger RNA (mRNA) expression levels of Erα, Erβ, Gpr30, and Pparγ in a time-dependent manner. At 3 h of exposure, BP-3 downregulated estrogen receptor mRNAs but upregulated Pparγ mRNA. After prolonged exposures, BP-3 downregulated the receptor mRNAs except for Erβ mRNA that was upregulated. The BP-3-induced patterns of mRNA expression measured at 6 and 24 h of exposure reflected alterations in the protein levels of the receptors and paralleled their immunofluorescent labeling. Erα and Pparγ agonists diminished, but Erβ and Gpr30 agonists stimulated the BP-3-induced apoptotic and neurotoxic effects. Receptor antagonists caused the opposite effects, except for ICI 182,780. This is in line with a substantial reduction in the effects of BP-3 in cells with siRNA-silenced Erβ/Gpr30 and the maintenance of BP-3 effects in Erα- and Pparγ siRNA-transfected cells. We showed for the first time that BP-3-affected mRNA and protein expression levels of Erα, Erβ, Gpr30, and Pparγ, paralleled BP-3-induced apoptosis and neurotoxicity. Therefore, we suggest that BP-3-evoked apoptosis of neuronal cells is mediated via attenuation of Erα/Pparγ and stimulation of Erβ/Gpr30 signaling.
Tramadol extended-release in the management of chronic pain
McCarberg, Bill
2007-01-01
Chronic, noncancer pain such as that associated with osteoarthritis of the hip and knee is typically managed according to American College of Rheumatology guidelines. Patients unresponsive to first-line treatment with acetaminophen receive nonsteroidal antiinflammatory drugs (NSAIDs), including cyclooxygenase-2 (COX-2) inhibitors. However, many patients may have chronic pain that is refractory to these agents, or they may be at risk for the gastrointestinal, renal, and cardiovascular complications associated with their use. Tramadol, a mild opioid agonist and norepinephrine and serotonin reuptake inhibitor, is recommended by current guidelines for the treatment of moderate to moderately severe pain in patients who have not responded to previous oral therapy, or in patients who have contraindications to COX-2 inhibitors and nonselective NSAIDs. An extended-release (ER) formulation of tramadol was approved by the US Food and Drug Administration in September 2005. In contrast with immediate-release (IR) tramadol, this ER formulation allows once-daily dosing, providing around-the-clock analgesia. In clinical studies, tramadol ER has demonstrated a lower incidence of adverse events than that reported for IR tramadol. Unlike nonselective NSAIDs and COX-2 inhibitors, tramadol ER is not associated with gastrointestinal, renal, or cardiovascular complications. Although tramadol is an opioid agonist, significant abuse has not been demonstrated after long-term therapy. It is concluded that tramadol ER has an efficacy and safety profile that warrants its early use for the management of chronic pain, either alone or in conjunction with nonselective NSAIDs and COX-2 inhibitors. PMID:18488071
ESR1 ligand binding domain mutations in hormone-resistant breast cancer
Toy, Weiyi; Shen, Yang; Won, Helen; Green, Bradley; Sakr, Rita A.; Will, Marie; Li, Zhiqiang; Gala, Kinisha; Fanning, Sean; King, Tari A.; Hudis, Clifford; Chen, David; Taran, Tetiana; Hortobagyi, Gabriel; Greene, Geoffrey; Berger, Michael; Baselga, Jose; Chandarlapaty, Sarat
2013-01-01
Seventy percent of breast cancers express estrogen receptor (ER) and most of these are sensitive to ER inhibition. However, many such tumors become refractory to inhibition of estrogen action in the metastatic setting for unknown reasons. We conducted a comprehensive genetic analysis of two independent cohorts of metastatic ER+ breast tumors and identified mutations in the ligand binding domain (LBD) of ESR1 in 14/80 cases. These included highly recurrent mutations p.Tyr537Ser/Asn and p.Asp538Gly. Molecular dynamics simulations suggest the Tyr537Ser and Asp538Gly structures lead to hydrogen bonding of the mutant amino acid with Asp351, thus favoring the receptor’s agonist conformation. Consistent with this model, mutant receptors drive ER-dependent transcription and proliferation in the absence of hormone and reduce the efficacy of ER antagonists. These data implicate LBD mutant forms of ER in mediating clinical resistance to hormonal therapy and suggest that more potent ER antagonists may have significant therapeutic benefit. PMID:24185512
Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation.
Ambhore, Nilesh Sudhakar; Katragadda, Rathnavali; Raju Kalidhindi, Rama Satyanarayana; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S; Sathish, Venkatachalem
2018-04-20
Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways, and may point to a novel perception for blunting airway remodeling. Copyright © 2018 Elsevier B.V. All rights reserved.
A gene expression biomarker accurately predicts estrogen ...
The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c
Hazard and risk assessment of chemical mixtures using the toxic equivalency factor approach.
Safe, S H
1998-08-01
There is considerable public, regulatory, and scientific concern regarding human exposure to endocrine-disrupting chemicals, which include compounds that directly modulate steroid hormone receptor pathways (estrogens, antiestrogens, androgens, antiandrogens) and aryl hydrocarbon receptor (AhR) agonists, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Based on quantitative structure-activity relationships for both AhR and estrogen receptor (ER) agonists, the relative potency (RP) of individual compounds relative to a standard (e.g. TCDD and 17-beta-estradiol) have been determined for several receptor-mediated responses. Therefore, the TCDD or estrogenic equivalent (TEQ or EQ, respectively) of a mixture is defined as TEQ = sigma[T(i)]xRP(i)or EQ=sigma[E(i)]xRP(i), where T(i) and E(i) are concentrations of individual AhR or ER agonists in any mixture. This approach for risk assessment of endocrine-disrupting mixtures assumes that for each endocrine response pathway, the effects of individual compounds are essentially additive. This paper will critically examine the utility of the TEQ/EQ approach for risk assessment, the validity of the assumptions used for this approach, and the problems associated with comparing low dose exposures to xeno and natural (dietary) endocrine disruptors.
The isokinetic rotator cuff strength ratios in overhead athletes: Assessment and exercise effect.
Berckmans, Kelly; Maenhout, Annelies G; Matthijs, Lien; Pieters, Louise; Castelein, Birgit; Cools, Ann M
2017-09-01
Muscle strength imbalance in the shoulder region can be considered as a predisposing factor in the development of movement dysfunctions, possibly leading to overuse injuries. Repetitive overhead throwing, performed in sports, may result in muscle imbalance between the external (ER) and internal (IR) rotators. Muscle strength measured with an isokinetic device, is reported as a concentric (CON) or eccentric (ECC) force. The balance between an agonist and an antagonist is mentioned as a ratio (CON/CON or ECC/CON). The aim of this systematic literature review is to provide an overview of the existing evidence considering the isokinetic muscle strength ratios of ER and IR of the shoulder in healthy overhead athletes. In addition, the effect of exercise programs on these ratios was investigated. Two online databases (Web of Science and PubMed) were consulted using different search strategies. Articles were selected based on inclusion and exclusion criteria. All included articles were assessed on their methodological quality. There is moderate evidence for a lower functional deceleration ratio (ECC ER/CON IR) at the dominant side. This lower ratio is due to a large overweight of CON IR strength on that side. There is no consensus about which exercise program is the most effective in altering the shoulder isokinetic strength ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortensen, Anne Skjetne; Arukwe, Augustine
2008-03-01
Available toxicological evidence indicates that environmental contaminants with strong affinity to the aryl hydrocarbon receptor (AhR) have anti-estrogenic properties in both mammalian and non-mammalian in vivo and in vitro studies. The primary objective of the present study was to investigate the interactions between the AhR and estrogen receptor (ER) in salmon in vitro system. Two separate experiments were performed and gene expression patterns were analyzed using real-time PCR, while protein analysis was done by immunoblotting. Firstly, salmon primary hepatocytes were exposed to the dioxin-like PCB126 at 1, 10 and 50 pM and ER agonist nonylphenol (NP) at 5 and 10more » {mu}M, singly or in combination. Our data showed increased levels of ER-mediated gene expression (vitellogenin: Vtg, zona radiata protein: Zr-protein, ER{alpha}, ER{beta} and vigilin) as well as increased cellular ER{alpha} protein levels after treatment with NP and PCB126, singly or in combination. PCB126 treatment alone produced, as expected, increased transcription of AhR nuclear translocator (Arnt), CYP1A1 and AhR repressor (AhRR) mRNA, and these responses were reduced in the presence of NP concentrations. PCB126 exposure alone did not produce significant effect on AhR2{alpha} mRNA but increased (at 1 and 50 pM) and decreased (at 10 pM) AhR2{beta} mRNA below control level. For AhR2{delta} and AhR2{gamma} isotypes, PCB126 (at 1 pM) produced significant decreases (total inhibition for AhR2{gamma}) of mRNA levels but was indifferent at 10 and 50 pM, compared to control. NP exposure alone produced concentration-dependent significant decrease of AhR2{beta} mRNA. In contrast, while 5 {mu}M NP produced an indifferent effect on AhR2{delta} and AhR2{gamma}, 10 {mu}M NP produced significant decrease (total inhibition for AhR2{gamma}) and the presence of NP produced apparent PCB126 concentration-specific modulation of all AhR isotypes. A second experiment was performed to evaluate the involvement of ER isoforms in PCB126 mediated estrogenicity. Here, cells were treated with the different concentrations of PCB126, alone or in combination with ICI182,780 (ICI) and sampled at 12, 24 and 48 h post-exposure. Our data showed that PCB126 produced a time- and concentration-specific increase of ER{alpha} and Vtg expressions and these responses were decreased in the presence of ICI. In general, these responses show a direct PCB126 induced transcriptional activation of ER{alpha} and estrogenic responses in the absence of ER agonists. Although not conclusive, our findings represent the first study showing the activation of estrogenic responses by a dioxin-like PCB in fish in vitro system and resemble the 'ER-hijacking' hypothesis that was recently proposed. Thus, the direct estrogenic actions of PCB126 observed in the present study add new insight on the mechanisms of ER-AhR cross-talk, prompting a new wave of discussion on whether AhR-mediated anti-estrogenicity is an exception rather than rule of action.« less
Sánchez-Criado, José E; Martín De Las Mulas, Juana; Bellido, Carmina; Tena-Sempere, Manuel; Aguilar, Rafaela; Blanco, Alfonso
2004-01-01
Estrogen (E) is a key regulator of the synthesis and secretion of pituitary reproductive hormones [luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL)]. Until recently, it was thought that all biological actions of E at the pituitary were manifested through a single E receptor (R). The pituitary, like many other reproductive tissues, expresses two isoforms of ER, alpha and beta, both activated by E. The relative contribution of alpha and beta forms in E regulatory actions is largely unknown. To this end, 2-week-old ovariectomized (OVX) rats were injected over 3 days with 25 microg estradiol benzoate (EB), 1.5 mg of propylpyrazole triol (PPT), a selective ERalpha agonist, 1.5 mg of the selective ERbeta agonist diarylpropionitrile (DPN) or a combination of PPT and DPN. Controls were injected with 0.2 ml oil. At 10:00 h on the day after treatment, trunk blood was collected to determine serum concentration of LH, FSH and PRL, and pituitaries were processed for RT-PCR analysis of total (A+B) progesterone receptor (PR) mRNA, immunocytochemistry of PR and incubation. Pituitaries from each of the five groups were incubated in DMEM, with or without 20 nM of the antiprogestin at the receptor ZK299, for 3 h with: 10(-8)M 17beta-estradiol, 10(-6)M PPT, 10(-6)M DPN, PPT+DPN or medium alone, respectively, to determine LH, FSH and PRL secretion, and, when challenged with two pulses of 15 min 1 h apart of 10(-8)M gonadotropin-releasing hormone (GnRH) (GnRH self-priming). EB, PPT and PPT+DPN treatments increased PR mRNA and the number and intensity of nuclei immunoreactive (IR) for PR in gonadotropes, and reduced the number of gonadectomy cells. Like E, PPT alone or in combination with DPN stimulated PRL secretion, increased basal and GnRH-stimulated LH and FSH secretion and induced GnRH self-priming in the absence of ZK299 in the incubation medium. DPN alone had only a significant E-like effect on gonadectomy cells and IR-PR, but not on GnRH self-priming. In addition, while DPN lacked an agonistic action on peripheral tissue and serum pituitary reproductive hormones concentration, EB, PPT and PPT+DPN induced similar uterine ballooning and vaginal cornification, and increased and decreased, respectively, serum concentrations of PRL and gonadotropins. Overall, these results indicate that most of these E actions on the pituitary are exerted through the ERalpha isoform. The finding that activation of ERbeta with its selective DPN agonist had an estrogenic effect on IR-PR nuclei, but not on GnRH self-priming, a characteristic ERalpha-mediated effect of E, suggests that the biological action of E at the pituitary may involve both isoforms of ER.
2001-07-01
hormones: 10-7 M 17p3- estradiol for ERa and ERI3, 10-7 M progesterone for PR-A and PR-B, 10-7 M dexamethasone for GR, 10-7 M 5ot-dihydrotestosterone...cyproterone acetate, d-Ald.: d-aldosterone, DHEA: dehydroepiandrosterone, DOC: 11-deoxycorticosterone, Dex: dexamethasone, MPA: medroxyprogesterone , OH-F...two receptors are not functionally equivalent and that tory activities by altering ER structure and indepen- each subtype plays a unique role in ER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Gui-Qiang; Zhou, Long; Chen, Xiao-Yue
2012-04-06
Highlights: Black-Right-Pointing-Pointer We assessed hydroxytamoxifen (OHT) effects in two endometrial cancer cell lines. Black-Right-Pointing-Pointer GPR30 mediates the proliferative effects induced by OHT. Black-Right-Pointing-Pointer GPR30 mediates the invasive effects induced by OHT. Black-Right-Pointing-Pointer GPR30 expression was up-regulated by OHT in endometrial cancer cell line. -- Abstract: The selective ER modulator tamoxifen (TAM) is the most widely used ER antagonist for treatment of women with hormone-dependent breast tumor. However, long-term treatment is associated with an increased risk of endometrial cancer. The aim of the present study was to demonstrate new insight into the role of G-protein coupled receptor 30 (GPR30) in themore » activity of TAM, which promoted endometrial cancer. In endometrial cancer cell lines ISHIKAWA and KLE, the potential of 4-hydroxytamoxifen (OHT), the active metabolite of TAM, 17{beta}-estradiol (E2) and G1, a non-steroidal GPR30-specific agonist to promote cell proliferation and invasion was evaluated. All agents above induced high proliferative and invasive effects, while the down-regulation of GPR30 or the interruption of MAPK signal pathway partly or completely prevented the action of the regent. Moreover, the RNA and protein expression of GPR30 was up-regulated by G1, E2 or OHT in both cell lines. The present study provided a new insight into the mechanism involved in the agonistic activity exerted by TAM in the uterus.« less
G-protein coupled receptor 30 (GPR30): a novel regulator of endothelial inflammation.
Chakrabarti, Subhadeep; Davidge, Sandra T
2012-01-01
Estrogen, the female sex hormone, is known to exert anti-inflammatory and anti-atherogenic effects. Traditionally, estrogen effects were believed to be largely mediated through the classical estrogen receptors (ERs). However, there is increasing evidence that G-protein coupled receptor 30 (GPR30), a novel estrogen receptor, can mediate many estrogenic effects on the vasculature. Despite this, the localization and functional significance of GPR30 in the human vascular endothelium remains poorly understood. Given this background, we examined the subcellular location and potential anti-inflammatory roles of GPR30 using human umbilical vein endothelial cells as a model system. Inflammatory changes were induced by treatment with tumor necrosis factor (TNF), a pro-inflammatory cytokine involved in atherogenesis and many other inflammatory conditions. We found that GPR30 was located predominantly in the endothelial cell nuclei. Treatment with the selective GPR30 agonist G-1 partially attenuated the TNF induced upregulation of pro-inflammatory proteins such as intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was completely abolished by the selective GPR30 antagonist G-15, suggesting that it was indeed mediated in a GPR30 dependent manner. Interestingly, estrogen alone had no effects on TNF-treated endothelium. Concomitant activation of the classical ERs blocked the anti-inflammatory effects of G-1, indicating opposing effects of GPR30 and the classical ERs. Our findings demonstrate that endothelial GPR30 is a novel regulator of the inflammatory response which could be a potential therapeutic target against atherosclerosis and other inflammatory diseases.
Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review.
Jameera Begam, A; Jubie, S; Nanjan, M J
2017-04-01
Estrogens display intriguing tissue selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer. There are also strong evidences to show that both endogenous and exogenous estrogens are involved in the pathogenesis of breast cancer. Tamoxifen has been the only drug of choice for more than 30years to treat patients with estrogen related (ER) positive breast tumors. There is a need therefore, for identifying newer, potential and novel candidates for breast cancer. Keeping this in view, the present review focuses on selective estrogen receptor modulators and estrogen antagonists such as sulfatase and aromatase inhibitors involved in breast cancer therapy. A succinct and critical overview of the structure of estrogen receptors, their signaling and involvement in breast carcinogenesis are herein described. Copyright © 2017 Elsevier Inc. All rights reserved.
Kojima, Hiroyuki; Katsura, Eiji; Takeuchi, Shinji; Niiyama, Kazuhito; Kobayashi, Kunihiko
2004-01-01
We tested 200 pesticides, including some of their isomers and metabolites, for agonism and antagonism to two human estrogen receptor (hER) subtypes, hERalpha and hERbeta, and a human androgen receptor (hAR) by highly sensitive transactivation assays using Chinese hamster ovary cells. The test compounds were classified into nine groups: organochlorines, diphenyl ethers, organophosphorus pesticides, pyrethroids, carbamates, acid amides, triazines, ureas, and others. These pesticides were tested at concentrations < 10-5 M. Of the 200 pesticides tested, 47 and 33 showed hER- and hERbeta-mediated estrogenic activities, respectively. Among them, 29 pesticides had both hERalpha and hERbeta agonistic activities, and the effects of the organochlorine insecticides beta-benzene hexachloride (BHC) and delta-BHC and the carbamate insecticide methiocarb were predominantly hERbeta rather than hERalpha agonistic. Weak antagonistic effects toward hERalpha and hERbeta were shown in five and two pesticides, respectively. On the other hand, none of tested pesticides showed hAR-mediated androgenic activity, but 66 of 200 pesticides exhibited inhibitory activity against the transcriptional activity induced by 5alpha-dihydrotestosterone. In particular, the antiandrogenic activities of two diphenyl ether herbicides, chlornitrofen and chlomethoxyfen, were higher than those of vinclozolin and p,p -dichlorodiphenyl dichloroethylene, known AR antagonists. The results of our ER and AR assays show that 34 pesticides possessed both estrogenic and antiandrogenic activities, indicating pleiotropic effects on hER and hAR. We also discussed chemical structures related to these activities. Taken together, our findings suggest that a variety of pesticides have estrogenic and/or antiandrogenic potential via ER and/or AR, and that numerous other manmade chemicals may also possess such estrogenic and antiandrogenic activities. PMID:15064155
Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A
2015-09-23
In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute intracerebroventricular injections of specific agonists and antagonists following blockade of brain aromatase, we show here that brain-derived estrogens acutely facilitate male sexual motivation through the activation of estrogen receptor β interacting with the metabotropic glutamate receptor 1a. This behavioral effect occurring within minutes provides a mechanistic explanation of how an estrogen receptor not intrinsically coupled to intracellular effectors can signal from the membrane to govern behavior in a very rapid fashion. It suggests that different subtypes of estrogen receptors could regulate the motivation versus performance aspects of behavior. Copyright © 2015 the authors 0270-6474/15/3313110-14$15.00/0.
Diamond, Laura E; Wrigley, Tim V; Hinman, Rana S; Hodges, Paul W; O'Donnell, John; Takla, Amir; Bennell, Kim L
2016-09-01
This study investigated isometric and isokinetic hip strength in individuals with and without symptomatic femoroacetabular impingement (FAI). The specific aims were to: (i) determine whether differences exist in isometric and isokinetic hip strength measures between groups; (ii) compare hip strength agonist/antagonist ratios between groups; and (iii) examine relationships between hip strength and self-reported measures of either hip pain or function in those with FAI. Cross-sectional. Fifteen individuals (11 males; 25±5 years) with symptomatic FAI (clinical examination and imaging (alpha angle >55° (cam FAI), and lateral centre edge angle >39° and/or positive crossover sign (combined FAI))) and 14 age- and sex-matched disease-free controls (no morphological FAI on magnetic resonance imaging) underwent strength testing. Maximal voluntary isometric contraction strength of hip muscle groups and isokinetic hip internal (IR) and external rotation (ER) strength (20°/s) were measured. Groups were compared with independent t-tests and Mann-Whitney U tests. Participants with FAI had 20% lower isometric abduction strength than controls (p=0.04). There were no significant differences in isometric strength for other muscle groups or peak isokinetic ER or IR strength. The ratio of isometric, but not isokinetic, ER/IR strength was significantly higher in the FAI group (p=0.01). There were no differences in ratios for other muscle groups. Angle of peak IR torque was the only feature correlated with symptoms. Individuals with symptomatic FAI demonstrate isometric hip abductor muscle weakness and strength imbalance in the hip rotators. Strength measurement, including agonist/antagonist ratios, may be relevant for clinical management of FAI. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Fate of wastewater effluent hER-agonists and hER-antagonists during soil aquifer treatment.
Otakuye, Conroy; Quanrud, David M; Ela, Wendell P; Wicke, Daniel; Lansey, Kevin E; Arnold, Robert G
2005-04-01
Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.22 nM following SAT. The YES assay indicated that the equivalent EE2 concentration in the same effluent sample was below the method-detection limit (<2.5 x 10(-3) nM) but increased to 0.68 nM in effluent polished via SAT processes. It was hypothesized thattest-dependent differences arose because the competitive binding assay responds positively to both estrogen mimics and anti-estrogens; the YES assay responds to estrogen mimics, but test response is inhibited by anti-estrogens. The hypothesis was supported when organics extracted from wastewater effluent inhibited the YES test response to EE2 (anti-estrogenic effect). A similar extract prepared from SAT-polished effluent augmented the EE2 curve (agonist response). When hydrophobic organics in secondary effluent were fractionated, assay results indicated that several physically distinct anti-estrogens were present in the sample. From this work, it is evident that transcription-activation bioassays alone should not be relied upon to measure estrogenic activity in complex environmental samples because the simultaneous presence of both agonists and antagonist compounds can yield false negatives. Multiple in vitro bioassays, sample fractionation or tests designed to measure anti-estrogenic activity can be used to overcome this problem. It is also clear that there are circumstances under which SAT does not completely remove estrogenic activity during municipal wastewater effluent polishing.
Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki S.; Halpern, Marnie E.
2014-01-01
Background: Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. Results: We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves. Citation: Gorelick DA, Iwanowicz LR, Hung AL, Blazer VS, Halpern ME. 2014. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples. Environ Health Perspect 122:356–362; http://dx.doi.org/10.1289/ehp.1307329 PMID:24425189
Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.
2014-01-01
Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.
Khalil, Raouf A.
2010-01-01
Cardiovascular disease (CVD) is more common in postmenopausal than premenopausal women, suggesting vascular protective effects of estrogen. Vascular estrogen receptors ERα, ERβ and a transmembrane estrogen-binding protein GPR30 have been described. Also, experimental studies have demonstrated vasodilator effects of estrogen on the endothelium, vascular smooth muscle and extracellular matrix. However, randomized clinical trials have not supported vascular benefits of menopausal hormone therapy (MHT), possibly due to the subjects' advanced age and age-related changes in estrogen synthesis and metabolic pathways, the vascular ERs number, distribution and integrity, and the post-ER vascular signaling pathways. Current MHT includes natural estrogens such as conjugated equine estrogen, as well as synthetic and semi-synthetic estrogens. New estrogenic formulations and hormone combinations have been developed. Phytoestrogens is being promoted as an alternative MHT. Specific ER modulators (SERMs), and selective agonists for ERα such as PPT, ERβ such as DPN, and GPR30 such as G1 are being evaluated. In order to enhance the vascular effectiveness of MHT, its type, dose, route of administration and timing may need to be customized depending on the subject's age and pre-existing CVD. Also, the potential interaction of estrogen with progesterone and testosterone on vascular function may need to be considered in order to maximize the vascular benefits of MHT on senescent blood vessels and postmenopausal CVD. PMID:20210774
Schäfer, Anja; Wellner, Anja; Strauss, Martin; Schäfer, Andreas; Wolber, Gerhard; Gust, Ronald
2012-11-26
In continuation of our previous work, several 1-alkyl-2,3,5-tris(4-hydroxyphenyl)aryl-1H-pyrroles with chlorine or fluorine substituents in the aryl residues were synthesized and tested for estrogen receptor (ER) binding at isolated ERα/ERβ receptors (HAP assay) and in transactivation assays using ERα-positive MCF-7/2a as well as U2-OS/ERα and U2-OS/ERβ cells. In the competition experiment at ERα the compounds displayed very high relative binding affinities of up to 37% (determined for 8m) but with restricted subtype selectivity (e.g., ERα/ERβ (8m) = 9). The highest estrogenic potency in ERα-positive MCF-7/2a cells was determined for 2,3,5-tris(2-fluoro-4-hydroxyphenyl)-1-propyl-1H-pyrrole 8m (EC(50) = 23 nM), while in U2-OS/ERα cells 2-(2-fluoro-4-hydroxyphenyl)-3,5-bis(4-hydroxyphenyl)-1-propyl-1H-pyrrole 8b (EC(50) = 0.12 nM) was the most potent agonist, only 30-fold less active than estradiol (E2, EC(50) = 0.004 nM). In U2-OS/ERβ cells for all pyrroles no transactivation could be observed, which indicates that they are selective ERα agonists in cellular systems.
Thomas, Peter
2012-01-01
Using cDNA cloning strategies commonly employed for G protein-coupled receptors (GPCR), GPCR-30 (GPR30), was isolated from mammalian cells before knowledge of its cognate ligand. GPR30 is evolutionarily conserved throughout the vertebrates. A broad literature suggests that GPR30 is a Gs-coupled heptahelical transmembrane receptor that promotes specific binding of naturally occurring and man-made estrogens but not cortisol, progesterone, or testosterone. Its “pregenomic” signaling actions are manifested by plasma membrane-associated actions familiar to GPCR, namely, stimulation of adenylyl cyclase and Gβγ-subunit protein-dependent release of membrane-tethered heparan bound epidermal growth factor. These facts regarding its mechanism of action have led to the formal renaming of this receptor to its current functional designate, G protein-coupled estrogen receptor (ER) (GPER)-1. Further insight regarding its biochemical action and physiological functions in vertebrates is derived from receptor knockdown studies and the use of selective agonists/antagonists that discriminate GPER-1 from the nuclear steroid hormone receptors, ERα and ERβ. GPER-1-selective agents have linked GPER-1 to physiological and pathological events regulated by estrogen action, including, but not limited to, the central nervous, immune, renal, reproductive, and cardiovascular systems. Moreover, immunohistochemical studies have shown a positive association between GPER-1 expression and progression of female reproductive cancer, a relationship that is diametrically opposed from ER. Unlike ER knockout mice, GPER-1 knockout mice are fertile and show no overt reproductive anomalies. However, they do exhibit thymic atrophy, impaired glucose tolerance, and altered bone growth. Here, we discuss the role of GPER-1 in female reproductive cancers as well as renal and vascular physiology. PMID:22495674
Filardo, Edward J; Thomas, Peter
2012-07-01
Using cDNA cloning strategies commonly employed for G protein-coupled receptors (GPCR), GPCR-30 (GPR30), was isolated from mammalian cells before knowledge of its cognate ligand. GPR30 is evolutionarily conserved throughout the vertebrates. A broad literature suggests that GPR30 is a Gs-coupled heptahelical transmembrane receptor that promotes specific binding of naturally occurring and man-made estrogens but not cortisol, progesterone, or testosterone. Its "pregenomic" signaling actions are manifested by plasma membrane-associated actions familiar to GPCR, namely, stimulation of adenylyl cyclase and Gβγ-subunit protein-dependent release of membrane-tethered heparan bound epidermal growth factor. These facts regarding its mechanism of action have led to the formal renaming of this receptor to its current functional designate, G protein-coupled estrogen receptor (ER) (GPER)-1. Further insight regarding its biochemical action and physiological functions in vertebrates is derived from receptor knockdown studies and the use of selective agonists/antagonists that discriminate GPER-1 from the nuclear steroid hormone receptors, ERα and ERβ. GPER-1-selective agents have linked GPER-1 to physiological and pathological events regulated by estrogen action, including, but not limited to, the central nervous, immune, renal, reproductive, and cardiovascular systems. Moreover, immunohistochemical studies have shown a positive association between GPER-1 expression and progression of female reproductive cancer, a relationship that is diametrically opposed from ER. Unlike ER knockout mice, GPER-1 knockout mice are fertile and show no overt reproductive anomalies. However, they do exhibit thymic atrophy, impaired glucose tolerance, and altered bone growth. Here, we discuss the role of GPER-1 in female reproductive cancers as well as renal and vascular physiology.
Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library.
Chen, Shiuan; Hsieh, Jui-Hua; Huang, Ruili; Sakamuru, Srilatha; Hsin, Li-Yu; Xia, Menghang; Shockley, Keith R; Auerbach, Scott; Kanaya, Noriko; Lu, Hannah; Svoboda, Daniel; Witt, Kristine L; Merrick, B Alex; Teng, Christina T; Tice, Raymond R
2015-10-01
Multiple mechanisms exist for endocrine disruption; one nonreceptor-mediated mechanism is via effects on aromatase, an enzyme critical for maintaining the normal in vivo balance of androgens and estrogens. We adapted the AroER tri-screen 96-well assay to 1536-well format to identify potential aromatase inhibitors (AIs) in the U.S. Tox21 10K compound library. In this assay, screening with compound alone identifies estrogen receptor alpha (ERα) agonists, screening in the presence of testosterone (T) identifies AIs and/or ERα antagonists, and screening in the presence of 17β-estradiol (E2) identifies ERα antagonists. Screening the Tox-21 library in the presence of T resulted in finding 302 potential AIs. These compounds, along with 31 known AI actives and inactives, were rescreened using all 3 assay formats. Of the 333 compounds tested, 113 (34%; 63 actives, 50 marginal actives) were considered to be potential AIs independent of cytotoxicity and ER antagonism activity. Structure-activity analysis suggested the presence of both conventional (eg, 1, 2, 4, - triazole class) and novel AI structures. Due to their novel structures, 14 of the 63 potential AI actives, including both drugs and fungicides, were selected for confirmation in the biochemical tritiated water-release aromatase assay. Ten compounds were active in the assay; the remaining 4 were only active in high-throughput screen assay, but with low efficacy. To further characterize these 10 novel AIs, we investigated their binding characteristics. The AroER tri-screen, in high-throughput format, accurately and efficiently identified chemicals in a large and diverse chemical library that selectively interact with aromatase. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library
Chen, Shiuan; Hsieh, Jui-Hua; Huang, Ruili; Sakamuru, Srilatha; Hsin, Li-Yu; Xia, Menghang; Shockley, Keith R.; Auerbach, Scott; Kanaya, Noriko; Lu, Hannah; Svoboda, Daniel; Witt, Kristine L.; Merrick, B. Alex; Teng, Christina T.; Tice, Raymond R.
2015-01-01
Multiple mechanisms exist for endocrine disruption; one nonreceptor-mediated mechanism is via effects on aromatase, an enzyme critical for maintaining the normal in vivo balance of androgens and estrogens. We adapted the AroER tri-screen 96-well assay to 1536-well format to identify potential aromatase inhibitors (AIs) in the U.S. Tox21 10K compound library. In this assay, screening with compound alone identifies estrogen receptor alpha (ERα) agonists, screening in the presence of testosterone (T) identifies AIs and/or ERα antagonists, and screening in the presence of 17β-estradiol (E2) identifies ERα antagonists. Screening the Tox-21 library in the presence of T resulted in finding 302 potential AIs. These compounds, along with 31 known AI actives and inactives, were rescreened using all 3 assay formats. Of the 333 compounds tested, 113 (34%; 63 actives, 50 marginal actives) were considered to be potential AIs independent of cytotoxicity and ER antagonism activity. Structure-activity analysis suggested the presence of both conventional (eg, 1, 2, 4, - triazole class) and novel AI structures. Due to their novel structures, 14 of the 63 potential AI actives, including both drugs and fungicides, were selected for confirmation in the biochemical tritiated water-release aromatase assay. Ten compounds were active in the assay; the remaining 4 were only active in high-throughput screen assay, but with low efficacy. To further characterize these 10 novel AIs, we investigated their binding characteristics. The AroER tri-screen, in high-throughput format, accurately and efficiently identified chemicals in a large and diverse chemical library that selectively interact with aromatase. PMID:26141389
GPER: A new tool to protect dopaminergic neurons?
Bessa, Agustina; Campos, Filipa Lopes; Videira, Rita Alexandra; Mendes-Oliveira, Julieta; Bessa-Neto, Diogo; Baltazar, Graça
2015-10-01
Parkinson's disease (PD) is characterized by a selective degeneration of nigrostriatal dopaminergic pathway. Epidemiological studies revealed a male predominance of the disease that has been attributed to the female steroid hormones, mainly the estrogen. Estrogen neuroprotective effects have been shown in several studies, however the mechanisms responsible by these effects are still unclear. Previous data from our group revealed that glial cell line-derived neurotrophic factor (GDNF) is crucial to the dopaminergic protection provided by 17β-estradiol, and also suggest that the intracellular estrogen receptors (ERs) are not required for that neuroprotective effects. The present study aimed to investigate the contribution of the G protein-coupled ER (GPER) activation in estrogen-mediated dopaminergic neuroprotection against an insult induced by 1-methyl-4-phenylpyridinium (MPP(+)), and whether GPER neuroprotective effects involve the regulation of GDNF expression. Using primary mesencephalic cultures, we found that GPER activation protects dopaminergic neurons from MPP(+) toxicity in an extent similar to the promoted by a 17β-estradiol. Moreover, GPER activation promotes an increase in GDNF levels. Both, GDNF antibody neutralization or RNA interference-mediated GDNF knockdown prevented the GPER-mediated dopaminergic protection verified in mesencephalic cultures challenged with MPP(+). Overall, these results revealed that G1, a selective agonist of GPER, is able to protect dopaminergic neurons and that GDNF overexpression is a key feature to GPER induced the neuroprotective effects. Copyright © 2015 Elsevier B.V. All rights reserved.
Hajirahimkhan, Atieh; Simmler, Charlotte; Yuan, Yang; Anderson, Jeffrey R.; Chen, Shao-Nong; Nikolić, Dejan; Dietz, Birgit M.; Pauli, Guido F.; van Breemen, Richard B.; Bolton, Judy L.
2013-01-01
The increased cancer risk associated with hormone therapies has encouraged many women to seek non-hormonal alternatives including botanical supplements such as hops (Humulus lupulus) and licorice (Glycyrrhiza spec.) to manage menopausal symptoms. Previous studies have shown estrogenic properties for hops, likely due to the presence of 8-prenylnarigenin, and chemopreventive effects mainly attributed to xanthohumol. Similarly, a combination of estrogenic and chemopreventive properties has been reported for various Glycyrrhiza species. The major goal of the current study was to evaluate the potential estrogenic effects of three licorice species (Glycyrrhiza glabra, G. uralensis, and G. inflata) in comparison with hops. Extracts of Glycyrrhiza species and spent hops induced estrogen responsive alkaline phosphatase activity in endometrial cancer cells, estrogen responsive element (ERE)-luciferase in MCF-7 cells, and Tff1 mRNA in T47D cells. The estrogenic activity decreased in the order H. lupulus > G. uralensis > G. inflata > G. glabra. Liquiritigenin was found to be the principle phytoestrogen of the licorice extracts; however, it exhibited lower estrogenic effects compared to 8-prenylnaringenin in functional assays. Isoliquiritigenin, the precursor chalcone of liquiritigenin, demonstrated significant estrogenic activities while xanthohumol, a metabolic precursor of 8-prenylnaringenin, was not estrogenic. Liquiritigenin showed ERβ selectivity in competitive binding assay and isoliquiritigenin was equipotent for ER subtypes. The estrogenic activity of isoliquiritigenin could be the result of its cyclization to liquiritigenin under physiological conditions. 8-Prenylnaringenin had nanomolar estrogenic potency without ER selectivity while xanthohumol did not bind ERs. These data demonstrated that Glycyrrhiza species with different contents of liquiritigenin have various levels of estrogenic activities, suggesting the importance of precise labeling of botanical supplements. Although hops shows strong estrogenic properties via ERα, licorice might have different estrogenic activities due to its ERβ selectivity, partial estrogen agonist activity, and non-enzymatic conversion of isoliquiritigenin to liquiritigenin. PMID:23874474
Adipose tissue represents an important and understudied component of the endocrine system. Recent evidence suggests that endocrine-disrupting chemicals (EDCs) may be able to alter lipid development (e.g., adipogenesis) and/or the balance of lipid metabolism. The environmentally a...
Dull, Angie; Goncharova, Ekaterina; Hager, Gordon; McMahon, James B
2010-11-01
We have developed a robust high-content assay to screen for novel estrogen receptor alpha (ERα) agonists and antagonists by quantitation of cytoplasmic to nuclear translocation of an estrogen receptor chimera in 384-well plates. The screen utilizes a green fluorescent protein tagged-glucocorticoid/estrogen receptor (GFP-GRER) chimera which consisted of the N-terminus of the glucocorticoid receptor fused to the human ER ligand binding domain. The GFP-GRER exhibited cytoplasmic localization in the absence of ERα ligands, and translocated to the nucleus in response to stimulation with ERα agonists or antagonists. The BD Pathway 435 imaging system was used for image acquisition, analysis of translocation dynamics, and cytotoxicity measurements. The assay was validated with known ERα agonists and antagonists, and the Library of Pharmacologically Active Compounds (LOPAC 1280). Additionally, screening of crude natural product extracts demonstrated the robustness of the assay, and the ability to quantitate the effects of toxicity on nuclear translocation dynamics. The GFP-GRER nuclear translocation assay was very robust, with z' values >0.7, CVs <5%, and has been validated with known ER ligands, and inclusion of cytotoxicity filters will facilitate screening of natural product extracts. This assay has been developed for future primary screening of synthetic, pure natural products, and natural product extracts libraries available at the National Cancer Institute at Frederick. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fregno, Ilaria; Molinari, Maurizio
2018-01-01
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells. It is deputed to lipid and protein biosynthesis, calcium storage, and the detoxification of various exogenous and endogenous harmful compounds. ER activity and size must be adapted rapidly to environmental and developmental conditions or biosynthetic demand. This is achieved on induction of thoroughly studied transcriptional/translational programs defined as "unfolded protein responses" that increase the ER volume and the expression of ER-resident proteins regulating the numerous ER functions. Less understood are the lysosomal catabolic processes that maintain ER size at steady state, that prevent excessive ER expansion during ER stresses, or that ensure return to physiologic ER size during recovery from ER stresses. These catabolic processes may also be activated to remove ER subdomains where proteasome-resistant misfolded proteins or damaged lipids have been segregated. Insights into these catabolic mechanisms have only recently emerged with the identification of so-called ER-phagy receptors, which label specific ER subdomains for selective lysosomal delivery for clearance. Here, in eight chapters and one addendum, we comment on recent advances in ER turnover pathways induced by ER stress, nutrient deprivation, misfolded proteins, and live bacteria. We highlight the role of yeast (Atg39 and Atg40) and mammalian (FAM134B, SEC62, RTN3, and CCPG1) ER-phagy receptors and of autophagy genes in selective and non-selective catabolic processes that regulate cellular proteostasis by controlling ER size, turnover, and function.
Kerr, Karen P; Thai, Binh; Coupar, Ian M
2000-01-01
The tachykinin receptor present in the guinea-pig oesophageal mucosa that mediates contractile responses of the muscularis mucosae has been characterized, using functional in vitro experiments. The NK1 receptor-selective agonist, [Sar9(O2)Met11]SP and the NK3 receptor-selective agonists, [MePhe7]-NKB and senktide, produced no response at submicromolar concentrations. The NK2 receptor-selective agonists, [Nle10]-NKA(4–10), and GR 64,349 produced concentration-dependent contractile effects with pD2 values of 8.20±0.16 and 8.30±0.15, respectively. The concentration-response curve to the non-selective agonist, NKA (pD2=8.13±0.04) was shifted significantly rightwards only by the NK2 receptor-selective antagonist, GR 159,897 and was unaffected by the NK1 receptor-selective antagonist, SR 140,333 and the NK3 receptor-selective antagonist, SB 222,200. The NK2 receptor-selective antagonist, GR 159,897, exhibited an apparent competitive antagonism against the NK2 receptor-selective agonist, GR 64,349 (apparent pKB value=9.29±0.16) and against the non-selective agonist, NKA (apparent pKB value=8.71±0.19). The NK2 receptor-selective antagonist, SR 48,968 exhibited a non-competitive antagonism against the NK2 receptor-selective agonist, [Nle10]-NKA(4–10). The pKB value was 10.84±0.19. It is concluded that the guinea-pig isolated oesophageal mucosa is a useful preparation for studying the effects of NK2 receptor-selective agonists and antagonists as the contractile responses to various tachykinins are mediated solely by NK2 receptors. PMID:11090121
Tachykinin receptors in the circular muscle of the guinea-pig ileum.
Maggi, C. A.; Patacchini, R.; Giachetti, A.; Meli, A.
1990-01-01
1. We have studied the mechanical response of circular strips of the guinea-pig ileum to tachykinins and characterized the receptors involved by means of receptor-selective agonists. 2. The strips responded to both substance P (SP) and neurokinin A (NKA), as well as to [Pro9]-SP sulphone (selective NK1-receptor agonist), [beta Ala8]-NKA(4-10) (selective NK2-receptor agonist) and [MePhe7]-neurokinin B (selective NK3-receptor agonist). The ED50s of the various peptides (calculated as the concentration of agonist which produced 50% of the response to 10 microM carbachol) were similar, in the range of 40-200 nM, i.e. no clearcut rank order of potency was evident. 3. The response to a submaximal (10 nM) concentration of SP or NKA was unaffected in the presence of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 4. The response to the NK1-agonist was totally atropine-resistant, but was reduced (about 30% inhibition) by tetrodotoxin. The response to the NK3-receptor agonist was halved by atropine and abolished by tetrodotoxin. The response to the NK2-agonist was unaffected by either atropine or tetrodotoxin. 5. The response to the selective NK2-agonist was unchanged after desensitization of NK1- or NK3-receptors. 6. The response to the NK2-selective agonist was strongly inhibited by [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10) (MEN 10,207) a selective NK2-receptor antagonist which did not modify the response to the NK1-selective agonist. 7. Our findings indicate that all the three known types of tachykinin receptors mediate the contractile response of the circular muscle of the guinea-pig ileum to peptides of this family.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1707710
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Molina, Jose-Manuel; INSERM, U896, Montpellier, F-34298; Universite Montpellier1, Montpellier, F-34298
Benzophenone (BP) derivatives, BP1 (2,4-dihydroxybenzophenone), BP2 (2,2',4,4'-tetrahydroxybenzophenone), BP3 (2-hydroxy-4-methoxybenzophenone), and THB (2,4,4'-trihydroxybenzophenone) are UV-absorbing chemicals widely used in pharmaceutical, cosmetics, and industrial applications, such as topical sunscreens in lotions and hair sprays to protect skin and hair from UV irradiation. Studies on their endocrine disrupting properties have mostly focused on their interaction with human estrogen receptor alpha (hER{alpha}), and there has been no comprehensive analysis of their potency in a system allowing comparison between hER{alpha} and hER{beta} activities. The objective of this study was to provide a comprehensive ER activation profile of BP derivatives using ER from human and fishmore » origin in a battery of in vitro tests, i.e., competitive binding, reporter gene based assays, vitellogenin (Vtg) induction in isolated rainbow trout hepatocytes, and proliferation based assays. The ability to induce human androgen receptor (hAR)-mediated reporter gene expression was also examined. All BP derivatives tested except BP3 were full hER{alpha} and hER{beta} agonists (BP2 > THB > BP1) and displayed a stronger activation of hER{beta} compared with hER{alpha}, the opposite effect to that of estradiol (E{sub 2}). Unlike E{sub 2}, BPs were more active in rainbow trout ER{alpha} (rtER{alpha}) than in hER{alpha} assay. All four BP derivatives showed anti-androgenic activity (THB > BP2 > BP1 > BP3). Overall, the observed anti-androgenic potencies of BP derivatives, together with their proposed greater effect on ER{beta} versus ER{alpha} activation, support further investigation of their role as endocrine disrupters in humans and wildlife.« less
The inositol trisphosphate receptor in the control of autophagy.
Criollo, Alfredo; Vicencio, José Miguel; Tasdemir, Ezgi; Maiuri, M Chiara; Lavandero, Sergio; Kroemer, Guido
2007-01-01
The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.
Determination of estrogenic potential in waste water without sample extraction.
Avberšek, Miha; Žegura, Bojana; Filipič, Metka; Uranjek-Ževart, Nataša; Heath, Ester
2013-09-15
This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was
Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla; Hansson, Stefan; Casslén, Bertil
2009-02-01
Epidermal growth factor (EGF) stimulates proliferation and migration in ovarian cancer cells, and high tumor expression of the EGF system correlates with poor prognosis. Epidermal growth factor upregulates urokinase plasminogen activator receptor (uPAR) on the cell surface via 3 distinct mechanisms: rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression and cell migration in ovarian cancer cells and further to identify the ER involved.We used 7 ovarian cancer cell lines, cell migration assay, cellular binding of (125)I-uPA, cellular degradation of (125)I-uPA/PAI-1 complex, enzyme-linked immunosorbent assay for uPAR, solid-phase enzyme immunoassay for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents mobilization of uPAR from detergent-resistant domains such as lipid rafts. Estradiol influenced neither the amount of uPAR mRNA nor the rate of uPAR degradation or solubilization. The nuclear ER antagonists ICI 182780 and tamoxifen, which are GPR30 agonists, as well as the specifically constructed GPR30 agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates that this effect is mediated via the membrane ER GPR30.
Seredynski, Aurore L.; Balthazart, Jacques; Ball, Gregory F.
2015-01-01
In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER–mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. SIGNIFICANCE STATEMENT The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute intracerebroventricular injections of specific agonists and antagonists following blockade of brain aromatase, we show here that brain-derived estrogens acutely facilitate male sexual motivation through the activation of estrogen receptor β interacting with the metabotropic glutamate receptor 1a. This behavioral effect occurring within minutes provides a mechanistic explanation of how an estrogen receptor not intrinsically coupled to intracellular effectors can signal from the membrane to govern behavior in a very rapid fashion. It suggests that different subtypes of estrogen receptors could regulate the motivation versus performance aspects of behavior. PMID:26400941
The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening thousands of chemicals for their potential to affect the endocrine systems of humans and wildlife. In vitro high throughput screening (HTS) assays have been proposed as a way to prioritize...
Widespread environmental contamination by bisphenol A (BPA) has created the need to fully define its potential toxic mechanisms of action (MOA) to properly assess human health and ecological risks from exposure. Although long recognized as an estrogen receptor (ER) agonist, some ...
Otto, Christiane; Rohde-Schulz, Beate; Schwarz, Gilda; Fuchs, Iris; Klewer, Mario; Brittain, Dominic; Langer, Gernot; Bader, Benjamin; Prelle, Katja; Nubbemeyer, Reinhard; Fritzemeier, Karl-Heinrich
2008-10-01
The classical estrogen receptor (ER) mediates genomic as well as rapid nongenomic estradiol responses. In case of genomic responses, the ER acts as a ligand-dependent transcription factor that regulates gene expression in estrogen target tissues. In contrast, nongenomic effects are initiated at the plasma membrane and lead to rapid activation of cytoplasmic signal transduction pathways. Recently, an orphan G protein-coupled receptor, GPR30, has been claimed to bind to and to signal in response to estradiol. GPR30 therefore might mediate some of the nongenomic estradiol effects. The present study was performed to clarify the controversy about the subcellular localization of GPR30 and to gain insight into the in vivo function of this receptor. In transiently transfected cells as well as cells endogenously expressing GPR30, we confirmed that the receptor localized to the endoplasmic reticulum. However, using radioactive estradiol, we observed only saturable, specific binding to the classical ER but not to GPR30. Estradiol stimulation of cells expressing GPR30 had no impact on intracellular cAMP or calcium levels. To elucidate the physiological role of GPR30, we performed in vivo experiments with estradiol and G1, a compound that has been claimed to act as selective GPR30 agonist. In two classical estrogen target organs, the uterus and the mammary gland, G1 did not show any estrogenic effect. Taken together, we draw the conclusion that GPR30 is still an orphan receptor.
Estrogenic Compounds, Estrogen Receptors and Vascular Cell Signaling in the Aging Blood Vessels
Smiley, Dia A.; Khalil, Raouf A.
2010-01-01
The cardiovascular benefits of menopausal hormone therapy (MHT) remain controversial. The earlier clinical observations that cardiovascular disease (CVD) was less common in MHT users compared to non-users suggested cardiovascular benefits of MHT. Also, experimental studies have identified estrogen receptors ERα, ERβ and GPR30, which mediate genomic or non-genomic effects in vascular endothelium, smooth muscle, and extracellular matrix (ECM). However, data from randomized clinical trials (RCTs), most notably the Women's Health Initiative (WHI) study, have challenged the cardiovascular benefits and highlighted adverse cardiovascular events with MHT. The discrepancies have been attributed to the design of RCTs, the subjects' advanced age and preexisting CVD, and the form of estrogen used. The discrepancies may also stem from age-related changes in vascular ER amount, distribution, integrity, and post-receptor signaling pathways as well as structural changes in the vasculature. Age-related changes in other sex hormones such as testosterone may also alter the hormonal environment and influence the cardiovascular effects of estrogen. Investigating the chemical properties, structure-activity relationship and pharmacology of natural and synthetic estrogens should improve the effectiveness of conventional MHT. Further characterization of phytoestrogens, selective estrogen-receptor modulators (SERMs), and specific ER agonists may provide substitutes to conventional MHT. Conditions with excess or low estrogen levels such as polycystic ovary syndrome (PCOS) and Turner syndrome may provide insight into the development and regulation of ER and the mechanisms of aberrant estrogen-ER interactions. The lessons learned from previous RCTs have led to more directed studies such as the Kronos Early Estrogen Prevention Study (KEEPS). Careful design of experimental models and RCTs, coupled with the development of specific ER modulators, hold the promise of improving the actions of estrogen in the aging blood vessels and thereby enhancing the efficacy and safety of MHT in postmenopausal CVD. PMID:19442151
Lahmy, Valentine; Long, Romain; Morin, Didier; Villard, Vanessa; Maurice, Tangui
2015-01-01
Alzheimer’s disease (AD), the most prevalent dementia in the elderly, is characterized by progressive synaptic and neuronal loss. Mitochondrial dysfunctions have been consistently reported as an early event in AD and appear before Aβ deposition and memory decline. In order to define a new neuroprotectant strategy in AD targeting mitochondrial alterations, we develop tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine (ANAVEX2-73, AE37), a mixed muscarinic receptor ligand and a sigma-1 receptor (σ1R) agonist. We previously reported that ANAVEX2-73 shows anti-amnesic and neuroprotective activities in mice injected intracerebroventricular (ICV) with oligomeric amyloid-β25–35 peptide (Aβ25–35). The σ1R is present at mitochondria-associated endoplasmic reticulum (ER) membranes, where it acts as a sensor/modulator of ER stress responses and local Ca2+ exchanges with the mitochondria. We therefore evaluated the effect of ANAVEX2-73 and PRE-084, a reference σ1R agonist, on preservation of mitochondrial integrity in Aβ25–35-injected mice. In isolated mitochondria from hippocampus preparations of Aβ25–35 injected animals, we measured respiration rates, complex activities, lipid peroxidation, Bax/Bcl-2 ratios and cytochrome c release into the cytosol. Five days after Aβ25–35 injection, mitochondrial respiration in mouse hippocampus was altered. ANAVEX2-73 (0.01–1 mg/kg IP) restored normal respiration and PRE-084 (0.5–1 mg/kg IP) increased respiration rates. Both compounds prevented Aβ25–35-induced increases in lipid peroxidation levels, Bax/Bcl-2 ratio and cytochrome c release into the cytosol, all indicators of increased toxicity. ANAVEX2-73 and PRE-084 efficiently prevented the mitochondrial respiratory dysfunction and resulting oxidative stress and apoptosis. The σ1R, targeted selectively or non-selectively, therefore appears as a valuable target for protection against mitochondrial damages in AD. PMID:25653589
Jeon, Seungyeon; Hong, Seongjin; Kwon, Bong-Oh; Park, Jinsoon; Song, Sung Joon; Giesy, John P; Khim, Jong Seong
2017-02-01
The west coast of Korea has experienced environmental deterioration for more than half a century. In the present study, we specifically aimed to: i) evaluate potential toxicities of contaminants in sediments that cause effects mediated through the aryl hydrocarbon receptor (AhR) and estrogen receptor (ER); ii) determine spatio-temporal distributions of polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APs); and iii) identify causes of greater potencies of samples. From 2010 to 2014, sediments were collected from 12 major estuarine and coastal regions along the west coast of South Korea. In vitro cell bioassays were performed to determine AhR- and ER-mediated potencies using H4IIE-luc and MVLN cells, respectively. Fifteen PAHs and six APs in sediments were identified by GC/MSD. Results of bioassays generally showed a low-to-moderate degree of contamination, however, greater AhR- and ER-mediated potencies were measured at some locations. Concentrations of PAHs and APs varied among locations, which indicated that sources were independently affected by the surrounding environment (e.g., industrial complex and cities). Results of bioassays were generally well correlated with concentrations of putative causative chemicals. Benzo[k]fluoranthene, dibenz[a,h]anthracene, and benzo[b]fluoranthene were the major AhR agonists, explaining approximately 30% of the bioassay-derived benzo[a]pyrene equivalent concentration (BaP-EQ). Unknown AhR and ER agonists and potential mixture effects remain in question. Overall, the present study provides baseline information on chemical contaminations and potential toxicity of sediments in a fairly wide geographical region of the west coast of South Korea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Doyle, Brian J; Frasor, Jonna; Bellows, Lauren E; Locklear, Tracie D; Perez, Alice; Gomez-Laurito, Jorge; Mahady, Gail B
2009-01-01
Outcomes from the Women's Health Initiative have demonstrated adverse effects associated with hormone therapy and have prioritized the need to develop new alternative treatments for the management of menopause and osteoporosis. To this end, we have been investigating natural herbal medicines used by Costa Rican women to manage menopausal symptoms. Seventeen plant species were collected and extracted in Costa Rica. To establish possible mechanisms of action and to determine their potential future use for menopause or osteoporosis, we investigated the estrogenic activities of the herbal extracts in an estrogen-reporter gene estrogen receptor (ER) beta-Chemically Activated Luciferase Expression assay in U2-OS cells and in reporter and endogenous gene assays in MCF-7 cells. Six of the plant extracts bound to the ERs. Four of the six extracts stimulated reporter gene expression in the ER-beta-Chemically Activated Luciferase Expression assay. All six extracts modulated expression of endogenous genes in MCF-7 cells, with four extracts acting as estrogen agonists and two extracts, Pimenta dioica and Smilax domingensis, acting as partial agonist/antagonists by enhancing estradiol-stimulated pS2 mRNA expression but reducing estradiol-stimulated PR and PTGES mRNA expression. Both P. dioica and S. domingensis induced a 2ERE-luciferase reporter gene in transient transfected MCF-7 cells, which was inhibited by the ER antagonist ICI 182,780. This work presents a plausible mechanism of action for many of the herbal medicines used by Costa Rican women to treat menopausal symptoms. However, it further suggests that studies of safety and efficacy are needed before these herbs should be used as alternative therapies to hormone therapy.
Trotter, B Wesley; Nanda, Kausik K; Burgey, Christopher S; Potteiger, Craig M; Deng, James Z; Green, Ahren I; Hartnett, John C; Kett, Nathan R; Wu, Zhicai; Henze, Darrell A; Della Penna, Kimberly; Desai, Reshma; Leitl, Michael D; Lemaire, Wei; White, Rebecca B; Yeh, Suzie; Urban, Mark O; Kane, Stefanie A; Hartman, George D; Bilodeau, Mark T
2011-04-15
A new series of imidazopyridine CB2 agonists is described. Structural optimization improved CB2/CB1 selectivity in this series and conferred physical properties that facilitated high in vivo exposure, both centrally and peripherally. Administration of a highly selective CB2 agonist in a rat model of analgesia was ineffective despite substantial CNS exposure, while administration of a moderately selective CB2/CB1 agonist exhibited significant analgesic effects. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mild Lipid Stress Induces Profound Loss of MC4R Protein Abundance and Function
Cragle, Faith K.
2014-01-01
Food intake is controlled at the central level by the melanocortin pathway in which the agonist α-MSH binds to melanocortin 4 receptor (MC4R), a Gs-coupled G protein-coupled receptor expressed by neurons in the paraventricular nuclei of the hypothalamus, which signals to reduce appetite. Consumption of a high-fat diet induces hypothalamic accumulation of palmitate, endoplasmic reticulum (ER) stress, apoptosis, and unresponsiveness to prolonged treatment with MC4R agonists. Here we have modeled effects of lipid stress on MC4R by using mHypoE-42 immortalized hypothalamic neurons expressing endogenous MC4R and Neuro2A cells expressing a tagged MC4R reporter, HA-MC4R-GFP. In the hypothalamic neurons, exposure to elevated palmitate in the physiological range induced splicing of X-box binding protein 1, but it did not activate C/EBP-homologous protein or induce increased levels of cleaved caspase-3, indicating mild ER stress. Such mild ER stress coexisted with a minimal loss of MC4R mRNA and yet a profound loss of cAMP signaling in response to incubation with the agonist. These findings were mirrored in the Neuro2A cells expressing HA-MC4R-GFP, in which protein abundance of the tagged receptor was decreased, whereas the activity per receptor number was maintained. The loss of cAMP signaling in response to α-MSH by elevated palmitate was corrected by treatment with a chemical chaperone, 4-phenylbutyrate in both mHypoE-42 hypothalamic neurons and in Neuro2A cells in which protein abundance of HA-MC4R-GFP was increased. The data indicate that posttranscriptional decrease of MC4R protein contribute to lower the response to α-MSH in hypothalamic neurons exposed to even a mild level of lipid stress and that a chemical chaperone corrects such a defect. PMID:24506538
In vitro bioactivity of 17alpha-estradiol.
Sievernich, André; Wildt, Ludwig; Lichtenberg-Fraté, Hella
2004-12-01
A miniaturised short-term in vitro assay based on the activation of the human estrogen receptor alpha and genetically modified yeast (Saccharomyces cerevisiae) cells was performed to explore the capacity of this system to monitor the bioactivity of estrogenic compounds, particularly 17alpha- and 17beta-estradiol. Together with the human estrogen receptor (hER)-alpha plasmid, the reporter plasmid containing a yeast-optimised version of the green fluorescent protein (yEGFP) linked to three repeats of the cis-acting estrogen hormone-responsive element (ERE) were expressed in a strain being deleted in the pleiotropic drug resistance transporters Pdr5, Snq2 and Yor1, known to facilitate efflux of organic compounds including steroids and chemotherapeutics. Agonists that bind to hER in vitro trigger estrogen receptor-mediated transcriptional activation of the GFP reporter gene monitored by fluorescence emission at 535 nm. The sensitivity of the assay was tested with various 17alpha- and 17beta-estradiol concentrations, yielding a detection limit of 5 pg/ml (0.018 nM) for the agonist 17beta-E2 in solvent and in human charcoal-stripped serum using a S. cerevisiae pdr5, snq2 and yor1 mutant strain. For 17alpha-estradiol only, at approximately 1500 pg/ml a similar fluorescence response compared to 100 pg/ml 17beta-E2 was observed implicating a much weaker potency of this stereoisomer. The specificity of the system was tested by expression of a truncated hER lacking the ligand-binding domain E and by administration of the androgen, 4-androsten 3,17 dione. Both controls did not yield an increase in fluorescence emission. This fluorescence emission assay enables detection of estrogenic biological activity induced by direct agonists, such as 17beta-E2 at concentrations similar to those found in human sera or by estrogen-like chemicals.
LaFrate, Andrew L; Gunther, Jillian R; Carlson, Kathryn E; Katzenellenbogen, John A
2008-12-01
Most patients with hormone-responsive breast cancer eventually develop resistance to traditional antiestrogens such as tamoxifen, and this has become a major obstacle in their treatment. We prepared and characterized the activity of a series of 16 guanylhydrazone small molecules that are designed to block estrogen receptor (ER) activity through a non-traditional mechanism, by directly interfering with coactivator binding to agonist-liganded ER. The inhibitory activity of these compounds was determined in cell-based transcription assays using ER-responsive reporter gene and mammalian two-hybrid assays. Several of the compounds gave IC(50) values in the low micromolar range. Two secondary assays were used to confirm that these compounds were acting through the proposed non-traditional mode of estrogen inhibitory action and not as conventional antagonists at the ligand binding site.
Tachykinin receptors in the circular muscle of the guinea-pig ileum.
Maggi, C A; Patacchini, R; Giachetti, A; Meli, A
1990-12-01
1. We have studied the mechanical response of circular strips of the guinea-pig ileum to tachykinins and characterized the receptors involved by means of receptor-selective agonists. 2. The strips responded to both substance P (SP) and neurokinin A (NKA), as well as to [Pro9]-SP sulphone (selective NK1-receptor agonist), [beta Ala8]-NKA(4-10) (selective NK2-receptor agonist) and [MePhe7]-neurokinin B (selective NK3-receptor agonist). The ED50s of the various peptides (calculated as the concentration of agonist which produced 50% of the response to 10 microM carbachol) were similar, in the range of 40-200 nM, i.e. no clearcut rank order of potency was evident. 3. The response to a submaximal (10 nM) concentration of SP or NKA was unaffected in the presence of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 4. The response to the NK1-agonist was totally atropine-resistant, but was reduced (about 30% inhibition) by tetrodotoxin. The response to the NK3-receptor agonist was halved by atropine and abolished by tetrodotoxin. The response to the NK2-agonist was unaffected by either atropine or tetrodotoxin. 5. The response to the selective NK2-agonist was unchanged after desensitization of NK1- or NK3-receptors. 6. The response to the NK2-selective agonist was strongly inhibited by [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10) (MEN 10,207) a selective NK2-receptor antagonist which did not modify the response to the NK1-selective agonist. 7. Our findings indicate that all the three known types of tachykinin receptors mediate the contractile response of the circular muscle of the guinea-pig ileum to peptides of this family. The response to activation of NK3-receptors is totally neurogenic and partially mediated by endogenous acetylcholine, the response to activation of NK1-receptors is partly neurogenic and largely myogenic and the response to activation of NK2-receptors is totally myogenic.
Gabor, Christopher; Lymer, Jennifer; Phan, Anna; Choleris, Elena
2015-10-01
Recently, oestrogen receptors (ERs) have been implicated in rapid learning processes. We have previously shown that 17β-estradiol, ERα and ERβ agonists can improve learning within 40 min of drug administration in mice. However, oestrogen action at the classical receptors may only in part explain these rapid learning effects. Chronic treatment of a G-protein coupled oestrogen receptor (GPER) agonist has been shown to affect learning and memory in ovariectomized rats, yet little is known about its rapid learning effects. Therefore we investigated whether the GPER agonist G-1 at 1 μg/kg, 6 μg/kg, 10 μg/kg, and 30 μg/kg could affect social recognition, object recognition, and object placement learning in ovariectomized CD1 mice within 40 min of drug administration. We also examined rapid effects of G-1 on CA1 hippocampal dendritic spine density and length within 40 min of drug administration, but in the absence of any learning tests. Results suggest a rapid enhancing effect of GPER activation on social recognition, object recognition and object placement learning. G-1 treatment also resulted in increased dendritic spine density in the stratum radiatum of the CA1 hippocampus. Hence GPER, along with the classical ERs, may mediate the rapid effects of oestrogen on learning and neuronal plasticity. To our knowledge, this is the first report of GPER effects occurring within a 40 min time frame. Copyright © 2015 Elsevier Inc. All rights reserved.
Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.
Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P
2016-11-10
On the basis of the structural similarity of our previous 5-HT 2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT 2A , 5-HT 2B , and 5-HT 2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT 2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT 2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.
Mendes-Oliveira, Julieta; Lopes Campos, Filipa; Videira, Rita Alexandra; Baltazar, Graça
2017-08-01
Increasing evidence suggest that excessive inflammatory responses from overactivated microglia play a critical role in Parkinson's disease (PD), contributing to, or exacerbating, nigral dopaminergic (DA) degeneration. Recent results from our group and others demonstrated that selective activation of G protein-coupled estrogen receptor (GPER) with the agonist G1 can protect DA neurons from 1-methyl-4-phenylpyridinium (MPP + ) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxins. However, it is not known whether modulation of microglial responses is one of the mechanisms by which G1 exerts its DA neuroprotective effects. We analyzed, in the N9 microglial cell line, the effect of G1 on microglial activation induced by lipopolysaccharide (LPS) exposure. The results revealed that G1 significantly decrease phagocytic activity, expression of inducible nitric oxide synthase (iNOS) and release of nitric oxide (NO) induced by LPS. To determine the relevance of this anti-inflammatory effect to the protection of nigral DA cells, the effect of G1 was analyzed in male mice injected unilaterally in the substantia nigra (SN) with LPS. Although G1 treatment did not decrease LPS-induced increase of ionized calcium binding adaptor molecule 1 (iba-1) positive cells it significantly reduced interleukin-1beta (IL-1β), cluster of differentiation 68 (CD68) and iNOS mRNA levels, and totally inhibited nigral DA cell loss and, as a consequence, protected the motor function. In summary, our findings demonstrated that the G1 agonist is able to modulate microglial responses and to protect DA neurons and motor functions against a lesion induced by an inflammatory insult. Since G1 lacks the feminizing effects associated with agonists of the classical estrogen receptors (ERs), the use of G1 to selectively activate the GPER may be a promising strategy for the development of new therapeutics for the treatment of PD and other neuroinflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Layhadi, Janice A; Fountain, Samuel J
2017-06-03
Mechanisms controlling endoplasmic reticulum (ER) Ca 2+ homeostasis are important regulators of resting cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyto ) and receptor-mediated Ca 2+ signalling. Here we investigate channels responsible for ER Ca 2+ leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca 2+ we employ ionomycin action at the plasma membrane to stimulate ER Ca 2+ leak. Under these conditions ionomycin elevates [Ca 2+ ] cyto revealing a Ca 2+ leak response which is abolished by thapsigargin. IP 3 receptors (Xestospongin C, 2-APB), ryanodine receptors (dantrolene), and translocon (anisomycin) inhibition facilitated ER Ca 2+ leak in model macrophage, with translocon inhibition also reducing resting [Ca 2+ ] cyto . In primary macrophage, translocon inhibition blocks Ca 2+ leak but does not influence resting [Ca 2+ ] cyto . We identify a role for translocon-mediated ER Ca 2+ leak in receptor-mediated Ca 2+ signalling in both model and primary human macrophage, whereby the Ca 2+ response to ADP (P2Y receptor agonist) is augmented following anisomycin treatment. In conclusion, we demonstrate a role of ER Ca 2+ leak via the translocon in controlling resting cytoplasmic Ca 2+ in model macrophage and receptor-mediated Ca 2+ signalling in model macrophage and primary macrophage. Copyright © 2017 Elsevier Inc. All rights reserved.
Lv, Ting; Gong, Hai-Qing; Liang, Pei-Ji
2014-01-01
The mechanisms of release, depletion, and refilling of endoplasmic reticulum (ER) Ca2+ were investigated in type I horizontal cells of the carp retina using a fluo-3-based Ca2+ imaging technique. Exogenous application of caffeine, a ryanodine receptor agonist, induced oscillatory intracellular free Ca2+ concentration ([Ca2+]i) responses in a duration- and concentration-dependent manner. In Ca2+-free Ringer’s solution, [Ca2+]i transients could also be induced by a brief caffeine application, whereas subsequent caffeine application induced no [Ca2+]i increase, which implied that extracellular Ca2+ was required for ER refilling, confirming the necessity of a Ca2+ influx pathway for ER refilling. Depletion of ER Ca2+ by thapsigargin triggered a Ca2+ influx which could be blocked by the store-operated channel inhibitor 2-APB, which proved the existence of the store-operated Ca2+ entry pathway. Taken together, these results suggested that after being depleted by caffeine, the ER was replenished by Ca2+ influx via store-operated channels. These results reveal the fine modulation of ER Ca2+ signaling, and the activation of the store-operated Ca2+ entry pathway guarantees the replenishment of the ER so that the cell can be ready for response to the subsequent stimulus. PMID:24918937
Genetically Engineered ERα positive breast cancer mouse models
Dabydeen, Sarah A.; Furth, Priscilla A.
2014-01-01
The majority of human breast cancers are ER+ but this has proven challenging to model in genetically engineered mice. This review summarizes information on twenty-one mouse models that develop ER+ mammary cancer. Where available, information on cancer pathology and gene expression profiles is referenced to assist in understanding which histological subtype of ER+ human cancer each model might represent. Esr1, Ccdn1, prolactin, TGFα, AIB1, Espl1, and Wnt1 over-expression, Pik3ca gain of function, as well as loss of p53 or loss of Stat1 are associated with ER+ mammary cancer. Treatment with the PPARγ agonist efatutazone in a mouse with Brca1 and p53 deficiency and DMBA exposure in combination with an activated myristoylated form of AKT1 also induce ER+ mammary cancer. A spontaneous mutant in nude mice that develops metastatic ER+ mammary cancer is included. Age of cancer development ranges from three to 26 months and the percentages of cancers that are ER+ vary from 21% to 100%. Not all models are characterized as to their estrogen dependency and/or response to anti-hormonal therapy. Strain backgrounds include C57Bl/6, FVB, BALB/c, 129S6/SvEv, CB6F1 and NIH nude. Most models have only been studied on one strain background. In summary while a range of models is available for studies of pathogenesis and therapy of ER+ breast cancers, many could benefit from further characterization and opportunity for development of new models remains. PMID:24481326
miR-7-1 POTENTIATED ESTROGEN RECEPTOR AGONISTS FOR FUNCTIONAL NEUROPROTECTION IN VSC4.1 MOTONEURONS
CHAKRABARTI, M.; BANIK, N. L.; RAY, S. K.
2013-01-01
Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI) insulted VSC4.1 motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using miRDB indicated that miR-7-1 could inhibit expression of L-type Ca2+ channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca2+/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI. PMID:24157932
MiR-7-1 potentiated estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons.
Chakrabarti, M; Banik, N L; Ray, S K
2014-01-03
Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI)-insulted ventral spinal cord 4.1 (VSC4.1) motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI-insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI-insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using microRNA database (miRDB) indicated that miR-7-1 could inhibit the expression of L-type Ca(2+) channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca(2+)/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI-insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Discovery of Peripheral κ-Opioid Receptor Agonists as Novel Analgesics.
Suzuki, Shinya; Sugawara, Yuji; Inada, Hideaki; Tsuji, Riichiro; Inoue, Atsushi; Tanimura, Ryuji; Shimozono, Rieko; Konno, Mitsuhiro; Ohyama, Tomofumi; Higashi, Eriko; Sakai, Chizuka; Kawai, Koji
2017-01-01
κ-Opioid receptor agonists with high selectivity over the μ-opioid receptor and peripheral selectivity are attractive targets in the development of drugs for pain. We have previously attempted to create novel analgesics with peripheral selective κ-opioid receptor agonist on the basis of TRK-820. In this study, we elucidated the biological properties of 17-hydroxy-cyclopropylmethyl and 10α-hydroxy derivatives. These compounds were found to have better κ-opioid receptor selectivity and peripheral selectivity than TRK-820.
Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs.
Hayashi, Teruo
2015-01-01
Sigma-1 receptor ligands have been long expected to serve as drugs for treatment of human diseases such as neurodegenerative disorders, depression, idiopathic pain, drug abuse, and cancer. Recent research exploring the molecular function of the sigma-1 receptor started unveiling underlying mechanisms of the therapeutic activity of those ligands. Via the molecular chaperone activity, the sigma-1 receptor regulates protein folding/degradation, ER/oxidative stress, and cell survival. The chaperone activity is activated or inhibited by synthetic sigma-1 receptor ligands in an agonist-antagonist manner. Sigma-1 receptors are localized at the endoplasmic reticulum (ER) membranes that are physically associated with the mitochondria (MAM: mitochondria-associated ER membrane). In specific types of neurons (e.g., those at the spinal cord), sigma-1 receptors are also clustered at ER membranes that juxtapose postsynaptic plasma membranes. Recent studies indicate that sigma-1 receptors, partly in sake of its unique subcellular localization, regulate the mitochondria function that involves bioenergetics and free radical generation. The sigma-1 receptor may thus provide an intracellular drug target that enables controlling ER stress and free radical generation under pathological conditions. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.
Wang, Z Y; Håkanson, R
1993-04-08
Tachykinin analogues, claimed to be selective NK1, NK2 and NK3 receptor agonists, contracted the isolated rabbit iris sphincter muscle in a concentration-dependent manner. The contractions were not modified by the enkephalinase inhibitor thiorphan and the angiotensin-converting enzyme inhibitor captopril (10(-5) M of each). The pD2 values for (Sar9,Met(O2)11)SP (NK1 receptor agonist), (Nle10)NKA(4-10) (NK2 receptor agonist) and (MePhe7)NKB (NK3 receptor agonist) were 8.3, 6.1 and 8.2, respectively. (Sar9,Met(O2)11)SP was the most efficacious of the three agonists. The results are compatible with the presence of NK1 and NK3 receptors. The low pD2 value for the NK2 agonist may reflect a lack of NK2 receptors and interaction of the NK2 agonist with NK1 receptors. The contraction caused by the NK1 receptor agonist was inhibited competitively by the highly selective NK1 receptor antagonist (+/-) CP-96,345; the pA2 value was 5.5. Also the contraction caused by the NK2 receptor agonist was inhibited competitively by (+/-) CP-96,345 with a pA2 value of 5.7, supporting the view that the two agonists (Sar9,Met(O2)11)SP and (Nle10)NKA(4-10) interact with the same receptor. The selective NK2 receptor antagonist actinomycin D did not affect the contraction caused by the NK2 receptor agonist. We conclude that the rabbit iris sphincter muscle contains NK1 and probably NK3 receptors. We obtained no evidence for the presence of NK2 receptors.
Anchan, Divya; Clark, Sara; Pollard, Kevin; Vasudevan, Nandini
2014-01-01
The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17β estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improve spatial memory, suggesting that GPR30 plays a role in hippocampal-dependent cognition. In this study, we investigated the effect of a similar chronic administration of G-1 on behaviors that denote anxiety in adult ovariectomized female mice, using the elevated plus maze (EPM) and the open field test as well as the activation of the ERK pathway in the hippocampus. Although estradiol benzoate had no effect on behaviors in the EPM or the open field, G-1 had an anxiolytic effect solely in the open field that was independent of ERK signaling in either the ventral or dorsal hippocampus. Such an anxiolytic effect may underlie the ability of G-1 to increase spatial memory, by acting on the hippocampus.
The costo-uterine muscle of the rat contains a homogeneous population of beta-adrenoceptors.
Hartley, M. L.; Pennefather, J. N.
1985-01-01
The effects of two selective beta-adrenoceptor antagonists on the inhibitory responses to some sympathomimetic amines of electrically-stimulated preparations of costo-uterine muscle, taken from virgin rats, have been examined quantitatively. pA2 values for the antagonist, atenolol (beta 1-selective) and ICI 118,551 (beta 2-selective) were obtained using as agonists, fenoterol (beta 2-selective agonist) and noradrenaline (alpha- and beta-adrenoceptor agonist, beta 1-selective); and in addition, with ICI 118,551 only, isoprenaline (beta-agonist, non-selective) and adrenaline (alpha- and beta-adrenoceptor agonist, beta 2-selective). Catecholamine uptake mechanisms and alpha-adrenoceptors were not blocked in any of these experiments. Atenolol competitively antagonized the effects of fenoterol and noradrenaline to a similar extent, the pA2 values being 5.4 and 5.7, respectively. ICI 118,551 competitively antagonized the effects of fenoterol, isoprenaline, adrenaline and noradrenaline to a similar extent; pA2 values ranged from 8.7 with noradrenaline to 9.1 with isoprenaline. These results extend our previous observations which indicated that the adrenoceptors mediating inhibition of electrically-evoked contractions of costo-uterine muscle of the virgin rat are homogeneous and of the beta 2-subtype. The potency of the beta 1-selective agonist RO 363 in producing inhibition of electrically-evoked contractions of this tissue was also examined. RO 363 was 200 times less potent than isoprenaline but was a full agonist. This indicates that there is efficient coupling between beta 2-adrenoceptor activation and tissue response in this non-innervated preparation. PMID:2858239
The ToxCast and Tox21 programs have tested ~8,200 chemicals in a broad screening panel of in vitro high-throughput screening (HTS) assays for estrogen receptor (ER) agonist and antagonist activity. The present work uses this large in vitro data set to develop in silico QSAR model...
The U.S. Environmental Protection Agency has proposed that in vitro assays for estrogen receptor (ER) and androgen receptor (AR) mediated actions be included in a Tier I screening battery to detect hormonally active chemicals. Herein we describe the development of a novel stab...
Neurophysiological Analysis of Circadian Rhythm Entrainment
1994-05-24
on activations in response to the ionotropic agonist NMDA (25). These results point to a previously uninvestigated role for metabotropic receptors in...are selective agonists of the metabotropic type of glutamate receptor . Selective metabotropic antagonists can block these effects but do not alter...glutamate receptors on SCN cell activity. In slice preparations, our initial findings are that the selective metabotropic agonist 1S,3R-ACPD has very potent
Roles of G protein-coupled estrogen receptor GPER in metabolic regulation.
Sharma, Geetanjali; Mauvais-Jarvis, Franck; Prossnitz, Eric R
2018-02-01
Metabolic homeostasis is differentially regulated in males and females. The lower incidence of obesity and associated diseases in pre-menopausal females points towards the beneficial role of the predominant estrogen, 17β-estradiol (E2). The actions of E2 are elicited by nuclear and extra-nuclear estrogen receptor (ER) α and ERβ, as well as the G protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in the regulation of metabolism are only beginning to emerge and much remains unclear. The present review highlights recent advances implicating the importance of GPER in metabolic regulation. Assessment of the specific metabolic roles of GPER employing GPER-deficient mice and highly selective GPER-targeted pharmacological agents, agonist G-1 and antagonists G-15 and G36, is also presented. Evidence from in vitro and in vivo studies involving either GPER deficiency or selective activation suggests that GPER is involved in body weight regulation, glucose and lipid homeostasis as well as inflammation. The therapeutic potential of activating GPER signaling through selective ligands for the treatment of obesity and diabetes is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maruyama, Tatsuya; Onda, Kenichi; Hayakawa, Masahiko; Matsui, Tetsuo; Takasu, Toshiyuki; Ohta, Mitsuaki
2009-06-01
In the search for potent and selective human beta3-adrenergic receptor (AR) agonists as potential drugs for the treatment of obesity and noninsulin-dependent (type II) diabetes, a novel series of acetanilide-based analogues were prepared and their biological activities were evaluated at the human beta3-, beta2-, and beta1-ARs. Among these compounds, 2-pyridylacetanilide (2f), pyrimidin-2-ylacetanilide (2u), and pyrazin-2-ylacetanilide (2v) derivatives exhibited potent agonistic activity at the beta3-AR with functional selectivity over the beta1- and beta2-ARs. In particular, compound 2u was found to be the most potent and selective beta3-AR agonist with an EC(50) value of 0.11 microM and no agonistic activity for either the beta1- or beta2-AR. In addition, 2f, 2u, and 2v showed significant hypoglycemic activity in a rodent diabetic model.
Trendelenburg, A U; Cox, S L; Schelb, V; Klebroff, W; Khairallah, L; Starke, K
2000-01-01
Release-modulating opioid and cannabinoid (CB) receptors, β-adrenoceptors and bradykinin receptors at noradrenergic axons were studied in mouse tissues (occipito-parietal cortex, heart atria, vas deferens and spleen) preincubated with 3H-noradrenaline. Experiments using the OP1 receptor-selective agonists DPDPE and DSLET, the OP2-selective agonists U50488H and U69593, the OP3-selective agonist DAMGO, the ORL1 receptor-selective agonist nociceptin, and a number of selective antagonists showed that the noradrenergic axons innervating the occipito-parietal cortex possess release-inhibiting OP3 and ORL1 receptors, those innervating atria OP1, ORL1 and possibly OP3 receptors, and those innervating the vas deferens all four opioid receptor types. Experiments using the non-selective CB agonists WIN 55,212-2 and CP 55,940 and the CB1-selective antagonist SR 141716A indicated that the noradrenergic axons of the vas deferens possess release-inhibiting CB1 receptors. Presynaptic CB receptors were not found in the occipito-parietal cortex, in atria or in the spleen. Experiments using the non-selective β-adrenoceptor agonist isoprenaline and the β2-selective agonist salbutamol, as well as subtype-selective antagonists, demonstrated the occurrence of release-enhancing β2-adrenoceptors at the sympathetic axons of atria and the spleen, but demonstrated their absence in the occipito-parietal cortex and the vas deferens. Experiments with bradykinin and the B2-selective antagonist Hoe 140 showed the operation of release-enhancing B2 receptors at the sympathetic axons of atria, the vas deferens and the spleen, but showed their absence in the occipito-parietal cortex. The experiments document a number of new presynaptic receptor locations. They confirm and extend the existence of marked tissue and species differences in presynaptic receptors at noradrenergic neurons. PMID:10807669
Gray, David L; Allen, John A; Mente, Scot; O'Connor, Rebecca E; DeMarco, George J; Efremov, Ivan; Tierney, Patrick; Volfson, Dmitri; Davoren, Jennifer; Guilmette, Edward; Salafia, Michelle; Kozak, Rouba; Ehlers, Michael D
2018-02-14
Selective activation of dopamine D1 receptors (D1Rs) has been pursued for 40 years as a therapeutic strategy for neurologic and psychiatric diseases due to the fundamental role of D1Rs in motor function, reward processing, and cognition. All known D1R-selective agonists are catechols, which are rapidly metabolized and desensitize the D1R after prolonged exposure, reducing agonist response. As such, drug-like selective D1R agonists have remained elusive. Here we report a novel series of selective, potent non-catechol D1R agonists with promising in vivo pharmacokinetic properties. These ligands stimulate adenylyl cyclase signaling and are efficacious in a rodent model of Parkinson's disease after oral administration. They exhibit distinct binding to the D1R orthosteric site and a novel functional profile including minimal receptor desensitization, reduced recruitment of β-arrestin, and sustained in vivo efficacy. These results reveal a novel class of D1 agonists with favorable drug-like properties, and define the molecular basis for catechol-specific recruitment of β-arrestin to D1Rs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ping; Fu, Shilong; Cao, Zhifei
Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressivemore » ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice. • Oroxin B effectively exerts anti-lymphoma without obvious toxicity. • Oroxin B promotes tumor-suppressive DDIT3 and inhibits tumorigenic GRP78.« less
Avoiding false positives and optimizing identification of true ...
The potential for chemicals to affect endocrine signaling is commonly evaluated via in vitro receptor binding and gene activation, but these assays, especially antagonism assays, have potential artifacts that must be addressed for accurate interpretation. Results are presented from screening 94 chemicals from 54 chemical groups for estrogen receptor (ER) activation in a competitive rainbow trout ER (rtER) binding assay and a trout liver slice vitellogenin mRNA expression assay. Results from true competitive agonists and antagonists, and inactive chemicals with little or no indication of ER binding or gene activation were easily interpreted. However, results for numerous industrial chemicals were more challenging to interpret, including chemicals with: (1) apparent competitive binding curves but no gene activation, (2) apparent binding and gene inhibition with evidence of either cytotoxicity or changes in assay media pH, (3) apparent binding but non-competitive gene inhibition of unknown cause, or (4) no rtER binding and gene inhibition not due to competitive ER interaction but due to toxicity, pH change, or some unknown cause. The use of endpoints such as toxicity, pH, precipitate formation, and determination of inhibitor dissociation constants (Ki) for interpreting the results of antagonism and binding assays for diverse chemicals is presented. Of the 94 chemicals tested for antagonism only two, tamoxifen and ICI-182,780, were found to be true competitive
Perioperative use of selective alpha-2 agonists and antagonists in small animals
2004-01-01
Abstract Alpha-2 agonists are the only single class of anesthetic drugs that induce reliable, dose-dependent sedation, analgesia, and muscle relaxation in dogs and cats. Used at low doses, as adjuncts to injectable and inhalational anesthetics, selective alpha-2 agonists dramatically reduce the amount of anesthetic drug required to induce and maintain anesthesia. This reduction in anesthetic requirements is achieved without significant depression of pulmonary function and with limited effects on cardiovascular function. Selective alpha-2 agonists can also be used postoperatively to potentiate the analgesic effects of opioids and other drugs. Given the nearly ideal pharmacodynamic profile and reversibility of alpha-2 agonists, these drugs will play a central role in balanced approaches to anesthesia and the management of perioperative pain in healthy dogs and cats. PMID:15283516
Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER.
Zekas, Erin; Prossnitz, Eric R
2015-10-15
Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes, at least in part, to the survival of breast cancer cells, particularly in the presence of ER-targeted therapies involving SERMs and SERDs. Our results further suggest that GPER expression and FOXO3a localization could be utilized as prognostic markers in breast cancer therapy and that GPER antagonists could promote apoptosis in GPER-positive breast cancers, particularly in combination with chemotherapeutic and ER-targeted drugs, by antagonizing estrogen-mediated FOXO3a inactivation.
Guan, Rongbin; Feng, Xiuyan; Wu, Xueqing; Zhang, Meilin; Zhang, Xuesen; Hébert, Terence E.; Segaloff, Deborah L.
2009-01-01
Previous studies from our laboratory using co-immunoprecipitation techniques suggested that the human lutropin receptor (hLHR) constitutively self-associates into dimers/oligomers and that agonist treatment of cells either increased hLHR dimerization/oligomerization and/or stabilized hLHR dimers/oligomers to detergent solubilization (Tao, Y. X., Johnson, N. B., and Segaloff, D. L. (2004) J. Biol. Chem. 279, 5904–5914). In this study, bioluminescence resonance energy transfer (BRET2) analyses confirmed that the hLHR constitutively self-associates in living cells. After subcellular fractionation, hLHR dimers/oligomers were detected in both the plasma membrane and endoplasmic reticulum (ER). Further evidence supporting the constitutive formation of hLHR dimer/oligomers in the ER is provided by data showing homodimerization of misfolded hLHR mutants that are retained in the ER. These mutants, when co-expressed with wild-type receptor, are shown by BRET2 to heterodimerize, accounting for their dominant-negative effects on cell surface receptor expression. Hormone desorption assays using intact cells demonstrate allosterism between hLHR protomers, indicating functional cell surface hLHR dimers. However, quantitative BRET2 analyses in intact cells indicate a lack of effect of agonist on the propensity of the hLHR to dimerize. Using purified plasma membranes, human chorionic gonadotropin was similarly observed to have no effect on the BRET2 signal. An examination of the propensity for constitutively active and signaling inactive hLHR mutants to dimerize further showed no correlation between dimerization and the activation state of the hLHR. Taken altogether, our data suggest that hLHR dimers/oligomers are formed early in the biosynthetic pathway in the ER, are constitutively expressed on the plasma membrane, and are not affected by the activation state of the hLHR. PMID:19147490
The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...
The use of in vitro assays to screen chemicals for estrogen receptor (ER) and AR mediated actions is being evaluated by the USEPA for use in a Tier I screening battery to detect endocrine active chemicals. We have developed a stable cell line, MDA-MB-453-KB2, for screening of and...
Performance of the BG1Luc ER TA method in a qHTS format.
Ceger, Patricia; Allen, David; Huang, Ruili; Xia, Menghang; Casey, Warren
2015-01-01
In 2012, the BG1Luc4E2 estrogen receptor (ER) transactivation (TA) method (BG1Luc ER TA) was accepted by U.S. regulatory agencies and the Organisation for Economic Co-operation and Development to detect substances with ER agonist activity. The method is now part of the Tier 1 testing battery in the Environmental Protection Agency's Endocrine Disruptor Screening Program. The BG1Luc ER TA method uses the BG1 ovarian cell line that endogenously expresses full-length ER (α and β) and is stably transfected with a plasmid containing four estrogen responsive elements upstream of a luciferase reporter gene. To allow increased throughput and testing efficiency, the BG1Luc ER TA ("BG1 manual") method was adapted for quantitative high-throughput screening (BG1 qHTS) in the U.S. Tox21 testing program. The BG1 qHTS test method was used to test approximately 10,000 chemicals three times each, and concentration-response data (n=15) were analyzed to evaluate test method performance. The balanced accuracy of the BG1 qHTS test method (97% [32/33]) was determined by comparing results to ER TA performance standards for the BG1 manual method. Concordance between the BG1 manual and qHTS methods was 92% (57/62) when calculated for a larger set of non-reference chemicals tested in both methods. These data demonstrate that the performance of the BG1 qHTS is similar to the currently accepted BG1 manual method, thereby establishing the utility of the BG1 qHTS method for identifying ER active environmental chemicals.
Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor
Fujimoto, Michiko; Hayashi, Teruo; Urfer, Roman; Mita, Shiro; Su, Tsung-Ping
2013-01-01
The sigma-1 receptor (Sig-1R) is a novel endoplasmic reticulum (ER) molecular chaperone that regulates protein folding and degradation. The Sig-1R activation by agonists is known to improve memory, promote cell survival, and exert an antidepressant-like action in animals. Cutamesine (SA4503), a selective Sig-1R ligand, was shown to increase BDNF in the hippocampus of rats. How exactly the intracellular chaperone Sig-1R or associated ligand causes the increase of BDNF or any other neurotrophins is unknown. We examined here whether the action of Sig-1Rs may relate to the post-translational processing and release of BDNF in neuroblastoma cell lines. We used in vitro assays and confirmed that cutamesine possesses the bona fide Sig-1R agonist property by causing the dissociation of BiP from Sig-1Rs. The C-terminus of Sig-1Rs exerted robust chaperone activity by completely blocking the aggregation of BDNF and GDNF in vitro. Chronic treatment with cutamesine in rat B104 neuroblastoma caused a time- and dose-dependent potentiation of the secretion of BDNF without affecting the mRNA level of BDNF. Cutamesine decreased the intracellular level of pro-BDNF and mature BDNF whereas increased the extracellular level of mature BDNF. The pulse-chase experiment indicated that the knockdown of Sig-1Rs decreased the secreted mature BDNF in B104 cells without affecting the synthesis of BDNF. Our findings indicate that, in contrast to clinically used antidepressants that promote the transcriptional upregulation of BDNF, the Sig-1R agonist cutamesine potentiates the post-translational processing of neurotrophins. This unique pharmacological profile may provide a novel therapeutic opportunity for the treatment of neuropsychiatric disorders. PMID:22337473
Steagall, Rebecca J; Yao, Fanrong; Shaikh, Saame Raza; Abdel-Rahman, Abdel A
2017-08-01
Little is known about the role of subcellular trafficking of estrogen receptor (ER) subtypes in the acute estrogen (E 2 )-mediated alleviation of oxidative stress. We tested the hypothesis that ERα migration to the cardiac myocyte membrane mediates the acute E 2 -dependent improvement of cellular redox status. Myocardial distribution of subcellular ERα, ERβ and G-protein coupled estrogen receptor (GPER) was determined in proestrus sham-operated (SO) and in ovariectomized (OVX) rats, acutely treated with E 2 (1μg/kg) or a selective ERα (PPT), ERβ (DPN) or GPER (G1) agonist (10μg/kg), by immunofluorescence and Western blot. We measured ROS and malondialdehyde (MDA) levels, and catalase and superoxide dismutase (SOD) activities to evaluate myocardial antioxidant/redox status. Compared with SO, OVX rats exhibited higher myocardial ROS and MDA levels, reduced catalase and SOD activities, along with diminished ERα, and enhanced ERβ and GPER, localization at cardiomyocyte membrane. Acute E 2 or an ERα (PPT), but not ERβ (DPN) or GPER (G1), agonist reversed these responses in OVX rats and resulted in higher ERα/ERβ and ERα/GPER ratios at the cardiomyocytes membrane. PPT or DPN enhanced myocardial Akt phosphorylation. We present the first evidence that preferential aggregation of ERα at the cardiomyocytes plasma membrane is ERα-dependent, and underlies E 2 -mediated reduction in oxidative stress, at least partly, via the enhancements of myocardial catalase and SOD activities in OVX rats. The findings highlight ERα agonists as potential therapeutics for restoring the myocardial redox status following E 2 depletion in postmenopausal women. Copyright © 2017 Elsevier Inc. All rights reserved.
Wilson, Lindsay S; Guo, Manhong; Umana, M Bibiana; Maurice, Donald H
2017-08-01
Cyclic GMP (cGMP) translates and integrates much of the information encoded by nitric oxide (NO · ) and several natriuretic peptides, including the atrial natriuretic peptide (ANP). Previously, we reported that integration of a cGMP-specific cyclic nucleotide phosphodiesterase, namely phosphodiesterase 5A (PDE5A), into a protein kinase G (PKG)- and inositol-1,4,5-trisphosphate receptor (IP 3 R)-containing endoplasmic reticulum (ER) signalosome allows localized control of PDE5A activity and of PKG-dependent inhibition of IP 3 -mediated release of ER Ca 2+ in human platelets. Herein, we report that PDE5A integrates into an analogous signalosome in human arterial smooth muscle cells (HASMC), wherein it regulates muscarinic agonist-dependent Ca 2+ release and is activated selectively by PKG-dependent phosphorylation. In addition, we report that PDE5A also regulates HASMC functions via events independent of PKG, but rather through actions coordinated by competitive cGMP-mediated inhibition of cAMP hydrolysis by the so-called cGMP-inhibited cAMP PDE, namely phosphodiesterase 3A (PDE3A). Indeed, we show that ANP increases both cGMP and cAMP levels in HASMC and promotes phosphorylation of vasodilator-stimulated phospho-protein (VASP) at each the PKG and PKA phospho-acceptor sites. Since selective inhibition of PDE5 decreased DNA synthesis and chemotaxis of HASMC, and that PDE3A knockdown obviated these effects, our findings are consistent with a role for a PDE5A-PDE3A-PKA axis in their regulation. Our findings provide insight into the existence of distinct "pools" of PDE5A in HASMC and support the idea that these discrete compartments regulate distinct cGMP-dependent events. As a corollary, we suggest that it may be possible to target these distinct PDE5A-regulated pools and in so-doing differentially impact selected cGMP-regulated functions in these cells. Copyright © 2017. Published by Elsevier Inc.
Misu, Ryosuke; Oishi, Shinya; Yamada, Ai; Yamamura, Takashi; Matsuda, Fuko; Yamamoto, Koki; Noguchi, Taro; Ohno, Hiroaki; Okamura, Hiroaki; Ohkura, Satoshi; Fujii, Nobutaka
2014-10-23
Neurokinin B (NKB) regulates the release of gonadotropin-releasing hormone (GnRH) via activation of the neurokinin-3 receptor (NK3R). We evaluated the biological stability of NK3R selective agonists to develop novel NK3R agonists to regulate reproductive functions. On the basis of degradation profiles, several peptidomimetic derivatives were designed. The modification of senktide with (E)-alkene dipeptide isostere generated a novel potent NK3R agonist with high stability and prolonged bioactivity.
Estrogen and Thyroid Hormone Receptor Activation by Medicinal Plants from Bahia, Brazil
da Silva, Magnus Régios Dias; Costa, Silvia Lima; Velozo, Eudes da Silva
2018-01-01
Background: A number of medicinal plants are traditionally used for metabolic disorders in Bahia state, Brazil. The aim of this study was to evaluate the estrogen receptor (ER) and thyroid receptor (TR) activation of crude extracts prepared from 20 plants. Methods: Species were extracted and assayed for receptor activation through both ER and TR gene-reporter assays, using 17β-estradiol and triiodothyronine (T3), respectively, as the positive controls. Results: Cajanus cajan (Fabaceae), Abarema cochliacarpus (Fabaceae), and Borreria verticillata (Rubiaceae) were able to activate ER as much as the positive control (17β-estradiol). These three plant species were also assayed for TR activation. At the concentration of 50 µg/mL, C. cajans exerted the highest positive modulation on TR, causing an activation of 59.9%, while B. verticillata and A. cochliacarpus caused 30.8% and 23.3%, respectively. Conclusions: Our results contribute towards the validation of the traditional use of C. cajans, B. verticillata, and A. cochliacarpus in the treatment of metabolic disorders related to ER and TR functions. The gene-reporter assay was proven effective in screening crude plant extracts for ER/TR activation, endorsing this methodology as an important tool for future bioprospection studies focused on identifying novel starting molecules for the development of estrogen and thyroid agonists. PMID:29342924
Hall, J. M.; Flowers, J. M.; Morton, I. K.
1992-01-01
1. We have estimated potencies of tachykinin receptor agonist and antagonist analogues in order to determine the recognition characteristics of tachykinin receptors mediating phasic contractile responses of the rat isolated urinary bladder in vitro. 2. The NK1-selective synthetic agonists, substance P methyl ester and GR73632, the synthetic NK2-selective agonists [beta-Ala8]-NKA(4-10) and GR64349, and the mammalian tachykinins, neurokinin A and neurokinin B, were assayed relative to substance P and were found to be approximately equipotent. The NK3-selective agonist, senktide, was inactive (10 microM). 3. Potencies of all these agonists were not significantly different (P > 0.05) when experiments were carried out in the presence of the neutral endopeptidase inhibitor, phosphoramidon, and the kininase II inhibitor, enalaprilat (both 1 microM). 4. The NK1-selective antagonist, GR82334, inhibited responses to substance P methyl ester in a competitive manner in the rat urinary bladder and the rat ileum, and also in the guinea-pig ileum. Markedly different pKB estimates were obtained in the rat bladder (6.38) and rat ileum (6.56) compared to the guinea-pig ileum (7.42). GR82334 (3 microM) was inactive against responses of the rat bladder to [beta-Ala8]-NKA(4-10). 5. The NK1-selective antagonist (+/-)-CP-96,345 also inhibited responses of the rat bladder and guinea-pig ileum to substance P methyl ester; however, in the rat bladder at 1 microM, this antagonist reversibly inhibited responses both to the NK2-selective agonist [beta-Ala8]-NKA(4-10) and to the muscarinic agonist carbachol (P < or = 0.01), thus showing evidence of some non-selective depressant actions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1282072
Hagan, R M; Ireland, S J; Jordan, C C; Beresford, I J; Deal, M J; Ward, P
1991-06-01
The pharmacological profiles of two novel neurokinin agonists have been investigated. delta Ava[L-Pro9,N-MeLeu10]SP(7-11) (GR73632) and [Lys3,Gly8-R-gamma-lactam-Leu9] NKA(3-10) (GR64349) are potent and selective agonists at NK-1 and NK-2 receptors respectively. In the guinea-pig isolated trachea preparation, contractions induced by these agonists were largely unaffected by inclusion of peptidase inhibitors in the bathing medium, indicating that these agonists are resistant to metabolism by peptidases. In the anaesthetised guinea-pig, both agonists were more potent bronchoconstrictor agents than either NKA or the SP analogue, SP methylester. In the anaesthetised rat, the NK-1 agonist, GR73632 was more potent than SP, NKA or NKB at causing the histamine-independent extravasation of plasma proteins into the skin after intradermal administration. The NK-2 agonist, GR64349 and the NK-3 agonist, senktide were without significant effect in this model. These agonists are useful tools for characterizing neurokinin receptor-mediated actions both in vitro and in vivo.
Modification of kindled amygdaloid seizures by opiate agonists and antagonists.
Albertson, T E; Joy, R M; Stark, L G
1984-03-01
The effects of 19 opiate agonists and antagonists on kindled amygdaloid seizures in the rat were studied. The mu agonists tended to reduce the length of elicited afterdischarges and behavioral ranks, while markedly increasing postictal electroencephalogram spikes and behavioral arrest time. These effects were reversed by naloxone. The kappa agonists reduced behavioral rank and variably reduced afterdischarge length with a concomitant lengthening of postictal behavioral arrest time and number of electroencephalogram spikes. The putative sigma agonist, SKF 10,047, reduced afterdischarge durations only at the higher doses tested. The decreases found after the sigma agonists in postictal electroencephalogram spiking and time of behavioral arrest were not reversed by naloxone. Only the lower doses of normeperidine were found to decrease seizure thresholds. The mixed agonist/antagonists (MAA) cyclazocine and cyclorphan markedly increased seizure threshold and reduced afterdischarge duration and behavioral rank. Only the MAA pentazocine tended to increase threshold but not suprathreshold afterdischarge durations. The order of ability to modify the ictal events was MAA (selected) greater than kappa agonists greater than mu agonists greater than sigma agonists. The increase in postictal events (behavior arrest and spikes) was caused most effectively by pretreatment with mu agonist greater than kappa agonist greater than selected MAA greater than sigma agonists.(ABSTRACT TRUNCATED AT 250 WORDS)
Identification of novel selective V2 receptor non-peptide agonists.
Del Tredici, Andria L; Vanover, Kim E; Knapp, Anne E; Bertozzi, Sine M; Nash, Norman R; Burstein, Ethan S; Lameh, Jelveh; Currier, Erika A; Davis, Robert E; Brann, Mark R; Mohell, Nina; Olsson, Roger; Piu, Fabrice
2008-10-30
Peptides with agonist activity at the vasopressin V(2) receptor are used clinically to treat fluid homeostasis disorders such as polyuria and central diabetes insipidus. Of these peptides, the most commonly used is desmopressin, which displays poor bioavailability as well as potent activity at the V(1b) receptor, with possible stress-related adverse effects. Thus, there is a strong need for the development of small molecule chemistries with selective V(2) receptor agonist activity. Using the functional cell-based assay Receptor Selection and Amplification Technology (R-SAT((R))), a screening effort identified three small molecule chemotypes (AC-94544, AC-88324, and AC-110484) with selective agonist activity at the V(2) receptor. One of these compounds, AC-94544, displayed over 180-fold selectivity at the V(2) receptor compared to related vasopressin and oxytocin receptors and no activity at 28 other G protein-coupled receptors (GPCRs). All three compounds also showed partial agonist activity at the V(2) receptor in a cAMP accumulation assay. In addition, in a rat model of central diabetes insipidus, AC-94544 was able to significantly reduce urine output in a dose-dependent manner. Thus, AC-94544, AC-88324, and AC-110484 represent novel opportunities for the treatment of disorders associated with V(2) receptor agonist deficiency.
Shen, Qing; Qian, Yuanyuan; Huang, Xiaoqin; Xu, Xuejun; Li, Wei; Liu, Jinggen; Fu, Wei
2016-04-14
The classic "message-address" concept was proposed to address the binding of endogenous peptides to the opioid receptors and was later successfully applied in the discovery of the first nonpeptide δ opioid receptor (DOR) antagonist naltrindole. By revisiting this concept, and based on the structure of tramadol, we designed a series of novel compounds that act as highly potent and selective agonists of DOR among which (-)-6j showed the highest affinity (K i = 2.7 nM), best agonistic activity (EC50 = 2.6 nM), and DOR selectivity (more than 1000-fold over the other two subtype opioid receptors). Molecular docking studies suggest that the "message" part of (-)-6j interacts with residue Asp128(3.32) and a neighboring water molecule, and the "address" part of (-)-6j packs with hydrophobic residues Leu300(7.35), Val281(6.55), and Trp284(6.58), rendering DOR selectivity. The discovery of novel compound (-)-6j, and the obtained insights into DOR-agonist binding will help us design more potent and selective DOR agonists.
3D-Pharmacophore Identification for κ-Opioid Agonists Using Ligand-Based Drug-Design Techniques
NASA Astrophysics Data System (ADS)
Yamaotsu, Noriyuki; Hirono, Shuichi
A selective κ-opioid receptor (KOR) agonist might act as a powerful analgesic without the side effects of μ-opioid receptor-selective drugs such as morphine. The eight classes of known KOR agonists have different chemical structures, making it difficult to construct a pharmacophore model that takes them all into account. Here, we summarize previous efforts to identify the pharmacophore for κ-opioid agonists and propose a new three-dimensional pharmacophore model that encompasses the κ-activities of all classes. This utilizes conformational sampling of agonists by high-temperature molecular dynamics and pharmacophore extraction through a series of molecular superpositions.
Wu, Xin; Tong, Bei; Yang, Yan; Luo, Jinque; Yuan, Xusheng; Wei, Zhifeng; Yue, Mengfan; Xia, Yufeng; Dai, Yue
2016-12-20
Arctigenin was previously proven to inhibit Th17 cell differentiation and thereby attenuate colitis in mice by down-regulating the activation of mechanistic target of rapamycin complex 1 (mTORC1). The present study was performed to address its underlying mechanism in view of estrogen receptor (ER). The specific antagonist PHTPP or siRNA of ERβ largely diminished the inhibitory effect of arctigenin on the mTORC1 activation in T cell lines and primary CD4+ T cells under Th17-polarization condition, suggesting that arctigenin functioned in an ERβ-dependent manner. Moreover, arctigenin was recognized to be an agonist of ERβ, which could bind to ERβ with a moderate affinity, promote dissociation of ERβ/HSP90 complex and nuclear translocation and phosphorylation of ERβ, and increase the transcription activity. Following activation of ERβ, arctigenin inhibited the activity of mTORC1 by disruption of ERβ-raptor-mTOR complex assembly. Deficiency of ERβ markedly abolished arctigenin-mediated inhibition of Th17 cell differentiation. In colitis mice, the activation of ERβ, inhibition of mTORC1 activation and Th17 response by arctigenin were abolished by PHTPP treatment. In conclusion, ERβ might be the target protein of arctigenin responsible for inhibition of mTORC1 activation and resultant prevention of Th17 cell differentiation and colitis development.
Wu, Xin; Tong, Bei; Yang, Yan; Luo, Jinque; Yuan, Xusheng; Wei, Zhifeng; Yue, Mengfan; Xia, Yufeng; Dai, Yue
2016-01-01
Arctigenin was previously proven to inhibit Th17 cell differentiation and thereby attenuate colitis in mice by down-regulating the activation of mechanistic target of rapamycin complex 1 (mTORC1). The present study was performed to address its underlying mechanism in view of estrogen receptor (ER). The specific antagonist PHTPP or siRNA of ERβ largely diminished the inhibitory effect of arctigenin on the mTORC1 activation in T cell lines and primary CD4+ T cells under Th17-polarization condition, suggesting that arctigenin functioned in an ERβ-dependent manner. Moreover, arctigenin was recognized to be an agonist of ERβ, which could bind to ERβ with a moderate affinity, promote dissociation of ERβ/HSP90 complex and nuclear translocation and phosphorylation of ERβ, and increase the transcription activity. Following activation of ERβ, arctigenin inhibited the activity of mTORC1 by disruption of ERβ-raptor-mTOR complex assembly. Deficiency of ERβ markedly abolished arctigenin-mediated inhibition of Th17 cell differentiation. In colitis mice, the activation of ERβ, inhibition of mTORC1 activation and Th17 response by arctigenin were abolished by PHTPP treatment. In conclusion, ERβ might be the target protein of arctigenin responsible for inhibition of mTORC1 activation and resultant prevention of Th17 cell differentiation and colitis development. PMID:27863380
Thoreau, Etienne; Arlabosse, Jean-Marie; Bouix-Peter, Claire; Chambon, Sandrine; Chantalat, Laurent; Daver, Sébastien; Dumais, Laurence; Duvert, Gwenaëlle; Feret, Angélique; Ouvry, Gilles; Pascau, Jonathan; Raffin, Catherine; Rodeville, Nicolas; Soulet, Catherine; Tabet, Samuel; Talano, Sandrine; Portal, Thibaud
2018-06-01
Retinoids have a dominant role in topical acne therapy and to date, only RARβ and RARγ dual agonists have reached the market. Given the tissue distribution of RAR isoforms, it was hypothesized that developing RARγ -selective agonists could yield a new generation of topical acne treatments that would increase safety margins while maintaining the robust efficacy of previous drugs. Structural knowledge derived from the X-ray structure of known γ-selective CD437, suggested the design of a novel triaryl series of agonists which was optimized and ultimately led to the discovery of Trifarotene/CD5789. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comeglio, P; Morelli, A; Cellai, I; Vignozzi, L; Sarchielli, E; Filippi, S; Maneschi, E; Corcetto, F; Corno, C; Gacci, M; Vannelli, G B; Maggi, M
2014-01-01
BPH and LUTS have been associated to obesity, hypogonadism, and metabolic syndrome (MetS). MetS-induced prostate and bladder alterations, including inflammation and tissue remodeling, have been related to a low-testosterone and high-estrogen milieu. In addition to ERs, GPR30/GPER is able to mediate several estrogenic non-genomic actions. Supplementing a subgroup of MetS rabbits with tamoxifen, we analyzed the in vivo effects on MetS-induced prostate and bladder alterations. The effects of selective ER/GPER ligands and GPER silencing on prostate inflammation were also studied in vitro using hBPH cells. ERα, ERβ, and PR expression was upregulated in MetS bladder, where tamoxifen decreased ERα and PR expression, further stimulating ERβ. In addition, tamoxifen-dosing decreased MetS-induced overexpression of inflammatory and tissue remodeling genes. In prostate, sex steroid receptors, pro-inflammatory and pro-fibrotic genes were upregulated in MetS. However, tamoxifen did not affect them and even increased COX-2. In hBPH cells, 17β-estradiol increased IL-8 secretion, an effect blunted by co-treatment with GPER antagonist G15 but not by ER antagonist ICI 182,780, which further increased it. GPER agonist G1 dose-dependently (IC50 = 1.6 nM) induced IL-8 secretion. In vitro analysis demonstrated that GPER silencing reverted these stimulatory effects. GPER can be considered the main mediator of estrogen action in prostate, whereas in bladder the mechanism appears to rely on ERα, as indicated by in vivo experiments with tamoxifen dosing. Limiting the effects of the MetS-induced estrogen action via GPER could offer new perspectives in the management of BPH/LUTS, whereas tamoxifen dosing showed potential benefits in bladder. © 2013 Wiley Periodicals, Inc.
Parente, T.E.M.; Rebelo, M.F.; da-Silva, M.L.; Woodin, B.R.; Goldstone, J. V.; Bisch, P.M.; Paumgartten, F.J.R.; Stegeman, J.J.
2011-01-01
The Amazon catfish genus Pterygoplichthys (Loricariidae, Siluriformes) is closely related to the loricariid genus Hypostomus, in which at least two species lack detectable ethoxyresorufin-O-deethylase (EROD) activity, typically catalyzed by cytochrome P450 1 (CYP1) enzymes. Pterygoplichthys sp. liver microsomes also lacked EROD, as well as activity with other substituted resorufins, but aryl hydrocarbon receptor agonists induced hepatic CYP1A mRNA and protein suggesting structural/functional differences in Pterygoplichthys CYP1s from those in other vertebrates. Comparing the sequences of CYP1As of Pterygoplichthys sp. and of two phylogenetically-related siluriform species that do catalyze EROD (Ancistrus sp., Loricariidae and Corydoras sp., Callichthyidae) showed that these three proteins share amino acids at 17 positions that are not shared by any fish in a set of 24 other species. Pterygoplichthys and Ancistrus (the loricariids) have an additional 22 amino acid substitutions in common that are not shared by Corydoras or by other fish species. Pterygoplichthys has six exclusive amino acid substitutions. Molecular docking and dynamics simulations indicate that Pterygoplichthys CYP1A has a weak affinity for ER, which binds infrequently in a productive orientation, and in a less stable conformation than in CYP1As of species that catalyze EROD. ER also binds with the carbonyl moiety proximal to the heme iron. Pterygoplichthys CYP1A has amino acids substitutions that reduce the frequency of correctly oriented ER in the AS preventing the detection of EROD activity. The results indicate that loricariid CYP1As may have a peculiar substrate selectivity that differs from CYP1As of most vertebrates. PMID:21840383
Parente, Thiago E M; Rebelo, Mauro F; da-Silva, Manuela L; Woodin, Bruce R; Goldstone, Jared V; Bisch, Paulo M; Paumgartten, Francisco J R; Stegeman, John J
2011-12-10
The Amazon catfish genus Pterygoplichthys (Loricariidae, Siluriformes) is closely related to the loricariid genus Hypostomus, in which at least two species lack detectable ethoxyresorufin-O-deethylase (EROD) activity, typically catalyzed by cytochrome P450 1 (CYP1) enzymes. Pterygoplichthys sp. liver microsomes also lacked EROD, as well as activity with other substituted resorufins, but aryl hydrocarbon receptor agonists induced hepatic CYP1A mRNA and protein suggesting structural/functional differences in Pterygoplichthys CYP1s from those in other vertebrates. Comparing the sequences of CYP1As of Pterygoplichthys sp. and of two phylogenetically related siluriform species that do catalyze EROD (Ancistrus sp., Loricariidae and Corydoras sp., Callichthyidae) showed that these three proteins share amino acids at 17 positions that are not shared by any fish in a set of 24 other species. Pterygoplichthys and Ancistrus (the loricariids) have an additional 22 amino acid substitutions in common that are not shared by Corydoras or by other fish species. Pterygoplichthys has six exclusive amino acid substitutions. Molecular docking and dynamics simulations indicate that Pterygoplichthys CYP1A has a weak affinity for ER, which binds infrequently in a productive orientation, and in a less stable conformation than in CYP1As of species that catalyze EROD. ER also binds with the carbonyl moiety proximal to the heme iron. Pterygoplichthys CYP1A has amino acid substitutions that reduce the frequency of correctly oriented ER in the AS preventing the detection of EROD activity. The results indicate that loricariid CYP1As may have a peculiar substrate selectivity that differs from CYP1As of most vertebrate. Copyright © 2011 Elsevier B.V. All rights reserved.
Qi, Xin; Zhou, Wenyi; Wang, Qingqing; Guo, Liang; Lu, Danqi; Lin, Haoran
2017-04-01
Gonadotropin-inhibitory hormone (GnIH) plays a critical role in regulating gonadotropin-releasing hormone, gonadotropin hormone, and steroidogenesis in teleosts. In the present study, we sought to determine whether 17β-estradiol (E2) acts directly on GnIH neurons to regulate reproduction in goldfish, a seasonal breeder, and we investigated the role of estrogen receptors (ERs) in mediating this process. We found that GnIH neurons coexpress three types of ERs. Ovariectomy and letrozole implantation into female goldfish at the vitellogenic stage elicited a substantial decrease in the expression of GnIH messenger RNA (mRNA), and E2 supplementation abolished this effect. In primary cultured hypothalamus cells, E2 increased GnIH mRNA levels; surprisingly, selective ERα and ERβ agonists showed opposite effects in regulating GnIH mRNA levels. Using genome walking, we isolated a 2329-bp section of the GnIH promoter sequence, and 7 half-estrogen response elements (EREs) were found in the promoter region. Luciferase assays and electrophoretic mobility shift assay results show that the half-ERE element at -2203 is the key site for competitive binding between ERα and ERβ. Ovariectomy and letrozole implantation into female goldfish in the maturating stage did not change the GnIH mRNA expression levels. Taken together, these findings suggest that E2 binds to multiple types of ERs, which competitively bind to the same half-ERE binding site of the GnIH promoter to achieve both positive and negative feedback in response to estrogen to regulate goldfish reproduction at different stages of ovarian development. Copyright © 2017 Endocrine Society.
2016-08-01
requirements 6 Appendices None INTRODUCTION Ovarian cancer (OC) is the fifth leading cause of cancer death in US women and is the top gynecologic cancer...killer. The ACS estimates ~21,980 new OC cases and ~14,270 deaths in the US in 2014. Most patients fail front-line therapy and will die of their
Brown, Dean G; Brown, Giles A; Centrella, Paolo; Certel, Kaan; Cooke, Robert M; Cuozzo, John W; Dekker, Niek; Dumelin, Christoph E; Ferguson, Andrew; Fiez-Vandal, Cédric; Geschwindner, Stefan; Guié, Marie-Aude; Habeshian, Sevan; Keefe, Anthony D; Schlenker, Oliver; Sigel, Eric A; Snijder, Arjan; Soutter, Holly T; Sundström, Linda; Troast, Dawn M; Wiggin, Giselle; Zhang, Jing; Zhang, Ying; Clark, Matthew A
2018-06-01
The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.
NASA Astrophysics Data System (ADS)
Filizola, Marta; Villar, Hugo O.; Loew, Gilda H.
2001-04-01
Compounds that bind with significant affinity to the opioid receptor types, δ, μ, and κ, with different combinations of activation and inhibition at these three receptors could be promising behaviorally selective agents. Working on this hypothesis, the chemical moieties common to three different sets of opioid receptor agonists with significant affinity for each of the three receptor types δ, μ, or κ were identified. Using a distance analysis approach, common geometric arrangements of these chemical moieties were found for selected δ, μ, or κ opioid agonists. The chemical and geometric commonalities among agonists at each opioid receptor type were then compared with a non-specific opioid recognition pharmacophore recently developed. The comparison provided identification of the additional requirements for activation of δ, μ, and κ opioid receptors. The distance analysis approach was able to clearly discriminate κ-agonists, while global molecular properties for all compounds were calculated to identify additional requirements for activation of δ and μ receptors. Comparisons of the combined geometric and physicochemical properties calculated for each of the three sets of agonists allowed the determination of unique requirements for activation of each of the three opioid receptors. These results can be used to improve the activation selectivity of known opioid agonists and as a guide for the identification of novel selective opioid ligands with potential therapeutic usefulness.
Palomer, Xavier; Capdevila-Busquets, Eva; Botteri, Gaia; Salvadó, Laia; Barroso, Emma; Davidson, Mercy M; Michalik, Liliane; Wahli, Walter; Vázquez-Carrera, Manuel
2014-06-01
Chronic endoplasmic reticulum (ER) stress contributes to the apoptotic cell death in the myocardium, thereby playing a critical role in the development of cardiomyopathy. ER stress has been reported to be induced after high-fat diet feeding in mice and also after saturated fatty acid treatment in vitro. Therefore, since several studies have shown that peroxisome proliferator-activated receptor (PPAR)β/δ inhibits ER stress, the main goal of this study consisted in investigating whether activation of this nuclear receptor was able to prevent lipid-induced ER stress in cardiac cells. Wild-type and transgenic mice with reduced PPARβ/δ expression were fed a standard diet or a high-fat diet for two months. For in vitro studies, a cardiomyocyte cell line of human origin, AC16, was treated with palmitate and the PPARβ/δ agonist GW501516. Our results demonstrate that palmitate induced ER stress in AC16 cells, a fact which was prevented after PPARβ/δ activation with GW501516. Interestingly, the effect of GW501516 on ER stress occurred in an AMPK-independent manner. The most striking result of this study is that GW501516 treatment also upregulated the protein levels of beclin 1 and LC3II, two well-known markers of autophagy. In accordance with this, feeding on a high-fat diet or suppression of PPARβ/δ in knockout mice induced ER stress in the heart. Moreover, PPARβ/δ knockout mice also displayed a reduction in autophagic markers. Our data indicate that PPARβ/δ activation might be useful to prevent the harmful effects of ER stress induced by saturated fatty acids in the heart by inducing autophagy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; De Maeyer, J H; Stanghellini, V
2012-04-01
The nonselective 5-HT(4) receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT(4) agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006-2008 and DDW 2008-2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT(4) agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT(4) agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT(1) receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT(4) agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT(4) agonists with no hERG or 5-HT(1) affinity (renzapride, clebopride, mosapride). 5-HT(4) agonists for GI disorders differ in chemical structure and selectivity for 5-HT(4) receptors. Selectivity for 5-HT(4) over non-5-HT(4) receptors may influence the agent's safety and overall risk-benefit profile. Based on available evidence, highly selective 5-HT(4) agonists may offer improved safety to treat patients with impaired GI motility. © 2012 Blackwell Publishing Ltd.
Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; Maeyer, J H; Stanghellini, V
2012-01-01
Summary Background The nonselective 5-HT4 receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). Aim To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT4 agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Methods Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006–2008 and DDW 2008–2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Results Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT4 agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT4 agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT1 receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT4 agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT4 agonists with no hERG or 5-HT1 affinity (renzapride, clebopride, mosapride). Conclusions 5-HT4 agonists for GI disorders differ in chemical structure and selectivity for 5-HT4 receptors. Selectivity for 5-HT4 over non-5-HT4 receptors may influence the agent's safety and overall risk–benefit profile. Based on available evidence, highly selective 5-HT4 agonists may offer improved safety to treat patients with impaired GI motility. PMID:22356640
Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N
1999-01-01
This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259
Tallent, M; Liapakis, G; O'Carroll, A M; Lolait, S J; Dichter, M; Reisine, T
1996-04-01
The somatostatin receptor subtypes SSTR2 and SSTR5 mediate distinct endocrine and exocrine functions of somatostatin and may also be involved in mediating the neuromodulatory actions of somatostatin in the brain. To investigate whether these receptors couple to voltage-sensitive Ca2+ channels, SSTR2 and SSTR5 selective agonists were tested for their effects on AtT-20 cells using whole cell patch clamp techniques. The SSTR2 selective agonist MK 678 inhibited Ca2+ currents in AtT-20 cells. The effects of MK 678 were reversible and blocked by pertussis toxin pretreatment, suggesting that SSTR2 couples to the L-type Ca2+ channels via G proteins. Other SSTR2-selective agonists, including BIM 23027 and NC8-12, were able to inhibit the Ca2+ currents in these cells. The SSTR5 selective agonist BIM 23052 also inhibited the Ca2+ currents in these cells and this effect was reversible and blocked by pertussis toxin treatment. The ability of SSTR5 to mediate inhibition of the Ca2+ current was greatly attenuated by pretreatment with the SSTR5-selective agonist BIM 23052, whereas SSTR2-mediated inhibition of the Ca2+ current was not altered by pretreatment with the SSTR2-selective agonist MK 678. Thus, the SSTR2 and SSTR5 couplings to the Ca2+ current are differentially regulated. The peptide L362,855, which we previously have shown to have high affinity for the cloned SSTR5, had minimal effects on Ca2+ currents in AtT-20 cells at concentrations up to 100 nM and did not alter the ability of MK 678 to inhibit Ca2+ currents. However, it completely antagonized the effects of the SSTR5-selective agonist BIM 23052 on the Ca2+ currents. L362,855 is an antagonist/partial agonist at SSTR5 since it can reduce Ca2+ currents in these cells at concentrations above 100 nM. L362,855 is also an antagonist/partial agonist at the cloned rat SSTR5 expressed in CHO cells since it is able to block the inhibition of cAMP accumulation induced by somatostatin at concentrations below 100 nM but at higher concentrations can inhibit cAMP formation itself. Structural analysis of L362,855 reveals that only a single hydroxyl group at residue seven in the peptide is needed to convert the compound from an antagonist/partial agonist to a full agonist at SSTR5. These studies reveal that two different somatostatin receptor subtypes, SSTR2 and SSTR5, can mediate the inhibition of an L-type Ca2+ channel in AtT-20 cells by somatostatin. The receptor subtype responses can be distinguished by selective agonists and antagonists and are regulated differently by agonist pretreatment. The inhibition of Ca2+ influx into endocrine cells and neurons may be a major cellular mechanism by which somatostatin modulates hormone and neurotransmitter release. Our results reveal that at least two receptor subtypes can mediate this cellular response.
Beneficial role of tamoxifen in isoproterenol-induced myocardial infarction.
Rayabarapu, Nihar; Patel, Bhoomika M
2014-10-01
ER-α and ER-β agonist 17β-estradiol is reported to attenuate cardiac hypertrophy. Tamoxifen is a selective estrogen receptor modulator. Hence, the objective of this study was to investigate the effects of tamoxifen in myocardial infarction. For this, tamoxifen was administered to Sprague-Dawley rats for 1-14 days, and isoproterenol (ISO) (100 mg·(kg body mass)(-1)·day(-1)) was administered subcutaneously on the 13th and 14th days of the study in order to induce myocardial infarction, after which, various biochemical, cardiac, and morphometric parameters were evaluated. ISO produced significant dyslipidemia, hypertension, bradycardia, oxidative stress, and an increase in serum cardiac markers. Treatment with tamoxifen significantly controlled dyslipidemia, hypertension, bradycardia, oxidative stress, and reduced serum cardiac markers. The ISO control rats exhibited significant increases in the infarct size of the left ventricle (LV), LV cavity area, cardiac and LV hypertrophic indices, LV-wall thickness, cardiomyocyte diameter, and area. Treatment with tamoxifen significantly reduced infarction as well as hypertrophic and morphometric parameters. ISO also produced significant increases in the LV collagen level, decreases in Na(+)K(+) ATPase activity, and a reduction in the rate of pressure development and decay, which were prevented by tamoxifen treatment. The protective effect of tamoxifen on myocardial infarct was further confirmed by histopathological examination. Our data thus suggest that tamoxifen exerts beneficial effects in ISO-induced myocardial infarction.
Henderson, Kimberly A; Kobylewski, Sarah E; Yamada, Kristin E; Eckhert, Curtis D
2015-02-01
Dietary boron intake is associated with reduced prostate and lung cancer risk and increased bone mass. Boron is absorbed and circulated as boric acid (BA) and at physiological concentrations is a reversible competitive inhibitor of cyclic ADP ribose, the endogenous agonist of the ryanodine receptor calcium (Ca(+2)) channel, and lowers endoplasmic reticulum (ER) [Ca(2+)]. Low ER [Ca(2+)] has been reported to induce ER stress and activate the eIF2α/ATF4 pathway. Here we report that treatment of DU-145 prostate cells with physiological levels of BA induces ER stress with the formation of stress granules and mild activation of eIF2α, GRP78/BiP, and ATF4. Mild activation of eIF2α and its downstream transcription factor, ATF4, enables cells to reconfigure gene expression to manage stress conditions and mild activation of ATF4 is also required for the differentiation of osteoblast cells. Our results using physiological levels of boric acid identify the eIF2α/ATF pathway as a plausible mode of action that underpins the reported health effects of dietary boron.
The Effect of Two Benzodiazepine Receptor Agonist Hypnotics on Sleep-Dependent Memory Consolidation
Hall-Porter, Janine M.; Schweitzer, Paula K.; Eisenstein, Rhody D.; Ahmed, Hasan Ali H.; Walsh, James K.
2014-01-01
Introduction: Numerous studies have demonstrated that sleep promotes memory consolidation, but there is little research on the effect of hypnotics on sleep-dependent memory consolidation. We compared bedtime administration of zolpidem-ER 12.5 mg (6- to 8-h duration of action), middle-of-the-night administration of zaleplon 10 mg (3- to 4-h duration of action), and placebo to examine the effect of different durations of hypnotic drug exposure on memory consolidation during sleep. Methods: Twenty-two participants with no sleep complaints underwent 3 conditions in a counterbalanced crossover study: (1) zolpidem-ER 12.5 mg (bedtime dosing), (2) zaleplon 10 mg (middle-of-the-night dosing), and (3) placebo. Memory testing was conducted before and after an 8-h sleep period, using a word pair association task (WPT; declarative memory) and a finger-tapping task (FTT; procedural memory). Results: ANOVA revealed a significant condition effect for the WPT (p = 0.025) and a trend for the FTT (p = 0.067), which was significant when sex was added to the model (p = 0.014). Improvement in memory performance following sleep was lower with bedtime dosing of zolpidem-ER compared to placebo and middle-of-the-night dosing of zaleplon. There were no differences between placebo and zaleplon. Conclusions: The results suggest that in some circumstances hypnotics may have the potential to reduce the degree of sleep-dependent memory consolidation and that drug-free sleep early in the night may ameliorate this effect. Citation: Hall-Porter JM; Schweitzer PK; Eisenstein RD; Ahmed HAH; Walsh JK. The effect of two benzodiazepine receptor agonist hypnotics on sleep-dependent memory consolidation. J Clin Sleep Med 2014;10(1):27-34. PMID:24426817
Steroid receptor profiling of vinclozolin and its primary metabolites.
Molina-Molina, José-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernández, Mariana-Fátima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolás; Balaguer, Patrick
2006-10-01
Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ERalpha and ERbeta). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR>PR>GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ERbeta. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process.
Ruegg, H; Yu, W Z; Bodnar, R J
1997-07-01
Selective mu ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO)), delta1 ([D-Pen2, D-Pen5]-enkephalin (DPDPE)), delta2 ([D-Ala2, Glu4]-Deltorphin (Delt II)), kappa1 (U50488H) and kappa3 (naloxone benzoylhydrazone (NalBzOH)) opioid agonists each stimulate food intake in rats. Whereas studies with selective opioid antagonists implicate mu and kappa1 receptors in the mediation of sucrose intake, studies with selective opioid agonists implicate mu and delta receptors in the mediation of saccharin intake. The present study determined if specific delta1, delta2, kappa1, kappa3 and mu opioid-receptor subtype agonists produced similar alterations in sucrose intake as a function of sucrose concentration (0.5%, 2.5%, 10%) across a 1-h time-course. Each of these agonists significantly increased sucrose intake with variations in pattern, magnitude, and consistency as a function of sucrose concentration. Whereas the mu opioid agonist, DAMGO, and the delta1 opioid agonist, DPDPE, each enhanced sucrose intake at higher (2.5%, 10%), but not lower (0.5%), concentrations, the delta2 opioid agonist, Delt II, increased sucrose intake at lower (0.5%, 2.5%), but not higher (10%), concentrations. Kappa opioid agonists produced less consistent effects. The kappa1 opioid agonist, U50488H, increased sucrose intake at high (10%) concentrations and decreased sucrose intake at low (0.5%) concentrations, and the kappa3 opioid agonist, NalBzOH, inconsistently increased sucrose intake at the 0.5% (20 microg) and 10% (1 microg) concentrations. Thus, these data further implicate mu, delta1, and delta2 opioid mediation of palatable intake, particularly of its orosensory characteristics.
Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette
2014-01-01
Somatostatin interacts with 5 G-protein-coupled receptor (sst1–5). Octreotide, a stable sst2≫3≥5 agonist, octreotide, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1–5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10 μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (4 sets of 3 CRD, each at 55 mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between 2 sets of graded CRD (15, 30, 45, and 60 mmHg, 3 times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60 mmHg CRD, respectively. ODT8-SST (10 μg) and the sst2 agonist, S-346-011 (3 and 10 μg) prevented mechanically-induced visceral hypersensitivity in the 3 sets of CRD, the sst1 agonist (10 μg) blocked only the 2nd set and showed a trend at 3 μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10 μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10 μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. PMID:25451334
Mulak, Agata; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Rivier, Jean; Taché, Yvette
2015-01-01
Somatostatin interacts with five G-protein-coupled receptor (sst1-5). Octreotide, a stable sst2≫3≥5 agonist, exerts a visceral anti-hyperalgesic effect in experimental and clinical studies. Little is known on the receptor subtypes involved. We investigated the influence of the stable sst1-5 agonist, ODT8-SST and selective receptor subtype peptide agonists (3 or 10μg/mouse) injected intraperitoneally (ip) on visceral hypersensitivity in mice induced by repeated noxious colorectal distensions (four sets of three CRD, each at 55mmHg) or corticotropin-releasing factor receptor 1 agonist, cortagine given between two sets of graded CRD (15, 30, 45, and 60mmHg, three times each pressure). The mean visceromotor response (VMR) was assessed using a non-invasive manometry method and values were expressed as percentage of the VMR to the 1st set of CRD baseline or to the 60mmHg CRD, respectively. ODT8-SST (10μg) and the sst2 agonist, S-346-011 (3 and 10μg) prevented mechanically induced visceral hypersensitivity in the three sets of CRD, the sst1 agonist (10μg) blocked only the 2nd set and showed a trend at 3μg while the sst4 agonist had no effect. The selective sst2 antagonist, S-406-028 blocked the sst2 agonist but not the sst1 agonist effect. The sst1 agonist (3 and 10μg) prevented cortagine-induced hypersensitivity to CRD at each pressure while the sst2 agonist at 10μg reduced it. These data indicate that in addition to sst2, the sst1 agonist may provide a novel promising target to alleviate visceral hypersensitivity induced by mechanoreceptor sensitization and more prominently, stress-related visceral nociceptive sensitization. Copyright © 2014 Elsevier Inc. All rights reserved.
Synthesis of the PPARbeta/delta-selective agonist GW501516 and C4-thiazole-substituted analogs.
Pereira, Raquel; Gaudon, Claudine; Iglesias, Beatriz; Germain, Pierre; Gronemeyer, Hinrich; de Lera, Angel R
2006-01-01
Sequential, position-selective, Pd-catalyzed cross-coupling reactions of 2,4-dibromo-5-hydroxymethylthiazole provided the scaffold for the synthesis of GW501516, the most potent PPARbeta/delta agonist yet described, and equally selective analogs at the thiazole-C4 position.
Elliott, P J; Mason, G S; Stephens-Smith, M; Hagan, R M
1991-06-01
Preferential activation of mesolimbic and nigro-striatal dopamine (DA) pathways by receptor-selective and peptidase-resistant neurokinin (NK) agonists is reported. The DA cell body region of the mesolimbic pathway appears to be activated by NK agonists selective for NK-1 and NK-3 receptors whereas the DA cell bodies in the substantia nigra are under an excitatory NK-2 receptor-mediated influence. Stimulation of the mesolimbic DA pathway by NK-1 (Ava[L-Pro9,N-Me-Leu10]SP (7-11) [GR73632]) or NK-3 (Senktide) agonists increase locomotor activity. Additional studies showed that this elevated motor response observed after intra-VTA infusion of GR73632 was accompanied by a corresponding increase in DA turnover in the terminal fields of this pathway. Similarly, unilateral activation of the nigro-striatal DA pathway by NK-2 selective agonists (Ava (D-Pro9) SP (7-11) [GR51667] or [Lys3,Gly8,R-Lac-Leu9]NKA (3-10) [GR64349]) elicit contralateral rotational activity and an increase in DA turnover in the ipsilateral striatum. The rotational response was attenuated by prior administration of an NK-2 antagonist (cyclo (Gln, Trp, Phe, Gly, Leu, Met)] L-659877]) into the nigra. Peripheral injection of haloperidol, a DA antagonist, also blocked the NK-2 agonist induced rotations.
Role of GPER in estrogen-dependent nitric oxide formation and vasodilation.
Fredette, Natalie C; Meyer, Matthias R; Prossnitz, Eric R
2018-02-01
Estrogens are potent regulators of vasomotor tone, yet underlying receptor- and ligand-specific signaling pathways remain poorly characterized. The primary physiological estrogen 17β-estradiol (E2), a non-selective agonist of classical nuclear estrogen receptors (ERα and ERβ) as well as the G protein-coupled estrogen receptor (GPER), stimulates formation of the vasodilator nitric oxide (NO) in endothelial cells. Here, we studied the contribution of GPER signaling in E2-dependent activation of endothelial NO formation and subsequent vasodilation. Employing E2 and the GPER-selective agonist G-1, we investigated eNOS phosphorylation and NO formation in human endothelial cells, and endothelium-dependent vasodilation in the aortae of wild-type and Gper-deficient mice. Both E2 and G-1 induced phosphorylation of eNOS at the activation site Ser1177 to similar extents. Endothelial NO production to E2 was comparable to that of G-1, and was substantially reduced after pharmacological inhibition of GPER. Similarly, the clinically used ER-targeting drugs 4OH-tamoxifen, raloxifene, and ICI182,780 (faslodex, fulvestrant™) induced NO formation in part via GPER. We identified c-Src, EGFR, PI3K and ERK signaling pathways to be involved in GPER-dependent NO formation. In line with activation of NO formation in cells, E2 and G-1 induced equally potent vasodilation in the aorta of wild-type mice. Gper deletion completely abrogated the vasodilator response to G-1, while reducing the response to E2 by ∼50%. These findings indicate that a substantial portion of E2-induced endothelium-dependent vasodilation and NO formation is mediated by GPER. Thus, selective targeting of vascular GPER may be a suitable approach to activate the endothelial NO pathway, possibly leading to reduced vasomotor tone and inhibition of atherosclerotic vascular disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shin, A; Camilleri, M; Kolar, G; Erwin, P; West, C P; Murad, M H
2014-02-01
Highly selective 5-HT4 agonists have been suggested for the treatment of chronic constipation (CC). To assess the effects of highly selective 5-HT4 agonists (prucalopride, velusetrag or naronapride) on patient-important clinical efficacy outcomes and safety in adults with CC. We searched the medical literature in January 2013 using MEDLINE/Pubmed, Embase, Cochrane Library, and Web of Science/Scopus for randomised, controlled trials of highly selective 5-HT4 agonists in adults with CC, with no minimum duration of therapy (maximum 12 weeks) or date limitations. Data were extracted from intention-to-treat analyses, pooled using a random-effects model, and reported as relative risk (RR), mean differences, or standardised mean differences with 95% confidence intervals (CI). Main outcomes included stool frequency, Patient-Assessment of Constipation Quality of Life (PAC-QOL), PAC of symptoms (PAC-SYM) and adverse events. Thirteen eligible trials were identified: 11 prucalopride, 1 velusetrag, 1 naronapride. Relative to control, treatment with highly selective 5-HT4 agonists was superior for all outcomes: mean ≥3 spontaneous complete bowel movements (SCBM)/week (RR = 1.85; 95% CI 1.23-2.79); mean ≥1 SCBM over baseline (RR = 1.57; 95% CI 1.19, 2.06); ≥1 point improvement in PAC-QOL and PAC-SYM scores. The only active comparator trial of prucalopride and PEG3350 suggested PEG3350 is more efficacious for some end points. Adverse events were more common with highly selective 5-HT4 agonists, but were generally minor; headache was the most frequent. Most trials studied prucalopride. Demonstration of efficacy on patient-important outcomes and a favourable safety profile support the continued use and development of highly selective 5-HT4 agonists in the treatment of chronic constipation. © 2013 John Wiley & Sons Ltd.
Ishihara, Yasuhiro; Komatsu, Shota; Munetsuna, Eiji; Onizaki, Masahiro; Ishida, Atsuhiko; Kawato, Suguru; Mukuda, Takao
2013-01-01
Background Estrogen, a class of female sex steroids, is neuroprotective. Estrogen is synthesized in specific areas of the brain. There is a possibility that the de novo synthesized estrogen exerts protective effect in brain, although direct evidence for the neuroprotective function of brain-synthesized estrogen has not been clearly demonstrated. Methylmercury (MeHg) is a neurotoxin that induces neuronal degeneration in the central nervous system. The neurotoxicity of MeHg is region-specific, and the molecular mechanisms for the selective neurotoxicity are not well defined. In this study, the protective effect of de novo synthesized 17β-estradiol on MeHg-induced neurotoxicity in rat hippocampus was examined. Methodology/Principal Findings Neurotoxic effect of MeHg on hippocampal organotypic slice culture was quantified by propidium iodide fluorescence imaging. Twenty-four-hour treatment of the slices with MeHg caused cell death in a dose-dependent manner. The toxicity of MeHg was attenuated by pre-treatment with exogenously added estradiol. The slices de novo synthesized estradiol. The estradiol synthesis was not affected by treatment with 1 µM MeHg. The toxicity of MeHg was enhanced by inhibition of de novo estradiol synthesis, and the enhancement of toxicity was recovered by the addition of exogenous estradiol. The neuroprotective effect of estradiol was inhibited by an estrogen receptor (ER) antagonist, and mimicked by pre-treatment of the slices with agonists for ERα and ERβ, indicating the neuroprotective effect was mediated by ERs. Conclusions/Significance Hippocampus de novo synthesized estradiol protected hippocampal cells from MeHg-induced neurotoxicity via ERα- and ERβ-mediated pathways. The self-protective function of de novo synthesized estradiol might be one of the possible mechanisms for the selective sensitivity of the brain to MeHg toxicity. PMID:23405170
Attardi, Barbara J.; Page, Stephanie T.; Hild, Sheri A.; Coss, Christopher C.; Matsumoto, Alvin M.
2009-01-01
Bolandiol is a synthetic anabolic steroid that increases lean body mass and bone mineral density without significant stimulation of sex accessory glands in castrate adult male rats. Since bolandiol suppresses gonadotropins and endogenous testosterone (T) production, we investigated its mechanism of action. We compared the potency of bolandiol in vitro and in vivo with T, 5α-dihydrotestosterone (DHT), 19-nortestosterone (19-NT) and estradiol (E2). Bolandiol bound with lower affinity to the recombinant rat androgen receptor (AR) than the other androgens and had low, but measurable, affinity for recombinant human progestin receptors (PR-A, PR-B), and estrogen receptors (ERα and β-1). Functional agonist activity was assessed in transcription assays mediated by AR, PR, or ER. Bolandiol was stimulatory in all these assays, but only 4–9% as potent as T, DHT, and 19-NT via AR, 1% as potent as progesterone via PR, and 3% and 1% as potent as E2 acting through ERα or ERβ, respectively. In immature castrate rats, bolandiol was equipotent to T in stimulating growth of the levator ani muscle but less potent than T in stimulating growth of the sex accessory glands. Bolandiol also stimulated uterine weight increases in immature female rats, which were partly blocked by ICI 182,780, but it was not aromatized in vitro by recombinant human aromatase. In contrast to T, stimulation of sex accessory gland weights by bolandiol was not inhibited by concomitant treatment with the dual 5α-reductase inhibitor dutasteride. As bolandiol exhibits tissue selectivity in vivo, it may act via AR, PR, and/or ER, utilize alternative signaling pathway(s) or transcriptional coregulators, and/or be metabolized to a more potent selective steroid. PMID:19941958
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stachel, Shawn J.; Zerbinatti, Celina; Rudd, Michael T.
2016-04-14
Herein, we describe the development of a functionally selective liver X receptor β (LXRβ) agonist series optimized for Emax selectivity, solubility, and physical properties to allow efficacy and safety studies in vivo. Compound 9 showed central pharmacodynamic effects in rodent models, evidenced by statistically significant increases in apolipoprotein E (apoE) and ATP-binding cassette transporter levels in the brain, along with a greatly improved peripheral lipid safety profile when compared to those of full dual agonists. These findings were replicated by subchronic dosing studies in non-human primates, where cerebrospinal fluid levels of apoE and amyloid-β peptides were increased concomitantly with anmore » improved peripheral lipid profile relative to that of nonselective compounds. These results suggest that optimization of LXR agonists for Emax selectivity may have the potential to circumvent the adverse lipid-related effects of hepatic LXR activity.« less
D1 receptor agonist improves sleep-wake parameters in experimental parkinsonism.
Hyacinthe, Carole; Barraud, Quentin; Tison, François; Bezard, Erwan; Ghorayeb, Imad
2014-03-01
Both excessive daytime sleepiness (EDS) and rapid eye movement (REM) sleep deregulation are part of Parkinson's disease (PD) non-motor symptoms and may complicate dopamine replacement therapy. We report here that dopamine agonists act differentially on sleep architecture in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine macaque monkey. Continuous sleep and wake electroencephalographic monitoring revealed no effect of the selective dopamine D2 receptor agonist quinpirole on EDS, whereas the selective dopamine D1 receptor agonist SKF38393 efficiently alleviated EDS and restored REM sleep to baseline values. The present results question the relevance of abandoning D1 receptor agonist treatment in PD as it might actually improve sleep-related disorders. Copyright © 2013 Elsevier Inc. All rights reserved.
Toyota, Yosuke; Nomura, Sayaka; Makishima, Makoto; Hashimoto, Yuichi; Ishikawa, Minoru
2017-06-15
Anti-inflammatory effects of peroxisome proliferator-activated receptor gamma (PPRAγ) ligands are thought to be largely due to PPARγ-mediated transrepression. Thus, transrepression-selective PPARγ ligands without agonistic activity or with only partial agonistic activity should exhibit anti-inflammatory properties with reduced side effects. Here, we investigated the structure-activity relationships (SARs) of PPARγ agonist rosiglitazone, focusing on transrepression activity. Alkenic analogs showed slightly more potent transrepression with reduced efficacy of transactivating agonistic activity. Removal of the alkyl group on the nitrogen atom improved selectivity for transrepression over transactivation. Among the synthesized compounds, 3l exhibited stronger transrepressional activity (IC 50 : 14μM) and weaker agonistic efficacy (11%) than rosiglitazone or pioglitazone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yi, Bitna; Jahangir, Alam; Evans, Andrew K.; Briggs, Denise; Ravina, Kristine; Ernest, Jacqueline; Farimani, Amir B.; Sun, Wenchao; Rajadas, Jayakumar; Green, Michael; Feinberg, Evan N.; Pande, Vijay S.
2017-01-01
The beta-1 adrenergic receptor (ADRB1) is a promising therapeutic target intrinsically involved in the cognitive deficits and pathological features associated with Alzheimer’s disease (AD). Evidence indicates that ADRB1 plays an important role in regulating neuroinflammatory processes, and activation of ADRB1 may produce neuroprotective effects in neuroinflammatory diseases. Novel small molecule modulators of ADRB1, engineered to be highly brain permeable and functionally selective for the G protein with partial agonistic activity, could have tremendous value both as pharmacological tools and potential lead molecules for further preclinical development. The present study describes our ongoing efforts toward the discovery of functionally selective partial agonists of ADRB1 that have potential therapeutic value for AD and neuroinflammatory disorders, which has led to the identification of the molecule STD-101-D1. As a functionally selective agonist of ADRB1, STD-101-D1 produces partial agonistic activity on G protein signaling with an EC50 value in the low nanomolar range, but engages very little beta-arrestin recruitment compared to the unbiased agonist isoproterenol. STD-101-D1 also inhibits the tumor necrosis factor α (TNFα) response induced by lipopolysaccharide (LPS) both in vitro and in vivo, and shows high brain penetration. Other than the therapeutic role, this newly identified, functionally selective, partial agonist of ADRB1 is an invaluable research tool to study mechanisms of G protein-coupled receptor signal transduction. PMID:28746336
Yi, Bitna; Jahangir, Alam; Evans, Andrew K; Briggs, Denise; Ravina, Kristine; Ernest, Jacqueline; Farimani, Amir B; Sun, Wenchao; Rajadas, Jayakumar; Green, Michael; Feinberg, Evan N; Pande, Vijay S; Shamloo, Mehrdad
2017-01-01
The beta-1 adrenergic receptor (ADRB1) is a promising therapeutic target intrinsically involved in the cognitive deficits and pathological features associated with Alzheimer's disease (AD). Evidence indicates that ADRB1 plays an important role in regulating neuroinflammatory processes, and activation of ADRB1 may produce neuroprotective effects in neuroinflammatory diseases. Novel small molecule modulators of ADRB1, engineered to be highly brain permeable and functionally selective for the G protein with partial agonistic activity, could have tremendous value both as pharmacological tools and potential lead molecules for further preclinical development. The present study describes our ongoing efforts toward the discovery of functionally selective partial agonists of ADRB1 that have potential therapeutic value for AD and neuroinflammatory disorders, which has led to the identification of the molecule STD-101-D1. As a functionally selective agonist of ADRB1, STD-101-D1 produces partial agonistic activity on G protein signaling with an EC50 value in the low nanomolar range, but engages very little beta-arrestin recruitment compared to the unbiased agonist isoproterenol. STD-101-D1 also inhibits the tumor necrosis factor α (TNFα) response induced by lipopolysaccharide (LPS) both in vitro and in vivo, and shows high brain penetration. Other than the therapeutic role, this newly identified, functionally selective, partial agonist of ADRB1 is an invaluable research tool to study mechanisms of G protein-coupled receptor signal transduction.
Meyer, Matthias R; Baretella, Oliver; Prossnitz, Eric R; Barton, Matthias
2010-01-01
Endogenous estrogens protect from coronary artery disease in premenopausal women, but the mechanisms involved are only partly understood. This study investigated whether activation of the novel G protein-coupled estrogen receptor (GPER, formerly known as GPR30) affects coronary artery tone, and whether this is affected by concomitant blockade of estrogen receptors (ER) alpha and beta. Rings of epicardial porcine coronary arteries suspended in organ chambers were precontracted with prostaglandin F(2)alpha, and direct effects of G-1 (GPER agonist) and ICI 182,780 (GPER agonist and ERalpha/ERbeta antagonist) were determined. In addition, indirect effects on contractility to endothelin-1 and serotonin (a vasoconstrictor released from aggregating platelets during acute myocardial infarction) were assessed. ICI 182,780 and G-1 caused acute dilation of coronary arteries to a comparable degree (p < 0.05 vs. solvent control). Both GPER agonists attenuated contractions to endothelin-1 (p < 0.05 vs. ethanol), but not to serotonin (n.s.). In summary, these findings provide evidence for direct and indirect coronary artery dilator effects of GPER independent of ERalpha and ERbeta, and are the first demonstration of arterial vasodilation in response to ICI 182,780. Copyright 2010 S. Karger AG, Basel.
Regulation of endoplasmic reticulum turnover by selective autophagy.
Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan
2015-06-18
The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.
Belvisi, M. G.; Patacchini, R.; Barnes, P. J.; Maggi, C. A.
1994-01-01
1. Exogenous tachykinins modulate cholinergic neurotransmission in rabbit and guinea-pig airways. We have investigated the effect of selective tachykinin receptor agonists and antagonists on cholinergic neurotransmission evoked by electrical field stimulation (EFS) of bronchial rings in rabbit, guinea-pig and human airways in vitro to assess which type of tachykinin receptor is mediating this facilitatory effect. 2. Bronchial rings were set up for isometric tension recording. Contractile responses to EFS (60 V, 0.4 ms, 2 Hz for 10 s every min) and exogenous acetylcholine (ACh) were obtained and the effects of selective tachykinin agonists and antagonists were investigated. 3. In rabbit bronchi the endogenous tachykinins, substance P (SP) and neurokinin A (NKA) (10 nM) potentiated cholinergic responses to EFS (by 287.6 +/- 121%, P < 0.01 and 181.4 +/- 56.5%, P < 0.001 respectively). 4. The NK1 receptor selective agonist, [Sar9]SP sulphone (10 nM) evoked a maximal facilitatory action on cholinergic responses of 334.9 +/- 63% (P < 0.01) (pD2 = 8.5 +/- 0.06) an effect which was blocked by the selective NK1-receptor antagonist, CP 96,345 (100 nM) (P < 0.05) but not by the NK2 receptor antagonist, MEN 10,376 (100 nM). The NK2 receptor selective agonist, [beta Ala8]NKA(4-10) (10 nM), produced a maximum enhancement of 278 +/- 83.5% (P < 0.01) (pD2 = 8.7 +/- 0.1) an effect which was blocked by MEN 10,376 (100 nM) (P < 0.05) and not by CP 96,345. [MePhe7]NKB, an NK3 receptor selective agonist was without effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7516799
Maggi, C. A.; Patacchini, R.; Eglezos, A.; Quartara, L.; Giuliani, S.; Giachetti, A.
1992-01-01
1. The contractile response to substance P, neurokinin A, selective agonists for the NK1, NK2 and NK3 tachykinin receptors and the activity of receptor-selective antagonists has been investigated in circular muscle strips of the guinea-pig isolated renal pelvis in the presence of indomethacin (3 microM). 2. Neurokinin A was the most potent agonist tested, being about 32 times more potent than substance P. The action of both substance P and neurokinin A was enhanced by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). The selective NK2 receptor agonist [beta Ala8] neurokinin A (4-10), was slightly less potent and effective than neurokinin A itself. The selective NK1 receptor agonist [Sar9] substance P sulphone was effective at low (nM) concentrations but its maximal effect did not exceed 30% of maximal response to substance P or neurokinin A. The NK3-selective agonist [MePhe7] neurokinin B was effective only at high (microM) concentrations. 3. The pseudopeptide derivative of neurokinin A(4-10), MDL 28,564, displayed a clear-cut agonist character, although it was less potent than neurokinin A. 4. The responses to roughly equieffective (25-35% of maximal response) concentrations of [beta Ala8] neurokinin A (4-10), MDL 28,564 and [MePhe7] neurokinin B were antagonized to a similar extent by MEN 10,376 (3 microM), a selective NK2 tachykinin receptor antagonist, while the response to [Sar9] substance P sulphone was unchanged. 5. The response to [Sar9] substance P sulphone was inhibited by the NK1 receptor-selective antagonist, GR 82,334 (3 microM) while the response to [beta Ala8] neurokinin A (4-10) was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1384907
Nakano, Masaki; Imamura, Hiromi; Sasaoka, Norio; Yamamoto, Masamichi; Uemura, Norihito; Shudo, Toshiyuki; Fuchigami, Tomohiro; Takahashi, Ryosuke; Kakizuka, Akira
2017-08-01
Parkinson's disease is assumed to be caused by mitochondrial dysfunction in the affected dopaminergic neurons in the brain. We have recently created small chemicals, KUSs (Kyoto University Substances), which can reduce cellular ATP consumption. By contrast, agonistic ligands of ERRs (estrogen receptor-related receptors) are expected to raise cellular ATP levels via enhancing ATP production. Here, we show that esculetin functions as an ERR agonist, and its addition to culture media enhances glycolysis and mitochondrial respiration, leading to elevated cellular ATP levels. Subsequently, we show the neuroprotective efficacies of KUSs, esculetin, and GSK4716 (an ERRγ agonist) against cell death in Parkinson's disease models. In the surviving neurons, ATP levels and expression levels of α-synuclein and CHOP (an ER stress-mediated cell death executor) were all rectified. We propose that maintenance of ATP levels, by inhibiting ATP consumption or enhancing ATP production, or both, would be a promising therapeutic strategy for Parkinson's disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Sugiyama, Azusa; Nagase, Hiroshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko; Saitoh, Akiyoshi
2014-04-01
Recently, we reported that the δ opioid receptor (DOR) agonist KNT-127 produces anxiolytic-like effects in behaving rats. Here, we report on the roles of DOR subtypes ( DOR(1) and DOR(2)) play in mediating KNT-127-induced anxiolytic-like effects. Pretreatment with the DOR(2)-selective antagonist naltriben (NTB; 0.05mg/kg, s.c.) completely abolished KNT-127 (3.0mg/kg, s.c.)-induced anxiolytic-like effects in rats performing the elevated plus-maze task. By contrast, the DOR(1)-selective antagonist 7-benzylidenenaltrexone (BNTX; 0.5mg/kg, s.c.) produced no effect at a dose that completely blocked the antinociceptive effects of KNT-127. These findings were also supported by results from a light/dark test and open-field test. We clearly demonstrated that the DOR(2)-selective antagonist, but not the DOR(1)-selective antagonist, abolishes the anxiolytic-like effects of the DOR agonist KNT-127, suggesting different roles of these DOR subtypes in anxiety. We propose that DOR(2)-selective agonists would be good candidates for future development of anxiolytic drugs. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Perroy, Julie; Walwyn, Wendy M.; Smith, Monique L.; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L.; Evans, Christopher J.
2016-01-01
Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor–Ca2+ channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560) preferentially recruit arrestin 3 and, surprisingly, KO of arrestin 3 produces acute tolerance and impaired receptor resensitization to these agonists. Arrestin 3 is in pre-engaged complexes with the delta opioid receptor at the cell membrane and low-internalizing agonists promote this interaction. This study reveals a novel role for arrestin 3 as a facilitator of receptor resensitization. PMID:27013682
Giuliani, D; Mioni, C; Bazzani, C; Zaffe, D; Botticelli, A R; Capolongo, S; Sabba, A; Galantucci, M; Iannone, A; Grieco, P; Novellino, E; Colombo, G; Tomasi, A; Catania, A; Guarini, S
2007-01-01
Background and purpose: In circulatory shock, melanocortins have life-saving effects likely to be mediated by MC4 receptors. To gain direct insight into the role of melanocortin MC4 receptors in haemorrhagic shock, we investigated the effects of two novel selective MC4 receptor agonists. Experimental approach: Severe haemorrhagic shock was produced in rats under general anaesthesia. Rats were then treated with either the non-selective agonist [Nle4, D-Phe7]α-melanocyte-stimulating hormone (NDP-α-MSH) or with the selective MC4 agonists RO27-3225 and PG-931. Cardiovascular and respiratory functions were continuously monitored for 2 h; survival rate was recorded up to 24 h. Free radicals in blood were measured using electron spin resonance spectrometry; tissue damage was evaluated histologically 25 min or 24 h after treatment. Key results: All shocked rats treated with saline died within 30-35 min. Treatment with NDP-α-MSH, RO27-3225 and PG-931 produced a dose-dependent (13-108 nmol kg-1 i.v.) restoration of cardiovascular and respiratory functions, and improved survival. The three melanocortin agonists also markedly reduced circulating free radicals relative to saline-treated shocked rats. All these effects were prevented by i.p. pretreatment with the selective MC4 receptor antagonist HS024. Moreover, treatment with RO27-3225 prevented morphological and immunocytochemical changes in heart, lung, liver, and kidney, at both early (25 min) and late (24 h) intervals. Conclusions and Implications: Stimulation of MC4 receptors reversed haemorrhagic shock, reduced multiple organ damage and improved survival. Our findings suggest that selective MC4 receptor agonists could have a protective role against multiple organ failure following circulatory shock. PMID:17245369
Chimento, Adele; Casaburi, Ivan; Rosano, Camillo; Avena, Paola; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Santolla, Maria Francesca; Maggiolini, Marcello; Pezzi, Vincenzo; Sirianni, Rosa
2014-03-01
We have previously demonstrated that oleuropein (OL) and hydroxytyrosol (HT) reduce 17β-estradiol-mediated proliferation in MCF-7 breast cancer (BC) cells without affecting the classical genomic action of estrogen receptor (ER), but activating instead the ERK1/2 pathway. Here, we hypothesized that this inhibition could be mediated by a G-protein-coupled receptor named GPER/GPR30. Using the ER-negative and GPER-positive SKBR3 BC cells as experimental model, we investigated the effects of OL and HT on GPER-mediated activation of downstream pathways. Docking simulations and ligand-binding studies evidenced that OL and HT are able to bind GPER. MTT cell proliferation assays revealed that both phenols reduced SKBR3 cell growth; this effect was abolished silencing GPER. Focusing on OL and HT GPER-mediated pathways, using Western blot analysis we showed a sustained ERK1/2 activation triggering an intrinsic apoptotic pathway. Showing that OL and HT work as GPER inverse agonists in ER-negative and GPER-positive SKBR3 BC cells, we provide novel insights into the potential of these two molecules as tools in the therapy of this subtype of BC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CERAPP: Collaborative Estrogen Receptor Activity Prediction ...
Humans potentially are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Many of these chemicals never have been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for assessment in costly in vivo tests, for instance, within the EPA Endocrine Disruptor Screening Program. Here, we describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating the efficacy of using predictive computational models on high-throughput screening data to screen thousands of chemicals against the ER. CERAPP combined multiple models developed in collaboration among 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1677 compounds provided by EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were tested using an evaluation set of 7522 chemicals collected from the literature. To overcome the limitations of single models, a consensus was built weighting models using a scoring function (0 to 1) based on their accuracies. Individual model scores ranged from 0.69 to 0.85, showing
Lack of cocaine-like discriminative-stimulus effects of σ-receptor agonists in rats.
Hiranita, Takato; Soto, Paul L; Tanda, Gianluigi; Katz, Jonathan L
2011-09-01
Previous studies demonstrated the effectiveness of selective σ-receptor (σR) agonists [1,3-di-o-tolylguanidine (DTG), PRE-084] as reinforcers in rats trained to self-administer cocaine. Similar to cocaine, these drugs increased nucleus accumbens shell dopamine levels, and effects of DTG, but not PRE-084, on dopamine seemed to be mediated by σRs. In addition, σR antagonists blocked self-administration of σR agonists, but were inactive against reinforcing and neurochemical effects of cocaine. Thus, pharmacologically distinct mechanisms likely underlie the reinforcing and neurochemical effects of σR agonists and cocaine. This study further examined the cocaine-like effects of σR agonists in rats trained to discriminate injections of cocaine from saline to assess the similarity of their subjective effects. Standard dopamine-uptake inhibitors (WIN 35,428, methylphenidate), but neither σR agonist (PRE-084, DTG), produced full cocaine-like discriminative-stimulus effects. The lack of effects of σR agonists was obtained regardless of route of administration (intraperitoneal, subcutaneous, or intravenous) or pretreatment time (5 or 30 min before sessions). The present results demonstrate differences in the discriminative-stimulus effects of cocaine and selective σR agonists, indicating that an overlap of subjective effects is not necessary for σR agonist self-administration. The previously found differences in neurochemical effects of cocaine and σR agonists may contribute to their different subjective effects.
Lack of Cocaine-Like Discriminative-Stimulus Effects of σ Receptor Agonists in Rats
Hiranita, Takato; Soto, Paul L.; Tanda, Gianluigi; Katz, Jonathan L.
2013-01-01
Previous studies demonstrated effectiveness of selective sigma-receptor (σR) agonists (DTG, PRE-084) as reinforcers in rats trained to self-administer cocaine. Like cocaine, these drugs increased nucleus accumbens shell dopamine levels, and effects of DTG, but not PRE-084, on dopamine appeared to be mediated by σRs. Additionally, σR antagonists blocked self-administration of σR agonists, but were inactive against reinforcing and neurochemical effects of cocaine. Thus pharmacologically distinct mechanisms likely underlie the reinforcing and neurochemical effects of σR agonists and cocaine. The present study further examined the cocaine-like effects of σR agonists in rats trained to discriminate injections of cocaine from saline to assess the similarity of their subjective effects. Standard dopamine-uptake inhibitors (WIN 35,428, methylphenidate), but neither σR agonist (PRE-084, DTG) produced full cocaine-like discriminative-stimulus effects. The lack of effects of σR agonists was obtained regardless of route of administration (i.p., s.c. or i.v.) or pretreatment time (5- or 30-min before sessions). The present results demonstrate differences in the discriminative-stimulus effects of cocaine and selective σR agonists, indicating that an overlap of subjective effects is not necessary for σR agonist self-administration. The previously found differences in neurochemical effects of cocaine and σR agonists may contribute to their different subjective effects. PMID:21808192
Analysis of G-Protein Coupled Receptor 30 (GPR30) on Endothelial Inflammation.
Chakrabarti, Subhadeep; Davidge, Sandra T
2016-01-01
The female sex hormone estrogen (the most common form 17-β-estradiol or E2) is known to have both anti-inflammatory and pro-inflammatory effects. Given the diversity of estrogen responses mediated through its three distinct receptors, namely, estrogen receptor α (ERα), ERβ, and the G-protein coupled receptor 30 (GPR30), it is plausible that different receptors have specific modulatory effects on inflammation in different tissues. We have shown that activation of GPR30 exerted anti-inflammatory effects as demonstrated by significant attenuation of tumor necrosis factor (TNF)-mediated upregulation of adhesion molecules in isolated human umbilical vein endothelial cells. Interestingly, estrogen alone had no such effect and blockade of classical ERs restored the anti-inflammatory effect, suggesting that this effect was dependent on GPR30 and opposed to classical ERs. These findings were further validated by the negation of anti-inflammatory GPR30 effects by classical ER agonists. This chapter focuses on multiple pharmacological options to activate GPR30 and the use of TNF activated endothelial cells as a model system for inflammatory response as assessed by adhesion molecule detection through western blotting.
Seemann, Wiebke K; Wenzel, Daniela; Schrage, Ramona; Etscheid, Justine; Bödefeld, Theresa; Bartol, Anna; Warnken, Mareille; Sasse, Philipp; Klöckner, Jessica; Holzgrabe, Ulrike; DeAmici, Marco; Schlicker, Eberhard; Racké, Kurt; Kostenis, Evi; Meyer, Rainer; Fleischmann, Bernd K; Mohr, Klaus
2017-02-01
Drug discovery strives for selective ligands to achieve targeted modulation of tissue function. Here we introduce engineered context-sensitive agonism as a postreceptor mechanism for tissue-selective drug action through a G protein-coupled receptor. Acetylcholine M 2 -receptor activation is known to mediate, among other actions, potentially dangerous slowing of the heart rate. This unwanted side effect is one of the main reasons that limit clinical application of muscarinic agonists. Herein we show that dualsteric (orthosteric/allosteric) agonists induce less cardiac depression ex vivo and in vivo than conventional full agonists. Exploration of the underlying mechanism in living cells employing cellular dynamic mass redistribution identified context-sensitive agonism of these dualsteric agonists. They translate elevation of intracellular cAMP into a switch from full to partial agonism. Designed context-sensitive agonism opens an avenue toward postreceptor pharmacologic selectivity, which even works in target tissues operated by the same subtype of pharmacologic receptor. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Lamonte, Nicole; Echo, Joyce A; Ackerman, Tsippa F; Christian, Garrison; Bodnar, Richard J
2002-03-01
The present study examined opioid receptor(s) mediation of feeding elicited by mu opioid agonists in the ventral tegmental area using general or selective opioid antagonist pretreatment. Naltrexone as well as equimolar doses of selective mu and kappa, but not delta opioid antagonists in the ventral tegmental area significantly reduced mu agonist-induced feeding, indicating a pivotal role for these receptor subtypes in the full expression of this response.
Eat it right: ER-phagy and recovER-phagy.
Loi, Marisa; Fregno, Ilaria; Guerra, Concetta; Molinari, Maurizio
2018-05-25
The endoplasmic reticulum (ER) is the site of protein, lipid, phospholipid, steroid and oligosaccharide synthesis and modification, calcium ion storage, and detoxification of endogenous and exogenous products. Its volume (and activity) must be maintained under normal growth conditions, must be expanded in a controlled manner on activation of ER stress programs and must be reduced to pre-stress size during the recovery phase that follows ER stress termination. ER-phagy is the constitutive or regulated fragmentation and delivery of ER fragments to lysosomal compartments for clearance. It gives essential contribution to the maintenance of cellular homeostasis, proteostasis, lipidostasis and oligosaccharidostasis (i.e. the capacity to produce the proteome, lipidome and oligosaccharidome in appropriate quality and quantity). ER turnover is activated on ER stress, nutrient deprivation, accumulation of misfolded polypeptides, pathogen attack and by activators of macroautophagy. The selectivity of these poorly characterized catabolic pathways is ensured by proteins displayed at the limiting membrane of the ER subdomain to be removed from cells. These proteins are defined as ER-phagy receptors and engage the cytosolic macroautophagy machinery via specific modules that associate with ubiquitin-like, cytosolic proteins of the Atg8/LC3/GABARAP family. In this review, we give an overview on selective ER turnover and on the yeast and mammalian ER-phagy receptors identified so far. © 2018 The Author(s).
Madureira, Tânia Vieira; Malhão, Fernanda; Pinheiro, Ivone; Lopes, Célia; Ferreira, Nádia; Urbatzka, Ralph; Castro, L Filipe C; Rocha, Eduardo
2015-12-01
Estrogens, estrogenic mimics and anti-estrogenic compounds are known to target estrogen receptors (ER) that can modulate other nuclear receptor signaling pathways, such as those controlled by the peroxisome proliferator-activated receptor (PPAR), and alter organelle (inc. peroxisome) morphodynamics. By using primary isolated brown trout (Salmo trutta f. fario) hepatocytes after 72 and 96h of exposure we evaluated some effects in selected molecular targets and in peroxisomal morphological features caused by: (1) an ER agonist (ethinylestradiol-EE2) at 1, 10 and 50μM; (2) an ER antagonist (ICI 182,780) at 10 and 50μM; and (3) mixtures of both (Mix I-10μM EE2 and 50μM ICI; Mix II-1μM EE2 and 10μM ICI and Mix III-1μM EE2 and 50μM ICI). The mRNA levels of the estrogenic targets (ERα, ERβ-1 and vitellogenin A-VtgA) and the peroxisome structure/function related genes (catalase, urate oxidase-Uox, 17β-hydroxysteroid dehydrogenase 4-17β-HSD4, peroxin 11α-Pex11α and PPARα) were analyzed by real-time polymerase chain reaction (RT-PCR). Stereology combined with catalase immunofluorescence revealed a significant reduction in peroxisome volume densities at 50μM of EE2 exposure. Concomitantly, at the same concentration, electron microscopy showed smaller peroxisome profiles, exacerbated proliferation of rough endoplasmic reticulum, and a generalized cytoplasmic vacuolization of hepatocytes. Catalase and Uox mRNA levels decreased in all estrogenic stimuli conditions. VtgA and ERα mRNA increased after all EE2 treatments, while ERβ-1 had an inverse pattern. The EE2 action was reversed by ICI 182,780 in a concentration-dependent manner, for VtgA, ERα and Uox. Overall, our data show the great value of primary brown trout hepatocytes to study the effects of estrogenic/anti-estrogenic inputs in peroxisome kinetics and in ER and PPARα signaling, backing the still open hypothesis of crosstalk interactions between these pathways and calling for more mechanistic experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
Calcium and ER stress mediate hepatic apoptosis after burn injury
Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A.; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N.; Boehning, Darren
2009-01-01
Abstract A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time‐points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn‐induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function – effects which may be mediated by increased calcium release by inositol 1,4,5‐trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury. PMID:20141609
Ashby, J; Tinwell, H; Pennie, W; Brooks, A N; Lefevre, P A; Beresford, N; Sumpter, J P
1999-01-01
It was recently reported that the red wine phytoestrogen resveratrol (RES) acts as a superagonist to oestrogen-responsive MCF-7 cells. This activity of RES was speculated to be relevant to the 'French paradox' in which moderate red wine consumption is reported to yield cardiovascular health benefits to humans. We report here that RES binds to oestrogen receptors (ER) isolated from rat uterus with an affinity approximately 5 orders of magnitude lower than does either the reference synthetic oestrogen diethylstilboestrol (DES) or oestradiol (E2). In comparison with E2 or DES, RES is only a weak and partial agonist in a yeast hER-alpha transcription assay and in cos-1 cell assays employing transient transfections of ER-alpha or ER-beta associated with two different ER-response elements. Resveratrol was also concluded to be inactive in immature rat uterotrophic assays conducted using three daily administrations of 0.03-120 mgkg(-1)/day(-1) RES (administered by either oral gavage or subcutaneous injection). These data weaken the suggestion that the oestrogenicity of RES may account for the reported cardiovascular protective effects of red wine consumption, and they raise questions regarding the extent to which oestrogenicity data derived for a chemical using MCF-7 cells (or any other single in vitro assay) can be used to predict the hormonal effects likely to occur in animals or humans.
Franchini, Silvia; Sorbi, Claudia; Battisti, Umberto Maria; Tait, Annalisa; Bencheva, Leda Ivanova; Cichero, Elena; Fossa, Paola; Cilia, Antonio; Prezzavento, Orazio; Ronsisvalle, Simone; Aricò, Giuseppina; Benassi, Luisa; Vaschieri, Cristina; Azzoni, Paola; Magnoni, Cristina; Brasili, Livio
2017-11-22
A new series of spirocyclic σ receptor (σR) ligands were prepared and studied. Most were found to have a high affinity and selectivity for σ 1 R; three compounds were shown to be σ 1 R agonists, while another proved to be the only σ 1 R antagonist. Only one of the σ 1 R agonists (BS148) also exhibited σ 2 R selectivity and was able to inhibit the growth of metastatic malignant melanoma cell lines without affecting normal human melanocytes. The antiproliferative activity of this compound suggested an σ 2 R agonist profile. Further, preliminary investigations indicated that the mechanism of metastatic malignant melanoma cell death induced by BS148 is due, at least in part, to apoptosis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.
Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena
2017-03-01
Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wiśniewska, Halina; Traber, Lillian D.; Lin, ChiiDean; Fan, Juanjuan; Hawkins, Hal K.; Cox, Robert A.; Wiśniewski, Kazimierz; Schteingart, Claudio D.; Landry, Donald W.; Rivière, Pierre J.-M.; Traber, Daniel L.
2014-01-01
Objective To determine if the selective vasopressin type 1a receptor (V1aR) agonist selepressin (FE 202158) is as effective as the mixed V1a/V2 receptor (V1aR/V2R) agonist vasopressor hormone arginine vasopressin (AVP) when used as a titrated first-line vasopressor therapy in an ovine model of Pseudomonas aeruginosa pneumonia-induced severe sepsis. Design Prospective, randomized, controlled laboratory experiment. Setting University animal research facility. Subjects Forty-five chronically instrumented sheep. Interventions Sheep were anesthetized, insufflated with cooled cotton smoke via tracheostomy, and P. aeruginosa were instilled into their airways. They were then placed on assisted ventilation, awakened, and resuscitated with lactated Ringer's solution titrated to maintain hematocrit ± 3% from baseline levels. If, despite fluid management, mean arterial pressure (MAP) fell by > 10 mm Hg from baseline levels, a continuous i.v. infusion of AVP or selepressin was titrated to raise and maintain MAP within 10 mm Hg of baseline. Effects of combination treatment of selepressin with the selective V2R agonist desmopressin were similarly investigated. Measurements and Main Results In septic sheep, MAP fell by ~30 mm Hg, systemic vascular resistance index (SVRI) decreased by ~50%, and ~7 L of fluid were retained over 24 h; this fluid accumulation was partially reduced by AVP and almost completely blocked by selepressin; combined infusion of selepressin and desmopressin increased fluid accumulation to levels similar to AVP treatment. Conclusions Resuscitation with the selective V1aR agonist selepressin blocked vascular leak more effectively than the mixed V1aR/V2R agonist AVP because of its lack of agonist activity at the V2R. PMID:24674922
Howe, William M; Ji, Jinzhao; Parikh, Vinay; Williams, Sarah; Mocaër, Elisabeth; Trocmé-Thibierge, Caryn; Sarter, Martin
2010-01-01
Impairments in attention are a major component of the cognitive symptoms of neuropsychiatric and neurodegenerative disorders. Using an operant sustained attention task (SAT), including a distractor condition (dSAT), we assessed the putative pro-attentional effects of the selective α4β2* nicotinic acetylcholine receptor (nAChR) agonist S 38232 in comparison with the non-selective agonist nicotine. Neither drug benefited SAT performance. However, in interaction with the increased task demands implemented by distractor presentation, the selective agonist, but not nicotine, enhanced the detection of signals during the post-distractor recovery period. This effect is consistent with the hypothesis that second-long increases in cholinergic activity (‘transients') mediate the detection of cues and that nAChR agonists augment such transients. Electrochemical recordings of prefrontal cholinergic transients evoked by S 38232 and nicotine indicated that the α4β2* nAChR agonist evoked cholinergic transients that were characterized by a faster rise time and more rapid decay than those evoked by nicotine. Blockade of the α7 nAChR ‘sharpens' nicotine-evoked transients; therefore, we determined the effects of co-administration of nicotine and the α7 nAChR antagonist methyllycaconitine on dSAT performance. Compared with vehicle and nicotine alone, this combined treatment significantly enhanced the detection of signals. These results indicate that compared with nicotine, α4β2* nAChR agonists significantly enhance attentional performance and that the dSAT represents a useful behavioral screening tool. The combined behavioral and electrochemical evidence supports the hypothesis that nAChR agonist-evoked cholinergic transients, which are characterized by rapid rise time and fast decay, predict robust drug-induced enhancement of attentional performance. PMID:20147893
Bezzina, G; Body, S; Cheung, T H C; Hampson, C L; Bradshaw, C M; Glennon, J C; Szabadi, E
2015-02-01
5-Hydroxytryptamine2C (5-HT2C) receptor agonists reduce the breakpoint in progressive ratio schedules of reinforcement, an effect that has been attributed to a decrease of the efficacy of positive reinforcers. However, a reduction of the breakpoint may also reflect motor impairment. Mathematical models can help to differentiate between these processes. The effects of the 5-HT2C receptor agonist Ro-600175 ((αS)-6-chloro-5-fluoro-α-methyl-1H-indole-1-ethanamine) and the non-selective 5-HT receptor agonist 1-(m-chlorophenyl)piperazine (mCPP) on rats' performance on a progressive ratio schedule maintained by food pellet reinforcers were assessed using a model derived from Killeen's Behav Brain Sci 17:105-172, 1994 general theory of schedule-controlled behaviour, 'mathematical principles of reinforcement'. Rats were trained under the progressive ratio schedule, and running and overall response rates in successive ratios were analysed using the model. The effects of the agonists on estimates of the model's parameters, and the sensitivity of these effects to selective antagonists, were examined. Ro-600175 and mCPP reduced the breakpoint. Neither agonist significantly affected a (the parameter expressing incentive value), but both agonists increased δ (the parameter expressing minimum response time). The effects of both agonists could be attenuated by the selective 5-HT2C receptor antagonist SB-242084 (6-chloro-5-methyl-N-{6-[(2-methylpyridin-3-yl)oxy]pyridin-3-yl}indoline-1-carboxamide). The effect of mCPP was not altered by isamoltane, a selective 5-HT1B receptor antagonist, or MDL-100907 ((±)2,3-dimethoxyphenyl-1-(2-(4-piperidine)methanol)), a selective 5-HT2A receptor antagonist. The results are consistent with the hypothesis that the effect of the 5-HT2C receptor agonists on progressive ratio schedule performance is mediated by an impairment of motor capacity rather than by a reduction of the incentive value of the food reinforcer.
2016-08-01
other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...RESPONSIBLE PERSON USAMRMC a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified Unclassified 19b. TELEPHONE...alter tumor growth when given 7 days after tumor challenge. When we added αB7-H1 to LY, we got a borderline significant improvement in survival in
Pharmacological Studies of NOP Receptor Agonists as Novel Analgesics
2010-05-01
hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro- 2H- benzimidazol -2-one (J-113397). J Med Chem 42: 5061–5063. Ko MC, Butelman ER, Traynor JR, Woods JH (1998a...ethyl-1,3-dihydro-2H- benzimidazol -2-one) was used to compare their antagonist effects against both morphine (100 nmol)- and UFP-112 (10 nmol)-induced...3S,4S)-1- (Cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl- 1,3-dihydro-2H- benzimidazol -2-one) (Tocris Bioscience, Ellisville, MO), and
2008-05-01
Engen , for corroborative studies of ER dynamics using hydrogen deuterium exchange mass spectrometry (HDXMS). The more detailed mass spectroscopic...American Chemical Society, New Orleans, LA, April 6-10, 2008 3. Stefano V Gulla1, Kalman Hideg,2 David E. Budil, Characterization of spin labeled...estradiol as a probe for Estrogen Receptor binding interactions, 235th National Meeting of the American Chemical Society, New Orleans, LA, April 6-10, 2008
Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie
2003-12-01
Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.
Design and Synthesis of Selective Estrogen Receptor beta Agonists and Their Pharmacology
NASA Astrophysics Data System (ADS)
Perera, K. L. Iresha Sampathi
Estrogens (17beta-estradiol, E2) have garnered considerable attention in influencing cognitive process in relation to phases of the menstrual cycle, aging and menopausal symptoms. However, hormone replacement therapy can have deleterious effects leading to breast and endometrial cancer, predominantly mediated by estrogen receptor-alpha (ERalpha) the major isoform present in the mammary gland and uterus. Further evidence supports a dominant role of estrogen receptor-beta (ERbeta) for improved cognitive effects such as enhanced hippocampal signaling and memory consolidation via estrogen activated signaling cascades. Creation of the ERbeta selective ligands is challenging due to high structural similarity of both receptors. Thus far, several ERbeta selective agonists have been developed, however, none of these have made it to clinical use due to their lower selectivity or considerable side effects. The research in this dissertation involved the design of non-steroidal ERbeta selective agonists for hippocampal memory consolidation. The step-wise process to achieve the ultimate goal of this research includes: (1) design and synthesis of (4-hydroxyphenyl)cyclohexyl or cycloheptyl derivatives, (2) in vitro biological evaluation of synthesized compounds to identify highly potent and selective candidates, and (3) in vivo biological evaluation of selected candidates for hippocampal memory consolidation. Several (4-hydroxyphenyl)cyclohexyl or cycloheptyl derivatives were synthesized having structural alterations on both aromatic and cyclohexyl/heptyl ring scaffolds. ERbeta agonist potency was initially evaluated in TR-FRET ERbeta ligand binding assay and compounds having high potency were re-evaluated in functional cell based assays for potency and ERbeta vs. ERalpha selectivity. Two compounds from each series, ISP 163-PK4 and ISP 358-2 were identified as most selective ERbeta agonists. Both compounds revealed high metabolic stability, solubility and no cross reactivity towards other nuclear receptors. In vivo efficiency of ISP 358-2 was evaluated in ovariectomized mice (C57BL/6) with object recognition (OR) and object placement (OP) tasks. The results indicate improved memory consolidation at 100 pg/ hemisphere and 0.5 mg/Kg via DH infusion and IP injection respectively. The information learned from this project serves as a foundation for development of other cycloheptyl/hexyl based ERbeta agonists or antagonists having acceptable pharmacological profiles.
Joseph, Christine G; Wang, Xiang S; Scott, Joseph W; Bauzo, Rayna M; Xiang, Zhimin; Richards, Nigel G; Haskell-Luevano, Carrie
2004-12-30
The agouti-related protein (AGRP) is an endogenous antagonist of the centrally expressed melanocortin receptors. The melanocortin-4 receptor (MC4R) is involved in energy homeostasis, food intake, sexual function, and obesity. The endogenous hAGRP protein is 132 amino acids in length, possesses five disulfide bridges at the C-terminus of the molecule, and is expressed in the hypothalamus of the brain. We have previously reported that a monocyclic hAGRP(103-122) peptide is an antagonist at the melanocortin receptors expressed in the brain. Stereochemical inversion from the endogenous l- to d-isomers of single or multiple amino acid modifications in this monocyclic truncated hAGRP sequence resulted in molecules that are converted from melanocortin receptor antagonists into melanocortin receptor agonists. The Asp-Pro-Ala-Ala-Thr-Ala-Tyr-cyclo[Cys-Arg-DPhe-DPhe-Asn-Ala-Phe-Cys]-Tyr-Ala-Arg-Lys-Leu peptide resulted in a 60 nM melanocortin-1 receptor agonist that is 100-fold selective versus the mMC4R, 1000-fold selective versus the mMC3R, and ca. 180-fold selective versus the mMC5R. In attempts to identify putative ligand-receptor interactions that may be participating in the agonist induced stimulation of the MC4R, selected ligands were docked into a homology molecular model of the mMC4R. These modeling studies have putatively identified hAGRP ligand DArg111-mMC4RAsn115 (TM3) and the hAGRP DPhe113-mMC4RPhe176 (TM4) interactions as important for agonist activity.
NASA Astrophysics Data System (ADS)
Jew, Jamison; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel
2017-02-01
Selective removal of caries lesions with high precision is best accomplished using lasers operating at high pulse repetition rates utilizing small spot sizes. Conventional flash-lamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped solid-state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. Microradiography was used to determine the mineral content of the demineralized dentin of 200-μm thick sections with natural caries lesions prior to laser ablation. The purpose of this study was to explore the use of a DPSS Er:YAG laser for the selective removal of demineralized dentin and natural occlusal lesions on extracted teeth.
Hall, J. M.; Morton, I. K.
1991-01-01
1. This study investigated the recognition characteristics of neurokinin receptors mediating potentiation of the contractile response to field stimulation in the guinea-pig vas deferens. 2. A predominant NK1 receptor population is strongly suggested by the relative activities of the common naturally-occurring tachykinin agonists, which fall within less than one order of magnitude. This conclusion is supported by the relative activities of the synthetic NK1 selective agonists substance P methyl ester, [Glp6,L-Pro9]-SP(6-11) and delta-aminovaleryl-[L-Pro9,N-MeLeu10]- SP(7-11) (GR73632) which were 0.78, 9.3 and 120 as active as substance P, respectively. Furthermore, the NK2 selective agonist [Lys3, Gly8,-R-gamma-lactam-Leu9]-NKA(3-10) (GR64349) was active only at the highest concentrations tested (greater than 10 microM), and the NK3 selective agonist, succ-[Asp6,N-MePhe8]-SP(6-11) (senktide) was essentially inactive (10 nM-32 microM). 3. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-SP(1-11) antagonized responses to neurokinin A, neurokinin B, physalaemin, eledoisin, [Glp6,D-Pro9]-SP(6-11), GR73632 and GR64349 (apparent pKB s 5.6-6.2), but was less potent in antagonizing responses to substance P, substance P methyl ester and [Glp6,L-Pro9]-SP(6-11) (apparent pKB s less than or equal to 5.0-5.0). 4. In contrast, the recently developed NK1-selective receptor antagonist [D-Pro9[Spiro-gamma-lactam]Leu10,Trp11]-SP(1-11) (GR71251) did not produce agonist-dependent pKB estimates. Schild plot analysis indicated a competitive interaction with a single receptor population where the antagonist had an estimated overall pKB of 7.58 +/- 0.13 for the four agonists of differing subtype selectivity tested (GR73632, GR64349, substance P methyl ester and neurokinin B).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1707714
Directly Observable Behavioral Effects of Lorcaserin in Rats.
Serafine, Katherine M; Rice, Kenner C; France, Charles P
2015-12-01
(1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine (lorcaserin) is approved by the United States Food and Drug Administration for treating obesity, and its therapeutic effects are thought to result from agonist activity at serotonin (5-HT)2C receptors. Lorcaserin has affinity for other 5-HT receptor subtypes, although its activity at those subtypes is not fully described. The current study compared the behavioral effects of lorcaserin (0.0032-32.0 mg/kg) to the effects of other 5-HT receptor selective agonists in rats (n = 8). The 5-HT2C receptor selective agonist 1-(3-chlorophenyl)piperazine (mCPP, 0.032-1.0 mg/kg) and lorcaserin induced yawning which was attenuated by the 5-HT2C receptor selective antagonist 6-chloro-5-methyl-N-(6-[(2-methylpyridin-3-yl)oxy]pydidin-3-yl)indoline-1-carboxamide (1.0 mg/kg). The 5-HT2A receptor selective agonist 2,5-dimethoxy-4-methylamphetamine (0.1-3.2 mg/kg) induced head twitching, which was attenuated by the 5-HT2A receptor selective antagonist R-(+)-2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL 100907, 0.01 mg/kg), lorcaserin (3.2 mg/kg), and mCPP (3.2 mg/kg). In rats pretreated with MDL 100907 (1.0 mg/kg), lorcaserin also induced head twitching. At larger doses, lorcaserin produced forepaw treading, which was attenuated by the 5-HT1A receptor selective antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridyl)cyclohexanecarboxamide (0.178 mg/kg). While the behavioral effects of lorcaserin in rats are consistent with it having agonist activity at 5-HT2C receptors, these data suggest that at larger doses it also has agonist activity at 5-HT2A and possibly 5-HT1A receptors. Mounting evidence suggests that 5-HT2C receptor agonists might be effective for treating drug abuse. A more complete description of the activity of lorcaserin at 5-HT receptor subtypes will facilitate a better understanding of the mechanisms that mediate its therapeutic effects. U.S. Government work not protected by U.S. copyright.
Directly Observable Behavioral Effects of Lorcaserin in Rats
Serafine, Katherine M.; Rice, Kenner C.
2015-01-01
(1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine (lorcaserin) is approved by the United States Food and Drug Administration for treating obesity, and its therapeutic effects are thought to result from agonist activity at serotonin (5-HT)2C receptors. Lorcaserin has affinity for other 5-HT receptor subtypes, although its activity at those subtypes is not fully described. The current study compared the behavioral effects of lorcaserin (0.0032–32.0 mg/kg) to the effects of other 5-HT receptor selective agonists in rats (n = 8). The 5-HT2C receptor selective agonist 1-(3-chlorophenyl)piperazine (mCPP, 0.032–1.0 mg/kg) and lorcaserin induced yawning which was attenuated by the 5-HT2C receptor selective antagonist 6-chloro-5-methyl-N-(6-[(2-methylpyridin-3-yl)oxy]pydidin-3-yl)indoline-1-carboxamide (1.0 mg/kg). The 5-HT2A receptor selective agonist 2,5-dimethoxy-4-methylamphetamine (0.1–3.2 mg/kg) induced head twitching, which was attenuated by the 5-HT2A receptor selective antagonist R-(+)-2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL 100907, 0.01 mg/kg), lorcaserin (3.2 mg/kg), and mCPP (3.2 mg/kg). In rats pretreated with MDL 100907 (1.0 mg/kg), lorcaserin also induced head twitching. At larger doses, lorcaserin produced forepaw treading, which was attenuated by the 5-HT1A receptor selective antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridyl)cyclohexanecarboxamide (0.178 mg/kg). While the behavioral effects of lorcaserin in rats are consistent with it having agonist activity at 5-HT2C receptors, these data suggest that at larger doses it also has agonist activity at 5-HT2A and possibly 5-HT1A receptors. Mounting evidence suggests that 5-HT2C receptor agonists might be effective for treating drug abuse. A more complete description of the activity of lorcaserin at 5-HT receptor subtypes will facilitate a better understanding of the mechanisms that mediate its therapeutic effects. PMID:26384326
Mosquera, Laurivette; Colón, Jennifer M; Santiago, José M; Torrado, Aranza I; Meléndez, Margarita; Segarra, Annabell C; Rodríguez-Orengo, José F; Miranda, Jorge D
2014-05-02
17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition. Copyright © 2014 Elsevier B.V. All rights reserved.
CCPG1, a cargo receptor required for reticulophagy and endoplasmic reticulum proteostasis.
Smith, Matthew D; Wilkinson, Simon
2018-06-19
The importance of selective macroautophagy/autophagy in cellular health is increasingly evident. The selective degradation of portions of the endoplasmic reticulum (ER), or reticulophagy, is an emerging example but requires further mechanistic detail and broad evidence of physiological relevance. In a recent study, we identified CCPG1, an ER-resident transmembrane protein that can bind to Atg8-family proteins and, independently and discretely, to RB1CC1/FIP200. Both of these interactions are required to facilitate CCPG1's function as a reticulophagy cargo receptor. CCPG1 transcripts are inducible by ER stress, providing a direct link between ER stress and reticulophagy. In vivo, CCPG1 prevents the hyper-accumulation of insoluble protein within the ER lumen of pancreatic acinar cells and alleviates ER stress. Accordingly, CCPG1 loss sensitizes the exocrine pancreas to tissue injury.
Wolfe, Monica; Wisniewska, Halina; Tariga, Hiroe; Ibanez, Gerardo; Collins, James C; Wisniewski, Kazimierz; Qi, Steve; Srinivasan, Karthik; Hargrove, Diane; Lindstrom, Beatriz Fioravanti
2018-05-21
Oxytocin (OT) continues to inspire much research due to its diverse physiological effects. While the best-understood actions of OT are uterine contraction and milk ejection, OT is also implicated in maternal and bonding behaviors, and potentially in CNS disorders such as autism, schizophrenia, and pain. The dissection of the mechanism of action of OT is complicated by the fact that this peptide activates not only its cognate receptor but also vasopressin type 1a (V1a) receptors. In this study, we evaluated OT and a selective OT receptor (OTR) agonist, FE 204409, in an automated assay that measures rat locomotor activity. The results showed: 1) Subcutaneous (sc) administration of OT decreased locomotor behavior (distance traveled, stereotypy, and rearing). This effect was reversed by a V1a receptor (V1aR) antagonist ([Pmp1,Tyr(ME)2]AVP, sc), suggesting that OT acts through peripheral V1aR to inhibit locomotor activity. 2) A selective OTR agonist (FE 204409, sc) increased stereotypy. This effect was reversed by an OTR antagonist dosed icv, suggesting a central OTR site of action. Our findings identify distinct behavioral effects for OT and the selective agonist FE 204409, adding to the growing body of evidence that the V1aR mediates many effects attributed to OT and that peptides administered systemically at supra-physiological doses may activate receptors in the brain. Our studies further emphasize the importance of utilizing selective agonists and antagonists to assess therapeutic indications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Alfonso, Salgado; Benito, Ordaz; Alicia, Sampieri; Angélica, Zepeda; Patricia, Glazebrook; Diana, Kunze; Vaca, Luis; Luis, Vaca
2008-04-01
Members of the Canonical Transient Receptor Potential (TRPC) family of ionic channels are able to form homo- and heterotetrameric channels. Depending on the study, TRPC1 has been detected on both the surface and inside the cell, probably in the endoplasmic reticulum (ER). Likewise, TRPC1 has been described both as a store-operated channel and as one unable to function when forming a homotetramer. It is possible that the apparent differences in the expression and function of TRPC1 are due to its association with other proteins, possibly from the same TRPC family. In the present study we used confocal microscopy and a fluorescently tagged TRPC1 to examine the localization of this protein when co-expressed with other members of the TRPC family. Whole-cell and single channel electrophysiological recordings were conducted to study the function of TRPC1 expressed alone or co-expressed with other members of the TRPC family. A FRET-based calcium sensor fused to TRPC1 was used to assess the functionality of the intracellular TRPC1. Our results showed that TRPC4 and TRPC5 were able to increase the amount of membrane-expressed TRPC1 as evaluated by confocal microscopy and patch clamp recordings. The FRET-based calcium sensor fused to TRPC1 strongly suggests that this protein forms ER-expressed functional homotetrameric channels activated by agonists coupled to the IP(3) cascade. These results indicate that TRPC1 is a multifunctional protein able to form intracellular calcium release channels when expressed alone, and plasma membrane channels when co-expressed with TRPC4 or TRPC5, but not TRPC3 or TRPC6. Both (ER and plasma membrane) forms of the channel are activated upon addition of agonists coupled to the IP(3) cascade.
A Potent and Site-Selective Agonist of TRPA1.
Takaya, Junichiro; Mio, Kazuhiro; Shiraishi, Takuya; Kurokawa, Tatsuki; Otsuka, Shinya; Mori, Yasuo; Uesugi, Motonari
2015-12-23
TRPA1 is a member of the transient receptor potential (TRP) cation channel family that is expressed primarily on sensory neurons. This chemosensor is activated through covalent modification of multiple cysteine residues with a wide range of reactive compounds including allyl isothiocyanate (AITC), a spicy component of wasabi. The present study reports on potent and selective agonists of TRPA1, discovered through screening 1657 electrophilic molecules. In an effort to validate the mode of action of hit molecules, we noted a new TRPA1-selective agonist, JT010 (molecule 1), which opens the TRPA1 channel by covalently and site-selectively binding to Cys621 (EC50 = 0.65 nM). The results suggest that a single modification of Cys621 is sufficient to open the TRPA1 channel. The TRPA1-selective probe described herein might be useful for further mechanistic studies of TRPA1 activation.
Iwabuchi, Erina; Miki, Yasuhiro; Ono, Katsuhiko; Onodera, Yoshiaki; Suzuki, Takashi; Hirakawa, Hisashi; Ishida, Takanori; Ohuchi, Noriaki; Sasano, Hironobu
2017-01-01
Estrogen receptor (ER) is required for carcinoma cell proliferation in the great majority of breast cancer and also functions as a dimer. ER dimeric proteins have been largely identified by BRET/FRET analyses but their in situ visualization have not yet been reported. Recently, in situ Proximity Ligation Assay (PLA) has been developed as the methods detecting protein interactions in situ. Therefore, in this study we firstly demonstrated the dimerization of ERα in breast carcinoma cell lines and tissues using PLA. The human breast carcinoma cell lines MCF-7, T-47D and MDA-MB-231 were used in this study. Cells were treated with ER agonist or antagonist and fixed in 4% PFA, and ER dimers were subsequently detected using PLA. The evaluation of ER dimers in breast carcinoma cell lines were quantified by measuring the area of dots localized in the nuclei using image analysis. We also firstly demonstrated the visualization of ER dimer patterns in 10% formalin-fixed paraffin-embedded tissues of breast cancer using PLA technique. Estradiol (E2) administration induced ERα homodimers in the nuclei of MCF-7 and T-47D but not in ER-negative MDA-MB-231. 4-OH tamoxifen also induced ERα homodimers but the subcellular localization of these ERα homodimers was predominant in cytoplasm instead of the nuclei induced by E2 treatment. ICI182,780 treatment did decrease the number of formation of ERα homodimers in MCF-7. In breast cancer patients, ERα PLA score was significantly correlated positively with ERα- or PgR (progesterone receptor) immunohistochemical scores and inversely with Ki-67-labeling index, respectively. We also demonstrated the ERα/β heterodimer as well as ERα homodimers in both breast carcinoma cell lines and surgical pathology specimens. In summary, we did firstly succeed in the visualization of ER dimeric proteins using PLA method. The evaluation of ER dimer patterns could provide pivotal information as to the prediction of response to endocrine therapy of breast cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payton-Stewart, Florastina; Tilghman, Syreeta L.; Williams, LaKeisha G.
Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets formore » developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules upregulate ERβ activity while down regulating that of ERα.« less
New antiobesity agents: lorcaserin (Belviq) and phentermine/topiramate ER (Qsymia).
Shyh, Grace; Cheng-Lai, Angela
2014-01-01
Obesity is a risk factor for a wide range of conditions, including cardiovascular disease. Although lifestyle modifications remain the cornerstone for the management of obesity, pharmacologic agents may be a helpful addition to patients who have comorbidities and do not respond adequately to diet and exercise. Lorcaserin and phentermine/topiramate ER are 2 long-awaited agents, approved in 2012 for obesity management, 13 years since orlistat received US Food and Drug Administration approval in 1999. Lorcaserin is a serotonin agonist, whereas phentermine/topiramate is a combination of a sympathomimetic agent and an antiepileptic drug; both these agents have been shown to reduce weight significantly and improve cardiovascular and metabolic parameters, such as blood pressure, lipids, and HbA1C. This article reviews the pharmacology and clinical efficacy and safety of each of these agents. The differences among the three available agents for long-term management of obesity will also be examined.
Mikami, Tadayoshi; Ochi, Yasuo; Suzuki, Keiko; Saito, Toshiyuki; Sugie, Yutaka; Sakakibara, Minoru
2008-04-01
5-Hydroxytryptamine (5-HT) receptors and dopamine(2) (D(2)) receptor modulate gastrointestinal motility. Gastroprokinetic agents that act on several 5-HT receptor subtypes and/or D(2) receptors are used clinically. Although the 5-HT(4) receptor is known to mediate the gastroprokinetic effects of these agents, the absence of highly selective 5-HT(4) receptor agonists has made it difficult to confirm the physiological consequences of selective 5-HT(4) receptor stimulation. In this study, we report the in vitro pharmacological profiles and the in vivo gastroprokinetic effects of 5-amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel, potent, and selective 5-HT(4) partial agonist. Compared with preceding 5-HT(4) agonists such as cisapride, mosapride, and tegaserod, CJ-033,466 had a superior in vitro profile, with nanomolar agonistic activities for the 5-HT(4) receptor and 1000-fold greater selectivity for the 5-HT(4) receptor over other 5-HT and D(2) receptors. In vivo studies in conscious dogs showed that CJ-033,466 dose-dependently stimulated gastric antral motility in both the fasted and postprandial states at the same dose range and that it was 30 times more potent than cisapride. Furthermore, CJ-033,466 accelerated the gastric emptying rate in a gastroparesis dog model at the minimally effective dose established in the gastric motility study. In conclusion, CJ-033,466 is a potent and highly selective 5-HT(4) agonist that stimulates physiologically coordinated gastric motility, and it has no activity on other 5-HT receptor subtypes and D(2) receptors. Therefore, CJ-033,466 could be used to treat gastroparesis, providing better gastroprokinetics and reduced side effects mediated by the other receptors.
Saitoh, Akiyoshi; Nagase, Hiroshi
2016-10-28
The pharmacology of the delta opioid receptor (DOR) has lagged, mainly due to the lack of an agonist with high potency and selectivity in vivo. The DOR is now receiving increasing attention, and there has been progress in the synthesis of better novel ligands. The discovery of a selective receptor DOR antagonist, naltrindole (NTI), stimulated the design and synthesis of (±)TAN-67, which was designed based on the message-address concept and the accessory site theory. Intensive studies using (±)TAN-67 determined the DOR-mediated various pharmacological effects, such as antinociceptive effects for painful diabetic neuropathy and cardiovascular protective effects. We improved the agonist activity of TAN-67 to afford SN-28, which was modified to KNT-127, a novel compound that improved the blood-brain barrier permeability. In addition, KNT-127 showed higher selectivity for the DOR and had potent agonist activity following systemic administration. Interestingly, KNT-127 produced no convulsive effects, unlike prototype DOR agonists. The KNT-127 type derivatives with a quinolinomorphinan structure are expected to be promising candidates for the development of therapeutic DOR agonists.
In silico methods in the discovery of endocrine disrupting chemicals.
Vuorinen, Anna; Odermatt, Alex; Schuster, Daniela
2013-09-01
The prevalence of sex hormone-dependent cancers, reproductive problems, obesity, and cardiovascular complications has risen especially in the Western world. It has been suggested, that the exposure to various endocrine disrupting chemicals (EDCs) contributes to the development and progression of these diseases. EDCs can interfere with various proteins: nuclear steroid hormone receptors, such as estrogen-, androgen-, glucocorticoid- and mineralocorticoid receptors (ER, AR, GR, MR), and enzymes that are involved in steroid hormone synthesis and metabolism, for example hydroxysteroid dehydrogenases (HSDs). Numerous chemicals are known as endocrine disruptors. However, the mechanism of action for most of these EDCs is still unknown. It is exhaustive and time consuming to test in vitro all chemicals - potential EDCs - used in industry, agriculture or as food preservatives against their effects on the endocrine system. Computational methods, such as virtual screening, quantitative structure activity relationships and docking, are already well recognized and used in drug development. The same methods could also aid the research on EDCs. So far, the computational methods in the search of EDCs have been retrospective. There are, however, some prospective studies reporting the use of in silico methods: five studies reporting the identification of previously unknown 17β-HSD3 inhibitors, MR agonists, and ER antagonists/agonists. This review provides an overview of case studies and in silico methods that are used in the search of EDCs. This article is part of a Special Issue entitled 'CSR 2013'. Copyright © 2013 Elsevier Ltd. All rights reserved.
Reprint of "In silico methods in the discovery of endocrine disrupting chemicals".
Vuorinen, Anna; Odermatt, Alex; Schuster, Daniela
2015-09-01
The prevalence of sex hormone-dependent cancers, reproductive problems, obesity, and cardiovascular complications has risen especially in the Western world. It has been suggested, that the exposure to various endocrine disrupting chemicals (EDCs) contributes to the development and progression of these diseases. EDCs can interfere with various proteins: nuclear steroid hormone receptors, such as estrogen-, androgen-, glucocorticoid- and mineralocorticoid receptors (ER, AR, GR, MR), and enzymes that are involved in steroid hormone synthesis and metabolism, for example hydroxysteroid dehydrogenases (HSDs). Numerous chemicals are known as endocrine disruptors. However, the mechanism of action for most of these EDCs is still unknown. It is exhaustive and time consuming to test in vitro all chemicals - potential EDCs - used in industry, agriculture or as food preservatives against their effects on the endocrine system. Computational methods, such as virtual screening, quantitative structure activity relationships and docking, are already well recognized and used in drug development. The same methods could also aid the research on EDCs. So far, the computational methods in the search of EDCs have been retrospective. There are, however, some prospective studies reporting the use of in silico methods: five studies reporting the identification of previously unknown 17β-HSD3 inhibitors, MR agonists, and ER antagonists/agonists. This review provides an overview of case studies and in silico methods that are used in the search of EDCs. This article is part of a Special Issue entitled 'CSR 2013'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gopishetty, Bhaskar; Zhang, Suhong; Kharkar, Prashant S.; Antonio, Tamara; Reith, Maarten; Dutta, Aloke K.
2013-01-01
The goal of the present study was to explore, in our previously developed hybrid template, the effect of introduction of additional heterocyclic rings (mimicking catechol hydroxyl groups as bioisosteric replacement) on selectivity and affinity for the D3 versus D2 receptor. In addition, we wanted to explore the effect of derivatization of functional groups of the agonist binding moiety in compounds developed by us earlier from the hybrid template. Binding affinity (Ki) of the new compounds was measured with tritiated spiperone as the radioligand and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed in the GTPγS binding assay. In the imidazole series, compound 10a exhibited the highest D3 affinity whereas the indole derivative 13 exhibited similar high D3 affinity. Functionalization of the amino group in agonist (+)-9d with different sulfonamides derivatives improved the D3 affinity significantly with (+)-14f exhibiting the highest affinity. However, functionalization of the hydroxyl and amino groups of 15 and (+)-9d, known agonist and partial agonist, to sulfonate ester and amide in general modulated the affinity. In both cases loss of agonist potency resulted from such derivatization. PMID:23623679
Antinociceptive action of NOP and opioid receptor agonists in the mouse orofacial formalin test.
Rizzi, A; Ruzza, C; Bianco, S; Trapella, C; Calo', G
2017-08-01
Nociceptin/orphanin FQ (N/OFQ) modulates several biological functions, including pain transmission via selective activation of a specific receptor named NOP. The aim of this study was the investigation of the antinociceptive properties of NOP agonists and their interaction with opioids in the trigeminal territory. The orofacial formalin (OFF) test in mice was used to investigate the antinociceptive potential associated to the activation of NOP and opioid receptors. Mice subjected to OFF test displayed the typical biphasic nociceptive response and sensitivity to opioid and NSAID drugs. Mice knockout for the NOP gene displayed a robust pronociceptive phenotype. The NOP selective agonist Ro 65-6570 (0.1-1mgkg -1 ) and morphine (0.1-10mgkg -1 ) elicited dose dependent antinociceptive effects in the OFF with the alkaloid showing larger effects; the isobologram analysis of their actions demonstrated an additive type of interaction. The mixed NOP/opioid receptor agonist cebranopadol elicited potent (0.01-0.1mgkg -1 ) and robust antinociceptive effects. In the investigated dose range, all drugs did not modify the motor performance of the mice in the rotarod test. Collectively the results of this study demonstrated that selective NOP agonists and particularly mixed NOP/opioid agonists are worthy of development as innovative drugs to treat painful conditions of the trigeminal territory. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterization of the hypothermic effects of imidazoline I2 receptor agonists in rats
Thorn, David A; An, Xiao-Fei; Zhang, Yanan; Pigini, Maria; Li, Jun-Xu
2012-01-01
BACKGROUND AND PURPOSE Imidazoline I2 receptors have been implicated in several CNS disorders. Although several I2 receptor agonists have been described, no simple and sensitive in vivo bioassay is available for studying I2 receptor ligands. This study examined I2 receptor agonist-induced hypothermia as a functional in vivo assay of I2 receptor agonism. EXPERIMENTAL APPROACH Different groups of rats were used to examine the effects of I2 receptor agonists on the rectal temperature and locomotion. The pharmacological mechanisms were investigated by combining I2 receptor ligands and different antagonists. KEY RESULTS All the selective I2 receptor agonists examined (2-BFI, diphenyzoline, phenyzoline, CR4056, tracizoline, BU224 and S22687, 3.2–56 mg·kg–1, i.p.) dose-dependently and markedly decreased the rectal temperature (hypothermia) in rats, with varied duration of action. Pharmacological mechanism of the observed hypothermia was studied by combining the I2 receptor agonists (2-BFI, BU224, tracizoline and diphenyzoline) with imidazoline I2 receptor/ α2 adrenoceptor antagonist idazoxan, selective I1 receptor antagonist efaroxan, α2 adrenoceptor antagonist/5-HT1A receptor agonist yohimbine. Idazoxan but not yohimbine or efaroxan attenuated the hypothermic effects of 2-BFI, BU224, tracizoline and diphenyzoline, supporting the I2 receptor mechanism. In contrast, both idazoxan and yohimbine attenuated hypothermia induced by the α2 adrenoceptor agonist clonidine. Among all the I2 receptor agonists studied, only S22687 markedly increased the locomotor activity in rats. CONCLUSIONS AND IMPLICATIONS Imidazoline I2 receptor agonists can produce hypothermic effects, which are primarily mediated by I2 receptors. These data suggest that I2 receptor agonist-induced hypothermia is a simple and sensitive in vivo assay for studying I2 receptor ligands. PMID:22324428
Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N
1999-01-01
The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328
2016-01-01
Novel 1-, 5-, and 8-substituted analogues of sumanirole (1), a dopamine D2/D3 receptor (D2R/D3R) agonist, were synthesized. Binding affinities at both D2R and D3R were higher when determined in competition with the agonist radioligand [3H]7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT) than with the antagonist radioligand [3H]N-methylspiperone. Although 1 was confirmed as a D2R-preferential agonist, its selectivity in binding and functional studies was lower than previously reported. All analogues were determined to be D2R/D3R agonists in both GoBRET and mitogenesis functional assays. Loss of efficacy was detected for the N-1-substituted analogues at D3R. In contrast, the N-5-alkyl-substituted analogues, and notably the n-butyl-arylamides (22b and 22c), all showed improved affinity at D2R over 1 with neither a loss of efficacy nor an increase in selectivity. Computational modeling provided a structural basis for the D2R selectivity of 1, illustrating how subtle differences in the highly homologous orthosteric binding site (OBS) differentially affect D2R/D3R affinity and functional efficacy. PMID:27035329
Zhang, Xuqing; Li, Xiaojie; Allan, George F; Sbriscia, Tifanie; Linton, Olivia; Lundeen, Scott G; Sui, Zhihua
2007-08-09
A novel series of pyrazolines 2 have been designed, synthesized, and evaluated by in vivo screening as tissue-selective androgen receptor modulators (SARMs). Structure-activity relationships (SAR) were investigated at the R1 to R6 positions as well as the core pyrazoline ring and the anilide linker. Overall, strong electron-withdrawing groups at the R1 and R2 positions and a small group at the R5 and R6 position are optimal for AR agonist activity. The (S)-isomer of 7c exhibits more potent AR agonist activity than the corresponding (R)-isomer. (S)-7c exhibited an overall partial androgenic effect but full anabolic effect via oral administration in castrated rats. It demonstrated a noticeable antiandrogenic effect on prostate in intact rats with endogenous testosterone. Thus, (S)-7c is a tissue-selective nonsteroidal androgen receptor modulator with agonist activity on muscle and mixed agonist and antagonist activity on prostate.
Mixed Kappa/Mu Opioid Receptor Agonists: The 6β-Naltrexamines
Cami-Kobeci, Gerta; Neal, Adrian P.; Bradbury, Faye A.; Purington, Lauren C.; Aceto, Mario D.; Harris, Louis S.; Lewis, John W.; Traynor, John R.; Husbands, Stephen M.
2011-01-01
Ligands from the naltrexamine series have consistently demonstrated agonist activity at kappa opioid receptors (KOR), with varying activity at the mu opioid receptor (MOR). Various 6β-cinnamoylamino derivatives were made with the aim of generating ligands with a KOR agonist/MOR partial agonist profile, as ligands with this activity may be of interest as treatment agents for cocaine abuse. The ligands all displayed the desired high affinity, non-selective binding in vitro and in the functional assays were high efficacy KOR agonists with some partial agonist activity at MOR. Two of the new ligands (12a, 12b) have been evaluated in vivo, with 12a acting as a KOR agonist, and therefore somewhat similar to the previously evaluated analogues 3–6, while 12b displayed predominant MOR agonist activity. PMID:19253970
1985-01-01
We have used quantitative electron microscope autoradiography to study uptake and distribution of arachidonate in HSDM1C1 murine fibrosarcoma cells and in EPU-1B, a mutant HSDM1C1 line defective in high affinity arachidonate uptake. Cells were labeled with [3H]arachidonate for 15 min, 40 min, 2 h, or 24 h. Label was found almost exclusively in cellular phospholipids; 92-96% of incorporated radioactivity was retained in cells during fixation and tissue processing. All incorporated radioactivity was found to be associated with cellular membranes. Endoplasmic reticulum (ER) contained the bulk of [3H]arachidonate at all time points in both cell types, while mitochondria, which contain a large portion of cellular membrane, were labeled slowly and to substantially lower specific activity. Plasma membrane (PM) also labeled slowly, achieving a specific activity only one-sixth that of ER at 15 min in HSDM1C1 cells (6% of total label) and one-third of ER in EPU-1B (10% of total label). Nuclear membrane (NM) exhibited the highest specific activity of labeling at 15 min in HSDM1C1 cells (twice that of ER) but was not preferentially labeled in the mutant. Over 24 h, PM label intensity increased to that of ER in both cell lines. However, NM activity diminished in HSDM1C1 cells by 24 h to a small fraction of that in ER. In response to agonists, HSDM1C1 cells release labeled arachidonate for eicosanoid synthesis most readily when they have been labeled for short times. Our results therefore suggest that NM and ER, sites of cyclooxygenase in murine fibroblasts, are probably sources for release of [3H]arachidonate, whereas PM and mitochondria are unlikely to be major sources of eicosanoid precursors. PMID:3926781
The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases.
Penke, Botond; Fulop, Livia; Szucs, Maria; Frecska, Ede
2018-01-01
Widespread protein aggregation occurs in the living system under stress or during aging, owing to disturbance of endoplasmic reticulum (ER) proteostasis. Many neurodegenerative diseases may have a common mechanism: the failure of protein homeostasis. Perturbation of ER results in unfolded protein response (UPR). Prolonged chronical UPR may activate apoptotic pathways and cause cell death. Research articles on Sigma-1 receptor were reviewed. ER is associated to mitochondria by the mitochondria-associated ER-membrane, MAM. The sigma-1 receptor (Sig-1R), a well-known ER-chaperone localizes in the MAM. It serves for Ca2+-signaling between the ER and mitochondria, involved in ion channel activities and especially important during neuronal differentiation. Sig-1R acts as central modulator in inter-organelle signaling. Sig-1R helps cell survival by attenuating ER-stress. According to sequence based predictions Sig-1R is a 223 amino acid protein with two transmembrane (2TM) domains. The X-ray structure of the Sig-1R [1] showed a membrane-bound trimeric assembly with one transmembrane (1TM) region. Despite the in vitro determined assembly, the results of in vivo studies are rather consistent with the 2TM structure. The receptor has unique and versatile pharmacological profile. Dimethyl tryptamine (DMT) and neuroactive steroids are endogenous ligands that activate Sig-1R. The receptor has a plethora of interacting client proteins. Sig-1R exists in oligomeric structures (dimer-trimer-octamer-multimer) and this fact may explain interaction with diverse proteins. Sig-1R agonists have been used in the treatment of different neurodegenerative diseases, e.g. Alzheimer's and Parkinson's diseases (AD and PD) and amyotrophic lateral sclerosis. Utilization of Sig-1R agents early in AD and similar other diseases has remained an overlooked therapeutic opportunity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Johnson, Rebecca A
2016-01-01
Buprenorphine HCl (BUP) is a μ-opioid agonist used in laboratory rodents. New formulations of buprenorphine (for example, sustained-released buprenorphine [BUP SR], extended-release buprenorphine [BUP ER]) have been developed to extend the analgesic duration. In a crossover design, 8 adult rats were injected subcutaneously with either BUP, BUP SR, BUP ER, or saline, after which voluntary running-wheel activity, arterial blood gases, and thermal withdrawal latency were assessed. Wheel running was decreased at 24 h compared with baseline in all treatment groups but returned to baseline by 48 h. Arterial pH, HCO3–, and CO2 were not changed between groups or over time. However, arterial oxygen was lower than baseline in the BUP (–8 ± 2 mm Hg), BUP SR (–7 ± 1 mm Hg), and BUP ER (–17 ± 2 mm Hg) groups compared with saline controls (3 ± 2 mm Hg); the BUP ER group showed the greatest decrease when all time points were combined. BUP increased the withdrawal latency at 1 h (15% ± 3%), whereas BUP ER increased latencies at 4, 8, 12, and 48 h (35% ± 11%, 21% ± 7%, 26% ± 7%, and 22% ± 9%, respectively) and BUP SR prolonged latencies at 24, 48, and 72 h (15% ± 6%, 18% ± 5%, and 20% ± 8%, respectively). The duration of thermal analgesia varied between buprenorphine formulations, but all 3 formulations reduced voluntary-running activity at 24 h after injection and might cause hypoxemia in normal adult rats. PMID:27177564
Sharan, Shruti; Nikhil, Kumar; Roy, Partha
2013-06-01
Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p<0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. Copyright © 2013 Elsevier Inc. All rights reserved.
Maslov, Leonid N.; Lishmanov, Yury B.; Oeltgen, Peter R.; Barzakh, Eva I.; Krylatov, Andrey V.; Naryzhnaya, Natalia V.; Pei, Jian-Ming; Brown, Stephen A.
2010-01-01
Objectives This study was conducted to test the hypothesis that opioid receptor (OR) mediated cardioprotection is agonist-specific when administered prior to coronary artery occlusion and reperfusion in a rat model. Methods Anesthetized open-chest male Wistar rats were subjected to 45 minutes of left coronary artery occlusion and 2 hours of reperfusion. Opioid agonists were infused 15 minutes prior to coronary artery occlusion. Two control groups and 15 opioid treated groups were studied. Controls were infused with either saline alone (n = 16) or dimethyl sulfoxide (DMSO) plus hydroxypropyl-β-cyclodextrin in saline (n = 19). The μ selective agonist DAMGO was infused at either 150 nmol/kg (n = 15) or 1500 nmol/kg (n = 14), and Dermorphin-H was infused at 150 nmol/kg (n = 14). The δ1 selective agonist D-Pen2,5 Enkephalin (DPDPE) was infused at 150 nmol/kg (n = 16) or 1500 nmol/kg (n = 14). The δ2 selective agonists Deltorphin II (n = 16), Deltorphin-Dvariant (n = 15) and Deltorphin-E (n = 14) were infused at 150 nmol/kg. The selective κ1 opioid agonist U-50488 was infused at 240 nmol/kg (n = 14), 1500 nmol/kg (n = 14), and 2,400 nmol/kg (n = 14). The selective κ2 opioid agonist GR-89696 was infused at 150 nmol/kg (n = 14) and 1500 nmol/kg (n = 15). Orphinan FQ (Nociceptin), also referred to as OR Ligand1 (ORL1), was infused at 220 nmol/kg (n = 15) and 1500 nmol/kg (n = 15). The infarct size/area at risk (IS/AAR) ratio was determined after reperfusion by negative staining with patent blue violet dye. Hemodynamic parameters including heart rate, mean arterial blood pressure (MAP), and rate pressure product (RPP) were determined. Results Pretreatment with the δ2 OR agonist Deltorphin II (150 nmol/kg) significantly reduced the IS/AAR ratio, while Deltorphin-Dvariant and Deltorphin-E did not exhibit an infarct sparing effect at that treatment dose. Activation of δ1 OR by DPDPE, κ1 OR by U-50488, κ2 OR by U-50488, μ OR by DAMGO, Dermophin-H, and Nociceptin had no effect on the IS/AAR ratio. U-50488 at 2,400 nmol/l induced a bradycardic effect. All other opioids had no effect on hemodynamic parameters at the doses tested. Conclusions Peripheral δ2 OR activation by Deltorphin II induces infarct size reduction in this animal model. Agonists of μ, δ1, κ1, κ2, and Nociceptin receptors at the doses tested did not induce cardiac tolerance to ischemia/reperfusion injury in vivo. PMID:21175523
Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen-pyropheophorbide conjugate.
Fernandez Gacio, Ana; Fernandez-Marcos, Carlos; Swamy, Narasimha; Dunn, Darra; Ray, Rahul
2006-10-15
We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens. 2006 Wiley-Liss, Inc.
Chu, Zhiguo; Andrade, Josefa; Shupnik, Margaret A.; Moenter, Suzanne M.
2009-01-01
GnRH neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, non-genomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in brain slices from ovariectomized mice with ionotropic GABA and glutamate receptors blocked. Estradiol was bath-applied and measurements completed within 15 min. Estradiol from high physiological (preovulatory) concentrations (100pM) to 100nM enhanced action potential firing, reduced afterhyperpolarizing potential (AHP) and increased slow afterdepolarization (sADP) amplitudes, and reduced IAHP and enhanced IADP. The reduction of IAHP was occluded by prior blockade of calcium-activated potassium channels. These effects were mimicked by an estrogen receptor (ER) β-specific agonist and were blocked by the classical receptor antagonist ICI182780. ERα or GPR30 agonists had no effect. The acute stimulatory effect of high physiological estradiol on firing rate was dependent on signaling via protein kinase A. In contrast, low physiological levels of estradiol (10pM) did not affect intrinsic properties. Without blockade of ionotropic GABA and glutamate receptors, however, 10pM estradiol reduced firing of GnRH neurons; this was mimicked by an ERα agonist. ERα agonists reduced the frequency of GABA transmission to GnRH neurons; GABA can excite to these cells. In contrast, ERβ agonists increased GABA transmission and postsynaptic response. These data suggest rapid intrinsic and network modulation of GnRH neurons by estradiol is dependent upon both dose and receptor subtype. In cooperation with genomic actions, non-genomic effects may play a role in feedback regulation of GnRH secretion. PMID:19403828
Klanker, Marianne; Groenink, Lucianne; Korte, S. Mechiel; Cook, James M.; Van Linn, Michael L.; Hopkins, Seth C.; Olivier, Berend
2009-01-01
Rationale The stress-induced hyperthermia (SIH) model is an anxiety model that uses the transient rise in body temperature in response to acute stress. Benzodiazepines produce anxiolytic as well as sedative side effects through nonselective binding to GABAA receptor subunits. The GABAA receptor α1 subunit is associated with sedation, whereas the GABAA receptor α2 and α3 subunits are involved in anxiolytic effects. Objectives We therefore examined the effects of (non) subunit-selective GABAA receptor agonists on temperature and locomotor responses to novel cage stress. Results Using telemetric monitoring of temperature and locomotor activity, we found that nonsubunit-selective GABAA receptor agonist diazepam as well as the α3 subunit-selective receptor agonist TP003 dose-dependently attenuated SIH and locomotor responses. Administration of GABAA receptor α1-selective agonist zolpidem resulted in profound hypothermia and locomotor sedation. The GABAA receptor α1-selective antagonist βCCt antagonized the hypothermia, but did not reverse the SIH response attenuation caused by diazepam and zolpidem. These results suggest an important regulating role for the α1 subunit in thermoregulation and sedation. Ligands of extrasynaptic GABAA receptors such as alcohol and nonbenzodiazepine THIP attenuated the SIH response only at high doses. Conclusions The present study confirms a putative role for the GABAA receptor α1 subunit in hypothermia and sedation and supports a role for α2/3 subunit GABAA receptor agonists in anxiety processes. In conclusion, we show that home cage temperature and locomotor responses to novel home cage stress provide an excellent tool to assess both anxiolytic and sedative effects of various (subunit-selective) GABAAergic compounds. PMID:19169673
Agonist-Directed Desensitization of the β2-Adrenergic Receptor
Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye
2011-01-01
The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288
Manvich, Daniel F.; Kimmel, Heather L.
2012-01-01
Accumulating evidence indicates that the serotonin system modulates the behavioral and neurochemical effects of cocaine, but the receptor subtypes mediating these effects remain unknown. Recent studies have demonstrated that pharmacological activation of the serotonin 2C receptor (5-HT2CR) attenuates the behavioral and neurochemical effects of cocaine in rodents, but such compounds have not been systematically evaluated in nonhuman primates. The present experiments sought to determine the impact of pretreatment with the preferential 5-HT2CR agonist m-chlorophenylpiperazine (mCPP) and the selective 5-HT2CR agonist Ro 60-0175 [(α-S)-6-chloro-5-fluoro-α-methyl-1H-indole-1-ethanamine fumarate] on the behavioral and neurochemical effects of cocaine in squirrel monkeys. In subjects trained to lever-press according to a 300-s fixed-interval schedule of stimulus termination, pretreatment with either 5-HT2CR agonist dose-dependently and insurmountably attenuated the behavioral stimulant effects of cocaine. In subjects trained to self-administer cocaine, both compounds dose-dependently and insurmountably attenuated cocaine-induced reinstatement of previously extinguished responding in an antagonist-reversible manner, and the selective agonist Ro 60-0175 also attenuated the reinforcing effects of cocaine during ongoing cocaine self-administration. It is noteworthy that the selective agonist Ro 60-0175 exhibited behavioral specificity because it did not significantly alter nondrug-maintained responding. Finally, in vivo microdialysis studies revealed that pretreatment with Ro 60-0175 caused a reduction of cocaine-induced dopamine increases within the nucleus accumbens, but not the caudate nucleus. These results suggest that 5-HT2CR agonists functionally antagonize the behavioral effects of cocaine in nonhuman primates, possibly via a selective modulation of cocaine-induced dopamine increases within the mesolimbic dopamine system and may therefore represent a novel class of pharmacotherapeutics for the treatment of cocaine abuse. PMID:22328576
Dallanoce, Clelia; De Amici, Marco; Barocelli, Elisabetta; Bertoni, Simona; Roth, Bryan L; Ernsberger, Paul; De Micheli, Carlo
2007-12-15
A set of novel heterocyclic ligands (6-27) structurally related to Oxotremorine 2 was designed, synthesized and tested at muscarinic receptor subtypes (mAChRs). In the binding experiments at cloned human receptors (hm1-5), compounds 7 and 15 evidenced a remarkable affinity and selectivity for the hm2 subtype. The in vitro functional assays, performed on a selected group of derivatives at M(1), M(2), and M(3) tissue preparations, singled out the 3-butynyloxy-5-methylisoxazole trimethylammonium salt 7 as a potent unselective muscarinic agonist [pEC(50): 7.40 (M(1)), 8.18 (M(2)), and 8.14 (M(3))], whereas its 5-phenyl analogue 12 behaved as a muscarinic antagonist, slightly selective for the M(1) subtype [pK(B): 6.88 (M(1)), 5.95 (M(2)), 5.53 (M(3))]. Moreover, the functional data put in evidence that the presence of the piperidine ring may generate a functional selectivity, e.g., an M(1) antagonist/M(2) partial agonist/M(3) full agonist profile (compound 21), at variance with the corresponding quaternary ammonium salt (compound 22) which behaved as a muscarinic agonist at all M(1-3) receptors, with an appreciable selectivity for the cardiac M(2) receptors.
Ofosu, Wendy Amy; Mohamed, Daahir; Corcoran, Olivia; Ojo, Opeolu Oyejide
2018-01-19
Challenges facing the treatment of type 2 diabetes necessitate the search for agents which act via alternative pathways to provide better therapeutic outcomes. Recently, an increasing body of evidence implicates the activation of oestrogen receptors (ERα and ERβ) in the development and treatment of underlying conditions in type 2 diabetes. This article summarizes available evidence for the involvement of oestrogen receptors in insulin secretion, insulin resistance as well as glucose uptake and highlights the potential of ERβ as a therapeutic target. Recent studies indicate an association between the activation of each of the isoforms of ER and recent findings indicate that ERβ show promise as a potential target for antidiabetic drugs. In vitro and in vivo studies in receptor knock out mice indicate beneficial actions of selective agonists of ERβ receptor and underscore its therapeutic potential. Studies are needed to further elucidate the exact mechanism underlying the role of ERβ activation as a therapeutic approach in the management of type 2 diabetes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
2013-01-01
Drugs that selectively activate estrogen receptor β (ERβ) are potentially safer than the nonselective estrogens currently used in hormonal replacement treatments that activate both ERβ and ERα. The selective ERβ agonist AC-186 was evaluated in a rat model of Parkinson’s disease induced through bilateral 6-hydroxydopamine lesions of the substantia nigra. In this model, AC-186 prevented motor, cognitive, and sensorimotor gating deficits and mitigated the loss of dopamine neurons in the substantia nigra, in males, but not in females. Furthermore, in male rats, 17β-estradiol, which activates ERβ and ERα with equal potency, did not show the same neuroprotective benefits as AC-186. Hence, in addition to a beneficial safety profile for use in both males and females, a selective ERβ agonist has a differentiated pharmacological profile compared to 17β-estradiol in males. PMID:23898966
The future of EPAC-targeted therapies: agonism versus antagonism.
Parnell, Euan; Palmer, Timothy M; Yarwood, Stephen J
2015-04-01
Pharmaceutical manipulation of cAMP levels exerts beneficial effects through the regulation of the exchange protein activated by cAMP (EPAC) and protein kinase A (PKA) signalling routes. Recent attention has turned to the specific regulation of EPAC isoforms (EPAC1 and EPAC2) as a more targeted approach to cAMP-based therapies. For example, EPAC2-selective agonists could promote insulin secretion from pancreatic β cells, whereas EPAC1-selective agonists may be useful in the treatment of vascular inflammation. By contrast, EPAC1 and EPAC2 antagonists could both be useful in the treatment of heart failure. Here we discuss whether the best way forward is to design EPAC-selective agonists or antagonists and the current strategies being used to develop isoform-selective, small-molecule regulators of EPAC1 and EPAC2 activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Thomsen, William J; Grottick, Andrew J; Menzaghi, Frederique; Reyes-Saldana, Hazel; Espitia, Stephen; Yuskin, Diane; Whelan, Kevin; Martin, Michael; Morgan, Michael; Chen, Weichao; Al-Shamma, Hussien; Smith, Brian; Chalmers, Derek; Behan, Dominic
2008-05-01
5-Hydroxytryptamine (5-HT)(2C) receptor agonists hold promise for the treatment of obesity. In this study, we describe the in vitro and in vivo characteristics of lorcaserin [(1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3 benzazepine], a selective, high affinity 5-HT(2C) full agonist. Lorcaserin bound to human and rat 5-HT(2C) receptors with high affinity (K(i) = 15 +/- 1 nM, 29 +/- 7 nM, respectively), and it was a full agonist for the human 5-HT(2C) receptor in a functional inositol phosphate accumulation assay, with 18- and 104-fold selectivity over 5-HT(2A) and 5-HT(2B) receptors, respectively. Lorcaserin was also highly selective for human 5-HT(2C) over other human 5-HT receptors (5-HT(1A), 5-HT(3), 5-HT(4C), 5-HT5(5A), 5-HT(6), and 5-HT(7)), in addition to a panel of 67 other G protein-coupled receptors and ion channels. Lorcaserin did not compete for binding of ligands to serotonin, dopamine, and norepinephrine transporters, and it did not alter their function in vitro. Behavioral observations indicated that unlike the 5-HT(2A) agonist (+/-)-1-(2,5-dimethoxy-4-phenyl)-2-aminopropane, lorcaserin did not induce behavioral changes indicative of functional 5-HT(2A) agonist activity. Acutely, lorcaserin reduced food intake in rats, an effect that was reversed by pretreatment with the 5-HT(2C)-selective antagonist 6-chloro-5-methyl-1-[6-(2-methylpyridin-3-yloxy)pyridin-3-yl-carbamoyl]indoline (SB242,084) but not the 5-HT(2A) antagonist (R)-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (MDL 100,907), demonstrating mediation by the 5-HT(2C) receptor. Chronic daily treatment with lorcaserin to rats maintained on a high fat diet produced dose-dependent reductions in food intake and body weight gain that were maintained during the 4-week study. Upon discontinuation, body weight returned to control levels. These data demonstrate lorcaserin to be a potent, selective, and efficacious agonist of the 5-HT(2C) receptor, with potential for the treatment of obesity.
GPER-1 and estrogen receptor-β ligands modulate aldosterone synthesis.
Caroccia, Brasilina; Seccia, Teresa M; Campos, Abril Gonzalez; Gioco, Francesca; Kuppusamy, Maniselvan; Ceolotto, Giulio; Guerzoni, Eugenia; Simonato, Francesca; Mareso, Sara; Lenzini, Livia; Fassina, Ambrogio; Rossi, Gian Paolo
2014-11-01
Fertile women have lower blood pressure and cardiovascular risk than age-matched men, which suggests that estrogens exert cardiovascular protective effects. However, whether 17 β-estradiol (E2) blunts aldosterone secretion, and thereby affects the gender dimorphism of blood pressure, is unknown. We therefore sought for the estrogen receptor (ER) subtypes in human adrenocortical tissues ex vivo by performing gene and protein expression studies. We also investigated the effect of E2 on aldosterone synthesis and the involved receptors through in vitro functional experiments in the adrenocortical cells HAC15. We found that in the human adrenal cortex and aldosterone-producing adenoma cells, the most expressed ERs were the ERβ and the G protein-coupled receptor-1 (GPER-1), respectively. After selective ERβ blockade, E2 (10 nmol/L) markedly increased both the expression of aldosterone synthase and the production of aldosterone (+5- to 7-fold vs baseline, P < .001). Under the same condition, the GPER-1 receptor agonist 1-[4-(6-bromo-benzo (1, 3)dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c] quinolin-8-yl]-ethanone (G-1) (10 nmol/L) mimicked this effect, which was abrogated by cotreatment with either the GPER-1 receptor antagonist (3aS*,4R*,9bR*)-4-(6-Bro-mo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline (G-15), or a selective protein kinase A inhibitor 8-Bromo-2-monobutyryladenosine-3,5-cyclic mono-phosphorothioate, Rp-isomer. Silencing of the ERβ significantly raised aldosterone synthase expression and aldosterone production. Conversely, silencing of the GPER-1 lowered aldosterone synthase gene and protein expression. Moreover, it blunted the stimulatory effect of E2 on aldosterone synthase that was seen during ERβ blockade. These results support the conclusion that in humans, E2 inhibits aldosterone synthesis by acting via ERβ. Pharmacologic disinhibition of ERβ unmasks a potent secretagogue effect of E2 that involves GPER-1 and protein kinase A signaling.
Sandbaumhüter, Friederike A; Theurillat, Regula; Bettschart-Wolfensberger, Regula; Thormann, Wolfgang
2017-08-01
The combination of ketamine and an α 2 -receptor agonist is often used in veterinary medicine. Four different α 2 -receptor agonists, medetomidine, detomidine, xylazine, and romifidine, which differ in their chemical structure and thus in selectivity for the α 2 -receptor and in the sedative and analgesic potency, are typically employed during surgery of equines. Recovery following anesthesia with ketamine and an α 2 -receptor agonist is dependent on the α 2 -receptor agonist. This prompted us to investigate (i) the inhibition characteristics for the N-demethylation of ketamine to norketamine and (ii) the formation of the ketamine metabolites norketamine, 6-hydroxynorketamine (6HNK), and 5,6-dehydronorketamine (DHNK) in presence of the four α 2 -receptor agonists and equine liver microsomes. Samples were analyzed with enantioselective capillary electrophoresis using highly sulfated γ-cyclodextrin as chiral selector. All four α 2 -receptor agonists have an impact on the ketamine metabolism. Medetomidine was found to be the strongest inhibitor, followed by detomidine, whereas xylazine and romifidine showed almost no effect on the ketamine N-demethylation in the inhibition studies with a short-incubation period of the reaction mixture. After prolonged incubation, inhibition with xylazine and romifidine was also observed. The formation of 6HNK and DHNK is affected by all selected α 2 -receptor agonists. With medetomidine, levels of these metabolites are reduced compared to the case without an α 2 -receptor agonist. For detomidine, xylazine, and romifidine, the opposite was found. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Erbium-based magnetic refrigerant (regenerator) for passive cryocooler
Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.
1996-07-23
A two stage Gifford-McMahon cryocooler having a low temperature stage for reaching approximately 10K, wherein the low temperature stage includes a passive magnetic heat regenerator selected from the group consisting of Er.sub.6 Ni.sub.2 Sn, Er.sub.6 Ni.sub.2 Pb, Er.sub.6 Ni.sub.2 (Sn.sub.0.75 Ga.sub.0.25), and Er.sub.9 Ni.sub.3 Sn comprising a mixture of Er.sub.3 Ni and Er.sub.6 Ni.sub.2 Sn in the microstructure.
Erbium-based magnetic refrigerant (regenerator) for passive cryocooler
Gschneidner, K.A. Jr.; Pecharsky, V.K.
1996-07-23
A two stage Gifford-McMahon cryocooler is disclosed having a low temperature stage for reaching approximately 10K, wherein the low temperature stage includes a passive magnetic heat regenerator selected from the group consisting of Er{sub 6}Ni{sub 2}Sn, Er{sub 6}Ni{sub 2}Pb, Er{sub 6}Ni{sub 2}(Sn{sub 0.75}Ga{sub 0.25}), and Er{sub 9}Ni{sub 3}Sn comprising a mixture of Er{sub 3}Ni and Er{sub 6}Ni{sub 2}Sn in the microstructure. 14 figs.
Neurokinin-induced changes in pial artery diameter in the anaesthetized guinea-pig.
Beattie, D. T.; Stubbs, C. M.; Connor, H. E.; Feniuk, W.
1993-01-01
1. The effects of selective neurokinin agents on pial artery diameter, measured with an on-line image analyser, have been studied in anaesthetized guinea-pigs in order to characterize the neurokinin receptors present on pial arteries. 2. Perivascular injection of either substance P (0.01-1 microM) or the selective NK1 receptor agonists, substance P methyl ester (SPOMe, 0.01-1 microM) and GR73632 (0.1 microM), increased pial artery diameter. 3. In contrast, the selective NK2 receptor agonist, GR64349 (1 microM), produced a small vasoconstriction while the NK3 receptor-selective agonist, senktide (1 microM) was inactive. 4. Co-administration of GR82334 (1 microM), a selective NK1 receptor antagonist, inhibited the vasodilatation produced by SPOMe (0.1 microM) but not that caused by calcitonin gene-related peptide (CGRP, 0.01 microM). 5. The results are consistent with an involvement of NK1 receptors in the neurokinin-induced increase in guinea-pig pial artery diameter. PMID:7679026
Arnt, J
1985-08-26
The effects of DA agonists and antagonists with different dopamine (DA) D-1 and D-2 receptor selectivity have been studied in rats with bilateral 6-OHDA lesions. The D-1 agonist SK & F 38393, the D-2 agonist pergolide and the mixed agonist apomorphine all induced marked hyperactivity in lesioned rats in doses which were without stimulant effect in sham-operated animals. The hyperactivity induced by SK & F 38393 was blocked by the DA D-1 antagonist SCH 23390, but unaffected by the D-2 antagonists spiroperidol or clebopride. Pergolide-induced hyperactivity showed the reverse selectivity. The mixed D-1/D-2 antagonists, cis(Z)-flupentixol and cis(Z)-clopenthixol, however blocked the effect of both agonists. Apomorphine-induced hyperactivity was neither blocked by selective D-1 nor D-2 antagonists, but was dose-dependently inhibited by cis(Z)-flupentixol and cis(Z)-clopenthixol. Potent blockade was also obtained by combined treatment with SCH 23390 and spiroperidol, indicating the need of blocking both D-1 and D-2 receptors simultaneously. The results indicate that D-1 and D-2 receptor function can be independently manipulated in denervated rats and they confirm similar results obtained in rats with unilateral 6-OHDA lesions using circling behaviour.
Robinson, Rebecca Hartzell; Meissler, Joseph J.; Breslow-Deckman, Jessica M.; Gaughan, John; Adler, Martin W.; Eisenstein, Toby K.
2013-01-01
Cannabinoids are known to have anti-inflammatory and immunomodulatory properties. Cannabinoid receptor 2 (CB2) is expressed mainly on leukocytes and is the receptor implicated in mediating many of the effects of cannabinoids on immune processes. This study tested the capacity of Δ9-tetrahydrocannabinol (Δ9-THC) and of two CB2-selective agonists to inhibit the murine Mixed Lymphocyte Reaction (MLR), an in vitro correlate of graft rejection following skin and organ transplantation. Both CB2-selective agonists and Δ9-THC significantly suppressed the MLR in a dose dependent fashion. The inhibition was via CB2, as suppression could be blocked by pretreatment with a CB2-selective antagonist, but not by a CB1 antagonist, and none of the compounds suppressed the MLR when splenocytes from CB2 deficient mice were used. The CB2 agonists were shown to act directly on T-cells, as exposure of CD3+ cells to these compounds completely inhibited their action in a reconstituted MLR. Further, the CB2-selective agonists completely inhibited proliferation of purified T-cells activated by anti-CD3 and anti-CD28 antibodies. T-cell function was decreased by the CB2 agonists, as an ELISA of MLR culture supernatants revealed IL-2 release was significantly decreased in the cannabinoid treated cells. Together, these data support the potential of this class of compounds as useful therapies to prolong graft survival in transplant patients. PMID:23824763
CHARACTERIZATION OF THE DISCRIMINATIVE STIMULUS EFFECTS OF LORCASERIN IN RATS
Serafine, Katherine M.; Rice, Kenner C.; France, Charles P.
2016-01-01
Lorcaserin is approved by the Food and Drug Administration for treating obesity and is under consideration for treating substance use disorders; it has agonist properties at serotonin (5-HT)2C receptors and might also have agonist properties at other 5-HT receptor subtypes. This study used drug discrimination to investigate the mechanism(s) of action of lorcaserin. Male Sprague-Dawley rats discriminated 0.56 mg/kg i.p. lorcaserin from saline while responding under a fixed-ratio 5 schedule for food. Lorcaserin (0.178–1.0 mg/kg) dose-dependently increased lorcaserin-lever responding. The 5-HT2C receptor agonist mCPP and the 5-HT2A receptor agonist DOM each occasioned greater than 90% lorcaserin-lever responding in seven of eight rats. The 5-HT1A receptor agonist 8-OH-DPAT occasioned greater than 90% lorcaserin-lever responding in four of seven rats. The 5-HT2C receptor selective antagonist SB 242084 attenuated lorcaserin-lever responding in all eight rats and the 5-HT2A receptor selective antagonist MDL 100907 attenuated lorcaserin-lever responding in six of seven rats. These results suggest that, in addition to agonist properties at 5-HT2C receptors, lorcaserin also has agonist properties at 5-HT2A and 5-HT1A receptors. Because some drugs with 5-HT2A receptor agonist properties are abused, it is important to fully understand the behavioral effects of lorcaserin while considering its potential for treating substance use disorders. PMID:27640338
Minor Structural Change to Tertiary Sulfonamide RORc Ligands Led to Opposite Mechanisms of Action
2014-01-01
A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled. PMID:25815138
Burkholder, Timothy P; Cunningham, Brian E; Clayton, Joshua R; Lander, Peter A; Brown, Matthew L; Doti, Robert A; Durst, Gregory L; Montrose-Rafizadeh, Chahrzad; King, Constance; Osborne, Harold E; Amos, Robert M; Zink, Richard W; Stramm, Lawrence E; Burris, Thomas P; Cardona, Guemalli; Konkol, Debra L; Reidy, Charles; Christe, Michael E; Genin, Michael J
2015-04-01
The design, synthesis, and structure activity relationships for a novel series of indoles as potent, selective, thyroid hormone receptor β (TRβ) agonists is described. Compounds with >50× binding selectivity for TRβ over TRα were generated and evaluation of compound 1c from this series in a model of dyslipidemia demonstrated positive effects on plasma lipid endpoints in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.
Calmodulin Lobes Facilitate Dimerization and Activation of Estrogen Receptor-α*
Li, Zhigang; Zhang, Yonghong; Hedman, Andrew C.; Ames, James B.
2017-01-01
Estrogen receptor α (ER-α) is a nuclear hormone receptor that controls selected genes, thereby regulating proliferation and differentiation of target tissues, such as breast. Gene expression controlled by ER-α is modulated by Ca2+ via calmodulin (CaM). Here we present the NMR structure of Ca2+-CaM bound to two molecules of ER-α (residues 287–305). The two lobes of CaM bind to the same site on two separate ER-α molecules (residues 292, 296, 299, 302, and 303), which explains why CaM binds two molecules of ER-α in a 1:2 complex and stabilizes ER-α dimerization. Exposed glutamate residues in CaM (Glu-11, Glu-14, Glu-84, and Glu-87) form salt bridges with key lysine residues in ER-α (Lys-299, Lys-302, and Lys-303), which is likely to prevent ubiquitination at these sites and inhibit degradation of ER-α. Transfection of cells with full-length CaM slightly increased the ability of estrogen to enhance transcriptional activation by ER-α of endogenous estrogen-responsive genes. By contrast, expression of either the N- or C-lobe of CaM abrogated estrogen-stimulated transcription of the estrogen responsive genes pS2 and progesterone receptor. These data suggest that CaM-induced dimerization of ER-α is required for estrogen-stimulated transcriptional activation by the receptor. In light of the critical role of ER-α in breast carcinoma, our data suggest that small molecules that selectively disrupt the interaction of ER-α with CaM may be useful in the therapy of breast carcinoma. PMID:28174300
Kondylis, Vangelis; Tang, Yang; Fuchs, Florian; Boutros, Michael; Rabouille, Catherine
2011-01-01
Background In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation. Results To do so, we designed a novel screening strategy combining a bioinformatics pre-selection with an RNAi screen. We first selected 156 proteins exhibiting known or related ER retention/retrieval signals from a list of proteins predicted to have a signal sequence. We then performed a microscopy-based primary and confirmation RNAi screen in Drosophila S2 cells directly scoring the organisation of the tER-Golgi units. We identified 49 hits, most of which leading to an increased number of smaller tER-Golgi units (MG for “more and smaller Golgi”) upon depletion. 16 of them were validated and characterised, showing that this phenotype was not due to an inhibition in secretion, a block in G2, or ER stress. Interestingly, the MG phenotype was often accompanied by an increase in the cell volume. Out of 6 proteins, 4 were localised to the ER. Conclusions This work has identified novel proteins involved in the organisation of the Drosophila early secretory pathway. It contributes to the effort of assigning protein functions to gene annotation in the secretory pathway, and analysis of the MG hits revealed an enrichment of ER proteins. These results suggest a link between ER localisation, aspects of cell metabolism and tER-Golgi structural organisation. PMID:21383842
Kondylis, Vangelis; Tang, Yang; Fuchs, Florian; Boutros, Michael; Rabouille, Catherine
2011-02-23
In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation. To do so, we designed a novel screening strategy combining a bioinformatics pre-selection with an RNAi screen. We first selected 156 proteins exhibiting known or related ER retention/retrieval signals from a list of proteins predicted to have a signal sequence. We then performed a microscopy-based primary and confirmation RNAi screen in Drosophila S2 cells directly scoring the organisation of the tER-Golgi units. We identified 49 hits, most of which leading to an increased number of smaller tER-Golgi units (MG for "more and smaller Golgi") upon depletion. 16 of them were validated and characterised, showing that this phenotype was not due to an inhibition in secretion, a block in G2, or ER stress. Interestingly, the MG phenotype was often accompanied by an increase in the cell volume. Out of 6 proteins, 4 were localised to the ER. This work has identified novel proteins involved in the organisation of the Drosophila early secretory pathway. It contributes to the effort of assigning protein functions to gene annotation in the secretory pathway, and analysis of the MG hits revealed an enrichment of ER proteins. These results suggest a link between ER localisation, aspects of cell metabolism and tER-Golgi structural organisation.
Hippocampal SSTR4 somatostatin receptors control the selection of memory strategies.
Gastambide, François; Viollet, Cécile; Lepousez, Gabriel; Epelbaum, Jacques; Guillou, Jean-Louis
2009-01-01
Somatostatin (SS14) has been implicated in various cognitive disorders, and converging evidence from animal studies suggests that SS14 neurons differentially regulate hippocampal- and striatal-dependent memory formation. Four SS14 receptor subtypes (SSTR1-4) are expressed in the hippocampus, but their respective roles in memory processes remain to be determined. In the present study, effects of selective SSTR1-4 agonists on memory formation were assessed in a water-maze task which can engage either hippocampus-dependent "place" and/or striatum-dependent "cue" memory formation. Mice received an intrahippocampal injection of one of each of the selective agonists and were then trained to locate an escape platform based on either distal cues (place memory) or a visible proximal cue (cue memory). Retention was tested 24 h later on probe trials aimed at identifying which memory strategy was preferentially retained. Both SS14 and the SSTR4 agonist (L-803,087) dramatically impaired place memory formation in a dose-dependent manner, whereas SSTR1 (L-797,591), SSTR2 (L-779,976), or SSTR3 (L-796,778) agonists did not yield any behavioral effects. However, unlike SS14, the SSTR4 agonist also dose-dependently enhanced cue-based memory formation. This effect was confirmed in another striatal-dependent memory task, the bar-pressing task, where L-803,087 improved memory of the instrumental response, whereas SS14 was once again ineffective. These data suggest that hippocampal SSTR4 are selectively involved in the selection of memory strategies by switching from the use of hippocampus-based multiple associations to the use of simple dorsal striatum-based behavioral responses. Possible neural mechanisms and functional implications are discussed.
Tamrazi, Anobel; Massoud, Tarik F.; Katzenellenbogen, John A.; Gambhir, Sanjiv S.
2011-01-01
Estrogen receptor (ER) biology reflects the actions of estrogens through the two receptors, ERα and ERβ, although little is known regarding the preference for formation of ER homo- vs. heterodimers, and how this is affected by the level of ligand occupancy and preferential ligand affinity for one of the ER subtypes. In this report, we use a split optical reporter-protein complementation system to demonstrate the physical interaction between ERα and ERβ in response to different ER ligands in cells and, for the first time, by in vivo imaging in living animals. The genetically encoded reporter vectors constructed with the ligand-binding domains of ERα and ERβ, fused to split firefly or Renilla luciferase (Fluc or hRluc) fragments, were used for this study. This molecular proteomic technique was used to detect ERα/ERα or ERβ/ERβ homodimerization, or ERα/ERβ heterodimerization induced by ER subtype-selective and nonselective ligands, and selective ER modulators (SERM), as well as in dimers in which one mutant monomer was unable to bind estradiol. The SERM-bound ERα and ERβ form the strongest dimers, and subtype-preferential homodimerization was seen with ERα-selective ligands (methyl piperidino pyrazole/propyl pyrazole triol) and the ERβ-selective ligands (diarylpropionitrile/tetrahydrochrysene/genistein). We also demonstrated that a single ligand-bound monomer can form homo- or heterodimers with an apo-monomer. Xenografts of human embryonic kidney 293T cells imaged in living mice by bioluminescence showed real-time ligand induction of ERα/ERβ heterodimerization and reversal of dimerization upon ligand withdrawal. The results from this study demonstrate the value of the split luciferase-based complementation system for studying ER-subtype interactions in cells and for evaluating them in living animals by noninvasive imaging. They also probe what combinations of ERα and ERβ dimers might be the mediators of the effects of different types of ER ligands given at different doses. PMID:22052998
Macromolecular Modelling and Docking Simulations for the Discovery of Selective GPER Ligands.
Rosano, Camillo; Ponassi, Marco; Santolla, Maria Francesca; Pisano, Assunta; Felli, Lamberto; Vivacqua, Adele; Maggiolini, Marcello; Lappano, Rosamaria
2016-01-01
Estrogens influence multiple physiological processes and are implicated in many diseases as well. Cellular responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERβ, which act as ligand-activated transcription factors. Recently, a member of the G protein-coupled receptor (GPCR) superfamily, namely GPER/GPR30, has been identified as a further mediator of estrogen signalling in different pathophysiological conditions, including cancer. Today, computational methods are commonly used in all areas of health science research. Among these methods, virtual ligand screening has become an established technique for hit discovery and optimization. The absence of an established three-dimensional structure of GPER promoted studies of structure-based drug design in order to build reliable molecular models of this receptor. Here, we discuss the results obtained through the structure-based virtual ligand screening for GPER, which allowed the identification and synthesis of different selective agonist and antagonist moieties. These compounds led significant advances in our understanding of the GPER function at the cellular, tissue, and organismal levels. In particular, selective GPER ligands were critical toward the evaluation of the role elicited by this receptor in several pathophysiological conditions, including cancer. Considering that structure-based approaches are fundamental in drug discovery, future research breakthroughs with the aid of computer-aided molecular design and chemo-bioinformatics could generate a new class of drugs that, acting through GPER, would be useful in a variety of diseases as well as in innovative anticancer strategies.
Pharmacology of the glucagon-like peptide-1 analog exenatide extended-release in healthy cats.
Rudinsky, A J; Adin, C A; Borin-Crivellenti, S; Rajala-Schultz, P; Hall, M J; Gilor, C
2015-04-01
Exenatide extended-release (ER) is a microencapsulated formulation of the glucagon-like peptide 1-receptor agonist exenatide. It has a protracted pharmacokinetic profile that allows a once-weekly injection with comparable efficacy to insulin with an improved safety profile in type II diabetic people. Here, we studied the pharmacology of exenatide ER in 6 healthy cats. A single subcutaneous injection of exenatide ER (0.13 mg/kg) was administered on day 0. Exenatide concentrations were measured for 12 wk. A hyperglycemic clamp (target = 225 mg/dL) was performed on days -7 (clamp I) and 21 (clamp II) with measurements of insulin and glucagon concentrations. Glucose tolerance was defined as the amount of glucose required to maintain hyperglycemia during the clamp. Continuous glucose monitoring was performed on weeks 0, 2, and 6 after injection. Plasma concentrations of exenatide peaked at 1 h and 4 wk after injection. Comparing clamp I with clamp II, fasting blood glucose decreased (mean ± standard deviation = -11 ± 8 mg/dL, P = 0.02), glucose tolerance improved (median [range] +33% [4%-138%], P = 0.04), insulin concentrations increased (+36.5% [-9.9% to 274.1%], P = 0.02), and glucagon concentrations decreased (-4.7% [0%-12.1%], P = 0.005). Compared with preinjection values on continuous glucose monitoring, glucose concentrations decreased and the frequency of readings <50 mg/dL increased at 2 and 6 wk after injection of exenatide ER. This did not correspond to clinical hypoglycemia. No other side effects were observed throughout the study. Exenatide ER was safe and effective in improving glucose tolerance 3 wk after a single injection. Further evaluation is needed to determine its safety, efficacy, and duration of action in diabetic cats. Copyright © 2015 Elsevier Inc. All rights reserved.
Wei, W; Chen, Z-J; Zhang, K-S; Yang, X-L; Wu, Y-M; Chen, X-H; Huang, H-B; Liu, H-L; Cai, S-H; Du, J; Wang, H-S
2014-10-02
There is an urgent clinical need for safe and effective treatment agents and therapy targets for estrogen receptor negative (ER-) breast cancer. G protein-coupled receptor 30 (GPR30), which mediates non-genomic signaling of estrogen to regulate cell growth, is highly expressed in ER--breast cancer cells. We here showed that activation of GPR30 by the receptor-specific agonist G-1 inhibited the growth of ER--breast cancer cells in vitro. Treatment of ER--breast cancer cells with G-1 resulted in G2/M-phase arrest, downregulation of G2-checkpoint regulator cyclin B, and induction of mitochondrial-related apoptosis. The G-1 treatment increased expression of p53 and its phosphorylation levels at Serine 15, promoted its nuclear translocation, and inhibited its ubiquitylation, which mediated the growth arrest effects on cell proliferation. Further, the G-1 induced sustained activation and nuclear translocation of ERK1/2, which was mediated by GPR30/epidermal growth factor receptor (EGFR) signals, also mediated its inhibition effects of G-1. With extensive use of siRNA-knockdown experiments and inhibitors, we found that upregulation of p21 by the cross-talk of GPR30/EGFR and p53 was also involved in G-1-induced cell growth arrest. In vivo experiments showed that G-1 treatment significantly suppressed the growth of SkBr3 xenograft tumors and increased the survival rate, associated with proliferation suppression and upregulation of p53, p21 while downregulation of cyclin B. The discovery of multiple signal pathways mediated the suppression effects of G-1 makes it a promising candidate drug and lays the foundation for future development of GPR30-based therapies for ER- breast cancer treatment.
Neuroprotective Effects of Nonfeminizing Estrogens in Retinal Photoreceptor Neurons
Nixon, Everett; Simpkins, James W.
2012-01-01
Purpose. Retinal diseases such as macular degeneration and glaucoma are disorders that target specific retinal neurons that can ultimately lead to vision loss. Under these conditions and pathologies, retinal neurons can die via apoptosis that may be due to increased oxidative stress. The neuroprotective effects of 17β-estradiol (E2) and three synthetic nonfeminizing estrogen analogs (ZYC-26, ZYC-23, and ZYC-3) were investigated to examine their abilities to protect retinal neurons against glutamate toxicity. Methods. Using an in vitro model of glutamate-induced cell death in 661W cells, a mouse cone photoreceptor cell line, shown to express both estrogen receptors (ERs) via immunoblotting, was pretreated with E2 and its analogs and cell viability were assessed. Results. It was observed that E2 and estrogen analogs, ZYC-26 and ZYC-3, were protective against a 5 mM glutamate insult in 661W cells. The neuroprotective abilities of ZYC-26 and ZYC-3 were autonomous of estrogen receptor-α (ERα) and ERβ demonstrated by their ability to protect in the presence of ICI 182780, a pan-ER antagonist with a high affinity for the estrogen receptor. Treatment with PPT and DPN, ERα- and ERβ-specific agonists, respectively, did not protect the 661W cells from the glutamate insult. Studying the membrane ER (mER) or GPR30 did show that activation of the receptor by G1 protected the retinal neuron from insult, whereas G15, an antagonist of the mER was not able to antagonize the protection previously seen. Conclusions. These data demonstrate that nonfeminizing estrogens may emerge as useful compounds for neuroprotection of retinal cells. PMID:22700711
Ottolini, Denis; Calì, Tito; Negro, Alessandro; Brini, Marisa
2013-06-01
DJ-1 was first identified as an oncogene. More recently, mutations in its gene have been found causative for autosomal recessive familial Parkinson disease. Numerous studies support the DJ-1 role in the protection against oxidative stress and maintenance of mitochondria structure; however, the mechanism of its protective function remains largely unknown. We investigated whether mitochondrial Ca(2+) homeostasis, a key parameter in cell physiology, could be a target for DJ-1 action. Here, we show that DJ-1 modulates mitochondrial Ca(2+) transients induced upon cell stimulation with an 1,4,5-inositol-tris-phosphate agonist by favouring the endoplasmic reticulum (ER)-mitochondria tethering. A reduction of DJ-1 levels results in mitochondria fragmentation and decreased mitochondrial Ca(2+) uptake in stimulated cells. To functionally couple these effects with the well-recognized cytoprotective role of DJ-1, we investigated its action in respect to the tumour suppressor p53. p53 overexpression in HeLa cells impairs their ability to accumulate Ca(2+) in the mitochondrial matrix, causes alteration of the mitochondrial morphology and reduces ER-mitochondria contact sites. Mitochondrial impairments are independent from Drp1 activation, since the co-expression of the dominant negative mutant of Drp1 failed to abolish them. DJ-1 overexpression prevents these alterations by re-establishing the ER-mitochondria tethering. Similarly, the co-expression of the pro-fusion protein Mitofusin 2 blocks the effects induced by p53 on mitochondria, confirming that the modulation of the ER-mitochondria contact sites is critical to mitochondria integrity. Thus, the impairment of ER-mitochondria communication, as a consequence of DJ-1 loss-of-function, may be detrimental for mitochondria-related processes and be at the basis of mitochondrial dysfunction observed in Parkinson disease.
Demont, Emmanuel H; Bailey, James M; Bit, Rino A; Brown, Jack A; Campbell, Colin A; Deeks, Nigel; Dowell, Simon J; Eldred, Colin; Gaskin, Pam; Gray, James R J; Haynes, Andrea; Hirst, David J; Holmes, Duncan S; Kumar, Umesh; Morse, Mary A; Osborne, Greg J; Renaux, Jessica F; Seal, Gail A L; Smethurst, Chris A; Taylor, Simon; Watson, Robert; Willis, Robert; Witherington, Jason
2016-02-11
FTY720 is the first oral small molecule approved for the treatment of people suffering from relapsing-remitting multiple sclerosis. It is a potent agonist of the S1P1 receptor, but its lack of selectivity against the S1P3 receptor has been linked to most of the cardiovascular side effects observed in the clinic. These findings have triggered intensive efforts toward the identification of a second generation of S1P3-sparing S1P1 agonists. We have recently disclosed a series of orally active tetrahydroisoquinoline (THIQ) compounds matching these criteria. In this paper we describe how we defined and implemented a strategy aiming at the discovery of selective structurally distinct follow-up agonists. This effort culminated with the identification of a series of orally active tetrahydropyrazolopyridines.
Genistein effects on stromal cells determines epithelial proliferation in endometrial co-cultures.
Sampey, Brante P; Lewis, Terrence D; Barbier, Claire S; Makowski, Liza; Kaufman, David G
2011-06-01
Estrogen is the leading etiologic factor for endometrial cancer. Estrogen-induced proliferation of endometrial epithelial cells normally requires paracrine growth factors produced by stromal cells. Epidemiologic evidence indicates that dietary soy prevents endometrial cancer, and implicates the phytoestrogen genistein in this effect. However, results from previous studies are conflicting regarding the effects of genistein on hormone responsive cancers. The effects of estrogen and genistein on proliferation of Ishikawa (IK) endometrial adenocarcinoma cells were examined in co-cultures of IK cells with endometrial stromal cells, recapitulating the heterotypic cell-to-cell interactions observed in vivo. The roles of estrogen receptor (ER)α and ERβ were evaluated using ERα and ERβ specific agonists. ER activation and cell proliferation in the IK epithelial cells were determined by alkaline phosphatase assay and Coulter counter enumeration, respectively. Both estrogen and genistein increased estrogen receptor-induced gene activity in IK cells over a range of concentrations. Estrogen alone but not genistein increased IK proliferation in co-cultures. When primed by estrogen treatment, increasing concentrations of genistein produced a biphasic effect on IK proliferation: nM concentrations inhibited estrogen-induced proliferation while μM concentrations increased proliferation. Studies with an ERβ-specific agonist produced similar results. Genistein did not influence the effects of estrogen on IK proliferation in monoculture. Our study indicates that nutritionally relevant concentrations (nM) of genistein inhibit the proliferative effects of estrogen on endometrial adenocarcinoma cells presumably through activation of stromal cell ERβ. We believe that sub-micromolar concentrations of genistein may represent a novel adjuvant for endometrial cancer treatment and prevention. Copyright © 2011 Elsevier Inc. All rights reserved.
2013-01-01
Decreases of the sex steroids, testosterone and estrogen, are associated with increased risk of Alzheimer’s disease. Testosterone and estrogen supplementation improves cognitive deficits in animal models of Alzheimer’s disease. Sex hormones play a role in the regulation of amyloid-β via induction of the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme. To mimic the effect of dihydrotestosterone (DHT), we administered a selective androgen receptor agonist, ACP-105, alone and in combination with the selective estrogen receptor β (ERβ) agonist AC-186 to male gonadectomized triple transgenic mice. We assessed long-term spatial memory in the Morris water maze, spontaneous locomotion, and anxiety-like behavior in the open field and in the elevated plus maze. We found that ACP-105 given alone decreases anxiety-like behavior. Furthermore, when ACP-105 is administered in combination with AC-186, they increase the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme and decrease amyloid-β levels in the brain as well as improve cognition. Interestingly, the androgen receptor level in the brain was increased by chronic treatment with the same combination treatment, ACP-105 and AC-186, not seen with DHT or ACP-105 alone. Based on these results, the beneficial effect of the selective ERβ agonist as a potential therapeutic for Alzheimer’s disease warrants further investigation. PMID:24020966
Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice.
Lawson, Sarah K; Gray, Andrew C; Woehrle, Nancy S
2016-11-01
Social impairments in autism remain poorly understood and without approved pharmacotherapies. Novel animals models are needed to elucidate mechanisms and evaluate novel treatments for the social deficits in autism. Recently, serotonin 1B receptor (5-HT1B) agonist challenge in mice was shown to induce autism-like behaviors including perseveration, reduced prepulse inhibition, and delayed alternation deficits. However, the effects of 5-HT1B agonists on autism-related social behaviors in mice remain unknown. Here, we examine the effects of 5-HT1B agonist challenge on sociability and preference for social novelty in mice. We also examine the effects of 5-HT1B agonist treatment on average rearing duration, a putative rodent measure of non-selective attention. Non-selective attention is an associated feature of autism that is also not well understood. We show that 5-HT1B receptor activation reduces sociability, preference for social novelty, and rearing in mice. In addition, we examine the ability of oxytocin, an off-label treatment for the social impairments in autism, to reverse 5-HT1B agonist-induced social and attention deficits in mice. We show that oxytocin restores social novelty preference in mice treated with a 5-HT1B agonist. We also show that oxytocin attenuates 5-HT1B agonist-induced sociability and rearing deficits in mice. Our results suggest that 5-HT1B agonist challenge provides a useful pharmacological mouse model for aspects of autism, and implicate 5-HT1B in autism social and attention deficits. Moreover, our findings suggest that oxytocin may treat the social deficits in autism through a mechanism involving 5-HT1B. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Ying; Broad, Lisa M; Phillips, Keith G; Zwart, Ruud
2012-01-01
BACKGROUND AND PURPOSE Partial agonists selective for α4β2 nicotinic ACh receptors have been developed for smoking cessation as they induce weak activation of native α4β2* receptors and inhibit effect of nicotine. However, it is unclear whether at brain functions there is an existence of receptor reserve that allows weak receptor activation to induce maximum physiological effects. We assessed the extent of α4β2 partial agonist-induced increase of firing rate in dopaminergic neurons and evaluated the influence of receptor reserve. EXPERIMENTAL APPROACH The relative maximal effects and potencies of six nicotinic agonists were assessed on recombinant human α4β2 and α7 receptors expressed in mammalian cell lines by measuring calcium influx. Agonist-induced increase of the spontaneous firing rate of dopaminergic neurons was recorded using microelectrodes in the ventral tegmental area of rat brain slices. KEY RESULTS All α4β2 partial and full agonists increased the firing rate concentration-dependently. Their sensitivity to subtype-selective antagonists showed predominant activation of native α4β2* receptors. However, partial agonists with relative maximal effects as low as 33% on α4β2 receptors maximally increased the firing rate and induced additional depolarization block of firing, demonstrating that partial activation of receptors caused the maximum increase in firing rate in the presence of a receptor reserve. CONCLUSIONS AND IMPLICATIONS Partial α4β2 agonists induced relatively enhanced effects on the firing rate of dopaminergic neurons, and the effect was mainly attributed to the existence of native α4β2* receptor reserve. The results have implications in the understanding of physiological effects and therapeutic efficacies of α4β2 partial agonists. PMID:21838750
Kappa Opioid Receptor Agonist and Brain Ischemia
Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu
2014-01-01
Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482
Tachykinin receptors in the guinea-pig isolated bronchi.
Maggi, C A; Patacchini, R; Quartara, L; Rovero, P; Santicioli, P
1991-05-17
The aim of the study was to assess which tachykinin receptors mediate the contractile response in the guinea-pig isolated bronchi. Experiments with natural tachykinins and receptor-selective tachykinin agonists were performed in the absence or presence of peptidase inhibitors and in bronchi pretreated with phenoxybenzamine. Both NK-1 (substance P, substance P methylester and septide) and NK-2 (neurokinin A, [beta-Ala8]neurokinin A-(4-10) and MDL 28,564) receptor agonists produced concentration-dependent contraction. NK-3 agonists (senktide and [MePhe7]neurokinin B) were active only at high concentrations. Phenoxybenzamine pretreatment reduced the maximal response to NK-1 agonists and produced a rightward shift of the curve to NK-2 agonists, without depression of the maximum. Five tachykinin antagonists selective for the NK-1 (L 668,169) or the NK-2 (MEN 10,207, MEN 10,376, L 659,877 and R 396) receptor were tested against substance P methylester and [beta-Ala8]neurokinin A-(4-10). The results indicated that these receptor-selective antagonists maintain their characteristic even when tested in a multireceptor assay such as the guinea-pig bronchus. The rank order of potency of NK-2 antagonists against [beta-Ala8]neurokinin A-(4-10) was MEN 10,207 = MEN 10,376 greater than L 659,877 much greater than R 396. This pattern, with the observation of the full agonist activity of MDL 28,564, indicates that in addition to NK-1 receptors, NK-2 receptors also are present in the guinea-pig bronchi and belong to the same subtype (NK-2A) as present in the rabbit pulmonary artery.
Mouse Stbd1 is N-myristoylated and affects ER-mitochondria association and mitochondrial morphology.
Demetriadou, Anthi; Morales-Sanfrutos, Julia; Nearchou, Marianna; Baba, Otto; Kyriacou, Kyriacos; Tate, Edward W; Drousiotou, Anthi; Petrou, Petros P
2017-03-01
Starch binding domain-containing protein 1 (Stbd1) is a carbohydrate-binding protein that has been proposed to be a selective autophagy receptor for glycogen. Here, we show that mouse Stbd1 is a transmembrane endoplasmic reticulum (ER)-resident protein with the capacity to induce the formation of organized ER structures in HeLa cells. In addition to bulk ER, Stbd1 was found to localize to mitochondria-associated membranes (MAMs), which represent regions of close apposition between the ER and mitochondria. We demonstrate that N -myristoylation and binding of Stbd1 to glycogen act as major determinants of its subcellular targeting. Moreover, overexpression of non-myristoylated Stbd1 enhanced the association between ER and mitochondria, and further induced prominent mitochondrial fragmentation and clustering. Conversely, shRNA-mediated Stbd1 silencing resulted in an increase in the spacing between ER and mitochondria, and an altered morphology of the mitochondrial network, suggesting elevated fusion and interconnectivity of mitochondria. Our data unravel the molecular mechanism underlying Stbd1 subcellular targeting, support and expand its proposed function as a selective autophagy receptor for glycogen and uncover a new role for the protein in the physical association between ER and mitochondria. © 2017. Published by The Company of Biologists Ltd.
Discovery of potent and selective small-molecule PAR-2 agonists.
Seitzberg, Jimmi Gerner; Knapp, Anne Eeg; Lund, Birgitte Winther; Mandrup Bertozzi, Sine; Currier, Erika A; Ma, Jian-Nong; Sherbukhin, Vladimir; Burstein, Ethan S; Olsson, Roger
2008-09-25
Proteinase activated receptor-2 plays a crucial role in a wide variety of conditions with a strong inflammatory component. We present the discovery and characterization of two structurally different, potent, selective, and metabolically stable small-molecule PAR-2 agonists. These ligands may be useful as pharmacological tools for elucidating the complex physiological role of the PAR-2 receptors as well as for the development of PAR-2 antagonists.
1987-09-04
agonist were compared to those of the ganglionic Ml-selective agonist, McN-A- 343 and to oxotremorine which has a relative high selectivity toward M2...lower than that of oxotremorine However AF102B was similar to McN-A-343 in displacing H-QNB from forebrain homogenate (rich in Ml receptor subtype
Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity.
Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A
2016-05-23
The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ER(T2)-Rosa-STOP(loxP/loxP)-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms regulating food consumption through loss of anorexigenic endocrine signaling. The correlative therapeutic paradigm suggests that, in the context of hormone insufficiency with preservation of receptor sensitivity, obesity may be prevented or treated by GUCY2C hormone replacement.
Resveratrol Enhances Palmitate-Induced ER Stress and Apoptosis in Cancer Cells
Rojas, Cristina; Pan-Castillo, Belén; Valls, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Arola, Lluis; Mulero, Miquel
2014-01-01
Background Palmitate, a saturated fatty acid (FA), is known to induce toxicity and cell death in various types of cells. Resveratrol (RSV) is able to prevent pathogenesis and/or decelerate the progression of a variety of diseases. Several in vitro and in vivo studies have also shown a protective effect of RSV on fat accumulation induced by FAs. Additionally, endoplasmic reticulum (ER) stress has recently been linked to cellular adipogenic responses. To address the hypothesis that the RSV effect on excessive fat accumulation promoted by elevated saturated FAs could be partially mediated by a reduction of ER stress, we studied the RSV action on experimentally induced ER stress using palmitate in several cancer cell lines. Principal Findings We show that, unexpectedly, RSV promotes an amplification of palmitate toxicity and cell death and that this mechanism is likely due to a perturbation of palmitate accumulation in the triglyceride form and to a less important membrane fluidity variation. Additionally, RSV decreases radical oxygen species (ROS) generation in palmitate-treated cells but leads to enhanced X-box binding protein-1 (XBP1) splicing and C/EBP homologous protein (CHOP) expression. These molecular effects are induced simultaneously to caspase-3 cleavage, suggesting that RSV promotes palmitate lipoapoptosis primarily through an ER stress-dependent mechanism. Moreover, the lipotoxicity reversion induced by eicosapentaenoic acid (EPA) or by a liver X receptor (LXR) agonist reinforces the hypothesis that RSV-mediated inhibition of palmitate channeling into triglyceride pools could be a key factor in the aggravation of palmitate-induced cytotoxicity. Conclusions Our results suggest that RSV exerts its cytotoxic role in cancer cells exposed to a saturated FA context primarily by triglyceride accumulation inhibition, probably leading to an intracellular palmitate accumulation that triggers a lipid-mediated cell death. Additionally, this cell death is promoted by ER stress through a CHOP-mediated apoptotic process and may represent a potential anticancer strategy. PMID:25436452
Characterization of the discriminative stimulus effects of lorcaserin in rats.
Serafine, Katherine M; Rice, Kenner C; France, Charles P
2016-09-01
Lorcaserin is approved by the Food and Drug Administration for treating obesity and is under consideration for treating substance use disorders; it has agonist properties at serotonin (5-HT)2C receptors and might also have agonist properties at other 5-HT receptor subtypes. This study used drug discrimination to investigate the mechanism(s) of action of lorcaserin. Male Sprague-Dawley rats discriminated 0.56 mg/kg i.p. lorcaserin from saline while responding under a fixed-ratio 5 schedule for food. Lorcaserin (0.178-1.0 mg/kg) dose-dependently increased lorcaserin-lever responding. The 5-HT2C receptor agonist mCPP and the 5-HT2A receptor agonist DOM each occasioned greater than 90% lorcaserin-lever responding in seven of eight rats. The 5-HT1A receptor agonist 8-OH-DPAT occasioned greater than 90% lorcaserin-lever responding in four of seven rats. The 5-HT2C receptor selective antagonist SB 242084 attenuated lorcaserin-lever responding in all eight rats and the 5-HT2A receptor selective antagonist MDL 100907 attenuated lorcaserin-lever responding in six of seven rats. These results suggest that, in addition to agonist properties at 5-HT2C receptors, lorcaserin also has agonist properties at 5-HT2A and 5-HT1A receptors. Because some drugs with 5-HT2A receptor agonist properties are abused, it is important to fully characterize the behavioral effects of lorcaserin while considering its potential for treating substance use disorders. © 2016 Society for the Experimental Analysis of Behavior.
A2A adenosine receptor agonists and their potential therapeutic applications. An update.
Guerrero, Angel
2018-03-12
In the last 20 years, an increasing interest of medicinal chemists on the development of potent and selective agonists and antagonists of adenosine receptors has been noticed due to the large impact they have shown in a variety of important biological processes and diseases. Among these, it should be mentioned vasodilation, inflammation, cancer, wound healing, ischemia reperfusion injury, Parkinson disease, infectious diseases, and other CNS disorders. In this review, I will provide an update of the structures of the A2A agonists known, their selectivity versus other adenosine receptors, and their latest therapeutic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Copik, Alicja. J.; Baldys, Aleksander; Nguyen, Khanh; Sahdeo, Sunil; Ho, Hoangdung; Kosaka, Alan; Dietrich, Paul J.; Fitch, Bill; Raymond, John R.; Ford, Anthony P. D. W.; Button, Donald; Milla, Marcos E.
2015-01-01
The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK/ERK signaling cascade that is likely independent of coupling to Gαq. PMID:25606852
Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho
2015-01-01
Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346
Pei, Fen; Jin, Hongwei; Zhou, Xin; Xia, Jie; Sun, Lidan; Liu, Zhenming; Zhang, Liangren
2015-11-01
Toll-like receptor 8 agonists, which activate adaptive immune responses by inducing robust production of T-helper 1-polarizing cytokines, are promising candidates for vaccine adjuvants. As the binding site of toll-like receptor 8 is large and highly flexible, virtual screening by individual method has inevitable limitations; thus, a comprehensive comparison of different methods may provide insights into seeking effective strategy for the discovery of novel toll-like receptor 8 agonists. In this study, the performance of knowledge-based pharmacophore, shape-based 3D screening, and combined strategies was assessed against a maximum unbiased benchmarking data set containing 13 actives and 1302 decoys specialized for toll-like receptor 8 agonists. Prior structure-activity relationship knowledge was involved in knowledge-based pharmacophore generation, and a set of antagonists was innovatively used to verify the selectivity of the selected knowledge-based pharmacophore. The benchmarking data set was generated from our recently developed 'mubd-decoymaker' protocol. The enrichment assessment demonstrated a considerable performance through our selected three-layer virtual screening strategy: knowledge-based pharmacophore (Phar1) screening, shape-based 3D similarity search (Q4_combo), and then a Gold docking screening. This virtual screening strategy could be further employed to perform large-scale database screening and to discover novel toll-like receptor 8 agonists. © 2015 John Wiley & Sons A/S.
Lazarowski, E. R.; Watt, W. C.; Stutts, M. J.; Boucher, R. C.; Harden, T. K.
1995-01-01
1. The human P2U-purinoceptor was stably expressed in 1321N1 human astrocytoma cells and the pharmacological selectivity of the expressed receptor was studied by measurement of inositol lipid hydrolysis. 2. High basal levels of inositol phosphates occurred in P2U-purinoceptor-expressing cells. This phenomenon was shown to be due to release of large amounts of ATP from 1321N1 cells, and could be circumvented by adoption of an assay protocol that did not involve medium changes. 3. UTP, ATP and ATP gamma S were full and potent agonists for activation of phospholipase C with EC50 values of 140 nM, 230 nM, and 1.72 microM, respectively. 5BrUTP, 2C1ATP and 8BrATP were also full agonists although less potent than their natural congeners. Little or no effect was observed with the selective P2Y-, P2X-, and P2T-purinoceptor agonists, 2MeSATP, alpha,beta-MeATP, and 2MeSADP, respectively. 4. Diadenosine tetraphosphate, Ap4A, was a surprisingly potent agonist at the expressed P2U-purinoceptor with an EC50 (720 nM) in the range of the most potent P2U-purinoceptor agonists. Ap4A may be a physiologically important activator of P2U-purinoceptors. PMID:8564228
Holder, Jerry Ryan; Bauzo, Rayna M; Xiang, Zhimin; Haskell-Luevano, Carrie
2002-06-20
The melanocortin pathway is an important participant in obesity and energy homeostasis. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp", and it has been well documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library based on the template Ac-His-DPhe-Arg-Trp-NH(2), consisting of 17 members that have been modified at the His(6) position (alpha-MSH numbering) and pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. These studies provide further experimental evidence that the His(6) position can determine MC4R versus MC3R agonist selectivity and that chemically nonreactive side chains may be substituted for the imidazole ring (generally needs to be side chain protected in synthetic schemes) in the design of MC4R-selective, small-molecule, non-peptide agonists. Specifically, the tetrapeptide containing the amino-2-naphthylcarboxylic acid (Anc) amino acid at the His position resulted in a potent agonist at the mMC4R (EC(50) = 21 nM), was a weak mMC3R micromolar antagonist (pA(2) = 5.6, K(i) = 2.5 microM), and possessed >4700-fold agonist selectivity for the MC4R versus the MC3R. Substitution of the His(6) amino acid in the tetrapeptide template by the Phe, Anc, 3-(2-thienyl)alanine (2Thi), and 3-(4-pyridinyl)alanine (4-Pal) resulted in equipotency or only up to a 7-fold decrease in potency, compared to the His(6)-containing tetrapeptide at the mMC4R, demonstrating that these amino acid side chains may be substituted for the imidazole in the design of MC4R-selective non-peptide molecules.
NASA Astrophysics Data System (ADS)
di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio
2015-11-01
Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.
Riether, Doris; Zindell, Renee; Wu, Lifen; Betageri, Raj; Jenkins, James E; Khor, Someina; Berry, Angela K; Hickey, Eugene R; Ermann, Monika; Albrecht, Claudia; Ceci, Angelo; Gemkow, Mark J; Nagaraja, Nelamangala V; Romig, Helmut; Sauer, Achim; Thomson, David S
2015-02-01
Through a ligand-based pharmacophore model (S)-proline based compounds were identified as potent cannabinoid receptor 2 (CB2) agonists with high selectivity over the cannabinoid receptor 1 (CB1). Structure-activity relationship investigations for this compound class lead to oxo-proline compounds 21 and 22 which combine an impressive CB1 selectivity profile with good pharmacokinetic properties. In a streptozotocin induced diabetic neuropathy model, 22 demonstrated a dose-dependent reversal of mechanical hyperalgesia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Freitas, Kelen; Carroll, F. Ivy; Negus, S. Stevens
2015-01-01
Intracranial self-stimulation (ICSS) is one type of preclinical procedure for research on pharmacological mechanisms that mediate abuse potential of drugs acting at various targets including nicotinic acetylcholine receptors (nAChRs). This study compared effects of the non-selective nAChR agonist nicotine (0.032-1.0 mg/kg) and the α4β2-selective nAChR agonist 5-I-A-85380 (0.01-1.0 mg/kg) on ICSS in male Sprague-Dawley rats. Rats were implanted with electrodes targeting the medial forebrain bundle at the level of the lateral hypothalamus and trained to respond under a fixed-ratio 1 schedule for a range of brain stimulation frequencies (158-56 Hz). A broad range of 5-I-A-85380 doses produced an abuse-related increase (or “facilitation”) of low ICSS rates maintained by low brain-stimulation frequencies, and this effect was blocked by both the nonselective nAChR antagonist mecamylamine and the selective α4β2 antagonist dihyrdo-ß-erythroidine (DHßE). Conversely, nicotine produced weaker ICSS facilitation across a narrower range of doses, and higher nicotine doses decreased high rates of ICSS maintained by high brain- stimulation frequencies. The rate-decreasing effects of a high nicotine dose were blocked by mecamylamine but not DHßE. Chronic nicotine treatment produced selective tolerance to rate-decreasing effects of nicotine but did not alter ICSS rate-increasing effects of nicotine. These results suggest that α4β2 receptors are sufficient to mediate abuse-related rate-increasing effects of nAChR agonists in this ICSS procedure. Conversely, nicotine effects at non-α4β2 nAChRs appear to oppose and limit abuse-related effects mediated by α4β2 receptors, although tolerance can develop to these non-α4β2 effects. Selective α4β2 agonists may have higher abuse potential than nicotine. PMID:26461167
Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi
Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compoundmore » action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.« less
Thomsen, Frederik Birkebæk; Sandin, Fredrik; Garmo, Hans; Lissbrant, Ingela Franck; Ahlgren, Göran; Van Hemelrijck, Mieke; Adolfsson, Jan; Robinson, David; Stattin, Pär
2017-12-01
In observational studies, men with prostate cancer treated with gonadotropin-releasing hormone (GnRH) agonists had a higher risk of cardiovascular disease (CVD) compared to men who had undergone orchiectomy. However, selection bias may have influenced the difference in risk. To investigate the association of type of androgen deprivation therapy (ADT) with risk of CVD while minimising selection bias. Semi-ecologic study of 6556 men who received GnRH agonists and 3330 men who underwent orchiectomy as primary treatment during 1992-1999 in the Prostate Cancer Database Sweden 3.0. We measured the proportion of men who received GnRH agonists as primary treatment in 580 experimental units defined by healthcare provider, diagnostic time period, and age at diagnosis. Incident or fatal CVD events in units with high and units with low use of GnRH agonists were compared. Net and crude probabilities were also analysed. The risk of CVD was similar between units with the highest and units with the lowest proportion of GnRH agonist use (relative risk 1.01, 95% confidence interval [CI] 0.93-1.11). Accordingly, there was no difference in the net probability of CVD after GnRH agonist compared to orchiectomy (hazard ratio 1.02, 95% CI 0.96-1.09). The 10-yr crude probability of CVD was 0.56 (95% CI 0.55-0.57) for men on GnRH agonists and 0.52 (95% CI 0.50-0.54) for men treated with orchiectomy. The main limitation was the nonrandom allocation to treatment, with younger men with lower comorbidity and less advanced cancer more likely to receive GnRH agonists. Our data do not support previous observations that GnRH agonists increase the risk of CVD in comparison to orchiectomy. We found a similar risk of cardiovascular disease between medical and surgical treatment as androgen deprivation therapy for prostate cancer. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Ericson, Mark D; Singh, Anamika; Tala, Srinivasa R; Haslach, Erica M; Dirain, Marvin L S; Schaub, Jay W; Flores, Viktor; Eick, Natalie; Lensing, Cody J; Freeman, Katie T; Smeester, Branden A; Adank, Danielle N; Wilber, Stacey L; Speth, Robert; Haskell-Luevano, Carrie
2018-04-26
β-Defensin 3 (BD3) was identified as a ligand for the melanocortin receptors (MCRs) in 2007, although the pharmacology activity of BD3 has not been clearly elucidated. Herein, it is demonstrated that human BD3 and mouse BD3 are full micromolar agonists at the MCRs. Furthermore, mouse β-defensin 1 (BD1) and human BD1 are also MCR micromolar agonists. This work identifies BD1 as an endogenous MCR ligand and clarifies the controversial role of BD3 as a micromolar agonist.
Woo, Anthony Yiu-Ho; Wang, Tian-Bing; Zeng, Xiaokun; Zhu, Weizhong; Abernethy, Darrell R; Wainer, Irving W; Xiao, Rui-Ping
2009-01-01
A fundamental question regarding receptor-G protein interaction is whether different agonists can lead a receptor to different intracellular signaling pathways. Our previous studies have demonstrated that although most beta(2)-adrenoceptor agonists activate both G(s) and G(i) proteins, fenoterol, a full agonist of beta(2)-adrenoceptor, selectively activates G(s) protein. Fenoterol contains two chiral centers and may exist as four stereoisomers. We have synthesized a series of stereoisomers of fenoterol and its derivatives and characterized their receptor binding and pharmacological properties. We tested the hypothesis that the stereochemistry of an agonist determines selectivity of receptor coupling to different G protein(s). We found that the R,R isomers of fenoterol and methoxyfenoterol exhibited more potent effects to increase cardiomyocyte contraction than their S,R isomers. It is noteworthy that although (R,R)-fenoterol and (R,R)-methoxyfenoterol preferentially activate G(s) signaling, their S,R isomers were able to activate both G(s) and G(i) proteins as evidenced by the robust pertussis toxin sensitivities of their effects on cardiomyocyte contraction and on phosphorylation of extracellular signal-regulated kinase 1/2. The differential G protein selectivities of the fenoterol stereoisomers were further confirmed by photoaffinity labeling studies on G(s),G(i2), and G(i3) proteins. The inefficient G(i) signaling with the R,R isomers is not caused by the inability of the R,R isomers to trigger the protein kinase A (PKA)-mediated phosphorylation of the beta(2)-adrenoceptor, because the R,R isomers also markedly increased phosphorylation of the receptor at serine 262 by PKA. We conclude that in addition to receptor subtype and phosphorylation status, the stereochemistry of a given agonist plays an important role in determining receptor-G protein selectivity and downstream signaling events.
Nimczick, Martin; Pemp, Daniela; Darras, Fouad H; Chen, Xinyu; Heilmann, Jörg; Decker, Michael
2014-08-01
The design of bivalent ligands targeting G protein-coupled receptors (GPCRs) often leads to the development of new, highly selective and potent compounds. To date, no bivalent ligands for the human cannabinoid receptor type 2 (hCB₂R) of the endocannabinoid system (ECS) are described. Therefore, two sets of homobivalent ligands containing as parent structure the hCB2R selective agonist 13a and coupled at different attachment positions were synthesized. Changes of the parent structure at these positions have a crucial effect on the potency and efficacy of the ligands. However, we discovered that bivalency has an influence on the effect at both cannabinoid receptors. Moreover, we found out that the spacer length and the attachment position altered the efficacy of the bivalent ligands at the receptors by turning agonists into antagonists and inverse agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.
Clear: Composition of Likelihoods for Evolve and Resequence Experiments.
Iranmehr, Arya; Akbari, Ali; Schlötterer, Christian; Bafna, Vineet
2017-06-01
The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method-composition of likelihoods for evolve-and-resequence experiments (Clear)-to identify signatures of selection in small population E&R experiments. Clear takes whole-genome sequences of pools of individuals as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides unbiased estimates of model parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations show that Clear achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied the Clear statistic to multiple E&R experiments, including data from a study of adaptation of Drosophila melanogaster to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance. Copyright © 2017 by the Genetics Society of America.
ERIC Educational Resources Information Center
Bratcher, Natalie A.; Farmer-Dougan, Valeri; Dougan, James D.; Heidenreich, Byron A.; Garris, Paul A.
2005-01-01
Dose-dependent changes in sensitivity to reinforcement were found when rats were treated with low, moderate, and high doses of the partial dopamine D[subscript 1]-type receptor agonist SKF38393 and with the nonselective dopamine agonist apomorphine, but did not change when rats were treated with similar doses of the selective dopamine D[subscript…
Ho, Vincent K.; Angelotti, Timothy
2013-01-01
Receptor expression enhancing proteins (REEPs) were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs), specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein) family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6) and model GPCRs (α2A and α2C adrenergic receptors), we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs) revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31) lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo proteins. Therefore, some REEPs can be further described as ER membrane shaping adapter proteins. PMID:24098485
Demont, Emmanuel H; Andrews, Benjamin I; Bit, Rino A; Campbell, Colin A; Cooke, Jason W B; Deeks, Nigel; Desai, Sapna; Dowell, Simon J; Gaskin, Pam; Gray, James R J; Haynes, Andrea; Holmes, Duncan S; Kumar, Umesh; Morse, Mary A; Osborne, Greg J; Panchal, Terry; Patel, Bela; Perboni, Alcide; Taylor, Simon; Watson, Robert; Witherington, Jason; Willis, Robert
2011-06-09
Gilenya (fingolimod, FTY720) was recently approved by the U.S. FDA for the treatment of patients with remitting relapsing multiple sclerosis (RRMS). It is a potent agonist of four of the five sphingosine 1-phosphate (S1P) G-protein-coupled receptors (S1P1 and S1P3-5). It has been postulated that fingolimod's efficacy is due to S1P1 agonism, while its cardiovascular side effects (transient bradycardia and hypertension) are due to S1P3 agonism. We have discovered a series of selective S1P1 agonists, which includes 3-[6-(5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1H)-isoquinolinyl]propanoate, 20, a potent, S1P3-sparing, orally active S1P1 agonist. Compound 20 is as efficacious as fingolimod in a collagen-induced arthritis model and shows excellent pharmacokinetic properties preclinically. Importantly, the selectivity of 20 against S1P3 is responsible for an absence of cardiovascular signal in telemetered rats, even at high dose levels.
2011-01-01
Gilenya (fingolimod, FTY720) was recently approved by the U.S. FDA for the treatment of patients with remitting relapsing multiple sclerosis (RRMS). It is a potent agonist of four of the five sphingosine 1-phosphate (S1P) G-protein-coupled receptors (S1P1 and S1P3−5). It has been postulated that fingolimod's efficacy is due to S1P1 agonism, while its cardiovascular side effects (transient bradycardia and hypertension) are due to S1P3 agonism. We have discovered a series of selective S1P1 agonists, which includes 3-[6-(5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1H)-isoquinolinyl]propanoate, 20, a potent, S1P3-sparing, orally active S1P1 agonist. Compound 20 is as efficacious as fingolimod in a collagen-induced arthritis model and shows excellent pharmacokinetic properties preclinically. Importantly, the selectivity of 20 against S1P3 is responsible for an absence of cardiovascular signal in telemetered rats, even at high dose levels. PMID:24900328
Cho, Sung Jin; Jensen, Niels H.; Kurome, Toru; Kadari, Sudhakar; Manzano, Michael L.; Malberg, Jessica E.; Caldarone, Barbara; Roth, Bryan L.; Kozikowski, Alan P.
2009-01-01
We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT2C agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT2C agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT2C receptor agonists with selectivity over both 5-HT2A and 5-HT2B receptors in functional assays. The most promising compound is 37 with 120- and 14-fold selectivity over 5-HT2A and 5-HT2B, respectively (EC50 = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10–60 mg/kg) decreased immobility time in the mouse forced swim test. PMID:19284718
Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma
Sareddy, Gangadhara R.; Li, Xiaonan; Liu, Jinyou; Viswanadhapalli, Suryavathi; Garcia, Lauren; Gruslova, Aleksandra; Cavazos, David; Garcia, Mike; Strom, Anders M.; Gustafsson, Jan-Ake; Tekmal, Rajeshwar Rao; Brenner, Andrew; Vadlamudi, Ratna K.
2016-01-01
Glioblastomas (GBM), deadly brain tumors, have greater incidence in males than females. Epidemiological evidence supports a tumor suppressive role of estrogen; however, estrogen as a potential therapy for GBM is limited due to safety concerns. Since GBM express ERβ, a second receptor for estrogen, targeting ERβ with a selective agonist may be a potential novel GBM therapy. In the present study, we examined the therapeutic effect of the selective synthetic ERβ agonist LY500307 using in vitro and in vivo GBM models. Treatment with LY500307 significantly reduced the proliferation of GBM cells with no activity on normal astrocytes in vitro. ERβ agonists promoted apoptosis of GBM cells, and mechanistic studies using RNA sequencing revealed that LY500307 modulated several pathways related to apoptosis, cell cycle, and DNA damage response. Further, LY500307 sensitized GBM cells to several FDA-approved chemotherapeutic drugs including cisplatin, lomustine and temozolomide. LY500307 treatment significantly reduced the in vivo tumor growth and promoted apoptosis of GBM tumors in an orthotopic model and improved the overall survival of tumor-bearing mice in the GL26 syngeneic glioma model. Our results demonstrate that LY500307 has potential as a therapeutic agent for GBM. PMID:27126081
Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task.
Perez-García, Georgina S; Meneses, A
2005-08-30
This work aimed to evaluate further the role of 5-HT7 receptors during memory formation in an autoshaping Pavlovian/instrumental learning task. Post-training administration of the potential 5-HT7 receptor agonist AS 19 or antagonist SB-269970 enhanced memory formation or had no effect, respectively. The AS 19 facilitatory effect was reversed by SB-269970, but not by the selective 5-HT1A antagonist WAY100635. Amnesia induced by scopolamine (cholinergic antagonist) or dizocilpine (NMDA antagonist) was also reversed by AS 19. Certainly, reservations regarding the selectivity of AS 19 for 5-HT7 and other 5-HT receptors in vivo are noteworthy and, therefore, its validity for use in animal models as a pharmacological tool. Having mentioned that, it should be noticed that together these data are providing further support to the notion of the 5-HT7 receptors role in memory formation. Importantly, this 5-HT7 receptor agonist AS 19 appears to represent a step forward respect to the notion that potent and selective 5-HT7 receptor agonists can be useful in the treatment of dysfunctional memory in aged-related decline and Alzheimer's disease.
Bedini, Annalida; Lucarini, Simone; Spadoni, Gilberto; Tarzia, Giorgio; Scaglione, Francesco; Dugnani, Silvana; Pannacci, Marilou; Lucini, Valeria; Carmi, Caterina; Pala, Daniele; Rivara, Silvia; Mor, Marco
2011-12-22
New derivatives of 4-phenyl-2-propionamidotetralin (4-P-PDOT) were prepared and tested on cloned MT1 and MT2 receptors, with the purpose of merging previously reported pharmacophores for nonselective agonists and for MT2-selective antagonists. A 8-methoxy group increases binding affinity of both (±)-cis- and (±)-trans-4-P-PDOT, and it can be bioisosterically replaced by a bromine. Conformational analysis of 8-methoxy-4-P-PDOT by molecular dynamics, supported by NMR data, revealed an energetically favored conformation for the (2S,4S)-cis isomer and a less favorable conformation for the (2R,4S)-trans one, fulfilling the requirements of a pharmacophore model for nonselective melatonin receptor agonists. A new superposition model, including features characteristic of MT2-selective antagonists, suggests that MT1/MT2 agonists and MT2 antagonists can share the same arrangement for their pharmacophoric elements. The model correctly predicted the eutomers of (±)-cis- and (±)-trans-4-P-PDOT. The model was validated by preparing three dihydronaphthalene derivatives, either able or not able to reproduce the putative active conformation of 4-P-PDOT.
Discovery of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as potent RORγt inverse agonists.
Wang, Yonghui; Yang, Ting; Liu, Qian; Ma, Yingli; Yang, Liuqing; Zhou, Ling; Xiang, Zhijun; Cheng, Ziqiang; Lu, Sijie; Orband-Miller, Lisa A; Zhang, Wei; Wu, Qianqian; Zhang, Kathleen; Li, Yi; Xiang, Jia-Ning; Elliott, John D; Leung, Stewart; Ren, Feng; Lin, Xichen
2015-09-01
A novel series of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as RORγt inverse agonists was discovered. Binding mode analysis of a RORγt partial agonist (2c) revealed by co-crystal structure in RORγt LBD suggests that the inverse agonists do not directly interfere with the interaction between H12 and the RORγt LBD. Detailed SAR exploration led to identification of potent RORγt inverse agonists such as 3m with a pIC50 of 8.0. Selected compounds in the series showed reasonable activity in Th17 cell differentiation assay as well as low intrinsic clearance in mouse liver microsomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Farnell, Yuhua Z; Ing, Nancy H
2003-03-01
The purpose of this study was to identify an endometrial cell line that maintained the E2 up-regulation of estrogen receptor (ER) mRNA by enhanced message stability and to assess its dependence on ER protein. Estradiol (E2) effects on gene expression were measured in three cell lines: one immortalized from sheep endometrial stroma (ST) and two from human endometrial adenocarcinomas (Ishikawa and ECC-1). E2 up-regulated ER mRNA levels in ST and Ishikawa cells, but down-regulated ER mRNA levels in ECC-1 cells. E2 up-regulated progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and transforming growth factor-alpha (TGF-alpha) in both Ishikawa and ECC-1 cells. The selective estrogen receptor modulator ICI 182,780 antagonized the E2-induced up-regulation of ER and/or PR mRNA levels in all three cells, while another, GW 5638, antagonized the up-regulation of PR mRNA in Ishikawa and ECC-1 cells. In mechanistic studies, E2 had no effect on ER mRNA stability in ST cells and it destabilized ER mRNA in ECC-1 cells. Thus, Ishikawa cells appear to be the most physiologically relevant cell line in which to study the up-regulation of ER mRNA levels by enhanced mRNA stability. Its antagonism by ICI 182,780 reveals that ER protein is involved in this E2 response.
Giuliani, S; Barbanti, G; Turini, D; Quartara, L; Rovero, P; Giachetti, A; Maggi, C A
1991-10-22
The contractile effect of substance P, neurokinin A, receptor selective agonists for tachykinin receptors and NK2 tachykinin receptor antagonists was investigated in mucosa-free circular strips of the human isolated colon. Neurokinin A and substance P produced concentration-dependent contractions which approached 80-90% of the maximal response to carbachol. Neurokinin A was about 370 times more potent than substance P. The action of neurokinin A and substance P was not modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). The NK2 receptor selective agonist, [beta-Ala8]neurokinin A-(4-10) closely mimicked the response to neurokinin A while NK1 and NK3 receptor selective agonists were active only at microM concentrations. The pseudopeptide, MDL 28,564, which is one of the most selective NK2 ligands available, behaved as a full agonist. Responses to [beta-Ala8]neurokinin A were antagonized by NK2 receptor selective antagonists, with the rank order of potency MEN 10,376 greater than L 659,877 much greater than R 396. These data indicate that NK2 tachykinin receptors play a dominant role in determining the contraction of the circular muscle of the human colon to peptides of this family. The NK2 receptor subtype responsible for this effect belongs to the same subtype (NK2A) previously identified in the rabbit pulmonary artery and guinea-pig bronchi.
STENGEL, A.; GOEBEL-STENGEL, M.; WANG, L.; LUCKEY, A.; HU, E.; RIVIER, J.; TACHÉ, Y.
2011-01-01
Background Activation of brain somatostatin receptors (sst1-5) with the stable pan-sst1-5 somatostatin agonist, ODT8-SST blocks acute stress and central corticotropin-releasing factor (CRF)-mediated activation of endocrine adrenal sympathetic responses. Brain CRF signaling is involved in delaying gastric emptying (GE) immediately post surgery. We investigated whether activation of brain sst signaling pathways modulates surgical stress-induced inhibition of gastric emptying and food intake. Methods Fasted rats were injected intracisternally (i.c.) with somatostatin agonists and underwent laparotomy and 1-min cecal palpation. GE of a non-nutrient solution and circulating acyl and desacyl ghrelin levels were assessed 50 min post surgery. Food intake was monitored for 24h. Key results The abdominal surgery-induced inhibition of GE (65%), food intake (73% at 2h) and plasma acyl ghrelin levels (67%) was completely prevented by ODT8-SST (1μg/rat, i.c.). The selective sst5 agonist, BIM-23052 prevented surgery-induced delayed GE, whereas selective sst1, sst2 or sst4 agonists had no effect. However, the selective sst2 agonist, S-346-011 (1μg/rat, i.c.) counteracted the abdominal surgery-induced inhibition of acyl ghrelin and food intake but not the delayed GE. The ghrelin receptor antagonist, [D-Lys3]-GHRP-6 (0.93 mg/kg, intraperitoneal, i.p.) blocked i.p. ghrelin-induced increased GE, while not influencing i.c. ODT8-SST-induced prevention of delayed GE and reduced food intake after surgery. Conclusions & Inferences ODT8-SST acts in the brain to prevent surgery-induced delayed GE likely via activating sst5. ODT8-SST and the sst2 agonist prevent the abdominal surgery-induced decrease in food intake and plasma acyl ghrelin indicating dissociation between brain somatostatin signaling involved in preventing surgery-induced suppression of GE and feeding response. PMID:21569179
Bouchelet, Isabelle; Case, Bruce; Olivier, André; Hamel, Edith
2000-01-01
Using subtype-selective 5-HT1 receptor agonists and/or the 5-HT1 receptor antagonist GR127935, we characterized in vitro the 5-HT receptor that mediates the contraction of human and bovine cerebral arteries. Further, we investigated which sumatriptan-sensitive receptors are present in human coronary artery by reverse-transcriptase polymerase chain reaction (RT–PCR). Agonists with affinity at the 5-HT1B receptor, such as sumatriptan, alniditan and/or IS-159, elicited dose-dependent contraction in both human and bovine cerebral arteries. They behaved as full agonists at the sumatriptan-sensitive 5-HT1 receptors in both species. In contrast, PNU-109291 and LY344864, selective agonists at 5-HT1D and 5-HT1F receptors, respectively, were devoid of any significant vasocontractile activity in cerebral arteries, or did not affect the sumatriptan-induced vasocontraction. The rank order of agonist potency was similar in both species and could be summarized as 5-HT=alniditan>sumatriptan=IS-159>>>PNU-109291=LY344864. In bovine cerebral arteries, the 5-HT1 receptor antagonist GR127935 dose-dependently inhibited the vasoconstrictions elicited by both 5-HT and sumatriptan, with respective pA2 values of 8.0 and 8.6. RT–PCR studies in human coronary arteries showed a strong signal for the 5-HT1B receptor while message for the 5-HT1F receptor was weak and less frequently detected. Expression of 5-HT1D receptor mRNA was not detected in any sample. The present results demonstrate that the triptan-induced contraction in brain vessels is mediated exclusively by the 5-HT1B receptor, which is also present in a majority of human coronary arteries. These results suggest that selective 5-HT1D and 5-HT1F receptor agonists might represent new antimigraine drugs devoid of cerebro- and cardiovascular effects. PMID:10711348
Zhang, Ying; Ji, Yajie; Li, Jianwei; Lei, Li; Wu, Siyu; Zuo, Wenjia; Jia, Xiaoqing; Wang, Yujie; Mo, Miao; Zhang, Na; Shen, Zhenzhou; Wu, Jiong; Shao, Zhimin; Liu, Guangyu
2018-04-01
To investigate ovarian function and therapeutic efficacy among estrogen receptor (ER)-positive, premenopausal breast cancer patients treated with gonadotropin-releasing hormone agonist (GnRHa) and chemotherapy simultaneously or sequentially. This study was a phase 3, open-label, parallel, randomized controlled trial (NCT01712893). Two hundred sixteen premenopausal patients (under 45 years) diagnosed with invasive ER-positive breast cancer were enrolled from July 2009 to May 2013 and randomized at a 1:1 ratio to receive (neo)adjuvant chemotherapy combined with sequential or simultaneous GnRHa treatment. All patients were advised to receive GnRHa for at least 2 years. The primary outcome was the incidence of early menopause, defined as amenorrhea lasting longer than 12 months after the last chemotherapy or GnRHa dose, with postmenopausal or unknown follicle-stimulating hormone and estradiol levels. The menstrual resumption period and survivals were the secondary endpoints. The median follow-up time was 56.9 months (IQR 49.5-72.4 months). One hundred and eight patients were enrolled in each group. Among them, 92 and 78 patients had complete primary endpoint data in the sequential and simultaneous groups, respectively. The rates of early menopause were 22.8% (21/92) in the sequential group and 23.1% (18/78) in the simultaneous group [simultaneous vs. sequential: OR 1.01 (95% CI 0.50-2.08); p = 0.969; age-adjusted OR 1.13; (95% CI 0.54-2.37); p = 0.737]. The median menstruation resumption period was 12.0 (95% CI 9.3-14.7) months and 10.3 (95% CI 8.2-12.4) months for the sequential and simultaneous groups, respectively [HR 0.83 (95% CI 0.59-1.16); p = 0.274; age-adjusted HR 0.90 (95%CI 0.64-1.27); p = 0.567]. No significant differences were evident for disease-free survival (p = 0.290) or overall survival (p = 0.514) between the two groups. For ER-positive premenopausal patients, the sequential use of GnRHa and chemotherapy showed ovarian preservation and survival outcomes that were no worse than simultaneous use. The application of GnRHa can probably be delayed until menstruation resumption after chemotherapy.
NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids
Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.
2014-01-01
Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792
Echo, Joyce A; Lamonte, Nicole; Ackerman, Tsippa F; Bodnar, Richard J
2002-05-01
Food intake is significantly increased following administration of mu-selective opioid agonists into the ventral tegmental area (VTA) region acting through multiple local opioid receptor subtypes. Since GABA receptor agonists in the VTA region are capable of eliciting feeding, the present study investigated whether feeding elicited by the mu-selective opioid agonist [D-Ala(2), NMe(4), Gly-ol(5)]-enkephalin (DAMGO) in the VTA region was altered by pretreatment into the same site with equimolar doses of either GABA(A) (bicuculline) or GABA(B) (saclofen) antagonists, and further, whether pretreatment with either general opioid or selective GABA receptor antagonists decreased feeding elicited by GABA(A) (muscimol) or GABA(B) (baclofen) agonists in the VTA region. DAMGO-induced feeding in the VTA region was dose-dependently decreased following pretreatment with either GABA(A) or GABA(B) antagonists in the absence of significant alterations in food intake by the antagonists per se. However, the presence of short-lived seizures following bicuculline in the VTA region suggests that this ingestive effect was caused by nonspecific actions. In contrast, GABA(B) receptors are involved in the full expression of mu-opioid agonist-induced feeding in this region since saclofen failed to elicit either seizure activity or a conditioned taste aversion. Pretreatment with naltrexone in the VTA region reduced intake elicited by baclofen, but not muscimol. Finally, baclofen-induced feeding was significantly reduced by saclofen, but not bicuculline, pretreatment in the VTA region. Therefore, possible coregulation between GABA(B) and opioid receptors in the VTA region, as suggested by immunocytochemical evidence, is supported by these behavioral effects upon ingestion.
Oxytocin and Vasopressin Agonists and Antagonists as Research Tools and Potential Therapeutics
Manning, M; Misicka, A; Olma, A; Bankowski, K; Stoev, S; Chini, B; Durroux, T; Mouillac, B; Corbani, M; Guillon, G
2012-01-01
We recently reviewed the status of peptide and nonpeptide agonists and antagonists for the V1a, V1b and V2 receptors for arginine vasopressin (AVP) and the oxytocin receptor for oxytocin (OT). In the present review, we update the status of peptides and nonpeptides as: (i) research tools and (ii) therapeutic agents. We also present our recent findings on the design of fluorescent ligands for V1b receptor localisation and for OT receptor dimerisation. We note the exciting discoveries regarding two novel naturally occurring analogues of OT. Recent reports of a selective VP V1a agonist and a selective OT agonist point to the continued therapeutic potential of peptides in this field. To date, only two nonpeptides, the V2/V1a antagonist, conivaptan and the V2 antagonist tolvaptan have received Food and Drug Administration approval for clinical use. The development of nonpeptide AVP V1a, V1b and V2 antagonists and OT agonists and antagonists has recently been abandoned by Merck, Sanofi and Pfizer. A promising OT antagonist, Retosiban, developed at Glaxo SmithKline is currently in a Phase II clinical trial for the prevention of premature labour. A number of the nonpeptide ligands that were not successful in clinical trials are proving to be valuable as research tools. Peptide agonists and antagonists continue to be very widely used as research tools in this field. In this regard, we present receptor data on some of the most widely used peptide and nonpeptide ligands, as a guide for their use, especially with regard to receptor selectivity and species differences. PMID:22375852
Zhang, Xuqing; Allan, George F; Tannenbaum, Pamela; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Lundeen, Scott G; Sui, Zhihua
2013-03-01
Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging. They may also have anabolic activity on bone; thus, unlike estrogens, they may reverse the loss of bone strength associated with aging or hypogonadism. Our in-house effort on SARM program discovers a nonsteroidal androgen receptor ligand with a unique imidazolopyrazole moiety in its structure. In vitro, this compound is a weak androgen receptor binder and a weak androgen agonist. Despite this, in orchidectomized mature rats it is an effective SARM agonist, with an ED(50) on levator ani muscle of 3.3mg/kg and an ED(50) on ventral prostate of >30mg/kg. It has its maximal effect on muscle at the dose of 10mg/kg. In addition, this compound has mixed agonistic and antagonistic activities on prostate, reducing the weight of that tissue in intact rats by 22% at 10mg/kg. The compound does not have significant effect on gonadotropin levels or testosterone levels in both orchidectomized and intact male rats. It does not have notable progestin, estrogen or glucocorticoid agonistic or antagonistic activity in rats. In a female sexual behavior model, it improves the sexual desire of ovariectomized female rats for sexually mature intact males over nonsexually ovariectomized females. Overall, the imidazolopyrazole is a potent prostate-sparing candidate for development as a SARM agonist with an appropriate pharmacological profile for clinical benefit in muscle-wasting conditions and female sexual function disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
The anti-inflammatory effects of PGE2 on human lung macrophages are mediated by the EP4 receptor.
Gill, Sharonjit K; Yao, Yiwen; Kay, Linda J; Bewley, Martin A; Marriott, Helen M; Peachell, Peter T
2016-11-01
PGE 2 inhibits cytokine generation from human lung macrophages. However, the EP receptor that mediates this beneficial anti-inflammatory effect of PGE 2 has not been defined. The aim of this study was to identify the EP receptor by which PGE 2 inhibits cytokine generation from human lung macrophages. This was determined by using recently developed EP receptor ligands. The effects of PGE 2 and EP-selective agonists on LPS-induced generation of TNF-α and IL-6 from macrophages were evaluated. The effects of EP 2 -selective (PF-04852946, PF-04418948) and EP 4 -selective (L-161,982, CJ-042794) receptor antagonists on PGE 2 responses were studied. The expression of EP receptor subtypes by human lung macrophages was determined by RT-PCR. PGE 2 inhibited LPS-induced and Streptococcus pneumoniae-induced cytokine generation from human lung macrophages. Analysis of mRNA levels indicated that macrophages expressed EP 2 and EP 4 receptors. L-902,688 (EP 4 receptor-selective agonist) was considerably more potent than butaprost (EP 2 receptor-selective agonist) as an inhibitor of TNF-α generation from macrophages. EP 2 receptor-selective antagonists had marginal effects on the PGE 2 inhibition of TNF-α generation, whereas EP 4 receptor-selective antagonists caused rightward shifts in the PGE 2 concentration-response curves. These studies demonstrate that the EP 4 receptor is the principal receptor that mediates the anti-inflammatory effects of PGE 2 on human lung macrophages. This suggests that EP 4 receptor agonists could be effective anti-inflammatory agents in human lung disease. © 2016 The British Pharmacological Society.
Visualization of reticulophagy in living cells using an endoplasmic reticulum-targeted p62 mutant.
Wang, Liang; Liu, Lei; Qin, Lingsong; Luo, Qingming; Zhang, Zhihong
2017-04-01
Reticulophagy is a type of selective autophagy in which protein aggregate-containing and/or damaged endoplasmic reticulum (ER) fragments are engulfed for lysosomal degradation, which is important for ER homeostasis. Several chemical drugs and mutant proteins that promote protein aggregate formation within the ER lumen can efficiently induce reticulophagy in mammalian cells. However, the exact mechanism and cellular localization of reticulophagy remain unclear. In this report, we took advantage of the self-oligomerization property of p62/SQSTM1, an adaptor for selective autophagy, and developed a novel reticulophagy system based on an ER-targeted p62 mutant to investigate the process of reticulophagy in living cells. LC3 conversion analysis via western blot suggested that p62 mutant aggregate-induced ER stress triggered a cellular autophagic response. Confocal imaging showed that in cells with moderate aggregation conditions, the aggregates of ER-targeted p62 mutants were efficiently sequestered by autophagosomes, which was characterized by colocalization with the autophagosome precursor marker ATG16L1, the omegasome marker DFCP1, and the late autophagosomal marker LC3/GATE-16. Moreover, time-lapse imaging data demonstrated that the LC3- or DFCP1-positive protein aggregates are tightly associated with the reticular structures of the ER, thereby suggesting that reticulophagy occurs at the ER and that omegasomes may be involved in this process.
Li, Yin; Perera, Lalith; Coons, Laurel A; Burns, Katherine A; Tyler Ramsey, J; Pelch, Katherine E; Houtman, René; van Beuningen, Rinie; Teng, Christina T; Korach, Kenneth S
2018-01-31
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that might be harmful to human health. Recently, there has been widespread usage of bisphenol chemicals (BPs), such as bisphenol AF (BPAF) and bisphenol S (BPS), as replacements for BPA. However, the potential biological actions, toxicity, and the molecular mechanism of these compounds are still poorly understood. Our objective was to examine the estrogenic effects of BPA, BPAF, and BPS and the molecular mechanisms of action in the estrogen receptor alpha (ERα) complex. In vitro cell models were used to compare the estrogenic effects of BPA, BPAF, and BPS to estrogen. Microarray Assay for Real-Time Coregulator-Nuclear receptor Interaction (MARCoNI) analysis was used to identify coregulators of BPA, BPAF, and BPS, and molecular dynamic (MD) simulations were used to determine the compounds binding in the ERα complex. We demonstrated that BPA and BPAF have agonistic activity for both ERα and ERβ, but BPS has ERα-selective specificity. We concluded that coregulators were differentially recruited in the presence of BPA, BPAF, or BPS. Interestingly, BPS recruited more corepressors when compared to BPA and BPAF. From a series of MD analysis, we concluded that BPA, BPAF, and BPS can bind to the ER-ligand-binding domain with differing energetics and conformations. In addition, the binding surface of coregulator interactions on ERα was characterized for the BPA, BPAF, and BPS complexes. These findings further our understanding of the molecular mechanisms of EDCs, such as BPs, in ER-mediated transcriptional activation, biological activity, and their effects on physiological functions in human health. https://doi.org/10.1289/EHP2505.
Belcher, Scott M.; Chen, Yamei; Yan, Sujuan
2012-01-01
Previously we showed that 17β-estradiol (E2) and/or the xenoestrogen bisphenol A (BPA) alter ventricular myocyte Ca2+ handing, resulting in increased cardiac arrhythmias in a female-specific manner. In the present study, the roles of estrogen receptors (ER) in mediating the rapid contractile and arrhythmogenic effects of estrogens were examined. Contractility was used as an index to assess the impact of E2 or BPA on Ca2+ handling in rodent ventricular myocytes. The concentration-response curve for the stimulatory effects of BPA and E2 on female myocyte was inverted-U shaped. Detectable effects for each compound were observed at 10−12 m, and the most efficacious concentrations for each were at 10−9 m. Sensitivity to E2 and BPA was not observed in male myocytes and was abolished in myocytes from ovariectomized females. Analysis using protein-conjugated E2 suggests that these rapid actions are induced by membrane-associated receptors. Analysis using selective ER agonists and antagonists and a genetic ERβ knockout mouse model showed that ERα and ERβ have opposing actions in myocytes and that the balance between ERβ and ERα signaling is the prime regulator of the sex-specific sensitivity toward estrogens. The response of female myocytes to E2 and BPA is dominated by the stimulatory ERβ-mediated signaling, and the absence of BPA and E2 responsiveness in males is due to a counterbalancing-suppressive action of ERα. We conclude that the sex-specific sensitivity of myocytes to estrogens and the rapid arrhythmogenic effects of BPA and estradiol in the female heart are regulated by the balance between ERα and ERβ signaling. PMID:22166976
Effect of lysine at C-terminus of the Dmt-Tic opioid pharmacophore.
Balboni, Gianfranco; Onnis, Valentina; Congiu, Cenzo; Zotti, Margherita; Sasaki, Yusuke; Ambo, Akihiro; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H; Trapella, Claudio; Salvadori, Severo
2006-09-07
Substitution of Gly with side-chain-protected or unprotected Lys in lead compounds containing the opioid pharmacophore Dmt-Tic [H-Dmt-Tic-Gly-NH-CH(2)-Ph, mu agonist/delta antagonist; H-Dmt-Tic-Gly-NH-Ph, mu agonist/delta agonist; and H-Dmt-Tic-NH-CH(2)-Bid, delta agonist (Bid = 1H-benzimidazole-2-yl)] yielded a new series of compounds endowed with distinct pharmacological activities. Compounds (1-10) included high delta- (Ki(delta) = 0.068-0.64 nM) and mu-opioid affinities (Ki(mu) = 0.13-5.50 nM), with a bioactivity that ranged from mu-opioid agonism {10, H-Dmt-Tic-NH-CH[(CH2)4-NH2]-Bid (IC50 GPI = 39.7 nM)} to a selective mu-opioid antagonist [3, H-Dmt-Tic-Lys-NH-CH2-Ph (pA2(mu) = 7.96)] and a selective delta-opioid antagonist [5, H-Dmt-Tic-Lys(Ac)-NH-Ph (pA2(delta) = 12.0)]. The presence of a Lys linker provides new lead compounds in the formation of opioid peptidomimetics containing the Dmt-Tic pharmacophore with distinct agonist and/or antagonist properties.
Potent and selective oxytocin receptor agonists without disulfide bridges.
Adachi, Yusuke; Sakimura, Katsuya; Shimizu, Yuji; Nakayama, Masaharu; Terao, Yasuko; Yano, Takahiko; Asami, Taiji
2017-06-01
Oxytocin (OT) is a neuropeptide involved in a wide variety of physiological actions, both peripherally and centrally. Many human studies have revealed the potential of OT to treat autism spectrum disorders and schizophrenia. OT interacts with the OT receptor (OTR) as well as vasopressin 1a and 1b receptors (V 1a R, V 1b R) as an agonist, and agonistic activity for V 1a R and V 1b R may have a negative impact on the therapeutic effects of OTR agonism in the CNS. An OTR-selective agonistic peptide, FE 202767, in which the structural differences from OT are a sulfide bond instead of a disulfide bond, and N-alkylglycine replacement for Pro at position 7, was reported. However, the effects of amino acid substitutions in OT have not been comprehensively investigated to compare OTR, V 1a R, and V 1b R activities. This led us to obtain a new OTR-selective analog by comprehensive amino acid substitutions of OT and replacement of the disulfide bond. A systematic amino acid scanning (Ala, Leu, Phe, Ser, Glu, or Arg) of desamino OT (dOT) at positions 2, 3, 4, 5, 7, and 8 revealed the tolerability for the substitution at positions 7 and 8. Further detailed study showed that trans-4-hydroxyproline (trans-Hyp) at position 7 and γ-methylleucine [Leu(Me)] at position 8 were markedly effective for improving receptor selectivity without decreasing the potency at the OTR. Subsequently, a combination of these amino acid substitutions with the replacement of the disulfide bond of dOT analogs with a sulfide bond (carba analog) or an amide bond (lactam analog) yielded several promising analogs, including carba-1-[trans-Hyp 7 ,Leu(Me) 8 ]dOT (14) with a higher potency (7.2pM) at OTR than that of OT and marked selectivity (>10,000-fold) over V 1a R and V 1b R. Hence, we investigated comprehensive modification of OT and obtained new OT analogs that exhibited high potency at OTR with marked selectivity. These OTR-selective agonists could be useful to investigate OTR-mediated effects on psychiatric disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Wei; Long, Jian-Dong; Qian, Yuan-Yuan; Long, Yu; Xu, Xue-Jun; Wang, Yu-Jun; Shen, Qing; Wang, Zuo-Neng; Yang, Xi-Cheng; Xiao, Li; Sun, Hong-Peng; Xu, Yu-Long; Chen, Yi-Yi; Xie, Qiong; Wang, Yong-Hui; Shao, Li-Ming; Liu, Jing-Gen; Qiu, Zhui-Bai; Fu, Wei
2017-04-19
To develop novel analgesics with no side effects or less side effects than traditional opioids is highly demanded to treat opioid receptor mediated pain and addiction issues. Recently, κ-opioid receptor (KOR) has been established as an attractive target, although its selective agonists could bear heterogeneous pharmacological activities. In this study, we designed and synthesized two new series of nepenthone derivatives by inserting a spacer (carbonyl) between 6α,14α-endo-ethenylthebaine and the 7α-phenyl substitution of the skeleton and by substituting the 17-N-methyl group with a cyclopropylmethyl group. We performed in vitro tests (binding and functional assays) and molecular docking operations on our newly designed compounds. The results of wet-experimental measures and modeled binding structures demonstrate that these new compounds are selective KOR agonists with nanomolar level affinities. Compound 4 from these new derivatives showed the highest affinity (K i = 0.4 ± 0.1 nM) and the highest selectivity (μ/κ = 339, δ/κ = 2034) toward KOR. The in vivo tests revealed that compound 4 is able to induce stronger (ED 50 = 2.1 mg/kg) and much longer antinociceptive effect than that of the typical KOR agonist U50488H (ED 50 = 4.4 mg/kg). Therefore, compound 4 can be used as a perfect lead compound for future design of potent analgesics acting through KOR.
Identification of SR3335 (ML176): a Synthetic RORα Selective Inverse Agonist
Kumar, Naresh; Kojetin, Douglas J.; Solt, Laura A.; Kumar, K. Ganesh; Nuhant, Philippe; Duckett, Derek R.; Cameron, Michael D.; Butler, Andrew A.; Roush, William R.; Griffin, Patrick R.; Burris, Thomas P.
2010-01-01
Several nuclear receptors (NRs) are still characterized as orphan receptors since ligands have not yet been identified for these proteins. The retinoic acid receptor-related receptors (RORs) have no well-defined physiological ligands. Here, we describe the identification of a selective RORα synthetic ligand, SR3335 (ML-176). SR3335 directly binds to RORα, but not other RORs, and functions as a selective partial inverse agonist of RORα in cell-based assays. Furthermore, SR3335 suppresses the expression of endogenous RORα target genes in HepG2 involved in hepatic gluconeogenesis including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Pharmacokinetic studies indicate that SR3335 displays reasonable exposure following an i.p. injection into mice. We assess the ability of SR3335 to suppress gluconeogenesis in vivo using a diet induced obesity (DIO) mouse model where the mice where treated with 15 mg/kg b.i.d., i.p. for 6-days followed by a pyruvate tolerance test. SR3335 treated mice displayed lower plasma glucose levels following the pyruvate challenge consistent with suppression of gluconeogenesis. Thus, we have identified the first selective synthetic RORα inverse agonist and this compound can be utilized as a chemical tool to probe the function of this receptor both in vitro and in vivo. Additionally, our data suggests that RORα inverse agonists may hold utility for suppression of elevated hepatic glucose production in type 2 diabetics. PMID:21090593
Heterogeneity of NK-2 tachykinin receptors in hamster and rabbit smooth muscles.
Maggi, C A; Eglezos, A; Quartara, L; Patacchini, R; Giachetti, A
1992-01-23
The possible existence of NK-2 receptor subtypes in peripheral smooth muscle preparations from rabbit and hamster was investigated by studying the effect of neurokinin A, the selective NK-2 receptor agonist [beta Ala8] neurokinin A (4-10), the selective NK-2 tachykinin receptor antagonists, MEN 10,376, L 659,877 and R 396, and the pseudopeptide derivative of neurokinin A (4-10), MDL 28,564. All experiments were performed in the presence of peptidase inhibitors (captopril, bestatin and thiorphan, 1 microM each). Both neurokinin A and [beta Ala8] neurokinin A (4-10) produced concentration-dependent contractions of the rabbit isolated bronchus and hamster isolated stomach and colon, as well as enhancement of the nerve-mediated twitches of rabbit isolated vas deferens (pars prostatica). MEN 10,376, L 659,877 and R 396 antagonized the effect of the NK-2 receptor selective agonist in all four tissues under study, although marked differences in antagonist potency were evident for the three antagonists. Thus MEN 10,376 was distinctly more potent (about 100 times) in rabbit than in hamster preparations while L 659,877 and R 396 were more potent in hamster than rabbit preparations. MDL 28,564 showed a distinct agonist character in rabbit preparations while it was virtually inactive in hamster preparations, where it antagonized the effect of the NK-2 receptor selective agonist.(ABSTRACT TRUNCATED AT 250 WORDS)
Boopathy, R; Sekaran, G
2014-08-01
Reverse osmosis (RO) concentrate is being evaporated by solar/thermal evaporators to meet zero liquid discharge standards. The resulted evaporated residue (ER) is contaminated with both organic and inorganic mixture of salts. The generation of ER is exceedingly huge in the leather industry, which is being collected and stored under the shelter to avoid groundwater contamination by the leachate. In the present investigation, a novel process for the separation of sodium chloride from ER was developed, to reduce the environmental impact on RO concentrate discharge. The sodium chloride was selectively separated by the reactive precipitation method using hydrogen chloride gas. The selected process variables were optimized for maximum yield ofNaCl from the ER (optimum conditions were pH, 8.0; temperature, 35 degrees C; concentration of ER, 600 g/L and HCl purging time, 3 min). The recovered NaCl purity was verified using a cyclic voltagramm.
Lorcaserin and adiposopathy: 5-HT2c agonism as a treatment for 'sick fat' and metabolic disease.
Bays, Harold E
2009-11-01
Agonists of 5-hydroxytryptamine (5-HT; serotonin) receptors promote loss of excessive body fat (adiposity) and improve metabolic parameters associated with adiposity-induced adipose tissue dysfunction (adiposopathy or 'sick fat'). By improving adipose tissue pathogenic endocrine and immune responses in overweight patients, 5-HT receptor agonists may improve metabolic disease. Lorcaserin (APD-356) is a selective 5-HT2c receptor agonist that promotes weight loss. Probably owing to its selectivity for the 5-HT2c receptor, clinical trial evidence supports that lorcaserin does not adversely affect heart valves or pulmonary artery pressure. This review examines: the mechanisms by which serotonergic pathways improve adiposity and adiposopathy; historical data and perspective regarding the efficacy and safety of prior 5-HT agonists; speculation regarding future paradigms in treating adiposopathy; and why lorcaserin may prove to be a safe and generally well-tolerated agent that not only improves the weight of patients, but also improves the health of patients.
Neurokinin receptors in the rabbit iris sphincter characterised by novel agonist ligands.
Hall, J M; Mitchell, D; Morton, I K
1991-06-18
We have used novel selective agonist ligands to examine neurokinin receptors mediating the contractile response to tachykinins in the rabbit iris sphincter preparation in vitro. The selective NK-1 receptor agonist delta-amino valeryl-[L-Pro9,N-Me Leu10]SP-(7-11) (GR73632) and the NK-3 receptor-selective agonist succ-[Asp6,N-Me-Phe8] SP-(6-11) (senktide) were both very active (concentration range 0.032 pM-10 nM and 0.1 pM-32 nM respectively), and were 933 and 16.6 times more potent than substance P, respectively, in contracting the iris. In contrast, the NK-2 selective agonist [Lys3,Gly8-R-gamma-lactam,Leu9]NKA-(3-10) (GR64349) was active only at the highest concentrations tested (3.2 nM-32 microM), and had 0.054 the activity of substance P. The presence of several peptidase inhibitors was without effect on the concentration-response relationship to substance P, GR73632, GR64349 or senktide. Tachykinins differed in their offset kinetics. Responses to GR73632, GR64349 and senktide were rapid in offset (times to reach half maximal responses were 1.5, 1.1 and 5.1 min, respectively), whereas responses to substance P were very much more prolonged in duration (time to reach half maximal response was 35.3 min). These results suggest the presence of both NK-1 and NK-3 receptors mediating contraction of the rabbit iris sphincter preparation. In addition, differences in response offset kinetics seem not to be due to differences in peptide metabolism, and suggest a property of substance P not shared by the other tachykinins used in this study.
Gabapentin Extended-Release - Depomed: Gabapentin ER, Gabapentin Gastric Retention, Gabapentin GR.
2007-01-01
Depomed is developing an extended-release (ER) oral formulation of gabapentin, a GABA receptor agonist commonly used for the treatment of epilepsy and seizures, neuropathic pain and hot flushes. Gabapentin ER is based on the company's proprietary AcuForm drug delivery technology, which is part of the Gastric Retention (GR) family of technologies; this offers improved drug absorption and bioavailability compared with the existing immediate-release formulation of gabapentin (Neurontin), making gabapentin ER suitable for twice-daily dosing. The product is in clinical development for the treatment of postherpetic neuralgia and diabetic neuropathies in the US. Additionally, Depomed has commenced a phase II trial of gabapentin ER in postmenopausal patients with hot flushes. Depomed's AcuForm platform is based on polymer technology that provides targeted drug delivery for a variety of compounds. Following ingestion, AcuForm tablets swell and are retained for 6-8 hours in the stomach, enabling controlled and prolonged release of gabapentin to the upper intestinal tract; this extends the time of drug delivery to the small intestine for complete and safe elimination via the lower intestinal track. Gabapentin ER is available for licensing. Depomed acquired exclusive development and commercialisation rights to gabapentin ER in September 2003 via its subsidiary, Depomed Development Ltd (DDL). Depomed is not required to pay upfront license fees, but will make royalty and milestone payments to DDL upon successful commercialisation of gabapentin ER. Gabapentin ER was originally developed by DDL, a joint venture between Depomed and Elan established in January 2000 to design products using the GR family of technologies. However, in efforts to restructure joint venture relationships, Elan withdrew from operational involvement of DDL in September 2003, and Depomed has gained full ownership of DDL. Depomed sublicensed exclusive rights to a US patent (held by the University of Rochester) covering the use of gabapentin in the treatment of hot flushes from PharmaNova in October 2006. Under the agreement, Depomed paid PharmaNova an upfront fee of US dollars 500 000. PharmaNova is also entitled to milestone payments and royalties on sales of gabapentin ER in this indication only. Depomed has reported significant safety and efficacy benefits from gabapentin ER in its phase II trial. This study was initiated in February 2005 following positive results from a phase I trial in which gabapentin ER demonstrated a pharmacokinetic profile suitable for twice-daily dosing. In two pharmacokinetic studies, gabapentin ER achieved improved bioavailability at higher doses. This result supports Depomed's development of a once- or twice-daily product with potentially fewer adverse events. The basic US patents relating to gabapentin expired in 2000. Depomed holds exclusive rights to a US patent (No. 6 310 098) held by the University of Rochester covering the use of gabapentin to treat hot flushes.Additionally, Depomed was issued a US patent (No. 6 723 340) in May 2004 that covers proprietary polymer combinations (as used in AcuForm tablets) to create improved formulations of existing drugs.
Epigenetic Mechanisms of Tamoxifen Resistance in Luminal Breast Cancer.
Abdel-Hafiz, Hany A
2017-07-06
Breast cancer is one of the most common cancers and the second leading cause of cancer death in the United States. Estrogen receptor (ER)-positive cancer is the most frequent subtype representing more than 70% of breast cancers. These tumors respond to endocrine therapy targeting the ER pathway including selective ER modulators (SERMs), selective ER downregulators (SERDs) and aromatase inhibitors (AIs). However, resistance to endocrine therapy associated with disease progression remains a significant therapeutic challenge. The precise mechanisms of endocrine resistance remain unclear. This is partly due to the complexity of the signaling pathways that influence the estrogen-mediated regulation in breast cancer. Mechanisms include ER modifications, alteration of coregulatory function and modification of growth factor signaling pathways. In this review, we provide an overview of epigenetic mechanisms of tamoxifen resistance in ER-positive luminal breast cancer. We highlight the effect of epigenetic changes on some of the key mechanisms involved in tamoxifen resistance, such as tumor-cell heterogeneity, ER signaling pathway and cancer stem cells (CSCs). It became increasingly recognized that CSCs are playing an important role in driving metastasis and tamoxifen resistance. Understanding the mechanism of tamoxifen resistance will provide insight into the design of novel strategies to overcome the resistance and make further improvements in breast cancer therapeutics.
Dou, Bin; Luo, Yong; Chen, Xu; Shi, Bo; Du, Yuguang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng
2015-02-01
Bare gold nanoparticles selectively enhance the Raman signal of beta-agnonists in swine hair extract at 780 nm, which enables analysis of beta-agonists in swine hair extract without chemical labeling, purification, or separation. The analysis is multiplexable and the LOD of beta-agonists is around ng/mL in the assistance of microfluidic paper. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Scott K.; Washburn, David G.; Frazee, James S.
2010-09-03
Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.
Klemm, W R; Block, H
1988-02-01
The dopaminergic role of D-1 and D-2 receptors in catalepsy was evaluated using drugs with preferential receptor affinities. The D-1 antagonist, SCH 23390, caused distinct catalepsy in mice at 1, 2, and 10 mg/kg, IP, but not at two lower doses. The selective D-1 blocker, molindone, also caused catalepsy at 5 and 10 mg/kg; and blockade of both receptor types produced additive cataleptogenic effects. Apomorphine (4 mg/kg), which is an agonist for both receptors, potentiated SCH 23390-induced catalepsy much more than it did the catalepsy induced by molindone; the potentiation was produced by higher, not lower, doses of apomorphine. To determine if the apomorphine potentiation was mediated by D-1 or D-2 receptors, we tested selective agonists in mice that were concurrently injected with selective blockers. SCH 23390-induced catalepsy was potentiated by a large dose of the D-2 agonist, bromocriptine. The catalepsy of D-2 blockade with molindone was not potentiated by the D-1 agonist, SKF 38393, which slightly disrupted the catalepsy of D-2 blockade. We conclude that catalepsy is not a simple D-2 blockade phenomenon and that preferential antagonism of either receptor type can cause catalepsy. Catalepsy is most profound when both receptor types are blocked. Dopamine agonists, in large concentrations, are known to promote movements, and thus it is not surprising that they tend to disrupt catalepsy.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Molina, José-Manuel, E-mail: molinajm@ugr.es; Amaya, Esperanza; Grimaldi, Marina
Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA andmore » its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed.« less
Nagakura, Tadashi; Tabata, Kimiyo; Kira, Kazunobu; Hirota, Shinsuke; Clark, Richard; Matsuura, Fumiyoshi; Hiyoshi, Hironobu
2013-08-01
Many anticoagulant drugs target factors common to both the intrinsic and extrinsic coagulation pathways, which may lead to bleeding complications. Since the tissue factor (TF)/factor VIIa complex is associated with thrombosis onset and specifically activates the extrinsic coagulation pathway, compounds that inhibit this complex may provide therapeutic and/or prophylactic benefits with a decreased risk of bleeding. The in vitro enzyme profile and anticoagulation selectivity of the TF/VIIa complex inhibitor, ER-410660, and its prodrug E5539 were assessed using enzyme inhibitory and plasma clotting assays. In vivo effects of ER-410660 and E5539 were determined using a TF-induced, thrombin generation rhesus monkey model; a stasis-induced, venous thrombosis rat model; a photochemically induced, arterial thrombosis rat model; and a rat tail-cut bleeding model. ER-410660 selectively prolonged prothrombin time, but had a less potent anticoagulant effect on the intrinsic pathway. It also exhibited a dose-dependent inhibitory effect on thrombin generation caused by TF-injection in the rhesus monkey model. ER-410660 also reduced venous thrombus weights in the TF-administered, stasis-induced, venous thrombosis rat model and prolonged the occlusion time induced by arterial thrombus formation after vascular injury. The compound was capable of doubling the total bleeding time in the rat tail-cut model, albeit with a considerably higher dose compared to the effective dose in the venous and arterial thrombosis models. Moreover, E5539, an orally available ER-410660 prodrug, reduced the thrombin-anti-thrombin complex levels, induced by TF-injection, in a dose-dependent manner. Selective TF/VIIa inhibitors have potential as novel anticoagulants with a lower propensity for enhancing bleeding. Copyright © 2013 Elsevier Ltd. All rights reserved.
Holmberg, Pär; Sohn, Daniel; Leideborg, Robert; Caldirola, Patrizia; Zlatoidsky, Pavel; Hanson, Sverker; Mohell, Nina; Rosqvist, Susanne; Nordvall, Gunnar; Johansson, Anette M; Johansson, Rolf
2004-07-29
The understanding of the physiological role of the G-protein coupled serotonin 5-HT(7) receptor is largely rudimentary. Therefore, selective and potent pharmacological tools will add to the understanding of serotonergic effects mediated through this receptor. In this report, we describe two compound classes, chromans and tetralins, encompassing compounds with nanomolar affinity for the 5-HT(7) receptor and with good selectivity. Within theses classes, we have discovered both agonists and antagonists that can be used for further understanding of the pharmacology of the 5-HT(7) receptor.
Male risk taking, female odors, and the role of estrogen receptors.
Kavaliers, Martin; Clipperton-Allen, Amy; Cragg, Cheryl L; Gustafsson, Jan-Åke; Korach, Kenneth S; Muglia, Louis; Choleris, Elena
2012-12-05
Male risk-taking and decision making are affected by sex-related cues, with men making riskier choices and decisions after exposure to either women or stimuli associated with women. In non-human species females and, or their cues can also increase male risk taking. Under the ecologically relevant condition of predation threat, brief exposure of male mice to the odors of a sexually receptive novel female reduces the avoidance of, and aversive responses to, a predator. We briefly review evidence showing that estrogen receptors (ERs), ERα and ERβ, are associated with the mediation of these risk taking responses. We show that ERs influence the production of the female odors that affect male risk taking, with the odors of wild type (ERαWT, ERβWT), oxytocin (OT) wildtype (OTWT), gene-deleted 'knock-out' ERβ (ERβKO), but not ERαKO or oxytocin (OT) OTKO or ovariectomized (OVX) female mice reducing the avoidance responses of male mice to cat odor. We further show that administration of specific ERα and ERβ agonists to OVX females results in their odors increasing male risk taking and boldness towards a predator. We also review evidence that ERs are involved in the mediation of the responses of males to female cues, with ERα being associated with the sexual and both ERβ and ERα with the sexual and social mechanisms underlying the effects of female cues on male risk taking. The implications and relations of these findings with rodents to ERs and the regulation of human risk taking are briefly considered. Copyright © 2012 Elsevier Inc. All rights reserved.
Lofwall, Michelle R.; Babalonis, Shanna; Nuzzo, Paul A.; Siegel, Anthony; Campbell, Charles; Walsh, Sharon L.
2013-01-01
Background Tramadol is an atypical analgesic with monoamine and modest mu opioid agonist activity. The purpose of this study was to evaluate: 1) the efficacy of extended-release (ER) tramadol in treating prescription opioid withdrawal and 2) whether cessation of ER tramadol produces opioid withdrawal. Methods Prescription opioid users with current opioid dependence and observed withdrawal participated in this inpatient, two-phase double blind, randomized placebo-controlled trial. In Phase 1 (days 1-7), participants were randomly assigned to matched oral placebo or ER tramadol (200 or 600 mg daily). In Phase 2 (days 8-13), all participants underwent double blind crossover to placebo. Breakthrough withdrawal medications were available for all subjects. Enrollment continued until 12 completers/group was achieved. Results Use of breakthrough withdrawal medication differed significantly (p<0.05) among groups in both phases; the 200 mg group received the least amount in Phase 1, and the 600 mg group received the most in both phases. In Phase 1, tramadol 200 mg produced significantly lower peak ratings than placebo on ratings of insomnia, lacrimation, muscular tension, and sneezing. Only tramadol 600 mg produced miosis in Phase 1. In Phase 2, tramadol 600 mg produced higher peak ratings of rhinorrhea, irritable, depressed, heavy/sluggish, and hot/cold flashes than placebo. There were no serious adverse events and no signal of abuse liability for tramadol. Conclusions ER tramadol 200 mg modestly attenuated opioid withdrawal. Mild opioid withdrawal occurred after cessation of treatment with 600 mg tramadol. These data support the continued investigation of tramadol as a treatment for opioid withdrawal. PMID:23755929
Male risk taking, female odors, and the role of estrogen receptors
Kavaliers, Martin; Clipperton-Allen, Amy; Cragg, Cheryl L.; Gustafsson, Jan-Åke; Korach, Kenneth S.; Muglia, Louis; Choleris, Elena
2016-01-01
Male risk-taking and decision making are affected by sex-related cues, with men making riskier choices and decisions after exposure to either women or stimuli associated with women. In non-human species females and, or their cues can also increase male risk taking. Under the ecologically relevant condition of predation threat, brief exposure of male mice to the odors of a sexually receptive novel female reduces the avoidance of, and aversive responses to, a predator. We briefly review evidence showing that estrogen receptors (ERs), ERα and ERβ, are associated with the mediation of these risk taking responses. We show that ERs influence the production of the female odors that affect male risk taking, with the odors of wild type (ERαWT, ERβWT), oxytocin (OT) wildtype (OTWT), gene-deleted ‘knock-out’ ERβ (ERβKO), but not ERαKO or oxytocin (OT) OTKO or ovariectomized (OVX) female mice reducing the avoidance responses of male mice to cat odor. We further show that administration of specific ERα and ERβ agonists to OVX females results in their odors increasing male risk taking and boldness towards a predator. We also review evidence that ERs are involved in the mediation of the responses of males to female cues, with ERα being associated with the sexual and both ERβ and ERα with the sexual and social mechanisms underlying the effects of female cues on male risk taking. The implications and relations of these findings with rodents to ERs and the regulation of human risk taking are briefly considered. PMID:22472459
Liu, S; Kilic, G; Meyers, M S; Navarro, G; Wang, Y; Oberholzer, J; Mauvais-Jarvis, F
2013-02-01
Pancreatic islet transplantation (PIT) offers a physiological treatment for type 1 diabetes, but the failure of islet engraftment hinders its application. The female hormone 17β-oestradiol (E2) favours islet survival and stimulates angiogenesis, raising the possibility that E2 may enhance islet engraftment following PIT. To explore this hypothesis, we used an insulin-deficient model with xenotransplantation of a marginal dose of human islets in nude mice rendered diabetic with streptozotocin. This was followed by 4 weeks of treatment with vehicle, E2, the non-feminising oestrogen 17α-oestradiol (17α-E2), the oestrogen receptor (ER) α agonist propyl-pyrazole-triol (PPT), the ERβ agonist diarylpropionitrile (DPN) or the G protein-coupled oestrogen receptor (GPER) agonist G1. Treatment with E2, 17α-E2, PPT, DPN or G1 acutely improved blood glucose and eventually promoted islet engraftment, thus reversing diabetes. The effects of E2 were retained in the presence of immunosuppression and persisted after discontinuation of E2 treatment. E2 produced an acute decrease in graft hypoxic damage and suppressed beta cell apoptosis. E2 also acutely suppressed hyperglucagonaemia without altering insulin secretion, leading to normalisation of blood glucose. During PIT, E2 synergistic actions contribute to enhancing human islet-graft survival, revascularisation and functional mass. This study identifies E2 as a short-term treatment to improve PIT.
Lymer, Jennifer M; Sheppard, Paul A S; Kuun, Talya; Blackman, Andrea; Jani, Nilay; Mahbub, Sahnon; Choleris, Elena
2018-03-01
Estrogens have been shown to rapidly (within 1 h) affect learning and memory processes, including social recognition. Both systemic and hippocampal administration of 17β-estradiol facilitate social recognition in female mice within 40 min of administration. These effects were likely mediated by estrogen receptor (ER) α and the G-protein coupled estrogen receptor (GPER), as administration of the respective receptor agonists (PPT and G-1) also facilitated social recognition on a rapid time scale. The medial amygdala has been shown to be necessary for social recognition and long-term manipulations in rats have implicated medial amygdalar ERα. As such, our objective was to investigate whether estrogens and different ERs within the medial amygdala play a role in the rapid facilitation of social recognition in female mice. 17β-estradiol, G-1, PPT, or ERβ agonist DPN was infused directly into the medial amygdala of ovariectomized female mice. Mice were then tested in a social recognition paradigm, which was completed within 40 min, thus allowing the assessment of rapid effects of treatments. 17β-estradiol (10, 25, 50, 100 nM), PPT (300 nM), DPN (150 nM), and G-1 (50 nM) each rapidly facilitated social recognition. Therefore, estrogens in the medial amygdala rapidly facilitate social recognition in female mice, and the three main estrogen receptors: ERα, ERβ, and the GPER all are involved in these effects. This research adds to a network of brain regions, including the medial amygdala and the dorsal hippocampus, that are involved in mediating the rapid estrogenic facilitation of social recognition in female mice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiative Performance of Rare Earth Garnet Thin Film Selective Emitters
NASA Technical Reports Server (NTRS)
Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.
1994-01-01
In this paper we present the first emitter efficiency results for the thin film 40 percent Er-1.5 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) and 25 percent Ho YAG selective emitter at 1500 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns). Emitter efficiency and power density are significantly improved with the addition of multiple rare earth dopants. Predicted efficiency results are presented for an optimized (equal power density in the Er, (4)I(sub 15/2)-(4)I(sub 13/2) at 1.5 microns, and Ho, (5)I(sub 7)-(5)I(sub 8) at 2.0 micron emission bands) Er-Ho YAG thin film selective emitter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, M.; Yamamura, H.I.; Roeske, W.R.
The binding and regulation of selected muscarinic agonists to putative subtypes in rat cerebral cortex and heart were studied. Parallel inhibition studies of (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and (-)-(/sup 3/H)quinuclidinylbenzilate ((-)-(/sup 3/H)QNB)-labeled membranes were done with and without 30 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) at 25 degrees C in 10 mM Na-K-phosphate buffer which enhances PZ binding affinity and in modified Krebs-phosphate buffer, which mimics physiological conditions. Classical agonists such as carbachol, oxotremorine and acetylcholine inhibited (-)-(/sup 3/H)QNB binding to membranes with shallow Hill values (nH less than 1), were better fit to a 2-state model, were Gpp(NH)p-regulated and showed lowermore » affinity in modified Krebs-phosphate buffer than in 10 mM Na-K-phosphate buffer. Some agonists were not significantly better fit to a 2-state model in (/sup 3/H)PZ-labeled cortical membranes, especially in 10 mM Na-K-phosphate buffer. Whereas putative M1 and M2 binding sites distinguished by PZ possessed multiple agonist affinity states, as judged by carbachol, and agonist binding to (/sup 3/H)PZ-labeled sites were Gpp(NH)p modulated, the partial agonist pilocarpine and nonclassical agonist McN-A-343 (3-(m-chlorophenylcarbamoyloxy)-2-butynyl trimethylammonium chloride) showed little Gpp(NH)p-induced shift in (/sup 3/H)PZ-labeled cortical membranes in physiological conditions. Agonist binding to (-)-(/sup 3/H)QNB-labeled putative M2 cardiac sites was more sensitive to Gpp(NH)p than (-)-(/sup 3/H)QNB-labeled cortical sites. Carbachol and acetylcholine showed significant selectivity for putative M2 sites.« less
Glover, D K; Ruiz, M; Takehana, K; Petruzella, F D; Riou, L M; Rieger, J M; Macdonald, T L; Watson, D D; Linden, J; Beller, G A
2001-09-04
Adenosine (Ado) and dipyridamole are alternatives to exercise stress for myocardial perfusion imaging. Though generally safe, side effects frequently occur that cause patient discomfort and sometimes lead to premature termination of the study or require aminophylline administration. Recently, a new class of A(2A) Ado receptor agonists was synthesized. ATL193 and ATL146e are 2-propynylcyclohexyl-5'-N-ethylcarboxamido derivatives of Ado. The study goals were to evaluate the potency and selectivity of these new compounds on recombinant canine Ado receptors and to evaluate their hemodynamic properties in dogs to assess their usefulness as vasodilators for myocardial perfusion imaging. In assays of recombinant canine Ado receptors, ATL-193 and ATL-146e were highly selective for the A(2A) over the A(1) and A(3) receptors and were more potent than MRE-0470 and CGS-21680. In 16 anesthetized dogs, the agonists were administered by infusion (ATL-193; n=7 normal) or bolus injection (ATL-146e; n=9 critical left anterior descending coronary artery stenosis), and hemodynamic responses were compared with those of Ado. Both agonists produced dose-dependent coronary flow (CF) elevation without provoking the hypotension observed with Ado. After an ATL-146e bolus, the CF increase was sustained for several minutes, providing ample time for injection and myocardial uptake of (99m)Tc-sestamibi, and CF returned to baseline within 20 minutes. The CF increase was completely blocked by the selective A(2A) antagonist ZM241385 (3 microgram. kg(-1). min(-1)). ATL-193 and ATL-146e are highly potent and selective Ado A(2A) receptor agonists with excellent potential for use as vasodilators for myocardial perfusion imaging. An important advantage of ATL-146e is the ability to administer it by bolus injection.
Yuan, L; Burcher, E; Nail, B S
1998-02-01
The effects of i.v. injections of two endogenous tachykinins, substance P (SP) and neuropeptide gamma and the highly selective tachykinin agonists [Sar9,Met(O2)11]-SP, [Lys5,MeLeu9, Nle10]-NKA(4-10) and senktide, on total lung resistance (RL), dynamic lung compliance (Cdyn) and systemic blood pressure, were compared in the anaesthetized rabbit. Senktide, the NK-3 receptor selective agonist, had no effect on RL, Cdyn or blood pressure. The other four agonists caused dose-dependent increases in RL and Cdyn, with [Sar9,Met(O2)11]-SP being the most potent agonist in producing changes in the absence of phosphoramidon. This suggested that NK-1 receptors play an important role in these responses. [Sar9, Met(O2)11]-SP, SP and neuropeptide gamma also decreased blood pressure. Phosphoramidon (1 mg/kg) potentiated the changes in RL and Cdyn evoked by [Sar9,Met(O2)11]-SP and SP, with very marked enhancement of responses to neuropeptide gamma. Responses to [Lys5, MeLeu9,Nle10]-NKA(4-10) were unaffected, suggesting that this NK-2 selective agonist may not be catabolized by neutral endopeptidase (NEP). In the presence of phosphoramidon, the non-peptide tachykinin NK-1 receptor selective antagonist CP 96345 (80 nmol/kg) reduced all responses to [Sar9,Met(O2)11]-SP and SP, whereas the NK-2 selective antagonist SR 48968 (40 nmol/kg) inhibited the bronchomotor but not the vasodepressor responses to neuropeptide gamma and [Lys5,MeLeu9, Nle10]-NKA(4-10). The fall in blood pressure induced by neuropeptide gamma was diminished by CP 96345, whereas bronchoconstriction was unaffected, indicating possible differences in NK-1 receptors in the vasculature and airways. Electrical stimulation of the distal ends of vagus nerves caused increases in RL which were abolished by atropine (1 mg/kg). Copyright 1998 Academic Press Limited
Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.
Pinto, Cibele; Papa, Dan; Hübner, Melanie; Mou, Tung-Chung; Lushington, Gerald H; Seifert, Roland
2008-04-01
Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
Selective export of autotaxin from the endoplasmic reticulum.
Lyu, Lin; Wang, Baolu; Xiong, Chaoyang; Zhang, Xiaotian; Zhang, Xiaoyan; Zhang, Junjie
2017-04-28
Autotaxin (ATX) or ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) is a secretory glycoprotein and functions as the key enzyme for lysophosphatidic acid generation. The mechanism of ATX protein trafficking is largely unknown. Here, we demonstrated that p23, a member of the p24 protein family, was the protein-sorting receptor required for endoplasmic reticulum (ER) export of ATX. A di-phenylalanine (Phe-838/Phe-839) motif in the human ATX C-terminal region was identified as a transport signal essential for the ATX-p23 interaction. Knockdown of individual Sec24 isoforms by siRNA revealed that ER export of ATX was impaired only if Sec24C was down-regulated. These results suggest that ATX is selectively exported from the ER through a p23, Sec24C-dependent pathway. In addition, it was found that AKT signaling played a role in ATX secretion regulation to facilitate ATX ER export by enhancing the nuclear factor of activated T cell-mediated p23 expression. Furthermore, the di-hydrophobic amino acid motifs (FY) also existed in the C-terminal regions of human ENPP1 and ENPP3. Such a p23, Sec24C-dependent selective ER export mechanism is conserved among these ENPP family members. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Influence of estrogen receptor status on dietary risk factors for breast cancer.
Hislop, T G; Kan, L; Coldman, A J; Band, P R; Brauer, G
1988-01-01
It has been suggested that the relation between diet and breast cancer may depend on estrogen receptor (ER) status. We examined the responses to a self-administered questionnaire on frequency of consumption of various foods by 493 women with breast cancer (160 with ER-negative tumours and 333 with ER-positive tumours) and 527 controls whose menopausal status was known. Analysis of the reported consumption of foods selected for their fat or carotene content showed no clear distinction in dietary factors between the ER-negative and ER-positive groups. Frequent consumption of meat fats generally increased the risk of both ER-negative and ER-positive tumours; there were no clear trends in risk associated with vegetable consumption for either ER group. Fish was the only item affecting the risk for ER-negative and ER-positive tumours differently, frequent consumption reducing the risk for the former (p = 0.02). The results do not support the hypothesis that ER status influences the relation between dietary fat consumption and risk of breast cancer. PMID:3342359
YAG:Er3+, CaF2:Er3+, and Er2O3 Emission Spectra Under Laser and Laser Thermal Excitation
NASA Astrophysics Data System (ADS)
Marchenko, V. M.
2018-05-01
Experimental luminescence and selective-emission (SE) spectra of YAG:Er3+ (10 at.%) and CaF2:Er3+ (1 at.%) single crystals and Er2O3 polycrystal under laser and laser thermal excitation of the Er3+-ion multiplets are compared. Luminescence spectra under resonant excitation are determined by multiplet population relaxation with the corresponding radiative and nonradiative probabilities. The form of the SE spectra is determined by the thermal population of the multiplets and the probabilities of only radiative transitions. The SE band at 800 nm (4I9/2 → 4I15/2) is an indicator of high-temperature thermal emission of Er3+ ions. The absence of this band in luminescence spectra is explained by the short lifetime of the τ(4I9/2) level of 53 ns at T = 300 K.
Identification of four areas each enriched in a unique muscarinic receptor subtype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoss, W.; Ellerbrock, B.R.; Goldman, P.S.
The affinities of muscarinic agonists and antagonists were determined by autoradiography and image analysis in selected areas of the rat brain. IC{sub 50} values and Hill coefficients for the inhibition of the binding of 0.2 nM ({sup 3}H)-QNB to dentate gyrus, superior colliculus, rhomboid thalamus and substantia nigra were measured in coronal sections. Pirenzepine displayed a high affinity for receptors in the dentate gyrus and AF-DX 116, the superior colliculus. Both pirenzepine and AF-DX 116 had high affinities for the substantia nigra and low affinities for the rhomboid thalamus. Gallamine displayed a 50-fold preference for superior colliculus over dentate gyrusmore » receptors. Amitriptyline was less selective, showing a modest preference for substantia nigra receptors and 4-DAMP was essentially nonselective. Carbachol was the most selective agonist with a 4000-fold preference for superior colliculus over dentate gyrus receptors. Other agonists except RS 86 were also selective for superior colliculus receptors in the order carbachol >> arecoline > bethanechol > McN A343 = oxotremorine = pilocarpine.« less
Optimized Chemical Probes for REV-ERBα
Trump, Ryan P.; Bresciani, Stefano; Cooper, Anthony W. J.; Tellam, James P.; Wojno, Justyna; Blaikley, John; Orband-Miller, Lisa A.; Kashatus, Jennifer A.; Dawson, Helen C.; Loudon, Andrew; Ray, David; Grant, Daniel; Farrow, Stuart N.; Willson, Timothy M.; Tomkinson, Nicholas C. O.
2015-01-01
REV-ERBα has emerged as an important target for regulation of circadian rhythm and its associated physiology. Herein, we report on the optimization of a series of REV-ERBα agonists based on GSK4112 (1) for potency, selectivity, and bioavailability. Potent REV-ERBα agonists 4, 10, 16, and 23 are detailed for their ability to suppress BMAL and IL-6 expression from human cells while also demonstrating excellent selectivity over LXRα. Amine 4 demonstrated in vivo bioavailability after either IV or oral dosing. PMID:23656296
Weiser, Michael J.; Wu, T. John; Handa, Robert J.
2009-01-01
Estrogens have been shown to have positive and negative effects on anxiety and depressive-like behaviors, perhaps explained by the existence of two distinct estrogen receptor (ER) systems, ERα and ERβ. The ERβ agonist, diarylpropionitrile (DPN) has been shown to have anxiolytic properties in rats. DPN exists as a racemic mixture of two enantiomers, R-DPN and S-DPN. In this study, we compared R-DPN and S-DPN for their in vitro binding affinity, ability to activate transcription in vitro at an estrogen response element, and in vivo endocrine and behavioral responses. In vitro binding studies using recombinant rat ERβ revealed that S-DPN has a severalfold greater relative binding affinity for ERβ than does R-DPN. Furthermore, cotransfection of N-38 immortalized hypothalamic cells with an estrogen response element-luc reporter and ERβ revealed that S-DPN is a potent activator of transcription in vitro, whereas R-DPN is not. Subsequently, we examined anxiety-like behaviors using the open-field test and elevated plus maze or depressive-like behaviors, using the forced swim test. Ovariectomized young adult female Sprague Dawley rats treated with racemic DPN, S-DPN, and the ERβ agonist, WAY-200070, showed significantly decreased anxiety-like behaviors in both the open-field and elevated plus maze and significantly less depressive-like behaviors in the forced swim test compared with vehicle-, R-DPN-, or propylpyrazoletriol (ERα agonist)-treated animals. In concordance with the relative binding affinity and transcriptional potency, these results demonstrate that the S-enantiomer is the biologically active form of DPN. These studies also indicate that estrogen's positive effects on mood, including its anxiolytic and antidepressive actions, are due to its actions at ERβ. PMID:19074580
Strekalova, Elena; Malin, Dmitry; Good, David M.; Cryns, Vincent L.
2015-01-01
Purpose Many neoplasms are vulnerable to methionine deficiency by mechanisms that are poorly understood. Because gene profiling studies have revealed that methionine depletion increases TNF-related apoptosis-inducing ligand receptor-2 (TRAIL-R2) mRNA, we postulated that methionine stress sensitizes breast cancer cells to proapoptotic TRAIL-R2 agonists. Experimental Design Human triple (ER/PR/HER2)-negative breast carcinoma cell lines were cultured in control or methionine-free media. The effects of methionine depletion on TRAIL receptor expression and sensitivity to chemotherapy or a humanized agonistic TRAIL-R2 monoclonal antibody (lexatumumab) were determined. The melanoma-associated antigen MAGED2 was silenced to delineate its functional role in sensitizing TNBC cells to methionine stress. An orthotopic TNBC model was utilized to evaluate the effects of dietary methionine deficiency, lexatumumab or the combination. Results Methionine depletion sensitized TNBC cells to lexatumumab-induced caspase activation and apoptosis by increasing TRAIL-R2 mRNA and cell surface expression. MCF-10A cells transformed by oncogenic H-Ras, but not untransformed cells, and matrix-detached TNBC cells were highly sensitive to the combination of lexatumumab and methionine depletion. Proteomics analyses revealed that MAGED2, which has been reported to reduce TRAIL-R2 expression, was suppressed by methionine stress. Silencing MAGED2 recapitulated features of methionine deprivation, including enhanced mRNA and cell surface expression of TRAIL receptors and increased sensitivity to TRAIL receptor agonists. Dietary methionine deprivation enhanced the antitumor effects of lexatumumab in an orthotopic metastatic TNBC model. Conclusion Methionine depletion exposes a targetable defect in TNBC cells by increasing TRAIL-R2 expression. Our findings provide the foundation for a clinical trial combining dietary methionine restriction and TRAIL-R2 agonists. PMID:25724522
Li, Kun-Po; Fahnrich, Anke; Roy, Eron; Cuda, Carla M.; Grimes, H. Leighton; Perlman, Harris R.; Kalies, Kathrin; Hildeman, David A.
2017-01-01
CD8αα TCRαβ+ intestinal intraepithelial lymphocytes play a critical role in promoting intestinal homeostasis, although mechanisms controlling their development and peripheral homeostasis remain unclear. In this study, we examined the spatiotemporal role of Bim in the thymic selection of CD8αα precursors and the fate of these cells in the periphery. We found that T cell–specific expression of Bim during early/cortical, but not late/medullary, thymic development controls the agonist selection of CD8αα precursors and limits their private TCRβ repertoire. During this process, agonist-selected double-positive cells lose CD4/8 coreceptor expression and masquerade as double-negative (DN) TCRαβhi thymocytes. Although these DN thymocytes fail to re-express coreceptors after OP9-DL1 culture, they eventually mature and accumulate in the spleen where TCR and IL-15/STAT5 signaling promotes their conversion to CD8αα cells and their expression of gut-homing receptors. Adoptive transfer of splenic DN cells gives rise to CD8αα cells in the gut, establishing their precursor relationship in vivo. Interestingly, Bim does not restrict the IL-15–driven maturation of CD8αα cells that is critical for intestinal homeostasis. Thus, we found a temporal and tissue-specific role for Bim in limiting thymic agonist selection of CD8αα precursors and their TCRβ repertoire, but not in the maintenance of CD8αα intraepithelial lymphocytes in the intestine. PMID:27852740
2009-01-01
Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M1−M5. Of the mAChR subtypes, M1 is among the most heavily expressed in regions that are critical for learning and memory and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M1 and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M1. Using a functional high-throughput screening and subsequent diversity-oriented synthesis approach, we have discovered a novel series of highly selective M1 allosteric agonists. These compounds activate M1 with EC50 values in the 150−500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10 μM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M1 receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M1 allosteric agonists provides critical research tools to allow dissection of M1-mediated effects in the CNS and potential leads for novel treatments for Alzheimer’s disease and schizophrenia. PMID:21961051
Ghrelin and motilin receptor agonists: time to introduce bias into drug design.
Sanger, G J
2014-02-01
Ghrelin and motilin receptor agonists increase gastric motility and are attractive drug targets. However, 14 years after the receptors were described (18-24 years since ligands became available) the inactivity of the ghrelin agonist TZP-102 in patients with gastroparesis joins the list of unsuccessful motilin agonists. Fundamental questions must be asked. Pustovit et al., have now shown that the ghrelin agonist ulimorelin evokes prolonged increases in rat colorectal propulsion yet responses to other ghrelin agonists fade. Similarly, different motilin agonists induce short- or long-lasting effects in a cell-dependent manner. Together, these and other data create the hypothesis that the receptors can be induced to preferentially signal ('biased agonism') via particular pathways to evoke different responses with therapeutic advantages/disadvantages. Biased agonism has been demonstrated for ghrelin. Are motilin agonists which cause long-lasting facilitation of human stomach cholinergic function (compared with motilin) biased agonists (e.g., camicinal, under development for patients with gastric hypo-motility)? For ghrelin, additional complications exist because the therapeutic aims/mechanisms of action are uncertain, making it difficult to select the best (biased) agonist. Will ghrelin agonists be useful treatments of nausea and/or as suggested by Pustovit et al., chronic constipation? How does ghrelin increase gastric motility? As gastroparesis symptoms poorly correlate with delayed gastric emptying (yet gastro-prokinetic drugs can provide relief: e.g., low-dose erythromycin), would low doses of ghrelin and motilin agonists relieve symptoms simply by restoring neuromuscular rhythm? These questions on design and functions need addressing if ghrelin and motilin agonists are to reach patients as drugs. © 2014 John Wiley & Sons Ltd.
Wills, Lauren P.; Matson, Cole W.; Landon, Chelsea D.; Di Giulio, Richard T.
2010-01-01
Fundulus heteroclitus (Atlantic killifish) found at the Atlantic Wood Industries Superfund site on the Elizabeth River (ER) in Portsmouth, VA (USA), have been shown to be resistant to the teratogenic effects of creosote-contaminated sediments found at this highly contaminated site. Many of the polycyclic aromatic hydrocarbons (PAHs) found at the ER are known to activate the aryl hydrocarbon receptor (AHR), and are thought to mediate their toxic effects through this pathway. Activation of the AHR results in the induction of several Phase I and II metabolic enzymes. It has been previously shown that the AHR of killifish from the ER are refractory to induction by AHR agonists. To more fully characterize this altered AHR response, we exposed embryos from the ER and from a reference site on King's Creek, VA (KC) to two PAHs, benzo[α]pyrene (BaP) and benzo[k]fluoranthene (BkF), and to the dioxin-like compound (DLC), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). We compared their developmental and molecular responses by screening the embryos for CYP1A enzyme activity, cardiac deformities, and mRNA expression of CYP1A, CYP1B1, CYP1C1, and AHR2. Basal gene expression of both CYP1A and CYP1B1 was 40% higher in the KC control embryos compared to those from the ER, while AHR2 and CYP1C1 were not significantly different between the populations. Exposure of KC embryos to BaP, BkF, and PCB126 induced CYP1A activity and cardiac deformities. In contrast, CYP1A activity was induced in ER embryos only in response to BkF exposure, although this induction in ER embryos was significantly lower than that observed in KC fish at comparable concentrations. ER embryos did not develop cardiac deformities in response to any of the chemicals tested. CYP1A, CYP1B1 and CYP1C1 mRNA were all significantly induced in the KC embryos after exposure to BaP, BkF and PCB126. Exposure to BaP and BkF in ER embryos resulted in a significant induction of CYP1A mRNA, albeit significantly lower than observed in KC fish. Interestingly, BaP exposure resulted in induction of CYP1B1 at comparable levels in embryos from both populations. CYP1s were not induced in ER embryos in response to PCB126, nor was CYP1C1 for any treatment examined. Additionally, AHR2 was not significantly induced for any of the treatment groups. This study further characterizes the AHR response in killifish, and provides greater insight into the adapted ER phenotype. The ER adaptation involves the suppression of normal AHR-inducible gene expression for all three CYP1 genes, and therefore is likely an alteration in AHR signaling or control. PMID:20471113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Gen; Mukai, Hideo; Hojo, Yasushi
2006-12-15
Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Here, we demonstrated the rapid effect of 17{beta}-estradiol on the density and morphology of spines in the stratum oriens (s.o., basal side) and in the stratum lacunosum-moleculare (s.l.m., apical side) by imaging Lucifer Yellow-injected CA1 neurons in adult male rat hippocampal slices, because spines in s.o. and s.l.m. have been poorly understood as compared with spines in the stratum radiatum. The application of 1 nM estradiol-induced a rapid increase in the density of spines of pyramidal neurons within 2 h. This increase by estradiol was blocked by Erkmore » MAP kinase inhibitor and estrogen receptor inhibitor in both regions. Effect of blockade by agonists of AMPA receptors and NMDA receptors was different between s.o. and s.l.m. In both regions, ER{alpha} agonist PPT induced the same enhancing effect of spinogenesis as that induced by estradiol.« less
Ichijo, Masahiko; Ishibashi, Satoru; Li, Fuying; Yui, Daishi; Miki, Kazunori; Mizusawa, Hidehiro; Yokota, Takanori
2015-01-01
Background and Purpose Collateral growth after acute occlusion of an intracranial artery is triggered by increasing shear stress in preexisting collateral pathways. Recently, sphingosine-1-phosphate receptor-1 (S1PR1) on endothelial cells was reported to be essential in sensing fluid shear stress. Here, we evaluated the expression of S1PR1 in the hypoperfused mouse brain and investigated the effect of a selective S1PR1 agonist on leptomeningeal collateral growth and subsequent ischemic damage after focal ischemia. Methods In C57Bl/6 mice (n = 133) subjected to unilateral common carotid occlusion (CCAO) and sham surgery. The first series examined the time course of collateral growth, cell proliferation, and S1PR1 expression in the leptomeningeal arteries after CCAO. The second series examined the relationship between pharmacological regulation of S1PR1 and collateral growth of leptomeningeal anastomoses. Animals were randomly assigned to one of the following groups: LtCCAO and daily intraperitoneal (ip) injection for 7 days of an S1PR1 selective agonist (SEW2871, 5 mg/kg/day); sham surgery and daily ip injection for 7 days of SEW2871 after surgery; LtCCAO and daily ip injection for 7 days of SEW2871 and an S1PR1 inverse agonist (VPC23019, 0.5 mg/kg); LtCCAO and daily ip injection of DMSO for 7 days after surgery; and sham surgery and daily ip injection of DMSO for 7 days. Leptomeningeal anastomoses were visualized 14 days after LtCCAO by latex perfusion method, and a set of animals underwent subsequent permanent middle cerebral artery occlusion (pMCAO) 7days after the treatment termination. Neurological functions 1hour, 1, 4, and 7days and infarction volume 7days after pMCAO were evaluated. Results In parallel with the increase in S1PR1 mRNA levels, S1PR1 expression colocalized with endothelial cell markers in the leptomeningeal arteries, increased markedly on the side of the CCAO, and peaked 7 days after CCAO. Mitotic cell numbers in the leptomeningeal arteries increased after CCAO. Administration of the S1PR1 selective agonist significantly increased cerebral blood flow (CBF) and the diameter of leptomeningeal collateral vessels (42.9 ± 2.6 μm) compared with the controls (27.6 ± 5.7 μm; P < 0.01). S1PR1 inverse agonist administration diminished the effect of the S1PR1 agonist (P < 0.001). After pMCAO, S1PR1 agonist pretreated animals showed significantly smaller infarct volume (17.5% ± 4.0% vs. 7.7% ± 4.0%, P < 0.01) and better functional recovery than vehicle-treated controls. Conclusions These results suggest that S1PR1 is one of the principal regulators of leptomeningeal collateral recruitment at the site of increased shear stress and provide evidence that an S1PR1 selective agonist has a role in promoting collateral growth and preventing of ischemic damage and neurological dysfunction after subsequent stroke in patients with intracranial major artery stenosis or occlusion. PMID:26367258
Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali
2011-02-01
Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux. Copyright © 2010 Elsevier Inc. All rights reserved.
Tsai, Chia-Lung; Wu, Hsien-Ming; Lin, Chiao-Yun; Lin, Yi-Jun; Chao, Angel; Wang, Tzu-Hao; Hsueh, Swei; Lai, Chyong-Huey; Wang, Hsin-Shih
2013-01-01
Estrogens and tamoxifen (an antiestrogen) exert their actions by activation of estrogen receptor (ER) through genomic and non-genomic mechanisms and are implicated in the development of endometrial cancer. Previous reports have demonstrated that estradiol and tamoxifen induce proliferation of human endometrial cancer cells through GPR30 (non-genomic ER) signaling pathway. Herein, we demonstrate that phosphorylation of focal adhesion kinase (FAK) is involved in cell migration induced by estradiol, tamoxifen and G1 (a GPR30 agonist) through the transmembrane ER (GPR30) in endometrial cancer cell lines with or without ERα (Ishikawa and RL95-2). Additionally, the GPR30-mediated cell migration was further abolished by administration of either specific RNA interference targeting GPR30 or an FAK inhibitor. Moreover, we have validated that the signaling between GPR30 and phosphorylated FAK is indeed mediated by the EGFR/PI3K/ERK pathway. Clinically, a significant correlation between levels of GPR30 and phophorylated FAK (pFAK) observed in human endometrial cancer tissues with low or without ERα further suggested that estrogen-induced phosphorylation of FAK and cell migration were most likely triggered by GPR30 activation. These results provided new insights for understanding the pathophysiological functions of GPR30 in human endometrial cancers.
Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills.
Lee, Sangwoo; Hong, Seongjin; Liu, Xiaoshan; Kim, Cheolmin; Jung, Dawoon; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Giesy, John P; Choi, Kyungho
2017-09-20
Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.
Szentirmay, A K; Király, K P; Lenkey, N; Lackó, E; Al-Khrasani, M; Friedmann, T; Timár, J; Gyarmati, S; Tóth, G; Fürst, S; Riba, P
2013-01-01
Since the discovery of opioid receptor dimers their possible roles in opioid actions were intensively investigated. Here we suggest a mechanism that may involve the μ-δ opioid heterodimers. The exact role of δ opioid receptors in antinociception and in the development of opioid tolerance is still unclear. While receptor up-regulation can be observed during the development of opioid tolerance no μ receptor down-regulation could be detected within five days. In our present work we investigated how the selective δ opioid receptor agonists and antagonists influence the antinociceptive effect of the selective μ receptor agonist DAMGO in naïve and morphine-tolerant mice. We treated male NMRI mice with 200 μmol/kg subcutaneous (s.c.) morphine twice daily for three days. On the fourth day we measured the antinociceptive effect of DAMGO alone and combined with delta ligands: DPDPE, deltorphin II (agonists), TIPP and TICPψ (antagonists), respectively, administered intrathecally (i.t.) in mouse tail-flick test. In naive control mice none of the δ ligands caused significant changes in the antinociceptive action of DAMGO. The treatment with s.c. morphine resulted in approximately four-fold tolerance to i.t. DAMGO, i.e. the ED₅₀ value of DAMGO was four times as high as in naive mice. 500 and 1000 pmol/mouse of the δ₁ selective agonist DPDPE enhanced the tolerance to DAMGO while 1000 pmol/mouse of the δ₂ selective agonist deltorphin II did not influence the degree of tolerance. However, both δ antagonists TIPP and TICPψ potentiated the antinociceptive effect of i.t. DAMGO, thus they restored the potency of DAMGO to the control level. The inhibitory action of DPDPE against the antinociceptive effect of DAMGO could be antagonized by TIPP and TICPψ. We hypothesize that during the development of morphine tolerance the formation of μδ heterodimers may contribute to the spinal opioid tolerance. δ ligands may affect the dimer formation differently. Those, like DPDPE may facilitate the dimer formation hence inhibit the antinociceptive effect of DAMGO by causing virtual μ receptor down-regulation. Ligands that do not affect the dimer formation do not influence antinociception either but ligands with the presumed capability of disconnecting the dimers may decrease the spinal tolerance to DAMGO. Copyright © 2012 Elsevier Inc. All rights reserved.
Guasch, Laura; Sala, Esther; Castell-Auví, Anna; Cedó, Lidia; Liedl, Klaus R.; Wolber, Gerhard; Muehlbacher, Markus; Mulero, Miquel; Pinent, Montserrat; Ardévol, Anna; Valls, Cristina; Pujadas, Gerard; Garcia-Vallvé, Santiago
2012-01-01
Background Although there are successful examples of the discovery of new PPARγ agonists, it has recently been of great interest to identify new PPARγ partial agonists that do not present the adverse side effects caused by PPARγ full agonists. Consequently, the goal of this work was to design, apply and validate a virtual screening workflow to identify novel PPARγ partial agonists among natural products. Methodology/Principal Findings We have developed a virtual screening procedure based on structure-based pharmacophore construction, protein-ligand docking and electrostatic/shape similarity to discover novel scaffolds of PPARγ partial agonists. From an initial set of 89,165 natural products and natural product derivatives, 135 compounds were identified as potential PPARγ partial agonists with good ADME properties. Ten compounds that represent ten new chemical scaffolds for PPARγ partial agonists were selected for in vitro biological testing, but two of them were not assayed due to solubility problems. Five out of the remaining eight compounds were confirmed as PPARγ partial agonists: they bind to PPARγ, do not or only moderately stimulate the transactivation activity of PPARγ, do not induce adipogenesis of preadipocyte cells and stimulate the insulin-induced glucose uptake of adipocytes. Conclusions/Significance We have demonstrated that our virtual screening protocol was successful in identifying novel scaffolds for PPARγ partial agonists. PMID:23226391
Savage, Adam K; Constantinides, Michael G; Bendelac, Albert
2011-05-15
Thymocytes expressing the NKT cell semi-invariant αβ TCR are thought to undergo agonist interactions with CD1d ligands prior to expressing promyelocytic leukemia zinc finger (PLZF), a broad complex, tramtrack, bric-a-brac, poxvirus, and zinc finger transcription factor that directs acquisition of the effector program of these innate-like T cells. Whether PLZF can mediate this effector conversion independently of agonist signaling has not been investigated. We demonstrated that transgenic (Tg) expression of PLZF under the CD4 promoter induced the innate effector program in two different MHC class II-restricted TCR-Tg Rag1(-/-) models examined. In CD4 thymocytes expressing a fixed Tg TCR β-chain, the associated TCRα sequences in wild-type and PLZF-Tg mice overlapped extensively, further demonstrating that PLZF could induce the effector program in most CD4 T cells that would normally be selected as naive cells. In contrast, PLZF altered the negative selection of thymocytes expressing TCR β-chains reactive against several retroviral superantigens. Thus, PLZF is remarkable in that it is a transcription factor capable of inducing an effector program in the absence of T cell agonist interactions or cell division. Its expression may also enhance the survival of agonist-signaled thymocytes.
Olesen, Emma T B; Rützler, Michael R; Moeller, Hanne B; Praetorius, Helle A; Fenton, Robert A
2011-08-02
In the kidney, the actions of vasopressin on its type-2 receptor (V2R) induce increased water reabsorption alongside polyphosphorylation and membrane targeting of the water channel aquaporin-2 (AQP2). Loss-of-function mutations in the V2R cause X-linked nephrogenic diabetes insipidus. Treatment of this condition would require bypassing the V2R to increase AQP2 membrane targeting, but currently no specific pharmacological therapy is available. The present study examined specific E-prostanoid receptors for this purpose. In vitro, prostaglandin E2 (PGE2) and selective agonists for the E-prostanoid receptors EP2 (butaprost) or EP4 (CAY10580) all increased trafficking and ser-264 phosphorylation of AQP2 in Madin-Darby canine kidney cells. Only PGE2 and butaprost increased cAMP and ser-269 phosphorylation of AQP2. Ex vivo, PGE2, butaprost, or CAY10580 increased AQP2 phosphorylation in isolated cortical tubules, whereas PGE2 and butaprost selectively increased AQP2 membrane accumulation in kidney slices. In vivo, a V2R antagonist caused a severe urinary concentrating defect in rats, which was greatly alleviated by treatment with butaprost. In conclusion, EP2 and EP4 agonists increase AQP2 phosphorylation and trafficking, likely through different signaling pathways. Furthermore, EP2 selective agonists can partially compensate for a nonfunctional V2R, providing a rationale for new treatment strategies for hereditary nephrogenic diabetes insipidus.
Sheldrick, R L; Rabe, K F; Fischer, A; Magnussen, H; Coleman, R A
1995-11-01
The tachykinin-receptors mediating contraction of human bronchus have been characterized using both tachykinin-receptor selective agonists and blocking drugs under conditions where tachykinin metabolism by endogenous peptidases has been controlled, and true equilibrium conditions have been established. The findings that neurokinin A (EC50 = 2 nM) is the most potent agonist, and the NK2-receptor selective agonist, GR64349, is only 3-fold weaker, whereas agonists selective for NK1-receptors, substance P methyl ester, or NK3-receptors, senktide, are inactive, suggest that this effect is mediated exclusively by NK2-receptors. This is supported by observations that GR64349 is antagonised by the selective NK2-receptor blocking drugs, MEN10207 (pA2 = 6.7), R396 (pA2 = 6.1), (+/-)SR48968 (pA2 = 8.4) and GR159897 (pA2 = 8.6), but not by the NK1-receptor blocking drug, GR82334 (pA2 < 5). In approximately half of the preparations, the peptidase inhibitors, phosphoramidon (1 microM) and bestatin (100 microM), caused a marked and well-maintained contraction (approximately 20% of neurokinin A maximum), which may indicate a role for endogenous tachykinins in the regulation of tone in this preparation. This is supported by the finding that neurokinin A-immunoreactive nerve fibres are located around intrinsic neurones of local ganglia and within the smooth muscle layer of this preparation.
Olesen, Emma T. B.; Rützler, Michael R.; Moeller, Hanne B.; Praetorius, Helle A.; Fenton, Robert A.
2011-01-01
In the kidney, the actions of vasopressin on its type-2 receptor (V2R) induce increased water reabsorption alongside polyphosphorylation and membrane targeting of the water channel aquaporin-2 (AQP2). Loss-of-function mutations in the V2R cause X-linked nephrogenic diabetes insipidus. Treatment of this condition would require bypassing the V2R to increase AQP2 membrane targeting, but currently no specific pharmacological therapy is available. The present study examined specific E-prostanoid receptors for this purpose. In vitro, prostaglandin E2 (PGE2) and selective agonists for the E-prostanoid receptors EP2 (butaprost) or EP4 (CAY10580) all increased trafficking and ser-264 phosphorylation of AQP2 in Madin-Darby canine kidney cells. Only PGE2 and butaprost increased cAMP and ser-269 phosphorylation of AQP2. Ex vivo, PGE2, butaprost, or CAY10580 increased AQP2 phosphorylation in isolated cortical tubules, whereas PGE2 and butaprost selectively increased AQP2 membrane accumulation in kidney slices. In vivo, a V2R antagonist caused a severe urinary concentrating defect in rats, which was greatly alleviated by treatment with butaprost. In conclusion, EP2 and EP4 agonists increase AQP2 phosphorylation and trafficking, likely through different signaling pathways. Furthermore, EP2 selective agonists can partially compensate for a nonfunctional V2R, providing a rationale for new treatment strategies for hereditary nephrogenic diabetes insipidus. PMID:21768374
Casoni, Alessandro; Clerici, Francesca; Contini, Alessandro
2013-04-01
We describe the application of molecular dynamics followed by principal component analysis to study the inter-domain movements of the ligand binding domain (LBD) of mGluR5 in response to the binding of selected agonists or antagonists. Our results suggest that the method is an attractive alternative to current approaches to predict the agonist-induced or antagonist-blocked LBD responses. The ratio between the eigenvalues of the first and second eigenvectors (R1,2) is also proposed as a numerical descriptor for discriminating the ligand behavior as a mGluR5 agonist or antagonist. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhang, Xiaomei; Podsypanina, Katrina; Huang, Shixia; Mohsin, Syed K; Chamness, Gary C; Hatsell, Sarah; Cowin, Pam; Schiff, Rachel; Li, Yi
2005-06-16
The majority (75%) of human breast cancers express estrogen receptor (ER). Although ER-positive tumors usually respond to antiestrogen therapies, 30% of them do not. It is not known what controls the ER status of breast cancers or their responsiveness to antihormone interventions. In this report, we document that transgenic (TG) expression of Wnt-1 in mice induces ER-positive tumors. Loss of Pten or gain of Ras mutations during the evolution of tumors in Wnt-1 TG mice has no effect on the expression of ER, but overexpression of Neu or loss of p53 leads to ER-negative tumors. Thus, our results provide compelling evidence that expression of ER in breast cancer may be influenced by specific genetic changes that promote cancer progression. These findings constitute a first step to explore the molecular mechanisms leading to ER-positive or ER-negative mammary tumors. In addition, we find that ER-positive tumors arising in Wnt-1 TG mice are refractory to both ovariectomy and the ER antagonist tamoxifen, but lose ER expression with tamoxifen, suggesting that antiestrogen selects for ER-negative tumor cells and that the ER-positive cell fraction is dispensable for growth of these tumors. This is a first report of a mouse model of antiestrogen-resistant ER-positive breast cancers, and could provide a powerful tool to study the molecular mechanisms that control antiestrogen resistance.
Eaton, J. Brek; Lucero, Linda M.; Stratton, Harrison; Chang, Yongchang; Cooper, John F.; Lindstrom, Jon M.; Lukas, Ronald J.
2014-01-01
Selected nicotinic agonists were used to activate and desensitize high-sensitivity (HS) (α4)2(β2)3) or low-sensitivity (LS) (α4)3(β2)2) isoforms of human α4β2-nicotinic acetylcholine receptors (nAChRs). Function was assessed using 86Rb+ efflux in a stably transfected SH-EP1-hα4β2 human epithelial cell line, and two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing concatenated pentameric HS or LS α4β2-nAChR constructs (HSP and LSP). Unlike previously studied agonists, desensitization by the highly selective agonists A-85380 [3-(2(S)-azetidinylmethoxy)pyridine] and sazetidine-A (Saz-A) preferentially reduced α4β2-nAChR HS-phase versus LS-phase responses. The concatenated-nAChR experiments confirmed that approximately 20% of LS-isoform acetylcholine-induced function occurs in an HS-like phase, which is abolished by Saz-A preincubation. Six mutant LSPs were generated, each targeting a conserved agonist binding residue within the LS-isoform-only α4(+)/(−)α4 interface agonist binding site. Every mutation reduced the percentage of LS-phase function, demonstrating that this site underpins LS-phase function. Oocyte-surface expression of the HSP and each of the LSP constructs was statistically indistinguishable, as measured using β2-subunit–specific [125I]mAb295 labeling. However, maximum function is approximately five times greater on a “per-receptor” basis for unmodified LSP versus HSP α4β2-nAChRs. Thus, recruitment of the α4(+)/(−)α4 site at higher agonist concentrations appears to augment otherwise-similar function mediated by the pair of α4(+)/(−)β2 sites shared by both isoforms. These studies elucidate the receptor-level differences underlying the differential pharmacology of the two α4β2-nAChR isoforms, and demonstrate that HS versus LS α4β2-nAChR activity can be selectively manipulated using pharmacological approaches. Since α4β2 nAChRs are the predominant neuronal subtype, these discoveries likely have significant functional implications, and may provide important insights for drug discovery and development. PMID:24190916
Mu/Kappa Opioid Interactions in Rhesus Monkeys: Implications for Analgesia and Abuse Liability
Negus, S. Stevens; Katrina Schrode, KA; Stevenson, Glenn W.
2008-01-01
Mu opioid receptor agonists are clinically valuable as analgesics; however, their use is limited by high abuse liability. Kappa opioid agonists also produce antinociception, but they do not produce mu agonist-like abuse-related effects, suggesting that they may enhance the antinociceptive effects and/or attenuate the abuse-related effects of mu agonists. To evaluate this hypothesis, the present study examined interactions between the mu agonist fentanyl and the kappa agonist U69,593 in three behavioral assays in rhesus monkeys. In an assay of schedule-controlled responding, monkeys responded under a fixed-ratio 30 (FR 30) schedule of food presentation. Fentanyl and U69,593 each produced rate-decreasing effects when administered alone, and mixtures of 0.22:1, 0.65:1 and 1.96:1 U69,593/fentanyl usually produced subadditive effects. In an assay of thermal nociception, tail withdrawal latencies were measured from water heated to 50°C. Fentanyl and U69,593 each produced dose-dependent antinociception, and effects were additive for all mixtures. In an assay of drug self-administration, rhesus monkeys responded for i.v. drug injection, and both dose and FR values were manipulated. Fentanyl maintained self-administration, whereas U69,593 did not. Addition of U69,593 to fentanyl produced a proportion-dependent decrease in both rates of fentanyl self-administration and behavioral economic measures of the reinforcing efficacy of fentanyl. Taken together, these results suggest that simultaneous activation of mu and kappa receptors, either with a mixture of selective drugs or with a single drug that targets both receptors, may reduce abuse liability without reducing analgesic effects relative to selective mu agonists administered alone. PMID:18837635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi
2009-08-01
The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid andmore » glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.« less
Rojas, Jennifer M; Stafford, John M; Saadat, Sanaz; Printz, Richard L; Beck-Sickinger, Annette G; Niswender, Kevin D
2012-12-15
Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.
Moghal, Erfath Thanjeem Begum; Venkatesh, Katari; Sen, Dwaipayan
2018-05-01
Parkinson's disease (PD) is the second most progressive neurodegenerative disease characterized by the loss of dopaminergic neurons and accumulation of misfolded proteins in endoplasmic reticulum (ER) leading to activation of the unfolded protein response (UPR). In the present study, we aimed to determine the potential survival effect of the delta opioid neuro-peptide D-Alanine 2, Leucine 5 Enkephaline (DADLE), and its mechanism in dopaminergic SH-SY5Y cells which were subjected to ER stress. In this cellular model of PD, enhanced cell survivability was observed on DADLE treatment (but not with μ and κ opioid agonists) along with concomitant down regulation of the UPR stress sensors and protein aggregates. The study found increased phosphorylation of MEK-1, which leads to activation of MAP kinase as well as enhanced expression of the pro-survival gene nerve growth factor and anti-apoptotic marker Bcl2. DADLE treatment could also significantly inhibit expression of the pro-apoptotic marker BIM. Next-generation sequence analysis revealed 93 micro (mi) RNAs to be differentially regulated following DADLE treatment in cells subjected to ER stress. Pathway prediction and previously published reports revealed that out of these 93 miRNAs, 34 can play a role in promoting cell survival. Specific modulation of two such miRNAs, namely miR-30c-2-3p and miR-200c, could partially reverse the positive survival effect induced by DADLE. Apart from the known miRNAs, various novel miRNAs were also observed following DADLE treatment which could also play a role in enhancing the survival of SH-SY5Y cells under ER stress. © 2018 International Federation for Cell Biology.
Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity
Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A
2016-01-01
Background/Objectives: The uroguanylin-GUCY2C gut–brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Subjects/Methods: Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ERT2-Rosa-STOPloxP/loxP-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. Results: DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. Conclusions: These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms regulating food consumption through loss of anorexigenic endocrine signaling. The correlative therapeutic paradigm suggests that, in the context of hormone insufficiency with preservation of receptor sensitivity, obesity may be prevented or treated by GUCY2C hormone replacement. PMID:27214655
Single drug biomarker prediction for ER- breast cancer outcome from chemotherapy.
Chen, Yong-Zi; Kim, Youngchul; Soliman, Hatem H; Ying, GuoGuang; Lee, Jae K
2018-06-01
ER-negative breast cancer includes most aggressive subtypes of breast cancer such as triple negative (TN) breast cancer. Excluded from hormonal and targeted therapies effectively used for other subtypes of breast cancer, standard chemotherapy is one of the primary treatment options for these patients. However, as ER- patients have shown highly heterogeneous responses to different chemotherapies, it has been difficult to select most beneficial chemotherapy treatments for them. In this study, we have simultaneously developed single drug biomarker models for four standard chemotherapy agents: paclitaxel (T), 5-fluorouracil (F), doxorubicin (A) and cyclophosphamide (C) to predict responses and survival of ER- breast cancer patients treated with combination chemotherapies. We then flexibly combined these individual drug biomarkers for predicting patient outcomes of two independent cohorts of ER- breast cancer patients who were treated with different drug combinations of neoadjuvant chemotherapy. These individual and combined drug biomarker models significantly predicted chemotherapy response for 197 ER- patients in the Hatzis cohort (AUC = 0.637, P = 0.002) and 69 ER- patients in the Hess cohort (AUC = 0.635, P = 0.056). The prediction was also significant for the TN subgroup of both cohorts (AUC = 0.60, 0.72, P = 0.043, 0.009). In survival analysis, our predicted responder patients showed significantly improved survival with a >17 months longer median PFS than the predicted non-responder patients for both ER- and TN subgroups (log-rank test P -value = 0.018 and 0.044). This flexible prediction capability based on single drug biomarkers may allow us to even select new drug combinations most beneficial to individual patients with ER- breast cancer. © 2018 The authors.
Selective androgen receptor modulators: in pursuit of tissue-selective androgens.
Omwancha, Josephat; Brown, Terry R
2006-10-01
The androgen receptor mediates the androgenic and anabolic activity of the endogenous steroids testosterone and 5alpha-dihydrotestosterone. Current knowledge of the androgen receptor protein structure, and the molecular mechanisms surrounding the binding properties and activities of agonists and antagonists has led to the design and development of novel nonsteroidal ligands with selected tissue-specific androgen receptor agonist and antagonist activities. The activity of these compounds, termed selective androgen receptor modulators (SARMs), is directed toward the maintenance or enhancement of anabolic effects on bone and muscle with minimal androgenic effects on prostate growth. SARMs are of potential therapeutic value in the treatment of male hypogonadism, osteoporosis, frailty and muscle wasting, burn injury and would healing, anemia, mood and depression, benign prostatic hyperplasia and prostate cancer.
5-Functionalized indazoles as glucocorticoid receptor agonists.
Bai, Mei; Carr, Grant; Deorazio, Russell J; Friedrich, Thomas D; Dobritsa, Svetlana; Fitzpatrick, Kevin; Guzzo, Peter R; Kitchen, Douglas B; Lynch, Michael A; Peace, Denise; Sajad, Mohammed; Usyatinsky, Alexander; Wolf, Mark A
2010-05-15
An indazole based series of glucocorticoid receptor agonists is reported. The SAR exploration of this scaffold yielded compounds with nanomolar affinity for the glucocorticoid receptor with indications of selectivity for the preferred transrepression mechanism; in vivo efficacy was observed in the mouse LPS induced TNFalpha model for compound 28. Copyright 2010 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Agomelatine (AGM), an analog of melatonin, is a potential agonist at melatonin receptors 1/2 and a selective antagonist at 5-hydroxytryptamine 2C receptors. AGM is widely used for the treatment of major depressive episodes in adults. However, multiple adverse effects associated with AGM have been re...
Differential epileptogenic potentials of selective mu and delta opiate receptor agonists.
Haffmans, J; Dzoljic, M R
1983-01-01
By using electroencephalographic (EEG) and electromyographic recordings in anaesthetized and free-moving rats, two opioid peptides, known as selective agonists for mu and delta opiate receptors, respectively, were examined for their epileptogenic properties. The delta receptor peptide (DSTLE, 4.6-18.6 nmol, intraventricularly, ivt), a putative delta opiate agonist, produced a dose-related increase of myoclonic contractions (MC) with epileptic discharges in anaesthetized rats and severe wet dog shakes, with occasionally falling down, in free-moving animals. Morphiceptin, a specific mu opiate agonist, used in equimolar doses and under the same experimental conditions, had a significantly less pronounced effect on the number of MC and epileptiform EEG phenomena. Similarly, DSTLE (18.6 nmol) injected in the CA2 area of the hippocampus, a region with a nearly equal distribution of mu and delta opiate receptors, induced epileptic discharges in anaesthetized and free-moving rats, while an equimolar dose of morphiceptin had no significant effect. It is suggested that the epileptiform activity of opioid peptides is mainly due to an activation of delta opiate receptors in the central nervous system.
Marza, Esther; Taouji, Saïd; Barroso, Kim; Raymond, Anne-Aurélie; Guignard, Léo; Bonneu, Marc; Pallares-Lupon, Néstor; Dupuy, Jean-William; Fernandez-Zapico, Martin E; Rosenbaum, Jean; Palladino, Francesca; Dupuy, Denis; Chevet, Eric
2015-03-01
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPR(ER)) to restore ER homeostasis. The AAA(+) ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPR(ER) genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA(+) ATPase, as a novel repressor of a subset of UPR(ER) genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPR(ER) genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes. © 2015 The Authors.
Singh, Anamika; Tala, Srinivasa R; Flores, Viktor; Freeman, Katie; Haskell-Luevano, Carrie
2015-05-14
The melanocortin-3 and -4 receptors are expressed in the brain and play key roles in regulating feeding behavior, metabolism, and energy homeostasis. In the present study, incorporation of β(3)-amino acids into a melanocortin tetrapeptide template was investigated. Four linear α/β(3)-hybrid tetrapeptides were designed with the modifications at the Phe, Arg, and Trp residues in the agonist sequence Ac-His-dPhe-Arg-Trp-NH2. The most potent mouse melanocortin-4 receptor (mMC4R) agonist, Ac-His-dPhe-Arg-β(3)hTrp-NH2 (8) showed 35-fold selectivity versus the mMC3R. The study presented here has identified a new template with heterogeneous backbone for designing potent and selective melanocortin receptor ligands.
2015-01-01
The melanocortin-3 and -4 receptors are expressed in the brain and play key roles in regulating feeding behavior, metabolism, and energy homeostasis. In the present study, incorporation of β3-amino acids into a melanocortin tetrapeptide template was investigated. Four linear α/β3-hybrid tetrapeptides were designed with the modifications at the Phe, Arg, and Trp residues in the agonist sequence Ac-His-dPhe-Arg-Trp-NH2. The most potent mouse melanocortin-4 receptor (mMC4R) agonist, Ac-His-dPhe-Arg-β3hTrp-NH2 (8) showed 35-fold selectivity versus the mMC3R. The study presented here has identified a new template with heterogeneous backbone for designing potent and selective melanocortin receptor ligands. PMID:26005535
Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J
2013-01-01
The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.
Li, Gongbo; Petiwala, Sakina M.; Pierce, Dana R.; Nonn, Larisa; Johnson, Jeremy J.
2013-01-01
The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation. PMID:24367485
Barbieri, Federica; Pattarozzi, Alessandra; Gatti, Monica; Aiello, Cinzia; Quintero, Ana; Lunardi, Gianluigi; Bajetto, Adriana; Ferrari, Angelo; Culler, Michael D; Florio, Tullio
2009-11-01
Somatostatin receptors (SSTR1-5) mediate antiproliferative effects. In C6 rat glioma cells, somatostatin is cytostatic in vitro via phosphotyrosine phosphatase-dependent inhibition of ERK1/2 activity mediated by SSTR1, -2, and -5. Here we analyzed the effects of SSTR activation on C6 glioma growth in vivo and the intracellular mechanisms involved, comparing somatostatin effects with selective agonists for SSTR1, -2, and -5 (BIM-23745, BIM-23120, BIM-23206) or receptor biselective compounds (SSTR1 and -2, BIM-23704; and SSTR2 and -5, BIM-23190). Nude mice subcutaneously xenografted with C6 cells were treated with somatostatin, SSTR agonists (50 μg, twice/day), or vehicle. Tumor growth was evaluated every 3 days for 19 days. The intracellular pathways responsible of SSTR effects in vivo were evaluated measuring Ki-67, phospho-ERK1/2, and p27(kip1) expression by immunohistochemistry in sections from explanted tumors. Somatostatin and SSTR1, -2, and -5 agonists strongly inhibited in vivo C6 tumor growth, intratumoral neovessel formation, Ki-67 expression, and ERK1/2 phosphorylation and induced upregulation of p27(Kip1), whereas only a modest activation of caspase-3 was observed. Somatostatin (acting on SSTR1, -2, and -5) displayed the highest efficacy; SSTR5 selective agonist showed a stronger effect than SSTR1 agonist, and SSTR2 agonist was less effective. On the other hand, SSTR1 and -2 agonists maximally reduced tumor neovascularization. The combined activation of SSTR1 and -2 showed a synergistic activity, reaching a higher efficacy than BIM-23206, whereas the simultaneous activation of SSTR2 and -5 resulted in a response resembling SSTR5 effects. Thus the simultaneous activation of different SSTRs inhibits glioma cell proliferation in vivo through both direct cytotostatic and antiangiogenic effects.
Rutkowski, D. Thomas; Arnold, Stacey M; Miller, Corey N; Wu, Jun; Li, Jack; Gunnison, Kathryn M; Mori, Kazutoshi; Sadighi Akha, Amir A.; Raden, David; Kaufman, Randal J
2006-01-01
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates a signaling cascade known as the unfolded protein response (UPR). Although activation of the UPR is well described, there is little sense of how the response, which initiates both apoptotic and adaptive pathways, can selectively allow for adaptation. Here we describe the reconstitution of an adaptive ER stress response in a cell culture system. Monitoring the activation and maintenance of representative UPR gene expression pathways that facilitate either adaptation or apoptosis, we demonstrate that mild ER stress activates all UPR sensors. However, survival is favored during mild stress as a consequence of the intrinsic instabilities of mRNAs and proteins that promote apoptosis compared to those that facilitate protein folding and adaptation. As a consequence, the expression of apoptotic proteins is short-lived as cells adapt to stress. We provide evidence that the selective persistence of ER chaperone expression is also applicable to at least one instance of genetic ER stress. This work provides new insight into how a stress response pathway can be structured to allow cells to avert death as they adapt. It underscores the contribution of posttranscriptional and posttranslational mechanisms in influencing this outcome. PMID:17090218
Sakairi, Masao; Kogami, Masakazu; Torii, Masafumi; Makino, Mitsuhiro; Kataoka, Daisuke; Okamoto, Ryuji; Miyazawa, Toshiyuki; Inoue, Megumi; Takahashi, Naoki; Harada, Satoko; Watanabe, Nobuhide
2012-01-01
6-((2-Fluoro-3-(1-(3-isopropyl-1,2,4-oxadiazol-5-yl)piperidin-4-yl)propyl)amino)-2,3-dihydro-1H-inden-1-one is a potent drug-like G protein-coupled receptor 119 (GPR119) agonist. It is hoped that this compound would be instrumental in probing the pharmacological potential of GPR119 agonists.
Dopamine D3 Receptors Mediate the Discriminative Stimulus Effects of Quinpirole in Free-Feeding Rats
Baladi, Michelle G.; Newman, Amy H.
2010-01-01
The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect-acting agonists such as cocaine and amphetamine. PMID:19797621
Baladi, Michelle G; Newman, Amy H; France, Charles P
2010-01-01
The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect-acting agonists such as cocaine and amphetamine.
Broom, Daniel C; Nitsche, Joshua F; Pintar, John E; Rice, Kenner C; Woods, James H; Traynor, John R
2002-11-01
Delta-opioid receptor-selective agonists produce antinociception and convulsions in several species, including mice. This article examines two hypotheses in mice: 1) that antinociception and convulsive activity are mediated through the same type of delta-receptor and 2) that greater delta-agonist efficacy is required for antinociception than for convulsive activity. Delta-mediated antinociception was evaluated in the acetic acid-induced abdominal constriction assay, which involves a low-intensity noxious stimulus; convulsive activity was indicated as a mild tonic-clonic convulsive episode followed by a period of catalepsy. In delta-opioid receptor knockout mice [DOR-1(-/-)], the nonpeptidic delta-agonists (+/-)-4-[(R*)-[(2S*,5R*)-2,5-dimethyl-4-(2-propenyl)-1- piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide hydrochloride (BW373U86) and (+)-4-[(R)-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N, N-diethylbenzamide (SNC80) failed to produce convulsive behavior demonstrating the absolute involvement of DOR-1 in this effect. In NIH Swiss mice expressing delta-opioid receptors, BW373U86 produced both antinociception and convulsive activity. These effects were antagonized by the putative delta(1)-receptor-selective antagonist 7-benzylidenenaltrexone and the putative delta(2)-receptor-selective antagonist naltriben. Tolerance developed to both the convulsive and antinociceptive effects of BW373U86. Tolerance to the convulsive, but not the antinociceptive, effects of BW373U86 was largely prevented when the antagonist naltrindole was given 20 min after each dose of the agonist in a 3-day treatment paradigm. The convulsive action of BW373U86 was also less sensitive than the antinociceptive action to treatment with the irreversible delta-antagonist naltrindole isothiocyanate. Collectively, these data suggest that the convulsive and antinociceptive activities of delta-agonists are mediated through the same receptor but that the receptor reserve for delta-mediated convulsive activity is greater than for delta-mediated antinociceptive activity.
Mohler, Eric G; Franklin, Stanley R; Rueter, Lynne E
2014-01-01
Neuronal α4β2* nicotinic acetylcholine receptors mediate cognition, pain, and the discriminative and reinforcing effects of nicotine. In addition to traditional orthosteric agonists, α4β2* positive allosteric modulators (PAMs) have recently been identified. With increased subtype selectivity relative to agonists, PAMs administered alone or in combination with low-dose α4β2* agonists may be used as powerful tools for increasing our understanding of α4β2* pharmacology. The present experiments tested the nicotine discriminative-stimulus effects of the α4β2* PAM NS9283 (A-969933) in the presence and absence of low-dose nicotine or nicotinic subtype-selective agonist. Rats were trained to discriminate 0.4 mg/kg nicotine from saline in a two-lever drug discrimination paradigm. In subsequent generalization tests, rats were administered nicotine, the α4β2*-preferring agonist ABT-594, and NS9283, alone or in two-drug combinations. Nicotine and ABT-594 showed dose-dependent nicotine generalization. NS9283 alone resulted in a non-significant increase in nicotine-appropriate lever selection. Combination of non-effective doses of nicotine or ABT-594 with escalating doses of NS9283 resulted in a complete conversion to 100 % nicotine-appropriate choice in the case of nicotine combination and incomplete, though significant, generalization for ABT-594. The α4β2* PAM NS9283 alone did not produce nicotine-like discriminative effects, but did demonstrate dose-related increases in nicotine lever choice when combined with a non-effective dose of nicotine or the α4β2* agonist ABT-594. This finding provides confirmation of the positive allosteric modulating effect of NS9283 in a functional in vivo paradigm. NS9283 is a potentially valuable tool for studying the role of α4β2* receptors in various nicotinic acetylcholine receptor-related functions.
Ramos-Álvarez, Irene; Mantey, Samuel A.; Nakamura, Taichi; Nuche-Berenguer, Bernardo; Moreno, Paola; Moody, Terry W.; Maderdrut, Jerome L.; Coy, David H.; Jensen, Robert T.
2015-01-01
Pituitary adenylate-cyclase-activating polypeptide (PACAP) has widespread physiological/pathophysiological actions and there is increased interest for its use therapeutically, especially in the CNS (neuroprotection). Unfortunately, no selective PACAP-analogs exist for PACAP-preferring PAC1-receptors, primarily because of its high sequence identity to VIP and particularly, because of the inability of structure-function studies to separate the pharmacophore of PAC1-R from VPAC1-R, which has high affinity for PACAP and VIP. The present study attempted to develop PAC1-R-selective agonists primarily by making conformationally-restricted PACAP -analogs in positions important for receptor-selectivity/affinity. Forty-six PACAP-related-analogs were synthesized with substitutions in positions 1–4, 14–17, 20–22 ,28,34,38 and receptor-selectivity determined in PAC1-R,VPAC1-R,VPAC2-R-transfected or native cells from binding or cAMP-generation experiments. Fifteen PACAP-analogs had 6–78-fold higher affinities for PAC1-R than VPAC1-R and 13 were agonists. Although binding-affinities correlated significantly with agonist potency, the degree of receptor-spareness varied markedly for the different PACAP-analogs, resulting in selective potencies for activating the PAC1 receptor over the VPAC1 receptor from 0- to-103-fold. In addition, a number of PACAP-analogs were identified that had high selectivity for PAC1-R over VPAC2-R as well as PACAP-analogs that could prove more useful therapeutically because of substitutions known to extend their half-lives (substitutions at potential sites of proteolysis and attachment of long-chain fatty acids). This study provides for the first time a separation of the pharmacophores for PAC1-R and VPAC1-R, resulting in PACAP-related analogs that are PAC1-R-preferring. Some of these analogs, or their modifications, could prove useful as therapeutic agents for various diseases. PMID:25698233
Aballéa, Samuel; Maman, Khaled; Thokagevistk, Katia; Nazir, Jameel; Odeyemi, Isaac A O; Hakimi, Zalmai; Garnham, Andy; Toumi, Mondher
2015-02-01
Overactive bladder (OAB) is highly prevalent and is associated with considerable morbidity and reduced health-related quality of life. β3-adrenergic receptor (β3-AR) stimulation is a novel alternative to antimuscarinic therapy for OAB. The objective of this analysis was to assess the cost effectiveness of the β3-AR agonist mirabegron relative to tolterodine extended release (ER) in patients with OAB from a UK National Health Service (NHS) perspective. A Markov model was developed to simulate the management, course of disease, and effect of complications in OAB patients over a period of 5 years. Transition probabilities for symptom severity levels and probabilities of adverse events were estimated from the results of the randomised, double-blind SCORPIO trial in 1,987 patients with OAB. Other model inputs were derived from the literature and on assumptions based on clinical experience. Total 5-year costs per patient were £1,645.62 for mirabegron 50 mg/day and £1,607.75 for tolterodine ER 4 mg/day. Mirabegron was associated with a gain of 0.009 quality-adjusted life-years (QALYs) with an additional cost of £37.88. The resulting incremental cost-effectiveness ratio (ICER) was £4,386/QALY gained. In deterministic sensitivity analyses in the general OAB population and several subgroups, ICERs remained below the generally accepted willingness-to-pay (WTP) threshold of £20,000/QALY gained. The probability of mirabegron 50 mg being cost effective relative to tolterodine ER 4 mg was 89.4 % at the same WTP threshold. Mirabegron 50 mg/day is likely to be cost effective compared with tolterodine ER 4 mg/day for adult patients with OAB from a UK NHS perspective.
Liu, Yin; Chen, Yulong; Zhang, Jinlong; Liu, Yulan; Zhang, Yanjie; Su, Zhiguang
2017-08-25
Adipose tissue inflammation has been linked to metabolic diseases such as obesity and type 2 diabetes. However, the molecules that mediate inflammation in adipose tissue have not been addressed. Although retinoic acid receptor-related orphan receptor α (RORα) is known to be involved in the regulation of inflammatory response in some tissues, its role is largely unknown in adipose tissue. Conversely, it is known that endoplasmic reticulum (ER) stress and unfolding protein response (UPR) signaling affect the inflammatory response in obese adipose tissue, but whether RORα regulates these processes remains unknown. In this study, we investigate the link between RORα and adipose tissue inflammation. We showed that the inflammatory response in macrophages or 3T3-L1 adipocytes stimulated by lipopolysaccharide, as well as adipose tissue in obese mice, markedly increased the expression of RORα. Adenovirus-mediated overexpression of RORα or treatment with the RORα-specific agonist SR1078 enhanced the expression of inflammatory cytokines and increased the number of infiltrated macrophages into adipose tissue. Furthermore, SR1078 up-regulated the mRNA expression of ER stress response genes and enhanced phosphorylations of two of the three mediators of major UPR signaling pathways, PERK and IRE1α. Finally, we found that alleviation of ER stress using a chemical chaperone followed by the suppression of RORα induced inflammation in adipose tissue. Our data suggest that RORα-induced ER stress response potentially contributes to the adipose tissue inflammation that can be mitigated by treatment with chemical chaperones. The relationships established here between RORα expression, inflammation, and UPR signaling may have implications for therapeutic targeting of obesity-related metabolic diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping
2015-11-24
The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.
Sigma receptor 1 modulates endoplasmic reticulum stress in retinal neurons.
Ha, Yonju; Dun, Ying; Thangaraju, Muthusamy; Duplantier, Jennifer; Dong, Zheng; Liu, Kebin; Ganapathy, Vadivel; Smith, Sylvia B
2011-01-01
To investigate the mechanism of σ receptor 1 (σR1) neuroprotection in retinal neurons. Oxidative stress, which is implicated in diabetic retinopathy, was induced in mouse primary ganglion cells (GCs) and RGC-5 cells, and the effect of the σR1 ligand (+)-pentazocine on pro- and anti-apoptotic and endoplasmic reticulum (ER) stress gene expression was examined. Binding of σR1 to BiP, an ER chaperone protein, and σR1 phosphorylation status were examined by immunoprecipitation. Retinas were harvested from Ins2Akita/+ diabetic mice treated with (+)-pentazocine, and the expression of ER stress genes and of the retinal transcriptome was evaluated. Oxidative stress induced the death of primary GCs and RGC-5 cells. The effect was decreased by the application of (+)-pentazocine. Stress increased σR1 binding to BiP and enhanced σR1 phosphorylation in RGC-5 cells. BiP binding was prevented, and σR1 phosphorylation decreased in the presence of (+)-pentazocine. The ER stress proteins PERK, ATF4, ATF6, IRE1α, and CHOP were upregulated in RGC-5 cells during oxidative stress, but decreased in the presence of (+)-pentazocine. A similar phenomenon was observed in retinas of Ins2Akita/+ diabetic mice. Retinal transcriptome analysis of Ins2Akita/+ mice compared with wild-type revealed differential expression of the genes critically involved in oxidative stress, differentiation, and cell death. The expression profile of those genes was reversed when the Ins2Akita/+ mice were treated with (+)-pentazocine. In retinal neurons, the molecular chaperone σR1 binds BiP under stressful conditions; (+)-pentazocine may exert its effects by dissociating σR1 from BiP. As stress in retinal cells increases, phosphorylation of σR1 is increased, which is attenuated when agonists bind to the receptor.
Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.
2016-01-01
The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970
[Obesity: a review of currently used antiobesity drugs and new compounds in clinical development].
Zieba, Remigiusz
2007-10-19
This review summarizes data on currently used antiobesity drugs and new compounds under clinical development. Three antiobesity drugs are currently accepted for long-term use. Sibutramine is a noradrenaline and serotonin reuptake inhibitor which reduces body weight by about 4-5 kg but increases heart rate and arterial blood pressure. Orlistat is a gastrointestinal lipase inhibitor which results in mean weight loss by about 3 kg and reduces the incidence of type 2 diabetes in patients with impaired glucose tolerance; however, adverse gastrointestinal effects have been observed. Rimonabant is an endocannabinoid CB1 receptor antagonist which induces a 4-5 kg mean weight loss and improves glycemic and lipid profiles, but it induces anxiety and depressive disorders. Unfortunately, there are no data on the chronic administration of these drugs. Other drugs can induce weight loss, e.g. some antidepressants, antiseizure agents, and antidiabetic drugs. The moderate efficacy of currently used antiobesity drugs has led to an intense effort to identify new, safe antiobesity drugs with better therapeutic profiles. The new antiobesity drugs under clinical development include: 1) agents that affect neurotransmitters in the central nervous system, including noradrenaline and dopamine reuptake inhibitors (bupropion, radafaxine), selective 5HT2C receptor agonists (lorcaserin), and selective 5HT6 receptor antagonists, 2) agents that modulate the activity of neuropeptides influencing food intake, including leptin analogues, human ciliary neurotrophic factor (Axokine), neuropeptide Y antagonists, and melanine-concentrating hormone antagonists, 3) agents that affect the peripheral satiety signals and brain-gut axis, e.g. selective cholecystokinin receptor A agonists, PYY3-36, agents decreasing ghrelin activity, 4) thermogenic agents, e.g. selective beta3 receptor agonists and selective thyroid hormone receptor beta agonists, and 5) others, e.g. human growth hormone fragment (AOD9604) and gastrointestinal lipase inhibitor (cetilistat).
Evidence for estrogen receptor beta-selective activity of Vitex agnus-castus and isolated flavones.
Jarry, Hubertus; Spengler, Barbara; Porzel, Andrea; Schmidt, Juergen; Wuttke, Wolfgang; Christoffel, Volker
2003-10-01
Recent cell culture experiments indicated that extracts of Vitex agnus-castus (VAC) may contain yet unidentified phytoestrogens. Estrogenic actions are mediated via estrogen receptors (ER). To investigate whether VAC compounds bind to the currently known isoforms ERalpha or ERss, ligand binding assays (LBA) were performed. Subtype specific ER-LBA revealed a binding of VAC to ERss only. To isolate the ERss-selective compounds, the extract was fractionated by bio-guidance. The flavonoid apigenin was isolated and identified as the most active ERss-selective phytoestrogen in VAC. Other isolated compounds were vitexin and penduletin. These data demonstrate that the phytoestrogens in VAC are ERss-selective.
Potentiation of adenosine A1 receptor agonist CPA-induced antinociception by paeoniflorin in mice.
Liu, Da-Zhi; Zhao, Fei-Li; Liu, Jing; Ji, Xin-Quan; Ye, Yang; Zhu, Xing-Zu
2006-08-01
The effect of paeoniflorin (PF), a major constituent isolated from Paeony radix, on N6-Cyclopentyladenosine (CPA), a selective adenosine A1 receptor (A1 receptor) agonist, induced antinociception was examined in mice. In the tail-pressure test, CPA (0.05, 0.1, 0.2 mg/kg, s.c.) could induce antinociception in a dose-dependent manner. PF (5, 10, 20 mg/kg, s.c.) alone failed to exhibit any antinociceptive effect in mice; however, pretreatment of PF (20 mg/kg, s.c.) could significantly enhance CPA-induced antinociception. Additionally, pretreatment of 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, 0.25 mg/kg, s.c.), a selective A1 receptor antagonist, could antagonize the antinociceptive effect of combining CPA with PF. Furthermore, in the competitive binding experiments, PF did not displace the binding of [3H]-8-Cyclopentyl-1,3-dipropylxanthine ([3H]-DPCPX) but displaced that of [3H]-2-Chloro-N6-cyclopentyladenosine ([3H]-CCPA, a selective A1 receptor agonist) to the membrane preparation of rat cerebral cortex. These results suggested that PF might selectively increase the binding and antinociceptive effect of CPA by binding with A1 receptor.
Chang, H. Ming; Berde, Charles B.; Holz, George G.; Steward, Grieg F.; Kream, Richard M.
2010-01-01
An in vitro model system for analysis of presynaptic inhibitory actions of spinal opioids has been applied. Embryonic sensory neurons derived from chick dorsal root ganglia were grown in primary cell culture, and the release of substance P was evoked by electrical field stimulation during exposure to drugs with well-demonstrated affinity for opioid receptors. This allowed a pharmacologic characterization of the inhibitory actions of specific opioid agonists on the release of substance P as measured by radioimmunoassay (RIA). Sufentanil (0.5 µm), a high affinity µ receptor agonist, U-50,488H (25 µm), a selective κ receptor agonist, and morphine (10 µm), an agonist with high affinity for µ and δ receptors, inhibited the evoked release of substance P by approximately 60%, 40%, and 50%, respectively. For sufentanil the response was demonstrated to be dose-dependent. As is the case for its analgesic action in vivo, morphine was approximately 50-fold less potent than sufentanil on a molar basis in this assay. The actions of sufentanil, U-50-488H and morphine were mimicked by the endogenous opioid peptide met-enkephalin, and its stable synthetic analog D-ala2-met5-enkephalinamide (DAME). Naloxone (25 µm), an opioid receptor antagonist, blocked the inhibitory action of sufentanil (0.5 µm), morphine (5 µm), and DAME (5 µm), but not U-50,488H (10 µm). The action of U-50,488H was partially blocked by the antagonist naltrexone (25 µm). Stereo-selectivity of agonist action was confirmed by the failure of dextrorphan (50 µm), an inactive opioid isomer, to inhibit the release of substance P. Actions mediated by specific opioid receptors were thus demonstrated by high affinity responses to agonists, blockade of agonist responses by opioid antagonists, and stereoselectivity. These findings suggest that in the spinal cord presynaptic inhibition of evoked substance P release is mediated by µ, K and δ opioid receptors located on primary sensory nerve terminals. Activation of these receptors may explain, at least in part, the spinal analgesic actions of specific opioid agonists. PMID:2467589
L-689,660, a novel cholinomimetic with functional selectivity for M1 and M3 muscarinic receptors.
Hargreaves, R. J.; McKnight, A. T.; Scholey, K.; Newberry, N. R.; Street, L. J.; Hutson, P. H.; Semark, J. E.; Harley, E. A.; Patel, S.; Freedman, S. B.
1992-01-01
1. L-689,660, 1-azabicyclo[2.2.2]octane, 3-(6-chloropyrazinyl)maleate, a novel cholinomimetic, demonstrated high affinity binding (pKD (apparent) 7.42) at rat cerebral cortex muscarinic receptors. L-689,660 had a low ratio (34) of pKD (apparent) values for the displacement of binding of the antagonist ([3H]-N-methylscopolamine ([3H]-NMS) compared with the displacement of the agonist [3H]-oxotremorine-M ([3H]-Oxo-M), in rat cerebral cortex. Low NMS/Oxo-M ratios have been shown previously to be a characteristic of compounds that are low efficacy partial agonists with respect to stimulation of phosphatidyl inositol turnover in the cerebral cortex. 2. L-689,660 showed no muscarinic receptor subtype selectivity in radioligand binding assays but showed functional selectivity in pharmacological assays. At M1 muscarinic receptors in the rat superior cervical ganglion, L-689,660 was a potent (pEC50 7.3 +/- 0.2) full agonist in comparison with (+/-)-muscarine. At M3 receptors in the guinea-pig ileum myenteric plexus-longitudinal muscle or in trachea, L-689,660 was again a potent agonist (pEC50 7.5 +/- 0.2 and 7.7 +/- 0.3 respectively) but had a lower maximum response than carbachol. In contrast L-689,660 was an antagonist at M2 receptors in guinea-pig atria (pA2 7.2 (95% confidence limits 7, 7.4)) and at muscarinic autoreceptors in rat hippocampal slices. 3. The putative M1-selective muscarinic agonist, AF102B (cis-2-methylspiro-(1,3-oxathiolane 5,3')-quinuclidine hydrochloride) was found to have a profile similar to L-689,660 but had up to 100 times less affinity in binding and functional assays.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1422595
Rives, Marie-Laure; Rossillo, Mary; Liu-Chen, Lee-Yuan; Javitch, Jonathan A
2012-08-03
κ-Opioid receptor (KOR) agonists do not activate the reward pathway stimulated by morphine-like μ-opioid receptor (MOR) agonists and thus have been considered to be promising nonaddictive analgesics. However, KOR agonists produce other adverse effects, including dysphoria, diuresis, and constipation. The therapeutic promise of KOR agonists has nonetheless recently been revived by studies showing that their dysphoric effects require arrestin recruitment, whereas their analgesic effects do not. Moreover, KOR agonist-induced antinociceptive tolerance observed in vivo has also been proposed to be correlated to the ability to induce arrestin-dependent phosphorylation, desensitization, and internalization of the receptor. The discovery of functionally selective drugs that are therapeutically effective without the adverse effects triggered by the arrestin pathway is thus an important goal. We have identified such an extreme G protein-biased KOR compound, 6'-guanidinonaltrindole (6'-GNTI), a potent partial agonist at the KOR receptor for the G protein activation pathway that does not recruit arrestin. Indeed, 6'-GNTI functions as an antagonist to block the arrestin recruitment and KOR internalization induced by other nonbiased agonists. As an extremely G protein-biased KOR agonist, 6'-GNTI represents a promising lead compound in the search for nonaddictive opioid analgesic as its signaling profile suggests that it will be without the dysphoria and other adverse effects promoted by arrestin recruitment and its downstream signaling.
Towards Resolving the Pro- and Anti-Tumor Effects of the Aryl Hydrocarbon Receptor.
Narasimhan, Supraja; Stanford Zulick, Elizabeth; Novikov, Olga; Parks, Ashley J; Schlezinger, Jennifer J; Wang, Zhongyan; Laroche, Fabrice; Feng, Hui; Mulas, Francesca; Monti, Stefano; Sherr, David H
2018-05-07
We have postulated that the aryl hydrocarbon receptor (AHR) drives the later, more lethal stages of some cancers when chronically activated by endogenous ligands. However, other studies have suggested that, under some circumstances, the AHR can oppose tumor aggression. Resolving this apparent contradiction is critical to the design of AHR-targeted cancer therapeutics. Molecular (siRNA, shRNA, AHR repressor, CRISPR-Cas9) and pharmacological (AHR inhibitors) approaches were used to confirm the hypothesis that AHR inhibition reduces human cancer cell invasion (irregular colony growth in 3D Matrigel cultures and Boyden chambers), migration (scratch wound assay) and metastasis (human cancer cell xenografts in zebrafish). Furthermore, these assays were used for a head-to-head comparison between AHR antagonists and agonists. AHR inhibition or knockdown/knockout consistently reduced human ER − /PR − /Her2 − and inflammatory breast cancer cell invasion, migration, and metastasis. This was associated with a decrease in invasion-associated genes (e.g., Fibronectin , VCAM1 , Thrombospondin, MMP1 ) and an increase in CDH1/E-cadherin , previously associated with decreased tumor aggression. Paradoxically, AHR agonists (2,3,7,8-tetrachlorodibenzo- p -dioxin and/or 3,3′-diindolylmethane) similarly inhibited irregular colony formation in Matrigel and blocked metastasis in vivo but accelerated migration. These data demonstrate the complexity of modulating AHR activity in cancer while suggesting that AHR inhibitors, and, under some circumstances, AHR agonists, may be useful as cancer therapeutics.
The role of the AR/ER ratio in ER-positive breast cancer patients.
Rangel, Nelson; Rondon-Lagos, Milena; Annaratone, Laura; Osella-Abate, Simona; Metovic, Jasna; Mano, Maria Piera; Bertero, Luca; Cassoni, Paola; Sapino, Anna; Castellano, Isabella
2018-03-01
The significance of androgen receptor (AR) in breast cancer (BC) management is not fully defined, and it is still ambiguous how the level of AR expression influences oestrogen receptor-positive (ER+) tumours. The aim of the present study was to analyse the prognostic impact of AR/ER ratio, evaluated by immunohistochemistry (IHC), correlating this value with clinical, pathological and molecular characteristics. We retrospectively selected a cohort of 402 ER+BC patients. On each tumour, IHC analyses for AR, ER, PgR, HER2 and Ki67 were performed and AR+ cases were used to calculate the AR/ER value. A cut-off of ≥2 was selected using receiver-operating characteristic (ROC) curve analyses. RNA from 19 cases with AR/ER≥2 was extracted and used for Prosigna-PAM50 assays. Tumours with AR/ER≥2 (6%) showed more frequent metastatic lymph nodes, larger size, higher histological grade and lower PgR levels than cases with AR/ER<2. Multivariate analysis confirmed that patients with AR/ER≥2 had worse disease-free interval (DFI) and disease-specific survival (DSS) (hazard ratios (HR) = 4.96 for DFI and HR = 8.69 for DSS, both P ≤ 0.004). According to the Prosigna-PAM50 assay, 63% (12/19) of these cases resulted in intermediate or high risk of recurrence categories. Additionally, although all samples were positive for ER assessed by IHC, the molecular test assigned 47.4% (9/19) of BCs to intrinsic non-luminal subtypes. In conclusion, the AR/ER ratio ≥2 identifies a subgroup of patients with aggressive biological features and may represent an additional independent marker of worse BC prognosis. Moreover, the Prosigna-PAM50 results indicate that a significant number of cases with AR/ER≥2 could be non-luminal tumours. © 2018 Society for Endocrinology.
Reverse Induced Fit-Driven MAS-Downstream Transduction: Looking for Metabotropic Agonists.
Pernomian, Larissa; Gomes, Mayara S; de Paula da Silva, Carlos H Tomich; Rosa, Joaquin M C
2017-01-01
Protective effects of MAS activation have spurred clinical interests in developing MAS agonists. However, current bases that drive this process preclude that physiological concentrations of peptide MAS agonists induce an atypical signaling that does not reach the metabotropic efficacy of constitutive activation. Canonical activation of MAS-coupled G proteins is only achieved by supraphysiological concentrations of peptide MAS agonists or physiological concentrations of chemically modified analogues. These pleiotropic differences are because of two overlapped binding domains: one non-metabotropic site that recognizes peptide agonists and one metabotropic domain that recognizes modified analogues. It is feasible that supraphysiological concentrations of peptide MAS agonists undergo to chemical modifications required for binding to metabotropic domain. Receptor oligomerization enhances pharmacological parameters coupled to metabotropic signaling. The formation of receptor-signalosome complex makes the transduction of agonists more adaptive. Considering the recent identification of MAS-signalosome, we aimed to postulate the reverse induced fit hypothesis in which MAS-signalosome would trigger chemical modifications required for agonists bind to MAS metabotropic domain. Here we cover rational perspectives for developing novel metabotropic MAS agonists in the view of the reverse induced-fit hypothesis. Predicting a 3D model of MAS metabotropic domain may guide the screening of chemical modifications required for metabotropic efficacy. Pharmacophore-based virtual screening would select potential metabotropic MAS agonists from virtual libraries from human proteome. Rational perspectives that consider reverse induced fit hypothesis during MAS activation for developing metabotropic MAS agonists represents the best approach in providing MAS ligands with constitutive efficacy at physiological concentrations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes.
Harizi, Hedi; Grosset, Christophe; Gualde, Norbert
2003-06-01
We have reported previously that PGE(2) inhibits dendritic cells (DC) functions. Because E prostanoid receptor (EPR) subtypes involved in this action are unknown, expression and functions of these receptors were examined in DC. Western blot and flow cytometry analyses showed that all EPRs were coexpressed in DC. In a dose-dependent manner, lipopolysaccharide (LPS) enhanced EP(2)R/EP(4)R but not EP(1)R/EP(3)R expressions. NS-398, a cyclooxygenase (COX)-2-selective inhibitor, suppressed LPS-enhanced EP(2)R/EP(4)R expression, suggesting that COX-2-issued prostaglandin E(2) (PGE(2)) modulates DC function through stimulation of specific EPR subtypes. Using selective agonists, we found that butaprost, an EP(2)R agonist, and PGE(1) alcohol, an EP(2)R and EP(2)R/EP(4)R agonist, inhibited major histocompatibility complex class II expression and enhanced interleukin-10 production from DC. However, no effect was observed with sulprostone and 17-phenyl-omega-trinor-PGE(2), selective agonists for EP(1)R and EP(1)R/EP(3)R, respectively. Treatment of DC with dibutyryl cyclic adenosine monophosphate (cAMP), an analog of cAMP, mimics PGE(2)-induced, inhibitory effects. Taken together, our data demonstrate that EP(2)R/EP(4)R are efficient for mediating PGE(2)-induced modulation of DC functions.
Mahapatra, Debabrata; Franzosa, Jill A; Roell, Kyle; Kuenemann, Melaine Agnes; Houck, Keith A; Reif, David M; Fourches, Denis; Kullman, Seth W
2018-06-11
High throughput screening (HTS) programs have demonstrated that the Vitamin D receptor (VDR) is activated and/or antagonized by a wide range of structurally diverse chemicals. In this study, we examined the Tox21 qHTS data set generated against VDR for reproducibility and concordance and elucidated functional insights into VDR-xenobiotic interactions. Twenty-one potential VDR agonists and 19 VDR antagonists were identified from a subset of >400 compounds with putative VDR activity and examined for VDR functionality utilizing select orthogonal assays. Transient transactivation assay (TT) using a human VDR plasmid and Cyp24 luciferase reporter construct revealed 20/21 active VDR agonists and 18/19 active VDR antagonists. Mammalian-2-hybrid assay (M2H) was then used to evaluate VDR interactions with co-activators and co-regulators. With the exception of a select few compounds, VDR agonists exhibited significant recruitment of co-regulators and co-activators whereas antagonists exhibited considerable attenuation of recruitment by VDR. A unique set of compounds exhibiting synergistic activity in antagonist mode and no activity in agonist mode was identified. Cheminformatics modeling of VDR-ligand interactions were conducted and revealed selective ligand VDR interaction. Overall, data emphasizes the molecular complexity of ligand-mediated interactions with VDR and suggest that VDR transactivation may be a target site of action for diverse xenobiotics.
Allosteric Modulation of Chemoattractant Receptors
Allegretti, Marcello; Cesta, Maria Candida; Locati, Massimo
2016-01-01
Chemoattractants control selective leukocyte homing via interactions with a dedicated family of related G protein-coupled receptor (GPCR). Emerging evidence indicates that the signaling activity of these receptors, as for other GPCR, is influenced by allosteric modulators, which interact with the receptor in a binding site distinct from the binding site of the agonist and modulate the receptor signaling activity in response to the orthosteric ligand. Allosteric modulators have a number of potential advantages over orthosteric agonists/antagonists as therapeutic agents and offer unprecedented opportunities to identify extremely selective drug leads. Here, we resume evidence of allosterism in the context of chemoattractant receptors, discussing in particular its functional impact on functional selectivity and probe/concentration dependence of orthosteric ligands activities. PMID:27199992
Ogawa, Seiji; Watanabe, Toshihide; Moriyuki, Kazumi; Goto, Yoshikazu; Yamane, Shinsaku; Watanabe, Akio; Tsuboi, Kazuma; Kinoshita, Atsushi; Okada, Takuya; Takeda, Hiroyuki; Tani, Kousuke; Maruyama, Toru
2016-05-15
The modification of the novel G protein-biased EP2 agonist 1 has been investigated to improve its G protein activity and develop a better understanding of its structure-functional selectivity relationship (SFSR). The optimization of the substituents on the phenyl ring of 1, followed by the inversion of the hydroxyl group on the cyclopentane moiety led to compound 9, which showed a 100-fold increase in its G protein activity compared with 1 without any increase in β-arrestin recruitment. Furthermore, SFSR studies revealed that the combination of meta and para substituents on the phenyl moiety was crucial to the functional selectivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Freitas, Kelen; Carroll, F Ivy; Negus, S Stevens
2016-02-01
Intracranial self-stimulation (ICSS) is one type of preclinical procedure for research on pharmacological mechanisms that mediate abuse potential of drugs acting at various targets, including nicotinic acetylcholine receptors (nAChRs). This study compared effects of the nonselective nAChR agonist nicotine (0.032-1.0 mg/kg) and the α4β2-selective nAChR agonist 5-I-A-85380 (0.01-1.0 mg/kg) on ICSS in male Sprague-Dawley rats. Rats were implanted with electrodes targeting the medial forebrain bundle at the level of the lateral hypothalamus and trained to respond under a fixed-ratio 1 schedule for a range of brain stimulation frequencies (158-56 Hz). A broad range of 5-I-A-85380 doses produced an abuse-related increase (or "facilitation") of low ICSS rates maintained by low brain-stimulation frequencies, and this effect was blocked by both the nonselective nAChR antagonist mecamylamine and the selective α4β2 antagonist dihyrdo-β-erythroidine (DHβE). Conversely, nicotine produced weaker ICSS facilitation across a narrower range of doses, and higher nicotine doses decreased high rates of ICSS maintained by high brain-stimulation frequencies. The rate-decreasing effects of a high nicotine dose were blocked by mecamylamine but not DHβE. Chronic nicotine treatment produced selective tolerance to rate-decreasing effects of nicotine but did not alter ICSS rate-increasing effects of nicotine. These results suggest that α4β2 receptors are sufficient to mediate abuse-related rate-increasing effects of nAChR agonists in this ICSS procedure. Conversely, nicotine effects at non-α4β2 nAChRs appear to oppose and limit abuse-related effects mediated by α4β2 receptors, although tolerance can develop to these non-α4β2 effects. Selective α4β2 agonists may have higher abuse potential than nicotine. PsycINFO Database Record (c) 2016 APA, all rights reserved.
Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W
2006-05-12
The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.
Burford, N T; Traynor, J R; Alt, A
2015-01-01
Morphine and other agonists of the μ-opioid receptor are used clinically for acute and chronic pain relief and are considered to be the gold standard for pain medication. However, these opioids also have significant side effects, which are also mediated via activation of the μ-opioid receptor. Since the latter half of the twentieth century, researchers have sought to tease apart the mechanisms underlying analgesia, tolerance and dependence, with the hope of designing drugs with fewer side effects. These efforts have revolved around the design of orthosteric agonists with differing pharmacokinetic properties and/or selectivity profiles for the different opioid receptor types. Recently, μ-opioid receptor-positive allosteric modulators (μ-PAMs) were identified, which bind to a (allosteric) site on the μ-opioid receptor separate from the orthosteric site that binds an endogenous agonist. These allosteric modulators have little or no detectable functional activity when bound to the receptor in the absence of orthosteric agonist, but can potentiate the activity of bound orthosteric agonist, seen as an increase in apparent potency and/or efficacy of the orthosteric agonist. In this review, we describe the potential advantages that a μ-PAM approach might bring to the design of novel therapeutics for pain that may lack the side effects currently associated with opioid therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24460691
Williams, Dustin K.; Wang, Jingyi; Papke, Roger L.
2011-01-01
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. PMID:21575610
Williams, Dustin K; Wang, Jingyi; Papke, Roger L
2011-10-15
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. Copyright © 2011 Elsevier Inc. All rights reserved.
Ryskamp, Daniel A.; Witkovsky, Paul; Barabas, Peter; Huang, Wei; Koehler, Christopher; Akimov, Nikolay P.; Lee, Suk Hee; Chauhan, Shiwani; Xing, Wei; Rentería, René C.; Liedtke, Wolfgang; Krizaj, David
2011-01-01
Sustained increase in intraocular pressure represents a major risk factor for eye disease yet the cellular mechanisms of pressure transduction in the posterior eye are essentially unknown. Here we show that the mouse retina expresses mRNA and protein for the polymodal TRPV4 cation channel known to mediate osmo- and mechanotransduction. TRPV4 antibodies labeled perikarya, axons and dendrites of retinal ganglion cells (RGCs) and intensely immunostained the optic nerve head. Müller glial cells, but not retinal astrocytes or microglia, also expressed TRPV4 immunoreactivity. The selective TRPV4 agonists 4α-PDD and GSK1016790A elevated [Ca2+]i in dissociated RGCs in a dose-dependent manner whereas the TRPV1 agonist capsaicin had no effect on [Ca2+]RGC. Exposure to hypotonic stimulation evoked robust increases in [Ca2+]RGC. RGC responses to TRPV4-selective agonists and hypotonic stimulation were absent in Ca2+-free saline and were antagonized by the nonselective TRP channel antagonists Ruthenium Red and gadolinium, but were unaffected by the TRPV1 antagonist capsazepine. TRPV4-selective agonists increased the spiking frequency recorded from intact retinas recorded with multielectrode arrays. Sustained exposure to TRPV4 agonists evoked dose-dependent apoptosis of RGCs. Our results demonstrate functional TRPV4 expression in RGCs and suggest that its activation mediates response to membrane stretch leading to elevated [Ca2+]i and augmented excitability. Excessive Ca2+ influx through TRPV4 predisposes RGCs to activation of Ca2+-dependent pro-apoptotic signaling pathways, indicating that TRPV4 is a component of the response mechanism to pathological elevations of intraocular pressure. PMID:21562271
YOUNG, Jared W; MEVES, Jessica M; GEYER, Mark A
2012-01-01
Impaired attentional processing is prevalent in numerous neuropsychiatric disorders and may negatively impact other cognitive and functional domains. Nicotine – a nonspecific nicotinic acetylcholine receptor (nAChR) agonist – improves vigilance in healthy subjects and schizophrenia patients as measured by continuous performance tests (CPTs), but the nAChR mediating this effect remains unclear. Here we examine the effects of: a) nicotine; b) the selective α7 nAChR agonist PNU 282987; and c) the selective α4β2 nAChR agonist ABT-418 alone and in combination with scopolamine-induced disruption of mouse 5-choice (5C-)CPT performance. This task requires the inhibition of responses to non-target stimuli as well as active responses to target stimuli, consistent with human CPTs. C57BL/6N mice were trained to perform the 5C-CPT. Drug effects were examined in extended session and variable stimulus-duration challenges of performance. Acute drug effects on scopolamine-induced disruption in performance were also investigated. Nicotine and ABT-418 subtly but significantly improved performance of normal mice and attenuated scopolamine-induced disruptions in the 5C-CPT. PNU 282–987 had no effects on performance. The similarity of nicotine and ABT-418 effects provides support for an α4β2 nAChR mechanism of action for nicotine-induced improvement in attention/vigilance. Moreover, the data provide pharmacological predictive validation for the 5C-CPT because nicotine improved and scopolamine disrupted normal performance of the task, consistent with healthy humans in the CPT. Future studies using more selective agonists may result in more robust improvements in performance. PMID:23201359
Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model
Adamson Barnes, Nicholas S.; Mitchell, Vanessa A.; Kazantzis, Nicholas P.
2015-01-01
Background and Purpose While cannabinoids have been proposed as a potential treatment for neuropathic pain, they have limitations. Cannabinoid receptor agonists have good efficacy in animal models of neuropathic pain; they have a poor therapeutic window. Conversely, selective fatty acid amide hydrolase (FAAH) inhibitors that enhance the endocannabinoid system have a better therapeutic window, but lesser efficacy. We examined whether JZL195, a dual inhibitor of FAAH and monacylglycerol lipase (MAGL), could overcome these limitations. Experimental Approach C57BL/6 mice underwent the chronic constriction injury (CCI) model of neuropathic pain. Mechanical and cold allodynia, plus cannabinoid side effects, were assessed in response to systemic drug application. Key Results JZL195 and the cannabinoid receptor agonist WIN55212 produced dose‐dependent reductions in CCI‐induced mechanical and cold allodynia, plus side effects including motor incoordination, catalepsy and sedation. JZL195 reduced allodynia with an ED50 at least four times less than that at which it produced side effects. By contrast, WIN55212 reduced allodynia and produce side effects with similar ED50s. The maximal anti‐allodynic effect of JZL195 was greater than that produced by selective FAAH, or MAGL inhibitors. The JZL195‐induced anti‐allodynia was maintained during repeated treatment. Conclusions and Implications These findings suggest that JZL195 has greater anti‐allodynic efficacy than selective FAAH, or MAGL inhibitors, plus a greater therapeutic window than a cannabinoid receptor agonist. Thus, dual FAAH/MAGL inhibition may have greater potential in alleviating neuropathic pain, compared with selective FAAH and MAGL inhibitors, or cannabinoid receptor agonists. PMID:26398331
The effect of flavonol glycosides on opiate withdrawal.
Capasso, Anna
2007-07-01
Our interest has been centered on flavonol glycosides from Croton Menthodorus (Euphorbiaceae) and Aristeguietia discolor (Asteraceae). In this respect, the effect of flavonol glycosides from Croton Menthodorus (Euphorbiaceae) and Aristeguietia discolor (Asteraceae) was investigated on the naloxone-precipitated withdrawal contracture of the acute morphine-dependent guinea-pig ileum in vitro. Furthermore, the effect of these flavonol glycosides was also considered on DAGO (highly selective micro-agonist) and U50-488H (highly selective k-agonist) withdrawal to test whether the possible interaction of flavonol glycosides on opioid withdrawal involves micro- and/or k-opioid receptors. Flavonol glycosides from Croton Menthodorus (1 x 10(-5), 5 x 10(-5) and 1 x 10(-4) M) and from Aristeguietia discolor (1 x 10(-7)-1 x 10(-6)-1 x 10(-5) M) before or after the opioid agonists were able to both prevent and reverse the naloxone-induced contracture after exposure to micro (morphine and DAGO) or k (U50-488H) opiate agonists in a concentration-dependent fashion. Both acetylcholine response and electrical stimulation were reduced by flavonol glycosides treatment as well as the final opiate withdrawal was still reduced. The results of the present study indicate that flavonol glycosides were able to produce significant influence on the opiate withdrawal in vitro and these compounds were able to exert their effects both at micro and k opioid agonists.
Shoblock, James R
2007-01-01
The NOP receptor (formerly referred to as opiate receptor-like 1, ORL-1, LC132, OP(4), or NOP(1)) is a G protein-coupled receptor that shares high homology to the classic opioid MOP, DOP, and KOP (mu, delta, and kappa, respectively) receptors and was first cloned in 1994 by several groups. The NOP receptor remained an orphan receptor until 1995, when the endogenous neuropeptide agonist, known as nociceptin or orphanin FQ (N/OFQ) was isolated. Five years later, a group at Hoffmann-La Roche reported on the selective, nonpeptide NOP agonist Ro 64-6198, which became the most extensively published nonpeptide NOP agonist and a valuable pharmacological tool in determining the potential of the NOP receptor as a therapeutic target. Ro 64-6198 is systemically active and achieves high brain penetration. It has subnanomolar affinity for the NOP receptor and is at least 100 times more selective for the NOP receptor over the classic opioid receptors. Ro 64-6198 ranges from partial to full agonist, depending on the assay. Preclinical data indicate that Ro 64-6198 may have broad clinical uses, such as in treating stress and anxiety, addiction, neuropathic pain, cough, and anorexia. This review summarizes the pharmacology and preclinical data of Ro 64-6198.
Further studies on lead compounds containing the opioid pharmacophore Dmt-Tic.
Balboni, Gianfranco; Fiorini, Stella; Baldisserotto, Anna; Trapella, Claudio; Sasaki, Yusuke; Ambo, Akihiro; Marczak, Ewa D; Lazarus, Lawrence H; Salvadori, Severo
2008-08-28
Some reference opioids containing the Dmt-Tic pharmacophore, especially the delta agonists H-Dmt-Tic-Gly-NH-Ph (1) and H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid (4) (UFP-512) were evaluated for the influence of the substitution of Gly with aspartic acid, its chirality, and the importance of the -NH-Ph and N(1)H-Bid hydrogens in the inductions of delta agonism. The results provide the following conclusions: (i) Asp increases delta selectivity by lowering the mu affinity; (ii) -NH-Ph and N(1)H-Bid nitrogens methylation transforms the delta agonists into delta antagonists; (iii) the substitution of Gly with L-Asp/D-Asp in the delta agonist H-Dmt-Tic-Gly-NH-Ph gave delta antagonists; the same substitution in the delta agonist H-Dmt-Tic-NH-CH2-Bid yielded more selective agonists, H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid and H-Dmt-Tic-NH-(R)CH(CH2-COOH)-Bid; (iv) L-Asp seems important only in functional bioactivity, not in receptor affinity; (v) H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid(N(1)-Me) (10) evidenced analgesia similar to 4, which was reversed by naltrindole only in the tail flick. 4 and 10 had opposite behaviours in mice; 4 caused agitation, 10 gave sedation and convulsions.
Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective.
Eslamy, Mahdy; Grimmer, Martin; Rinderknecht, Stephan; Seyfarth, Andre
2013-06-01
In this paper we investigated on peak power (PP) and energy (ER) requirements for different active ankle actuation concepts that can have both elasticity and damping characteristics. A lower PP or ER requirement is an important issue because it will lead to a smaller motor or battery. In addition to spring, these actuation concepts are assumed to have (passive) damper in series (series elastic-damper actuator SEDA) or parallel (parallel elastic-damper actuator PEDA) to the motor. For SEA (series elastic actuator), SEDA and PEDA, we calculated the required minimum motor PP and ER in different human gaits: normal level walking, ascending and descending the stairs. We found that for level walking and ascending the stairs, the SEA concept, and for descending, the SEDA, were the favorable concepts to reduce required minimum PP and ER in comparison to a DD (direct drive) concept. In SEDA concept, the minimum PP could be reduced to half of what SEA would require. Nevertheless, it was found that spring was always required, however damper showed 'task specific' advantages. As a result, if a simple design perspective is in mind, from PP-ER viewpoint, SEA could be the best compromise to be used for different above-mentioned gaits. For SEDA or PEDA concepts, a controllable damper should be used. In addition, our results show that it is beneficial to select spring stiffness in SEA, based on level walking gait. The PP and ER requirements would increase very slightly for stairs ascending, and to some extent (10.5%) for descending as a consequence of this selection. In contrast, stiffness selection based on stair ascending or descending, increases the PP requirements of level walking more noticeably (17-24%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHaven, D.L.; Steranka, L.R.
Raiteri et al have suggested that muscarinic receptor subtypes can be differentiated in striatal synaptosomes by the release of DA (M1) or ACh (M2). The authors attempted to replicate this finding and to characterize responses of selective and non-selective cholinergic agonists and antagonists using K+-stimulated release of transmitters from rat striatal slices. The non-selective agonists ACh, carbachol and oxotremorine stimulated release of (/sup 3/H)-DA and inhibited release of (/sup 14/C)-ACh with EC50 values of 10.6, 9.2 and 4.2 ..mu..M (DA) and 1.2, 0.77 and 0.43 ..mu..M (ACh), respectively. The M1 agonist McN-A-343-11 selectively inhibited release of DA with an EC50more » value of 4.8 ..mu..M. Pilocarpine was ineffective in this system. The M1 antagonist pirenzepine reversed the effects of 10/sup -4/ M carbachol on release with an eight-fold selectivity for release of (/sup 3/H)-DA (IC50 = 0.77 ..mu..M) vs (/sup 14/C)-ACh (IC50 = 6.3 ..mu..M). These results suggest that although this system can determine relative subtype selectivities, the results obtained in this assay do not always correlate with those obtained from phosphatidyl inositol turnover or adenylate cyclase activity.« less
Wills, Lauren P; Matson, Cole W; Landon, Chelsea D; Di Giulio, Richard T
2010-08-01
Fundulus heteroclitus (Atlantic killifish) found at the Atlantic Wood Industries Superfund site on the Elizabeth River (ER) in Portsmouth, VA (USA), have been shown to be resistant to the teratogenic effects of creosote-contaminated sediments found at this highly contaminated site. Many of the polycyclic aromatic hydrocarbons (PAHs) found at the ER are known to activate the aryl hydrocarbon receptor (AHR), and are thought to mediate their toxic effects through this pathway. Activation of the AHR results in the induction of several Phase I and II metabolic enzymes. It has been previously shown that the AHR of killifish from the ER are refractory to induction by AHR agonists. To more fully characterize this altered AHR response, we exposed embryos from the ER and from a reference site on King's Creek, VA (KC) to two PAHs, benzo[alpha]pyrene (BaP) and benzo[k]fluoranthene (BkF), and to the dioxin-like compound (DLC), 3,3',4,4',5-pentachlorobiphenyl (PCB126). We compared their developmental and molecular responses by screening the embryos for CYP1A enzyme activity, cardiac deformities, and mRNA expression of CYP1A, CYP1B1, CYP1C1, and AHR2. Basal gene expression of both CYP1A and CYP1B1 was 40% higher in the KC control embryos compared to those from the ER, while AHR2 and CYP1C1 were not significantly different between the populations. Exposure of KC embryos to BaP, BkF, and PCB126 induced CYP1A activity and cardiac deformities. In contrast, CYP1A activity was induced in ER embryos only in response to BkF exposure, although this induction in ER embryos was significantly lower than that observed in KC fish at comparable concentrations. ER embryos did not develop cardiac deformities in response to any of the chemicals tested. CYP1A, CYP1B1 and CYP1C1 mRNA were all significantly induced in the KC embryos after exposure to BaP, BkF and PCB126. Exposure to BaP and BkF in ER embryos resulted in a significant induction of CYP1A mRNA, albeit significantly lower than observed in KC fish. Interestingly, BaP exposure resulted in induction of CYP1B1 at comparable levels in embryos from both populations. CYP1s were not induced in ER embryos in response to PCB126, nor was CYP1C1 for any treatment examined. Additionally, AHR2 was not significantly induced for any of the treatment groups. This study further characterizes the AHR response in killifish, and provides greater insight into the adapted ER phenotype. The ER adaptation involves the suppression of normal AHR-inducible gene expression for all three CYP1 genes, and therefore is likely an alteration in AHR signaling or control. Copyright 2010 Elsevier B.V. All rights reserved.
Gurgle, Holly E; White, Karen; McAdam-Marx, Carrie
2016-01-01
Controversy exists regarding the selection of second-line therapy for patients with type 2 diabetes mellitus (T2DM) who are unable to achieve glycemic control with metformin therapy alone. Newer pharmacologic treatments for T2DM include glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Both the classes of medication are efficacious, exhibit positive effects on weight, and are associated with minimal risk of hypoglycemia. The purpose of this review is to compare the clinical trial and real-world effectiveness data of glucagon-like peptide-1 receptor agonists versus sodium-glucose cotransporter 2 inhibitors related to A1c reduction, weight loss, cost-effectiveness, cardiovascular outcomes, and safety in patients with T2DM. This review summarizes comparative evidence for providers who are determining which of the two classes may be the most appropriate for a specific patient.
Cheung, Adrian Wai-Hing; Danho, Waleed; Swistok, Joseph; Qi, Lida; Kurylko, Grazyna; Rowan, Karen; Yeon, Mitch; Franco, Lucia; Chu, Xin-Jie; Chen, Li; Yagaloff, Keith
2003-01-06
Systematic substitution of His(6) residue using non-selective hMC4R pentapeptide agonist (Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2)) as the template led to the identification of Bu-Atc(6)(2-aminotetraline-2-carboxylic acid)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) which showed moderate selectivity towards hMC4R over hMC1R. Further SAR studies resulted in the discovery of Penta-5-BrAtc(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) and Penta-5-Me(2)NAtc(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) which are potent hMC4R agonists and are inactive in hMC1R, hMC3R and hMC5R agonist assays.
TRPA1 Contributes to Cold Hypersensitivity
Camino, Donato del; Murphy, Sarah; Heiry, Melissa; Barrett, Lee B.; Earley, Taryn J.; Cook, Colby A.; Petrus, Matt J.; Zhao, Michael; D'Amours, Marc; Deering, Nate; Brenner, Gary J.; Costigan, Michael; Hayward, Neil J.; Chong, Jayhong A.; Fanger, Christopher M.; Woolf, Clifford J.; Patapoutian, Ardem; Moran, Magdalene M.
2010-01-01
TRPA1 is a non-selective cation channel expressed by nociceptors. While it is widely accepted that TRPA1 serves as a broad irritancy receptor for a variety of reactive chemicals, its role in cold sensation remains controversial. Here, we demonstrate that mild cooling markedly increases agonist-evoked rat TRPA1 currents. In the absence of an agonist, even noxious cold only increases current amplitude slightly. These results suggest that TRPA1 is a key mediator of cold hypersensitivity in pathological conditions where reactive oxygen species and pro-inflammatory activators of the channel are present, but likely plays a comparatively minor role in acute cold sensation. Supporting this, cold hypersensitivity can be induced in wild-type but not Trpa1-/- mice by subcutaneous administration of a TRPA1 agonist. Furthermore, the selective TRPA1 antagonist HC-030031 reduces cold hypersensitivity in rodent models of inflammatory and neuropathic pain. PMID:21068322
A brief history of inhaled asthma therapy over the last fifty years.
Crompton, Graham
2006-12-01
This year is the 50th anniversary of the introduction into clinical use of the first modern inhaler for the management of asthma--the pressurised metered-dose inhaler (pMDI). The pMDI was initially used for the administration of the non-selective beta-agonists adrenaline and isoprenaline. However, the epidemic of asthma deaths which occurred in the 1960s led to these drugs being superseded by the selective short-acting beta-agonist salbutamol, and the first inhaled corticosteroid (ICS) beclomethasone. At the same time, sodium cromoglycate was introduced, to be administered via the first dry-powder inhaler--the Spinhaler--but owing to its relatively weak anti-inflammatory action its use is now very limited. Over the last 10 years, the long-acting beta-agonists (LABAs) have become an important add-on therapy for the management of asthma, and they are now often used with ICS in a single ICS/LABA combination inhaler.
Gomarus, H Karin; Althaus, Monika; Wijers, Albertus A; Minderaa, Ruud B
2006-04-01
Psychophysiological correlates of selective attention and working memory were investigated in a group of 18 healthy children using a visually presented selective memory search task. Subjects had to memorize one (load1) or 3 (load3) letters (memory set) and search for these among a recognition set consisting of 4 letters only if the letters appeared in the correct (relevant) color. Event-related potentials (ERPs) as well as alpha and theta event-related synchronization and desynchronization (ERD/ERS) were derived from the EEG that was recorded during the task. In the ERP to the memory set, a prolonged load-related positivity was found. In response to the recognition set, effects of relevance were manifested in an early frontal positivity and a later frontal negativity. Effects of load were found in a search-related negativity within the attended category and a suppression of the P3-amplitude. Theta ERS was most pronounced for the most difficult task condition during the recognition set, whereas alpha ERD showed a load-effect only during memorization. The manipulation of stimulus relevance and memory load affected both ERP components and ERD/ERS. The present paradigm may supply a useful method for studying processes of selective attention and working memory and can be used to examine group differences between healthy controls and children showing psychopathology.
Kasuga, Jun-ichi; Yamasaki, Daisuke; Araya, Yoko; Nakagawa, Aya; Makishima, Makoto; Doi, Takefumi; Hashimoto, Yuichi; Miyachi, Hiroyuki
2006-12-15
A series of alpha-alkyl-substituted phenylpropanoic acids was prepared as dual agonists of peroxisome proliferator-activated receptors alpha and delta (PPARalpha/delta). Structure-activity relationship studies indicated that the shape of the linking group and the shape of the substituent at the distal benzene ring play key roles in determining the potency and the selectivity of PPAR subtype transactivation. Structure-activity relationships among the amide series (10) and the reversed amide series (13) are similar, but not identical, especially in the case of the compounds bearing a bulky hydrophobic substituent at the distal benzene ring, indicating that the hydrophobic tail part of the molecules in these two series binds at somewhat different positions in the large binding pocket of PPAR. alpha-Alkyl-substituted phenylpropanoic acids of (S)-configuration were identified as potent human PPARalpha/delta dual agonists. Representative compounds exhibited marked nuclear receptor selectivity for PPARalpha and PPARdelta. Subtype-selective PPAR activation was also examined by analysis of the mRNA expression of PPAR-regulated genes.
Selective emission and luminescence of Er{sub 2}O{sub 3} under intense laser excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchenko, V M; Studenikin, M I; Iskhakova, L D
2013-09-30
The microstructure of Er{sub 2}O{sub 3} polycrystals synthesised by laser heating is studied. The synthesis of erbium silicate (Er{sub 2}SiO{sub 5}) layers was observed upon interaction of Er{sub 2}O{sub 3} and SiO{sub 2} melts. The dependences of the selective emission (SE) and luminescence spectra of Er{sub 2}O{sub 3} polycrystals in the range 200 – 1700 nm on the intensity of laser-thermal (at the wavelength λ = 10.6 μm) and resonant laser (λ ≈ 975 nm) excitation are investigated. The emission of heated Er{sub 2}O{sub 3} polycrystals arises as a result of multiphonon relaxation of absorbed energy and is a superpositionmore » of the SE at the electronic-vibrational transitions of Er{sup 3+} ions and the thermal radiation of the crystal lattice. The shape of the SE spectra of Er{sub 2}O{sub 3} polycrystals in the range 400 – 1700 nm almost does not change upon laser-thermal heating from 300 to 1500 K and subsequent cooling and corresponds to the absorption spectra of Er{sup 3+} ions. With increasing temperature, the thermal radiation intensity increases faster than the SE intensity, and the shape of the Er{sub 2}O{sub 3} spectrum becomes closer to the calculated spectrum of a blackbody. The anti-Stokes luminescence spectra of Er{sup 3+} ions formed under intense laser excitation of the {sup 4}I{sub 11/2} level are explained by additional SE caused by heating of the crystal matrix due to the Stokes losses. A difference between the SE and luminescence spectra is observed at low intensities of resonant laser excitation and low temperatures, when only the Stokes luminescence occurs. The temperature dependences of the SE and luminescence spectra of Er{sub 2}O{sub 3} upon laser excitation testify to the fundamental role played by the interaction of the electronic f-shell of Er{sup 3+} ions with crystal lattice vibrations in the processes of multiphonon radiative and nonradiative relaxation. The laser-thermal synthesis is promising for inprocess variation of the chemical composition of rare-earth samples. (interaction of laser radiation with matter)« less
Ludovini, Vienna; Bianconi, Fortunato; Siggillino, Annamaria; Piobbico, Danilo; Vannucci, Jacopo; Metro, Giulio; Chiari, Rita; Bellezza, Guido; Puma, Francesco; Della Fazia, Maria Agnese; Servillo, Giuseppe; Crinò, Lucio
2016-05-24
Risk assessment and treatment choice remains a challenge in early non-small-cell lung cancer (NSCLC). The aim of this study was to identify novel genes involved in the risk of early relapse (ER) compared to no relapse (NR) in resected lung adenocarcinoma (AD) patients using a combination of high throughput technology and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network computational analysis was performed to select predictive genes. An independent set of 79 ADs stage I samples was used to validate selected genes by Q-PCR.From microarray analysis we selected 50 genes, using the fold change ratio of ER versus NR. They were validated both in pool and individually in patient samples (ER and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance between two methods. They were used to perform a computational gene network analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an independent dataset of ADs samples, we showed that both high FABP3 expression and low SCGB1A1 expression was associated with a worse disease-free survival (DFS).Our results indicate that it is possible to define, through gene expression and computational analysis, a characteristic gene profiling of patients with an increased risk of relapse that may become a tool for patient selection for adjuvant therapy.
Car, B; Veissier, L; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T
2018-05-11
In Er^{3+}:Y_{2}SiO_{5}, we demonstrate the selective optical addressing of the ^{89}Y^{3+} nuclear spins through their superhyperfine coupling with the Er^{3+} electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.
NASA Astrophysics Data System (ADS)
Car, B.; Veissier, L.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chanelière, T.
2018-05-01
In Er3 +:Y2SiO5 , we demonstrate the selective optical addressing of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.
2005-06-09
Ovarian cancer is the most lethal gynecological cancer affecting women. Hormone-based therapies are variably successful in treating ovarian cancer, but the reasoning behind these therapies is paradoxical. Clinical reagents such as tamoxifen are considered to inhibit or reverse tumor growth by competitive inhibition of the estrogen receptor (ER); however high dose estrogen is as clinically effective as tamoxifen, and it is unlikely that estrogen is acting by blocking ER activity; however, it may be activating a unique function of the ER that is nonmitogenic. For poorly defined reasons, 90% of varian cancers derive from the ovarian surface epithelium (OSE). Inmore » vivo the ER-positive OSE is exposed to high estrogen levels, reaching micromolar concentrations in dominant ovarian follicles. Using cultured OSE cells in vitro, we show that these levels of estradiol (1 ug/ml; {approx}3um) block the actions of serum growth factors, activate the G1 phase retinoblastoma AQ:A checkpoint, and induce p21, an inhibitor of kinases that normally inactivate the retinoblastoma checkpoint. We also show that estradiol increases p53 levels, which may contribute to p21 induction. Supporting the hypothesis that clinical selective ER modulators activate this novel ER function, we find that micromolar doses of tamoxifen and the ''pure antiestrogen'' ICI 182,780 elicit the same effects as estradiol. We propose that, in the context of proliferation, these data clarify some paradoxical aspects of hormone-based therapy and suggest that fuller understanding of normal ER function is necessary to improve therapeutic strategies that target the ER. (J Clin Endocrinol Metab 90: 0000-0000, 2005)« less
Enantiomeric composition of chiral polychlorinated biphenyl atropisomers in aquatic bed sediment
Wong, C.S.; Garrison, A.W.; Foreman, W.T.
2001-01-01
Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 were found in sediment cores from Lake Hartwell, SC, which confirmed previous inconclusive reports of reductive dechlorination of PCBs at these sites on the basis of achiral measurements. Nonracemic ERs for many of the atropisomers were also found in bed-sediment samples from the Hudson and Housatonic Rivers, thus indicating that some of the PCB biotransformation processes identified at these sites are enantioselective. Patterns in ERs among congeners were consistent with known reductive dechlorination patterns at both river sediment basins. The enantioselectivity of PCB 91 is reversed between the Hudson and Housatonic River sites, which implies that the two sites have different PCB biotransformation processes with different enantiomer preferences.Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 were found in sediment cores from Lake Hartwell, SC, which confirmed previous inconclusive reports of reductive dechlorination of PCBs at these sites on the basis of achiral measurements. Nonracemic ERs for many of the atropisomers were also found in bed-sediment samples from the Hudson and Housatonic Rivers, thus indicating that some of the PCB biotransformation processes identified at these sites are enantioselective. Patterns in ERs among congeners were consistent with known reductive dechlorination patterns at both river sediment basins. The enantioselectivity of PCB 91 is reversed between the Hudson and Housatonic River sites, which implies that the two sites have different PCB biotransformation processes with different enantiomer preferences.
ENANTIOMERIC COMPOSITION OF CHIRAL POLYCHLORINATED BIPHENYL ATROPISOMERS IN AQUATIC BED SEDIMENT
Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 wer...
Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana
2007-05-01
Alpha-melanotropin, Ac-Ser(1)-Tyr-Ser-Met-Glu-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2)(1), is a non-selective endogenous agonist for the melanocortin receptor 5; the receptor present in various peripheral tissues and in the brain, cortex and cerebellum. Most of the synthetic analogs of alphaMSH, including a broadly used and more potent the NDP-alphaMSH peptide, Ac-Ser(1)-Tyr-Ser-Nle(4)-Glu-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2), are also not particularly selective for MC5R. To elucidate physiological functions of the melanocortin receptor 5 in rodents and humans, the receptor subtype selective research tools are needed. We report herein syntheses and pharmacological evaluation in vitro of several analogs of NDP-alphaMSH which are highly potent and specific agonists for the human MC5R. The new linear peptides, of structures and solubility properties similar to those of the endogenous ligand alphaMSH, are exemplified by compound 7, Ac-Ser(1)-Tyr-Ser-Met-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2) (Oic: octahydroindole-2-COOH, 4,4'-Bip: 4,4'-biphenylalanine, Pip: pipecolic acid), shortly NODBP-alphaMSH, which has an IC(50)=0.74 nM (binding assay) and EC(50)=0.41 (cAMP production assay) at hMC5R nM and greater than 3500-fold selectivity with respect to the melanocortin receptors 1b, 3 and 4. A shorter peptide derived from NODBP-alphaMSH: Ac-Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9) -NH(2) (17) was measured to be an agonist only 10-fold less potent at hMC5R than the full length parent peptide. In the structure of this smaller analog, the Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8) segment was found to be critical for high agonist potency, while the C-terminal Trp(9) residue was shown to be required for high hMC5R selectivity versus hMC1b,3,4R.
Gao, Wenqing; Kearbey, Jeffrey D.; Nair, Vipin A.; Chung, Kiwon; Parlow, A. F.; Miller, Duane D.; Dalton, James T.
2007-01-01
Tissue-selective androgen receptor modulators (SARMs) demonstrate tissue selectivity in both castrated and intact male rats, behaving as partial agonists in androgenic tissues (i.e. prostate and seminal vesicle), but full agonists in anabolic tissues (i.e. levator ani muscle). The partial agonist activity of SARMs (compounds S-1 and S-4) in the prostate of intact rats suggested that SARM could be used for androgen suppression in the treatment of benign prostate hyperplasia (BPH). This study was designed to explore the mechanisms of action of SARM and to characterize the tissue selectivity of S-1 in intact male rats compared with that of hydroxyflutamide (antiandrogen) and finasteride (5α-reductase inhibitor), two major drugs used for androgen suppression treatment of BPH. In intact male rats, S-1 (5, 10, and 25 mg/kg) selectively decreased the prostate weight with similar efficacy to finasteride (5 mg/kg), without affecting the levator ani muscle or increasing the plasma levels of testosterone, LH, and FSH. Hydroxyflutamide (0.5, 1, 5, 10, and 25 mg/kg), however, decreased both the prostate and levator ani muscle weights without any selectivity and increased plasma hormone levels in a dose-dependent manner. Furthermore, S-1 and S-4 showed very weak inhibitory effects toward transiently expressed type I and II human 5α-reductase (Ki, >20 µM) during in vitro assays. Therefore, although S-1 and finasteride showed very similar suppressive effects in the prostate of intact male rats, they decreased prostate size via different mechanisms of action. S-1 simply worked as androgen receptor partial agonist, whereas finasteride inhibited prostatic 5α-reductase. These studies indicate that SARMs may demonstrate clinical utility as single agent or combination therapy for BPH. PMID:15308613
A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance.
Feng, Yongqiang; van der Veeken, Joris; Shugay, Mikhail; Putintseva, Ekaterina V; Osmanbeyoglu, Hatice U; Dikiy, Stanislav; Hoyos, Beatrice E; Moltedo, Bruno; Hemmers, Saskia; Treuting, Piper; Leslie, Christina S; Chudakov, Dmitriy M; Rudensky, Alexander Y
2015-12-03
T-cell receptor (TCR) signalling has a key role in determining T-cell fate. Precursor cells expressing TCRs within a certain low-affinity range for complexes of self-peptide and major histocompatibility complex (MHC) undergo positive selection and differentiate into naive T cells expressing a highly diverse self-MHC-restricted TCR repertoire. In contrast, precursors displaying TCRs with a high affinity for 'self' are either eliminated through TCR-agonist-induced apoptosis (negative selection) or restrained by regulatory T (Treg) cells, whose differentiation and function are controlled by the X-chromosome-encoded transcription factor Foxp3 (reviewed in ref. 2). Foxp3 is expressed in a fraction of self-reactive T cells that escape negative selection in response to agonist-driven TCR signals combined with interleukin 2 (IL-2) receptor signalling. In addition to Treg cells, TCR-agonist-driven selection results in the generation of several other specialized T-cell lineages such as natural killer T cells and innate mucosal-associated invariant T cells. Although the latter exhibit a restricted TCR repertoire, Treg cells display a highly diverse collection of TCRs. Here we explore in mice whether a specialized mechanism enables agonist-driven selection of Treg cells with a diverse TCR repertoire, and the importance this holds for self-tolerance. We show that the intronic Foxp3 enhancer conserved noncoding sequence 3 (CNS3) acts as an epigenetic switch that confers a poised state to the Foxp3 promoter in precursor cells to make Treg cell lineage commitment responsive to a broad range of TCR stimuli, particularly to suboptimal ones. CNS3-dependent expansion of the TCR repertoire enables Treg cells to control self-reactive T cells effectively, especially when thymic negative selection is genetically impaired. Our findings highlight the complementary roles of these two main mechanisms of self-tolerance.
Sharma, Dipali; Saxena, Neeraj K.; Davidson, Nancy E.; Vertino, Paula M.
2010-01-01
Breast tumors expressing estrogen receptor-α (ER) respond well to therapeutic strategies using selective ER modulators, such as tamoxifen. However, ~ 30% of invasive breast cancers are hormone independent because they lack ER expression due to hypermethylation of ER promoter. Treatment of ER-negative breast cancer cells with demethylating agents [5-aza-2′-deoxycytidine (5-aza-dC)] and histone deacetylase (HDAC) inhibitors (trichostatin A) leads to expression of ER mRNA and functional protein. Here, we examined whether epigenetically reactivated ER is a target for tamoxifen therapy. Following treatment with trichostatin A and 5-aza-dC, the formerly unresponsive ER-negative MDA-MB-231 breast cancer cells became responsive to tamoxifen. Tamoxifen-mediated inhibition of cell growth in these cells is mediated at least in part by the tamoxifen-bound ER. Tamoxifen-bound reactivated ER induces transcriptional repression at estrogen-responsive genes by ordered recruitment of multiple distinct chromatin-modifying complexes. Using chromatin immunoprecipitation, we show recruitment of two different corepressor complexes to ER-responsive promoters in a mutually exclusive and sequential manner: the nuclear receptor corepressor-HDAC3 complex followed by nucleosome remodeling and histone deacetylation complex. The mechanistic insight provided by this study might help in designing therapeutic strategies directed toward epigenetic mechanisms in the prevention or treatment of breast cancer. PMID:16778215
Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor
Omi, T; Tanimukai, H; Kanayama, D; Sakagami, Y; Tagami, S; Okochi, M; Morihara, T; Sato, M; Yanagida, K; Kitasyoji, A; Hara, H; Imaizumi, K; Maurice, T; Chevallier, N; Marchal, S; Takeda, M; Kudo, T
2014-01-01
We recently demonstrated that endoplasmic reticulum (ER) stress induces sigma-1 receptor (Sig-1R) expression through the PERK pathway, which is one of the cell's responses to ER stress. In addition, it has been demonstrated that induction of Sig-1R can repress cell death signaling. Fluvoxamine (Flv) is a selective serotonin reuptake inhibitor (SSRI) with a high affinity for Sig-1R. In the present study, we show that treatment of neuroblastoma cells with Flv induces Sig-1R expression by increasing ATF4 translation directly, through its own activation, without involvement of the PERK pathway. The Flv-mediated induction of Sig-1R prevents neuronal cell death resulting from ER stress. Moreover, Flv-induced ER stress resistance reduces the infarct area in mice after focal cerebral ischemia. Thus, Flv, which is used frequently in clinical practice, can alleviate ER stress. This suggests that Flv could be a feasible therapy for cerebral diseases caused by ER stress. PMID:25032855
a Band Selection Method for High Precision Registration of Hyperspectral Image
NASA Astrophysics Data System (ADS)
Yang, H.; Li, X.
2018-04-01
During the registration of hyperspectral images and high spatial resolution images, too much bands in a hyperspectral image make it difficult to select bands with good registration performance. Terrible bands are possible to reduce matching speed and accuracy. To solve this problem, an algorithm based on Cram'er-Rao lower bound theory is proposed to select good matching bands in this paper. The algorithm applies the Cram'er-Rao lower bound theory to the study of registration accuracy, and selects good matching bands by CRLB parameters. Experiments show that the algorithm in this paper can choose good matching bands and provide better data for the registration of hyperspectral image and high spatial resolution image.
Identification of potent, selective, CNS-targeted inverse agonists of the ghrelin receptor.
McClure, Kim F; Jackson, Margaret; Cameron, Kimberly O; Kung, Daniel W; Perry, David A; Orr, Suvi T M; Zhang, Yingxin; Kohrt, Jeffrey; Tu, Meihua; Gao, Hua; Fernando, Dilinie; Jones, Ryan; Erasga, Noe; Wang, Guoqiang; Polivkova, Jana; Jiao, Wenhua; Swartz, Roger; Ueno, Hirokazu; Bhattacharya, Samit K; Stock, Ingrid A; Varma, Sam; Bagdasarian, Victoria; Perez, Sylvie; Kelly-Sullivan, Dawn; Wang, Ruduan; Kong, Jimmy; Cornelius, Peter; Michael, Laura; Lee, Eunsun; Janssen, Ann; Steyn, Stefanus J; Lapham, Kimberly; Goosen, Theunis
2013-10-01
The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
2014-09-01
GlaxoSmithKline for dyslipidemia . It is a potent and highly selective PPARα agonist (EC50 values are 6, 1100 and 6200 nM for human PPARα, PPARγ and PPARδ...red cells in culture. These PPARα receptor agonists, fenofibrate and GW7647, originally developed by for dyslipidemia , can be used in clinical trials
USDA-ARS?s Scientific Manuscript database
XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...
USDA-ARS?s Scientific Manuscript database
XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...
Plate, Lars; Cooley, Christina B; Chen, John J; Paxman, Ryan J; Gallagher, Ciara M; Madoux, Franck; Genereux, Joseph C; Dobbs, Wesley; Garza, Dan; Spicer, Timothy P; Scampavia, Louis; Brown, Steven J; Rosen, Hugh; Powers, Evan T; Walter, Peter; Hodder, Peter; Wiseman, R Luke; Kelly, Jeffery W
2016-01-01
Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001 PMID:27435961
NASA Astrophysics Data System (ADS)
Calderon, Silvia N.
The discovery of the selective delta (δ) opioid agonists SNC 80 and BW373U86, which possess a diarylmethylpiperazine structure unique among opioids, represented a major advance in the field of δ-opioid ligands. Extensive research has recently been performed to uncover the structure-activity relationships (SAR) of this class of ligands, thereby providing valuable tools for the pharmacological characterization of the δ opioid receptor. This review focuses on the SAR of this unique series of ligands, and provides an overview of the various chemical routes that have been developed and optimized through the years to allow the syntheses of these ligands on a multigram scale. The search for selective δ opioid agonists and antagonists, as well as for those with mixed opioid agonist properties with potential therapeutic value, continues. Several questions regarding the interaction at the molecular level of diphenylmethylpiperazine derivatives and related analogs with opioid receptors and in particular with the δ opioid system still remain unanswered. Indeed, the development and pharmacological characterization of novel nonpeptidic δ opioid ligands remains an active area of research, as it may provide a better understanding of the role of this receptor in multiple disease states and disorders.
Dopaminergic modulation of semantic priming in healthy volunteers.
Roesch-Ely, Daniela; Weiland, Stephan; Scheffel, Hans; Schwaninger, Markus; Hundemer, Hans-Peter; Kolter, Thomas; Weisbrod, Matthias
2006-09-15
Semantic priming is a function related to prefrontal cortical (PFC) networks and is lateralized. There is evidence that semantic priming underlies dopaminergic modulation. It is known that the D1-receptor is more abundant in prefrontal networks; however, until now there have been no studies investigating the selective modulation of semantic priming with dopamine agonists. Furthermore, D1 receptor dysfunction has been described in schizophrenia, and patients with formal thought disorder seem to have disturbed focusing of associations and increased indirect priming. With a subtraction design, we compared the influence of pergolide (D1/D2 agonist) with bromocriptine (D2 agonist) and placebo, in a randomized, double-blind, crossover design in 40 healthy male volunteers. Subjects performed a lateralized lexical decision task including direct and indirect related prime-target pairs (stimulus onset asynchrony = 750 msec). Only on pergolide a decrease of the indirect priming in the left hemisphere presentations was found. These findings point to a potential selective modulation of agonists with a D1 component on the focusing of semantic associations. The clinical relevance of this study is that it might help the development of therapeutic strategies for treating cognitive deficits in schizophrenia and Parkinson's disease, which are highly relevant to the functional outcome.
Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects.
Zhang, Hongkai; Sturchler, Emmanuel; Zhu, Jiang; Nieto, Ainhoa; Cistrone, Philip A; Xie, Jia; He, LinLing; Yea, Kyungmoo; Jones, Teresa; Turn, Rachel; Di Stefano, Peter S; Griffin, Patrick R; Dawson, Philip E; McDonald, Patricia H; Lerner, Richard A
2015-12-01
Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). GLP-1R signals through G-protein-dependent, and G-protein-independent pathways by engaging the scaffold protein β-arrestin; preferential signalling of ligands through one or the other of these branches is known as 'ligand bias'. Here we report the discovery of the potent and selective GLP-1R G-protein-biased agonist, P5. We identified P5 in a high-throughput autocrine-based screening of large combinatorial peptide libraries, and show that P5 promotes G-protein signalling comparable to GLP-1 and Exendin-4, but exhibited a significantly reduced β-arrestin response. Preclinical studies using different mouse models of T2DM demonstrate that P5 is a weak insulin secretagogue. Nevertheless, chronic treatment of diabetic mice with P5 increased adipogenesis, reduced adipose tissue inflammation as well as hepatic steatosis and was more effective at correcting hyperglycaemia and lowering haemoglobin A1c levels than Exendin-4, suggesting that GLP-1R G-protein-biased agonists may provide a novel therapeutic approach to T2DM.
Sakamoto, Kotaro; Kawata, Yayoi; Masuda, Yasushi; Umemoto, Tadashi; Ito, Takashi; Asami, Taiji; Takekawa, Shiro; Ohtaki, Tetsuya; Inooka, Hiroshi
2016-11-04
Fibroblast growth factor receptor-1c (FGFR1c)/βKlotho (KLB) complex is a receptor of fibroblast growth factor 21 (FGF21). Pharmacologically, FGF21 shows anti-obesity and anti-diabetic effects upon peripheral administration. Here, we report the development of an artificial peptide agonist to the FGFR1c/KLB heterodimer complex. The peptide, F91-8A07 (LPGRTCREYPDLWWVRCY), was discovered from random peptide T7 phage display and selectively bound to the FGFR1c/KLB complex, but not to FGFR1c and KLB individually. After subsequent peptide dimerization using a short polyethyleneglycol (PEG) linker, the dimeric F91-8A07 peptide showed higher potent agonist activity than that of FGF21 in cultured primary human adipocytes. Moreover, the dimeric peptide led to an expression of the early growth response protein-1 (Egr-1) mRNA in vivo, which is a target gene of FGFR1c. To the best of our knowledge, this is the first report of a FGFR1c/KLB complex-selective artificial peptide agonist. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Tan, Xiahui; Sanderson, Michael J
2014-01-01
Background and Purpose While selective, bitter tasting, TAS2R agonists can relax agonist-contracted airway smooth muscle (ASM), their mechanism of action is unclear. However, ASM contraction is regulated by Ca2+ signalling and Ca2+ sensitivity. We have therefore investigated how the TAS2R10 agonists chloroquine, quinine and denotonium regulate contractile agonist-induced Ca2+ signalling and sensitivity. Experimental Approach Airways in mouse lung slices were contracted with either methacholine (MCh) or 5HT and bronchodilation assessed using phase-contrast microscopy. Ca2+ signalling was measured with 2-photon fluorescence microscopy of ASM cells loaded with Oregon Green, a Ca2+-sensitive indicator (with or without caged-IP3). Effects on Ca2+ sensitivity were assessed on lung slices treated with caffeine and ryanodine to permeabilize ASM cells to Ca2+. Key Results The TAS2R10 agonists dilated airways constricted by either MCh or 5HT, accompanied by inhibition of agonist-induced Ca2+ oscillations. However, in non-contracted airways, TAS2R10 agonists, at concentrations that maximally dilated constricted airways, did not evoke Ca2+ signals in ASM cells. Ca2+ increases mediated by the photolysis of caged-IP3 were also attenuated by chloroquine, quinine and denotonium. In Ca2+-permeabilized ASM cells, the TAS2R10 agonists dilated MCh- and 5HT-constricted airways. Conclusions and Implications TAS2R10 agonists reversed bronchoconstriction by inhibiting agonist-induced Ca2+ oscillations while simultaneously reducing the Ca2+ sensitivity of ASM cells. Reduction of Ca2+ oscillations may be due to inhibition of Ca2+ release through IP3 receptors. Further characterization of bronchodilatory TAS2R agonists may lead to the development of novel therapies for the treatment of bronchoconstrictive conditions. PMID:24117140
Contraceptives with novel benefits.
Su, Ying; Lian, Qing-Quan; Ge, Ren-Shan
2012-01-01
Progesterone receptor (PR) agonists (progestins) and antagonists are developed for female contraceptives. However, non-contraceptive applications of newer progestins and PR modulators are being given more attention. The newer PR agonists including drospirenone, nomegestrol, trimegestone, dienogest and nestorone are being evaluated as contraceptives with health benefits because of their unique pharmacological properties. The selective PR modulators (SPRM; PR antagonists with PR agonistic properties) are under development not only for emergency contraception but also for other health benefits such as the treatment of endometritis and leiomyoma. After searching the literature from PubMed, clinicaltrials.gov and patent database, this review focuses on the effects and mechanisms of these progestins, and SPRMs as contraceptives with other health benefits. PR agonists and antagonists that have novel properties may generate better contraceptive effects with other health benefits.