Sample records for selective inhibitory effect

  1. Distractor inhibition: principles of operation during selective attention.

    PubMed

    Wyatt, Natalie; Machado, Liana

    2013-02-01

    Research suggests that although target amplification acts as the main determinant of the efficacy of selective attention, distractor inhibition contributes under some circumstances. Here we aimed to gain insight into the operating principles that regulate the use of distractor inhibition during selective attention. The results suggest that, in contrast to target amplification, distractor inhibition does not onset earlier or strengthen in response to advance location information. Instead, when the location of the impending distractor was predictable, evidence of inhibitory processing weakened. Furthermore, the results suggest that distractor inhibition does not operate as a compensatory mechanism for target amplification, as evidenced by the lack of an increase in inhibitory effects when reliance on target amplification was disrupted. Unexpected emergence of inhibitory effects for improbable targets provided evidence that distractor inhibition was at work even when no inhibitory effects manifested. Overall, the pattern of inhibitory effects is interpreted as indicating that, although distractor inhibition mounts primarily reactively rather than preemptively, advance information can help prevent overreaction to the distractor. Of course, less overreaction reduces the chances of behavioral inhibitory effects manifesting even when distractor inhibition has contributed to selective attention; thus, interpreting an absence of inhibitory effects should be done cautiously. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  2. Selective Attention and Inhibitory Deficits in ADHD: Does Subtype or Comorbidity Modulate Negative Priming Effects?

    ERIC Educational Resources Information Center

    Pritchard, Verena E.; Neumann, Ewald; Rucklidge, Julia J.

    2008-01-01

    Selective attention has durable consequences for behavior and neural activation. Negative priming (NP) effects are assumed to reflect a critical inhibitory component of selective attention. The performance of adolescents with Attention Deficit/Hyperactivity Disorder (ADHD) was assessed across two conceptually based NP tasks within a selective…

  3. Lactoferricin-related peptides with inhibitory effects on ACE-dependent vasoconstriction.

    PubMed

    Centeno, José M; Burguete, María C; Castelló-Ruiz, María; Enrique, María; Vallés, Salvador; Salom, Juan B; Torregrosa, Germán; Marcos, José F; Alborch, Enrique; Manzanares, Paloma

    2006-07-26

    A selection of lactoferricin B (LfcinB)-related peptides with an angiotensin I-converting enzyme (ACE) inhibitory effect have been examined using in vitro and ex vivo functional assays. Peptides that were analyzed included a set of sequence-related antimicrobial hexapeptides previously reported and two representative LfcinB-derived peptides. In vitro assays using hippuryl-L-histidyl-L-leucine (HHL) and angiotensin I as substrates allowed us to select two hexapeptides, PACEI32 (Ac-RKWHFW-NH2) and PACEI34 (Ac-RKWLFW-NH2), and also a LfcinB-derived peptide, LfcinB17-31 (Ac-FKCRRWQWRMKKLGA-NH2). Ex vivo functional assays using rabbit carotid arterial segments showed PACEI32 (both D- and L-enantiomers) and LfcinB17-31 have inhibitory effects on ACE-dependent angiotensin I-induced contraction. None of the peptides exhibited in vitro ACE inhibitory activity using bradykinin as the substrate. In conclusion, three bioactive lactoferricin-related peptides exhibit inhibitory effects on both ACE activity and ACE-dependent vasoconstriction with potential to modulate hypertension that deserves further investigation.

  4. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention.

    PubMed

    Snyder, Adam C; Morais, Michael J; Smith, Matthew A

    2016-10-01

    Inhibition and excitation form two fundamental modes of neuronal interaction, yet we understand relatively little about their distinct roles in service of perceptual and cognitive processes. We developed a multidimensional waveform analysis to identify fast-spiking (putative inhibitory) and regular-spiking (putative excitatory) neurons in vivo and used this method to analyze how attention affects these two cell classes in visual area V4 of the extrastriate cortex of rhesus macaques. We found that putative inhibitory neurons had both greater increases in firing rate and decreases in correlated variability with attention compared with putative excitatory neurons. Moreover, the time course of attention effects for putative inhibitory neurons more closely tracked the temporal statistics of target probability in our task. Finally, the session-to-session variability in a behavioral measure of attention covaried with the magnitude of this effect. Together, these results suggest that selective targeting of inhibitory neurons and networks is a critical mechanism for attentional modulation. Copyright © 2016 the American Physiological Society.

  5. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention

    PubMed Central

    Snyder, Adam C.; Morais, Michael J.

    2016-01-01

    Inhibition and excitation form two fundamental modes of neuronal interaction, yet we understand relatively little about their distinct roles in service of perceptual and cognitive processes. We developed a multidimensional waveform analysis to identify fast-spiking (putative inhibitory) and regular-spiking (putative excitatory) neurons in vivo and used this method to analyze how attention affects these two cell classes in visual area V4 of the extrastriate cortex of rhesus macaques. We found that putative inhibitory neurons had both greater increases in firing rate and decreases in correlated variability with attention compared with putative excitatory neurons. Moreover, the time course of attention effects for putative inhibitory neurons more closely tracked the temporal statistics of target probability in our task. Finally, the session-to-session variability in a behavioral measure of attention covaried with the magnitude of this effect. Together, these results suggest that selective targeting of inhibitory neurons and networks is a critical mechanism for attentional modulation. PMID:27466133

  6. Inhibitory effect of strychnine on acetylcholine receptor activation in bovine adrenal medullary chromaffin cells.

    PubMed Central

    Kuijpers, G A; Vergara, L A; Calvo, S; Yadid, G

    1994-01-01

    1. Strychnine, which is known as a potent and selective antagonist of the inhibitory glycine receptor in the central nervous system, inhibits the nicotinic stimulation of catecholamine release from bovine cultured adrenal chromaffin cells in a concentration-dependent (1-100 microM) manner. At 10 microM nicotine, the IC50 value for strychnine is approximately 30 microM. Strychnine also inhibits the nicotine-induced membrane depolarization and increase in intracellular Ca2+ concentration. 2. The inhibitory action of strychnine is reversible and is selective for nicotinic stimulation, with no effect observed on secretion elicited by a high external K+ concentration, histamine or angiotensin II. 3. Strychnine competes with nicotine in its effect, but not modify the apparent positive cooperatively of the nicotine binding sites. In the absence of nicotine, strychnine has no effect on catecholamine release. Glycine does not affect catecholamine release nor the inhibitory action of strychnine on this release. 4. These results suggest that strychnine interacts with the agonist binding site of the nicotinic acetylcholine receptor in chromaffin cells, thus exerting a pharmacological effect independently of the glycine receptor. PMID:7834198

  7. Selective modulation of intracortical inhibition by low-intensity Theta Burst Stimulation.

    PubMed

    McAllister, S M; Rothwell, J C; Ridding, M C

    2009-04-01

    Theta Burst Stimulation (TBS) is a repetitive transcranial magnetic stimulation paradigm which has effects on both excitatory and inhibitory intracortical pathways when applied at an intensity of 80% of active motor threshold. As intracortical inhibitory pathways have a lower threshold for activation than excitatory pathways, we sought to determine whether it was possible to selectively target cortical inhibitory circuitry by reducing the intensity of TBS to 70% of active motor threshold. Motor evoked potentials (MEPs), short latency intracortical facilitation (SICF), intracortical facilitation (ICF) and short interval intracortical inhibition (SICI) were measured at baseline, 5-20 and 20-35 min following continuous (cTBS) and intermittent (iTBS) low-intensity TBS in nine healthy subjects. Low-intensity cTBS significantly reduced SICI 5-20 min following stimulation, whilst having no effect on MEPs, SICF or ICF. Low-intensity iTBS had no effect on SICI, MEPs, SICF or ICF. It is possible to selectively target intracortical inhibitory networks for modulation by low-intensity TBS, however, responses may critically depend upon the particular paradigm chosen. These findings have important implications for the treatment of neurological disorders where abnormal levels of intracortical inhibition are present, such as Parkinson's disease and focal hand dystonia and requires further investigation.

  8. In Vitro Selective Growth-Inhibitory Effect of 8-Hydroxyquinoline on Clostridium perfringens versus Bifidobacteria in a Medium Containing Chicken Ileal Digesta.

    PubMed

    Skrivanova, Eva; Van Immerseel, Filip; Hovorkova, Petra; Kokoska, Ladislav

    2016-01-01

    Clostridium perfringens-induced necrotic enteritis is generally controlled by antibiotics. However, because of increasing antibiotic resistance, other antibacterial agents are required, preferably ones that do not affect the beneficial intestinal microbiota of the host. This study evaluated the in vitro selective growth-inhibitory effect of 8-hydroxyquinoline (8HQ) on C. perfringens vs. bifidobacteria in a medium containing chicken ileal digesta. Prior to the experiments, the minimum inhibitory concentrations of 8HQ and penicillin G were determined by broth microdilution assay. The minimum inhibitory concentration values of 8HQ for C. perfringens were 16-32 times lower than the values for bifidobacteria. Treatment of autoclaved and non-autoclaved chicken ileal digesta with 8HQ showed a selective anticlostridial effect. After incubation of C. perfringens with autoclaved ileal digesta for 3 h, all 8HQ concentrations tested (32-2048 μg/mL) significantly reduced C. perfringens bacterial count. In contrast, the same treatment had no or only a slight effect on bifidobacteria counts. Unlike 8HQ, penicillin G did not exhibit any selectivity. Similar results were obtained after incubation for 24 h. In non-autoclaved ileal digesta, all 8HQ concentrations tested significantly reduced C. perfringens bacterial counts after incubation for 30 min and 3 h, while no effect was observed on bifidobacteria. These results suggest that 8HQ may serve as a prospective veterinary compound for use against necrotic enteritis in poultry.

  9. [The characteristics of the cholinoreceptors on the identified TAN neuron of the giant African snail Achatina fulica].

    PubMed

    Stepanov, I I; Losev, N A

    1999-04-01

    Acetylcholine, nicotine, a selective agonist of N-cholinoreceptors suberildicholine dibromide, as well as a selective agonist of M-cholinoreceptors 5-methylfurmethide inhibited spike discharges in a dose-dependent manner up to a complete ceasing of the firing in cholinoreceptors situated on the identified neurone TAN of African giant snail Achatina fulica. M-cholinoblocker metamizylum completely prevented the inhibitory effect of methylfurmethide. Central cholinoblocker aetherophen completely prevented the inhibitory effect of suberildicholine dibromide. Metamizylum or aetherophen used alone were only able to decrease the inhibitory effect of acetylcholine, whereas a mixture of these agents suppressed completely the acetylcholine-induced inhibition. The findings suggest that, on the TAN membrane, nicotinic and muscarinic cholinoreceptors co-exist and function in one and the same direction.

  10. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3).

    PubMed

    Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo

    2011-04-01

    It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.

  11. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation.

    PubMed

    Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2006-01-01

    An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.

  12. Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.

    PubMed

    Razak, Khaleel A

    2013-01-01

    Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.

  13. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L.

    PubMed

    Stenholm, A; Göransson, U; Bohlin, L

    2013-02-01

    Selective extraction of plant materials is advantageous for obtaining extracts enriched with desired constituents, thereby reducing the need for subsequent chromatography purification. Such compounds include three cyclooxygenase-2 (COX-2) inhibitory substances in Plantago major L. targeted in this investigation: α-linolenic acid (α-LNA) (18:3 ω-3) and the triterpenic acids ursolic acid and oleanolic acid. To investigate the scope for tuning the selectivity of supercritical fluid extraction (SFE) using bioassay guidance, and Soxhlet extraction with dichloromethane as solvent as a reference technique, to optimise yields of these substances. Extraction parameters were varied to optimise extracts' COX-2/COX-1 inhibitory effect ratios. The crude extracts were purified initially using a solid phase extraction (SPE) clean-up procedure and the target compounds were identified with GC-MS, LC-ESI-MS and LC-ESI-MS² using GC-FID for quantification. α-LNA was preferentially extracted in dynamic mode using unmodified carbon dioxide at 40°C and 172 bar, at a 0.04% (w/w) yield with a COX-2/COX-1 inhibitory effect ratio of 1.5. Ursolic and oleanolic acids were dynamically extracted at 0.25% and 0.06% yields, respectively, with no traces of (α-LNA) and a COX-2/COX-1-inhibitory effect ratio of 1.1 using 10% (v/v) ethanol as polar modifier at 75°C and 483 bar. The Soxhlet extracts had ursolic acid, oleanolic acid and αLNA yields up to 1.36%, 0.34% and 0.15%, respectively, with a COX-2/COX-1 inhibitory effect ratio of 1.2. The target substances can be extracted selectively by bioassay guided optimisation of SFE conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Stop feeling: inhibition of emotional interference following stop-signal trials.

    PubMed

    Kalanthroff, Eyal; Cohen, Noga; Henik, Avishai

    2013-01-01

    Although a great deal of literature has been dedicated to the mutual links between emotion and the selective attention component of executive control, there is very little data regarding the links between emotion and the inhibitory component of executive control. In the current study we employed an emotional stop-signal task in order to examine whether emotion modulates and is modulated by inhibitory control. Results replicated previous findings showing reduced inhibitory control [longer stop-signal reaction time (SSRT)] following negative, compared to neutral pictures. Most importantly, results show decreased emotional interference following stop-signal trials. These results show that the inhibitory control component of executive control can serve to decrease emotional effects. We suggest that inhibitory control and emotion have a two-way connection in which emotion disrupts inhibitory control and activation of inhibitory control disrupts emotion.

  15. Fear Conditioning Selectively Disrupts Noradrenergic Facilitation of GABAergic Inhibition in the Basolateral Amygdala

    PubMed Central

    Skelly, M. J.; Ariwodola, O. J.; Weiner, J. L.

    2016-01-01

    Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1- and β3-AR agonists (1μM A61603 and 10μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline. PMID:27720769

  16. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala.

    PubMed

    Skelly, M J; Ariwodola, O J; Weiner, J L

    2017-02-01

    Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1-and β3-AR agonists (1 μM A61603 and 10 μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1 μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Contrasting effects of acute and chronic treatment with imipramine and fluoxetine on inhibitory avoidance and escape responses in mice exposed to the elevated T-maze.

    PubMed

    Gomes, Karina Santos; de Carvalho-Netto, Eduardo Ferreira; Monte, Kátia Cristina Da Silva; Acco, Bruno; Nogueira, Paulo José de Campos; Nunes-de-Souza, Ricardo Luiz

    2009-03-30

    The elevated T-maze (ETM) is an animal model of anxiety-like behavior that assesses two different defensive behavioral tasks in the same animal-acquisition of inhibitory avoidance and latency to escape from an open and elevated arm. In rats, cute and chronic treatments with anxiolytic-like drugs impair avoidance acquisition while only chronic administration of panicolytic-like drugs impairs open arm withdrawal. To date, only the acute effects of anxiolytic/anxiogenic or panicolytic/panicogenic drugs have been tested in the mouse ETM and the results have partially corroborated those found in the rat ETM. This study investigated the effects of acute (a single intraperitoneal injection 30 min before testing) and chronic (daily i.p. injections for 15 consecutive days) treatment with imipramine or fluoxetine, non-selective and selective serotonin reuptake inhibitors, respectively, on inhibitory avoidance and escape tasks in the mouse ETM. Neither acute nor chronic treatment with imipramine (0, 1, 5 or 10 mg/kg, i.p.) significantly changed the behavioral profile of mice in the two ETM tasks. Interestingly, while acute fluoxetine (0, 5, 10, 20 or 40 mg/kg, i.p.) facilitated inhibitory avoidance and impaired escape latency, chronic treatment (0, 5, 20 or 40 mg/kg, i.p.) with this selective serotonin reuptake inhibitor (SSRI) produced an opposite effect, i.e., it impaired inhibitory avoidance acquisition and facilitated open arm withdrawal. Importantly, acute or chronic treatment with imipramine (except at the highest dose that increased locomotion when given acutely) or fluoxetine failed to alter general locomotor activity in mice as assessed in an ETM in which all arms were enclosed by lateral walls (eETM). These results suggest that inhibitory avoidance acquisition is a useful task for the evaluation of acute and chronic effects of SSRI treatment on anxiety in mice. However, as open arm latency was actually increased and reduced by acute and chronic fluoxetine, respectively, this does not seem to be a useful measure of escape from a proximal threat in this species.

  18. FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC). I. Taxonomy, fermentation, isolation and biological activities.

    PubMed

    Mori, Hiroaki; Urano, Yasuharu; Abe, Fumie; Furukawa, Satoko; Furukawa, Shigetada; Tsurumi, Yasuhisa; Sakamoto, Kazutoshi; Hashimoto, Michizane; Takase, Shigehiro; Hino, Motohiro; Fujii, Takashi

    2003-02-01

    A cyclic tetrapeptide FR235222, a novel immunosuppressant, has been isolated from the fermentation broth of a fungus, Acremonium sp. No. 27082. FR235222 showed potent and selective inhibitory effects on both T cell proliferation and lymphokine production. Further study has revealed this compound exhibits potent inhibitory effects on the activity of mammalian histone deacetylases (HDACs).

  19. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques

    PubMed Central

    Molenaar, Ger; de Waard, Vivian; Lutgens, Esther; van Eck-Smit, Berthe L. F.; de Bruin, Kora; Piek, Jan J.; Eersels, Jos L. H.; Booij, Jan; Verberne, Hein J.; Windhorst, Albert D.

    2017-01-01

    Molecular imaging of matrix metalloproteinases (MMPs) may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9) with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates) were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT) imaging that effectively targets atherosclerotic lesions in mice. PMID:29190653

  20. P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle.

    PubMed

    Araque, A; Clarac, F; Buño, W

    1994-05-10

    The toxin fraction (FTX) and peptide omega-Aga-IVA from the venom of the funnel-web spider Agelenopsis aperta, as well as a synthetic analogue of FTX, specifically block the P-type voltage-dependent Ca2+ channel (VDCC). The effects of these toxins on synaptic transmission were studied in the neuromuscular synapses of the crayfish opener muscle, which has a single excitatory and a single inhibitory motoneuron. FTX selectively and reversibly blocked excitatory and inhibitory postsynaptic currents and potentials in a dose-dependent manner. FTX had no effect on (i) resting and postsynaptic membrane conductance, (ii) postsynaptic L-type VDCC, and (iii) both glutamate- and gamma-aminobutyric acid-induced postsynaptic responses. Mean amplitude and frequency of miniature postsynaptic potentials were unchanged by FTX. The postsynaptic VDCC was inhibited by nifedipine, a selective dihydropyridine antagonist of L-type VDCC, whereas synaptic transmission was unaffected. Transmission was also undisturbed by omega-conotoxin, suggesting that N-type VDCCs are not involved. The peptide omega-Aga-IVA blocked excitatory and inhibitory transmission without affecting postsynaptic VDCC. Synaptic transmission was also blocked by synthetic FTX. We conclude that presynaptic P-type VDCCs are involved in both evoked excitatory and inhibitory transmitter release in crayfish neuromuscular synapses.

  1. P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle.

    PubMed Central

    Araque, A; Clarac, F; Buño, W

    1994-01-01

    The toxin fraction (FTX) and peptide omega-Aga-IVA from the venom of the funnel-web spider Agelenopsis aperta, as well as a synthetic analogue of FTX, specifically block the P-type voltage-dependent Ca2+ channel (VDCC). The effects of these toxins on synaptic transmission were studied in the neuromuscular synapses of the crayfish opener muscle, which has a single excitatory and a single inhibitory motoneuron. FTX selectively and reversibly blocked excitatory and inhibitory postsynaptic currents and potentials in a dose-dependent manner. FTX had no effect on (i) resting and postsynaptic membrane conductance, (ii) postsynaptic L-type VDCC, and (iii) both glutamate- and gamma-aminobutyric acid-induced postsynaptic responses. Mean amplitude and frequency of miniature postsynaptic potentials were unchanged by FTX. The postsynaptic VDCC was inhibited by nifedipine, a selective dihydropyridine antagonist of L-type VDCC, whereas synaptic transmission was unaffected. Transmission was also undisturbed by omega-conotoxin, suggesting that N-type VDCCs are not involved. The peptide omega-Aga-IVA blocked excitatory and inhibitory transmission without affecting postsynaptic VDCC. Synaptic transmission was also blocked by synthetic FTX. We conclude that presynaptic P-type VDCCs are involved in both evoked excitatory and inhibitory transmitter release in crayfish neuromuscular synapses. Images PMID:7910404

  2. Benzeneboronic acid selectively inhibits sporulation of Bacillis subtilis.

    PubMed Central

    Davis-Mancini, K; Lopez, I P; Hageman, J H

    1978-01-01

    m-Aminobenzeneboronic acid at levels of 0.2 mM in nutrient broth medium selectively inhibited sporulation without appreciably altering vegetative growth. Significant inhibitory effects were seen even when it was added as late as 6 h after the end of logarithmic growth. The pH changes associated with growth and sporulation of Bacillus subtilis in nutrient broth were not significantly altered by the inhibitor. When it was present in cultures of actively growing cells, its inhibitory effect could not be reversed by simple dilution. The compound caused extensive clumping, of cells, which appeared not to be related to the ability of boronates to esterify to diols. Images PMID:30755

  3. Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs.

    PubMed

    Pesavento, Michael J; Pinto, David J

    2012-11-01

    Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent's primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input's temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole cell recordings of in vitro neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence) and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons had identical membrane properties, the sensitivity of in vitro neurons to temporal vs. magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network's temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect.

  4. Excitatory and inhibitory effects of opiates in the rat vas deferens: a dual mechanism of opiate action.

    PubMed

    Jacquet, Y F

    1980-10-03

    Both natural (-)-morphine and its unnatural enantiomer (+)-morphine exert an excitatory action on electrically stimulated contractions of rat vas deferens. Preexposure to (-)-morphine results in cross-tolerance to the inhibitory action of beta-endorphin. (-)-Naloxone and its stereoisomer (+)-naloxone also exert an excitatory action, but only (-)-naloxone bocks the inhibtory action of beta-endorphin. Thus morphine exerts a dual action on a peripheral organ: one an inhibitory action mediated by the stereospecific endorphin receptor that is blocked stereospecifically by naloxone, the other an excitatory action mediated by a nonstereospecific receptor that is not blocked by naloxone. The opiate abstinence syndrome is seen as due to the unmasking of the excitatory action of opiates when its concomitant inhibitory influence is removed by selective blockade by naloxone or weakened by selective tolerance. The view that the rat vas deferens is devoid of morphine receptors is now seen as arising from a reverse example of morphine's dual action: the masking of the inhibitory action of morphine by its concomitant and more potent excitatory action.

  5. In vivo evidence for the involvement of tachykinin NK3 receptors in the hexamethonium-resistant inhibitory transmission in the rat colon.

    PubMed

    Lecci, A; Giuliani, S; Tramontana, M; Meini, S; De Giorgio, R; Maggi, C A

    1996-05-01

    In urethane-anaesthetized rats, moderate colonic distention (0.5 ml) induced reflex rhythmic contractions (5 mm Hg amplitude and 1.1 cycles/min frequency). Senktide (1-10 nmol/kg, i.v.), a tachykinin NK3 receptor selective agonist, transiently suppressed distension-induced contractions. SR 142,801 (1-10 mumol/kg i.v.), a non-peptide tachykinin NK3 receptor antagonist, had no effect on distension-induced contractions but prevented the inhibitory effect of senktide. Infusion of N-omega-nitro-1-arginine methyl esther hydrochloride (L-NAME, 20 mumol/ml/h, i.v) increased the amplitude of colonic contractions and decreased the inhibitory effect of senktide. Hexamethonium (15 mumol/ml/h, i.v.) or atropine (1 mumol/ml/h, i.v.) inhibited the distension-induced contractions. In hexamethonium- or atropine-treated rats, senktide (10 nmol/kg) transiently and selectively enhanced the amplitude of contractions. Also SR 142,801 (10 mumol/kg), but not its inactive enantiomer SR 142,806, increased both amplitude and frequency of contractions. During continuous infusion of L-NAME and hexamethonium or atropine both frequency and amplitude of distension-induced colonic contractions were higher than when in hexamethonium or atropine only. Senktide (10 nmol/kg) had no effect and SR 142,801 (10 mumol/kg) produced a slight enhancement of colonic contractions. Infusion of sodium nitroprusside (3 mumol/ml/h, i.v.) decreased amplitude and frequency of distension-induced contractions. SR 142,801 had no effect in the presence of the nitric oxide (NO) donor. We conclude that tachykinins acting through NK3 receptors exert at least four different actions on colonic motility activated by distension: 1) a hexamethonium-resistant, NO-dependent, suppressant effect on contractions; 2) a hexamethonium-sensitive, NO-independent inhibitory effect on the amplitude of contractions; 3) a hexamethonium-resistant, NO-independent inhibitory effect on the amplitude of contractions and 4) a hexamethonium resistant and L-NAME-sensitive excitatory effect on amplitude of contractions. The prevalent inhibitory effect evoked in normal conditions along with the excitatory activity induced by SR 142,801 on hexamethonium-resistant colonic motility indicates that tachykinins, acting through neuronal NK3 receptors, activate NO-dependent and NO-independent inhibitory neurotransmission in the rat colon.

  6. The persistent inhibitory properties of saxagliptin on renal dipeptidyl peptidase-4: Studies with HK-2 cells in vitro and normal rats in vivo.

    PubMed

    Uchii, Masako; Sakai, Mariko; Hotta, Yuhei; Saeki, Satoshi; Kimoto, Naoya; Hamaguchi, Akinori; Kitayama, Tetsuya; Kunori, Shunji

    2017-11-01

    Saxagliptin, a potent and selective DPP-4 inhibitor, exhibits a slow dissociation from DPP-4. We investigated the sustained effects of saxagliptin on renal DPP-4 activity in a washout study using renal tubular (HK-2) cells, and in a pharmacodynamic study using normal rats. In HK-2 cells, the inhibitory potency of saxagliptin on DPP-4 activity persisted after washout, while that of sitagliptin was clearly reduced. In normal rats, a single treatment of saxagliptin or sitagliptin inhibited the plasma DPP-4 activity to similar levels. The inhibitory action of saxagliptin on the renal DPP-4 activity was retained, even when its inhibitory effect on the plasma DPP-4 activity disappeared. However, the inhibitory action of sitagliptin on the renal DPP-4 activity was abolished in correlation with the inhibition of the plasma DPP-4 activity. In situ staining showed that saxagliptin suppressed the DPP-4 activity in both glomerular and tubular cells and its inhibitory effects were significantly higher than those of sitagliptin. Saxagliptin exerted a sustained inhibitory effect on the renal DPP-4 activity in vitro and in vivo. The long binding action of saxagliptin in renal tubular cells might involve the sustained inhibition of renal DPP-4. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  7. Language control in bilingual language comprehension: evidence from the maze task

    PubMed Central

    Wang, Xin

    2015-01-01

    Most empirical evidence on switch costs is based on bilingual production and interpreted as a result of inhibitory control. It is unclear whether such a top–down control process exists in language switching during comprehension. This study investigates whether a non-lexical switch cost is involved in reading code-switched sentences and its relation to language dominance with cross-script bilingual readers. A maze task is adopted in order to separate top–down inhibitory effects, from lexical effects driven by input. The key findings are: (1) switch costs were observed in both L1–L2 and L2–L1 directions; (2) these effects were driven by two mechanisms: lexical activation and inhibitory control; (3) language dominance modulated the lexical effects, but did not affect the inhibitory effects. These results suggest that a language control mechanism is involved in bilingual reading, even though the control process is not driven by selection as in production. At the theoretical level, these results lend support for the Inhibitory Control model during language switching in comprehension; while the BIA/BIA+ model needs to incorporate a top–down control mechanism to be able to explain the current findings. PMID:26347675

  8. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey.

    PubMed

    Orhan, Nilüfer; Hoçbaç, Sanem; Orhan, Didem Deliorman; Asian, Mustafa; Ergun, Fatma

    2014-06-01

    Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum), are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2) on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml). Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes.

  9. The Role of Muscarinic and Nicotinic Cholinergic Neurotransmission in Aversive Conditioning: Comparing Pavlovian Fear Conditioning and Inhibitory Avoidance

    ERIC Educational Resources Information Center

    Tinsley, Matthew R.; Quinn, Jennifer J.; Fanselow, Michael S.

    2004-01-01

    Aversive conditioning is an ideal model for studying cholinergic effects on the processes of learning and memory for several reasons. First, deficits produced by selective lesions of the anatomical structures shown to be critical for Pavlovian fear conditioning and inhibitory avoidance (such as the amygdala and hippocampus) resemble those deficits…

  10. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Honjo, Hiroaki; Iwamoto, Kikuo

    2010-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.

  11. Cox-2 inhibitory effects of naturally occurring and modified fatty acids.

    PubMed

    Ringbom, T; Huss, U; Stenholm , A; Flock, S; Skattebøl, L; Perera, P; Bohlin, L

    2001-06-01

    In the search for new cyclooxygenase-2 (COX-2) selective inhibitors, the inhibitory effects of naturally occurring fatty acids and some of their structural derivatives on COX-2-catalyzed prostaglandin biosynthesis were investigated. Among these fatty acids, linoleic acid (LA), alpha-linolenic acid (alpha-LNA), myristic acid, and palmitic acid were isolated from a CH(2)Cl(2) extract of the plant Plantago major by bioassay-guided fractionation. Inhibitory effects of other natural, structurally related fatty acids were also investigated: stearic acid, oleic acid, pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Further, the inhibitory effects of these compounds on COX-2- and COX-1-catalyzed prostaglandin biosynthesis was compared with the inhibition of some synthesized analogues of EPA and DHA with ether or thioether functions. The most potent COX-2-catalyzed prostaglandin biosynthesis inhibitor was all-(Z)-5-thia-8,11,14,17-eicosatetraenoic acid (2), followed by EPA, DHA, alpha-LNA, LA, (7E,11Z,14Z,17Z)-5-thiaeicosa-7,11,14,17-tetraenoic acid, all-(Z)-3-thia-6,9,12,15-octadecatetraenoic acid, and (5E,9Z,12Z,15Z,18Z)-3-oxaheneicosa-5,9,12,15,18-pentaenoic acid, with IC(50) values ranging from 3.9 to180 microM. The modified compound 2 and alpha-LNA were most selective toward COX-2, with COX-2/COX-1 ratios of 0.2 and 0.1, respectively. This study shows that several of the natural fatty acids as well as all of the semisynthetic thioether-containing fatty acids inhibited COX-2-catalyzed prostaglandin biosynthesis, where alpha-LNA and compound 2 showed selectivity toward COX-2.

  12. Quantitative structure activity relationship studies of sulfamide derivatives as carbonic anhydrase inhibitor: as antiglaucoma agents.

    PubMed

    Kumar, Surendra; Singh, Vineet; Tiwari, Meena

    2007-07-01

    Selective inhibition of ciliary process enzyme i.e. Carbonic Anhydrase-II is an excellent approach in reducing elevated intraocular pressure, thus treating glaucoma. Due to characteristic physicochemical properties of sulphonamide (Inhibition of Carbonic Anhydrase), they are clinically effective against glaucoma. But the non-specificity of sulphonamide derivatives to isozyme, leads to a range of side effects. Presently, the absence of comparative studies related to the binding of the sulphonamides as inhibitors to CA isozymes limits their use. In this paper we have represented "Three Dimensional Quantitative Structure Activity Relationship" study to characterize structural features of Sulfamide derivative [RR'NSO(2)NH(2)] as inhibitors, that are required for selective binding of carbonic anhydrase isozymes (CAI and CAII). In the analysis, stepwise multiple linear regression was performed using physiochemical parameters as independent variable and CA-I and CA-II inhibitory activity as dependent variable, respectively. The best multiparametric QSAR model obtained for CA-I inhibitory activity shows good statistical significance (r= 0.9714) and predictability (Q(2)=0.8921), involving the Electronic descriptors viz. Highest Occupied Molecular Orbital, Lowest Unoccupied Molecular Orbital and Steric descriptors viz. Principal moment of Inertia at X axis. Similarly, CA-II inhibitory activity also shows good statistical significance (r=0.9644) and predictability (Q(2)=0.8699) involving aforementioned descriptors. The predictive power of the model was successfully tested externally using a set of six compounds as test set for CA-I inhibitory activity and a set of seven compounds in case of CA-II inhibitory activity with good predictive squared correlation coefficient, r(2)(pred)=0.6016 and 0.7662, respectively. Overview of analysis favours substituents with high electronegativity and less bulk at R and R' positions of the parent nucleus, provides a basis to design new Sulfamide derivatives possessing potent and selective carbonic anhydrase-II inhibitory activity.

  13. Inhibitory effects of selected Turkish spices and oregano components on some foodborne fungi.

    PubMed

    Akgül, A; Kivanç, M

    1988-05-01

    The inhibitory effects of 10 selected Turkish spices, oregano essential oil, thymol and carvacrol towards growth of 9 foodborne fungi were investigated in culture media with pH 3.5 and 5.5. The antifungal effects of sodium chloride, sorbic acid and sodium benzoate and the combined use of oregano with sodium chloride were also tested under the same conditions for comparison. Of the spices tested, only sodium chloride were also tested under the same conditions for comparison. Of the spices tested, only oregano at 1.0, 1.5, 2.0% (w/v) levels showed effect on all fungi. 8% (w/v) sodium chloride was less effective than oregano. Oregano essential oil, thymol or carvacrol at concentrations of 0.025% and 0.05% completely inhibited the growth of all fungi, showing greater inhibition than sorbic acid at the same concentrations. The combined use of oregano and sodium chloride exhibited a synergistic antifungal effect.

  14. Stimulation of postsynapse adrenergic α2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder.

    PubMed

    Kawaura, Kazuaki; Karasawa, Jun-ichi; Chaki, Shigeyuki; Hikichi, Hirohiko

    2014-08-15

    A 5-trial inhibitory avoidance test using spontaneously hypertensive rat (SHR) pups has been used as an animal model of attention deficit hyperactivity disorder (ADHD). However, the roles of noradrenergic systems, which are involved in the pathophysiology of ADHD, have not been investigated in this model. In the present study, the effects of adrenergic α2 receptor stimulation, which has been an effective treatment for ADHD, on attention/cognition performance were investigated in this model. Moreover, neuronal mechanisms mediated through adrenergic α2 receptors were investigated. We evaluated the effects of both clonidine, a non-selective adrenergic α2 receptor agonist, and guanfacine, a selective adrenergic α2A receptor agonist, using a 5-trial inhibitory avoidance test with SHR pups. Juvenile SHR exhibited a shorter transfer latency, compared with juvenile Wistar Kyoto (WKY) rats. Both clonidine and guanfacine significantly prolonged the transfer latency of juvenile SHR. The effects of clonidine and guanfacine were significantly blocked by pretreatment with an adrenergic α2A receptor antagonist. In contrast, the effect of clonidine was not attenuated by pretreatment with an adrenergic α2B receptor antagonist, or an adrenergic α2C receptor antagonist, while it was attenuated by a non-selective adrenergic α2 receptor antagonist. Furthermore, the effects of neither clonidine nor guanfacine were blocked by pretreatment with a selective noradrenergic neurotoxin. These results suggest that the stimulation of the adrenergic α2A receptor improves the attention/cognition performance of juvenile SHR in the 5-trial inhibitory avoidance test and that postsynaptic, rather than presynaptic, adrenergic α2A receptor is involved in this effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Exploring the Inhibitory Mechanism of Approved Selective Norepinephrine Reuptake Inhibitors and Reboxetine Enantiomers by Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Zheng, Guoxun; Xue, Weiwei; Wang, Panpan; Yang, Fengyuan; Li, Bo; Li, Xiaofeng; Li, Yinghong; Yao, Xiaojun; Zhu, Feng

    2016-05-01

    Selective norepinephrine reuptake inhibitors (sNRIs) provide an effective class of approved antipsychotics, whose inhibitory mechanism could facilitate the discovery of privileged scaffolds with enhanced drug efficacy. However, the crystal structure of human norepinephrine transporter (hNET) has not been determined yet and the inhibitory mechanism of sNRIs remains elusive. In this work, multiple computational methods were integrated to explore the inhibitory mechanism of approved sNRIs (atomoxetine, maprotiline, reboxetine and viloxazine), and 3 lines of evidences were provided to verify the calculation results. Consequently, a binding mode defined by interactions between three chemical moieties in sNRIs and eleven residues in hNET was identified as shared by approved sNRIs. In the meantime, binding modes of reboxetine’s enantiomers with hNET were compared. 6 key residues favoring the binding of (S, S)-reboxetine over that of (R, R)-reboxetine were discovered. This is the first study reporting that those 11 residues are the common determinants for the binding of approved sNRIs. The identified binding mode shed light on the inhibitory mechanism of approved sNRIs, which could help identify novel scaffolds with improved drug efficacy.

  16. Identification and evaluation of magnolol and chrysophanol as the principle protein tyrosine phosphatase-1B inhibitory compounds in a Kampo medicine, Masiningan.

    PubMed

    Onoda, Toshihisa; Li, Wei; Sasaki, Tatsunori; Miyake, Megumi; Higai, Koji; Koike, Kazuo

    2016-06-20

    Masiningan is a traditional medicine consisting of six crude drugs that have been used for treating constipation and diabetes mellitus in both Japan and China. Masiningan has been reported to have significant PTP1B inhibitory activity and to affect cells in the insulin-signaling pathway. The aim of the present study is to identify the PTP1B inhibitory compounds in Masiningan. Bioactivity peaks were identified by analytical HPLC profiling and PTP1B inhibitory activity profiling of sub-fractions from Masiningan extract. The bioactive compounds were isolated by tracking two identified bioactive peaks, and the chemical structures were determined by spectroscopic analyses. The bioactive compounds were further investigated for their inhibitory effect against PTP1B by enzymatic kinetic analysis, molecular docking simulation, inhibitory selectivity against other PTPs, and cellular activity in the insulin signal transduction pathway. From Masiningan, magnolol (1) and chrysophanol (2) were isolated as compounds that exhibited significant dose-dependent inhibitory activities against PTP1B, with IC50 values of 24.6 and 12.3μM, respectively. Kinetic analysis revealed that 1 is a non-competitive and that 2 is a competitive PTP1B inhibitor. In the molecular docking simulation, compound 2 was stably positioned in the active pocket of PTP1B, and the CDOCKER energy was calculated to be 24.3411kcal/mol. Both compounds demonstrated remarkably high selectivity against four PTPs and revealed cellular activity against the insulin signal transduction pathway. Magnolol (1) and chrysophanol (2) were identified as the principle PTP1B inhibitory active compounds in Masiningan, and their actions were investigated in detail. These findings demonstrated the effectiveness of Masiningan on diabetes mellitus through the inhibition of PTP1B at a molecular level as well as the potential of magnolol (1) and chrysophanol (2) as lead compounds in future anti-diabetes drug development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin

    PubMed Central

    2017-01-01

    Abstract Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others. PMID:29085896

  18. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin.

    PubMed

    Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N

    2017-01-01

    Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.

  19. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey

    PubMed Central

    Orhan, Nilüfer; Hoçbaç, Sanem; Orhan, Didem Deliorman; Asian, Mustafa; Ergun, Fatma

    2014-01-01

    Objective(s): Ethnopharmacological field surveys demonstrated that many plants, such as Gentiana olivieri, Helichrysum graveolens, Helichrysum plicatum ssp. plicatum, Juniperus oxycedrus ssp. oxycedrus, Juniperus communis var. saxatilis, Viscum album (ssp. album, ssp. austriacum), are used as traditional medicine for diabetes in different regions of Anatolia. The present study was designed to evaluate the in vitro antidiabetic effects of some selected plants, tested in animal models recently. Materials and Methods: α-glucosidase and α-amylase enzyme inhibitory effects of the plant extracts were investigated and Acarbose was used as a reference drug. Additionally, radical scavenging capacities were determined using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) ABTS radical cation scavenging assay and total phenolic content of the extracts were evaluated using Folin Ciocalteu method. Results: H. graveolens ethanol extract exhibited the highest inhibitory activity (55.7 % ± 2.2) on α-amylase enzyme. Additionally, J. oxycedrus hydro-alcoholic leaf extract had potent α-amylase inhibitory effect, while the hydro-alcoholic extract of J. communis fruit showed the highest α-glucosidase inhibitory activity (IC50: 4.4 μg/ml). Conclusion: Results indicated that, antidiabetic effect of hydro-alcoholic extracts of H. graveolens capitulums, J. communis fruit and J. oxycedrus leaf might arise from inhibition of digestive enzymes. PMID:25140204

  20. Inhibitory effects of the ATP-sensitive potassium channel openers cromakalim, pinacidil and minoxidil on the carbachol-response curve in porcine detrusor muscle.

    PubMed

    Badawi, Jasmin Katrin; Kirschner-Hermanns, Ruth; Ding, Andrea

    2012-06-01

    ATP-sensitive potassium channels represent promising drug targets for treating specific bladder diseases. The inhibitory effects of ATP-selective potassium channel openers (PCOs) on the carbachol-response curve in porcine detrusor muscle were examined. Each of the three substances used in the study represent one prototype of a different class of PCO: cromakalim belongs to the benzopyran series, pinacidil is a cyanoguanidine derivative, and minoxidil represents a pyrimidine derivative. The porcine detrusor muscle represents one of the best models for human detrusor. Experiments were conducted on muscle strips of porcine detrusor muscle suspended in a tissue bath. Concentration-response curves of carbachol were constructed after pretreatment with cromakalim at 10(-7), 10(-6) and 10(-5) M, and with pinacidil and minoxidil at 10(-6), 10(-5.5) and 10(-5) M, respectively. Each muscle strip was only used to examine one concentration of one substance. Cromakalim had the greatest inhibitory effect, significantly suppressing the carbachol-response curve at 10(-6) and 10(-5) M. Pinacidil showed a significant inhibitory effect at 10(-5.5) and 10(-5) M, which was smaller than that of cromakalim. Minoxidil did not significantly inhibit the contractions at all examined concentrations. The examined ATP-sensitive PCOs belonging to the benzopyrans and cyanoguanidines significantly suppressed detrusor contractions. The development of derivatives of these prototypes could open new possibilities for the pharmacological treatment of selected bladder diseases.

  1. New Ferrocene Compounds as Selective Cyclooxygenase (COX-2) Inhibitors: Design, Synthesis, Cytotoxicity and Enzyme-inhibitory Activity.

    PubMed

    Farzaneh, Shabnam; Zeinalzadeh, Elnaz; Daraei, Bahram; Shahhosseini, Soraya; Zarghi, Afshin

    2018-01-01

    Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity activities of synthesized compounds against breast cancer cell lines MCF-7 and T47D and fibroblast cell lines showed that the synthesized compounds had mild to moderate cytotoxicity against MCT7 and T47D breast cancer cell lines at 10 µM concentration. In vitro COX-1/COX-2 inhibition studies and anticancer activity against MCF-7, identified 1-ferrocenyl-3-(4-methylsulfonylphenyl) propen-1-one as a potent compound (IC50 COX-2 = 0.05 µM, MCF-7: % inhibition (at concentration of 10 µM) = 32.7%), and also 1-ferrocenyl-3- (propan-1-amine)-3-(4-methylsulfonylphenyl) propan-1-one showed the most selectivity on COX-2 inhibition (selectivity index= 313.7). A novel group of ferrocene compounds, possessing a methyl sulfonyl COX-2 pharmacophore were synthesized to investigate the effect of different substituents on selectivity and potency of COX-2 inhibitory activity and their cytotoxicity effects. This study indicates that 1-ferrocenyl-3-amino carbonyl compounds having ferrocene motif and methyl sulfonyl COX-2 pharmacophore is a suitable scaffold to design COX-2 inhibitors and anti-cancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora.

    PubMed

    Sawasdee, Pattara; Sabphon, Chalisa; Sitthiwongwanit, Duangporn; Kokpol, Udom

    2009-12-01

    The rhizome of Kaempferia parviflora or kra-chai-dum (in Thai) is used traditionally as a folk medicine. The preliminary cholinesterase inhibitory screening of this plant extract exhibited significant acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Thirteen known methoxyflavones (1-13) were isolated and their structures were completely elucidated based on NMR analysis and compared with literature reports. Minor compounds 12-13 were reported for the first time from this species. The cholinesterase inhibitory test results showed that the highest potential inhibitors toward AChE and BChE were 5,7,4'-trimethoxyflavone (6) and 5,7-dimethoxyflavone (7), respectively, with the percentage inhibitory activity varying over 43-85%. The structure-activity relationship study led to the conclusion that compounds bearing 5,7-dimethoxy groups and a free substituent at C-3 had a significant inhibitory effect at a concentration of 0.1 mg/mL, but those bearing a 5-hydroxyl group reduced the inhibitory potency. On the other hand, flavones bearing a 3'- or 5'-methoxy group did not influence the inhibitory effect. Interestingly, 5,7-dimethoxyflavone (7) exhibited strong selectivity for BChE over AChE which may be of great interest to modify as a treatment agent for Alzheimer's disease. Copyright (c) 2009 John Wiley & Sons, Ltd.

  3. Associative plasticity in intracortical inhibitory circuits in human motor cortex.

    PubMed

    Russmann, Heike; Lamy, Jean-Charles; Shamim, Ejaz A; Meunier, Sabine; Hallett, Mark

    2009-06-01

    Paired associative stimulation (PAS) is a transcranial magnetic stimulation technique inducing Hebbian-like synaptic plasticity in the human motor cortex (M1). PAS is produced by repetitive pairing of a peripheral nerve shock and a transcranial magnetic stimulus (TMS). Its effect is assessed by a change in size of a motor evoked response (MEP). MEP size results from excitatory and inhibitory influences exerted on cortical pyramidal cells, but no robust effects on inhibitory networks have been demonstrated so far. In 38 healthy volunteers, we assessed whether a PAS intervention influences three intracortical inhibitory circuits: short (SICI) and long (LICI) intracortical inhibitions reflecting activity of GABA(A) and GABA(B) interneurons, respectively, and long afferent inhibition (LAI) reflecting activity of somatosensory inputs. After PAS, MEP sizes, LICI and LAI levels were significantly changed while changes of SICI were inconsistent. The changes in LICI and LAI lasted 45 min after PAS. Their direction depended on the delay between the arrival time of the afferent volley at the cortex and the TMS-induced cortical activation during the PAS. PAS influences inhibitory circuits in M1. PAS paradigms can demonstrate Hebbian-like plasticity at selected inhibitory networks as well as excitatory networks.

  4. Effect of scopoletin on monoamine oxidases and brain amines.

    PubMed

    Basu, Mahua; Mayana, Kamlesh; Xavier, S; Balachandran, S; Mishra, Nibha

    2016-02-01

    Naturally, occurring compounds with MAO inhibitory property may provide promising lead molecules against neurodegenerative disorders. We report MAO inhibitory activity of a naturally occurring coumarin (validated chemical scaffold as MAO inhibitors), scopoletin. It selectively (and reversibly) inhibits human (Ki = 20.7 μM) and mouse (Ki = 22 μM) MAO-B, ∼3.5 times more selective towards MAO-B than MAO-A. Docking studies revealed its molecular recognition and explained the selectivity mechanism towards MAO isoforms. Scopoletin occupied the hydrophobic aromatic pockets showing favorable interactions for MAO-B; experimental Ki agreed with the predicted Ki. In vivo, scopoletin (80 mg/kg, i.p.) treatment significantly increases dopamine level and decreases its metabolite DOPAC in striatum. Overall, scopoletin is a partially selective MAO-B inhibitor that increases brain dopamine level. Copyright © 2016. Published by Elsevier Ltd.

  5. Studying the Inhibitory Effect of Quercetin and Thymoquinone on Human Cytochrome P450 Enzyme Activities.

    PubMed

    Elbarbry, Fawzy; Ung, Aimy; Abdelkawy, Khaled

    2018-01-01

    Quercetin (QR) and thymoquinone (TQ) are herbal remedies that are currently extensively used by the general population to prevent and treat various chronic conditions. Therefore, investigating the potential of pharmacokinetic interactions caused by the concomitant use of these herbal remedies and conventional medicine is warranted to ensure patient safety. This study was conducted to determine the inhibitory effect of QR and TQ, two commonly used remedies, on the activities of selected cytochrome P450 (CYP) enzymes that play an important role in drug metabolism and/or toxicology. The in vitro studies were conducted using fluorescence-based high throughput assays using human c-DNA baculovirus expressed CYP enzymes. For measuring CYP2E1 activity, a validated High-performance liquid chromatography (HPLC) assay was utilized to measure the formation of 6-hydroxychlorzoxazone. The obtained half-maximum inhibitory concentration values with known positive control inhibitors of this study were comparable to the published values indicating accurate experimental techniques. Although QR did not show any significant effect on CYP1A2 and CYP2E1, it exhibited a strong inhibitory effect against CYP2D6 and a moderate effect against CYP2C19 and CYP3A4. On the other hand, TQ demonstrated a strong and a moderate inhibitory effect against CYP3A4 and CYP2C19, respectively. The findings of this study may indicate that consumption of QR or TQ, in the form of food or dietary supplements, with drugs that are metabolized by CYP2C19, CYP2D6, or CYP3A4 may cause significant herb-drug interactions. Neither QR nor TQ has any significant inhibitory effect on the activity of CYP1A2 or CYP2E1 enzymesBoth QR and TQ have a moderate to strong inhibitory effect on CYP3A4 activityQR has a moderate inhibitory effect on CYP2C19 and a strong inhibitory effect on CYP2D6Both QR and TQ are moderate inhibitors of the CYP2C9 activity. Abbreviations used: ABT: Aminobenztriazole, BZF: 7,8 Benzoflavone, CYP: Cytochrome P450, GB: Gingko Biloba, IC 50 : Half-maximum inhibitory concentration, KTZ: Ketoconazole, QND: Quinidine, QR: Quercetin, TCP: Tranylcypromine, TQ: Thymoquinone.

  6. Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson’s disease

    PubMed Central

    Ridderinkhof, K. Richard; Elias, William J.; Frysinger, Robert C.; Bashore, Theodore R.; Downs, Kara E.; van Wouwe, Nelleke C.; van den Wildenberg, Wery P. M.

    2010-01-01

    Past studies show beneficial as well as detrimental effects of subthalamic nucleus deep-brain stimulation on impulsive behaviour. We address this paradox by investigating individuals with Parkinson’s disease treated with subthalamic nucleus stimulation (n = 17) and healthy controls without Parkinson’s disease (n = 17) on performance in a Simon task. In this reaction time task, conflict between premature response impulses and goal-directed action selection is manipulated. We applied distributional analytic methods to separate the strength of the initial response impulse from the proficiency of inhibitory control engaged subsequently to suppress the impulse. Patients with Parkinson’s disease were tested when stimulation was either turned on or off. Mean conflict interference effects did not differ between controls and patients, or within patients when stimulation was on versus off. In contrast, distributional analyses revealed two dissociable effects of subthalamic nucleus stimulation. Fast response errors indicated that stimulation increased impulsive, premature responding in high conflict situations. Later in the reaction process, however, stimulation improved the proficiency with which inhibitory control was engaged to suppress these impulses selectively, thereby facilitating selection of the correct action. This temporal dissociation supports a conceptual framework for resolving past paradoxical findings and further highlights that dynamic aspects of impulse and inhibitory control underlying goal-directed behaviour rely in part on neural circuitry inclusive of the subthalamic nucleus. PMID:20861152

  7. Selective inhibition of Zn(2+)-glycerophosphocholine cholinephosphodiesterase by tellurium tetrachloride.

    PubMed Central

    Sok, D E; Kim, M R

    1992-01-01

    A Zn(2+)-glycerophosphocholine cholinephosphodiesterase (EC 3.1.4.38) purified from mouse brain was found to be reversibly inhibited by tellurium tetrachloride. This effect was characterized by a competitive pattern of inhibition, with apparent Ki values of 0.7 microM and 1.5 microM for the hydrolysis of p-nitrophenylphosphocholine and glycerophosphocholine respectively. Interestingly, the inhibitory effect of tellurium tetrachloride was found to be greatly potentiated by tetramethylammonium salt, indicative of a synergistic interaction between the two compounds. Additionally, it was observed that the effect of tellurium tetrachloride was not affected by a number of other metal ions, and was more pronounced at neutral pH, suggesting that the inhibitory role of the tellurium tetrachloride may be of importance under physiological conditions. Thus Zn(2+)-glycerophosphocholine cholinephosphodiesterase is proposed to be one of the target enzymes which is susceptible to the inhibitory effect of tellurium tetrachloride. PMID:1320372

  8. What Do We Really Know about Cognitive Inhibition? Task Demands and Inhibitory Effects across a Range of Memory and Behavioural Tasks

    PubMed Central

    Noreen, Saima; MacLeod, Malcolm D.

    2015-01-01

    Our study explores inhibitory control across a range of widely recognised memory and behavioural tasks. Eighty-seven never-depressed participants completed a series of tasks designed to measure inhibitory control in memory and behaviour. Specifically, a variant of the selective retrieval-practice and the Think/No-Think tasks were employed as measures of memory inhibition. The Stroop-Colour Naming and the Go/No-Go tasks were used as measures of behavioural inhibition. Participants completed all 4 tasks. Task presentation order was counterbalanced across 3 separate testing sessions for each participant. Standard inhibitory forgetting effects emerged on both memory tasks but the extent of forgetting across these tasks was not correlated. Furthermore, there was no relationship between memory inhibition tasks and either of the main behavioural inhibition measures. At a time when cognitive inhibition continues to gain acceptance as an explanatory mechanism, our study raises fundamental questions about what we actually know about inhibition and how it is affected by the processing demands of particular inhibitory tasks. PMID:26270470

  9. What Do We Really Know about Cognitive Inhibition? Task Demands and Inhibitory Effects across a Range of Memory and Behavioural Tasks.

    PubMed

    Noreen, Saima; MacLeod, Malcolm D

    2015-01-01

    Our study explores inhibitory control across a range of widely recognised memory and behavioural tasks. Eighty-seven never-depressed participants completed a series of tasks designed to measure inhibitory control in memory and behaviour. Specifically, a variant of the selective retrieval-practice and the Think/No-Think tasks were employed as measures of memory inhibition. The Stroop-Colour Naming and the Go/No-Go tasks were used as measures of behavioural inhibition. Participants completed all 4 tasks. Task presentation order was counterbalanced across 3 separate testing sessions for each participant. Standard inhibitory forgetting effects emerged on both memory tasks but the extent of forgetting across these tasks was not correlated. Furthermore, there was no relationship between memory inhibition tasks and either of the main behavioural inhibition measures. At a time when cognitive inhibition continues to gain acceptance as an explanatory mechanism, our study raises fundamental questions about what we actually know about inhibition and how it is affected by the processing demands of particular inhibitory tasks.

  10. Social exclusion impairs distractor suppression but not target enhancement in selective attention.

    PubMed

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yuan, Shuge; Yang, Dong

    2017-11-01

    Social exclusion has been thought to weaken one's ability to exert inhibitory control. Existing studies have primarily focused on the relationship between exclusion and behavioral inhibition, and have reported that exclusion impairs behavioral inhibition. However, whether exclusion also affects selective attention, another important aspect of inhibitory control, remains unknown. Therefore, the current study aimed to explore whether social exclusion impairs selective attention, and to specifically examine its effect on two hypothesized mechanisms of selective attention: target enhancement and distractor suppression. The Cyberball game was used to manipulate social exclusion. Participants then performed a visual search task while event-related potentials were recorded. In the visual search task, target and salient distractor were either both presented laterally or one was presented on the vertical midline and the other laterally. Results showed that social exclusion differentially affected target and distractor processing. While exclusion impaired distractor suppression, reflected as smaller distractor-positivity (Pd) amplitudes for the exclusion group compared to the inclusion group, it did not affect target enhancement, reflected as similar target-negativity (Nt) amplitudes for both the exclusion and inclusion groups. Together, these results extend our understanding of the relationship between exclusion and inhibitory control, and suggest that social exclusion affects selective attention in a more complex manner than previously thought. Copyright © 2017. Published by Elsevier B.V.

  11. Mannich-Benzimidazole Derivatives as Antioxidant and Anticholinesterase Inhibitors: Synthesis, Biological Evaluations, and Molecular Docking Study.

    PubMed

    Alpan, Ayşe Selcen; Sarıkaya, Görkem; Çoban, Güneş; Parlar, Sülünay; Armagan, Güliz; Alptüzün, Vildan

    2017-07-01

    A series of Mannich bases of benzimidazole derivatives having a phenolic group were designed to assess their anticholinesterase and antioxidant activities. The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities were evaluated in vitro by using Ellman's method. According to the activity results, all of the compounds exhibited moderate to good AChE inhibitory activity (except for 2a), with IC 50 values ranging from 0.93 to 10.85 μM, and generally displayed moderate BuChE inhibitory activity. Also, most of the compounds were selective against BuChE. Compound 4b was the most active molecule on the AChE enzyme and also selective. In addition, we investigated the antioxidant effects of the synthesized compounds against FeCl 2 /ascorbic acid-induced oxidative stress in the rat brain in vitro, and the activity results showed that most of the compounds are effective as radical scavengers. Molecular docking studies and molecular dynamics simulations were also carried out. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characteristics of cholinoreceptors on identified TAN neurons of the ground snail Achatina fulica.

    PubMed

    Stepanov, I I; Losev, N A

    2000-01-01

    The characteristics of cholinoreceptors located on neurons TAN1, TAN2, and TAN3 of the ground snail Achatina fulica were studied by incubation of the central ganglia in a bath with cholinotropic preparations during intracellular recording of background neuron spike activity. Acetylcholine, nicotine, the selective n-cholinoreceptor agonist suberyldicholine, and the selective n-cholinoreceptor agonist 5-methylfurmethide concentration-dependently inhibited background spike activity to the level of complete blockade at concentrations of 500 microM. The m-cholinoblocker metamizil (500 microM) completely prevented the inhibitory activity of concentrations of 5-methylfurmethide of up to 500 microM. The central n-cholinoblocker etherophen (500 microM) completely blocked the inhibitory activity of 500 microM suberyldicholine. However, metamizil and etherophen added separately only partially decreased the inhibitory effects of acetylcholine but could not completely block the effect of acetylcholine. At the same time, mixtures of metamizil and etherophen (500 microM each) completely blocked the inhibition of background spike activity induced by acetylcholine. These results show that both classes of cholinoreceptors act on TAN neurons in the same direction.

  13. Inhibitory effects of different ATP-sensitive potassium channel openers on electrically generated and carbachol-induced contractions of porcine and human detrusor muscle.

    PubMed

    Badawi, Jasmin Katrin; Ding, Andrea; Bross, Stephan

    2008-02-01

    The inhibitory effects of different potassium channel openers (PCOs) on electrically generated and carbachol-induced contractions of porcine and human detrusor muscle were examined. PCOs could be an interesting substance class for treatment of detrusor overactivity. Experiments were performed on muscle strips suspended in a tissue bath. Human tissue originated from patients who underwent total cystectomy. The concentration-relaxation curves of the first-generation PCOs cromakalim and pinacidil and the untypical PCO minoxidil were performed using carbachol-precontracted detrusor muscle strips of pigs and humans. Additionally, the inhibitory effects of cromakalim, pinacidil and minoxidil on electrically generated contractions of porcine detrusor muscle were examined. Furthermore, the inhibitory effect of the second-generation, bladder-selective PCO ZM 226600 on electrically generated contractions of the human detrusor muscle was determined. Frequency-response curves were performed before and after incubation with one PCO used in two different concentrations. In humans, cromakalim and pinacidil led to a maximum decrease of 73.5 and 68.4% and showed mean pD2 values of 6.65 and 5.5, respectively. In pigs, cromakalim and pinacidil led to a maximum decrease of 90.6 and 93.6% and showed mean pD2 values of 6.39 and 5.01, respectively. Minoxidil did not significantly decrease the precontraction at the highest used concentration in both species. Cromakalim exhibited the biggest inhibitory effect being significant at 10(-5) and 10(-6) M. Pinacidil showed only a significant inhibitory effect at 10(-5) M which was smaller than that of cromakalim. At 3 x 10(-6) M only a very small effect occurred at 1 Hz. Minoxidil did not inhibit the contractions at both examined concentrations except for a very small effect at 1 Hz. In humans, ZM 226600 exhibited at 10(-6) and 10(-5) M a significant inhibitory effect. At 10(-7) M it was only significant at one frequency.

  14. Dieckol, a phlorotannin isolated from a brown seaweed, Ecklonia cava, inhibits adipogenesis through AMP-activated protein kinase (AMPK) activation in 3T3-L1 preadipocytes.

    PubMed

    Ko, Seok-Chun; Lee, Myoungsook; Lee, Ji-Hyeok; Lee, Seung-Hong; Lim, Yunsook; Jeon, You-Jin

    2013-11-01

    In this study, we assessed the potential inhibitory effect of 5 species of brown seaweeds on adipogenesis the differentiation of 3T3-L1 preadipocytes into mature adipocytes by measuring Oil-Red O staining. The Ecklonia cava extract tested herein evidenced profound adipogenesis inhibitory effect, compared to that exhibited by the other four brown seaweed extracts. Thus, E. cava was selected for isolation of active compounds and finally the three polyphenol compounds of phlorotannins were obtained and their inhibitory effect on adipogenesis was observed. Among the phlorotannins, dieckol exhibited greatest potential adipogenesis inhibition and down-regulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer-binding proteins (C/EBPα), sterol regulatory element-binding protein 1 (SREBP1) and fatty acid binding protein 4 (FABP4) in a dose-dependent manner. The specific mechanism mediating the effects of dieckol was confirmed by AMP-activated protein kinase (AMPK) activation. These results demonstrate inhibitory effect of dieckol compound on adipogenesis through the activation of the AMPK signal pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Stimulus selectivity and response latency in putative inhibitory and excitatory neurons of the primate inferior temporal cortex

    PubMed Central

    Mruczek, Ryan E. B.

    2012-01-01

    The cerebral cortex is composed of many distinct classes of neurons. Numerous studies have demonstrated corresponding differences in neuronal properties across cell types, but these comparisons have largely been limited to conditions outside of awake, behaving animals. Thus the functional role of the various cell types is not well understood. Here, we investigate differences in the functional properties of two widespread and broad classes of cells in inferior temporal cortex of macaque monkeys: inhibitory interneurons and excitatory projection cells. Cells were classified as putative inhibitory or putative excitatory neurons on the basis of their extracellular waveform characteristics (e.g., spike duration). Consistent with previous intracellular recordings in cortical slices, putative inhibitory neurons had higher spontaneous firing rates and higher stimulus-evoked firing rates than putative excitatory neurons. Additionally, putative excitatory neurons were more susceptible to spike waveform adaptation following very short interspike intervals. Finally, we compared two functional properties of each neuron's stimulus-evoked response: stimulus selectivity and response latency. First, putative excitatory neurons showed stronger stimulus selectivity compared with putative inhibitory neurons. Second, putative inhibitory neurons had shorter response latencies compared with putative excitatory neurons. Selectivity differences were maintained and latency differences were enhanced during a visual search task emulating more natural viewing conditions. Our results suggest that short-latency inhibitory responses are likely to sculpt visual processing in excitatory neurons, yielding a sparser visual representation. PMID:22933717

  16. Effects of the selective EP4 antagonist, CJ-023,423 on chronic inflammation and bone destruction in rat adjuvant-induced arthritis.

    PubMed

    Okumura, Takako; Murata, Yoko; Taniguchi, Kana; Murase, Akio; Nii, Aisuke

    2008-06-01

    Prostaglandin E2 (PGE2) produced by cyclooxygenase (COX) is a potent pro-inflammatory mediator. We have recently discovered CJ-023,423, a highly selective antagonist of EP4 receptors, one of the PGE2 receptors. This agent is suitable for exploring the effects of blocking EP4 receptors following oral administration in rats. In this study, CJ-023,423 was used in rats with adjuvant-induced arthritis (AIA) to investigate the role of the EP4 receptor in chronic inflammation and bone destruction. These effects were compared with those of rofecoxib, a selective COX-2 inhibitor. CJ-023,423 had significant inhibitory effects on paw swelling, inflammatory biomarkers, synovial inflammation and bone destruction in AIA rats. In particular, the inhibitory effect on paw swelling in AIA rats was comparable to that of rofecoxib. These results suggest that PGE2 acting via the EP4 receptor is involved in the development of chronic inflammation and bone destruction, particularly with respect to oedema in AIA rats. This is the first study to confirm the in-vivo effects of EP4 receptor blockade on inflammation and bone destruction in AIA rats with a small-molecule compound.

  17. GABAergic neurons in ferret visual cortex participate in functionally specific networks

    PubMed Central

    Wilson, Daniel E.; Smith, Gordon B.; Jacob, Amanda; Walker, Theo; Dimidschstein, Jordane; Fishell, Gord J.; Fitzpatrick, David

    2017-01-01

    Summary Functional circuits in the visual cortex require the coordinated activity of excitatory and inhibitory neurons. Molecular genetic approaches in the mouse have led to the ‘local nonspecific pooling principle’ of inhibitory connectivity, in which inhibitory neurons are untuned for stimulus features due to the random pooling of local inputs. However, it remains unclear whether this principle generalizes to species with a columnar organization of feature selectivity such as carnivores, primates, and humans. Here we use virally-mediated GABAergic-specific GCaMP6f expression to demonstrate that inhibitory neurons in ferret visual cortex respond robustly and selectively to oriented stimuli. We find that the tuning of inhibitory neurons is inconsistent with the local non-specific pooling of excitatory inputs, and that inhibitory neurons exhibit orientation-specific noise correlations with local and distant excitatory neurons. These findings challenge the generality of the non-specific pooling principle for inhibitory neurons, suggesting different rules for functional excitatory-inhibitory interactions in non-murine species. PMID:28279352

  18. (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, a potent and selective inhibitor of human cytomegalovirus replication.

    PubMed Central

    Snoeck, R; Sakuma, T; De Clercq, E; Rosenberg, I; Holy, A

    1988-01-01

    From a series of phosphonylmethoxyalkylpurine and -pyrimidine derivatives, (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] emerged as a particularly potent and selective inhibitor of the replication of human cytomegalovirus (CMV). Its potency against CMV was similar to that of the structurally related adenine derivative (S)-HPMPA but higher than that of the reference compounds phosphonoformate and 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG). The minimum concentrations of phosphonoformate, DHPG, (S)-HPMPA, and (S)-HPMPC required to inhibit CMV plaque formation by 50% were 15, 0.7, 0.1, and 0.07 microgram/ml, respectively. The selectivity indices of phosphonoformate, DHPG, (S)-HPMPA, and (S)-HPMPC, as determined by the ratio of the 50% inhibitory concentration for cell growth to the 50% inhibitory concentration for plaque formation for CMV (AD-169 strain), were 14, 150, 200 and 1,500, respectively. Corresponding values for the CMV Davis strain were 20, 200, 100, and 1,000, respectively. (S)-HPMPC was inhibitory to CMV plaque formation even when added to the cells at 24 or 48 h postinfection. When (S)-HPMPC was added immediately postinfection, a 24- or 48-h incubation time sufficed to obtain a marked inhibitory effect on CMV replication. Such limited incubation time was insufficient for DHPG to achieve any protection against CMV. PMID:2854454

  19. Selective isolation of Yersinia pestis from plague-infected fleas

    PubMed Central

    Sarovich, Derek S.; Colman, Rebecca E.; Price, Erin P.; Chung, Wai Kwan; Lee, Judy; Schupp, James M.; Alexander, James; Keim, Paul; Wagner., David M.

    2010-01-01

    We evaluated Yersinia CIN agar for the isolation of Yersinia pestis from infected fleas. CIN media is effective for the differentiation of Y. pestis from flea commensal flora and is sufficiently inhibitory to other bacteria that typically outcompete Y. pestis after 48 hours of growth using less selective media. PMID:20385178

  20. Selective Ablation of GIRK Channels in Dopamine Neurons Alters Behavioral Effects of Cocaine in Mice.

    PubMed

    McCall, Nora M; Kotecki, Lydia; Dominguez-Lopez, Sergio; Marron Fernandez de Velasco, Ezequiel; Carlblom, Nicholas; Sharpe, Amanda L; Beckstead, Michael J; Wickman, Kevin

    2017-02-01

    The increase in dopamine (DA) neurotransmission stimulated by in vivo cocaine exposure is tempered by G protein-dependent inhibitory feedback mechanisms in DA neurons of the ventral tegmental area (VTA). G protein-gated inwardly rectifying K + (GIRK/Kir3) channels mediate the direct inhibitory effect of GABA B receptor (GABA B R) and D 2 DA receptor (D 2 R) activation in VTA DA neurons. Here we examined the effect of the DA neuron-specific loss of GIRK channels on D 2 R-dependent regulation of VTA DA neuron excitability and on cocaine-induced, reward-related behaviors. Selective ablation of Girk2 in DA neurons did not alter the baseline excitability of VTA DA neurons but significantly reduced the magnitude of D 2 R-dependent inhibitory somatodendritic currents and blunted the impact of D 2 R activation on spontaneous activity and neuronal excitability. Mice lacking GIRK channels in DA neurons exhibited increased locomotor activation in response to acute cocaine administration and an altered locomotor sensitization profile, as well as increased responding for and intake of cocaine in an intravenous self-administration test. These mice, however, showed unaltered cocaine-induced conditioned place preference. Collectively, our data suggest that feedback inhibition to VTA DA neurons, mediated by GIRK channel activation, tempers the locomotor stimulatory effect of cocaine while also modulating the reinforcing effect of cocaine in an operant-based self-administration task.

  1. Novel multitarget-directed ligands (MTDLs) with acetylcholinesterase (AChE) inhibitory and serotonergic subtype 4 receptor (5-HT4R) agonist activities as potential agents against Alzheimer's disease: the design of donecopride.

    PubMed

    Rochais, Christophe; Lecoutey, Cédric; Gaven, Florence; Giannoni, Patrizia; Hamidouche, Katia; Hedou, Damien; Dubost, Emmanuelle; Genest, David; Yahiaoui, Samir; Freret, Thomas; Bouet, Valentine; Dauphin, François; Sopkova de Oliveira Santos, Jana; Ballandonne, Céline; Corvaisier, Sophie; Malzert-Fréon, Aurélie; Legay, Remi; Boulouard, Michel; Claeysen, Sylvie; Dallemagne, Patrick

    2015-04-09

    In this work, we describe the synthesis and in vitro evaluation of a novel series of multitarget-directed ligands (MTDL) displaying both nanomolar dual-binding site (DBS) acetylcholinesterase inhibitory effects and partial 5-HT4R agonist activity, among which donecopride was selected for further in vivo evaluations in mice. The latter displayed procognitive and antiamnesic effects and enhanced sAPPα release, accounting for a potential symptomatic and disease-modifying therapeutic benefit in the treatment of Alzheimer's disease.

  2. Selective deficiencies in descending inhibitory modulation in neuropathic rats: implications for enhancing noradrenergic tone.

    PubMed

    Patel, Ryan; Qu, Chaoling; Xie, Jennifer Y; Porreca, Frank; Dickenson, Anthony H

    2018-06-22

    Pontine noradrenergic neurones form part of a descending inhibitory system that influences spinal nociceptive processing. Weak or absent descending inhibition is a common feature of chronic pain patients. We examined the extent to which the descending noradrenergic system is tonically active, how control of spinal neuronal excitability is integrated into thalamic relays within sensory-discriminative projection pathways, and how this inhibitory control is altered after nerve injury. In vivo electrophysiology was performed in anaesthetised spinal nerve-ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus (VPL). In sham rats, spinal block of α2-adrenoceptors with atipamezole resulted in enhanced stimulus-evoked and spontaneous firing in the VPL, and produced conditioned place avoidance. However, in SNL rats, these conditioned avoidance behaviours were absent. Furthermore, inhibitory control of evoked neuronal responses was lost, but spinal atipamezole markedly increased spontaneous firing. Augmenting spinal noradrenergic tone in neuropathic rats with reboxetine, a selective noradrenergic reuptake inhibitor, modestly reinstated inhibitory control of evoked responses in the VPL but had no effect on spontaneous firing. By contrast, clonidine, an α2 agonist, inhibited both evoked and spontaneous firing, and exhibited increased potency in SNL rats compared with sham controls. These data suggest descending noradrenergic inhibitory pathways are tonically active in sham rats. Moreover, in neuropathic states, descending inhibitory control is diminished, but not completely absent, and distinguishes between spontaneous and evoked neuronal activity. These observations may have implications for how analgesics targeting the noradrenergic system provide relief.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  3. Evidence for two concurrent inhibitory mechanisms during response preparation

    PubMed Central

    Duque, Julie; Lew, David; Mazzocchio, Riccardo; Olivier, Etienne; Ivry, Richard B.

    2010-01-01

    Inhibitory mechanisms are critically involved in goal-directed behaviors. To gain further insight into how such mechanisms shape motor representations during response preparation, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and H-reflexes were recorded from left hand muscles during choice reaction time tasks. The imperative signal, which indicated the required response, was always preceded by a preparatory cue. During the post-cue delay period, left MEPs were suppressed when the left hand had been cued for the forthcoming response, suggestive of a form of inhibition specifically directed at selected response representations. H-reflexes were also suppressed on these trials, indicating that the effects of this inhibition extend to spinal circuits. In addition, left MEPs were suppressed when the right hand was cued, but only when left hand movements were a possible response option before the onset of the cue. Notably, left hand H-reflexes were not modulated on these trials, consistent with a cortical locus of inhibition that lowers the activation of task-relevant, but non-selected responses. These results suggest the concurrent operation of two inhibitory mechanisms during response preparation: one decreases the activation of selected responses at the spinal level, helping to control when selected movements should be initiated by preventing their premature release; a second, upstream mechanism helps to determine what response to make during a competitive selection process. PMID:20220014

  4. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study

    PubMed Central

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966

  5. Screening and characterization of selected drugs having antibacterial potential.

    PubMed

    Javed, Hina; Tabassum, Sobia; Erum, Shazia; Murtaza, Iram; Muhammad, Aish; Amin, Farhana; Nisar, Muhammad Farrukh

    2018-05-01

    Due to ever increasing antibiotic resistance offered by pathogenic bacterial strains and side effects of synthetic antibiotics, thereof, there is a need to explore the effective phytochemicals from natural resources. In order to help overcoming the problem of effective natural drug and the side effects posed by the use of the synthetic drugs, five different plants namely Thymus vulgaris, Lavandula angustifolia, Rosmarinus officinalis, Cymbopogon citratus and Achillea millefolium were selected to study their antibacterial potential. Antibacterial activity and minimum inhibitory concentration (MIC) checked against the selected bacterial strains. As compared to other test plants, ethanolic extract of Rosmarinus officinalis leaves showed the most promising inhibitory effect i.e: inhibition zone (18.17± 0.44mm) against Klebsiella pneumoniae and the lowest inhibition (15.5±0.29mm) against Pseudomonas aeruginosa and Escherichia coli (p<0.05). The MIC values were recorded in the range of 1 to 20mg/ml. Screening of the selected extracts for the test plants additionally indicate some unique variations. Results were further confirmed through TLC for alkaloids and terpenoids (15% sulphuric acid and Dragedroff's reagent) in ethanolic extract. Characterization of Rosmarinus officinalis of ethanolic extract was carried out using column chromatography. The appearance of orange crystals may indicate the presence of alkaloidal bioactive compounds which need to be further investigated. The tested plants may have a potential for fighting against some infectious diseases caused by selected human pathogenic bacterial strains. This knowledge may incite a gateway to effective drug search and so on.

  6. Brain State Effects on Layer 4 of the Awake Visual Cortex

    PubMed Central

    Zhuang, Jun; Bereshpolova, Yulia; Stoelzel, Carl R.; Huff, Joseph M.; Hei, Xiaojuan; Alonso, Jose-Manuel

    2014-01-01

    Awake mammals can switch between alert and nonalert brain states hundreds of times per day. Here, we study the effects of alertness on two cell classes in layer 4 of primary visual cortex of awake rabbits: presumptive excitatory “simple” cells and presumptive fast-spike inhibitory neurons (suspected inhibitory interneurons). We show that in both cell classes, alertness increases the strength and greatly enhances the reliability of visual responses. In simple cells, alertness also increases the temporal frequency bandwidth, but preserves contrast sensitivity, orientation tuning, and selectivity for direction and spatial frequency. Finally, alertness selectively suppresses the simple cell responses to high-contrast stimuli and stimuli moving orthogonal to the preferred direction, effectively enhancing mid-contrast borders. Using a population coding model, we show that these effects of alertness in simple cells—enhanced reliability, higher gain, and increased suppression in orthogonal orientation—could play a major role at increasing the speed of cortical feature detection. PMID:24623767

  7. Optimization of in vitro inhibition of HT-29 colon cancer cell cultures by Solanum tuberosum L. extracts.

    PubMed

    Zuber, T; Holm, D; Byrne, P; Ducreux, L; Taylor, M; Kaiser, M; Stushnoff, C

    2015-01-01

    Secondary metabolites in potato have been reported to possess bioactive properties, including growth inhibition of cancer cells. Because potatoes are widely consumed globally, potential health benefits may have broad application. Thus we investigated growth inhibition of HT-29 colon cancer cell cultures by extracts from 13 diverse genetic breeding clones. Extracts from three pigmented selections (CO97226-2R/R, CO97216-1P/P, CO04058-3RW/RW) inhibited growth of in vitro HT-29 cell cultures more effectively than other clones tested. While inhibition was highest from pigmented selections and pigmented tuber tissue sectors, not all pigmented breeding lines tested had appreciable inhibitory properties. Thus, inhibition was not uniquely linked to pigmentation. Immature tubers had the highest inhibitory properties, and in most cases mature tubers retained very low inhibition properties. Flowers and skins inhibited strongly at lower extract concentrations. An extract consisting of 7.2 mg mL⁻¹ cell culture medium was the lowest effective concentration. While raw tuber extracts inhibited most effectively, a few clones at higher concentrations retained inhibition after cooking. Heated whole tubers retained higher inhibition than heated aqueous extracts. While all aqueous extracts from the two tuber selections (CO97216-1P/P and CO97226-2R/R) inhibited HT-29 cell cultures, inhibition was significantly enhanced in purple pigmented tubers of CO97216-1P/P prepared cryogenically as liquid nitrogen powders compared to extracts from freeze dried samples. Upregulation of caspase-3 protease activity, indicative of apoptosis, was highest among the most inhibitory clone samples. The unique sectorial red pigment expressing selection (CO04058-3RW/RW) provided a model system that isolated expression in pigmented sectors, and thus eliminated developmental, environmental and genetic confounding.

  8. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere.

    PubMed

    Essarioui, Adil; LeBlanc, Nicholas; Kistler, Harold C; Kinkel, Linda L

    2017-07-01

    Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be critical to mediating the coevolutionary dynamics and selective trajectories for inhibitory and nutrient use phenotypes among Streptomyces and Fusarium populations in soil, with significant implications for microbial community functional characteristics.

  9. Synergistic inhibition of natural killer cells by the nonsignaling molecule CD94.

    PubMed

    Cheent, Kuldeep S; Jamil, Khaleel M; Cassidy, Sorcha; Liu, Mengya; Mbiribindi, Berenice; Mulder, Arend; Claas, Frans H J; Purbhoo, Marco A; Khakoo, Salim I

    2013-10-15

    Peptide selectivity is a feature of inhibitory receptors for MHC class I expressed by natural killer (NK) cells. CD94-NKG2A operates in tandem with the polymorphic killer cell Ig-like receptors (KIR) and Ly49 systems to inhibit NK cells. However, the benefits of having two distinct inhibitory receptor-ligand systems are not clear. We show that noninhibitory peptides presented by HLA-E can augment the inhibition of NKG2A(+) NK cells mediated by MHC class I signal peptides through the engagement of CD94 without a signaling partner. Thus, CD94 is a peptide-selective NK cell receptor, and NK cells can be regulated by nonsignaling interactions. We also show that KIR(+) and NKG2A(+) NK cells respond with differing stoichiometries to MHC class I down-regulation. MHC-I-bound peptide functions as a molecular rheostat controlling NK cell function. Selected peptides which in isolation do not inhibit NK cells can have different effects on KIR and NKG2A receptors. Thus, these two inhibitory systems may complement each other by having distinct responses to bound peptide and surface levels of MHC class I.

  10. Synergistic inhibition of natural killer cells by the nonsignaling molecule CD94

    PubMed Central

    Cheent, Kuldeep S.; Jamil, Khaleel M.; Cassidy, Sorcha; Liu, Mengya; Mbiribindi, Berenice; Mulder, Arend; Claas, Frans H. J.; Purbhoo, Marco A.; Khakoo, Salim I.

    2013-01-01

    Peptide selectivity is a feature of inhibitory receptors for MHC class I expressed by natural killer (NK) cells. CD94–NKG2A operates in tandem with the polymorphic killer cell Ig-like receptors (KIR) and Ly49 systems to inhibit NK cells. However, the benefits of having two distinct inhibitory receptor–ligand systems are not clear. We show that noninhibitory peptides presented by HLA-E can augment the inhibition of NKG2A+ NK cells mediated by MHC class I signal peptides through the engagement of CD94 without a signaling partner. Thus, CD94 is a peptide-selective NK cell receptor, and NK cells can be regulated by nonsignaling interactions. We also show that KIR+ and NKG2A+ NK cells respond with differing stoichiometries to MHC class I down-regulation. MHC-I–bound peptide functions as a molecular rheostat controlling NK cell function. Selected peptides which in isolation do not inhibit NK cells can have different effects on KIR and NKG2A receptors. Thus, these two inhibitory systems may complement each other by having distinct responses to bound peptide and surface levels of MHC class I. PMID:24082146

  11. Feature-based attention and conflict monitoring in criminal offenders: interactive relations of psychopathy with anxiety and externalizing.

    PubMed

    Zeier, Joshua D; Newman, Joseph P

    2013-08-01

    As predicted by the response modulation model, psychopathic offenders are insensitive to potentially important inhibitory information when it is peripheral to their primary focus of attention. To date, the clearest tests of this hypothesis have manipulated spatial attention to cue the location of goal-relevant versus inhibitory information. However, the theory predicts a more general abnormality in selective attention. In the current study, male prisoners performed a conflict-monitoring task, which included a feature-based manipulation (i.e., color) that biased selective attention toward goal-relevant stimuli and away from inhibitory distracters on some trials but not others. Paralleling results for spatial cuing, feature-based cuing resulted in less distracter interference, particularly for participants with primary psychopathy (i.e., low anxiety). This study also investigated the moderating effect of externalizing on psychopathy. Participants high in psychopathy but low in externalizing performed similarly to primary psychopathic individuals. These results demonstrate that the abnormal selective attention associated with primary psychopathy is not limited to spatial attention but, instead, applies to diverse methods for establishing attentional focus. Furthermore, they demonstrate a novel method of investigating psychopathic subtypes using continuous analyses. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  12. Design and synthesis of paracaseolide A analogues as selective protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Yin, Jian-Peng; Tang, Chun-Lan; Gao, Li-Xin; Ma, Wei-Ping; Li, Jing-Ya; Li, Ying; Li, Jia; Nan, Fa-Jun

    2014-06-07

    A series of structurally related analogues of the natural product paracaseolide A were synthesized and identified as potent PTP1B inhibitors. Among these analogues, compound 10 in particular showed improved PTP1B enzyme inhibitory activity, high selectivity for PTP1B over TC-PTP, and improved cellular effects.

  13. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    PubMed

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  14. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  15. Cell Assembly Dynamics of Sparsely-Connected Inhibitory Networks: A Simple Model for the Collective Activity of Striatal Projection Neurons.

    PubMed

    Angulo-Garcia, David; Berke, Joshua D; Torcini, Alessandro

    2016-02-01

    Striatal projection neurons form a sparsely-connected inhibitory network, and this arrangement may be essential for the appropriate temporal organization of behavior. Here we show that a simplified, sparse inhibitory network of Leaky-Integrate-and-Fire neurons can reproduce some key features of striatal population activity, as observed in brain slices. In particular we develop a new metric to determine the conditions under which sparse inhibitory networks form anti-correlated cell assemblies with time-varying activity of individual cells. We find that under these conditions the network displays an input-specific sequence of cell assembly switching, that effectively discriminates similar inputs. Our results support the proposal that GABAergic connections between striatal projection neurons allow stimulus-selective, temporally-extended sequential activation of cell assemblies. Furthermore, we help to show how altered intrastriatal GABAergic signaling may produce aberrant network-level information processing in disorders such as Parkinson's and Huntington's diseases.

  16. Influence of gas-liquid two-phase flow on angiotensin-I converting enzyme inhibitory peptides separation by ultra-filtration.

    PubMed

    Charoenphun, Narin; Youravong, Wirote

    2017-01-01

    Membrane fouling is a major problem in ultra-filtration systems and two-phase flow is a promising technique for permeate flux enhancement. The objective of this research was to study the use of an ultra-filtration (UF) system to enrich angiotensin-I converting enzyme (ACE) inhibitory peptides from tilapia protein hydrolysate. To select the most appropriate membrane and operating condition, the effects of membrane molecular weight cut-off (MWCO), transmembrane pressure (TMP) and cross-flow velocity (CFV) on permeate flux and ACE inhibitory peptide separation were studied. Additionally, the gas-liquid two-phase flow technique was applied to investigate its effect on the process capability. The results showed that the highest ACE inhibitory activity was obtained from permeate of the 1 kDa membrane. In terms of TMP and CFV, the permeate flux tended to increase with TMP and CFV. The use of gas-liquid two-phase flow as indicated by shear stress number could reduce membrane fouling and increase the permeate flux up to 42%, depending on shear stress number. Moreover, the use of a shear stress number of 0.039 led to an augmentation in ACE inhibitory activity of permeates. Operating conditions using a shear stress number of 0.039 were recommended for enrichment of ACE inhibitory peptides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Eye Gaze and Aging: Selective and Combined Effects of Working Memory and Inhibitory Control.

    PubMed

    Crawford, Trevor J; Smith, Eleanor S; Berry, Donna M

    2017-01-01

    Eye-tracking is increasingly studied as a cognitive and biological marker for the early signs of neuropsychological and psychiatric disorders. However, in order to make further progress, a more comprehensive understanding of the age-related effects on eye-tracking is essential. The antisaccade task requires participants to make saccadic eye movements away from a prepotent stimulus. Speculation on the cause of the observed age-related differences in the antisaccade task largely centers around two sources of cognitive dysfunction: inhibitory control (IC) and working memory (WM). The IC account views cognitive slowing and task errors as a direct result of the decline of inhibitory cognitive mechanisms. An alternative theory considers that a deterioration of WM is the cause of these age-related effects on behavior. The current study assessed IC and WM processes underpinning saccadic eye movements in young and older participants. This was achieved with three experimental conditions that systematically varied the extent to which WM and IC were taxed in the antisaccade task: a memory-guided task was used to explore the effect of increasing the WM load; a Go/No-Go task was used to explore the effect of increasing the inhibitory load; a 'standard' antisaccade task retained the standard WM and inhibitory loads. Saccadic eye movements were also examined in a control condition: the standard prosaccade task where the load of WM and IC were minimal or absent. Saccade latencies, error rates and the spatial accuracy of saccades of older participants were compared to the same measures in healthy young controls across the conditions. The results revealed that aging is associated with changes in both IC and WM. Increasing the inhibitory load was associated with increased reaction times in the older group, while the increased WM load and the inhibitory load contributed to an increase in the antisaccade errors. These results reveal that aging is associated with changes in both IC and WM.

  18. Plant growth inhibitory activity of p-hydroxyacetophenones and tremetones from Chilean endemic Baccharis species and some analogous: a comparative study.

    PubMed

    Céspedes, Carlos L; Uchoa, Adjaci; Salazar, Juan R; Perich, Fernando; Pardo, Fernando

    2002-04-10

    Plant growth inhibitory effects of acetophenones 1-6, tremetones 7-12, and MeOH and CH(2)Cl(2) extracts from the aerial parts of Baccharis linnearis, Baccharis magellanica, and Baccharis umbelliformis collected in Chile were assayed as growth inhibitory activity in ranges of 10-500 microM and 0.1-150 ppm, respectively. The effects on seedling growth, germination, and respiration of ryegrass, lettuce, green tomato, and red clover weedy target species were measured. In addition to the inhibitory activity on bleaching of crocin induced by alkoxyl radicals, these compounds also demonstrated scavenging properties toward 2,2-diphenyl-1-picrylhydrazyl in thin-layer chromatography autographic and spectrophotometric assays. In addition, acetophenones and tremetones also showed inhibition of H(+) uptake and oxygen uptake respiration in isolated chloroplasts and mitochondria, respectively. Our results indicate that 1, 4, 7-12, and CH(2)Cl(2) extracts interfere with the dicot preemergence properties, mainly energy metabolism of the seeds at the level of respiration. These compounds appear to have selective effects on the radicle more than shoot growth of dicot seeds. Also, the levels of radicle inhibition obtained with some compounds on Physalis ixocarpa and Trifolium pratense are totally comparable to those of ovatifolin, a known natural growth inhibitor. This behavior might be responsible for its plant growth inhibitory properties and its possible role as an allelopathic agent.

  19. The Recurrent Case for the Renshaw Cell

    PubMed Central

    Bhumbra, Gardave S.; Bannatyne, B. Anne; Watanabe, Masahiko; Todd, Andrew J.

    2014-01-01

    Although Renshaw cells (RCs) were discovered over half a century ago, their precise role in recurrent inhibition and ability to modulate motoneuron excitability have yet to be established. Indirect measurements of recurrent inhibition have suggested only a weak modulatory effect but are limited by the lack of observed motoneuron responses to inputs from single RCs. Here we present dual recordings between connected RC–motoneuron pairs, performed on mouse spinal cord. Motoneuron responses demonstrated that Renshaw synapses elicit large inhibitory conductances and show short-term potentiation. Anatomical reconstruction, combined with a novel method of quantal analysis, showed that the strong inhibitory input from RCs results from the large number of synaptic contacts that they make onto individual motoneurons. We used the NEURON simulation environment to construct realistic electrotonic models, which showed that inhibitory conductances from Renshaw inputs exert considerable shunting effects in motoneurons and reduce the frequency of spikes generated by excitatory inputs. This was confirmed experimentally by showing that excitation of a single RC or selective activation of the recurrent inhibitory pathway to generate equivalent inhibitory conductances both suppress motoneuron firing. We conclude that recurrent inhibition is remarkably effective, in that a single action potential from one RC is sufficient to silence a motoneuron. Although our results may differ from previous indirect observations, they underline a need for a reevaluation of the role that RCs perform in one of the first neuronal circuits to be discovered. PMID:25232126

  20. Effects of temperature and antibiotics on persistence of antibiotic-resistant bacteria and antibiotic resistance genes in poultry litter

    USDA-ARS?s Scientific Manuscript database

    The effect of low, residual concentrations of antibiotics in manure and other environmental matrices is not well understood. It has been hypothesized that antibiotic concentrations below clinical MIC (minimal inhibitory concentrations) are still capable of selecting for resistance. The objective of ...

  1. Inhibitory effect of essential oils against herpes simplex virus type 2.

    PubMed

    Koch, C; Reichling, J; Schneele, J; Schnitzler, P

    2008-01-01

    Essential oils from anise, hyssop, thyme, ginger, camomile and sandalwood were screened for their inhibitory effect against herpes simplex virus type 2 (HSV-2) in vitro on RC-37 cells using a plaque reduction assay. Genital herpes is a chronic, persistent infection spreading efficiently and silently as sexually transmitted disease through the population. Antiviral agents currently applied for the treatment of herpesvirus infections include acyclovir and its derivatives. The inhibitory concentrations (IC50) were determined at 0.016%, 0.0075%, 0.007%, 0.004%, 0.003% and 0.0015% for anise oil, hyssop oil, thyme oil, ginger oil, camomile oil and sandalwood oil, respectively. A clearly dose-dependent virucidal activity against HSV-2 could be demonstrated for all essential oils tested. In order to determine the mode of the inhibitory effect, essential oils were added at different stages during the viral infection cycle. At maximum noncytotoxic concentrations of the essential oils, plaque formation was significantly reduced by more than 90% when HSV-2 was preincubated with hyssop oil, thyme oil or ginger oil. However, no inhibitory effect could be observed when the essential oils were added to the cells prior to infection with HSV-2 or after the adsorption period. These results indicate that essential oils affected HSV-2 mainly before adsorption probably by interacting with the viral envelope. Camomile oil exhibited a high selectivity index and seems to be a promising candidate for topical therapeutic application as virucidal agents for treatment of herpes genitalis.

  2. Switches of stimulus tagging frequencies interact with the conflict-driven control of selective attention, but not with inhibitory control.

    PubMed

    Scherbaum, Stefan; Frisch, Simon; Dshemuchadse, Maja

    2016-01-01

    Selective attention and its adaptation by cognitive control processes are considered a core aspect of goal-directed action. Often, selective attention is studied behaviorally with conflict tasks, but an emerging neuroscientific method for the study of selective attention is EEG frequency tagging. It applies different flicker frequencies to the stimuli of interest eliciting steady state visual evoked potentials (SSVEPs) in the EEG. These oscillating SSVEPs in the EEG allow tracing the allocation of selective attention to each tagged stimulus continuously over time. The present behavioral investigation points to an important caveat of using tagging frequencies: The flicker of stimuli not only produces a useful neuroscientific marker of selective attention, but interacts with the adaptation of selective attention itself. Our results indicate that RT patterns of adaptation after response conflict (so-called conflict adaptation) are reversed when flicker frequencies switch at once. However, this effect of frequency switches is specific to the adaptation by conflict-driven control processes, since we find no effects of frequency switches on inhibitory control processes after no-go trials. We discuss the theoretical implications of this finding and propose precautions that should be taken into account when studying conflict adaptation using frequency tagging in order to control for the described confounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Staphylococci in Competition1

    PubMed Central

    Peterson, A. C.; Black, J. J.; Gunderson, M. F.

    1964-01-01

    Foods containing large amounts of carbohydrate have frequently been involved in staphylococcal food poisoning. Custard has been considered to be a highly favorable culture medium for staphylococci; however, it may be a selective medium rather than an ideal one. The influence of dextrose, lactose, and sucrose in varying amounts from 0.25 to 18%, and of starch, on the growth of staphylococci in mixed populations with saprophytes was determined. The inhibitory effect of the sugars was much greater on the saprophyte population than on the staphylococci. Of the three sugars, sucrose was most inhibitory to the saprophytes. It greatly decreased their lag periods as the concentration of sugar increased. Dextrose was the least inhibitory; in fact, 0.5% dextrose gave considerable stimulus to saprophyte growth. This sharply repressed staphylococcal growth. Lactose occupied an intermediate position. Rapid onset of the death phase of the staphylococci was observed in all increased sugar concentrations and seemed to be a pH effect rather than a result of competition. Sucrose exerted an inhibitory effect on the growth of saprophytes at and above room temperature. In the presence of 2.5% corn starch, staphylococcal growth in mixed cultures was slightly inhibited, while the death phase was sharply accelerated. Thus, carbohydrates exert their influence on staphylococcal growth in mixed cultures through their effect on the saprophytes by decreasing or increasing competition. PMID:14106944

  4. Measuring the development of inhibitory control: The challenge of heterotypic continuity

    PubMed Central

    Petersen, Isaac T.; Hoyniak, Caroline P.; McQuillan, Maureen E.; Bates, John E.; Staples, Angela D.

    2016-01-01

    Inhibitory control is thought to demonstrate heterotypic continuity, in other words, continuity in its purpose or function but changes in its behavioral manifestation over time. This creates major methodological challenges for studying the development of inhibitory control in childhood including construct validity, developmental appropriateness and sensitivity of measures, and longitudinal factorial invariance. We meta-analyzed 198 studies using measures of inhibitory control, a key aspect of self-regulation, to estimate age ranges of usefulness for each measure. The inhibitory control measures showed limited age ranges of usefulness owing to ceiling/floor effects. Tasks were useful, on average, for a developmental span of less than 3 years. This suggests that measuring inhibitory control over longer spans of development may require use of different measures at different time points, seeking to measure heterotypic continuity. We suggest ways to study the development of inhibitory control, with overlapping measurement in a structural equation modeling framework and tests of longitudinal factorial or measurement invariance. However, as valuable as this would be for the area, we also point out that establishing longitudinal factorial invariance is neither sufficient nor necessary for examining developmental change. Any study of developmental change should be guided by theory and construct validity, aiming toward a better empirical and theoretical approach to the selection and combination of measures. PMID:27346906

  5. An apple oligogalactan potentiates the growth inhibitory effect of celecoxib on colorectal cancer.

    PubMed

    Li, Yuhua; Niu, Yinbo; Sun, Yang; Mei, Lin; Zhang, Bangle; Li, Qian; Liu, Li; Zhang, Rong; Chen, Jianfa; Mei, Qibing

    2014-01-01

    Multiple studies have indicated that selective cyclooxygenase-2 (COX-2) inhibitors possess clinically chemopreventive and preclinically anticancer activities. Their long-term use, however, may be limited by the cardiovascular toxicity. This study tried to investigate whether an apple oligogalactan (AOG) could enhance the growth inhibitory effect of celecoxib on colorectal cancer. Caco-2 and HT-29 cell lines were exposed to different concentrations of AOG (0-1 g/L), celecoxib (0-25 μmol/L), and their combination. COX-2 levels were assessed by reverse transcription PCR and Western blot. COX-2 activity was evaluated by measuring prostaglandin E2 concentration. A colitis-associated colorectal cancer (CACC) mouse model was used to determine the effect of the combination in vivo. AOG (0.1-0.5 g/L) could potentiate the inhibitory effect of physiologic doses of celecoxib (5 μmol/L) on cell growth and decrease COX-2 expressions both at RNA and protein levels. In vivo, the combination (2.5% AOG plus 0.04% celecoxib, w/w) prevented against CACC in mice effectively. Our data indicate that AOG could potentiate the growth inhibitory effect of celecoxib on colorectal cancer both in vitro and in vivo through influencing the expression and function of COX-2 and phosphorylation of MAPKs, which suggests a new possible combinatorial strategy in colorectal cancer therapy.

  6. Selective and slow-binding inhibition of shikonin derivatives isolated from Lithospermum erythrorhizon on glycosyl hydrolase 33 and 34 sialidases.

    PubMed

    Kim, Ji Young; Jeong, Hyung Jae; Park, Ji-Young; Kim, Young Min; Park, Su-Jin; Cho, Jung Keun; Park, Ki Hun; Ryu, Young Bae; Lee, Woo Song

    2012-03-01

    Sialidases are enzymes that catalyze the hydrolysis of sialic acid residues from various glycoconjugates, which are widely found in a number of viral and microbial pathogens. In this study, we investigated the biological evaluation of isolated six shikonins (1-6) and three shikonofurans (7-9) from Lithospermum erythrorhizon. The nine isolated compounds 1-9 showed strong and selective inhibition of glycosyl hydrolase (GH) 33 and -34 sialidases activities. In GH33 bacterial-sialidase inhibition assay, the inhibitory activities against GH33 siadliase of all shikonofuran derivatives (7-9) were greater than shikonin derivatives (1-6). Shikonofuran E (8) exhibited the most potent inhibitory activity toward GH33 sialidases (IC(50)=0.24μM). Moreover, our detailed kinetic analysis of these species unveiled that they are all competitive and simple reversible slow-binding inhibitors. Otherwise, they showed different inhibitory capacities and kinetic modes to GH34 viral-sialidase activity. All the naphthoquinone derivatives (1-6) were of almost equal efficiency with IC(50) value of 40μM and shikonofurans (7-9) did not show the significant inhibitory effect to GH34 sialidase. Kinetic analyses indicated that naphthoquinones acted via a noncompetitive mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Enhanced inhibitory synaptic transmission in the spinal dorsal horn mediates antinociceptive effects of TC-2559

    PubMed Central

    2011-01-01

    Background TC-2559 is a selective α4β2 subtype of nicotinic acetylcholine receptor (nAChR) partial agonist and α4β2 nAChR activation has been related to antinociception. The aim of this study is to investigate the analgesic effect of TC-2559 and its underlying spinal mechanisms. Results 1) In vivo bioavailability study: TC-2559 (3 mg/kg) had high absorption rate in rats with maximal total brain concentration reached over 4.6 μM within first 15 min after administration and eliminated rapidly with brain half life of about 20 min after injection. 2) In vivo behavioral experiments: TC-2559 exerts dose dependent antinociceptive effects in both formalin test in mice and chronic constriction injury (CCI) model in rats by activation of α4β2 nAChRs; 3) Whole-cell patch-clamp studies in the superficial dorsal horn neurons of the spinal cord slices: perfusion of TC-2559 (2 μM) significantly increased the frequency, but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). The enhancement of sIPSCs was blocked by pre-application of DHβE (2 μM), a selective α4β2 nicotinic receptor antagonist. Neither the frequency nor the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) of spinal dorsal horn neurons were affected by TC-2559. Conclusions Enhancement of inhibitory synaptic transmission in the spinal dorsal horn via activation of α4β2 nAChRs may be one of the mechanisms of the antinociceptive effects of TC-2559 on pathological pain models. It provides further evidence to support the notion that selective α4β2 subtype nAChR agonist may be developed as new analgesic drug for the treatment of neuropathic pain. PMID:21816108

  8. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment.

    PubMed

    Zhang, Ye; Gu, April Z; Cen, Tianyu; Li, Xiangyang; He, Miao; Li, Dan; Chen, Jianmin

    2018-06-01

    Although widespread antibiotic resistance has been mostly attributed to the selective pressure generated by overuse and misuse of antibiotics, recent growing evidence suggests that chemicals other than antibiotics, such as certain metals, can also select and stimulate antibiotic resistance via both co-resistance and cross-resistance mechanisms. For instance, tetL, merE, and oprD genes are resistant to both antibiotics and metals. However, the potential de novo resistance induced by heavy metals at environmentally-relevant low concentrations (much below theminimum inhibitory concentrations [MICs], also referred as sub-inhibitory) has hardly been explored. This study investigated and revealed that heavy metals, namely Cu(II), Ag(I), Cr(VI), and Zn(II), at environmentally-relevant and sub-inhibitory concentrations, promoted conjugative transfer of antibiotic resistance genes (ARGs) between E. coli strains. The mechanisms of this phenomenon were further explored, which involved intracellular reactive oxygen species (ROS) formation, SOS response, increased cell membrane permeability, and altered expression of conjugation-relevant genes. These findings suggest that sub-inhibitory levels of heavy metals that widely present in various environments contribute to the resistance phenomena via facilitating horizontal transfer of ARGs. This study provides evidence from multiple aspects implicating the ecological effect of low levels of heavy metals on antibiotic resistance dissemination and highlights the urgency of strengthening efficacious policy and technology to control metal pollutants in the environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Delayed excitatory and inhibitory feedback shape neural information transmission

    NASA Astrophysics Data System (ADS)

    Chacron, Maurice J.; Longtin, André; Maler, Leonard

    2005-11-01

    Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges.

  10. Ultrafast Screening of a Novel, Moderately Hydrophilic Angiotensin-Converting-Enzyme-Inhibitory Peptide, RYL, from Silkworm Pupa Using an Fe-Doped-Silkworm-Excrement-Derived Biocarbon: Waste Conversion by Waste.

    PubMed

    Liu, Long; Wei, Yanan; Chang, Qing; Sun, Huaju; Chai, Kungang; Huang, Zuqiang; Zhao, Zhenxia; Zhao, Zhongxing

    2017-12-27

    A novel, moderately hydrophilic peptide (RYL) with high ACE-inhibitory activity was screened ultrafast via a concept of waste conversion using waste. This novel peptide was screened from silkworm pupa using an Fe-doped porous biocarbon (FL/Z-SE) derived from silkworm excrement. FL/Z-SE possessed magnetic properties and specific selection for peptides due to Fe's dual functions. The selected RYL, which has moderate hydrophilicity (LogP = -0.22), exhibited a comparatively high ACE-inhibitory activity (IC 50 = 3.31 ± 0.11 μM). The inhibitory kinetics and docking-simulation results show that, as a competitive ACE inhibitor, RYL formed five hydrogen bonds with the ACE residues in the S1 and S2 pockets. In this work, both the screening carbon material and the selected ACE-inhibitory peptide were derived from agricultural waste (silkworm excrement and pupa), which offers a new way of thinking about the development of advanced uses of the silkworm byproducts and wastes.

  11. [Quantitative evaluation of inhibitory effects of epileptic spikes on theta rhythms in the network of hippocampal CA3 and entorhinal cortex in patients with temporal lobe epilepsy].

    PubMed

    Ge, Man-Ling; Guo, Jun-Dan; Chen, Sheng-Hua; Zhang, Ji-Chang; Fu, Xiao-Xuan; Chen, Yu-Min

    2017-02-25

    Epileptic spike is an indicator of hyper-excitability and hyper-synchrony in the neural networks. The inhibitory effects of spikes on theta rhythms (4-8 Hz) might be helpful to understand the mechanism of epileptic damage on the cognitive functions. To quantitatively evaluate the inhibitory effects of spikes on theta rhythms, intracerebral electroencephalogram (EEG) recordings with both sporadic spikes (SSs) and spike-free transient period between adjacent spikes were selected in 4 patients in the status of rapid eyes movement (REM) sleep with temporal lobe epilepsy (TLE) under the pre-surgical monitoring. The electrodes of hippocampal CA3 and entorhinal cortex (EC) were employed, since CA3 and EC built up one of key loops to investigate cognition and epilepsy. These SSs occurred only in CA3, only in EC, or in both CA3 and EC synchronously. Theta power was respectively estimated around SSs and during the spike-free transient period by Gabor wavelet transform and Hilbert transform. The intermittent extent was then estimated to represent for the loss of theta rhythms during the spike-free transient period. The following findings were obtained: (1) The prominent rhythms were in theta frequency band; (2) The spikes could transiently reduce theta power, and the inhibitory effect was severer around SSs in both CA3 and EC synchronously than that around either SSs only in EC or SSs only in CA3; (3) During the spike-free transient period, theta rhythms were interrupted with the intermittent theta rhythms left and theta power level continued dropping, implying the inhibitory effect was sustained. Additionally, the intermittent extent of theta rhythms was converged to the inhibitory extent around SSs; (4) The average theta power level during the spike-free transient period might not be in line with the inhibitory extent of theta rhythms around SSs. It was concluded that the SSs had negative effects on theta rhythms transiently and directly, the inhibitory effects aroused by SSs sustained during the spike-free transient period and were directly related to the intermittent extent. It was indicated that the loss of theta rhythms might qualify exactly the sustained inhibitory effects on theta rhythms aroused by spikes in EEG. The work provided an argumentation about the relationship between the transient negative impact of interictal spike and the loss of theta rhythms during spike-free activity for the first time, offered an intuitive methodology to estimate the inhibitory effect of spikes by EEG, and might be helpful to the analysis of EEG rhythms based on local field potentials (LFPs) in deep brain.

  12. Synthesis and evaluation of biaryl derivatives for structural characterization of selective monoamine oxidase B inhibitors toward Parkinson's disease therapy.

    PubMed

    Yeon, Seul Ki; Choi, Ji Won; Park, Jong-Hyun; Lee, Ye Rim; Kim, Hyeon Jeong; Shin, Su Jeong; Jang, Bo Ko; Kim, Siwon; Bahn, Yong-Sun; Han, Gyoonhee; Lee, Yong Sup; Pae, Ae Nim; Park, Ki Duk

    2018-01-01

    Benzyloxyphenyl moiety is a common structure of highly potent, selective and reversible inhibitors of monoamine oxidase B (MAO-B), safinamide and sembragiline. We synthesized 4-(benzyloxy)phenyl and biphenyl-4-yl derivatives including halogen substituents on the terminal aryl unit. In addition, we modified the carbon linker between amine group and the biaryl linked unit. Among synthesized compounds, 12c exhibited the most potent and selective MAO-B inhibitory effect (hMAO-B IC 50 : 8.9 nM; >10,000-fold selectivity over MAO-A) as a competitive inhibitor. In addition, 12c showed greater MAO-B inhibitory activity and selectivity compared to well-known MAO-B inhibitors such as selegiline, safinamide and sembragiline. In the MPTP-induced mouse model of Parkinson's disease (PD), 12c significantly protected the tyrosine hydroxylase (TH)-immunopositive DAergic neurons and attenuated the PD-associated behavioral deficits. This study suggests characteristic structures as a MAO-B inhibitor that may provide a good insight for the development of therapeutic agents for PD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex.

    PubMed

    Arvanov, V L; Liang, X; Russo, A; Wang, R Y

    1999-09-01

    Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.

  14. Inhibitory effects and structural insights for a novel series of coumarin-based compounds that selectively target human CA IX and CA XII carbonic anhydrases.

    PubMed

    De Luca, Laura; Mancuso, Francesca; Ferro, Stefania; Buemi, Maria Rosa; Angeli, Andrea; Del Prete, Sonia; Capasso, Clemente; Supuran, Claudiu T; Gitto, Rosaria

    2018-01-01

    Coumarin derivatives are a peculiar class of inhibitors of the family of metalloenzymes carbonic anhydrases (CA, EC 4.2.1.1). Several coumarins display higher affinity and selectivity toward most relevant and druggable CA isoforms. By decorating the natural compound umbelliferone (1) we have identified a new series of coumarin-based compounds demonstrating high CA inhibitory effects with nanomolar affinity for hCA IX and hCA XII isoforms that were considered a target amenable to develop antitumor agents. The most active tested compounds proved to be potent inhibitors with K i values equal to that of the well-known inhibitor acetazolamide (AAZ), that lacks selectivity over ubiquitous hCA I and hCA II. As suggested by docking studies the coumarins, that are lacking of the canonical metal binding groups, do not interact with Zinc ion within the catalytic site as found for classical sulfonamide type inhibitors of CAs. Thus, the studied inhibitors might possess a non-classical inhibitory mode of action preventing the carbon dioxide to entry into catalytic cavity and its conversion into bicarbonate ion. Specifically, the most active inhibitor of hCA XII compound 18i (K i value of 5.5 nM) and its supposed hydrolytic products could establish a web of H-bond interactions within the enzymatic cavity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. α-Glucosidase inhibitory activity of selected Philippine plants.

    PubMed

    Lawag, Ivan L; Aguinaldo, Alicia M; Naheed, Suad; Mosihuzzaman, Mohammad

    2012-10-31

    Antidesma bunius Spreng. (Phyllantaceae), Averrhoa bilimbi L. (Oxalidaceae), Biophytum sensitivum (L.) DC. (Oxalidaceae), Ceriops tagal (Perr.) C.B. Rob. (Rhizophoraceae), Kyllinga monocephala Rottb. (Cyperaceae), and Rhizophora mucronata Lam. (Rhizophoraceae) are used as remedies to control diabetes. In the present study, these plants were screened for their potential α-glucosidase inhibitory activity. The 80% aqueous ethanolic extracts were screened for their α-glucosidase enzyme inhibitory activity using yeast alpha glucosidase enzyme. Except for A. bilimbi with IC(50) at 519.86±3.07, all manifested a significant enzyme inhibitory activity. R. mucronata manifested the highest activity with IC(50) at 0.08±1.82 μg mL(-1), followed by C. tagal with IC(50) at 0.85±1.46 μg mL(-1) and B. sensitivum with IC(50) at 2.24±1.58 μg mL(-1). This is the first report on the α-glucosidase inhibitory effect of the six Philippine plants; thus, partly defining the mechanism on why these medicinal plants possess antidiabetic properties. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity

    PubMed Central

    Kleberg, Florence I.; Fukai, Tomoki; Gilson, Matthieu

    2014-01-01

    Spike-timing-dependent plasticity (STDP) has been well established between excitatory neurons and several computational functions have been proposed in various neural systems. Despite some recent efforts, however, there is a significant lack of functional understanding of inhibitory STDP (iSTDP) and its interplay with excitatory STDP (eSTDP). Here, we demonstrate by analytical and numerical methods that iSTDP contributes crucially to the balance of excitatory and inhibitory weights for the selection of a specific signaling pathway among other pathways in a feedforward circuit. This pathway selection is based on the high sensitivity of STDP to correlations in spike times, which complements a recent proposal for the role of iSTDP in firing-rate based selection. Our model predicts that asymmetric anti-Hebbian iSTDP exceeds asymmetric Hebbian iSTDP for supporting pathway-specific balance, which we show is useful for propagating transient neuronal responses. Furthermore, we demonstrate how STDPs at excitatory–excitatory, excitatory–inhibitory, and inhibitory–excitatory synapses cooperate to improve the pathway selection. We propose that iSTDP is crucial for shaping the network structure that achieves efficient processing of synchronous spikes. PMID:24847242

  17. Intervention effects of five cations and their correction on hemolytic activity of tentacle extract from the jellyfish Cyanea capillata

    PubMed Central

    2017-01-01

    Cations have generally been reported to prevent jellyfish venom-induced hemolysis through multiple mechanisms by spectrophotometry. Little attention has been paid to the potential interaction between cations and hemoglobin, potentially influencing the antagonistic effect of cations. Here, we explored the effects of five reported cations, La3+, Mn2+, Zn2+, Cu2+ and Fe2+, on a hemolytic test system and the absorbance of hemoglobin, which was further used to measure their effects on the hemolysis of tentacle extract (TE) from the jellyfish Cyanea capillata. All the cations displayed significant dose-dependent inhibitory effects on TE-induced hemolysis with various dissociation equilibrium constant (Kd) values as follows: La3+ 1.5 mM, Mn2+ 93.2 mM, Zn2+ 38.6 mM, Cu2+ 71.9 μM and Fe2+ 32.8 mM. The transparent non-selective pore blocker La3+ did not affect the absorbance of hemoglobin, while Mn2+ reduced it slightly. Other cations, including Zn2+, Cu2+ and Fe2+, greatly decreased the absorbance with Kd values of 35.9, 77.5 and 17.6 mM, respectively. After correction, the inhibitory Kd values were 1.4 mM, 45.8 mM, 128.5 μM and 53.1 mM for La3+, Zn2+, Cu2+ and Fe2+, respectively. Mn2+ did not inhibit TE-induced hemolysis. Moreover, the inhibitory extent at the maximal given dose of all cations except La3+ was also diminished. These corrected results from spectrophotometry were further confirmed by direct erythrocyte counting under microscopy. Our results indicate that the cations, except for La3+, can interfere with the absorbance of hemoglobin, which should be corrected when their inhibitory effects on hemolysis by jellyfish venoms are examined. The variation in the inhibitory effects of cations suggests that the hemolysis by jellyfish venom is mainly attributed to the formation of non-selective cation pore complexes over other potential mechanisms, such as phospholipases A2 (PLA2), polypeptides, protease and oxidation. Blocking the pore-forming complexes may be a primary strategy to improve the in vivo damage and mortality from jellyfish stings due to hemolytic toxicity. PMID:28503385

  18. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents.

    PubMed

    Liu, Jinbing; Wu, Fengyan; Chen, Changhong

    2015-11-15

    Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Novel selective human mitochondrial kinase inhibitors: design, synthesis and enzymatic activity.

    PubMed

    Ciliberti, Nunzia; Manfredini, Stefano; Angusti, Angela; Durini, Elisa; Solaroli, Nicola; Vertuani, Silvia; Buzzoni, Lisa; Bonache, Maria Cruz; Ben-Shalom, Efrat; Karlsson, Anna; Saada, Ann; Balzarini, Jan

    2007-04-15

    Selective and effective TK2 inhibitors can be obtained by introduction of bulky lipophilic chains (acyl or alkyl entities) at the 2' position of araT and BVaraU, nucleoside analogues naturally endowed with a low TK2 affinity. These derivatives showed a competitive inhibitory activity against TK2 in micromolar range. BVaraU nucleoside analogues, modified on the 2'-O-acyl chain with a terminal N-Boc amino-group, conserved or increased the inhibitory activity against TK2 (7l and 7m IC(50): 6.4 and 3.8 microM, respectively). The substitution of an ester for a carboxamide moiety at the 2' position of araT afforded a consistent reduction of the inhibitory activity (25, IC(50): 480 microM). On the contrary, modifications at 2'-OH position of araC and araG, have provided inactive derivatives against TK2 and dGK, respectively. The biological activity of a representative compound, 2'-O-decanoyl-BVaraU, was also investigated in normal human fibroblasts and was found to impair mitochondrial function due to TK2 inhibition.

  20. RGS7/Gβ5/R7BP complex regulates synaptic plasticity and memory by modulating hippocampal GABABR-GIRK signaling

    PubMed Central

    Ostrovskaya, Olga; Xie, Keqiang; Masuho, Ikuo; Fajardo-Serrano, Ana; Lujan, Rafael; Wickman, Kevin; Martemyanov, Kirill A

    2014-01-01

    In the hippocampus, the inhibitory neurotransmitter GABA shapes the activity of the output pyramidal neurons and plays important role in cognition. Most of its inhibitory effects are mediated by signaling from GABAB receptor to the G protein-gated Inwardly-rectifying K+ (GIRK) channels. Here, we show that RGS7, in cooperation with its binding partner R7BP, regulates GABABR-GIRK signaling in hippocampal pyramidal neurons. Deletion of RGS7 in mice dramatically sensitizes GIRK responses to GABAB receptor stimulation and markedly slows channel deactivation kinetics. Enhanced activity of this signaling pathway leads to decreased neuronal excitability and selective disruption of inhibitory forms of synaptic plasticity. As a result, mice lacking RGS7 exhibit deficits in learning and memory. We further report that RGS7 is selectively modulated by its membrane anchoring subunit R7BP, which sets the dynamic range of GIRK responses. Together, these results demonstrate a novel role of RGS7 in hippocampal synaptic plasticity and memory formation. DOI: http://dx.doi.org/10.7554/eLife.02053.001 PMID:24755289

  1. Aldose reductase inhibitory, anti-cataract and antioxidant potential of selected medicinal plants from the Marathwada region, India.

    PubMed

    Gacche, R N; Dhole, N A

    2011-04-01

    The water, ethanol and chloroform extracts of selected plants such as Adhatoda vasica (L.) (Acanthaceae), Caesalpinia bonduc (L.), Cassia fistula (L.) (Caesalpiniaceae) and Biophytum sensitivum (L.) (Oxalidaceae) were evaluated for rat lens aldose reductase inhibitory (RLAR) potential, anti-cataract and antioxidant activities. All the samples inhibited the aldose reductase considerably and exhibited anti-cataract activity, while C. fistula (IC(50), 0.154 mg mL(-1)) showed significant RLAR inhibitory activity as compared to the other tested samples, and was further found to be more effective in maintaining sugar-induced lens opacity in the rat lens model. The antioxidant potential of plant extracts was determined using DPPH (2,2-diphenyl-1-picryl hydrazine), hydroxyl (OH), nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) scavenging activities, along with determination of reducing power, ferrous ion chelating ability and inhibition of polyphenol oxidase (PPO). The extracts of the tested plant showed significant free radical scavenging activities and inhibited the activity of enzyme PPO, a model oxidising enzyme. The plant samples were found to possess considerable amounts of vitamin C, total polyphenols and flavonoids.

  2. Effect of extraction method on the concentrations of selected bioactive compounds in mandarin juice.

    PubMed

    Nogata, Yoichi; Ohta, Hideaki; Sumida, Takashi; Sekiya, Keizo

    2003-12-03

    A mandarin-type citrus fruit, ponkan (Citrus reticulata), was processed by in-line, chopper pulper, and hand-press extractions to investigate the effect of extraction method on the concentrations of bioactive compounds in processed juice. Concentrations of polymethoxylated flavones (tangeretin, nobiletin, and sinensetin) and beta-cryptoxanthin in juice, and inhibitory activities against arachidonate cyclooxygenase and lipoxygenases of the juice extract were analyzed. The juice processed by hand-press extraction contained the largest amounts of nobiletin (3.56 mg/100 mL), tangeretin (4.10 mg/100 mL), and sinensetin (0.13 mg/100 mL). Concentrations of beta-cryptoxanthin were 0.66, 0.59, 0.55, and 0.50 mg/100 mL in chopper pulper, in-line (5/64 in.), in-line (8/64 in.) and hand-press juices, respectively. Both extracts of in-line juices showed greater inhibitory activity toward platelet 12-lipoxygenase than the others. The inhibitory effect of hand-press juice extract on platelet cyclooxygenase activity was remarkable among juice extracts. All juice extracts effectively inhibited polymorphonuclear 5-lipoxygenase activity at nearly the same rate.

  3. [Effect of non-selective alpha-adrenergic receptor antagonist nicergoline on the activity of neurons in the ventral lateral thalamic nucleus].

    PubMed

    Lukhanina, O P; Pil'kevych, N A

    2005-01-01

    In experiments on rats microionophoretic administration of nicergoline mainly showed the dual effect on the background activity of the ventrolateral thalamic nucleus (VL) neurons and their reactions evoked by the superior cerebellum peduncle stimulation: inhibitory under weak (2-10 nA) and excitatory under stronger (20-40 nA) currents. Microionophoresis (25 nA) of nicergoline led to decrease of the postexcitatory inhibitory processes during paired stimulation of the cerebellum fibers. Paired-pulse ratio (number of spikes in the short-latency neuronal responses elicited by the second pulse/number of spikes by the first pulse) increased, which support a presynaptic mode of drug action. Hence excitatory effect of nicergoline may be related to the blockade of the presynaptic alpha2-receptors, while inhibitory effect by the blockade of the postsynaptic alphal-receptors. Present data reveal the essential participation of the alpha-adrenoreceptor system in the modulation of background and evoked neuronal activity of the motor thalamus. The possible role of noradrenergic denervation in the development of movement disorders accompanying Parkinson's disease is discussed.

  4. Effect of (E)-5-(2-bromovinyl)-2'-deoxyuridine on several parameters of Epstein-Barr virus infection.

    PubMed

    Zhang, Z X; Liu, Y X; Chen, H C; Allaudeen, H S; De Clercq, E

    1984-01-01

    The selective and potent anti-herpesvirus drug, (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVdU), has been examined for its inhibitory effects on several parameters of Epstein-Barr virus (EBV) infection in the lymphoblastoid cell lines Raji, P3HR-1, B-95-8 and P3 hybrid cells (a human embryo oropharyngeal cell line fused with a nasopharyngeal carcinoma cell line). At a dosage of 0.03 to 0.1 mM, BVdU caused a marked inhibition of (i) spontaneous viral capsid antigen (VCA) expression in B-95-8 and P3 hybrid cells, (ii) VCA expression and DNA synthesis in B-95-8 cells induced with croton oil and n-butyrate, (iii) early antigen (EA) expression and DNA synthesis in Raji cells superinfected with EBV, and (iv) VCA expression and DNA synthesis in B-95-8 cells superinfected with EBV. In its inhibitory effects on these various parameters of EBV infection, BVdU appears to be comparable to acyclovir [9-(2-hydroxyethoxymethyl)guanine], another selective anti-herpesvirus drug which has been previously recognized as an effective inhibitor of EBV replication.

  5. Effect of Heterogeneity on Decorrelation Mechanisms in Spiking Neural Networks: A Neuromorphic-Hardware Study

    NASA Astrophysics Data System (ADS)

    Pfeil, Thomas; Jordan, Jakob; Tetzlaff, Tom; Grübl, Andreas; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz

    2016-04-01

    High-level brain function, such as memory, classification, or reasoning, can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy-efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad, heavy-tailed firing-rate distributions. In line with former studies, cell heterogeneities reduce shared-input correlations. Overall, however, correlations in the recurrent system can increase with the level of heterogeneity as a consequence of diminished effective negative feedback.

  6. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.

    PubMed

    Murphy-Baum, Benjamin L; Taylor, W Rowland

    2015-09-30

    Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the strength and speed of excitation on both local and wide-field spatial scales. This study demonstrates how different synaptic inputs are regulated to tune a neuron to respond to specific features in the visual scene. Copyright © 2015 the authors 0270-6474/15/3513336-15$15.00/0.

  7. Inhibitory effects of Agaricus blazei extracts on human myeloid leukemia cells.

    PubMed

    Kim, Chi-Fai; Jiang, Jing-Jing; Leung, Kwok-Nam; Fung, Kwok-Pui; Lau, Clara Bik-San

    2009-03-18

    Agaricus blazei has been used as an adjuvant in cancer chemotherapy and is found to inhibit the growth of various types of tumor cells. Our study has adopted a systematic and bioassay-guided approach to optimize the extraction of Agaricus blazei for anti-leukemic bioactive components. The tumor-selective growth inhibitory activity of the extracts on leukemic cell lines was evaluated in vitro and in vivo using tumor-bearing nude mice. Agaricus blazei extracts were prepared using different methods. MTT and tritiated thymidine incorporation assays were used to evaluate the in vitro anti-leukemic effects. The most potent extract was further investigated using NB-4 cells-bearing nude mice and mechanistic studies using DNA fragmentation assay and cell death detection ELISA. The JAB80E70 extract showed the most potent tumor-selective growth inhibitory activity against human leukemia NB-4 and K-562 cells. This is the first report of anti-leukemic activity of JAB80E70 in athymic nude mice bearing NB-4 cells. Using DNA fragmentation assays and cell death detection ELISA, JAB80E70 was found to induce apoptosis in NB-4 cells. However, the polysaccharide enriched fractions failed to show significant cytotoxicity on NB-4 cells in vitro. The JAB80E70 extract exhibited potent anti-leukemic effect in vitro and in vivo. The effect can be attributed, at least in part, to the induction of apoptosis. Besides, polysaccharides in Agaricus blazei may not possess direct anti-leukemic activity in vitro.

  8. Music training relates to the development of neural mechanisms of selective auditory attention.

    PubMed

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Target selection biases from recent experience transfer across effectors.

    PubMed

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.

  10. The effect of domain-general inhibition-related training on language switching: An ERP study.

    PubMed

    Liu, Huanhuan; Liang, Lijuan; Dunlap, Susan; Fan, Ning; Chen, Baoguo

    2016-01-01

    Previous studies have demonstrated that inhibitory control ability could be improved by training, and the Inhibitory Control (IC) Model implies that enhanced domain-general inhibition may elicit certain changes in language switch costs. In the present study, we aimed to examine the effects of domain-general inhibition training on performance in a language switching task, including which phase of domain-general inhibitory control benefits from training during an overt picture naming task in L1 and L2, using the event-related brain potentials (ERPs). Results showed that the language switch costs of bilinguals with high inhibitory control (high-IC) were symmetrical in both pretest and posttest, and those of bilinguals with low inhibitory control (low-IC) were asymmetrical in the pretest, but symmetrical in the posttest. Moreover, the high-IC group showed a larger LPC (late positive component) for L2 switch trials than for L1 trials in both pretest and posttest. In contrast, the low-IC group only exhibited a similar pattern of LPC in the posttest, but not in the pretest. These results indicate that inhibition training could increase the efficiency of language switching, and inhibitory control may play a key role during the lexical selection response phase. Overall, the present study is the first one to provide electrophysiological evidence for individual differences in the domain-general inhibition impact on language switching performance in low-proficient bilinguals. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    PubMed Central

    Segura-Campos, Maira R.; Peralta-González, Fanny; Castellanos-Ruelas, Arturo; Chel-Guerrero, Luis A.; Betancur-Ancona, David A.

    2013-01-01

    Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides' inhibitory potency. The 5–10 and <1 kDa fractions were selected for further fractionation by gel filtration chromatography. ACE inhibitory activity (%) ranged from 22.66 to 45.96% with the 5–10 kDa ultrafiltered fraction and from 36.91 to 55.83% with the <1 kDa ultrafiltered fraction. The highest ACE inhibitory activity was observed in F2 (IC50 = 6.7 μg/mL) from the 5–10 kDa fraction and F1 (IC50 = 4.78 μg/mL) from the <1 kDa fraction. ACE inhibitory fractions from Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. PMID:24224169

  12. Dual inhibition of nitric oxide and prostaglandin E2 production by polysubstituted 2-aminopyrimidines.

    PubMed

    Zídek, Zdeněk; Kverka, Miloslav; Dusilová, Adéla; Kmoníčková, Eva; Jansa, Petr

    2016-07-01

    The present in vitro experiments demonstrate inhibitory effects of polysubstituted 2-aminopyrimidines on high output production of nitric oxide (NO) and prostaglandin E2 (PGE2) stimulated by interferon-γ and lipopolysaccharide (LPS) in peritoneal macrophages of mouse and rat origin. PGE2 production was inhibited also in LPS-activated human peripheral blood mononuclear cells. A tight dependence of the suppressive activities on chemical structure of pyrimidines was observed. Derivatives containing hydroxyl groups at the C-4 and C-6 positions of pyrimidine ring were devoid of any influence on NO and PGE2. Remarkable inhibitory potential was acquired by the replacement of hydroxyl groups with chlorine, the 4,6-dichloro derivatives being more effective than the monochloro analogues. The effects were further intensified by modification of the amino group at the C-2 position, changing it to the (N,N-dimethylamino)methyleneamino or the formamido ones. There was no substantial difference in the expression of NO-inhibitory effects among derivatives containing distinct types of substituents at the C-5 position (hydrogen, methyl, ethyl, propyl, butyl, phenyl, and benzyl). In contrast to NO, larger substituents then methyl were required to inhibit PGE2 production. Overall, no significant correlation between the extent of NO and PGE2 suppression was observed. The IC50s of derivatives with the strongest effects on both NO and PGE2 were within the range of 2-10 μM. Their NO-inhibitory potential of pyrimidines was stronger than that of non-steroidal anti-inflammatory drugs (NSAIDs) aspirin and indomethacin. The PGE2-inhibitory effectiveness of pyrimidines was about the same as that of aspirin, but weaker as compared to indomethacin. The NO- and PGE2-inhibitory activity of tested pyrimidines has been found associated with decreased expression of iNOS mRNA and COX-2 mRNA, respectively, and with post-translation interactions. Selected NO-/PGE2-inhibitory derivatives decreased severity of intestinal inflammation in murine model of ulcerative colitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Molecular dynamics guided development of indole based dual inhibitors of EGFR (T790M) and c-MET.

    PubMed

    Singh, Pankaj Kumar; Silakari, Om

    2018-04-25

    Secondary acquired mutation in EGFR, i.e. EGFR T790M and amplification of c-MET form the two key components of resistant NSCLC. Thus, previously published pharmacophore models of EGFR T790M and c-MET were utilized to screen an in-house database. On the basis of fitness score, indole-pyrimidine scaffold was selected for further evaluation. Derivatives of indole-pyrimidine scaffold with variedly substituted aryl substitutions were sketched and then docked in both the targets. These docked complexes were then subjected to molecular dynamic simulations, to study the stability of the complexes and evaluate orientations of the designed molecules in the catalytic domain of the selected kinases. Afterwards, the complexes were subjected to MM-GBSA calculation, to study the effect of substitutions on binding affinity of double mutant EGFR towards these small molecules. Finally, the designed molecules were synthesized and evaluated for their inhibitory potential against both the kinases using in vitro experiments. Additionally, the compounds were also evaluated against EGFR (L858R) to determine their selectivity towards double mutant, resistant kinase [EGFR (T790M)]. Compound 7a and 7c were found to be possess nanomolar range inhibitory (IC 50 ) potential against EGFR (T790M), 7 h showed good inhibitory potential against c-MET with IC 50 value of 0.101 µM. Overall, this work is one of the earliest report of compounds having significant dual inhibitory potential against secondary acquired EGFR and cMET, with IC 50 values in nanomolar range. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Subliminal unconscious conflict alpha power inhibits supraliminal conscious symptom experience.

    PubMed

    Shevrin, Howard; Snodgrass, Michael; Brakel, Linda A W; Kushwaha, Ramesh; Kalaida, Natalia L; Bazan, Ariane

    2013-01-01

    Our approach is based on a tri-partite method of integrating psychodynamic hypotheses, cognitive subliminal processes, and psychophysiological alpha power measures. We present ten social phobic subjects with three individually selected groups of words representing unconscious conflict, conscious symptom experience, and Osgood Semantic negative valence words used as a control word group. The unconscious conflict and conscious symptom words, presented subliminally and supraliminally, act as primes preceding the conscious symptom and control words presented as supraliminal targets. With alpha power as a marker of inhibitory brain activity, we show that unconscious conflict primes, only when presented subliminally, have a unique inhibitory effect on conscious symptom targets. This effect is absent when the unconscious conflict primes are presented supraliminally, or when the target is the control words. Unconscious conflict prime effects were found to correlate with a measure of repressiveness in a similar previous study (Shevrin et al., 1992, 1996). Conscious symptom primes have no inhibitory effect when presented subliminally. Inhibitory effects with conscious symptom primes are present, but only when the primes are supraliminal, and they did not correlate with repressiveness in a previous study (Shevrin et al., 1992, 1996). We conclude that while the inhibition following supraliminal conscious symptom primes is due to conscious threat bias, the inhibition following subliminal unconscious conflict primes provides a neurological blueprint for dynamic repression: it is only activated subliminally by an individual's unconscious conflict and has an inhibitory effect specific only to the conscious symptom. These novel findings constitute neuroscientific evidence for the psychoanalytic concepts of unconscious conflict and repression, while extending neuroscience theory and methods into the realm of personal, psychological meaning.

  15. Subliminal unconscious conflict alpha power inhibits supraliminal conscious symptom experience

    PubMed Central

    Shevrin, Howard; Snodgrass, Michael; Brakel, Linda A. W.; Kushwaha, Ramesh; Kalaida, Natalia L.; Bazan, Ariane

    2013-01-01

    Our approach is based on a tri-partite method of integrating psychodynamic hypotheses, cognitive subliminal processes, and psychophysiological alpha power measures. We present ten social phobic subjects with three individually selected groups of words representing unconscious conflict, conscious symptom experience, and Osgood Semantic negative valence words used as a control word group. The unconscious conflict and conscious symptom words, presented subliminally and supraliminally, act as primes preceding the conscious symptom and control words presented as supraliminal targets. With alpha power as a marker of inhibitory brain activity, we show that unconscious conflict primes, only when presented subliminally, have a unique inhibitory effect on conscious symptom targets. This effect is absent when the unconscious conflict primes are presented supraliminally, or when the target is the control words. Unconscious conflict prime effects were found to correlate with a measure of repressiveness in a similar previous study (Shevrin et al., 1992, 1996). Conscious symptom primes have no inhibitory effect when presented subliminally. Inhibitory effects with conscious symptom primes are present, but only when the primes are supraliminal, and they did not correlate with repressiveness in a previous study (Shevrin et al., 1992, 1996). We conclude that while the inhibition following supraliminal conscious symptom primes is due to conscious threat bias, the inhibition following subliminal unconscious conflict primes provides a neurological blueprint for dynamic repression: it is only activated subliminally by an individual's unconscious conflict and has an inhibitory effect specific only to the conscious symptom. These novel findings constitute neuroscientific evidence for the psychoanalytic concepts of unconscious conflict and repression, while extending neuroscience theory and methods into the realm of personal, psychological meaning. PMID:24046743

  16. Flavonoids of Cynara scolymus possess potent xanthinoxidase inhibitory activity in vitro but are devoid of hypouricemic effects in rats after oral application.

    PubMed

    Sarawek, Sasiporn; Feistel, Bjoern; Pischel, Ivo; Butterweck, Veronika

    2008-02-01

    Artichoke (Cynara scolymus L.) leaves have been historically used for the treatment of hyperuricemia and gout, however whether artichoke is truly efficacious for this indication, is still a matter of debate. Thus, the goal of the present study was first to examine the xanthine oxidase (XO) inhibitory activity of an artichoke leaf extract (ALE) and some of its main compounds in vitro and then further test potentially active substances for possible hypouricemic effects using an in vivo rat model. The in vitro study showed that ALE inhibited XO with only minimal inhibitory action (< 5 %) at 100 microg/mL. However, when selected compounds were tested, the caffeic acid derivatives revealed a weak XO inhibitory effect with IC (50) > 100 microM. From the tested flavones the aglycone luteolin potently inhibited XO with an IC (50) value of 1.49 microM. Luteolin 7-O-glucoside and luteolin 7-O-glucuronide showed lower XO inhibition activities with IC (50) values of 19.90 microM and 20.24 microM, respectively. However, oral administration of an aqueous ALE, luteolin, and luteolin 7-O-glucoside did not produce any observable hypouricemic effects after acute oral treatment in potassium oxonate-treated rats. After intraperitoneal injection of luteolin a decrease in uric acid levels was detected suggesting that the hypouricemic effects of luteolin are due to its original form rather than its metabolites produced by the gut flora. In conclusion, an aqueous ALE, caffeic acid derivatives and flavones exerted XO inhibitory effects in vitro but a hypouricemic activity could not be confirmed after oral administration.

  17. Phytochemical composition and in vitro anti-tumour activities of selected tomato varieties.

    PubMed

    Ramos-Bueno, Rebeca P; Romero-González, Roberto; González-Fernández, María J; Guil-Guerrero, José L

    2017-01-01

    Previous studies indicated that tomato is a rich source of phytochemicals that act on different tumours. In this research, the phytochemical composition of selected tomato varieties was assessed by GLC and UHPLC/HPLC-MS, as well as their anti-tumour activities on HT-29 colorectal cancer cells. Significant differences were found among tomato varieties; lycopene was high in Racimo, phenolics in Pera, sterols in Cherry, and linoleic acid predominated in all varieties. The MTT and LDH assays showed significant time- and concentration-dependent inhibitory/cytotoxic effects of all tomato varieties on HT-29 cells. Furthermore, the joint addition of tomato carotenoids and olive oil to HT-29 cell cultures induced inhibitory effects significantly higher than those obtained from each of them acting separately, while no actions were exercised in CCD-18 normal cells. Tomato fruits constitute a healthy source of phytochemicals, although differences exist among varieties. In vitro, all of them inhibit colorectal cancer cell proliferation with Racimo variety at the top, and exercising a selective action on cancer cells by considering the lack of effects on CCD-18 cells. Furthermore, synergy was observed between olive oil and tomato carotenoids in inhibiting HT-29 cancer cell proliferation; conversely, phenolics showed no significant effects and hindered carotenoids actions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS.

    PubMed

    Li, Fulan; Guo, Huaming; Zhou, Xiaoqian; Zhao, Kai; Shen, Jiaxing; Liu, Fei; Wei, Chao

    2017-02-01

    High arsenic (As) groundwater usually has high concentrations of natural organic matter (NOM). Effects of NOM on arsenic adsorption were investigated to evaluate the efficiency of modified granular natural siderite (MGNS) as an adsorbent for groundwater arsenic remediation. Humic and fulvic acids (HA/FA) were selected as model NOM compounds. In batch tests, HA or FA was either first adsorbed onto the MGNS, or applied together with dissolved arsenic to investigate effects of both adsorbed and dissolved NOM on arsenic removal. The kinetic data showed no significant effects of both adsorbed and dissolved HA/FA on As(III) adsorption. However, As(V) removal was inhibited, whereby the adsorbed NOM compounds had greater inhibitory effect. The inhibitory effect on As(V) removal increased with increasing NOM concentrations. FA exhibited higher inhibitory effect than HA at the same concentration. Steric Exclusion Chromatography-HPLC (SEC-HPLC), and High-Performance Size Exclusion Chromatography-UV-Inductively Coupled Plasma Mass Spectrometry (HPSEC-UV-ICP-MS) revealed that As(V) removal was mostly achieved by the oxyanion adsorption and adversely affected by dissolved FA via competitive adsorption for surface sites. In addition to oxyanion adsorption, removal of As(V) was related to scavenging of ternary HA-As-Fe complexes, which led to the less inhibitory effect of dissolved HA on As(V) removal than dissolved FA via competitive adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Retrieval from Episodic Memory: Neural Mechanisms of Interference Resolution

    ERIC Educational Resources Information Center

    Wimber, Maria; Rutschmann, Roland Marcus; Greenlee, Mark W.; Bauml, Karl-Heinz

    2009-01-01

    Selectively retrieving a target memory among related memories requires some degree of inhibitory control over interfering and competing memories, a process assumed to be supported by inhibitory mechanisms. Evidence from behavioral studies suggests that such inhibitory control can lead to subsequent forgetting of the interfering information, a…

  20. Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex

    PubMed Central

    Li, Ya-tang; Liu, Bao-hua; Chou, Xiao-lin; Zhang, Li I.

    2015-01-01

    In the primary visual cortex (V1), orientation-selective neurons can be categorized into simple and complex cells primarily based on their receptive field (RF) structures. In mouse V1, although previous studies have examined the excitatory/inhibitory interplay underlying orientation selectivity (OS) of simple cells, the synaptic bases for that of complex cells have remained obscure. Here, by combining in vivo loose-patch and whole-cell recordings, we found that complex cells, identified by their overlapping on/off subfields, had significantly weaker OS than simple cells at both spiking and subthreshold membrane potential response levels. Voltage-clamp recordings further revealed that although excitatory inputs to complex and simple cells exhibited a similar degree of OS, inhibition in complex cells was more narrowly tuned than excitation, whereas in simple cells inhibition was more broadly tuned than excitation. The differential inhibitory tuning can primarily account for the difference in OS between complex and simple cells. Interestingly, the differential synaptic tuning correlated well with the spatial organization of synaptic input: the inhibitory visual RF in complex cells was more elongated in shape than its excitatory counterpart and also was more elongated than that in simple cells. Together, our results demonstrate that OS of complex and simple cells is differentially shaped by cortical inhibition based on its orientation tuning profile relative to excitation, which is contributed at least partially by the spatial organization of RFs of presynaptic inhibitory neurons. SIGNIFICANCE STATEMENT Simple and complex cells, two classes of principal neurons in the primary visual cortex (V1), are generally thought to be equally selective for orientation. In mouse V1, we report that complex cells, identified by their overlapping on/off subfields, has significantly weaker orientation selectivity (OS) than simple cells. This can be primarily attributed to the differential tuning selectivity of inhibitory synaptic input: inhibition in complex cells is more narrowly tuned than excitation, whereas in simple cells inhibition is more broadly tuned than excitation. In addition, there is a good correlation between inhibitory tuning selectivity and the spatial organization of inhibitory inputs. These complex and simple cells with differential degree of OS may provide functionally distinct signals to different downstream targets. PMID:26245969

  1. Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex.

    PubMed

    Li, Ya-tang; Liu, Bao-hua; Chou, Xiao-lin; Zhang, Li I; Tao, Huizhong W

    2015-08-05

    In the primary visual cortex (V1), orientation-selective neurons can be categorized into simple and complex cells primarily based on their receptive field (RF) structures. In mouse V1, although previous studies have examined the excitatory/inhibitory interplay underlying orientation selectivity (OS) of simple cells, the synaptic bases for that of complex cells have remained obscure. Here, by combining in vivo loose-patch and whole-cell recordings, we found that complex cells, identified by their overlapping on/off subfields, had significantly weaker OS than simple cells at both spiking and subthreshold membrane potential response levels. Voltage-clamp recordings further revealed that although excitatory inputs to complex and simple cells exhibited a similar degree of OS, inhibition in complex cells was more narrowly tuned than excitation, whereas in simple cells inhibition was more broadly tuned than excitation. The differential inhibitory tuning can primarily account for the difference in OS between complex and simple cells. Interestingly, the differential synaptic tuning correlated well with the spatial organization of synaptic input: the inhibitory visual RF in complex cells was more elongated in shape than its excitatory counterpart and also was more elongated than that in simple cells. Together, our results demonstrate that OS of complex and simple cells is differentially shaped by cortical inhibition based on its orientation tuning profile relative to excitation, which is contributed at least partially by the spatial organization of RFs of presynaptic inhibitory neurons. Simple and complex cells, two classes of principal neurons in the primary visual cortex (V1), are generally thought to be equally selective for orientation. In mouse V1, we report that complex cells, identified by their overlapping on/off subfields, has significantly weaker orientation selectivity (OS) than simple cells. This can be primarily attributed to the differential tuning selectivity of inhibitory synaptic input: inhibition in complex cells is more narrowly tuned than excitation, whereas in simple cells inhibition is more broadly tuned than excitation. In addition, there is a good correlation between inhibitory tuning selectivity and the spatial organization of inhibitory inputs. These complex and simple cells with differential degree of OS may provide functionally distinct signals to different downstream targets. Copyright © 2015 the authors 0270-6474/15/3511081-13$15.00/0.

  2. Evaluation of chitosans and Pichia guillermondii as growth inhibitors of Penicillium digitatum.

    PubMed

    Pacheco, Neith; Larralde-Corona, C Patricia; Sepulveda, Jose; Trombotto, Stéphan; Domard, Alain; Shirai, Keiko

    2008-07-01

    Chitosans were obtained by room-temperature-homogeneous-deacetylation (RTHD) and freeze-pump-out-thaw-heterogeneous-deacetylation (FPT) from chitins purified from fermentations. Commercial chitosan was deacetylated by three-FPT-cycles. Chitosans and Pichia guillermondii were evaluated on the growth of Penicillium digitatum. Medium molecular weight (M(W)) chitosans displayed higher inhibitory activity against the yeast than low M(W) biopolymers. Chitosans with low degree of acetylation (DA) were inhibitory for yeast and mould. Therefore, a low M(W) and high DA chitosan was selected for use against moulds combined with yeasts. Biopolymer and yeasts presented an additive effect, since chitosans were effective to delay spore germination, whereas yeast decreased apical fungal growth.

  3. Inhibitory ryanodine prevents ryanodine receptor-mediated Ca²⁺ release without affecting endoplasmic reticulum Ca²⁺ content in primary hippocampal neurons.

    PubMed

    Adasme, Tatiana; Paula-Lima, Andrea; Hidalgo, Cecilia

    2015-02-27

    Ryanodine is a cell permeant plant alkaloid that binds selectively and with high affinity to ryanodine receptor (RyR) Ca(2+) release channels. Sub-micromolar ryanodine concentrations activate RyR channels while micromolar concentrations are inhibitory. Several reports indicate that neuronal synaptic plasticity, learning and memory require RyR-mediated Ca(2+)-release, which is essential for muscle contraction. The use of micromolar (inhibitory) ryanodine represents a common strategy to suppress RyR activity in neuronal cells: however, micromolar ryanodine promotes RyR-mediated Ca(2+) release and endoplasmic reticulum Ca(2+) depletion in muscle cells. Information is lacking in this regard in neuronal cells; hence, we examined here if addition of inhibitory ryanodine elicited Ca(2+) release in primary hippocampal neurons, and if prolonged incubation of primary hippocampal cultures with inhibitory ryanodine affected neuronal ER calcium content. Our results indicate that inhibitory ryanodine does not cause Ca(2+) release from the ER in primary hippocampal neurons, even though ryanodine diffusion should produce initially low intracellular concentrations, within the RyR activation range. Moreover, neurons treated for 1 h with inhibitory ryanodine had comparable Ca(2+) levels as control neurons. These combined findings imply that prolonged incubation with inhibitory ryanodine, which effectively abolishes RyR-mediated Ca(2+) release, preserves ER Ca(2+) levels and thus constitutes a sound strategy to suppress neuronal RyR function. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. PTP1B inhibitory secondary metabolites from marine-derived fungal strains Penicillium spp. and Eurotium sp.

    PubMed

    Sohn, Jae Hak; Lee, Yu-Ri; Lee, Dong-Sung; Kim, Youn-Chul; Oh, Hyuncheol

    2013-09-28

    The selective inhibition of PTP1B has been widely recognized as a potential drug target for the treatment of type 2 diabetes and obesity. In the course of screening for PTP1B inhibitory fungal metabolites, the organic extracts of several fungal species isolated from marine environments were found to exhibit significant inhibitory effects, and the bioassay-guided investigation of these extracts resulted in the isolation of fructigenine A (1), cyclopenol (2), echinulin (3), flavoglaucin (4), and viridicatol (5). The structures of these compounds were determined mainly by analysis of NMR and MS data. These compounds inhibited PTP1B activity with 50% inhibitory concentration values of 10.7, 30.0, 29.4, 13.4, and 64.0 micrometer, respectively. Furthermore, the kinetic analysis of PTP1B inhibition by compounds 1 and 5 suggested that compound 1 inhibited PTP1B activity in a noncompetitive manner, whereas compound 5 inhibited PTP1B activity in a competitive manner.

  5. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics

    PubMed Central

    Sale, Martin V.; Lord, Anton; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B.

    2015-01-01

    Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs. PMID:25717162

  6. Lexical precision in skilled readers: Individual differences in masked neighbor priming.

    PubMed

    Andrews, Sally; Hersch, Jolyn

    2010-05-01

    Two experiments investigated the relationship between masked form priming and individual differences in reading and spelling proficiency among university students. Experiment 1 assessed neighbor priming for 4-letter word targets from high- and low-density neighborhoods in 97 university students. The overall results replicated previous evidence of facilitatory neighborhood priming only for low-neighborhood words. However, analyses including measures of reading and spelling proficiency as covariates revealed that better spellers showed inhibitory priming for high-neighborhood words, while poorer spellers showed facilitatory priming. Experiment 2, with 123 participants, replicated the finding of stronger inhibitory neighbor priming in better spellers using 5-letter words and distinguished facilitatory and inhibitory components of priming by comparing neighbor primes with ambiguous and unambiguous partial-word primes (e.g., crow#, cr#wd, crown CROWD). The results indicate that spelling ability is selectively associated with inhibitory effects of lexical competition. The implications for theories of visual word recognition and the lexical quality hypothesis of reading skill are discussed.

  7. Impaired Facilitatory Mechanisms of Auditory Attention After Damage of the Lateral Prefrontal Cortex.

    PubMed

    Bidet-Caulet, Aurélie; Buchanan, Kelly G; Viswanath, Humsini; Black, Jessica; Scabini, Donatella; Bonnet-Brilhault, Frédérique; Knight, Robert T

    2015-11-01

    There is growing evidence that auditory selective attention operates via distinct facilitatory and inhibitory mechanisms enabling selective enhancement and suppression of sound processing, respectively. The lateral prefrontal cortex (LPFC) plays a crucial role in the top-down control of selective attention. However, whether the LPFC controls facilitatory, inhibitory, or both attentional mechanisms is unclear. Facilitatory and inhibitory mechanisms were assessed, in patients with LPFC damage, by comparing event-related potentials (ERPs) to attended and ignored sounds with ERPs to these same sounds when attention was equally distributed to all sounds. In control subjects, we observed 2 late frontally distributed ERP components: a transient facilitatory component occurring from 150 to 250 ms after sound onset; and an inhibitory component onsetting at 250 ms. Only the facilitatory component was affected in patients with LPFC damage: this component was absent when attending to sounds delivered in the ear contralateral to the lesion, with the most prominent decreases observed over the damaged brain regions. These findings have 2 important implications: (i) they provide evidence for functionally distinct facilitatory and inhibitory mechanisms supporting late auditory selective attention; (ii) they show that the LPFC is involved in the control of the facilitatory mechanisms of auditory attention. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. A Rapid Screen for Host-Encoded miRNAs with Inhibitory Effects against Ebola Virus Using a Transcription- and Replication-Competent Virus-Like Particle System.

    PubMed

    Wang, Zhongyi; Li, Jiaming; Fu, Yingying; Zhao, Zongzheng; Zhang, Chunmao; Li, Nan; Li, Jingjing; Cheng, Hongliang; Jin, Xiaojun; Lu, Bing; Guo, Zhendong; Qian, Jun; Liu, Linna

    2018-05-16

    MicroRNAs (miRNAs) may become efficient antiviral agents against the Ebola virus (EBOV) targeting viral genomic RNAs or transcripts. We previously conducted a genome-wide search for differentially expressed miRNAs during viral replication and transcription. In this study, we established a rapid screen for miRNAs with inhibitory effects against EBOV using a tetracistronic transcription- and replication-competent virus-like particle (trVLP) system. This system uses a minigenome comprising an EBOV leader region, luciferase reporter, VP40, GP, VP24, EBOV trailer region, and three noncoding regions from the EBOV genome and can be used to model the life cycle of EBOV under biosafety level (BSL) 2 conditions. Informatic analysis was performed to select up-regulated miRNAs targeting the coding regions of the minigenome with the highest binding energy to perform inhibitory effect screening. Among these miRNAs, miR-150-3p had the most significant inhibitory effect. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and double fluorescence reporter experiments demonstrated that miR-150-3p inhibited the reproduction of trVLPs via the regulation of GP and VP40 expression by directly targeting the coding regions of GP and VP40. This novel, rapid, and convenient screening method will efficiently facilitate the exploration of miRNAs against EBOV under BSL-2 conditions.

  9. Cognitive Deficits in Calsyntenin-2-deficient Mice Associated with Reduced GABAergic Transmission

    PubMed Central

    Lipina, Tatiana V; Prasad, Tuhina; Yokomaku, Daisaku; Luo, Lin; Connor, Steven A; Kawabe, Hiroshi; Wang, Yu Tian; Brose, Nils; Roder, John C; Craig, Ann Marie

    2016-01-01

    Calsyntenin-2 has an evolutionarily conserved role in cognition. In a human genome-wide screen, the CLSTN2 locus was associated with verbal episodic memory, and expression of human calsyntenin-2 rescues the associative learning defect in orthologous Caenorhabditis elegans mutants. Other calsyntenins promote synapse development, calsyntenin-1 selectively of excitatory synapses and calsyntenin-3 of excitatory and inhibitory synapses. We found that targeted deletion of calsyntenin-2 in mice results in a selective reduction in functional inhibitory synapses. Reduced inhibitory transmission was associated with a selective reduction of parvalbumin interneurons in hippocampus and cortex. Clstn2−/− mice showed normal behavior in elevated plus maze, forced swim test, and novel object recognition assays. However, Clstn2−/− mice were hyperactive in the open field and showed deficits in spatial learning and memory in the Morris water maze and Barnes maze. These results confirm a function for calsyntenin-2 in cognitive performance and indicate an underlying mechanism that involves parvalbumin interneurons and aberrant inhibitory transmission. PMID:26171716

  10. The Emotional Gatekeeper: A Computational Model of Attentional Selection and Suppression through the Pathway from the Amygdala to the Inhibitory Thalamic Reticular Nucleus

    PubMed Central

    Bullock, Daniel; Barbas, Helen

    2016-01-01

    In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective ‘framing’ effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders. PMID:26828203

  11. Network models of frequency modulated sweep detection.

    PubMed

    Skorheim, Steven; Razak, Khaleel; Bazhenov, Maxim

    2014-01-01

    Frequency modulated (FM) sweeps are common in species-specific vocalizations, including human speech. Auditory neurons selective for the direction and rate of frequency change in FM sweeps are present across species, but the synaptic mechanisms underlying such selectivity are only beginning to be understood. Even less is known about mechanisms of experience-dependent changes in FM sweep selectivity. We present three network models of synaptic mechanisms of FM sweep direction and rate selectivity that explains experimental data: (1) The 'facilitation' model contains frequency selective cells operating as coincidence detectors, summing up multiple excitatory inputs with different time delays. (2) The 'duration tuned' model depends on interactions between delayed excitation and early inhibition. The strength of delayed excitation determines the preferred duration. Inhibitory rebound can reinforce the delayed excitation. (3) The 'inhibitory sideband' model uses frequency selective inputs to a network of excitatory and inhibitory cells. The strength and asymmetry of these connections results in neurons responsive to sweeps in a single direction of sufficient sweep rate. Variations of these properties, can explain the diversity of rate-dependent direction selectivity seen across species. We show that the inhibitory sideband model can be trained using spike timing dependent plasticity (STDP) to develop direction selectivity from a non-selective network. These models provide a means to compare the proposed synaptic and spectrotemporal mechanisms of FM sweep processing and can be utilized to explore cellular mechanisms underlying experience- or training-dependent changes in spectrotemporal processing across animal models. Given the analogy between FM sweeps and visual motion, these models can serve a broader function in studying stimulus movement across sensory epithelia.

  12. Docosahexaenoic acid, G protein-coupled receptors, and melanoma: is G protein-coupled receptor 40 a potential therapeutic target?

    PubMed

    Nehra, Deepika; Pan, Amy H; Le, Hau D; Fallon, Erica M; Carlson, Sarah J; Kalish, Brian T; Puder, Mark

    2014-05-15

    To determine the effect of docosahexaenoic acid (DHA) on the growth of human melanoma in vitro and in vivo and to better understand the potential role of the G protein-coupled receptors (GPRs) in mediating this effect. For in vitro studies, human melanoma and control fibroblast cells were treated with DHA and TAK-875 (selective GPR40 agonist) and a cell viability assay was performed to determine cell counts. A murine subcutaneous xenograft model of human melanoma was used to test the effect of dietary treatment with an omega-3 fatty acid (FA) rich diet compared with an omega-6 FA rich diet on the growth of human melanoma in vivo. A similar animal model was used to test the effect of oral TAK-875 on the growth of established melanoma tumors in vivo. DHA has an inhibitory effect on the growth of human melanoma both in vitro and in vivo. Tumors from animals on the omega-3 FA rich diet were 69% smaller in weight (P = 0.005) and 76% smaller in volume compared with tumors from animals on the omega-6 FA rich diet. TAK-875 has an inhibitory effect on the growth of human melanoma both in vitro and in vivo. Tumors from animals treated with TAK-875 were 46% smaller in weight (P = 0.07), 62% smaller in volume (P = 0.03), and grew 77% slower (P = 0.04) compared with the placebo group. DHA and TAK-875 have a profound and selective inhibitory effect on the growth of human melanoma both in vitro and in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Inhibitory Effects on Response Force in the Stop-Signal Paradigm

    ERIC Educational Resources Information Center

    Ko, Yao-Ting; Alsford, Toni; Miller, Jeff

    2012-01-01

    The forcefulness of key press responses was measured in stop-all and selective stopping versions of the stop-signal paradigm. When stop signals were presented too late for participants to succeed in stopping their responses, response force was nonetheless reduced relative to trials in which no stop signal was presented. This effect shows that…

  14. Cholinesterase inhibitory activity and chemical constituents of Stenochlaena palustris fronds at two different stages of maturity.

    PubMed

    Chear, Nelson Jeng-Yeou; Khaw, Kooi-Yeong; Murugaiyah, Vikneswaran; Lai, Choon-Sheen

    2016-04-01

    Stenochlaena palustris fronds are popular as a vegetable in Southeast Asia. The objectives of this study were to evaluate the anticholinesterase properties and phytochemical profiles of the young and mature fronds of this plant. Both types of fronds were found to have selective inhibitory effect against butyrylcholinesterase compared with acetylcholinesterase. However, different sets of compounds were responsible for their activity. In young fronds, an antibutyrylcholinesterase effect was observed in the hexane extract, which was comprised of a variety of aliphatic hydrocarbons, fatty acids, and phytosterols. In the mature fronds, inhibitory activity was observed in the methanol extract, which contained a series of kaempferol glycosides. Our results provided novel information concerning the ability of S. palustris to inhibit cholinesterase and its phytochemical profile. Further research to investigate the potential use of this plant against Alzheimer's disease is warranted, however, young and mature fronds should be distinguished due to their phytochemical differences. Copyright © 2016. Published by Elsevier B.V.

  15. Inhibitory effects of Turkish folk remedies on inflammatory cytokines: interleukin-1alpha, interleukin-1beta and tumor necrosis factor alpha.

    PubMed

    Yeşilada, E; Ustün, O; Sezik, E; Takaishi, Y; Ono, Y; Honda, G

    1997-09-01

    In this study, in vitro inhibitory effects of 55 extracts or fractions obtained from 10 plant species on interleukin-1 (IL-1alpha, IL-1beta) and tumor necrosis factor (TNF-alpha) biosynthesis were studied. The following plant materials from Turkish folk medicine for the treatment of various diseases which are thought to be inflammatory in nature e.g. rheumatism, fever, infections, edemas or related inflammatory diseases were selected as the subject of this study: Cistus laurifolius leaves, Clematis flammna flowering herbs, Crataegus orientalis roots, Daphne oleoides ssp. oleoides whole plant, Ecbalium elaterium roots, Rosa canina roots, Rubus discolor roots, Rubus hirtus roots, Sambucus ebulus flowers and leaves, Sambucus nigra flowers and leaves. All plants showed inhibitory activity against at least one of these models in various percentages depending upon the concentration, thus supporting the folkloric utilization. Daphne oleoides was found to be the most active plant against the test models.

  16. Function-Oriented Synthesis of Marine Phidianidine Derivatives as Potential PTP1B Inhibitors with Specific Selectivity.

    PubMed

    Liu, Jin; Chen, Yu; Li, Jing-Ya; Luo, Cheng; Li, Jia; Chen, Kai-Xian; Li, Xu-Wen; Guo, Yue-Wei

    2018-03-20

    Phidianidines A and B are two novel marine indole alkaloids bearing an uncommon 1,2,4-oxadiazole ring and exhibiting various biological activities. Our previous research showed that the synthesized phidianidine analogs had the potential to inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), a validated target for Type II diabetes, which indicates that these analogs are worth further structural modification. Therefore, in this paper, a series of phidianidine derivatives were designed and rapidly synthesized with a function-oriented synthesis (FOS) strategy. Their inhibitory effects on PTP1B and T-cell protein tyrosine phosphatase (TCPTP) were evaluated, and several compounds displayed significant inhibitory potency and specific selectivity over PTP1B. The structure-activity relationship (SAR) and molecular docking analyses are also described.

  17. Function-Oriented Synthesis of Marine Phidianidine Derivatives as Potential PTP1B Inhibitors with Specific Selectivity

    PubMed Central

    Liu, Jin; Chen, Yu; Li, Jing-Ya; Luo, Cheng; Li, Jia; Chen, Kai-Xian; Li, Xu-Wen

    2018-01-01

    Phidianidines A and B are two novel marine indole alkaloids bearing an uncommon 1,2,4-oxadiazole ring and exhibiting various biological activities. Our previous research showed that the synthesized phidianidine analogs had the potential to inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), a validated target for Type II diabetes, which indicates that these analogs are worth further structural modification. Therefore, in this paper, a series of phidianidine derivatives were designed and rapidly synthesized with a function-oriented synthesis (FOS) strategy. Their inhibitory effects on PTP1B and T-cell protein tyrosine phosphatase (TCPTP) were evaluated, and several compounds displayed significant inhibitory potency and specific selectivity over PTP1B. The structure–activity relationship (SAR) and molecular docking analyses are also described. PMID:29558377

  18. Cholinergic abnormalities in autism: is there a rationale for selective nicotinic agonist interventions?

    PubMed

    Deutsch, Stephen I; Urbano, Maria R; Neumann, Serina A; Burket, Jessica A; Katz, Elionora

    2010-05-01

    The core dysfunctions of autism spectrum disorders, which include autistic disorder, Asperger disorder, and pervasive developmental disorder not otherwise specified, include deficits in socialization and communication and a need for the preservation of "sameness;" intellectual impairment and epilepsy are common comorbidities. Data suggest that pathological involvement of cholinergic nuclei and altered expression of acetylcholine receptors, particularly nicotinic acetylcholine receptors, occur in brain of persons with autistic disorder. However, many of these studies involved postmortem tissue from small samples of primarily adult persons. Thus, the findings may reflect compensatory changes and may relate more closely to intellectual impairment and the confounding effects of seizures and medications, as opposed to the core dysfunctions of autism. Nonetheless, because of the roles played by acetylcholine receptors in general, and nicotinic acetylcholine receptors in particular, in normal processes of attention, cognition, and memory, selective cholinergic interventions should be explored for possible therapeutic effects. Additionally, there are electrophysiological data that complement the clinical observations of frequent comorbid seizure disorders in these patients, suggesting a disturbance in the balance of excitatory and inhibitory tone in the brains of persons with autistic disorders. Conceivably, because the alpha7 nicotinic acetylcholine receptor is located on the surface of gamma-aminobutyric acid inhibitory neurons, selective stimulation of this receptor would promote gamma-aminobutyric acid's release and restore diminished inhibitory tone. The development of agonists and partial agonists for nicotinic acetylcholine receptors and positive allosteric modulators that enhance the efficiency of coupling between the binding of agonist and channel opening should facilitate consideration of clinical trials.

  19. Weight stigma predicts inhibitory control and food selection in response to the salience of weight discrimination.

    PubMed

    Araiza, Ashley M; Wellman, Joseph D

    2017-07-01

    Fear and stigmatization are often used to motivate individuals with higher body weight to engage in healthy behaviors, but these strategies are sometimes counterproductive, leading to undesirable outcomes. In the present study, the impact of weight-based stigma on cognition (i.e., inhibitory control) and food selection (i.e., calories selected) was examined among individuals who consider themselves to be overweight. It was predicted that participants higher in perceived weight stigma would perform more poorly on an inhibitory control task and order more calories on a food selection task when they read about discrimination against individuals with higher weight versus discrimination against an out-group. Participants completed online prescreen measures assessing whether they considered themselves to be overweight and their perceptions of weight stigma. Individuals who considered themselves to be overweight were invited into the laboratory to complete tasks that manipulated weight-based discrimination, then inhibitory control and food selection were measured. The higher participants were in perceived weight stigma, the more poorly they performed on the inhibitory control task and the more calories they ordered when they read about discrimination against individuals with higher body weight. These relationships were not observed when participants read about discrimination against an out-group. The present findings provide evidence that perceptions of weight stigma are critical in understanding the impact of weight-based discrimination. Additionally, these results have theoretical and practical implications for both understanding and addressing the psychological and physical consequences of weight-based stigma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Regulation of spatial selectivity by crossover inhibition.

    PubMed

    Cafaro, Jon; Rieke, Fred

    2013-04-10

    Signals throughout the nervous system diverge into parallel excitatory and inhibitory pathways that later converge on downstream neurons to control their spike output. Converging excitatory and inhibitory synaptic inputs can exhibit a variety of temporal relationships. A common motif is feedforward inhibition, in which an increase (decrease) in excitatory input precedes a corresponding increase (decrease) in inhibitory input. The delay of inhibitory input relative to excitatory input originates from an extra synapse in the circuit shaping inhibitory input. Another common motif is push-pull or "crossover" inhibition, in which increases (decreases) in excitatory input occur together with decreases (increases) in inhibitory input. Primate On midget ganglion cells receive primarily feedforward inhibition and On parasol cells receive primarily crossover inhibition; this difference provides an opportunity to study how each motif shapes the light responses of cell types that play a key role in visual perception. For full-field stimuli, feedforward inhibition abbreviated and attenuated responses of On midget cells, while crossover inhibition, though plentiful, had surprisingly little impact on the responses of On parasol cells. Spatially structured stimuli, however, could cause excitatory and inhibitory inputs to On parasol cells to increase together, adopting a temporal relation very much like that for feedforward inhibition. In this case, inhibitory inputs substantially abbreviated a cell's spike output. Thus inhibitory input shapes the temporal stimulus selectivity of both midget and parasol ganglion cells, but its impact on responses of parasol cells depends strongly on the spatial structure of the light inputs.

  1. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound.

    PubMed

    Kopechek, Jonathan A; Carson, Andrew R; McTiernan, Charles F; Chen, Xucai; Klein, Edwin C; Villanueva, Flordeliza S

    2016-01-01

    RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.

  2. Inhibitory control gains from higher-order cognitive strategy training.

    PubMed

    Motes, Michael A; Gamino, Jacquelyn F; Chapman, Sandra B; Rao, Neena K; Maguire, Mandy J; Brier, Matthew R; Kraut, Michael A; Hart, John

    2014-02-01

    The present study examined the transfer of higher-order cognitive strategy training to inhibitory control. Middle school students enrolled in a comprehension- and reasoning-focused cognitive strategy training program and passive controls participated. The training program taught students a set of steps for inferring essential gist or themes from materials. Both before and after training or a comparable duration in the case of the passive controls, participants completed a semantically cued Go/No-Go task that was designed to assess the effects of depth of semantic processing on response inhibition and components of event-related potentials (ERP) related to response inhibition. Depth of semantic processing was manipulated by varying the level of semantic categorization required for response selection and inhibition. The SMART-trained group showed inhibitory control gains and changes in fronto-central P3 ERP amplitudes on inhibition trials; whereas, the control group did not. The results provide evidence of the transfer of higher-order cognitive strategy training to inhibitory control and modulation of ERPs associated with semantically cued inhibitory control. The findings are discussed in terms of implications for cognitive strategy training, models of cognitive abilities, and education. Published by Elsevier Inc.

  3. Enhanced inhibitory control by neuropeptide Y Y5 receptor blockade in rats.

    PubMed

    Bari, A; Dec, A; Lee, A W; Lee, J; Song, D; Dale, E; Peterson, J; Zorn, S; Huang, X; Campbell, B; Robbins, T W; West, A R

    2015-03-01

    The neuropeptide Y (NPY) system acts in synergy with the classic neurotransmitters to regulate a large variety of functions including autonomic, affective, and cognitive processes. Research on the effects of NPY in the central nervous system has focused on food intake control and affective processes, but growing evidence of NPY involvement in attention-deficit/hyperactivity disorder (ADHD) and other psychiatric conditions motivated the present study. We tested the effects of the novel and highly selective NPY Y5 receptor antagonist Lu AE00654 on impulsivity and the underlying cortico-striatal circuitry in rats to further explore the possible involvement of the NPY system in pathologies characterized by inattention and impulsive behavior. A low dose of Lu AE00654 (0.03 mg/kg) selectively facilitated response inhibition as measured by the stop-signal task, whereas no effects were found at higher doses (0.3 and 3 mg/kg). Systemic administration of Lu AE00654 also enhanced the inhibitory influence of the dorsal frontal cortex on neurons in the caudate-putamen, this fronto-striatal circuitry being implicated in the executive control of behavior. Finally, by locally injecting a Y5 agonist, we observed reciprocal activation between dorsal frontal cortex and caudate-putamen neurons. Importantly, the effects of the Y5 agonist were attenuated by pretreatment with Lu AE00654, confirming the presence of Y5 binding sites modulating functional interactions within frontal-subcortical circuits. These results suggest that the NPY system modulates inhibitory neurotransmission in brain areas important for impulse control, and may be relevant for the treatment of pathologies such as ADHD and drug abuse.

  4. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents.

    PubMed

    Won, Shen-Jeu; Liu, Cheng-Tsung; Tsao, Lo-Ti; Weng, Jing-Ru; Ko, Horng-Huey; Wang, Jih-Pyang; Lin, Chun-Nan

    2005-01-01

    In an effort to develop potent anti-inflammatory and cancer chemopreventive agents, a series of chalcones were prepared by Claisen-Schmidt condensation of appropriate acetophenones with suitable aromatic aldehyde or prepared with appropriate dihydrochalcone reacted with appropriate alkyl bromide or prepared in one-pot procedure involving acetophenone and convenient aromatic aldehyde using ultrasonic agitation on basic alumina. The synthesized products were tested for their inhibitory effects on the activation of mast cells, neutrophils, macrophages, and microglial cells. The potent inhibitors of NO production in macrophages and microglial cells were further evaluated for their in vitro cytotoxic effects against several human cancer cell lines. 2'-Hydroxychalcones 1-3, and 2',5'-dihydroxychalcone 7 exhibited potent inhibitory effects on the release of beta-glucuronidase or lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB). Two 2'-hydroxychalcones (1 and 3) showed potent inhibitory effects on superoxide anion generation in rat neutrophils in response to fMLP/CB. The previously reported chalcone, 5, 6, and 12, exhibited potent inhibitory effect on NO production in lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-activated N9 microglial cells or in LPS-activated RAW 264.7 macrophage-like cells. The potent inhibitors 5, 6, and 12 of NO production in macrophages or microglial cells revealed significant or marginal cytotoxic effects against several human cancer lines. Compound 12 manifested potent selective cytotoxicity against human MCF-7 cells and caused cell death by apoptosis. The present results demonstrated that 1-3, and 7 have anti-inflammatory effects and 5, 6, and 12 are potential anti-inflammatory and cancer chemopreventive agents.

  5. Direct current stimulation over the anterior temporal areas boosts semantic processing in primary progressive aphasia.

    PubMed

    Teichmann, Marc; Lesoil, Constance; Godard, Juliette; Vernet, Marine; Bertrand, Anne; Levy, Richard; Dubois, Bruno; Lemoine, Laurie; Truong, Dennis Q; Bikson, Marom; Kas, Aurélie; Valero-Cabré, Antoni

    2016-11-01

    Noninvasive brain stimulation in primary progressive aphasia (PPA) is a promising approach. Yet, applied to single cases or insufficiently controlled small-cohort studies, it has not clarified its therapeutic value. We here address the effectiveness of transcranial direct current stimulation (tDCS) on the semantic PPA variant (sv-PPA), applying a rigorous study design to a large, homogeneous sv-PPA cohort. Using a double-blind, sham-controlled counterbalanced cross-over design, we applied three tDCS conditions targeting the temporal poles of 12 sv-PPA patients. Efficiency was assessed by a semantic matching task orthogonally manipulating "living"/"nonliving" categories and verbal/visual modalities. Conforming to predominantly left-lateralized damage in sv-PPA and accounts of interhemispheric inhibition, we applied left hemisphere anodal-excitatory and right hemisphere cathodal-inhibitory tDCS, compared to sham stimulation. Prestimulation data, compared to 15 healthy controls, showed that patients had semantic disorders predominating with living categories in the verbal modality. Stimulation selectively impacted these most impaired domains: Left-excitatory and right-inhibitory tDCS improved semantic accuracy in verbal modality, and right-inhibitory tDCS improved processing speed with living categories and accuracy and processing speed in the combined verbal × living condition. Our findings demonstrate the efficiency of tDCS in sv-PPA by generating highly specific intrasemantic effects. They provide "proof of concept" for future applications of tDCS in therapeutic multiday regimes, potentially driving sustained improvement of semantic processing. Our data also support the hotly debated existence of a left temporal-pole network for verbal semantics selectively modulated through both left-excitatory and right-inhibitory brain stimulation. Ann Neurol 2016;80:693-707. © 2016 American Neurological Association.

  6. Inhibitory effects of vitamin K3 on DNA polymerase and angiogenesis.

    PubMed

    Matsubara, Kiminori; Kayashima, Tomoko; Mori, Masaharu; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2008-09-01

    Vitamins play essential roles in cellular reactions and maintain human health. Recent studies have revealed that some vitamins including D3, B6 and K2 and their derivatives have an anti-cancer effect. As a mechanism, their inhibitory effect on cancer-related angiogenesis has been demonstrated. Vitamin K2 (menaquinones) has an anti-cancer effect in particular for hepatic cancer and inhibits angiogenesis. In the current study, we demonstrated that sole vitamin K3 (menadione) selectively inhibits the in vitro activity of eukaryotic DNA polymerase gamma, which is a mitochondrial DNA polymerase, and suppresses angiogenesis in a rat aortic ring model. The anti-angiogenic effect of vitamin K3 has been shown in angiogenesis models using human umbilical vein endothelial cells (HUVECs) with regard to HUVEC growth, tube formation on reconstituted basement membrane and chemotaxis. These results suggest that vitamin K3 may be a potential anti-cancer agent like vitamin K2.

  7. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4

    PubMed Central

    Gobbetti, M.; Ferranti, P.; Smacchi, E.; Goffredi, F.; Addeo, F.

    2000-01-01

    Two fermented milks containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus delbrueckii subsp. bulgaricus SS1 and L. lactis subsp. cremoris FT4. The pH 4.6-soluble nitrogen fraction of the two fermented milks was fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest ACE-inhibitory indexes were further purified, and the related peptides were sequenced by tandem fast atom bombardment-mass spectrometry. The most inhibitory fractions of the milk fermented by L. delbrueckii subsp. bulgaricus SS1 contained the sequences of β-casein (β-CN) fragment 6-14 (f6-14), f7-14, f73-82, f74-82, and f75-82. Those from the milk fermented by L. lactis subsp. cremoris FT4 contained the sequences of β-CN f7-14, f47-52, and f169-175 and κ-CN f155-160 and f152-160. Most of these sequences had features in common with other ACE-inhibitory peptides reported in the literature. In particular, the β-CN f47-52 sequence had high homology with that of angiotensin-II. Some of these peptides were chemically synthesized. The 50% inhibitory concentrations (IC50s) of the crude purified fractions containing the peptide mixture were very low (8.0 to 11.2 mg/liter). When the synthesized peptides were used individually, the ACE-inhibitory activity was confirmed but the IC50s increased considerably. A strengthened inhibitory effect of the peptide mixtures with respect to the activity of individual peptides was presumed. Once generated, the inhibitory peptides were resistant to further proteolysis either during dairy processing or by trypsin and chymotrypsin. PMID:10966406

  8. Flexible Feature-Based Inhibition in Visual Search Mediates Magnified Impairments of Selection: Evidence from Carry-Over Effects under Dynamic Preview-Search Conditions

    ERIC Educational Resources Information Center

    Andrews, Lucy S.; Watson, Derrick G.; Humphreys, Glyn W.; Braithwaite, Jason J.

    2011-01-01

    Evidence for inhibitory processes in visual search comes from studies using preview conditions, where responses to new targets are delayed if they carry a featural attribute belonging to the old distractor items that are currently being ignored--the negative carry-over effect (Braithwaite, Humphreys, & Hodsoll, 2003). We examined whether…

  9. Phenformin Inhibits Myeloid-Derived Suppressor Cells and Enhances the Anti-Tumor Activity of PD-1 Blockade in Melanoma.

    PubMed

    Kim, Sun Hye; Li, Man; Trousil, Sebastian; Zhang, Yaqing; Pasca di Magliano, Marina; Swanson, Kenneth D; Zheng, Bin

    2017-08-01

    Biguanides, such as the diabetes therapeutics metformin and phenformin, have shown antitumor activity both in vitro and in vivo. However, their potential effects on the tumor microenvironment are largely unknown. Here we report that phenformin selectively inhibits granulocytic myeloid-derived suppressor cells in spleens of tumor-bearing mice and ex vivo. Phenformin induces production of reactive oxygen species in granulocytic myeloid-derived suppressor cells, whereas the antioxidant N-acetylcysteine attenuates the inhibitory effects of phenformin. Co-treatment of phenformin enhances the effect of anti-PD-1 antibody therapy on inhibiting tumor growth in the BRAF V600E/PTEN-null melanoma mouse model. Combination of phenformin and anti PD-1 cooperatively induces CD8 + T-cell infiltration and decreases levels of proteins that are critical for immune suppressive activities of myeloid-derived suppressor cells. Our findings show a selective, inhibitory effect of phenformin on granulocytic myeloid-derived suppressor cell-driven immune suppression and support that phenformin improves the anti-tumor activity of PD-1 blockade immunotherapy in melanoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat

    PubMed Central

    2013-01-01

    Background In the last years essential oils from different plants were used in the prevention of fungi and mycotoxins accumulation in cereals. The most attractive aspect derived from using of essential oils as seed grains protectants is due to their non-toxicity. This study was focused on assessment the inhibitory effect of some essential oils: Melissa officinalis (O1), Salvia officinalis (O2), Coriandrum sativum (O3), Thymus vulgaris (O4) Mentha piperita (O5) and Cinnamomum zeylanicum (O6) against natural mycoflora and Fusarium mycotoxins production correlated with their antioxidants properties. Results All essential oils showed inhibitory effect on fungal contamination of wheat seeds. This ability was dose-dependent. The highest inhibitory effect on Fusarium and Aspergillus fungi was recorded after 5 days of treatment. Fungi such as yeast (Pichia, Saccharomyces and Hyphopichia) were predominantly on seeds mycoflora after 22 days. Each treatment had a selective inhibitory effect on frequency of fungus genera. After 5 days of treatment the most fungicidal effect was recorder for O4, followed by O1. In terms of essential oils effect on mycotoxins development, the best control on fumonisins (FUMO) production was recorded for O6. The antioxidant properties of essential oils decreased in order: O4 > O1 > O6 > O5 > O2 > O3. Also, our data suggested that there is a significant negative correlation between antioxidant properties and seed contamination index (SCI), but there was not recorded a good correlation between antioxidant properties and FUMO content. Conclusions Based on proven antifungal and antimycotoxin effects as well as their antioxidant properties, the essential oils could be recommended as natural preservatives for stored cereals. The highest inhibition of fungal growth was noted after 5 days of treatment and decreased after 22 days. PMID:23409841

  11. Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat.

    PubMed

    Sumalan, Renata-Maria; Alexa, Ersilia; Poiana, Mariana-Atena

    2013-02-14

    In the last years essential oils from different plants were used in the prevention of fungi and mycotoxins accumulation in cereals. The most attractive aspect derived from using of essential oils as seed grains protectants is due to their non-toxicity. This study was focused on assessment the inhibitory effect of some essential oils: Melissa officinalis (O1), Salvia officinalis (O2), Coriandrum sativum (O3), Thymus vulgaris (O4) Mentha piperita (O5) and Cinnamomum zeylanicum (O6) against natural mycoflora and Fusarium mycotoxins production correlated with their antioxidants properties. All essential oils showed inhibitory effect on fungal contamination of wheat seeds. This ability was dose-dependent. The highest inhibitory effect on Fusarium and Aspergillus fungi was recorded after 5 days of treatment. Fungi such as yeast (Pichia, Saccharomyces and Hyphopichia) were predominantly on seeds mycoflora after 22 days. Each treatment had a selective inhibitory effect on frequency of fungus genera. After 5 days of treatment the most fungicidal effect was recorder for O4, followed by O1. In terms of essential oils effect on mycotoxins development, the best control on fumonisins (FUMO) production was recorded for O6. The antioxidant properties of essential oils decreased in order: O4 > O1 > O6 > O5 > O2 > O3. Also, our data suggested that there is a significant negative correlation between antioxidant properties and seed contamination index (SCI), but there was not recorded a good correlation between antioxidant properties and FUMO content. Based on proven antifungal and antimycotoxin effects as well as their antioxidant properties, the essential oils could be recommended as natural preservatives for stored cereals. The highest inhibition of fungal growth was noted after 5 days of treatment and decreased after 22 days.

  12. Health-Beneficial Phenolic Aldehyde in Antigonon leptopus Tea

    PubMed Central

    Mulabagal, Vanisree; Alexander-Lindo, Ruby L.; DeWitt, David L.; Nair, Muraleedharan G.

    2011-01-01

    Tea prepared from the aerial parts of Antigonon leptopus is used as a remedy for cold and pain relief in many countries. In this study, A. leptopus tea, prepared from the dried aerial parts, was evaluated for lipid peroxidation (LPO) and cyclooxygenase (COX-1 and COX-2) enzyme inhibitory activities. The tea as a dried extract inhibited LPO, COX-1 and COX-2 enzymes by 78%, 38% and 89%, respectively, at 100 μg/mL. Bioassay-guided fractionation of the extract yielded a selective COX-2 enzyme inhibitory phenolic aldehyde, 2,3,4-trihydroxy benzaldehyde. Also, it showed LPO inhibitory activity by 68.3% at 6.25 μg/mL. Therefore, we have studied other hydroxy benzaldehydes and their methoxy analogs for LPO, COX-1 and COX-2 enzymes inhibitory activities and found that compound 1 gave the highest COX-2 enzyme inhibitory activity as indicated by a 50% inhibitory concentration (IC50) at 9.7 μg/mL. The analogs showed only marginal LPO activity at 6.25 μg/mL. The hydroxy analogs 6, 7 and 9 showed 55%, 61% and 43% of COX-2 inhibition at 100 μg/mL. However, hydroxy benzaldehydes 3 and 12 showed selective COX-1 inhibition while compounds 4 and 10 gave little or no COX-2 enzyme inhibition at 100 μg/mL. At the same concentration, compounds 14, 21 and 22 inhibited COX-1 by 83, 85 and 70%, respectively. Similarly, compounds 18, 19 and 23 inhibited COX-2 by 68%, 72% and 70%, at 100 μg/mL. This is the first report on the isolation of compound 1 from A. leptopus tea with selective COX-2 enzyme and LPO inhibitory activities. PMID:19454555

  13. β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea

    PubMed Central

    Vasconcelos, T.B.; Ribeiro-Filho, H.V.; Lucetti, L.T.; Magalhães, P.J.C.

    2015-01-01

    β-Citronellol is an alcoholic monoterpene found in essential oils such Cymbopogon citratus (a plant with antihypertensive properties). β-Citronellol can act against pathogenic microorganisms that affect airways and, in virtue of the popular use of β-citronellol-enriched essential oils in aromatherapy, we assessed its pharmacologic effects on the contractility of rat trachea. Contractions of isolated tracheal rings were recorded isometrically through a force transducer connected to a data-acquisition device. β-Citronellol relaxed sustained contractions induced by acetylcholine or high extracellular potassium, but half-maximal inhibitory concentrations (IC50) for K+-elicited stimuli were smaller than those for cholinergic contractions. It also inhibited contractions induced by electrical field stimulation or sodium orthovanadate with pharmacologic potency equivalent to that seen against acetylcholine-induced contractions. When contractions were evoked by selective recruitment of Ca2+ from the extracellular medium, β-citronellol preferentially inhibited contractions that involved voltage-operated (but not receptor-operated) pathways. β-Citronellol (but not verapamil) inhibited contractions induced by restoration of external Ca2+ levels after depleting internal Ca2+ stores with the concomitant presence of thapsigargin and recurrent challenge with acetylcholine. Treatment of tracheal rings with L-NAME, indomethacin or tetraethylammonium did not change the relaxing effects of β-citronellol. Inhibition of transient receptor potential vanilloid subtype 1 (TRPV1) or transient receptor potential ankyrin 1 (TRPA1) receptors with selective antagonists caused no change in the effects of β-citronellol. In conclusion, β-citronellol exerted inhibitory effects on rat tracheal rings, with predominant effects on contractions that recruit Ca2+ inflow towards the cytosol by voltage-gated pathways, whereas it appears less active against contractions elicited by receptor-operated Ca2+ channels. PMID:26648088

  14. Cyclooxygenase inhibitory natural products: current status.

    PubMed

    Jachak, Sanjay M

    2006-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are of huge therapeutic benefit in the treatment of rheumatoid arthritis and various types of inflammatory conditions. The target for these drugs is cyclooxygenase (COX), a rate-limiting enzyme involved in the conversion of arachidonic acid into inflammatory prostaglandins. COX-2 selective inhibitors are believed to have the same anti-inflammatory, anti-pyretic and analgesic activities as that of nonselective inhibitor NSAIDs with little or none of the gastrointestinal side effects. Thus, in the last 6-7 years several selective COX-2 inhibitors including coxibs were discovered and introduced into clinic. Recent reports evidence that selective COX-2 inhibitor such as rofecoxib, can lead to thrombotic cardiovascular events through inhibition of prostacyclin formation in the infracted heart. This has resulted in withdrawal of rofecoxib from the clinic in September 2004. Moreover, the COX-2/COX-1 selectivity ratio is vital in the design of COX-2 inhibitory drugs, as it is clear from rofecoxib, which is more than 50-fold COX-2 selective. After looking at all above mentioned facts, natural product-based compounds seem better as these compounds are generally supposed to be devoid of severe side effects. The literature indicates that natural product-based compounds are mainly COX-1 selective. Through minor semi-synthetic changes in the structures, their selectivity towards COX-2 can be increased. The present review article addresses natural product COX inhibitors of plant and marine origin, reported during last ten years and their advantages, possible leads for further development and current status. In addition we describe our experience in the characterization, design and synthesis of potential natural COX inhibitors.

  15. The effects of agonists of ionotropic GABA(A) and metabotropic GABA(B) receptors on learning.

    PubMed

    Zyablitseva, Evgeniya A; Kositsyn, Nikolay S; Shul'gina, Galina I

    2009-05-01

    The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABA(A) and metabotropic GABA(B) receptors and 2) gaboxadol a selective agonist of ionotropic GABA(A) receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABA(B) receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABA(A) and GABA(B) receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes.

  16. Locally excitatory, globally inhibitory oscillator networks: theory and application to scene segmentation

    NASA Astrophysics Data System (ADS)

    Wang, DeLiang; Terman, David

    1995-01-01

    A novel class of locally excitatory, globally inhibitory oscillator networks (LEGION) is proposed and investigated analytically and by computer simulation. The model of each oscillator corresponds to a standard relaxation oscillator with two time scales. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing other oscillators from jumping up. We show analytically that with the selective gating mechanism the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate LEGION's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding, and may provide an effective computational framework for scene segmentation and figure/ground segregation.

  17. Modulating mimicry: Exploring the roles of inhibitory control and social understanding in 5-year-olds' behavioral mimicry.

    PubMed

    van Schaik, Johanna E; Hunnius, Sabine

    2018-01-01

    During adult interactions, behavioral mimicry, the implicit copying of an interaction partner's postures and mannerisms, communicates liking and affiliation. While this social behavior likely develops during early childhood, it is unclear which factors contribute to its emergence. Here, the roles of inhibitory control and social understanding on 5-year-olds' behavioral mimicry were investigated. Following a social manipulation in which one experimenter shared a sticker with the child and the other experimenter kept two stickers for herself, children watched a video in which these experimenters each told a story. During this story session, children in the experimental group (n = 28) observed the experimenters perform face and hand rubbing behaviors whereas the control group (n = 23) did not see these behaviors. Children's inhibitory control was assessed using the day-night task and their social understanding was measured through a parental questionnaire. Surprisingly, group-level analyses revealed that the experimental group performed the behaviors significantly less than the control group (i.e. a negative mimicry effect) for both the sticker-sharer and sticker-keeper. Yet, the hypothesized effects of inhibitory control and social understanding were found. Inhibitory control predicted children's selective mimicry of the sticker-keeper versus sticker-sharer and children's overall mimicry was correlated with social understanding. These results provide the first indications to suggest that factors of social and cognitive development dynamically influence the emergence and specificity of behavioral mimicry during early childhood.

  18. Modulating mimicry: Exploring the roles of inhibitory control and social understanding in 5-year-olds' behavioral mimicry

    PubMed Central

    Hunnius, Sabine

    2018-01-01

    During adult interactions, behavioral mimicry, the implicit copying of an interaction partner’s postures and mannerisms, communicates liking and affiliation. While this social behavior likely develops during early childhood, it is unclear which factors contribute to its emergence. Here, the roles of inhibitory control and social understanding on 5-year-olds’ behavioral mimicry were investigated. Following a social manipulation in which one experimenter shared a sticker with the child and the other experimenter kept two stickers for herself, children watched a video in which these experimenters each told a story. During this story session, children in the experimental group (n = 28) observed the experimenters perform face and hand rubbing behaviors whereas the control group (n = 23) did not see these behaviors. Children’s inhibitory control was assessed using the day-night task and their social understanding was measured through a parental questionnaire. Surprisingly, group-level analyses revealed that the experimental group performed the behaviors significantly less than the control group (i.e. a negative mimicry effect) for both the sticker-sharer and sticker-keeper. Yet, the hypothesized effects of inhibitory control and social understanding were found. Inhibitory control predicted children’s selective mimicry of the sticker-keeper versus sticker-sharer and children’s overall mimicry was correlated with social understanding. These results provide the first indications to suggest that factors of social and cognitive development dynamically influence the emergence and specificity of behavioral mimicry during early childhood. PMID:29513741

  19. Disinhibition, an emerging pharmacology of learning and memory.

    PubMed

    Möhler, Hanns; Rudolph, Uwe

    2017-01-01

    Learning and memory are dependent on interactive excitatory and inhibitory mechanisms. In this review, we discuss a mechanism called disinhibition, which is the release of an inhibitory constraint that effectively results in an increased activity in the target neurons (for example, principal or projection neurons). We focus on discussing the role of disinhibition in learning and memory at a basic level and in disease models with cognitive deficits and highlight a strategy to reverse cognitive deficits caused by excess inhibition, through disinhibition of α5-containing GABA A receptors mediating tonic inhibition in the hippocampus, based on subtype-selective negative allosteric modulators as a novel class of drugs.

  20. Maillard reaction products as "natural antibrowning" agents in fruit and vegetable technology.

    PubMed

    Billaud, Catherine; Maraschin, Christelle; Chow, Yin-Naï; Chériot, Sophie; Peyrat-Maillard, Marie-Nöelle; Nicolas, Jacques

    2005-07-01

    The effects of Maillard reaction products (MRPs), synthesized from a sugar (pentose, hexose, or disaccharide) and either a cysteine-related compound, an amino acid, or a sulfur compound, were investigated on polyphenoloxidase (PPO) activity from apple, mushroom, and eggplant. The optimal conditions for the production of inhibitory MRPs were performed using two-factor and five-level central experimental designs. It resulted that thiol-derived MRPs were highly prone to give rise to inhibitory compounds of PPO activity. Technological assays were also performed to test the efficiency of selected MRPs in the prevention of enzymatic browning in raw and minimally processed fruits and vegetables.

  1. Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells.

    PubMed Central

    Belgum, J H; Dvorak, D R; McReynolds, J S

    1984-01-01

    Transient and sustained inhibitory synaptic inputs to on-centre, off-centre, and on-off ganglion cells in the mudpuppy retina were studied using intracellular recording in the superfused eye-cup preparation. When chemical transmission was blocked with 4 mM-Co2+, application of either glycine or gamma-aminobutyric acid (GABA) caused a hyperpolarization and conductance increase in all ganglion cells. For both amino acids, the responses were dose dependent in the range 0.05-10 mM, with a half-maximal response at about 0.7 mM. Glycine and GABA sensitivities were very similar in all three types of ganglion cells. The response to applied glycine was selectively antagonized by 10(-5) M-strychnine and the response to applied GABA was selectively antagonized by 10(-5) M-picrotoxin. In all ganglion cells, 10(-5) M-strychnine eliminated the transient inhibitory events which occur at the onset and termination of a light stimulus. The block of transient inhibition was associated with a relative depolarization of membrane potential and decrease in conductance at these times. Strychnine had no effect on membrane potential or conductance in darkness or during sustained inhibitory responses to light. Picrotoxin (10(-5) M) did not block transient inhibitory events in any ganglion cells, but did affect other components of their responses. The results suggest that in all three classes of ganglion cells transient inhibition, but not sustained inhibition, may be mediated by glycine or a closely related substance. PMID:6481635

  2. Inhibitory activity of (E)-5-(2-bromovinyl)-2'-deoxyuridine on the salmonid herpesviruses, Oncorhynchus masou virus (OMV) and Herpesvirus salmonis.

    PubMed

    Kimura, T; Nishizawa, T; Yoshimizu, M; De Clercq, E

    1988-01-01

    The highly potent and selective anti-herpesvirus agent, (E)-5-(2-bromovinyl)-2'deoxyuridine (BVdU), was examined for its inhibitory effect on the salmonid herpesviruses Oncorhynchus masou virus (OMV) and Herpesvirus salmonis (H. salmonis). Minimum inhibitory concentrations (MIC) of BVdU for OMV and H. salmonis were 1.25 and 3.0 micrograms/ml, respectively; these values were equal to or higher than those obtained for acyclovir or cytarabine. OMV DNA polymerase activity was reduced in a dose-dependent fashion by BVdU 5'-triphosphate (BVdUTP) within the concentration range of 3 to 30 microM. However, BVdUTP could also be substituted for the natural substrate, TTP, in the OMV DNA polymerase assay. It is postulated that the inhibitory action of BVdU on the salmonid herpesviruses is more or less similar to that on other herpesviruses and resides with respect to the inhibition of the virus DNA polymerase activity as well as incorporation of BVdU into the viral DNA.

  3. Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX.

    PubMed

    Omardien, Soraya; Ter Beek, Alexander; Vischer, Norbert; Montijn, Roy; Schuren, Frank; Brul, Stanley

    2018-06-14

    An empirical approach was taken to screen a novel synthetic compound library designed to be active against Gram-positive bacteria. We obtained five compounds that were active against spores from the model organism Bacillus subtilis and the food-borne pathogen Bacillus cereus during our population based experiments. Using single cell live imaging we were able to observe effects of the compounds on spore germination and outgrowth. Difference in sensitivity to the compounds could be observed between B. subtilis and B. cereus using live imaging, with minor difference in the minimal inhibitory and bactericidal concentrations of the compounds against the spores. The compounds all delayed the bursting time of germinated spores and affected the generation time of vegetative cells at sub-inhibitory concentrations. At inhibitory concentrations spore outgrowth was prevented. One compound showed an unexpected potential for preventing spore germination at inhibitory concentrations, which merits further investigation. Our study shows the valuable role single cell live imaging can play in the final selection process of antimicrobial compounds.

  4. A mixture of amino acids and other small molecules present in the serum suppresses the growth of murine and human tumors in vivo

    PubMed Central

    Kulcsár, Gyula; Gaál, Dezső; Kulcsár, Péter I; Schulcz, Ákos; Czömpöly, Tamás

    2013-01-01

    Previously we have hypothesized that the small molecules which are selectively accumulated in cancer cells might participate in a non-immunological antitumor surveillance mechanism. We demonstrated earlier that a mixture of experimentally selected substances (“active mixture”, AM: l-arginine, l-histidine, l-methionine, l-phenylalanine, l-tyrosine, l-tryptophan, l-ascorbate, d-biotin, pyridoxine, riboflavin, adenine, l(-)malate) possesses a selective toxic effect in vitro on a variety of tumor cell lines, and we have shown that the AM selectively induces apoptosis of cancer cells in vitro. To explore the in vivo significance of our earlier findings we examined the antitumor effect of AM in Colon 26 murine colorectal adenocarcinoma, B16 murine melanoma, MXT murine mammary carcinoma, S180 murine sarcoma, P388 murine lymphoid leukemia, HL-60 human promyeloid leukemia, PC-3 human prostate carcinoma, and HT-29 human colon carcinoma tumor models. Treatment of tumor bearing mice with AM inhibited the growth of the tumors investigated, with an inhibitory effect ranging from 40 to 69%. The AM had a comparable antitumor effect with 5-fluorouracil and cisplatin in the Colon-26 tumor model, and combined treatment with AM and 5-fluorouracil or cisplatin resulted in an enhanced tumor growth inhibitory effect. The AM induced apoptosis through the mitochondrial pathway and induced G1 arrest in PC-3 cells and increased the number of apoptotic cells in PC-3 xenografts. These findings suggest that the AM might offer an interesting perspective in the treatment of cancer and in combination with other treatments may offer hope for a more effective cancer therapy. PMID:22858865

  5. A mixture of amino acids and other small molecules present in the serum suppresses the growth of murine and human tumors in vivo.

    PubMed

    Kulcsár, Gyula; Gaál, Dezső; Kulcsár, Péter I; Schulcz, Ákos; Czömpöly, Tamás

    2013-03-01

    Previously we have hypothesized that the small molecules which are selectively accumulated in cancer cells might participate in a non-immunological antitumor surveillance mechanism. We demonstrated earlier that a mixture of experimentally selected substances ("active mixture", AM: L-arginine, L-histidine, L-methionine, L-phenylalanine, L-tyrosine, L-tryptophan, L-ascorbate, D-biotin, pyridoxine, riboflavin, adenine, L(-)malate) possesses a selective toxic effect in vitro on a variety of tumor cell lines, and we have shown that the AM selectively induces apoptosis of cancer cells in vitro. To explore the in vivo significance of our earlier findings we examined the antitumor effect of AM in Colon 26 murine colorectal adenocarcinoma, B16 murine melanoma, MXT murine mammary carcinoma, S180 murine sarcoma, P388 murine lymphoid leukemia, HL-60 human promyeloid leukemia, PC-3 human prostate carcinoma, and HT-29 human colon carcinoma tumor models. Treatment of tumor bearing mice with AM inhibited the growth of the tumors investigated, with an inhibitory effect ranging from 40 to 69%. The AM had a comparable antitumor effect with 5-fluorouracil and cisplatin in the Colon-26 tumor model, and combined treatment with AM and 5-fluorouracil or cisplatin resulted in an enhanced tumor growth inhibitory effect. The AM induced apoptosis through the mitochondrial pathway and induced G1 arrest in PC-3 cells and increased the number of apoptotic cells in PC-3 xenografts. These findings suggest that the AM might offer an interesting perspective in the treatment of cancer and in combination with other treatments may offer hope for a more effective cancer therapy. Copyright © 2012 UICC.

  6. Gating, modulation and subunit composition of voltage-gated K+ channels in dendritic inhibitory interneurones of rat hippocampus

    PubMed Central

    Lien, Cheng-Chang; Martina, Marco; Schultz, Jobst H; Ehmke, Heimo; Jonas, Peter

    2002-01-01

    GABAergic interneurones are diverse in their morphological and functional properties. Perisomatic inhibitory cells show fast spiking during sustained current injection, whereas dendritic inhibitory cells fire action potentials with lower frequency. We examined functional and molecular properties of K+ channels in interneurones with horizontal dendrites in stratum oriens-alveus (OA) of the hippocampal CA1 region, which mainly comprise somatostatin-positive dendritic inhibitory cells. Voltage-gated K+ currents in nucleated patches isolated from OA interneurones consisted of three major components: a fast delayed rectifier K+ current component that was highly sensitive to external 4-aminopyridine (4-AP) and tetraethylammonium (TEA) (half-maximal inhibitory concentrations < 0.1 mm for both blockers), a slow delayed rectifier K+ current component that was sensitive to high concentrations of TEA, but insensitive to 4-AP, and a rapidly inactivating A-type K+ current component that was blocked by high concentrations of 4-AP, but resistant to TEA. The relative contributions of these components to the macroscopic K+ current were estimated as 57 ± 5, 25 ± 6, and 19 ± 2 %, respectively. Dendrotoxin, a selective blocker of Kv1 channels had only minimal effects on K+ currents in nucleated patches. Coapplication of the membrane-permeant cAMP analogue 8-(4-chlorophenylthio)-adenosine 3′:5′-cyclic monophosphate (cpt-cAMP) and the phosphodiesterase blocker isobutyl-methylxanthine (IBMX) resulted in a selective inhibition of the fast delayed rectifier K+ current component. This inhibition was absent in the presence of the protein kinase A (PKA) inhibitor H-89, implying the involvement of PKA-mediated phosphorylation. Single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed a high abundance of Kv3.2 mRNA in OA interneurones, whereas the expression level of Kv3.1 mRNA was markedly lower. Similarly, RT-PCR analysis showed a high abundance of Kv4.3 mRNA, whereas Kv4.2 mRNA was undetectable. This suggests that the fast delayed rectifier K+ current and the A-type K+ current component are mediated predominantly by homomeric Kv3.2 and Kv4.3 channels. Selective modulation of Kv3.2 channels in OA interneurones by cAMP is likely to be an important factor regulating the activity of dendritic inhibitory cells in principal neurone-interneurone microcircuits. PMID:11790809

  7. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound

    PubMed Central

    McTiernan, Charles F.; Chen, Xucai; Klein, Edwin C.; Villanueva, Flordeliza S.

    2016-01-01

    RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease. PMID:27471848

  8. Effects of histone deacetylase inhibitory prodrugs on epigenetic changes and DNA damage response in tumor and heart of glioblastoma xenograft.

    PubMed

    Tarasenko, Nataly; Nudelman, Abraham; Rozic, Gabriela; Cutts, Suzanne M; Rephaeli, Ada

    2017-08-01

    The histone deacetylase (HDAC) inhibitory prodrugs of butyric (AN7) and valproic (AN446) acids, which release the active acids upon metabolic degradation, were studied examining their differential effects on the viability, HDAC inhibitory activity and the DNA damage response (DDR), in glioblastoma cell and normal human astrocytes (NHAs). In xenografts of glioblastoma, AN7 or AN446 given or the combination of each of them with Dox augmented the anticancer activity of Dox and protected the heart from its toxicity. In order to determine the processes underlying these opposing effects, the changes induced by these treatments on the epigenetic landscape, the DDR, and fibrosis were compared in tumors and hearts of glioblastoma xenografts. The potency of AN7 and AN446 as HDAC inhibitors was correlated with their effects on the viability of the cancer and non-cancer cells. The prodrugs affected the epigenetic landscape and the DDR in a tissue-specific and context-dependent manner. Findings suggest that the selectivity of the prodrugs could be attributed to their different effects on histone modification patterns in normal vs. transformed tissues. Further studies are warranted to substantiate the potential of AN446 as a new anticancer drug for glioblastoma patients.

  9. Imidazolines as Non-Classical Bioisosteres of N-Acyl Homoserine Lactones and Quorum Sensing Inhibitors

    PubMed Central

    Reyes-Arellano, Alicia; Bucio-Cano, Alejandro; Montenegro-Sustaita, Mabel; Curiel-Quesada, Everardo; Salgado-Zamora, Héctor

    2012-01-01

    A series of selected 2-substituted imidazolines were synthesized in moderate to excellent yields by a modification of protocols reported in the literature. They were evaluated as potential non-classical bioisosteres of AHL with the aim of counteracting bacterial pathogenicity. Imidazolines 18a, 18e and 18f at various concentrations reduced the violacein production by Chromobacterium violaceum, suggesting an anti-quorum sensing profile against Gram-negative bacteria. Imidazoline 18b did not affect the production of violacein, but had a bacteriostatic effect at 100 μM and a bactericidal effect at 1 mM. Imidazoline 18a bearing a hexyl phenoxy moiety was the most active compound of the series, rendering a 72% inhibitory effect of quorum sensing at 100 μM. Imidazoline 18f bearing a phenyl nonamide substituent presented an inhibitory effect on quorum sensing at a very low concentration (1 nM), with a reduction percentage of 28%. This compound showed an irregular performance, decreasing inhibition at concentrations higher than 10 μM, until reaching 100 μM, at which concentration it increased the inhibitory effect with a 49% reduction percentage. When evaluated on Serratia marcescens, compound 18f inhibited the production of prodigiosin by 40% at 100 μM. PMID:22408391

  10. Characterization of Beta-leptinotarsin-h and the Effects of Calcium Flux Antagonists on its Activity

    DTIC Science & Technology

    2005-04-07

    A alone. a IP3R, IP3 receptor ; LO, ligand -operated; RyR, ryanodine receptor ; SERCA, sarcoplasmic reticulum endoplasmic reticulum Ca 2C ATPase; SO...observation eliminated non-selective cation channels such as nicotinic, glutamatergic, purinergic P2X , and serotoni- nergic 5-HT3 ligand -operated Ca 2C...nicardipine, nifedipine, SNX-482) was inhibitory. Selective inhibitors of ligand -operated, store-operated, and transduction-operated channels were also not

  11. Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.

    PubMed

    Gibbs, M E; Johnston, G A R

    2005-01-01

    The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.

  12. Dual-tail arylsulfone-based benzenesulfonamides differently match the hydrophobic and hydrophilic halves of human carbonic anhydrases active sites: Selective inhibitors for the tumor-associated hCA IX isoform.

    PubMed

    Ibrahim, Hany S; Allam, Heba Abdelrasheed; Mahmoud, Walaa R; Bonardi, Alessandro; Nocentini, Alessio; Gratteri, Paola; Ibrahim, Eslam S; Abdel-Aziz, Hatem A; Supuran, Claudiu T

    2018-05-25

    The synthesis and characterization of two new sets of arylsulfonehydrazone benzenesulfonamides (4a-4i with phenyl tail and 4j-4q with tolyl tail) are reported. The compounds were designed according to a dual-tails approach to modulate the interactions of the ligands portions at the outer rim of both hydrophobic and hydrophilic active site halves of human isoforms of carbonic anhydrase (CA, EC 4.2.1.1). The synthesized sulfonamides were evaluated in vitro for their inhibitory activity against the following human (h) isoforms, hCA I, II, IV and IX. With the latter being a validated anticancer drug target and a marker of tumor hypoxia, attractive results arose from the Compounds' inhibitory screening in terms of potency and selectivity. Indeed, whereas the first subset of compounds 4a-4i exhibited great efficacy in inhibiting both the ubiquitous, off-target hCA II (K I s 9.5-172.0 nM) and hCA IX (K I s 7.5-131.5 nM), the second subset of tolyl-bearing derivatives 4j-4q were shown to possess a selective hCA IX inhibitory action over isoforms I, II and IV. The most selective compounds 4l and 4n were further screened for their in vitro cytotoxic activity against MCF-7 and MDA-MB-231 cancer cell lines under hypoxic conditions. The selective IX/II inhibitory trend of 4j-4q compared to those of compounds 4a-4i was unveiled by docking studies. Further exploration of these molecules could be useful for the development of novel antitumor agents with a selective CA inhibitory mechanism. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling

    2011-10-15

    Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratorymore » effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: > Several resveratrol oligomers from grape plants are examined on VSMC behaviors. > Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. > It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. > The anti-migratory effect results from anti-PDGF signaling and pro-adhesiveness. > The more resveratrols oligomerize, the more potent effects they exert.« less

  14. Solid-phase synthesis and insights into structure-activity relationships of safinamide analogues as potent and selective inhibitors of type B monoamine oxidase.

    PubMed

    Leonetti, Francesco; Capaldi, Carmelida; Pisani, Leonardo; Nicolotti, Orazio; Muncipinto, Giovanni; Stefanachi, Angela; Cellamare, Saverio; Caccia, Carla; Carotti, Angelo

    2007-10-04

    Safinamide, (S)-N2-{4-[(3-fluorobenzyl)oxy]benzyl}alaninamide methanesulfonate, which is in phase III clinical trials as an anti-Parkinson drug, and a library of alkanamidic analogues were prepared through an expeditious solid-phase synthesis and evaluated for their monoamine oxidase B (MAO-B) and monoamine oxidase A (MAO-A) inhibitory activity and selectivity. (S)-3-Chlorobenzyloxyalaninamide (8) and (S)-3-chlorobenzyloxyserinamide (13) derivatives proved to be more potent MAO-B inhibitors than safinamide (IC50 = 33 and 43 nM, respectively, vs 98 nM) but with a lower MAO-B selectivity (SI = 3455 and 1967, respectively, vs 5918). The highest MAO-B inhibitory potency (IC50 = 17 nM) and a good selectivity (SI = 2941) were displayed by (R)-21, a tetrahydroisoquinoline analogue of safinamide. Structure-affinity relationships and docking simulations pointed out strong negative steric effects of alpha-aminoamide side chains and para substituents of the benzyloxy groups and favorable hydrophobic interactions of meta substituents. The significantly diverse MAO-B affinities of a number of R and S alpha-aminoamide enantiomers, including the two rigid analogues (21) of safinamide, indicated likely enantioselective interactions at the enzymatic binding sites.

  15. Probing the Structure-Activity Relationship of the Natural Antifouling Agent Polygodial against both Micro- and Macrofoulers by Semisynthetic Modification.

    PubMed

    Moodie, Lindon W K; Trepos, Rozenn; Cervin, Gunnar; Larsen, Lesley; Larsen, David S; Pavia, Henrik; Hellio, Claire; Cahill, Patrick; Svenson, Johan

    2017-02-24

    The current study represents the first comprehensive investigation into the general antifouling activities of the natural drimane sesquiterpene polygodial. Previous studies have highlighted a high antifouling effect toward macrofoulers, such as ascidians, tubeworms, and mussels, but no reports about the general antifouling effect of polygodial have been communicated before. To probe the structural and chemical basis for antifouling activity, a library of 11 polygodial analogues was prepared by semisynthesis. The library was designed to yield derivatives with ranging polarities and the ability to engage in both covalent and noncovalent interactions, while still remaining within the drimane sesquiterpene scaffold. The prepared compounds were screened against 14 relevant marine micro- and macrofouling species. Several of the polygodial analogues displayed inhibitory activities at sub-microgram/mL concentrations. These antifouling effects were most pronounced against the macrofouling ascidian Ciona savignyi and the barnacle Balanus improvisus, with inhibitory activities observed for selected compounds comparable or superior to several commercial antifouling products. The inhibitory activity against the microfouling bacteria and microalgae was reversible and significantly less pronounced than for the macrofoulers. This study illustrates that the macro- and microfoulers are targeted by the compounds via different mechanisms.

  16. Inhibition of Glucuronokinase by Substrate Analogs 1

    PubMed Central

    Gillard, Douglas F.; Dickinson, David B.

    1978-01-01

    Glucuronokinase from Lilium longiflorum pollen was purified 30- to 40- fold on a blue dextran-Sepharose column. Substrate analogs were tested for inhibitory effects, and nucleotide substrate specificity of the enzyme was determined. Nine nucleotides were tested, and all were inhibitory when the substrate was ATP. ADP was competitive with ATP and had a Ki value of 0.23 mm. None of the other nucleotide triphosphates could effectively substitute for ATP as a nucleotide substrate. Ten mm dATP and ITP reacted only 3% as rapidly as 10 mm ATP, while the rates for 10 mm GTP, CTP, UTP, and TTP were less than 1%. The glucuronic acid analogs, methyl α-glucuronoside, methyl β-glucuronoside, β-glucuronic acid-1-phosphate, and 4-O-methylglucuronic acid were tested as possible enzyme inhibitors. The three methyl derivatives showed little or no inhibition. The β-glucuronic acid-1-phosphate was inhibitory, with 50% inhibition obtained at 1 to 3 mm depending on the concentration of the glucuronic acid. It is concluded that the glucuronic acid-binding site on the enzyme is highly selective. PMID:16660589

  17. Caffeine Does Not Modulate Inhibitory Control

    ERIC Educational Resources Information Center

    Tieges, Zoe; Snel, Jan; Kok, Albert; Ridderinkhof, K. Richard

    2009-01-01

    The effects of a 3 mg/kg body weight (BW) dose of caffeine were assessed on behavioral indices of response inhibition. To meet these aims, we selected a modified AX version of the Continuous Performance Test (CPT), the stop task, and the flanker task. In three double-blind, placebo-controlled, within-subjects experiments, these tasks were…

  18. Additive Factors Analysis of Inhibitory Processing in the Stop-Signal Paradigm

    ERIC Educational Resources Information Center

    van den Wildenberg, W.P.M.; van der Molen, M.W.

    2004-01-01

    This article reports an additive factors analysis of choice reaction and selective stop processes manipulated in a stop-signal paradigm. Three experiments were performed in which stimulus discriminability (SD) and stimulus-response compatibility (SRC) were manipulated in a factorial fashion. In each experiment, the effects of SD and SRC were…

  19. Kavalactones and dihydrokavain modulate GABAergic activity in a rat gastric-brainstem preparation.

    PubMed

    Yuan, Chun-Su; Dey, Lucy; Wang, Anbao; Mehendale, Sangeeta; Xie, Jing-Tian; Aung, Han H; Ang-Lee, Michael K

    2002-12-01

    Using an in vitro neonatal rat gastric-brainstem preparation, the activity of majority neurons recorded in the nucleus tractus solitarius (NTS) of the brainstem were significantly inhibited by GABA A receptor agonist, muscimol (30 microM), and this inhibition was reversed by selective GABA A receptor antagonist, bicuculline (10 microM). Application of kavalactones (300 microg/ml) and dihydrokavain (300 microM) into the brainstem compartment of the preparation also significantly reduced the discharge rate of these NTS neurons (39 % and 32 %, respectively, compared to the control level), and this reduction was partially reversed by bicuculline (10 microM). Kavalactones or dihydrokavain induced inhibitory effects were not reduced after co-application of saclofen (10 microM; a selective GABA B receptor antagonist) or naloxone (100 nM; an opioid receptor antagonist). Pretreatment with kavalactones (300 microg/ml) or dihydrokavain (300 microM) significantly decreased the NTS inhibitory effects induced by muscimol (30 microM), approximately from 51 % to 36 %. Our results demonstrated modulation of brainstem GABAergic mechanism by kavalactones and dihydrokavain, and suggested that these compounds may play an important role in regulation of GABAergic neurotransmission.

  20. Speed Pressure in Conflict Situations Impedes Inhibitory Action Control in Parkinson’s Disease

    PubMed Central

    Van Wouwe, N.C.; van den Wildenberg, W.P.M.; Claassen, D.O.; Kanoff, K.; Bashore, T.R.; Wylie, S.A.

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative basal ganglia disease that disrupts cognitive control processes involved in response selection. The current study investigated the effects of PD on the ability to resolve conflicts during response selection when performance emphasized response speed versus response accuracy. Twenty-one (21) PD patients and 21 healthy controls (HC) completed a Simon conflict task, and a subset of 10 participants from each group provided simultaneous movement-related potential (MRP) data to track patterns of motor cortex activation and inhibition associated with the successful resolution of conflicting response tendencies. Both groups adjusted performance strategically to emphasize response speed or accuracy (i.e., speed-accuracy effect). For HC, interference from a conflicting response was reduced when response accuracy rather than speed was prioritized. For PD patients, however, there was a reduction in interference, but it was not statistically significant. The conceptual framework of the Dual-Process Activation-Suppression (DPAS) model revealed that the groups experienced similar susceptibility to making fast impulsive errors in conflict trials irrespective of speed-accuracy instructions, but PD patients were less proficient and delayed compared to HC at suppressing the interference from these incorrect response tendencies, especially under speed pressure. Analysis of MRPs on response conflict trials showed attenuated inhibition of the motor cortex controlling the conflicting impulsive response tendency in PD patients compared to HC. These results further confirm the detrimental effects of PD inhibitory control mechanisms and their exacerbation when patients perform under speed pressure. The results also suggest that a downstream effect of inhibitory dysfunction in PD is diminished inhibition of motor cortex controlling conflicting response tendencies. PMID:25017503

  1. Spectrophotometric determination of trace carbaryl in water and grain samples by inhibition of the rhodamine-B oxidation.

    PubMed

    Gupta, Nirja; Pillai, Ajai Kumar; Parmar, Prachi

    2015-03-15

    A novel, sensitive, selective and simple kinetic spectrophotometric method has been developed for determination of trace levels of carbaryl based on its inhibitory effect on the oxidation of rhodamine-B by chlorine and bromine released from reaction of potassium bromate with hydrochloric acid in micellar medium. A linear relationship was observed between the inhibitory effect and the concentration of the compound. The absorbance was monitored at the maximum wavelength of 555 nm. The effect of different parameters such as pH, temperature and concentration of rhodamine-B, potassium bromate and surfactant on the reaction were investigated and optimum conditions were established. Under the selected experimental conditions, carbaryl was determined in the range of 0.04-0.4 μg mL(-1). Sandell's sensitivity and molar absorptivity were found to be 0.00055 μg cm(-2) and 3.658×10(5) L mol(-1) cm(-1) respectively. The proposed method was applied satisfactorily for the determination of carbaryl in water and different grain samples. The results were compared with those obtained by reference method and were found to be in agreement. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Selective tissue factor/factor VIIa Inhibitor, ER-410660, and its prodrug, E5539, have anti-venous and anti-arterial thrombotic effects with a low risk of bleeding.

    PubMed

    Nagakura, Tadashi; Tabata, Kimiyo; Kira, Kazunobu; Hirota, Shinsuke; Clark, Richard; Matsuura, Fumiyoshi; Hiyoshi, Hironobu

    2013-08-01

    Many anticoagulant drugs target factors common to both the intrinsic and extrinsic coagulation pathways, which may lead to bleeding complications. Since the tissue factor (TF)/factor VIIa complex is associated with thrombosis onset and specifically activates the extrinsic coagulation pathway, compounds that inhibit this complex may provide therapeutic and/or prophylactic benefits with a decreased risk of bleeding. The in vitro enzyme profile and anticoagulation selectivity of the TF/VIIa complex inhibitor, ER-410660, and its prodrug E5539 were assessed using enzyme inhibitory and plasma clotting assays. In vivo effects of ER-410660 and E5539 were determined using a TF-induced, thrombin generation rhesus monkey model; a stasis-induced, venous thrombosis rat model; a photochemically induced, arterial thrombosis rat model; and a rat tail-cut bleeding model. ER-410660 selectively prolonged prothrombin time, but had a less potent anticoagulant effect on the intrinsic pathway. It also exhibited a dose-dependent inhibitory effect on thrombin generation caused by TF-injection in the rhesus monkey model. ER-410660 also reduced venous thrombus weights in the TF-administered, stasis-induced, venous thrombosis rat model and prolonged the occlusion time induced by arterial thrombus formation after vascular injury. The compound was capable of doubling the total bleeding time in the rat tail-cut model, albeit with a considerably higher dose compared to the effective dose in the venous and arterial thrombosis models. Moreover, E5539, an orally available ER-410660 prodrug, reduced the thrombin-anti-thrombin complex levels, induced by TF-injection, in a dose-dependent manner. Selective TF/VIIa inhibitors have potential as novel anticoagulants with a lower propensity for enhancing bleeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Effect of Domestication on Inhibitory Control: Wolves and Dogs Compared

    PubMed Central

    Marshall-Pescini, Sarah; Virányi, Zsófia; Range, Friederike

    2015-01-01

    Inhibitory control i.e. blocking an impulsive or prepotent response in favour of a more appropriate alternative, has been suggested to play an important role in cooperative behaviour. Interestingly, while dogs and wolves show a similar social organization, they differ in their intraspecific cooperation tendencies in that wolves rely more heavily on group coordination in regard to hunting and pup-rearing compared to dogs. Hence, based on the ‘canine cooperation’ hypothesis wolves should show better inhibitory control than dogs. On the other hand, through the domestication process, dogs may have been selected for cooperative tendencies towards humans and/or a less reactive temperament, which may in turn have affected their inhibitory control abilities. Hence, based on the latter hypothesis, we would expect dogs to show a higher performance in tasks requiring inhibitory control. To test the predictive value of these alternative hypotheses, in the current study two tasks; the ‘cylinder task’ and the ‘detour task’, which are designed to assess inhibitory control, were used to evaluate the performance of identically raised pack dogs and wolves. Results from the cylinder task showed a significantly poorer performance in wolves than identically-raised pack dogs (and showed that pack-dogs performed similarly to pet dogs with different training experiences), however contrary results emerged in the detour task, with wolves showing a shorter latency to success and less perseverative behaviour at the fence. Results are discussed in relation to previous studies using these paradigms and in terms of the validity of these two methods in assessing inhibitory control. PMID:25714840

  4. The effect of domestication on inhibitory control: wolves and dogs compared.

    PubMed

    Marshall-Pescini, Sarah; Virányi, Zsófia; Range, Friederike

    2015-01-01

    Inhibitory control i.e. blocking an impulsive or prepotent response in favour of a more appropriate alternative, has been suggested to play an important role in cooperative behaviour. Interestingly, while dogs and wolves show a similar social organization, they differ in their intraspecific cooperation tendencies in that wolves rely more heavily on group coordination in regard to hunting and pup-rearing compared to dogs. Hence, based on the 'canine cooperation' hypothesis wolves should show better inhibitory control than dogs. On the other hand, through the domestication process, dogs may have been selected for cooperative tendencies towards humans and/or a less reactive temperament, which may in turn have affected their inhibitory control abilities. Hence, based on the latter hypothesis, we would expect dogs to show a higher performance in tasks requiring inhibitory control. To test the predictive value of these alternative hypotheses, in the current study two tasks; the 'cylinder task' and the 'detour task', which are designed to assess inhibitory control, were used to evaluate the performance of identically raised pack dogs and wolves. Results from the cylinder task showed a significantly poorer performance in wolves than identically-raised pack dogs (and showed that pack-dogs performed similarly to pet dogs with different training experiences), however contrary results emerged in the detour task, with wolves showing a shorter latency to success and less perseverative behaviour at the fence. Results are discussed in relation to previous studies using these paradigms and in terms of the validity of these two methods in assessing inhibitory control.

  5. Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder?

    PubMed

    Kray, Jutta; Karbach, Julia; Haenig, Susann; Freitag, Christine

    2011-01-01

    The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD) include executive control functions such as inhibitory control, task-switching, and working memory (WM). In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training) on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal WM as well as on fluid intelligence (reasoning). The children in both groups showed improvements in task-switching, that is, a reduction of switching costs, but not in performing the single-tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal WM, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD.

  6. Can Task-Switching Training Enhance Executive Control Functioning in Children with Attention Deficit/-Hyperactivity Disorder?

    PubMed Central

    Kray, Jutta; Karbach, Julia; Haenig, Susann; Freitag, Christine

    2012-01-01

    The key cognitive impairments of children with attention deficit/-hyperactivity disorder (ADHD) include executive control functions such as inhibitory control, task-switching, and working memory (WM). In this training study we examined whether task-switching training leads to improvements in these functions. Twenty children with combined type ADHD and stable methylphenidate medication performed a single-task and a task-switching training in a crossover training design. The children were randomly assigned to one of two groups. One group started with the single-task training and then performed the task-switching training and the other group vice versa. The effectiveness of the task-switching training was measured as performance improvements (relative to the single-task training) on a structurally similar but new switching task and on other executive control tasks measuring inhibitory control and verbal WM as well as on fluid intelligence (reasoning). The children in both groups showed improvements in task-switching, that is, a reduction of switching costs, but not in performing the single-tasks across four training sessions. Moreover, the task-switching training lead to selective enhancements in task-switching performance, that is, the reduction of task-switching costs was found to be larger after task-switching than after single-task training. Similar selective improvements were observed for inhibitory control and verbal WM, but not for reasoning. Results of this study suggest that task-switching training is an effective cognitive intervention that helps to enhance executive control functioning in children with ADHD. PMID:22291628

  7. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-α and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection.

  8. Antimicrobial effect of 7-O-butylnaringenin, a novel flavonoid, and various natural flavonoids against Helicobacter pylori strains.

    PubMed

    Moon, Sun Hee; Lee, Jae Hoon; Kim, Kee-Tae; Park, Yong-Sun; Nah, Seung-Yeol; Ahn, Dong Uk; Paik, Hyun-Dong

    2013-10-28

    The antimicrobial effect of a novel flavonoid (7-O-butylnaringenin) on Helicobacter pylori 26695, 51, and SS1 strains and its inhibitory effect on the urease activity of the strains were evaluated and compared with those of several natural flavonoids. First, various flavonoids were screened for antimicrobial activities using the paper disc diffusion method. Hesperetin and naringenin showed the strongest antimicrobial effects among the natural flavonoids tested, and thus hesperetin and naringenin were selected for comparison with 7-O-butylnaringenin. The antimicrobial effect of 7-O-butylnaringenin was greater than that of the hesperetin and naringenin. H. pylori 51 was more sensitive to 7-O-butylnaringenin (2 log reduction of colony forming units, p < 0.05) than the other two strains at 200 μM. 7-O-Butylnaringenin also showed the highest inhibitory effect against urease activity of H. pylori. Morphological changes of H. pylori 26695 treated with these flavonoids indicated that both hesperetin and 7-O-butylnaringenin at 200 μM damaged the cell membranes.

  9. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates

    PubMed Central

    2014-01-01

    We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277

  10. Age Differences in Selective Memory of Goal-Relevant Stimuli Under Threat.

    PubMed

    Durbin, Kelly A; Clewett, David; Huang, Ringo; Mather, Mara

    2018-02-01

    When faced with threat, people often selectively focus on and remember the most pertinent information while simultaneously ignoring any irrelevant information. Filtering distractors under arousal requires inhibitory mechanisms, which take time to recruit and often decline in older age. Despite the adaptive nature of this ability, relatively little research has examined how both threat and time spent preparing these inhibitory mechanisms affect selective memory for goal-relevant information across the life span. In this study, 32 younger and 31 older adults were asked to encode task-relevant scenes, while ignoring transparent task-irrelevant objects superimposed onto them. Threat levels were increased on some trials by threatening participants with monetary deductions if they later forgot scenes that followed threat cues. We also varied the time between threat induction and a to-be-encoded scene (i.e., 2 s, 4 s, 6 s) to determine whether both threat and timing effects on memory selectivity differ by age. We found that age differences in memory selectivity only emerged after participants spent a long time (i.e., 6 s) preparing for selective encoding. Critically, this time-dependent age difference occurred under threatening, but not neutral, conditions. Under threat, longer preparation time led to enhanced memory for task-relevant scenes and greater memory suppression of task-irrelevant objects in younger adults. In contrast, increased preparation time after threat induction had no effect on older adults' scene memory and actually worsened memory suppression of task-irrelevant objects. These findings suggest that increased time to prepare top-down encoding processes benefits younger, but not older, adults' selective memory for goal-relevant information under threat. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. The effects of an acute challenge with the NMDA receptor antagonists, MK-801, PEAQX, and ifenprodil, on social inhibition in adolescent and adult male rats

    PubMed Central

    Spear, Linda P.

    2013-01-01

    Rationale NMDA antagonists consistently produce social inhibition in adult animals, although effects of these manipulations on social behavior of adolescents are relatively unknown. Objectives The aim of this study was to assess potential age differences in the socially inhibitory effects of the non-competitive NMDA antagonist, MK-801, as well as NR2 subunit selective effects, given the regional and developmental differences that exist for the NR2 subunit during ontogeny. Methods In separate experiments, adolescent and adult male Sprague–Dawley rats were treated acutely with MK-801 (0, 0.05, 0.1, 0.2 mg/kg, i.p.), the NR2A antagonist, PEAQX (2.5, 5, 10, 20 mg/kg, s.c.), or the NR2B antagonist, ifenprodil (1.5, 3, 6, 12 mg/kg, i.p.), 10 min prior to a social interaction test. Results Adolescents required higher doses of MK-801 (0.1 and 0.2 mg/kg) to induce social suppression, whereas adults demonstrated reductions in social activity after all doses. Likewise, adolescents required higher doses of ifenprodil (6 and 12 mg/kg) to produce social inhibitory effects relative to adults (all doses). In contrast, adults were less sensitive to PEAQX than adolescents, with adults showing social inhibition after 20 mg/kg whereas adolescents showed this effect following 10 and 20 mg/kg. Although locomotor activity was generally reduced at both ages by all drugs tested, ANCOVAs using locomotor activity as a covariate revealed similar patterns of social inhibitory effects. Conclusions Adolescents are less sensitive than adults to the disruption of social behavior by NMDA and NR2B-selective receptor antagonism, but not by an NR2A antagonist—age differences that may be related to different subunit expression patterns during development. PMID:24043344

  12. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals.

    PubMed

    de Lacy Costello, Ben P J; Adamatzky, Andrew I

    2013-09-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myrcene > tridecane > limonene > p-cymene > 3-octanone > β-pinene > m-cresol > benzylacetate > cis-3-hexenylacetate. For the remaining compounds, no positive chemotaxis was observed in any of the experiments, and for most compounds there was an inhibitory effect on the growth of the slime mold. By assessing this lack of growth or failure to propagate, it was possible to produce a list of compounds ranked in terms of their inhibitory effect: nonanal > benzaldehyde > methylbenzoate > linalool > methyl-p-benzoquinone > eugenol > benzyl alcohol > geraniol > 2-phenylethanol. This analysis shows a distinct preference of the slime mold for non-oxygenated terpene and terpene-like compounds (farnesene, β-myrcene, limonene, p-cymene and β-pinene). In contrast, terpene-based alcohols such as geraniol and linalool were found to have a strong inhibitory effect on the slime mold. Both the aldehydes utilized in this study had the strongest inhibitory effect on the slime mold of all the 19 VOCs tested. Interestingly, 3-octanone, which has a strong association with a "fungal odor," was the only compound with an oxygenated functionality where Physarum Polycephalum exhibits distinct positive chemotaxis.

  13. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals

    PubMed Central

    de Lacy Costello, Ben P.J.; Adamatzky, Andrew I.

    2013-01-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myrcene > tridecane > limonene > p-cymene > 3-octanone > β-pinene > m-cresol > benzylacetate > cis-3-hexenylacetate. For the remaining compounds, no positive chemotaxis was observed in any of the experiments, and for most compounds there was an inhibitory effect on the growth of the slime mold. By assessing this lack of growth or failure to propagate, it was possible to produce a list of compounds ranked in terms of their inhibitory effect: nonanal > benzaldehyde > methylbenzoate > linalool > methyl-p-benzoquinone > eugenol > benzyl alcohol > geraniol > 2-phenylethanol. This analysis shows a distinct preference of the slime mold for non-oxygenated terpene and terpene-like compounds (farnesene, β-myrcene, limonene, p-cymene and β-pinene). In contrast, terpene-based alcohols such as geraniol and linalool were found to have a strong inhibitory effect on the slime mold. Both the aldehydes utilized in this study had the strongest inhibitory effect on the slime mold of all the 19 VOCs tested. Interestingly, 3-octanone, which has a strong association with a “fungal odor,” was the only compound with an oxygenated functionality where Physarum Polycephalum exhibits distinct positive chemotaxis. PMID:24265848

  14. Antibacterial and phytochemical studies on Calotropis gigantia (L.) R. Br. latex against selected cariogenic bacteria

    PubMed Central

    Ishnava, Kalpesh B.; Chauhan, Jenabhai B.; Garg, Akanksha A.; Thakkar, Arpit M.

    2011-01-01

    In vitro antibacterial potential of the chloroform, ethyl acetate, hexane, methanol and aqueous extracts of Calotropis gigantia (L.) R. Br. was evaluated by using five cariogenic bacteria, Actinomyces viscosus, Lactobacillus acidophilus, Lactobacillus casei, Streptococcus mitis and Streptococcus mutans. Agar well diffusion method and minimum inhibitory concentration (MIC) were used for this purpose. The chloroform extracted fraction of latex showed inhibitory effect against S. mutans and L. acidophilus with MIC value of 0.032 and 0.52 mg/mL, respectively. Qualitative investigation on structure elucidation of bioactive compound using IR, NMR and GC–MS techniques revealed the presence of methyl nonanoate, a saturated fatty acid. PMID:23961166

  15. Inhibitory control and adaptive behaviour in children with mild intellectual disability.

    PubMed

    Gligorović, M; Buha Ðurović, N

    2014-03-01

    Inhibitory control, as one of the basic mechanisms of executive functions, is extremely important for adaptive behaviour. The relation between inhibitory control and adaptive behaviour is the most obvious in cases of behavioural disorders and psychopathology. Considering the lack of studies on this relation in children with disabilities, the aim of our research is to determine the relation between inhibitory control and adaptive behaviour in children with mild intellectual disability. The sample consists of 53 children with mild intellectual disability. Selection criteria were: IQ between 50 and 70, age between 10 and 14, absence of bilingualism, and with no medical history of neurological impairment, genetic and/or emotional problems. Modified Day-Night version of the Stroop task, and Go-no-Go Tapping task were used for the assessment of inhibitory control. Data on adaptive behaviour were obtained by applying the first part of AAMR (American Association on Mental Retardation) Adaptive Behaviour Scale-School, Second Edition (ABS-S:2). Significant relationships were determined between some aspects of inhibitory control and the most of assessed domains of adaptive behaviour. Inhibitory control measures, as a unitary inhibition model, significantly predict results on Independent Functioning, Economic Activity, Speech and Language Development, and Number and Times domains of the ABS-S:2. Inhibitory control, assessed by second part of the Stroop task, proved to be a significant factor in practical (Independent Functioning) and conceptual (Economic Activity, Speech and Language Development, and Numbers and Time) adaptive skills. The first part of the Stroop task, as a measure of selective attention, proved to be a significant factor in language and numerical demands, along with second one. Inhibitory control through motor responses proved to be a significant factor in independent functioning, economic activities, language and self-direction skills. We can conclude that inhibitory control represents a significant developmental factor of different adaptive behaviour domains in children with mild intellectual disability. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSIDD.

  16. "Happy goat says": The effect of a food selection inhibitory control training game of children's response inhibition on eating behavior.

    PubMed

    Jiang, Qianxia; He, Dexian; Guan, Wanyi; He, Xianyou

    2016-12-01

    Recent studies suggest that when inhibitory control is lacking, people are more inclined to indulge in high-calorie food, but inhibitory control can be trained. In this study, a daily-life training game was used to train children and investigate whether strengthening or weakening inhibitory control influences food intake in opposite directions. The baseline of response inhibition was measured by the go/no-go task, and the baseline of food intake was measured by a bogus food taste task. Then, participants performed a food selection training game named "Happy goat says" with three within-subject conditions: the first type of instruction was always paired without a go signal (inhibition manipulation); the second type of instruction was always presented with a go signal (impulsivity manipulation); and the third type of instruction was presented either with a go or no-go signal, both in 50% of the time (control manipulation). Following these manipulations, they went through the go/no-go task and bogus food taste task. In the pre-training food taste task, commission errors were positively correlated with body mass index. Relative to a control group playing Lego blocks (n = 20), the trained group showed a performance improvement on the go/no-go task. The intake of food in the inhibition manipulation was significantly less in the post-training food taste task. These findings demonstrate that children can gain control over the consumption of high-calorie food after a daily-life response inhibition training game. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Addressing the selective role of distinct prefrontal areas in response suppression: A study with brain tumor patients.

    PubMed

    Arbula, Sandra; Pacella, Valentina; De Pellegrin, Serena; Rossetto, Marta; Denaro, Luca; D'Avella, Domenico; Della Puppa, Alessandro; Vallesi, Antonino

    2017-06-01

    The diverging evidence for functional localization of response inhibition within the prefrontal cortex might be justified by the still unclear involvement of other intrinsically related cognitive processes like response selection and sustained attention. In this study, the main aim was to understand whether inhibitory impairments, previously found in patients with both left and right frontal lesions, could be better accounted for by assessing these potentially related cognitive processes. We tested 37 brain tumor patients with left prefrontal, right prefrontal and non-prefrontal lesions and a healthy control group on Go/No-Go and Foreperiod tasks. In both types of tasks inhibitory impairments are likely to cause false alarms, although additionally the former task requires response selection and the latter target detection abilities. Irrespective of the task context, patients with right prefrontal damage showed frequent Go and target omissions, probably due to sustained attention lapses. Left prefrontal patients, on the other hand, showed both Go and target omissions and high false alarm rates to No-Go and warning stimuli, suggesting a decisional rather than an inhibitory impairment. An exploratory whole-brain voxel-based lesion-symptom mapping analysis confirmed the association of left ventrolateral and dorsolateral prefrontal lesions with target discrimination failure, and right ventrolateral and medial prefrontal lesions with target detection failure. Results from this study show how left and right prefrontal areas, which previous research has linked to response inhibition, underlie broader cognitive control processes, particularly involved in response selection and target detection. Based on these findings, we suggest that successful inhibitory control relies on more than one functionally distinct process which, if assessed appropriately, might help us to better understand inhibitory impairments across different pathologies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. [Relation between frequency modulation direction selectivity and forward masking of inferior collicular neurons: a study on in vivo intracellular recording in mice].

    PubMed

    Fu, Zi-Ying; Zeng, Hong; Tang, Jia; Li, Jie; Li, Juan; Chen, Qi-Cai

    2013-06-25

    It has been reported that the frequency modulation (FM) or FM direction sensitivity and forward masking of central auditory neurons are related with the neural inhibition, but there are some arguments, because no direct evidence of inhibitory synaptic input was obtained in previous studies using extracellular recording. In the present study, we studied the relation between FM direction sensitivity and forward masking of the inferior collicular (IC) neurons using in vivo intracellular recordings in 20 Mus musculus Km mice. Thirty seven with complete data among 93 neurons were analyzed and discussed. There was an inhibitory area which consisted of inhibitory postsynaptic potentials (IPSP) at high frequency side of frequency tuning of up-sweep FM (FMU) sensitive neurons (n = 12) and at low frequency side of frequency tuning of down-sweep FM (FMD) selective neurons (n = 8), while there was no any inhibitory area at both sides of frequency tuning of non-FM sweep direction (FMN) sensitive neurons (n = 17). Therefore, these results show that the inhibitory area at low or high frequency side of frequency tuning is one of the mechanisms for forming FM sweep direction sensitivity of IC neurons. By comparison of forward masking produced by FMU and FMD sound stimuli in FMU, FMD and FMN neurons, the selective FM sounds could produce stronger forward masking than the non-selective in FMU and FMD neurons, while there was no forward masking difference between FMU and FMD stimuli in the FMN neurons. We suggest that the post-action potential IPSP is a potential mechanism for producing stronger forward masking in FMU and FMD neurons.

  19. Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin-Based Design and Synthesis.

    PubMed

    Badavath, Vishnu N; Baysal, İpek; Uçar, Gülberk; Mondal, Susanta K; Sinha, Barij N; Jayaprakash, Venkatesan

    2016-01-01

    Ferulic acid has structural similarity with curcumin which is being reported for its monoamine oxidase (MAO) inhibitory activity. Based on this similarity, we designed a series of ferulic acid amides 6a-m and tested for their inhibitory activity on human MAO (hMAO) isoforms. All the compounds were found to inhibit the hMAO isoforms either selectively or non-selectively. Nine compounds (6a, 6b, 6g-m) were found to inhibit hMAO-B selectively, whereas the other four (6c-f) were found to be non-selective. There is a gradual shift from hMAO-B selectivity (6a,b) to non-selectivity (6c-f) as there is an increase in chain length at the amino terminus. In case of compounds having an aromatic nucleus at the amino terminus, increasing the carbon number between N and the aromatic ring increases the potency as well as selectivity toward hMAO-B. Compounds 6f, 6j, and 6k were subjected to membrane permeability and metabolic stability studies by in vitro assay methods. They were found to have a better pharmacokinetic profile than curcumin, ferulic acid, and selegiline. In order to understand the structural features responsible for the potency and selectivity of 6k, we carried out a molecular docking simulation study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Copper (II) and zinc (II) complexes with flavanone derivatives: Identification of potential cholinesterase inhibitors by on-flow assays.

    PubMed

    Sarria, André Lucio Franceschini; Vilela, Adriana Ferreira Lopes; Frugeri, Bárbara Mammana; Fernandes, João Batista; Carlos, Rose Maria; da Silva, Maria Fátima das Graças Fernandes; Cass, Quezia Bezerra; Cardoso, Carmen Lúcia

    2016-11-01

    Metal chelates strongly influence the nature and magnitude of pharmacological activities in flavonoids. In recent years, studies have shown that a promising class of flavanone-metal ion complexes can act as selective cholinesterase inhibitors (ChEIs), which has led our group to synthesize a new series of flavanone derivatives (hesperidin, hesperetin, naringin, and naringenin) complexed to either copper (II) or zinc (II) and to evaluate their potential use as selective ChEIs. Most of the synthesized complexes exhibited greater inhibitory activity against acetylcholinesterase (AChE) than against butyrylcholinesterase (BChE). Nine of these complexes constituted potent, reversible, and selective ChEIs with inhibitory potency (IC 50 ) and inhibitory constant (K i ) ranging from 0.02 to 4.5μM. Copper complexes with flavanone-bipyridine derivatives afforded the best inhibitory activity against AChE and BChE. The complex Cu(naringin)(2,2'-bipyridine) (11) gave IC 50 and K i values of 0.012±0.002 and 0.07±0.01μM for huAChE, respectively, which were lower than the inhibitory values obtained for standard galanthamine (IC 50 =206±30.0 and K i =126±18.0μM). Evaluation of the inhibitory activity of this complex against butyrylcholinesterase from human serum (huBChE) gave IC 50 and K i values of 8.0±1.4 and 2.0±0.1μM, respectively. A Liquid Chromatography-Immobilized Capillary Enzyme Reactor by UV detection (LC-ICER-UV) assay allowed us to determine the IC 50 and K i values and the type of mechanism for the best inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Evidence that GABA ρ subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells

    PubMed Central

    Harvey, Victoria L; Duguid, Ian C; Krasel, Cornelius; Stephens, Gary J

    2006-01-01

    Ionotropic γ-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for ρ subunit-containing GABAC over other GABA receptors. Exogenous application of the GABAC-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABAC antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABAA receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABAA/GABAC pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone–Purkinje cell (IN–PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that ρ subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABAA α1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that ρ subunits can form complexes with GABAA receptor α1 subunits in the cerebellar cortex. Overall, these data suggest that ρ subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN–PC synapses in the cerebellum. PMID:16945976

  2. Effects of ethanolic extract and naphthoquinones obtained from the bulbs of Cipura paludosa on short-term and long-term memory: involvement of adenosine A₁ and A₂A receptors.

    PubMed

    Lucena, Greice M R S; Matheus, Filipe C; Ferreira, Vania M; Tessele, Priscila B; Azevedo, Mariangela S; Cechinel-Filho, Valdir; Prediger, Rui D

    2013-04-01

    Previous studies from our group have indicated important biological properties of the ethanolic extract and isolated compounds from the bulbs of Cipura paludosa (Iridaceae), a native plant widely distributed in northern Brazil, including antioxidant, neuroprotective and anti-nociceptive activities. In the present study, the effects of the ethanolic extract and its two naphthoquinones (eleutherine and isoeleutherine) on the short- and long-term memory of adult rodents were assessed in social recognition and inhibitory avoidance tasks. Acute pre-training oral administration of the ethanolic extract improved the short-term social memory in rats as well as facilitated the step-down inhibitory avoidance short- and long-term memory in mice. Moreover, the co-administration of 'non-effective' doses of the extract of Cipura paludosa and the adenosine receptor antagonists caffeine (non-selective), DPCPX (adenosine A1 receptor antagonist) and ZM241385 (adenosine A2A receptor antagonist) improved the social recognition memory of rats. In the inhibitory avoidance task, the co-administration of sub-effective doses of the extract with caffeine or ZM241385, but not with DPCPX, improved the short- and long-term memory of mice. Finally, the acute oral administration of eleutherine and isoeleutherine facilitated the inhibitory avoidance short- and long-term memory in mice. These results demonstrate for the first time the cognitive-enhancing properties of the extract and isolated compounds from the bulbs of Cipura paludosa in rodents and suggest a possible involvement of adenosine A1 and A2A receptors in these effects. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  3. Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis.

    PubMed

    Takeda, Shuso; Misawa, Koichiro; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-09-01

    In the present study it was revealed that cannabidiolic acid (CBDA) selectively inhibited cyclooxygenase (COX)-2 activity with an IC(50) value (50% inhibition concentration) around 2 microM, having 9-fold higher selectivity than COX-1 inhibition. In contrast, Delta(9)-tetrahydrocannabinolic acid (Delta(9)-THCA) was a much less potent inhibitor of COX-2 (IC(50) > 100 microM). Nonsteroidal anti-inflammatory drugs containing a carboxyl group in their chemical structures such as salicylic acid are known to inhibit nonselectively both COX-1 and COX-2. CBDA and Delta(9)-THCA have a salicylic acid moiety in their structures. Thus, the structural requirements for the CBDA-mediated COX-2 inhibition were next studied. There is a structural difference between CBDA and Delta(9)-THCA; phenolic hydroxyl groups of CBDA are freed from the ring formation with the terpene moiety, although Delta(9)-THCA has dibenzopyran ring structure. It was assumed that the whole structure of CBDA is important for COX-2 selective inhibition because beta-resorcylic acid itself did not inhibit COX-2 activity. Methylation of the carboxylic acid moiety of CBDA led to disappearance of COX-2 selectivity. Thus, it was suggested that the carboxylic acid moiety in CBDA is a key determinant for the inhibition. Furthermore, the crude extract of cannabis containing mainly CBDA was shown to have a selective inhibitory effect on COX-2. Taken together, these lines of evidence in this study suggest that naturally occurring CBDA in cannabis is a selective inhibitor for COX-2.

  4. Inhibitory Mechanisms in Primary Somatosensory Cortex Mediate the Effects of Peripheral Electrical Stimulation on Tactile Spatial Discrimination.

    PubMed

    Saito, Kei; Otsuru, Naofumi; Inukai, Yasuto; Kojima, Sho; Miyaguchi, Shota; Tsuiki, Shota; Sasaki, Ryoki; Onishi, Hideaki

    2018-06-01

    Selective afferent activation can be used to improve somatosensory function, possibly by altering cortical inhibitory circuit activity. Peripheral electrical stimulation (PES) is widely used to induce selective afferent activation, and its effect may depend on PES intensity. Therefore, we investigated the effects of high- and low-intensity PES applied to the right index finger on tactile discrimination performance and cortical sensory-evoked potential paired-pulse depression (SEP-PPD) in 25 neurologically healthy subjects. In Experiment 1, a grating orientation task (GOT) was performed before and immediately after local high- and low-intensity PES (both delivered as 1-s, 20-Hz trains of 0.2-ms electrical pulses at 5-s intervals). In Experiment 2, PPD of SEP components N20/P25_SEP-PPD and N20_SEP-PPD, respectively, were assessed before and immediately after high- and low-intensity PES. Improved GOT discrimination performance after high-intensity PES (reduced discrimination threshold) was associated with lower baseline performance (higher baseline discrimination threshold). Subjects were classified into low and high (baseline) GOT performance groups. Improved GOT discrimination performance in the low GOT performance group was significantly associated with a greater N20_SEP-PPD decrease (weaker PPD). Subjects were also classified into GOT improvement and GOT decrement groups. High-intensity PES decreased N20_SEP-PPD in the GOT improvement group but increased N20_SEP-PPD in the GOT decrement group. Furthermore, a greater decrease in GOT discrimination threshold was significantly associated with a greater N20_SEP-PPD decrease in the GOT improvement group. These results suggest that high-intensity PES can improve sensory perception in subjects with low baseline function by modulating cortical inhibitory circuits in primary somatosensory cortex. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Superficial NK1 expressing spinal dorsal horn neurones modulate inhibitory neurotransmission mediated by spinal GABA(A) receptors.

    PubMed

    Rahman, Wahida; Sikandar, Shafaq; Sikander, Shafaq; Suzuki, Rie; Hunt, Stephen P; Dickenson, Anthony H

    2007-06-04

    Lamina 1 projection neurones which express the NK1 receptor (NK1R+) drive a descending serotonergic pathway from the brainstem that enhances spinal dorsal horn neuronal activity via the facilitatory spinal 5-HT3 receptor. Selective destruction of these cells via lumbar injection of substance P-saporin (SP-SAP) attenuates pain behaviours, including mechanical and thermal hypersensitivity, which are mirrored by deficits in the evoked responses of lamina V-VI wide dynamic range (WDR) neurones to noxious stimuli. To assess whether removing the origin of this facilitatory spino-bulbo-spinal loop results in alterations in GABAergic spinal inhibitory systems, the effects of spinal bicuculline, a selective GABA(A) receptor antagonist, on the evoked neuronal responses to electrical (Abeta-, Adelta-, C-fibre, post-discharge and Input) and mechanical (brush, prod and von Frey (vF) 8 and 26 g) stimuli were measured in SAP and SP-SAP groups. In the SAP control group, bicuculline produced a significant dose related facilitation of the electrically evoked Adelta-, C-fibre, post-discharge and input neuronal responses. The evoked mechanical (prod, vF8 g and 26 g) responses were also significantly increased. Brush evoked neuronal responses in these animals were enhanced but did not reach significance. This facilitatory effect of bicuculline, however, was lost in the SP-SAP treated group. The generation of intrinsic GABAergic transmission in the spinal cord appears dependent on NK1 bearing neurons, yet despite the loss of GABAergic inhibitory controls after SP-SAP treatment, the net effect is a decrease in spinal cord excitability. Thus activation of these cells predominantly drives facilitation.

  6. Differential Modulation of Excitatory and Inhibitory Neurons during Periodic Stimulation

    PubMed Central

    Mahmud, Mufti; Vassanelli, Stefano

    2016-01-01

    Non-invasive transcranial neuronal stimulation, in addition to deep brain stimulation, is seen as a promising therapeutic and diagnostic approach for an increasing number of neurological diseases such as epilepsy, cluster headaches, depression, specific type of blindness, and other central nervous system disfunctions. Improving its effectiveness and widening its range of use may strongly rely on development of proper stimulation protocols that are tailored to specific brain circuits and that are based on a deep knowledge of different neuron types response to stimulation. To this aim, we have performed a simulation study on the behavior of excitatory and inhibitory neurons subject to sinusoidal stimulation. Due to the intrinsic difference in membrane conductance properties of excitatory and inhibitory neurons, we show that their firing is differentially modulated by the wave parameters. We analyzed the behavior of the two neuronal types for a broad range of stimulus frequency and amplitude and demonstrated that, within a small-world network prototype, parameters tuning allow for a selective enhancement or suppression of the excitation/inhibition ratio. PMID:26941602

  7. Perinatal maternal stress and serotonin signaling: effects on pain sensitivity in offspring.

    PubMed

    Knaepen, Liesbeth; Pawluski, Jodi L; Patijn, Jacob; van Kleef, Maarten; Tibboel, Dick; Joosten, Elbert A

    2014-07-01

    It has been estimated that 20% of pregnant women are facing perinatal stress and depression. Perinatal maternal stress has been shown to increase pain sensitivity in offspring. For the treatment of their depressive symptoms, pregnant women are frequently prescribed selective serotonin reuptake inhibitors (SSRIs). Since the descending pain inhibitory circuit matures perinatally, perinatal SSRI exposure has been shown to affect pain sensitivity in offspring. In the present review, we summarize experimental and clinical evidence for the effect of perinatal maternal stress and SSRI exposure on pain sensitivity in offspring. Both experimental and clinical studies show the effect of perinatal maternal stress on regulation of the hypothalamic-pituitary-adrenal (HPA) system and the serotonin pain inhibitory system. Alterations in these two systems likely underlie long-term alterations in the development of pain sensitivity. This review sheds light on the effect of perinatal maternal stress and treatment with SSRIs on offspring pain sensitivity, in relation to the developing HPA system and 5-HT signaling. © 2013 Wiley Periodicals, Inc.

  8. Antimicrobial Activity of Individual and Combined Essential Oils against Foodborne Pathogenic Bacteria.

    PubMed

    Reyes-Jurado, Fatima; López-Malo, Aurelio; Palou, Enrique

    2016-02-01

    The antimicrobial activities of essential oils from Mexican oregano (Lippia berlandieri Schauer), mustard (Brassica nigra), and thyme (Thymus vulgaris) were evaluated alone and in binary combinations against Listeria monocytogenes, Staphylococcus aureus, or Salmonella Enteritidis. Chemical compositions of the essential oils were analyzed by gas chromatography-mass spectrometry. The MICs of the evaluated essential oils ranged from 0.05 to 0.50% (vol/vol). Mustard essential oil was the most effective, likely due to the presence of allyl isothiocyanate, identified as its major component. Furthermore, mustard essential oil exhibited synergistic effects when combined with either Mexican oregano or thyme essential oils (fractional inhibitory concentration indices of 0.75); an additive effect was obtained by combining thyme and Mexican oregano essential oils (fractional inhibitory concentration index = 1.00). These results suggest the potential of studied essential oil mixtures to inhibit microbial growth and preserve foods; however, their effect on sensory quality in selected foods compatible with their flavor needs to be assessed.

  9. The influence of selected potential oncostatics of plant origin on the protein biosynthesis in vitro.

    PubMed

    Paszkiewicz-Gadek, A; Chlabicz, J; Gałasiński, W

    1988-01-01

    Five potential oncostatics of plant origin (reserpine, amphotericin B, rutoside, digoxin, dry aloe extract), and cyclic AMP were investigated for their effect on protein synthesis. The solutions of digoxin and dry aloe extract inhibited protein biosynthesis in vitro. The direct inhibiting effect of digoxin on the ribosomes suggests that this drug forms an inactive complex with this organelle. Therefore it can be concluded that ribosome is the target site of digoxin action. Aloin and aloeemodin are responsible for the inhibitory effect of the solution of dry aloe extract. They inhibit markedly [14C]-leucine incorporation into proteins. Aloin and aloeemodin do not influence directly the ribosomes, but they inhibit elongation factors and peptidyltransferase activities in the complete elongation system. Some preliminary experiments have shown that direct interaction between these substances and elongation factor EF-2 should be taken in account. This observation is the subject of further experiments, in which the characteristics of the inhibitory effect of the components isolated from dry aloe extract will be performed.

  10. Selective antibacterial activity of patchouli alcohol against Helicobacter pylori based on inhibition of urease.

    PubMed

    Yu, Xiao-Dan; Xie, Jian-Hui; Wang, Yong-Hong; Li, Yu-Cui; Mo, Zhi-Zhun; Zheng, Yi-Feng; Su, Ji-Yan; Liang, Ye-er; Liang, Jin-Zhi; Su, Zi-Ren; Huang, Ping

    2015-01-01

    The aim of this study is to evaluate the antibacterial activity and urease inhibitory effects of patchouli alcohol (PA), the bioactive ingredient isolated from Pogostemonis Herba, which has been widely used for the treatment of gastrointestinal disorders. The activities of PA against selected bacteria and fungi were determined by agar dilution method. It was demonstrated that PA exhibited selective antibacterial activity against Helicobacter pylori, without influencing the major normal gastrointestinal bacteria. Noticeably, the antibacterial activity of PA was superior to that of amoxicillin, with minimal inhibition concentration value of 78 µg/mL. On the other hand, PA inhibited ureases from H.pylori and jack bean in concentration-dependent fashion with IC50 values of 2.67 ± 0.79 mM and 2.99 ± 0.41 mM, respectively. Lineweaver-Burk plots indicated that the type of inhibition was non-competitive against H.pylori urease whereas uncompetitive against jack bean urease. Reactivation of PA-inactivated urease assay showed DL-dithiothreitol, the thiol reagent, synergistically inactivated urease with PA instead of enzymatic activity recovery. In conclusion, the selective H.pylori antibacterial activity along with urease inhibitory potential of PA could make it a possible drug candidate for the treatment of H.pylori infection. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination.

    PubMed

    Nunez-Parra, Alexia; Maurer, Robert K; Krahe, Krista; Smith, Richard S; Araneda, Ricardo C

    2013-09-03

    Granule cells (GCs) are the most abundant inhibitory neuronal type in the olfactory bulb and play a critical role in olfactory processing. GCs regulate the activity of principal neurons, the mitral cells, through dendrodendritic synapses, shaping the olfactory bulb output to other brain regions. GC excitability is regulated precisely by intrinsic and extrinsic inputs, and this regulation is fundamental for odor discrimination. Here, we used channelrhodopsin to stimulate GABAergic axons from the basal forebrain selectively and show that this stimulation generates reliable inhibitory responses in GCs. Furthermore, selective in vivo inhibition of GABAergic neurons in the basal forebrain by targeted expression of designer receptors exclusively activated by designer drugs produced a reversible impairment in the discrimination of structurally similar odors, indicating an important role of these inhibitory afferents in olfactory processing.

  12. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system.

    PubMed

    Liu, Wendy W; Wilson, Rachel I

    2013-06-18

    Glutamatergic neurons are abundant in the Drosophila central nervous system, but their physiological effects are largely unknown. In this study, we investigated the effects of glutamate in the Drosophila antennal lobe, the first relay in the olfactory system and a model circuit for understanding olfactory processing. In the antennal lobe, one-third of local neurons are glutamatergic. Using in vivo whole-cell patch clamp recordings, we found that many glutamatergic local neurons are broadly tuned to odors. Iontophoresed glutamate hyperpolarizes all major cell types in the antennal lobe, and this effect is blocked by picrotoxin or by transgenic RNAi-mediated knockdown of the GluClα gene, which encodes a glutamate-gated chloride channel. Moreover, antennal lobe neurons are inhibited by selective activation of glutamatergic local neurons using a nonnative genetically encoded cation channel. Finally, transgenic knockdown of GluClα in principal neurons disinhibits the odor responses of these neurons. Thus, glutamate acts as an inhibitory neurotransmitter in the antennal lobe, broadly similar to the role of GABA in this circuit. However, because glutamate release is concentrated between glomeruli, whereas GABA release is concentrated within glomeruli, these neurotransmitters may act on different spatial and temporal scales. Thus, the existence of two parallel inhibitory transmitter systems may increase the range and flexibility of synaptic inhibition.

  13. A Change in the Ion Selectivity of Ligand-Gated Ion Channels Provides a Mechanism to Switch Behavior.

    PubMed

    Pirri, Jennifer K; Rayes, Diego; Alkema, Mark J

    2015-01-01

    Behavioral output of neural networks depends on a delicate balance between excitatory and inhibitory synaptic connections. However, it is not known whether network formation and stability is constrained by the sign of synaptic connections between neurons within the network. Here we show that switching the sign of a synapse within a neural circuit can reverse the behavioral output. The inhibitory tyramine-gated chloride channel, LGC-55, induces head relaxation and inhibits forward locomotion during the Caenorhabditis elegans escape response. We switched the ion selectivity of an inhibitory LGC-55 anion channel to an excitatory LGC-55 cation channel. The engineered cation channel is properly trafficked in the native neural circuit and results in behavioral responses that are opposite to those produced by activation of the LGC-55 anion channel. Our findings indicate that switches in ion selectivity of ligand-gated ion channels (LGICs) do not affect network connectivity or stability and may provide an evolutionary and a synthetic mechanism to change behavior.

  14. Identification of ACE-inhibitory peptides from Phaseolus vulgaris after in vitro gastrointestinal digestion.

    PubMed

    Tagliazucchi, Davide; Martini, Serena; Bellesia, Andrea; Conte, Angela

    2015-01-01

    The objective of this study was to identify the angiotensin I-converting enzyme (ACE)-inhibitory peptides released from thermally treated Phaseolus vulgaris (pinto) whole beans after in vitro gastrointestinal digestion. The degree of hydrolysis increased during digestion reaching a value of 50% at the end of the pancreatic digestion. The <3 kDa fraction of the postpancreatic sample showed high ACE-inhibitory activity (IC50 = 105.6 ± 2.1 μg of peptides/mL). Peptides responsible for the ACE-inhibitory activity were isolated by reverse-phase high-performance liquid chromatography (HPLC). Three fractions, showing the highest inhibitory activity, were selected for tandem mass spectrometry (MS/MS) experiments. Eleven of the identified sequences have previously been described as ACE-inhibitors. Most of the identified bioactive peptides have a hydrophobic amino acid, (iso)leucine or phenylalanine, or proline at the C-terminal position, which is crucial for their ACE-inhibitory activity. The sequence of some peptides allowed us to anticipate the presence of ACE-inhibitory activity.

  15. The opposite effect of isotype-selective monoamine oxidase inhibitors on adipogenesis in human bone marrow mesenchymal stem cells.

    PubMed

    Byun, Youngjoo; Park, Jongho; Hong, Soo Hyun; Han, Mi Hwa; Park, Suzie; Jung, Hyo-Il; Noh, Minsoo

    2013-06-01

    Adiponectin production during adipocyte differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) can be used to evaluate the pharmacological activity of anti-diabetic drugs to improve insulin sensitivity. Monoamine oxidase (MAO) inhibitors such as phenelzine and pargyline inhibit adipogenesis in murine pre-adipocytes. In this study, however, we found that selective MAO-A inhibitors, moclobemide and Ro41-1049, and a selective MAO-B inhibitor, selegiline, promoted adiponectin production during adipocyte differentiation in hBM-MSCs, which suggested the anti-diabetic potential of these drugs. In contrast, non-selective MAO inhibitors, phenelzine and tranylcypromine, inhibited adipocyte differentiation of hBM-MSCs. Concomitant treatments of MAO-A and MAO-B selective inhibitors did not change the stimulatory effect on adiponectin production in hBM-MSCs. Taken together, the opposite effects of isotype-selective MAO inhibitors on adiponectin production during adipogenesis in hBM-MSCs may not be directly associated with the inhibitory effects of MAO, suggested that the structure of MAO inhibitors may contain a novel anti-diabetic pharmacophore. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors.

    PubMed

    Gul, Halise Inci; Yamali, Cem; Sakagami, Hiroshi; Angeli, Andrea; Leitans, Janis; Kazaks, Andris; Tars, Kaspars; Ozgun, Dilan Ozmen; Supuran, Claudiu T

    2018-04-01

    In this study, new 4-[3-(aryl)-5-substitutedphenyl-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamides (19-36) were synthesized and evaluated their cytotoxic/anticancer and CA inhibitory effects. According to results obtained, the compounds 34 (4-[5-(2,3,4-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-yl] benzensulfonamide, Potency-Selectivity Expression (PSE) = 141) and 36 (4-[5-(3,4,5-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamide, PSE = 54.5) were found the leader anticancer compounds with the highest PSE values. In CA inhibitory studies, the compounds 36 and 24 (4-[5-(3,4,5-trimethoxyphenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamide) were found the leader CA inhibitors depending on selectivity ratios. The compound 36 was a selective inhibitor of hCA XII isoenzyme (hCA I/hCA XII = 1250 and hCA II/hCA XII = 224) while the compound 24 was a selective inhibitor of hCA IX isoenzyme (hCA I/hCA IX = 161 and hCA II/hCA IX = 177). The compounds 24, 34, and 36 can be considered to develop new anticancer drug candidates. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Structure-activity relationship investigation of tertiary amine derivatives of cinnamic acid as acetylcholinesterase and butyrylcholinesterase inhibitors: compared with that of phenylpropionic acid, sorbic acid and hexanoic acid.

    PubMed

    Gao, Xiaohui; Tang, Jingjing; Liu, Haoran; Liu, Linbo; Kang, Lu; Chen, Wen

    2018-12-01

    In the present investigation, 48 new tertiary amine derivatives of cinnamic acid, phenylpropionic acid, sorbic acid and hexanoic acid (4d-6g, 10d-12g, 16d-18g and 22d-24g) were designed, synthesized and evaluated for the effect on AChE and BChE in vitro. The results revealed that the alteration of aminoalkyl types and substituted positions markedly influences the effects in inhibiting AChE. Almost of all cinnamic acid derivatives had the most potent inhibitory activity than that of other acid derivatives with the same aminoalkyl side chain. Unsaturated bond and benzene ring in cinnamic acid scaffold seems important for the inhibitory activity against AChE. Among them, compound 6g revealed the most potent AChE inhibitory activity (IC 50 value: 3.64 µmol/L) and highest selectivity over BChE (ratio: 28.6). Enzyme kinetic study showed that it present a mixed-type inhibition against AChE. The molecular docking study suggested that it can bind with the catalytic site and peripheral site of AChE.

  18. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation.

    PubMed

    Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B

    2012-01-18

    Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated in a timely manner. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution, whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation.

  19. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation

    PubMed Central

    Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B.

    2012-01-01

    Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated timely. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation. PMID:22262879

  20. μ-Opioid Receptors Selectively Regulate Basal Inhibitory Transmission in the Central Amygdala: Lack of Ethanol Interactions

    PubMed Central

    Kang-Park, Maeng-Hee; Kieffer, Brigitte L.; Roberts, Amanda J.; Roberto, Marisa; Madamba, Samuel G.; Siggins, George Robert; Moore, Scott D.

    2009-01-01

    Endogenous opioid systems are implicated in the actions of ethanol. For example, μ-opioid receptor (MOR) knockout (KO) mice self-administer less alcohol than the genetically intact counterpart wild-type (WT) mice (Roberts et al., 2000). MOR KO mice also exhibit less anxiety-like behavior than WT mice (Filliol et al., 2000). To investigate the neurobiological mechanisms underlying these behaviors, we examined the effect of ethanol in brain slices from MOR KO and WT mice using sharp-electrode and whole-cell patch recording techniques. We focused our study in the central nucleus of the amygdala (CeA) because it is implicated in alcohol drinking behavior and stress behavior. We found that the amplitudes of evoked inhibitory postsynaptic currents (IPSCs) or inhibitory postsynaptic potentials (IPSPs) were significantly greater in MOR KO mice than WT mice. In addition, the baseline frequencies of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents were significantly greater in CeA neurons from MOR KO than WT mice. However, ethanol enhancements of evoked IPSP and IPSC amplitudes and the frequency of miniature IPSCs were comparable between WT and MOR KO mice. Baseline spontaneous and miniature excitatory postsynaptic currents (EPSCs) and ethanol effects on EPSCs were not significantly different between MOR KO and WT mice. Based on knowledge of CeA circuitry and projections, we hypothesize that the role of MOR- and GABA receptor-mediated mechanisms in CeA underlying reinforcing effects of ethanol operate independently, possibly through pathway-specific responses within CeA. PMID:18854491

  1. Selective serotonin reuptake inhibitors: measurement of effect on platelet function.

    PubMed

    McCloskey, Donna Jo; Postolache, Teodor T; Vittone, Bernard J; Nghiem, Khanh L; Monsale, Jude L; Wesley, Robert A; Rick, Margaret E

    2008-03-01

    Selective serotonin reuptake inhibitors (SSRIs) reduce platelet serotonin and are associated with increased gastrointestinal bleeding, an effect that is enhanced when taken with NSAIDs or aspirin. The best method to evaluate hemorrhagic events in patients taking SSRIs has not been determined. Platelet aggregation, which is not widely available, shows SSRI inhibition of platelet function; we tested whether a platelet function analyzer could detect SSRI inhibition of platelet function. Two groups of outpatients with mood disorders were recruited; each patient was taking a stable dose of either an SSRI or bupropion for at least 6 weeks. They were tested using the platelet function analyzer-100 (PFA-100; Dade International Inc, Miami, Fla) concomitantly with platelet aggregation. Fifty-eight patients were analyzed. We detected significant differences between the groups using aggregation methods with arachidonic acid (aggregation, P = 0.00001; release, P = 0.009) and collagen (aggregation, P = 0.016; release, P = 0.006). The PFA-100 did not detect differences between the groups or results outside the reference range. The PFA-100 does not detect the inhibitory effects of SSRIs on platelet function, but it can be used to direct evaluation of bleeding in a patient taking an SSRI. Abnormal PFA-100 results suggest additional evaluation for von Willebrand disease, other platelet inhibitory medications, or underlying intrinsic platelet dysfunction.

  2. Synthesis, characterization and cholinesterase enzymes inhibitory activity of 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone

    NASA Astrophysics Data System (ADS)

    Mehdi, Sayed Hasan; Ghalib, Raza Murad; Hashim, Rokiah; da Silva, M. Fátima C. Guedes; Sulaiman, Othman; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran; Naqvi, Mehnaz

    2013-10-01

    The crystal structure of the title compound, 1-[3-methyl-5-(2,6,6-trimethyl-cyclohex-1-enyl)-4,5-dihydro-pyrazol-1-yl]-ethanone has been determined by single crystal X-ray diffraction. It crystallizes in the orthorhombic space group P212121. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. Compound 1 demonstrated good inhibitory activity against butyrylcholinesterase (BChE; IC50 = 46.42 μM) comparable to physostigmine. However it showed moderate inhibitory activity against acetylcholinesterase (AChE; IC50 = 157.31 μM). It showed moderate inhibitory activity against acetylcholinesterase and selective inhibitory activity towards butyrylcholinesterase enzyme.

  3. Inhibitory effect of tocotrienol on eukaryotic DNA polymerase {lambda} and angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizushina, Yoshiyuki; Nakagawa, Kiyotaka; Shibata, Akira

    2006-01-20

    Tocotrienols, vitamin E compounds that have an unsaturated side chain with three double bonds, selectively inhibited the activity of mammalian DNA polymerase {lambda} (pol {lambda}) in vitro. These compounds did not influence the activities of replicative pols such as {alpha}, {delta}, and {epsilon}, or even the activity of pol {beta} which is thought to have a very similar three-dimensional structure to the pol {beta}-like region of pol {lambda}. Since {delta}-tocotrienol had the strongest inhibitory effect among the four ({alpha}- to {delta}-) tocotrienols, the isomer's structure might be an important factor in the inhibition of pol {lambda}. The inhibitory effect ofmore » {delta}-tocotrienol on both intact pol {lambda} (residues 1-575) and a truncated pol {lambda} lacking the N-terminal BRCA1 C-terminus (BRCT) domain (residues 133-575, del-1 pol {lambda}) was dose-dependent, with 50% inhibition observed at a concentration of 18.4 and 90.1 {mu}M, respectively. However, del-2 pol {lambda} (residues 245-575) containing the C-terminal pol {beta}-like region was unaffected. Tocotrienols also inhibited the proliferation of and formation of tubes by bovine aortic endothelial cells, with {delta}-tocotrienol having the greatest effect. These results indicated that tocotrienols targeted both pol {lambda} and angiogenesis as anti-cancer agents. The relationship between the inhibition of pol {lambda} and anti-angiogenesis by {delta}-tocotrienol was discussed.« less

  4. Behavioral consequences of predator stress in the rat elevated T-maze.

    PubMed

    Bulos, Erika Mondin; Pobbe, Roger Luis Henschel; Zangrossi, Helio

    2015-07-01

    Analyses of the behavioral reactions of rodents to predators have greatly contributed to the understanding of defense-related human psychopathologies such as anxiety and panic.We here investigated the behavioral consequences of exposing male Wistar rats to a live cat using the elevated T-maze test of anxiety. This test allows the measurement of two defensive responses: inhibitory avoidance and escape, which in terms of pathology have been associated with generalized anxiety and panic disorders, respectively. For comparative reasons, the effects of exposure to the cat were also assessed in the elevated plus-maze. The results showed that a 5-min exposure to the cat selectively facilitated inhibitory avoidance acquisition, an anxiogenic effect, without affecting escape expression in the elevated T-maze. This was seen immediately but not 30 min after contact with the predator. This short-lived anxiogenic effect was also detected in the elevated plus-maze. Previous administration of the benzodiazepine anxiolytic diazepam (2 mg/kg) decreased the immediate avoidance response to the predator and the neophobic reaction to a dummy cat used as a control stimulus. The drug also impaired inhibitory avoidance acquisition in the elevated T-maze, indicating an anxiolytic effect, without affecting escape performance. The results indicate that the state of anxiety evoked during contact with the predator generalizes to both elevated plus- and T-mazes, impacting on defensive responses associated with generalized anxiety disorder.

  5. Inhibitory Effects of Thai Essential Oils on Potentially Aflatoxigenic Aspergillus parasiticus and Aspergillus flavus.

    PubMed

    Jantapan, Kittika; Poapolathep, Amnart; Imsilp, Kanjana; Poapolathep, Saranya; Tanhan, Phanwimol; Kumagai, Susumu; Jermnak, Usuma

    2017-01-01

     The antiaflatoxigenic and antifungal activities of essential oils (EOs) of finger root (Boesenbergia rotunda (L.) Mansf.), pine (Pinus pinaster), rosewood (Aniba rosaedora), Siam benzoin (Styrax tonkinensis), Thai moringa (Moringa oleifera), and ylang ylang (Cananga odorata) were tested for Aspergillus parasiticus and Aspergillus flavus in potato dextrose broth. Aflatoxin B 1 (AFB 1 ) was extracted from culture using a QuEChERS-based extraction procedure and analyzed with high performance liquid chromatography (HPLC) coupled to a fluorescence detector. EO of pine showed the greatest inhibition of growth and AFB 1 production of A. parasiticus, followed by EOs of rosewood, finger root, Siam benzoin, and ylang ylang. EO of finger root gave the best inhibitory effects on A. flavus, followed by EOs of rosewood, pine, ylang ylang, and Siam benzoin. EO of Thai moringa did not show any significant inhibition of aflatoxigenic fungi. The antiaflatoxigenic activities of EOs correlated with their antifungal activities in the dosedependent manner. Comparison of the application of the five selected EOs in peanut pods by direct and vapor exposure indicated that the AFB 1 production inhibitory effects of the five EOs by direct exposure were faster and more effective than by vapor exposure. EO of finger root showed the best inhibition of AFB 1 production of A. flavus in peanut pods by direct exposure, followed by EOs of pine, rosewood, ylang ylang, and Siam benzoin.

  6. In vitro effect of important herbal active constituents on human cytochrome P450 1A2 (CYP1A2) activity.

    PubMed

    Pan, Yan; Tiong, Kai Hung; Abd-Rashid, Badrul Amini; Ismail, Zakiah; Ismail, Rusli; Mak, Joon Wah; Ong, Chin Eng

    2014-10-15

    This study was designed to investigate eight herbal active constituents (andrographolide, asiaticoside, asiatic acid, madecassic acid, eupatorin, sinensetin, caffeic acid, and rosmarinic acid) on their potential inhibitory effects on human cytochrome P450 1A2 (CYP1A2) activity. A fluorescence-based enzyme assay was performed by co-incubating human cDNA-expressed CYP1A2 with its selective probe substrate, 3-cyano-7-ethoxycoumarin (CEC), in the absence or presence of various concentrations of herbal active constituents. The metabolite (cyano-hydroxycoumarin) formed was subsequently measured in order to obtain IC50 values. The results indicated that only eupatorin and sinensetin moderately inhibited CYP1A2 with IC50 values of 50.8 and 40.2 μM, while the other active compounds did not significantly affect CYP1A2 activity with IC50 values more than 100 μM. Ki values further determined for eupatorin and sinensetin were 46.4 and 35.2 μM, respectively. Our data indicated that most of the investigated herbal constituents have negligible CYP1A2 inhibitory effect. In vivo studies however may be warranted to ascertain the inhibitory effect of eupatorin and sinensetin on CYP1A2 activity in clinical situations. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity

    PubMed Central

    Yonehara, Keisuke; Fiscella, Michele; Drinnenberg, Antonia; Esposti, Federico; Trenholm, Stuart; Krol, Jacek; Franke, Felix; Scherf, Brigitte Gross; Kusnyerik, Akos; Müller, Jan; Szabo, Arnold; Jüttner, Josephine; Cordoba, Francisco; Reddy, Ashrithpal Police; Németh, János; Nagy, Zoltán Zsolt; Munier, Francis; Hierlemann, Andreas; Roska, Botond

    2016-01-01

    Summary Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract PMID:26711119

  8. Inhibitory properties of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) derivatives acting on glycogen metabolising enzymes.

    PubMed

    Díaz-Lobo, Mireia; Concia, Alda Lisa; Gómez, Livia; Clapés, Pere; Fita, Ignacio; Guinovart, Joan J; Ferrer, Joan C

    2016-09-26

    Glycogen synthase (GS) and glycogen phosphorylase (GP) are the key enzymes that control, respectively, the synthesis and degradation of glycogen, a multi-branched glucose polymer that serves as a form of energy storage in bacteria, fungi and animals. An abnormal glycogen metabolism is associated with several human diseases. Thus, GS and GP constitute adequate pharmacological targets to modulate cellular glycogen levels by means of their selective inhibition. The compound 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) is a known potent inhibitor of GP. We studied the inhibitory effect of DAB, its enantiomer LAB, and 29 DAB derivatives on the activity of rat muscle glycogen phosphorylase (RMGP) and E. coli glycogen synthase (EcGS). The isoform 4 of sucrose synthase (SuSy4) from Solanum tuberosum L. was also included in the study for comparative purposes. Although these three enzymes possess highly conserved catalytic site architectures, the DAB derivatives analysed showed extremely diverse inhibitory potential. Subtle changes in the positions of crucial residues in their active sites are sufficient to discriminate among the structural differences of the tested inhibitors. For the two Leloir-type enzymes, EcGS and SuSy4, which use sugar nucleotides as donors, the inhibitory potency of the compounds analysed was synergistically enhanced by more than three orders of magnitude in the presence of ADP and UDP, respectively. Our results are consistent with a model in which these compounds bind to the subsite in the active centre of the enzymes that is normally occupied by the glucosyl residue which is transferred between donor and acceptor substrates. The ability to selectively inhibit the catalytic activity of the key enzymes of the glycogen metabolism may represent a new approach for the treatment of disorders of the glycogen metabolism.

  9. Antimicrobial Effect of 7-O-Butylnaringenin, a Novel Flavonoid, and Various Natural Flavonoids against Helicobacter pylori Strains

    PubMed Central

    Moon, Sun Hee; Lee, Jae Hoon; Kim, Kee-Tae; Park, Yong-Sun; Nah, Seung-Yeol; Ahn, Dong Uk; Paik, Hyun-Dong

    2013-01-01

    The antimicrobial effect of a novel flavonoid (7-O-butylnaringenin) on Helicobacter pylori 26695, 51, and SS1 strains and its inhibitory effect on the urease activity of the strains were evaluated and compared with those of several natural flavonoids. First, various flavonoids were screened for antimicrobial activities using the paper disc diffusion method. Hesperetin and naringenin showed the strongest antimicrobial effects among the natural flavonoids tested, and thus hesperetin and naringenin were selected for comparison with 7-O-butylnaringenin. The antimicrobial effect of 7-O-butylnaringenin was greater than that of the hesperetin and naringenin. H. pylori 51 was more sensitive to 7-O-butylnaringenin (2 log reduction of colony forming units, p < 0.05) than the other two strains at 200 μM. 7-O-Butylnaringenin also showed the highest inhibitory effect against urease activity of H. pylori. Morphological changes of H. pylori 26695 treated with these flavonoids indicated that both hesperetin and 7-O-butylnaringenin at 200 μM damaged the cell membranes. PMID:24169409

  10. Inhibitory effects of crude extracts from several plants on postharvest pathogens of citrus

    NASA Astrophysics Data System (ADS)

    Gong, Mingfu; Guan, Qinlan; Xu, Shanshan

    2018-04-01

    China is one of the most important origin of citrus. Enormous economic losses was caused by fungal diseases in citrus harvest storage every year. The effective antimicrobial substances of garlic, ginger, celery and pepper were extracted by ethanol extraction and water extraction respectively. The inhibitory effects of the crude extract on Penicillium sp. caused fungal diseases in citrus harvest storage were also determined. The results showed that the extracts of garlic, ginger and celery had inhibitory effect on P. sp., but the extracts of pepper had no inhibitory effect on P. sp.. The garlic ethanol extracts had the best inhibitory effect on P. citrinum.

  11. Visual Tuning Properties of Genetically Identified Layer 2/3 Neuronal Types in the Primary Visual Cortex of Cre-Transgenic Mice

    PubMed Central

    Zariwala, Hatim A.; Madisen, Linda; Ahrens, Kurt F.; Bernard, Amy; Lein, Edward S.; Jones, Allan R.; Zeng, Hongkui

    2011-01-01

    The putative excitatory and inhibitory cell classes within the mouse primary visual cortex V1 have different functional properties as studied using recording microelectrode. Excitatory neurons show high selectivity for the orientation angle of moving gratings while the putative inhibitory neurons show poor selectivity. However, the study of selectivity of the genetically identified interneurons and their subtypes remain controversial. Here we use novel Cre-driver and reporter mice to identify genetic subpopulations in vivo for two-photon calcium dye imaging: Wfs1(+)/Gad1(−) mice that labels layer 2/3 excitatory cell population and Pvalb(+)/Gad1(+) mice that labels a genetic subpopulation of inhibitory neurons. The cells in both mice were identically labeled with a tdTomato protein, visible in vivo, using a Cre-reporter line. We found that the Wfs1(+) cells exhibited visual tuning properties comparable to the excitatory population, i.e., high selectivity and tuning to the angle, direction, and spatial frequency of oriented moving gratings. The functional tuning of Pvalb(+) neurons was consistent with previously reported narrow-spiking interneurons in microelectrode studies, exhibiting poorer selectivity than the excitatory neurons. This study demonstrates the utility of Cre-transgenic mouse technology in selective targeting of subpopulations of neurons and makes them amenable to structural, functional, and connectivity studies. PMID:21283555

  12. Multisensory Integration Strategy for Modality-Specific Loss of Inhibition Control in Older Adults.

    PubMed

    Lee, Ahreum; Ryu, Hokyoung; Kim, Jae-Kwan; Jeong, Eunju

    2018-04-11

    Older adults are known to have lesser cognitive control capability and greater susceptibility to distraction than young adults. Previous studies have reported age-related problems in selective attention and inhibitory control, yielding mixed results depending on modality and context in which stimuli and tasks were presented. The purpose of the study was to empirically demonstrate a modality-specific loss of inhibitory control in processing audio-visual information with ageing. A group of 30 young adults (mean age = 25.23, Standar Desviation (SD) = 1.86) and 22 older adults (mean age = 55.91, SD = 4.92) performed the audio-visual contour identification task (AV-CIT). We compared performance of visual/auditory identification (Uni-V, Uni-A) with that of visual/auditory identification in the presence of distraction in counterpart modality (Multi-V, Multi-A). The findings showed a modality-specific effect on inhibitory control. Uni-V performance was significantly better than Multi-V, indicating that auditory distraction significantly hampered visual target identification. However, Multi-A performance was significantly enhanced compared to Uni-A, indicating that auditory target performance was significantly enhanced by visual distraction. Additional analysis showed an age-specific effect on enhancement between Uni-A and Multi-A depending on the level of visual inhibition. Together, our findings indicated that the loss of visual inhibitory control was beneficial for the auditory target identification presented in a multimodal context in older adults. A likely multisensory information processing strategy in the older adults was further discussed in relation to aged cognition.

  13. Catecholic amides as potential selective phosphodiesterase 4D inhibitors: Design, synthesis, pharmacological evaluation and structure-activity relationships.

    PubMed

    Zhou, Zhong-Zhen; Ge, Bing-Chen; Chen, Yu-Fang; Shi, Xiu-Dong; Yang, Xue-Mei; Xu, Jiang-Ping

    2015-11-15

    In this study, a series of catechol-based amides (8a-n) with different amide linkers linking the catecholic moiety to the terminal phenyl ring was designed and synthesized as potent phosphodiesterase (PDE) 4D inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4B1 and PDE4D7 enzymes, and other PDE family members. The results indicated the majority of compounds 8a-n displayed moderate to good inhibitory activities against PDE4CAT. Among these compounds, compound 8 j with a short amide linker (-CONHCH2-) displayed comparable PDE4CAT inhibitory activity (IC50=410 nM) with rolipram. More interestingly, compound 8 g, a potent and selective PDE4D inhibitor (IC50=94 nM), exhibited a 10-fold selectivity over the PDE4B subtypes and an over 1000-fold selectivity against other PDE family members. Docking simulations suggested that 8 g forms three extra H-bonds with the N-H of residue Asn487 and two water molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Designed Ankyrin Repeat Proteins: A New Approach to Mimic Complex Antigens for Diagnostic Purposes?

    PubMed Central

    Hausammann, Stefanie; Vogel, Monique; Kremer Hovinga, Johanna A.; Lacroix-Desmazes, Sebastien; Stadler, Beda M.; Horn, Michael P.

    2013-01-01

    Inhibitory antibodies directed against coagulation factor VIII (FVIII) can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins) mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures. PMID:23626669

  15. Inhibitory control of plateau properties in dorsal horn neurones in the turtle spinal cord in vitro

    PubMed Central

    Russo, Raúl E; Nagy, Frédéric; Hounsgaard, Jørn

    1998-01-01

    The role of inhibition in control of plateau-generating neurones in the dorsal horn was studied in an in vitro preparation of the spinal cord of the turtle. Ionotropic and metabotropic inhibition was found to condition the expression of plateau potentials. Blockade of γ-aminobutyric acid (GABAA) and glycine receptors by their selective antagonists bicuculline (10-50 μM) and strychnine (5-20 μM) enhanced the excitatory response to stimulation of the dorsal root and facilitated the expression of plateau potentials. Bicuculline and strychnine also facilitated the generation of plateau potentials in response to depolarizing current pulses, suggesting the presence of tonic ionotropic inhibitory mechanisms in turtle spinal cord slices. Activation of GABAB receptors also inhibited plateau-generating neurones. The selective agonist baclofen (5-50 μM) inhibited wind-up of the response to repeated depolarizations induced synaptically or by intracellular current pulses. Baclofen reduced afferent synaptic input. This effect was not affected by bicuculline or strychnine and was blocked by the selective GABAB receptor antagonist 2-hydroxysaclofen (2-OH-saclofen, 100-400 μM). Postsynaptically, baclofen inhibited plateau properties. Activation of GABAB receptors produced a hyperpolarization (7.0 ± 0.5 mV, mean ± s.e.m., n= 29) with an associated decrease in input resistance (22.7 ± 3.1 %, n= 24). These effects were blocked by extracellular Ba2+ (1-2 mM). When the baclofen-induced hyperpolarization and shunt were compensated for by adjusting the bias current and the strength of the stimulus, baclofen still inhibited generation of plateau potentials. Wind-up and after-discharges were also inhibited by baclofen. These effects remained in the presence of tetrodotoxin (1 μM) and were antagonized by 2-OH-saclofen. The inhibition of plateau properties was observed even when the baclofen-induced hyperpolarization and shunt were blocked by Ba2+ and when potassium channels were blocked by Ba2+ (3 mM), tetraethylammonium (TEA, 15 mM) and apamin (0.25-0.5 μM). The baclofen-sensitive component of the plateau potential was reduced by nifedipine (10 μM), suggesting a modulation of postsynaptic L-type Ca2+ channels. We suggest that inhibitory regulation of plateau properties plays a role in somatosensory processing in the dorsal horn. The inhibitory control of wind-up and after-discharges may be particularly significant in physiological and therapeutic control of central sensitization to pain. PMID:9503338

  16. Evaluation of Selected Culinary-Medicinal Mushrooms for Antioxidant and ACE Inhibitory Activities

    PubMed Central

    Abdullah, Noorlidah; Ismail, Siti Marjiana; Aminudin, Norhaniza; Shuib, Adawiyah Suriza; Lau, Beng Fye

    2012-01-01

    Considering the importance of diet in prevention of oxidative stress-related diseases including hypertension, this study was undertaken to evaluate the in vitro antioxidant and ACE inhibitory activities of selected culinary-medicinal mushrooms extracted by boiling in water for 30 min. Antioxidant capacity was measured using the following assays: DPPH free radical scavenging activity, β-carotene bleaching, inhibition of lipid peroxidation, reducing power ability, and cupric ion reducing antioxidant capacity (CUPRAC). Antioxidant potential of each mushroom species was calculated based on the average percentages relative to quercetin and summarized as Antioxidant Index (AI). Ganoderma lucidum (30.1%), Schizophyllum commune (27.6%), and Hericium erinaceus (17.7%) showed relatively high AI. Total phenolics in these mushrooms varied between 6.19 to 63.51 mg GAE/g extract. In the ACE inhibitory assay, G. lucidum was shown to be the most potent species (IC50 = 50 μg/mL). Based on our findings, culinary-medicinal mushrooms can be considered as potential source of dietary antioxidant and ACE inhibitory agents. PMID:21716693

  17. Antiproliferative effect of retinoid compounds on Kaposi's sarcoma cells.

    PubMed Central

    Corbeil, J; Rapaport, E; Richman, D D; Looney, D J

    1994-01-01

    A panel of retinoid compounds (tretinoin, isotretinoin, acitretin, and RO13-1470) were tested for inhibitory activity against Kaposi's sarcoma cell (KSC) cultures in vitro. Tretinoin was found to be the most effective retinoid tested, inhibiting the growth of KSC in vitro while having no effect on the expression of interleukin-6 and basic fibroblast growth factor, two important cytokines involved in KSC growth. Tretinoin also did not appear to downregulate the expression of receptors for these two cytokines. At low concentrations (10(-9) M), acitretin and tretinoin selectively inhibited growth of early passage KSC. At higher concentrations (10(-6)-10(-5) M), retinoid treatment induced a pattern of DNA degradation and morphological changes in KSC characteristic of apoptosis (programmed cell death). The inhibitory activity of tretinoin on KSC growth was decreased if human serum (but not fetal calf serum) was present in the growth medium, and partially restored by removal of serum lipids. These data suggest that retinoids possess potential as therapeutic agents in Kaposi's sarcoma. Images PMID:8182129

  18. The effects of drugs, other foreign compounds, and cigarette smoke on the synthesis of protein by lung slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellstern, K.; Curtis, C.G.; Powell, G.M.

    1990-04-01

    The incorporation of {sup 14}C-leucine into rabbit lung slices was monitored in the absence and presence of selected drugs and chemicals relevant to the perturbation of lung function and the development of lung disease. Known inhibitors of protein synthesis (cycloheximide and ricin) inhibited the incorporation of {sup 14}C-leucine. Marked inhibition was also recorded with the lung toxins paraquat and 4-ipomeanol. By contrast, orciprenaline, salbutamol, and terbutaline were without effect although some response was recorded with isoprenaline. The filtered gas phase of cigarette smoke and acrolein, one of its components, were inhibitory but protection was afforded by N-acetylcysteine. It is suggestedmore » that the inhibitory effects of cigarette smoke may be due to its acrolein content. It is further suggested that the use of lung slices and measurements of {sup 14}C-leucine incorporation provide valuable means for monitoring potential pulmonary toxins.« less

  19. α-Glucosidase Inhibitory Activity of Selected Malaysian Plants.

    PubMed

    Mohd Bukhari, Dzatil Awanis; Siddiqui, Mohammad Jamshed; Shamsudin, Siti Hadijah; Rahman, Md Mukhlesur; So'ad, Siti Zaiton Mat

    2017-01-01

    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  20. α-Glucosidase Inhibitory Activity of Selected Malaysian Plants

    PubMed Central

    Mohd Bukhari, Dzatil Awanis; Siddiqui, Mohammad Jamshed; Shamsudin, Siti Hadijah; Rahman, Md. Mukhlesur; So'ad, Siti Zaiton Mat

    2017-01-01

    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes. PMID:28979070

  1. Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition.

    PubMed

    Grama, Abhinav; Engert, Florian

    2012-01-01

    The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons.

  2. Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition

    PubMed Central

    Grama, Abhinav; Engert, Florian

    2012-01-01

    The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons. PMID:22969706

  3. Dissociating the Influence of Response Selection and Task Anticipation on Corticospinal Suppression During Response Preparation

    PubMed Central

    Duque, Julie; Labruna, Ludovica; Cazares, Christian; Ivry, Richard B.

    2014-01-01

    Motor behavior requires selecting between potential actions. The role of inhibition in response selection has frequently been examined in tasks in which participants are engaged in some advance preparation prior to the presentation of an imperative signal. Under such conditions, inhibition could be related to processes associated with response selection, or to more general inhibitory processes that are engaged in high states of anticipation. In Experiment 1, we manipulated the degree of anticipatory preparation. Participants performed a choice reaction time task that required choosing between a movement of the left or right index finger, and used transcranial magnetic stimulation (TMS) to elicit motor evoked potentials (MEPs) in the left hand agonist. In high anticipation blocks, a non-informative cue (e.g., fixation marker) preceded the imperative; in low anticipation blocks, there was no cue and participants were required to divide their attention between two tasks to further reduce anticipation. MEPs were substantially reduced before the imperative signal in high anticipation blocks. In contrast, in low anticipation blocks, MEPs remained unchanged before the imperative signal but showed a marked suppression right after the onset of the imperative. This effect occurred regardless of whether the imperative had signaled a left or right hand response. After this initial inhibition, left MEPs increased when the left hand was selected and remained suppressed when the right hand was selected. We obtained similar results in Experiment 2 except that the persistent left MEP suppression when the left hand was not selected was attenuated when the alternative response involved a non-homologous effector (right foot). These results indicate that, even in the absence of an anticipatory period, inhibitory mechanisms are engaged during response selection, possibly to prevent the occurrence of premature and inappropriate responses during a competitive selection process. PMID:25128431

  4. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Kotaro; Kamada, Yusuke; Sameshima, Tomoya

    Amino-acid mutations of Gly{sup 12} (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH{sub 2}) as a consensus sequence. KRpep-2 showedmore » more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. K{sub D} and IC{sub 50} values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH{sub 2}) that inhibited enzyme activity of K-Ras(G12D) with IC{sub 50} = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. - Highlights: • The first K-Ras(G12D)-selective inhibitory peptides were generated. • These peptides showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D) in compared to wild type K-Ras. • The peptide KRpep-2d suppressed downstream signal of K-Ras(G12D) and cell proliferations of cancer cell line A427.« less

  5. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters.

    PubMed

    Tornio, Aleksi; Neuvonen, Pertti J; Niemi, Mikko; Backman, Janne T

    2017-01-01

    Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.

  6. THE MECHANISM OF THE INHIBITION OF HEMOLYSIS

    PubMed Central

    Ponder, Eric

    1945-01-01

    This paper contains a description of some of the inhibitory, and occasionally acceleratory, effects of sols of lecithins, cholesterol, and proteins in hemolytic systems containing simple lysins, together with investigations on the nature of the reactions by means of which the effects are brought about. The principal conclusions are: A. As regards sols of lecithins. 1. In lysin-inhibitor-cell systems, distearyl lecithin is an inhibitor of saponin and digitonin hemolysis, part of the effect being the result of a reaction with the components of the red cell surface and part being the result of a reaction with lysin in the bulk phase of the system. Lecithin ab ovo (Merck) is an accelerator of saponin hemolysis and either an accelerator or an inhibitor of digitonin hemolysis according to the initial concentration of lysin present in the system. Soybean lecithin is an inhibitor of both saponin and digitonin hemolysis, but both soybean lecithin and lecithin ab ovo contain also a hemolytic, or acceleratory, component. 2. The inhibitory effects depend on the order in which the components of the hemolytic system are mixed together. Distearyl lecithin is about 5 times more inhibitory in cell-inhibitor-lysin systems than in lysin-inhibitor-cell systems containing saponin, digitonin, or taurocholate. Lecithin ab ovo is more inhibitory in cell-inhibitor-lysin systems when the time of contact between cells and inhibitor is short, but when it is long, the hemolytic properties of the lecithin offset its inhibitory properties. A similar state of affairs is observed with soybean lecithin. 3. An increase in temperature decreases the inhibitory effect of distearyl lecithin in systems containing saponin or digitonin. B. As regards sols of cholesterol. 4. The quantity of lysin Δ apparently inhibited by a quantity Q of cholesterol sol is dependent on both the type of red cell and the number of red cells added to the system. 5. Δ is a non-linear function of Q and of c 1, the initial quantity of lysin present in the hemolytic system, Δ generally increasing as c 1 increases. 6. The inhibitory effect of cholesterol sols is essentially due to a reaction between the cholesterol and the lysin in the bulk phase of the system, modified by what appear to be redistribution effects which depend on the kind and number of red cells added to complete the hemolytic system. 7. The value of Δ depends on the temperature and on the length of time during which the cholesterol and the lysin remain in contact before the addition of the cells. 8. Distearyl lecithin considerably enhances the inhibitory effects of cholesterol sols. C. As regards the proteins. 9. Freshly prepared serum globulin is inhibitory in systems containing saponin, digitonin, taurocholate, and oleate, and the effect is due to reactions in the bulk phase of the system, modified by redistribution effects. 10. Serum albumin either accelerates or inhibits lysis by saponin, depending on the initial concentration of lysin, and the inhibition depends on such factors as the type of red cell used and the time of contact. In the case of sodium taurocholate, the inhibition has a very marked pH dependence. D. As regards plasma. 11. The way in which the inhibitory effect depends on the length of time during which inhibitor and lysin are in contact before the addition of the cells is not the same when plasma is used as an inhibitor as when a cholesterol sol is used as the inhibitor. The amount of cholesterol sol which is equal in inhibitory power to a given amount of plasma accordingly varies according to the length of the time of contact which is selected. 12. The inhibitory effect in systems containing saponin, plasma, and red cells can be shown to depend on the order in which the components are mixed, when the concentration of the plasma is small. 13. The question as to how much of the inhibitory power of plasma can be accounted for by the contained cholesterol (total or free) is one which can be answered only if the experimental conditions are defined with respect to initial concentration of lysin, time of contact, and several other variables. Very roughly, about 50 per cent of the total inhibition of plasma, or a little more, can be attributed to the cholesterol fraction. 14. Since the inhibitory effects of plasma are the result of reactions in the bulk phase of the system, complicated by redistributions among the phases, of reactions between some of its components and components of the red cell surface, and of enhancing effects of its components upon each other, it is not surprising that nothing better than an empirical expression should have been found to describe the inhibition quantitatively. PMID:19873439

  7. Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities.

    PubMed

    Chao, Shi-Wei; Chen, Liang-Chieh; Yu, Chia-Chun; Liu, Chang-Yi; Lin, Tony Eight; Guh, Jih-Hwa; Wang, Chen-Yu; Chen, Chun-Yung; Hsu, Kai-Cheng; Huang, Wei-Jan

    2018-01-01

    Histone deacetylase (HDAC) is a validated drug target for various diseases. This study combined indole recognition cap with SAHA, an FDA-approved HDAC inhibitor used to treat cutaneous T-cell lymphoma (CTCL). The structure activity relationship of the resulting compounds that inhibited HDAC was disclosed as well. Some compounds exhibited much stronger inhibitory activities than SAHA. We identified two meta-series compounds 6j and 6k with a two-carbon linker had IC 50 values of 3.9 and 4.5 nM for HDAC1, respectively. In contrast, the same oriented compounds with longer carbon chain linkers showed weaker inhibition. The result suggests that the linker chain length greatly contributed to enzyme inhibitory potency. In addition, comparison of enzyme-inhibiting activity between the compounds and SAHA showed that compounds 6j and 6k displayed higher inhibiting activity for class I (HDAC1, -2, -3 and -8). The molecular docking and structure analysis revealed structural differences with the inhibitor cap and metal-binding regions between the HDAC isozymes that affect interactions with the inhibitors and play a key role for selectivity. Further biological evaluation showed multiple cellular effects associated with compounds 6j- and 6k-induced HDAC inhibitory activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Effects of selected herbicides and fungicides on growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana.

    PubMed

    Celar, Franci A; Kos, Katarina

    2016-11-01

    The in vitro fungicidal effects of six commonly used fungicides, namely fluazinam, propineb, copper(II) hydroxide, metiram, chlorothalonil and mancozeb, and herbicides, namely isoxaflutole, fluazifop-P-butyl, flurochloridone, foramsulfuron, pendimethalin and prosulfocarb, on mycelial growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana (ATCC 74040) were investigated. Mycelial growth rates and sporulation at 15 and 25 °C were evaluated on PDA plates containing 100, 75, 50, 25, 12.5, 6.25 and 0% of the recommended application rate of each pesticide. The tested pesticides were classified in four scoring categories based on reduction in mycelial growth and sporulation. All pesticides, herbicides and fungicides tested had fungistatic effects of varying intensity, depending on their rate in the medium, on B. bassiana. The most inhibitory herbicides were flurochloridone and prosulfocarb, and fluazinam and copper(II) hydroxide were most inhibitory among the fungicides, while the least inhibitory were isoxaflutole and chlorothalonil. Sporulation and conidial germination of B. bassiana were significantly inhibited by all tested pesticides compared with the control treatment. Flurochloridone, foramsulfuron, prosulfocarb and copper(II) hydroxide inhibited sporulation entirely at 100% rate (99-100% inhibition), and the lowest inhibition was shown by fluazifop-P-butyl (22%) and metiram (33%). At 100% dosage, all herbicides in the test showed a high inhibitory effect on conidial germination. Conidial germination inhibition ranged from 82% with isoxaflutole to 100% with fluorochloridone, pendimethalin and prosulfocarb. At 200% dosage, inhibition rates even increased (96-100%). All 12 pesticides tested had a fungistatic effect on B. bassiana of varying intensity, depending on the pesticide and its concentration. B. bassiana is highly affected by some herbicides and fungicides even at very low rates. Flurochloridone, foramsulfuron, prosulfocarb and copper(II) hydroxide stopped sporulation. Of all tested pesticides, isoxaflutole, fluazifop-P-butyl and chlorothalonil showed the least adverse effects and therefore probably could be compatible with B. bassiana in the field. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Tramadol: Effects on sexual behavior in male rats are mainly caused by its 5-HT reuptake blocking effects.

    PubMed

    Olivier, Jocelien D A; Esquivel Franco, Diana C; Oosting, Ronald; Waldinger, Marcel; Sarnyai, Zoltan; Olivier, Berend

    2017-04-01

    Tramadol is a well-known and effective analgesic. Recently it was shown that tramadol is also effective in human premature ejaculation. The inhibitory effect of tramadol on the ejaculation latency is probably due to its mechanism of action as a μ-opioid receptor agonist and noradrenaline/serotonin (5-HT) reuptake inhibitor. In order to test this speculation, we tested several doses of tramadol in a rat model of male sexual behavior and investigated two types of drugs interfering with the μ-opioid and the 5-HT system. First the μ-opioid receptor agonist properties of tramadol were tested with naloxone, a μ-opioid receptor antagonist. Second, the effects of WAY100,635, a 5-HT 1A receptor antagonist, were tested on the behavioral effects of tramadol. Finally the effects of paroxetine, a selective serotonin reuptake inhibitor, combined with naloxone or WAY100,635 treatment, were compared to the effects of tramadol combined with these drugs. Results showed that naloxone, at a sexually inactive dose, could only partially antagonize the inhibitory effect of tramadol. Moreover, low and behaviorally inactive doses of WAY100,635, strongly decreased sexual behavior when combined with a behaviorally inactive dose of tramadol. Finally we showed that the effects of paroxetine on sexual behavior resembled the effects of tramadol, indicating that tramadol's inhibitory effects on sexual behavior are primarily and mainly caused by its SSRI properties and that its μ-opioid receptor agonistic activity only contributes marginally. These findings support the hypothesis that tramadol exerts inhibition of premature ejaculations in men by its 5-HT reuptake inhibiting properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The expression of β3-adrenoceptors and their function in the human prostate.

    PubMed

    Suzuki, Takahisa; Otsuka, Atsushi; Matsumoto, Rikiya; Furuse, Hiroshi; Ozono, Seiichiro

    2016-02-01

    Little is known about β3-adrenoceptor (AR) expression and function in human prostate. We examined the expression and distribution of β-AR subtypes in normal prostate and benign prostatic hyperplasia (BPH) tissues, and investigated which selective β-AR subtype agonist was most involved in the relaxation of isolated human prostate strips. Messenger RNA (mRNA) expression for β1-, β2-, and β3 -ARs was investigated using reverse transcriptase-polymerase chain reactions (RT-PCR). Quantitative analysis of mRNA expression of β-AR subtypes between normal prostate and BPH tissues was performed using quantitative RT-PCR (qPCR). Distributions were examined by immunohistochemistry (IHC). Strips of human normal prostate or BPH were suspended in organ baths and exposed to isoproterenol, dobutamine, procaterol, and TRK-380 to investigate their relaxant effects on KCl-induced contractions, and their inhibitory effects on electrical field stimulation (EFS)-induced contractions. We confirmed the presence of mRNA for β1-, β2-, and β3-ARs both in normal prostate and in BPH tissues. For β3-AR, mRNA expression in BPH tissues was significantly higher than in normal prostate tissues, but there was no significant difference in β1- and β2-AR expression between normal and BPH tissues. IHC revealed differences in staining intensity between smooth muscle cells and glandular cells, with different proportions for different β-AR subtypes. Staining of β3-AR was particularly intense in smooth muscle cells as opposed to glandular cells. Isoproterenol and TRK-380 significantly decreased the tone of KCl-induced contractions of the normal prostate strips. The rank order of relaxant effects was isoproterenol > TRK-380 > procaterol > dobutamine. All selective β-AR agonists significantly decreased the amplitude of EFS-induced contractions of the normal prostate strips. The rank order of inhibitory effects was isoproterenol > dobutamine >TRK-380 > procaterol. In BPH strips, all selective β-AR agonists showed no significant relaxant or inhibitory effects on KCl- or EFS-induced contractions. β3 -AR is abundant in human prostate smooth muscle, whose relaxation is mediated by β1- and β3-AR stimulation. β3-AR agonists may have clinical use in the treatment of male non-BPH patients or neurogenic bladder patients with voiding dysfunction. © 2015 Wiley Periodicals, Inc.

  11. Voluntary inhibitory motor control over involuntary tic movements.

    PubMed

    Ganos, Christos; Rothwell, John; Haggard, Patrick

    2018-03-06

    Inhibitory control is crucial for normal adaptive motor behavior. In hyperkinesias, such as tics, disinhibition within the cortico-striato-thalamo-cortical loops is thought to underlie the presence of involuntary movements. Paradoxically, tics are also subject to voluntary inhibitory control. This puzzling clinical observation questions the traditional definition of tics as purely involuntary motor behaviors. Importantly, it suggests novel insights into tic pathophysiology. In this review, we first define voluntary inhibitory tic control and compare it with other notions of tic control from the literature. We then examine the association between voluntary inhibitory tic control with premonitory urges and review evidence linking voluntary tic inhibition to other forms of executive control of action. We discuss the somatotopic selectivity and the neural correlates of voluntary inhibitory tic control. Finally, we provide a scientific framework with regard to the clinical relevance of the study of voluntary inhibitory tic control within the context of the neurodevelopmental disorder of Tourette syndrome. We identify current knowledge gaps that deserve attention in future research. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  12. Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex.

    PubMed

    Hsu, Tzu-Yu; Tseng, Lin-Yuan; Yu, Jia-Xin; Kuo, Wen-Jui; Hung, Daisy L; Tzeng, Ovid J L; Walsh, Vincent; Muggleton, Neil G; Juan, Chi-Hung

    2011-06-15

    The executive control of voluntary action involves not only choosing from a range of possible actions but also the inhibition of responses as circumstances demand. Recent studies have demonstrated that many clinical populations, such as people with attention-deficit hyperactivity disorder, exhibit difficulties in inhibitory control. One prefrontal area that has been particularly associated with inhibitory control is the pre-supplementary motor area (Pre-SMA). Here we applied non-invasive transcranial direct current stimulation (tDCS) over Pre-SMA to test its role in this behavior. tDCS allows for current to be applied in two directions to selectively excite or suppress the neural activity of Pre-SMA. Our results showed that anodal tDCS improved efficiency of inhibitory control. Conversely, cathodal tDCS showed a tendency towards impaired inhibitory control. To our knowledge, this is the first demonstration of non-invasive intervention tDCS altering subjects' inhibitory control. These results further our understanding of the neural bases of inhibitory control and suggest a possible therapeutic intervention method for clinical populations. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Cholinesterase enzymes inhibitors from the leaves of Rauvolfia reflexa and their molecular docking study.

    PubMed

    Fadaeinasab, Mehran; Hadi, A Hamid A; Kia, Yalda; Basiri, Alireza; Murugaiyah, Vikneswaran

    2013-03-25

    Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (1), (E)-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylate (2), 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3) and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4). The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM) and BChE (IC50 = 61.72 µM), respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.

  14. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity.

    PubMed

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Pedada, Srinivasa Rao; Kalle, Arunasree M; Satya, A Krishna

    2016-11-01

    Oxadiazole is a heterocyclic compound containing an oxygen atom and two nitrogen atoms in a five-membered ring. Of the four oxadiazoles known, 1,3,4-oxadiazole has become an important structural motif for the development of new drugs and the compounds containing 1,3,4-oxadiazole cores have a broad spectrum of biological activity. Herein, we describe the design, synthesis and biological evaluation of a series of novel 2,5-disubstituted 1,3,4-oxadiazoles (10a-10j) as class I histone deacetylase (HDAC) inhibitors. The compounds were designed and evaluated for HDAC8 selectivity using in silico docking software (Glide) and the top 10 compounds with high dock score and obeying Lipinski's rule were synthesized organically. Further the biological HDAC inhibitory and selectivity assays and anti-proliferative assays were carried out. In in silico and in vitro studies, all compounds (10a-10j) showed significant HDAC inhibition and exhibited HDAC8 selectivity. Among all tested compounds, 10b showed substantial HDAC8 inhibitory activity and better anticancer activity which is comparable to the positive control, a FDA approved drug, vorinostat (SAHA). Structural activity relation is discussed with various substitutions in the benzene ring connected on 1,3,4-oxadizole and glycine/alanine. The study warranted further investigations to develop HDAC8-selective inhibitory molecule as a drug for neoplastic diseases. Novel 1,3,4-oxadizole substituted with glycine/alanine showed HDAC8 inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Two new lignans from Saururus chinensis and their DGAT inhibitory activity.

    PubMed

    Li, Na; Tuo, Zhen-Dong; Qi, Shi-Zhou; Xing, Shan-Shan; Lee, Hyun-Sun; Chen, Jian-Guang; Cui, Long

    2015-03-01

    Two new lignans were isolated from Saururus chinensis, along with eight known compounds. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated for in vitro inhibitory activity against DGAT1 and DGAT2. Among them, compounds 2, 3, 5 and 7 were found to exhibit selective inhibitory activity on DGAT1 with IC50 values ranging from 44.3±1.5 to 87.5±1.3μM. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Molecular Dissection of Neuroligin 2 and Slitrk3 Reveals an Essential Framework for GABAergic Synapse Development.

    PubMed

    Li, Jun; Han, Wenyan; Pelkey, Kenneth A; Duan, Jingjing; Mao, Xia; Wang, Ya-Xian; Craig, Michael T; Dong, Lijin; Petralia, Ronald S; McBain, Chris J; Lu, Wei

    2017-11-15

    In the brain, many types of interneurons make functionally diverse inhibitory synapses onto principal neurons. Although numerous molecules have been identified to function in inhibitory synapse development, it remains unknown whether there is a unifying mechanism for development of diverse inhibitory synapses. Here we report a general molecular mechanism underlying hippocampal inhibitory synapse development. In developing neurons, the establishment of GABAergic transmission depends on Neuroligin 2 (NL2), a synaptic cell adhesion molecule (CAM). During maturation, inhibitory synapse development requires both NL2 and Slitrk3 (ST3), another CAM. Importantly, NL2 and ST3 interact with nanomolar affinity through their extracellular domains to synergistically promote synapse development. Selective perturbation of the NL2-ST3 interaction impairs inhibitory synapse development with consequent disruptions in hippocampal network activity and increased seizure susceptibility. Our findings reveal how unique postsynaptic CAMs work in concert to control synaptogenesis and establish a general framework for GABAergic synapse development. Published by Elsevier Inc.

  17. Separating Automatic and Intentional Inhibitory Mechanisms of Attention in Adults with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Roberts, Walter; Fillmore, Mark T.; Milich, Richard

    2011-01-01

    Researchers in the cognitive sciences recognize a fundamental distinction between automatic and intentional mechanisms of inhibitory control. The use of eye-tracking tasks to assess selective attention has led to a better understanding of this distinction in specific populations such as children with attention-deficit/hyperactivity disorder (ADHD). This study examined automatic and intentional inhibitory control mechanisms in adults with ADHD using a saccadic interference (SI) task and a delayed ocular response (DOR) task. Thirty adults with ADHD were compared to 27 comparison adults on measures of inhibitory control. The DOR task showed that adults with ADHD were less able than comparison adults to inhibit a reflexive saccade towards the sudden appearance of a stimulus in the periphery. However, SI task performance showed that the ADHD group did not differ significantly from the comparison group on a measure of automatic inhibitory control. These findings suggest a dissociation between automatic and intentional inhibitory deficits in adults with ADHD. PMID:21058752

  18. Molecular modeling on streptolysin-O of multidrug resistant Streptococcus pyogenes and computer aided screening and in vitro assay for novel herbal inhibitors.

    PubMed

    Skariyachan, Sinosh; Narayan, Naik Sowmyalaxmi; Aggimath, Tejaswini S; Nagaraj, Sushmitha; Reddy, Monika S; Narayanappa, Rajeswari

    2014-03-01

    Streptococcus pyogenes is a notorious pathogenic bacterium which causes various human diseases ranging from localized infections to life threatening invasive diseases. Streptolysin-O (SLO), pore-forming thiol-activated cytolysin, is the major virulent factor for streptococcal infections. Present therapies against streptococcal infections are limited as most of the strains have developed multi-drug resistance to present generation of drugs. Hence, there is a need for alternative therapeutic substances. Structure based virtual screening is a novel platform to select lead molecules with better pharmacokinetic properties. The 3D structure of SLO (not available in native form), essential for such studies, was computationally generated and this homology model was used as probable drug target. Based on literature survey, several phytoligands from 25 medicinal plants were selected. Out of these, leads from 11 plants showed better pharmacokinetic properties. The best lead molecules were screened based on computer aided drug likeness and pharmacokinetic predictions. The inhibitory properties of selected herbal leads against SLO were studied by molecular docking. An in vitro assay was further carried out and variations observed were found to be significant (p<0.05). Antibiotic sensitivity testing was also performed with the clinical strain of Streptococcus pyogenes with conventional drugs. The clinical strain showed multi-drug resistance to conventional drugs. Our study revealed that numerous phytoligands have better inhibitory properties towards the toxin. We noticed that incorporation of selected herbal extracts in blood agar medium showed significant reduction in hemolysis (MIC 300μl/plate), indicating inhibition of SLO. Furthermore, the butanol extracts of selected herbal preparation based on computer aided screening showed significant inhibitory properties at 250 mcg/disc concentration. We also noticed that selected herbal formulations have better antimicrobial properties at MIC range of 300- 400μl. Hence, our study suggests that these herbal extracts have better inhibitory properties against the toxin as well as drug resistant Streptococcus pyogenes.

  19. Structure-Based Design and Optimization of Multitarget-Directed 2H-Chromen-2-one Derivatives as Potent Inhibitors of Monoamine Oxidase B and Cholinesterases.

    PubMed

    Farina, Roberta; Pisani, Leonardo; Catto, Marco; Nicolotti, Orazio; Gadaleta, Domenico; Denora, Nunzio; Soto-Otero, Ramon; Mendez-Alvarez, Estefania; Passos, Carolina S; Muncipinto, Giovanni; Altomare, Cosimo D; Nurisso, Alessandra; Carrupt, Pierre-Alain; Carotti, Angelo

    2015-07-23

    The multifactorial nature of Alzheimer's disease calls for the development of multitarget agents addressing key pathogenic processes. To this end, by following a docking-assisted hybridization strategy, a number of aminocoumarins were designed, prepared, and tested as monoamine oxidases (MAOs) and acetyl- and butyryl-cholinesterase (AChE and BChE) inhibitors. Highly flexible N-benzyl-N-alkyloxy coumarins 2-12 showed good inhibitory activities at MAO-B, AChE, and BChE but low selectivity. More rigid inhibitors, bearing meta- and para-xylyl linkers, displayed good inhibitory activities and high MAO-B selectivity. Compounds 21, 24, 37, and 39, the last two featuring an improved hydrophilic/lipophilic balance, exhibited excellent activity profiles with nanomolar inhibitory potency toward hMAO-B, high hMAO-B over hMAO-A selectivity and submicromolar potency at hAChE. Cell-based assays of BBB permeation, neurotoxicity, and neuroprotection supported the potential of compound 37 as a BBB-permeant neuroprotective agent against H2O2-induced oxidative stress with poor interaction as P-gp substrate and very low cytotoxicity.

  20. Threat Interference Biases Predict Socially Anxious Behavior: The Role of Inhibitory Control and Minute of Stressor.

    PubMed

    Gorlin, Eugenia I; Teachman, Bethany A

    2015-07-01

    The current study brings together two typically distinct lines of research. First, social anxiety is inconsistently associated with behavioral deficits in social performance, and the factors accounting for these deficits remain poorly understood. Second, research on selective processing of threat cues, termed cognitive biases, suggests these biases typically predict negative outcomes, but may sometimes be adaptive, depending on the context. Integrating these research areas, the current study examined whether conscious and/or unconscious threat interference biases (indexed by the unmasked and masked emotional Stroop) can explain unique variance, beyond self-reported anxiety measures, in behavioral avoidance and observer-rated anxious behavior during a public speaking task. Minute of speech and general inhibitory control (indexed by the color-word Stroop) were examined as within-subject and between-subject moderators, respectively. Highly socially anxious participants (N=135) completed the emotional and color-word Stroop blocks prior to completing a 4-minute videotaped speech task, which was later coded for anxious behaviors (e.g., speech dysfluency). Mixed-effects regression analyses revealed that general inhibitory control moderated the relationship between both conscious and unconscious threat interference bias and anxious behavior (though not avoidance), such that lower threat interference predicted higher levels of anxious behavior, but only among those with relatively weaker (versus stronger) inhibitory control. Minute of speech further moderated this relationship for unconscious (but not conscious) social-threat interference, such that lower social-threat interference predicted a steeper increase in anxious behaviors over the course of the speech (but only among those with weaker inhibitory control). Thus, both trait and state differences in inhibitory control resources may influence the behavioral impact of threat biases in social anxiety. Copyright © 2015. Published by Elsevier Ltd.

  1. Identification of inhibitory scFv antibodies targeting fibroblast activation protein utilizing phage display functional screens

    PubMed Central

    Zhang, Jiping; Valianou, Matthildi; Simmons, Heidi; Robinson, Matthew K.; Lee, Hyung-Ok; Mullins, Stefanie R.; Marasco, Wayne A.; Adams, Gregory P.; Weiner, Louis M.; Cheng, Jonathan D.

    2013-01-01

    Fibroblast activation protein (FAP) is a serine protease selectively expressed on tumor stromal fibroblasts in epithelial carcinomas and is important in cancer growth, adhesion, and metastases. As FAP enzymatic activity is a potent therapeutic target, we aimed to identify inhibitory antibodies. Using a competitive inhibition strategy, we used phage display techniques to identify 53 single-chain variable fragments (scFvs) after three rounds of panning against FAP. These scFvs were expressed and characterized for binding to FAP by surface plasmon resonance and flow cytometry. Functional assessment of these antibodies yielded an inhibitory scFv antibody, named E3, which could attenuate 35% of FAP cleavage of the fluorescent substrate Ala-Pro-7-amido-4-trifluoromethylcoumarin compared with nonfunctional scFv control. Furthermore, a mutant E3 scFv was identified by yeast affinity maturation. It had higher affinity (4-fold) and enhanced inhibitory effect on FAP enzyme activity (3-fold) than E3. The application of both inhibitory anti-FAP scFvs significantly affected the formation of 3-dimensional FAP-positive cell matrix, as demonstrated by reducing the fibronectin fiber orientation from 41.18% (negative antibody control) to 34.06% (E3) and 36.15% (mutant E3), respectively. Thus, we have identified and affinity-maturated the first scFv antibody capable of inhibiting FAP function. This scFv antibody has the potential to disrupt the role of FAP in tumor invasion and metastasis.—Zhang, J., Valianou, M., Simmons, H., Robinson, M. K., Lee, H.-O., Mullins, S. R., Marasco, W. A., Adams, G. P., Weiner, L. M., Cheng, J. D. Identification of inhibitory ScFv antibodies targeting fibroblast activation protein utilizing phage display functional screens. PMID:23104982

  2. Mediators of methylphenidate effects on math performance in children with attention-deficit hyperactivity disorder.

    PubMed

    Froehlich, Tanya E; Antonini, Tanya N; Brinkman, William B; Langberg, Joshua M; Simon, John O; Adams, Ryan; Fredstrom, Bridget; Narad, Megan E; Kingery, Kathleen M; Altaye, Mekibib; Matheson, Heather; Tamm, Leanne; Epstein, Jeffery N

    2014-01-01

    Stimulant medications, such as methylphenidate (MPH), improve the academic performance of children with attention-deficit hyperactivity disorder (ADHD). However, the mechanism by which MPH exerts an effect on academic performance is unclear. We examined MPH effects on math performance and investigated possible mediation of MPH effects by changes in time on-task, inhibitory control, selective attention, and reaction time variability. Children with ADHD aged 7 to 11 years (N = 93) completed a timed math worksheet (with problems tailored to each individual's level of proficiency) and 2 neuropsychological tasks (Go/No-Go and Child Attention Network Test) at baseline, then participated in a 4-week, randomized, controlled, titration trial of MPH. Children were then randomly assigned to their optimal MPH dose or placebo for 1 week (administered double-blind) and repeated the math and neuropsychological tasks (posttest). Baseline and posttest videorecordings of children performing the math task were coded to assess time on-task. Children taking MPH completed 23 more math problems at posttest compared to baseline, whereas the placebo group completed 24 fewer problems on posttest versus baseline, but the effects on math accuracy (percent correct) did not differ. Path analyses revealed that only change in time on-task was a significant mediator of MPH's improvements in math productivity. MPH-derived math productivity improvements may be explained in part by increased time spent on-task, rather than improvements in neurocognitive parameters, such as inhibitory control, selective attention, or reaction time variability.

  3. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase.

    PubMed

    Kilic, Burcu; Gulcan, Hayrettin O; Aksakal, Fatma; Ercetin, Tugba; Oruklu, Nihan; Umit Bagriacik, E; Dogruer, Deniz S

    2018-05-08

    A series of new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring were designed, synthesized and evaluated for their ability to inhibit both cholinesterase enzymes. In addition, a series of carboxamide and propanamide derivatives bearing biphenyl instead of phenylpyridazine were also synthesized to examine the inhibitory effect of pyridazine moiety on both cholinesterase enzymes. The inhibitory activity results revealed that compounds 5b, 5f, 5h, 5j, 5l pyridazine-3-carboxamide derivative, exhibited selective acetylcholinesterase (AChE) inhibition with IC 50 values ranging from 0.11 to 2.69 µM. Among them, compound 5h was the most active one (IC 50  = 0.11 µM) without cytotoxic effect at its effective concentration against AChE. Additionally, pyridazine-3-carboxamide derivative 5d (IC 50 for AChE = 0.16 µM and IC 50 for BChE = 9.80 µM) and biphenyl-4-carboxamide derivative 6d (IC 50 for AChE = 0.59 µM and IC 50 for BChE = 1.48 µM) displayed dual cholinesterase inhibitory activity. Besides, active compounds were also tested for their ability to inhibit Aβ aggregation. Theoretical physicochemical properties of the compounds were calculated by using Molinspiration Program as well. The Lineweaver-Burk plot and docking study showed that compound 5 h targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Effect of polygodial and its direct derivatives on the mammalian Na+/K+-ATPase activity.

    PubMed

    Garcia, Diogo Gomes; Gonçalves-de-Albuquerque, Cassiano Felippe; da Silva, Camila Ignácio; Kiss, Robert; Dasari, Ramesh; Chandra, Sunena; Kornienko, Alexander; Burth, Patricia

    2018-07-15

    The sesquiterpene polygodial is an agonist of the transient receptor potential vanilloid 1 (TRPV1). Our group recently reported the synthesis and anticancer effects of polygodial and its derivatives, and showed that these compounds retain activity against apoptosis- and multidrug-resistant cancer cells. Herein, we tested the inhibitory effect of these compounds on the activity of the enzyme Na + /K + -ATPase (NKA) from kidney (α 1 isoform) and brain (α 2 and α 3 isoforms) guinea pig extracts. Polygodial (1) displayed a dose-dependent inhibition of both kidney and brain purified NKA preparations, with higher sensitivity for the cerebral isoforms. Polygo-11,12-diol (2) and C11,C12-pyridazine derivative (3) proved to be poor inhibitors. Unsaturated ester (4) and 9-epipolygodial (5) inhibited NKA preparations from brain and kidney, with the same inhibitory potency. Nevertheless, they did not achieve maximum inhibition even at higher concentration. Comparing the inhibitory potency in crude homogenates and purified preparations of NKA, compounds 4 and 5 revealed a degree of selectivity toward the renal enzyme. Kinetic studies showed a non-competitive inhibition for Na + and K + by compounds 1, 4 and 5 and for ATP by 1 and 4. However, compound 5 presented a competitive inhibition type. Furthermore, K + -activated p-nitrophenylphosphatase activity of these purified preparations was not inhibited by 1, 4 and 5, suggesting that these compounds acted in the initial phase of the enzyme's catalytic cycle. These findings suggest that the antitumor action of polygodial and its analogues may be linked to their NKA inhibitory properties and reinforce that NKA may be an important target for cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The effects of low dose MK-801 administration on NMDAR dependent executive functions in pigeons.

    PubMed

    Gökhan, Nurper; Neuwirth, Lorenz S; Meehan, Edward F

    2017-05-01

    An avian analogue of human fronto-executive dysfunction was used to study the long-term effects of a repeated low dose of MK-801. MK-801 is known to selectively antagonize the excitatory N-methyl-d-aspartate receptors (NMDA R ) and indirectly impair inhibitory related processes (GABA- AR ). First, eight pigeons were divided into two groups, receiving either 0.15mg/kg MK-801 or saline (i.p.) 1-hour prior to each session. Thirty 90-min sessions of a Differential Reinforcement of Low Rate of Response (DRL-10s) schedule were run over 3-months. Both overall number of responses and efficiency were unaffected by treatment, establishing a sub-threshold motoric dose. Then, another eight pigeons, treated identically, were given an operant visual discrimination task. Results demonstrated impairment of the fronto-striatal function of both excitatory and inhibitory processes in the MK-801 group during the entire 3-months. A 30-session treatment cross-over showed that the Saline-to-MK-801 group was unaffected, whereas the MK-801-to-Saline group exhibited rapid recovery of inhibitory control, however excitatory control did not fully recover. Together, these results suggested that the NMDA R system is involved in the acquisition of excitatory learning, but only in the expression of inhibitory learning. Our findings were discussed in terms of the value of avian models in translational research. Furthermore, our results were examined within the context of the NIH Research Domain of Criteria initiative and the role of NMDA R disruption, which underlie executive dysfunction in various neuropsychiatric disorders. Finally, our findings suggested that the potential long-term effects of the clinical and recreational use of NMDA R antagonists require further study. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. In vitro immunomodulating properties of selected Sudanese medicinal plants.

    PubMed

    Koko, W S; Mesaik, M Ahmed; Yousaf, S; Galal, M; Choudhary, M Iqbal

    2008-06-19

    Ethanolic extracts of 23 medicinal plants, commonly used in Sudanese folk medicines against infectious diseases, were investigated for their immunomodulating activity using luminol/lucigenin-based chemiluminescence assay. Preliminary screenings on whole blood oxidative burst activity showed inhibitory activities of 14 plant extracts, while only one plant, Balanites aegyptiaca fruits exhibited a proinflammatory activity. Further investigation was conducted by monitoring their effects on oxidative burst of isolated polymorphonuclear cells (PMNs) and mononuclear cells (MNCs) by using two different phagocytosis activators (serum opsonizing zymosan-A and PMA). Results obtained showed that the fruits and barks of Acacia nilotica, and leaves and barks of Khaya senegalensis, possess average inhibitory effects in the range of 70.7, 67.1, 69.5 and 67.4% on both types of phagocytes (PMNs and MNCs), respectively, at a 6.25 microg/mL concentration. Moderate inhibitory activity (52.2%) was exerted by the aerial parts of Xanthium brasilicum, while the rest of the plants showed only a weak inhibitory activity. The inhibition of oxidative burst activity was found to be irreversible in most of the extracts, except for Peganum harmala, Tephrosia apollinea, Tinospora bakis, and Vernonia amygdalina. Interestingly, the fruits of Balanites aegyptiaca exhibited a moderate proinflammatory effect (37-40.4% increases in ROS level compared to the control) at 25-100 microg/mL concentration in the case of whole blood along with PMNs phagocyte activity. The Tinospora bakis extract showed proinflammatory response at a low concentration (6.25 microg/mL) during activation with PMA. None of these extracts affected PMNs viability (90-98%) upon 2 h incubation, except of the ethanolic extracts of Acacia nilotica fruits and Balanites aegyptiaca barks.

  7. Effects of Central Kalimantan plant extracts on intraerythrocytic Babesia gibsoni in culture.

    PubMed

    Subeki; Matsuura, Hideyuki; Yamasaki, Masahiro; Yamato, Osamu; Maede, Yoshimitsu; Katakura, Ken; Suzuki, Mamoru; Trimurningsih; Chairul; Yoshihara, Teruhiko

    2004-07-01

    The inhibitory effects of 45 plant extracts selected from Central Kalimantan, Indonesia on Babesia gibsoni in vitro and their acute toxicity to mice were evaluated. Of these plant extracts studied, Arcangelisia flava, Curcuma zedoaria, Garcinia benthamiana, Lansium domesticum and Peronema canescens were found to have appreciable antibabesial activity with IC50 values from 5.3 to 49.3 microg/ml without acute toxicity in mice at the intraperitoneal dose of 0.7 g/kg of body weight.

  8. The SIRT1 inhibitor EX-527 suppresses mTOR activation and alleviates acute lung injury in mice with endotoxiemia.

    PubMed

    Huang, Jing; Tian, Rui; Yang, Yongqiang; Jiang, Rong; Dai, Jie; Tang, Li; Zhang, Li

    2017-11-01

    It is generally regarded that Sirtuin 1 (SIRT1), a longevity factor in mammals, acts as a negative regulator of inflammation. However, recent studies also found that SIRT1 might be a detrimental factor under certain inflammatory circumstance. In this study, the potential pathophysiological roles and the underlying mechanisms of SIRT1 in a mouse model with endotoxemia-associated acute lung injury were investigated. The results indicated that treatment with the selective SIRT1 inhibitor EX-527 suppressed LPS-induced elevation of TNF-α and IL-6 in plasma. Treatment with EX-527 attenuated LPS-induced histological abnormalities in lung tissue, which was accompanied with decreased myeloperoxidase level and suppressed induction of tissue factor and plasminogen activator inhibitor-1. Treatment with EX-527 also suppressed LPS-induced phosphorylation of eukaryotic translation initiation factor-binding protein 1 (4E-BP1). Co-administration of a mammalian target of rapamycin (mTOR) activator 3-benzyl-5-[(2-nitrophenoxy) methyl]-dihydrofuran-2 (3H)-one (3BDO) abolished the inhibitory effects of EX-527 on 4E-BP1 phosphorylation. Meanwhile, the inhibitory effects of EX-527 on IL-6 induction and the beneficial effects of EX-527 on lung injury were partially reversed by 3BDO. This study suggests that selective inhibition of SIRT1 by EX-527 might alleviate endotoxemia-associated acute lung injury partially via suppression of mTOR, which implies that SIRT1 selective inhibitors might have potential value for the pharmacological intervention of inflammatory lung injury.

  9. Fermented goats' milk produced with selected multiple starters as a potentially functional food.

    PubMed

    Minervini, Fabio; Bilancia, Maria Teresa; Siragusa, Sonya; Gobbetti, Marco; Caponio, Francesco

    2009-09-01

    A screening among five lactic acid bacteria, used alone or in combination, led to select a mixed starter (Streptococcus thermophilus CR12, Lactobacillus casei LC01, Lactobacillus helveticus PR4, Lactobacillus plantarum 1288) capable to produce a fermented goats' milk containing gamma-aminobutyric acid (GABA) and angiotensin-I converting enzyme (ACE)-inhibitory peptides. The fermented milk was characterized by cell counts of lactic acid bacteria not lower than 7.0 log cfu g(-1), even after 45 days of storage at 4 degrees C. Fermentation of goats' milk resulted in the production of ca. 28 mg kg(-1) of GABA. Furthermore the fermented goats' milk had an in vitro ACE-inhibitory activity of ca. 73%. Prolonged cold storage did not significantly affect both the concentration of GABA and the ACE-inhibitory activity. Moreover, the taurine content did not significantly vary during both fermentation and the entire storage period.

  10. Evaluation of Four Calcium Channel Blockers as Fluconazole Resistance Inhibitors in Candida glabrata.

    PubMed

    Alnajjar, Lina M; Bulatova, Nailya R; Darwish, Rula M

    2018-04-14

    In this study we aimed to evaluate the ability of four calcium channel blockers, verapamil, diltiazem, nicardipine and nifedipine to enhance sensitivity of Candida glabrata strains to fluconazole. The synergistic antifungal effect was examined by checkerboard method; fractional inhibitory concentration index (FIC) was determined. Time-kill curve method was used for the most promising combination to further evaluate the synergetic effects. nicardipine showed additive effect with fluconazole against fluconazole-resistant and fluconazole-susceptible-dose-dependent strains (DSY565 and CBS138) known to express efflux pumps but not against fluconazole-sensitive strains. Nifedipine exhibited additive effect with fluconazole in both checkerboard (0.5< FIC <1) and time-kill curve methods (<2 log10 colony-forming units (CFU)/ml decrease in viable count). Additionally, nifedipine had own antifungal effect consistently against most of the strains used in this study with minimum inhibitory concentration of 8μg/ml. nicardipine showed additive effect with fluconazole in fluconazole-resistant strains of Candida glabrata-most probably via efflux pump inhibition as demonstrated selectively in fluconazole-resistant strains with known efflux pumps. Nifedipine displayed promising antifungal effect alone and additive effects with fluconazole. Copyright © 2018. Published by Elsevier Ltd.

  11. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression

    PubMed Central

    Nahta, Rita; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Andrade-Vieira, Rafaela; Bay, Sarah; G. Brown, Dustin; Calaf, Gloria M.; Castellino, Robert C.; Cohen-Solal, Karine A.; Colacci, Annamaria; Cruickshanks, Nichola; Dent, Paul; Di Fiore, Riccardo; Forte, Stefano; Goldberg, Gary S.; Hamid, Roslida A.; Krishnan, Harini; Laird, Dale W.; Lasfar, Ahmed; Marignani, Paola A.; Memeo, Lorenzo; Mondello, Chiara; Naus, Christian C.; Ponce-Cusi, Richard; Raju, Jayadev; Roy, Debasish; Roy, Rabindra; P. Ryan, Elizabeth; Salem, Hosni K.; Scovassi, A. Ivana; Singh, Neetu; Vaccari, Monica; Vento, Renza; Vondráček, Jan; Wade, Mark; Woodrick, Jordan; Bisson, William H.

    2015-01-01

    As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks. PMID:26106139

  12. Antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. isolated from chicken samples.

    PubMed

    Er, Buket; Demirhan, Burak; Onurdag, Fatma Kaynak; Ozgacar, Selda Özgen; Oktem, Aysel Bayhan

    2014-03-01

    Salmonella spp. are widespread foodborne pathogens that contaminate egg and poultry meats. Attachment, colonization, as well as biofilm formation capacity of Salmonella spp. on food and contact surfaces of food may cause continuous contamination. Biofilm may play a crucial role in the survival of salmonellae under unfavorable environmental conditions, such as in animal slaughterhouses and processing plants. This could serve as a reservoir compromising food safety and human health. Addition of antimicrobial preservatives extends shelf lives of food products, but even when products are supplemented with adequate amounts of preservatives, it is not always possible to inhibit the microorganisms in a biofilm community. In this study, our aims were i) to determine the minimum inhibitory concentrations (MIC) and minimum biofilm inhibitory concentrations (MBIC) of selected preservatives against planktonic and biofilm forms of Salmonella spp. isolated from chicken samples and Salmonella Typhimurium SL1344 standard strain, ii) to show the differences in the susceptibility patterns of same strains versus the planktonic and biofilm forms to the same preservative agent, and iii) to determine and compare antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. For this purpose, Salmonella Typhimurium SL1344 standard strain and 4 Salmonella spp. strains isolated from chicken samples were used. Investigation of antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. was done according to Clinical and Laboratory Standards Institute M100-S18 guidelines and BioTimer assay, respectively. As preservative agents, pure ciprofloxacin, sodium nitrite, potassium sorbate, sodium benzoate, methyl paraben, and propyl paraben were selected. As a result, it was determined that MBIC values are greater than the MIC values of the preservatives. This result verified the resistance seen in a biofilm community to food preservatives and highlighted this subject, not to be ignored in food applications.

  13. Inhibition of Pain and Pain-Related Brain Activity by Heterotopic Noxious Counter-Stimulation and Selective Attention in Chronic Non-Specific Low Back Pain.

    PubMed

    Ladouceur, Alexandra; Rustamov, Nabi; Dubois, Jean-Daniel; Tessier, Jessica; Lehmann, Alexandre; Descarreaux, Martin; Rainville, Pierre; Piché, Mathieu

    2017-10-10

    The aim of the present study was to assess inhibition of pain and somatosensory-evoked potentials (SEPs) by heterotopic noxious counter-stimulation (HNCS) and by selective attention in patients with chronic non-specific LBP. Seventeen patients and age/sex-matched controls were recruited (10 men, 7 women; mean age ± SD: 43.3 ± 10.4 and 42.7 ± 11.1, respectively). On average, patients with LBP reported pain duration of 7.6 ± 6.5 years, light to moderate disability (19.3 ± 5.7/100) and low clinical pain intensity (21.8 ± 1.5/100), while pain catastrophizing, state and trait anxiety and depressive symptoms were not significantly different between groups (all p's >0.05). HNCS and selective attention had differential inhibitory effects on pain and SEP, but no difference was observed between groups. Across both groups, HNCS decreased pain (p = 0.06) as well as the N100 and the N150 components of SEP (p's <0.001), while selective attention only decreased pain (p < 0.01) and the N100 (p<0.001). In contrast, the P260 was decreased by HNCS only when attention was directed toward the HNCS stimulus (p<0.01). This indicates that patients with the characteristics described above do not show altered pain inhibitory mechanisms involved in HNCS and selective attention. Importantly, this experiment was carefully designed to control for non-specific effects associated with the repetition of the test stimulus and the effect of an innocuous counter-stimulation. It remains to be determined if these results hold for patients with severe LBP and psychological symptoms or whether symptom severity may be associated with pain inhibition deficits. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. The Effects of Angiotensin II and Angiotensin-(1–7) in the Rostral Ventrolateral Medulla of Rats on Stress-Induced Hypertension

    PubMed Central

    Du, Dongshu; Chen, Jun; Liu, Min; Zhu, Minxia; Jing, Haojia; Fang, Jie; Shen, Linlin; Zhu, Danian; Yu, Jerry; Wang, Jin

    2013-01-01

    We have shown that angiotensin II (Ang II) and angiotensin-(1–7) [Ang-(1–7)] increased arterial blood pressure (BP) via glutamate release when microinjected into the rostral ventrolateral medulla (RVLM) in normotensive rats (control). In the present study, we tested the hypothesis that Ang II and Ang-(1–7) in the RVLM are differentially activated in stress-induced hypertension (SIH) by comparing the effects of microinjection of Ang II, Ang-(1–7), and their receptor antagonists on BP and amino acid release in SIH and control rats. We found that Ang II had greater pressor effect, and more excitatory (glutamate) and less inhibitory (taurine and γ-aminobutyric acid) amino acid release in SIH than in control animals. Losartan, a selective AT1 receptor (AT1R) antagonist, decreased mean BP in SIH but not in control rats. PD123319, a selective AT2 receptor (AT2R) antagonist, increased mean BP in control but not in SIH rats. However, Ang-(1–7) and its selective Mas receptor antagonist Ang779 evoked similar effects on BP and amino acid release in both SIH and control rats. Furthermore, we found that in the RVLM, AT1R, ACE protein expression (western blot) and ACE mRNA (real-time PCR) were significantly higher, whereas AT2R protein, ACE2 mRNA and protein expression were significantly lower in SIH than in control rats. Mas receptor expression was similar in the two groups. The results support our hypothesis and demonstrate that upregulation of Ang II by AT1R, not Ang-(1–7), system in the RVLM causes hypertension in SIH rats by increasing excitatory and suppressing inhibitory amino acid release. PMID:23967142

  15. Leishmania Uses Mincle to Target an Inhibitory ITAM Signaling Pathway in Dendritic Cells that Dampens Adaptive Immunity to Infection.

    PubMed

    Iborra, Salvador; Martínez-López, María; Cueto, Francisco J; Conde-Garrosa, Ruth; Del Fresno, Carlos; Izquierdo, Helena M; Abram, Clare L; Mori, Daiki; Campos-Martín, Yolanda; Reguera, Rosa María; Kemp, Benjamin; Yamasaki, Sho; Robinson, Matthew J; Soto, Manuel; Lowell, Clifford A; Sancho, David

    2016-10-18

    C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c + cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Selective attention to visual compound stimuli in squirrel monkeys (Saimiri sciureus).

    PubMed

    Ploog, Bertram O

    2011-05-01

    Five squirrel monkeys served under a simultaneous discrimination paradigm with visual compound stimuli that allowed measurement of excitatory and inhibitory control exerted by individual stimulus components (form and luminance/"color"), which could not be presented in isolation (i.e., form could not be presented without color). After performance exceeded a criterion of 75% correct during training, unreinforced test trials with stimuli comprising recombined training stimulus components were interspersed while the overall reinforcement rate remained constant for training and testing. The training-testing series was then repeated with reversed reinforcement contingencies. The findings were that color acquired greater excitatory control than form under the original condition, that no such difference was found for the reversal condition or for inhibitory control under either condition, and that overall inhibitory control was less pronounced than excitatory control. The remarkably accurate performance throughout suggested that a forced 4-s delay between the stimulus presentation and the opportunity to respond was effective in reducing "impulsive" responding, which has implications for suppressing impulsive responding in children with autism and with attention deficit disorder. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Identification of the stereochemical requirements in the 4-aryl-2-cycloalkylidenhydrazinylthiazole scaffold for the design of selective human monoamine oxidase B inhibitors.

    PubMed

    D'Ascenzio, Melissa; Carradori, Simone; Secci, Daniela; Mannina, Luisa; Sobolev, Anatoly P; De Monte, Celeste; Cirilli, Roberto; Yáñez, Matilde; Alcaro, Stefano; Ortuso, Francesco

    2014-05-15

    Exploring the effect that substituents on the cycloaliphatic ring had on the inhibitory activity against human monoamine oxidase B of a series of 4-aryl-2-cycloalkylidenhydrazinylthiazoles led to the synthesis of a new series of 2-methylcyclopentyl and 3-methylcyclopentyl derivatives which were tested in vitro as mixtures of diastereoisomers. In fact, due to the presence of a chiral center on the cycloaliphatic ring and a trisubstituted CN bond, they exist as four diastereoisomers ((E)-(R), (E)-(S), (Z)-(R), (Z)-(S)). 4-(2,4-Difluorophenyl)-2-(2-(3-methylcyclopentylidene)hydrazinyl)thiazole was chosen as a model to investigate the influence of stereochemical requirements on the inhibitory activity against hMAO-B of these derivatives after a stereoconservative synthesis and semi-preparative HPLC diastereoseparation. (R)-(Z) isomer of this compound was endowed with a potent and selective hMAO-B inhibition higher than that of reference drugs as also corroborated by molecular modeling studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    PubMed

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases.

  19. Fluorination Effects on NOS Inhibitory Activity of Pyrazoles Related to Curcumin.

    PubMed

    Nieto, Carla I; Cabildo, María Pilar; Cornago, María Pilar; Sanz, Dionisia; Claramunt, Rosa M; Torralba, María Carmen; Torres, María Rosario; Elguero, José; García, José A; López, Ana; Acuña-Castroviejo, Darío

    2015-08-28

    A series of new (E)-3(5)-[β-(aryl)-ethenyl]-5(3)-phenyl-1H-pyrazoles bearing fluorine atoms at different positions of the aryl group have been synthesized starting from the corresponding β-diketones. All compounds have been characterized by elemental analysis, DSC as well as NMR (¹H, (13)C, (19)F and (15)N) spectroscopy in solution and in solid state. Three structures have been solved by X-ray diffraction analysis, confirming the tautomeric forms detected by solid state NMR. The in vitro study of their inhibitory potency and selectivity on the activity of nNOS and eNOS (calcium-calmodulin dependent) as well as iNOS (calcium-calmodulin independent) isoenzymes is presented. A qualitative structure-activity analysis allowed the establishment of a correlation between the presence/ absence of different substituents with the inhibition data proving that fluorine groups enhance the biological activity. (E)-3(5)-[β-(3-Fluoro-4-hydroxyphenyl)-ethenyl]-5(3)-phenyl-1H-pyrazole (13), is the best inhibitor of iNOS, being also more selective towards the other two isoforms.

  20. Catching Fish and Avoiding Sharks: Investigating Factors That Influence Developmentally Appropriate Measurement of Preschoolers' Inhibitory Control.

    PubMed

    Howard, Steven J; Okely, Anthony D

    2015-09-01

    Although researchers agree that the first 5 years of life are critical for children's developing executive functions (EFs), further advances are hindered by a lack of consensus on the design and selection of developmentally appropriate EF tasks for young children. Given this debate, well-established adult measures of EF routinely have been adapted for young children. Given young children's comparatively limited cognitive capacities, however, such adaptations do not guarantee that the task's critical EF demands are retained. To investigate this possibility, the current study examined the characteristics that optimize measurement of young children's EFs-specifically, their inhibitory control-using the go/no-go (GNG) task as an exemplar. Sixty preschoolers completed six GNG tasks differing in stimulus animation, presentation time, and response location. Comparison EF tasks were administered to examine concurrent validity of GNG variants. Results indicated effects of stimulus presentation time and response location, with animation further enhancing task validity and reliability. This suggests that current GNG tasks deflate estimates of young children's ability to inhibit, with implications for future design and selection of developmentally appropriate EF tasks.

  1. An overlooked horticultural crop, Smyrnium olusatrum, as a potential source of compounds effective against African trypanosomiasis.

    PubMed

    Petrelli, Riccardo; Ranjbarian, Farahnaz; Dall'Acqua, Stefano; Papa, Fabrizio; Iannarelli, Romilde; Ngahang Kamte, Stephane L; Vittori, Sauro; Benelli, Giovanni; Maggi, Filippo; Hofer, Anders; Cappellacci, Loredana

    2017-04-01

    Among natural products, sesquiterpenes have shown promising inhibitory effects against bloodstream forms of Trypanosoma brucei, the protozoan parasite causing human African trypanosomiasis (HAT). Smyrnium olusatrum (Apiaceae), also known as Alexanders or wild celery, is a neglected horticultural crop characterized by oxygenated sesquiterpenes containing a furan ring. In the present work we explored the potential of its essential oils obtained from different organs and the main oxygenated sesquiterpenes, namely isofuranodiene, germacrone and β-acetoxyfuranoeudesm-4(15)-ene, as inhibitors of Trypanosoma brucei. All essential oils effectively inhibited the growth of parasite showing IC 50 values of 1.9-4.0μg/ml. Among the main essential oil constituents, isofuranodiene exhibited a significant and selective inhibitory activity against T. brucei (IC 50 of 0.6μg/ml, SI=30), with β-acetoxyfuranoeudesm-4(15)-ene giving a moderate potentiating effect. These results shed light on the possible application of isofuranodiene as an antiprotozoal agent to be included in combination treatments aimed not only at curing patients but also at preventing the diffusion of HAT. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Selection and Inhibition in Infancy: Evidence from the Spatial Negative Priming Paradigm

    ERIC Educational Resources Information Center

    Amso, D.; Johnson, S.P.

    2005-01-01

    We used a spatial negative priming (SNP) paradigm to examine visual selective attention in infants and adults using eye movements as the motor selection measure. In SNP, when a previously ignored location becomes the target to be selected, responses to it are impaired, providing a measure of inhibitory selection. Each trial consisted of a prime…

  3. Evaluation of in vitro aldose reductase inhibitory potential of alkaloidal fractions of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera.

    PubMed

    Gupta, Sakshi; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-05-01

    Aldose reductase is primarily involved in development of long-term diabetic complications due to increased polyol pathway activity. The synthetic aldose reductase inhibitors are not very successful clinically. Therefore, the natural sources may be exploited for safer and effective aldose reductase inhibitors. In the present study, the aldose reductase inhibitory potential of hydroalcoholic and alkaloidal extracts of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera was evaluated. The hydroalcoholic and alkaloidal extracts of the selected plants were prepared. The different concentrations of hydroalcoholic and alkaloidal extracts of these plants were evaluated for their goat lens aldose reductase inhibitory activity using dl-glyceraldehyde as substrate. The aldose reductase inhibitory potential of extracts was assessed in terms of their IC50 value. Amongst the hydroalcoholic extracts, the highest aldose reductase inhibitory activity was shown by P. nigrum (IC50 value 35.64±2.7 μg/mL) followed by M. koenigii (IC50 value 45.67±2.57 μg/mL), A. mexicana (IC50 value 56.66±1.30 μg/mL), and N. nucifera (IC50 value 59.78±1.32 μg/mL). Among the alkaloidal extracts, highest inhibitory activity was shown by A. mexicana (IC50 value 25.67±1.25 μg/mL), followed by N. nucifera (IC50 value 28.82±1.85 μg/mL), P. nigrum (IC50 value 30.21±1.63 μg/mL), and M. koenigii (IC50 value 35.66±1.64 μg/mL). It may be concluded that the alkaloidal extracts of these plants possess potent aldose reductase inhibitory activity and may be therapeutically exploited in diabetes-related complications associated with increased activity of aldose reductase.

  4. Protective effects of estrogen against vascular calcification via estrogen receptor α-dependent growth arrest-specific gene 6 transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanao-Hamai, Michiko; Son, Bo-Kyung; Institute of Gerontology, The University of Tokyo, Tokyo

    Vascular calcification is one of the major complications of cardiovascular disease and is an independent risk factor for myocardial infarction and cardiac death. Postmenopausal women have a higher prevalence of vascular calcification compared with premenopausal women, suggesting protective effects of estrogen (E2). However, the underlying mechanisms of its beneficial effects remain unclear. In the present study, we examined the inhibitory effects of E2 on vascular smooth muscle cell (VSMC) calcification, and found that growth arrest-specific gene 6 (Gas6), a crucial molecule in vascular calcification, is transactivated by estrogen receptor α (ERα) in response to E2. In human aortic smooth musclemore » cells, physiological levels of E2 inhibited inorganic phosphate (Pi)-induced calcification in a concentration-dependent manner. This inhibitory effect was significantly abolished by MPP, an ERα-selective antagonist, and ERα siRNA, but not by PHTPP, an ERβ-selective antagonist, and ERβ siRNA, implicating an ERα-dependent action. Apoptosis, an essential process for Pi-induced VSMC calcification, was inhibited by E2 in a concentration-dependent manner and further, MPP abolished this inhibition. Mechanistically, E2 restored the inhibited expression of Gas6 and phospho-Akt in Pi-induced apoptosis through ERα. Furthermore, E2 significantly activated Gas6 transcription, and MPP abrogated this E2-dependent Gas6 transactivation. E2-BSA failed to activate Gas6 transcription and to inhibit Ca deposition in VSMC, suggesting beneficial actions of genomic signaling by E2/nuclear ERα. Taken together, these results indicate that E2 exerts inhibitory effects on VSMC apoptosis and calcification through ERα-mediated Gas6 transactivation. These findings indicate a potential therapeutic strategy for the prevention of vascular calcification, especially in postmenopausal women. - Highlights: • E2 inhibits Pi-induced calcification in vascular smooth muscles cells. • E2 inhibits Pi-induced apoptosis by restoration of Gas6-mediated survival pathway. • Gas6 transactivation by E2 is mediated by ERα.« less

  5. Effects of inorganic ions on morphology of octacalcium phosphate grown on cation selective membrane at physiological temperature and pH in relation to enamel formation

    NASA Astrophysics Data System (ADS)

    Iijima, Mayumi; Moriwaki, Yutaka

    1989-05-01

    The crystal growth of octacalcium phosphate (OCP) is of particular interest, since there is a possibility that OCP is formed in the early stage of tooth enamel formation. In this study, the effects of CO2-3, Mg2+ and F-ions on the morphology of OCP were investigated in a membrane system, where a cation selective membrane was used to simulate amelogenesis. Reactions were carried out at pH 6.3, 6.5 and 6.8 for 3 days at 37°C. In most cases, these ions suppressed the crystal growth in the c-axis direction of OCP, particularly when they coexisted. The morphology of OCP crystal changed from ribbon-like to flake-like, depending on the inhibitory activity. The inhibitory activity, particularly that of F - ion, was suppressed at pH lower than pH 6.8. Antagonistic effect of Mg2+ and F-ion was observed at pH 6.5. In the case of F - ion, OCP crystals showed a unique pattern, which suggests hydrolysis of OCP and subsequent growth of apatite. These findings indicate that inorganic ions, particularly F - ion, influence the growth of OCP. Although CO2-3, Mg2+andF-ions coexisted, extended growth in the c-axis direction of OCP took place at pH 6.0.

  6. Influence of probiotics, included in peanut butter, on the fate of selected Salmonella and Listeria strains under simulated gastrointestinal conditions.

    PubMed

    Klu, Y A K; Chen, J

    2016-04-01

    This study observed the behaviour of probiotics and selected bacterial pathogens co-inoculated into peanut butter during gastrointestinal simulation. Peanut butter homogenates co-inoculated with Salmonella/Listeria strains (5 log CFU ml(-1) ) and lyophilized or cultured probiotics (9 log CFU ml(-1) ) were exposed to simulated gastrointestinal conditions for 24 h at 37°C. Sample pH, titratable acidity and pathogen populations were determined. Agar diffusion assay was performed to assess the inhibitory effect of probiotic culture supernatants with either natural (3·80 (Lactobacillus), 3·78 (Bifidobacteirum) and 5·17 (Streptococcus/Lactococcus)) or neutralized (6·0) pH. Antibacterial effect of crude bacteriocin extracts were also evaluated against the pathogens. After 24 h, samples with probiotics had lower pH and higher titratable acidity than those without probiotics. The presence of probiotics caused a significant reduction (P < 0·05) in pathogen populations. Supernatants of Bifidobacterium and Lactobacillus cultures inhibited pathogen growth; however, the elevation of pH diminished their antibacterial activities. Crude bacteriocin extracts had a strain-specific inhibitory effect only towards Listeria monocytogenes. Probiotics in 'peanut butter' survived simulated gastrointestinal conditions and inhibited the growth of Salmonella/Listeria. Peanut butter is a plausible carrier to deliver probiotics to improve the gastrointestinal health of children in developing countries. © 2016 The Society for Applied Microbiology.

  7. Anti-Inflammatory Activity of Butein and Luteolin Through Suppression of NFκB Activation and Induction of Heme Oxygenase-1.

    PubMed

    Sung, Jeehye; Lee, Junsoo

    2015-05-01

    Butein and luteolin are members of the flavonoid family, which displays a variety of biological activities. In this study, we demonstrated that butein and luteolin exert anti-inflammatory activities in RAW264.7 macrophages by inducing heme oxygenase-1 (HO-1) expression. Butein and luteolin dose-dependently attenuated inducible nitric oxide synthase (iNOS) expression, leading to the suppression of iNOS-derived nitric oxide (NO) production. The inhibitory effect of butein on NO production was greater than that of luteolin. Consistent with this finding, butein also showed higher inhibitory effects on lipopolysaccharide (LPS)-induced translocation of nuclear factor κB (NFκB) and NFκB reporter gene activity in macrophages than luteolin. Furthermore, the expression of HO-1 was dose-dependently induced by butein and luteolin treatments in macrophages. Additionally, the anti-inflammatory activities of butein and luteolin involved the induction of HO-1 expression, as confirmed by the zinc protoporphyrin (ZnPP) treatment (HO-1 selective inhibitor) and HO-1 small interfering (si)RNA system. ZnPP-mediated downregulation and siRNA-mediated knockdown of HO-1 significantly abolished the inhibitory effects of butein and luteolin on the production of NO in LPS-induced macrophages. Consequently, butein and luteolin were shown to be effective HO-1 inducers capable of inhibiting macrophage-derived proinflammatory mechanisms. These findings indicate that butein and luteolin are potential therapeutic agents for the treatment of inflammatory diseases.

  8. Novel Halogenated Pyrazine-Based Chalcones as Potential Antimicrobial Drugs.

    PubMed

    Kucerova-Chlupacova, Marta; Vyskovska-Tyllova, Veronika; Richterova-Finkova, Lenka; Kunes, Jiri; Buchta, Vladimir; Vejsova, Marcela; Paterova, Pavla; Semelkova, Lucia; Jandourek, Ondrej; Opletalova, Veronika

    2016-10-27

    Chalcones, i.e., compounds with the chemical pattern of 1,3-diphenylprop-2-en-1-ones, exert a wide range of bio-activities, e.g., antioxidant, anti-inflammatory, anticancer, anti-infective etc. Our research group has been focused on pyrazine analogues of chalcones; several series have been synthesized and tested in vitro on antifungal and antimycobacterial activity. The highest potency was exhibited by derivatives with electron withdrawing groups (EWG) in positions 2 and 4 of the ring B. As halogens also have electron withdrawing properties, novel halogenated derivatives were prepared by Claisen-Schmidt condensation. All compounds were submitted for evaluation of their antifungal and antibacterial activity, including their antimycobacterial effect. In the antifungal assay against eight strains of selected fungi, growth inhibition of Candida glabrata and Trichophyton interdigitale (formerly T. mentagrophytes ) was shown by non-alkylated derivatives with 2-bromo or 2-chloro substitution. In the panel of selected bacteria, 2-chloro derivatives showed the highest inhibitory effect on Staphylococcus sp. In addition, all products were also screened for their antimycobacterial activity against Mycobacterium tuberculosis H37RV My 331/88, M. kansasii My 235/80, M. avium 152/80 and M. smegmatis CCM 4622. Some of the examined compounds, inhibited growth of M. kansasii and M. smegmatis with minimum inhibitory concentrations (MICs) comparable with those of isoniazid.

  9. Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum

    NASA Astrophysics Data System (ADS)

    Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen

    2017-10-01

    This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.

  10. Structural basis for selective targeting of leishmanial ribosomes: Aminoglycoside derivatives as promising therapeutics

    DOE PAGES

    Shalev, Moran; Rozenberg, Haim; Smolkin, Boris; ...

    2015-08-11

    Leishmaniasis comprises an array of diseases caused by pathogenic species of Leishmania, resulting in a spectrum of mild to life-threatening pathologies. Currently available therapies for leishmaniasis include a limited selection of drugs. This coupled with the rather fast emergence of parasite resistance, presents a dire public health concern. Paromomycin (PAR), a broad-spectrum aminoglycoside antibiotic, has been shown in recent years to be highly efficient in treating visceral leishmaniasis (VL)—the life-threatening form of the disease. While much focus has been given to exploration of PAR activities in bacteria, its mechanism of action in Leishmania has received relatively little scrutiny and hasmore » yet to be fully deciphered. In the present study we present an X-ray structure of PAR bound to rRNA model mimicking its leishmanial binding target, the ribosomal A-site. We evaluate PAR inhibitory actions on leishmanial growth and ribosome function, as well as effects on auditory sensory cells, by comparing several structurally related natural and synthetic aminoglycoside derivatives. The results provide insights into the structural elements important for aminoglycoside inhibitory activities and selectivity for leishmanial cytosolic ribosomes, highlighting a novel synthetic derivative, compound 3, as a prospective therapeutic candidate for the treatment of VL.« less

  11. Physical Activity and Cognitive Development: A Meta-Analysis.

    PubMed

    Jackson, William M; Davis, Nicholas; Sands, Stephen A; Whittington, Robert A; Sun, Lena S

    2016-10-01

    Is there an association between regular exercise, defined as a structured program of increased physical activity at least 1 month in duration, and improvements in measures of executive functions compared with children who engage in their normal daily activities? The association between increased physical activity and changes in performance on tasks of executive functions have not been well elucidated in children. Executive functioning is important to intellectual development and academic success in children, and inexpensive, nonpharmacological methods for the treatment of executive dysfunction represent an attractive interventional target. To estimate the effect of a structured regular exercise program on neuropsychological domains of executive function in children ages 7 to 12. We performed a systematic review of English and non-English articles using Cochrane Library, EBSCO CINAHL, Ovid MEDLINE, PSYCInfo, Pubmed, and Web of Science, including all years allowed by each individual search engine. The search string used was "(exercise OR phys*) AND (cognit* OR executive) AND (child* OR preadolesc*)." The authors of the studies selected for review were contacted for any unpublished data. Randomized controlled trials, which enrolled children between the ages of 7 and 12, with randomization to either normal activity or a structured physical activity intervention consisting of scheduled aerobic exercise, at least once per week, for a period of at least 1 month. Eligible studies must have included a neuropsychological battery of tests that measured at least 1 executive function both before and after the intervention was completed. Two independent reviewers examined the screened studies in detail for potential inclusion. The results of the individual examinations were compared; if any discrepancies were present, a third party analyzed the study to determine if it should be included in the meta-analysis. A total of 18 studies were identified by abstract as candidates for inclusion. From these 18 studies, 8 were independently selected by 2 authors for inclusion in the final analysis; there were no selection discrepancies between authors with regard to the studies to be included. In all, 770 subjects were included, 339 in the control group and 431 in the intervention group. All 8 studies contained a measure of inhibitory control; no other domain of executive function was measured frequently enough to perform meta-analysis, so only measures of inhibitory control were pooled and analyzed. A Cohen d effect size was calculated for each measure using the method of Morris for controlled pre-post control measurement studies. The studies were then combined in a random effects model using Comprehensive Meta Analysis software (Biostat, Englewood, NJ) for Windows (Microsoft, Redmond, WA). All studies showed a positive effect of regular exercise with improvements in measures of inhibitory control, but none were statistically significant for this measure. When pooled, the model revealed a combined Cohen d effect size of 0.2 (95% confidence interval, 0.03-0.37; P=0.021), indicating a small improvement of inhibitory control with long-term physical activity. Heterogeneity was very low (I=0). Many studies used different neuropsychological tests to assess inhibitory control, which may have introduced unforeseen confounders. Other domains of executive functions were not measured frequently enough to perform meta-analysis. Despite attempts to gather unpublished data, positive results were observed in all of the included studies, raising the possibility of publication bias. Increased regular physical activity is associated with a small and measurable, improvement in neuropsychological tests of executive functions, specifically inhibitory control. Executive functions play an important role in complex behavior, and may contribute to academic and career achievement as well as success in social interaction. This finding provides support for the important interaction between exercise and cognitive functioning.

  12. Multisensory Integration Strategy for Modality-Specific Loss of Inhibition Control in Older Adults

    PubMed Central

    Ryu, Hokyoung; Kim, Jae-Kwan; Jeong, Eunju

    2018-01-01

    Older adults are known to have lesser cognitive control capability and greater susceptibility to distraction than young adults. Previous studies have reported age-related problems in selective attention and inhibitory control, yielding mixed results depending on modality and context in which stimuli and tasks were presented. The purpose of the study was to empirically demonstrate a modality-specific loss of inhibitory control in processing audio-visual information with ageing. A group of 30 young adults (mean age = 25.23, Standard Deviation (SD) = 1.86) and 22 older adults (mean age = 55.91, SD = 4.92) performed the audio-visual contour identification task (AV-CIT). We compared performance of visual/auditory identification (Uni-V, Uni-A) with that of visual/auditory identification in the presence of distraction in counterpart modality (Multi-V, Multi-A). The findings showed a modality-specific effect on inhibitory control. Uni-V performance was significantly better than Multi-V, indicating that auditory distraction significantly hampered visual target identification. However, Multi-A performance was significantly enhanced compared to Uni-A, indicating that auditory target performance was significantly enhanced by visual distraction. Additional analysis showed an age-specific effect on enhancement between Uni-A and Multi-A depending on the level of visual inhibition. Together, our findings indicated that the loss of visual inhibitory control was beneficial for the auditory target identification presented in a multimodal context in older adults. A likely multisensory information processing strategy in the older adults was further discussed in relation to aged cognition. PMID:29641462

  13. Discovery of DF-461, a Potent Squalene Synthase Inhibitor

    PubMed Central

    2013-01-01

    We report the development of a new trifluoromethyltriazolobenzoxazepine series of squalene synthase inhibitors. Structure–activity studies and pharmacokinetics optimization on this series led to the identification of compound 23 (DF-461), which exhibited potent squalene synthase inhibitory activity, high hepatic selectivity, excellent rat hepatic cholesterol synthesis inhibitory activity, and plasma lipid lowering efficacy in nonrodent repeated dose studies. PMID:24900587

  14. Inhibitory control in bulimic-type eating disorders: a systematic review and meta-analysis.

    PubMed

    Wu, Mudan; Hartmann, Mechthild; Skunde, Mandy; Herzog, Wolfgang; Friederich, Hans-Christoph

    2013-01-01

    The aim of this meta-analysis was to summarise data from neuropsychological studies on inhibitory control to general and disease-salient (i.e., food/eating, body/shape) stimuli in bulimic-type eating disorders (EDs). A systematic literature search was conducted to identify eligible experimental studies. The outcome measures studied included the performance on established inhibitory control tasks in bulimic-type EDs. Effect sizes (Hedges' g) were pooled using random-effects models. For inhibitory control to general stimuli, 24 studies were included with a total of 563 bulimic-type ED patients: 439 had bulimia nervosa (BN), 42 had anorexia nervosa of the binge/purge subtype (AN-b), and 82 had binge eating disorder (BED). With respect to inhibitory control to disease-salient stimuli, 12 studies were included, representing a total of 218 BN patients. A meta-analysis of these studies showed decreased inhibitory control to general stimuli in bulimic-type EDs (g = -0.32). Subgroup analysis revealed impairments with a large effect in the AN-b group (g = -0.91), impairments with a small effect in the BN group (g = -0.26), and a non-significant effect in the BED group (g = -0.16). Greater impairments in inhibitory control were observed in BN patients when confronted with disease-salient stimuli (food/eating: g = -0.67; body/shape: g = -0.61). In conclusion, bulimic-type EDs showed impairments in inhibitory control to general stimuli with a small effect size. There was a significantly larger impairment in inhibitory control to disease salient stimuli observed in BN patients, constituting a medium effect size.

  15. The combi-targeting concept: synthesis of stable nitrosoureas designed to inhibit the epidermal growth factor receptor (EGFR).

    PubMed

    Domarkas, Juozas; Dudouit, Fabienne; Williams, Christopher; Qiyu, Qiu; Banerjee, Ranjita; Brahimi, Fouad; Jean-Claude, Bertrand Jacques

    2006-06-15

    According to the "combi-targeting" concept, the EGFR tyrosine kinase (TK) inhibitory potency of compounds termed "combi-molecules" is critical for selective growth inhibition of tumor cells with disordered expression of EGFR or its closest family member erbB2. Here we report on the optimization of the EGFR TK inhibitory potency of the combi-molecules of the nitrosourea class by comparison with their aminoquinazoline and ureidoquinazoline precursors. This led to the discovery of a new structural parameter that influences their EGFR TK inhibitory potency, i.e., the torsion angle between the plane of the quinazoline ring and the ureido or the nitrosoureido moiety of the synthesized drugs. Compounds (3'-Cl and Br series) with small angles (0.5-3 degrees ) were generally stronger EGFR TK inhibitors than those with large angles (18-21 degrees ). This was further corroborated by ligand-receptor van der Waals interaction calculations that showed significant binding hindrance imposed by large torsion angles in the narrow ATP cleft of EGFR. Selective antiproliferative studies in a pair of mouse fibroblast NIH3T3 cells, one of which NIH3T3/neu being transfected with the erbB2 oncogene, showed that IC(50) values for inhibition of EGFR TK could be good predictors of their selective potency against the serum-stimulated growth of the erbB2-tranfected cell line (Pearson r = 0.8). On the basis of stability (t(1/2)), EGFR TK inhibitory potency (IC(50)), and selective erbB2 targeting, compound 23, a stable nitrosourea, was considered to have the structural requirements for further development.

  16. Isolation of lactic acid bacteria from pao cai, a Chinese traditional fermented vegetable, with inhibitory activity against Salmonella associated with fresh-cut apple, using a modelling study.

    PubMed

    Luo, W; Chen, M; Chen, A; Dong, W; Hou, X; Pu, B

    2015-04-01

    To isolate lactic acid bacteria (LAB) from pao cai, a Chinese traditional fermented vegetable, with outstanding inhibitory activity against Salmonella inoculated on fresh-cut apple, using a modelling method. Four kinds of pao cai were selected. A total of 122 isolates exhibited typical LAB characteristics: Gram-positive and catalase negative, among which 104 (85·24%) colonies showed antibacterial activity against Salmonella by the well diffusion assay. Four colonies showing maximum antibacterial radius against Salmonella were selected to co-inoculate with Salmonella on fresh-cut apple and stored at 10°C, further identified as three strains of Lactobacillus plantarum and one strain of Lactobacillus brevis by 16s rRNA gene sequence analysis. The modified Gompertz model was employed to analyse the growth of the micro-organisms on apple wedges. Two of the four selected strains showed antagonistic activity against Salmonella on fresh-cut apple, one of which, RD1, exhibited best inhibitory activity (Salmonella were greatly inhibited when co-inoculated with RD1 at 10°C at 168 h). No deterioration in odour or appearance of the apple piece was observed by the triangle test when fresh-cut apple was inoculated with RD1. The mathematical modelling method is essential to select LAB with outstanding inhibitory activity against Salmonella associated with fresh-cut apple. LAB RD1 holds promise for the preservation of fresh-cut apple. This study provided a new method on fresh-cut product preservation. Besides, to make the LAB isolating procedure a more correct one, this study first added the mathematical modelling method to the isolating procedure. © 2014 The Society for Applied Microbiology.

  17. Roles of Hippocampal Somatostatin Receptor Subtypes in Stress Response and Emotionality.

    PubMed

    Prévôt, Thomas D; Gastambide, François; Viollet, Cécile; Henkous, Nadia; Martel, Guillaume; Epelbaum, Jacques; Béracochéa, Daniel; Guillou, Jean-Louis

    2017-07-01

    Altered brain somatostatin functions recently appeared as key elements for the pathogenesis of stress-related neuropsychiatric disorders. The hippocampus exerts an inhibitory feedback on stress but the mechanisms involved remain unclear. We investigated herein the role of hippocampal somatostatin receptor subtypes in both stress response and behavioral emotionality using C57BL/6, wild type and sst 2 or sst 4 knockout mice. Inhibitory effects of hippocampal infusions of somatostatin agonists on stress-induced hypothalamo-pituitary-adrenal axis (HPA) activity were tested by monitoring peripheral blood and local hippocampus corticosterone levels, the latter by using microdialysis. Anxiolytic and antidepressant-like effects were determined in the elevated-plus maze, open field, forced swimming, and stress-sensitive beam walking tests. Hippocampal injections of somatostatin analogs and sst 2 or sst 4, but not sst 1 or sst 3 receptor agonists produced rapid and sustained inhibition of HPA axis. sst 2 agonists selectively produced anxiolytic-like behaviors whereas both sst 2 and sst 4 agonists had antidepressant-like effects. Consistent with these findings, high corticosterone levels and anxiety were found in sst 2 KO mice and depressive-like behaviors observed in both sst 2 KO and sst 4 KO strains. Both hippocampal sst 2 and sst 4 receptors selectively inhibit stress-induced HPA axis activation but mediate anxiolytic and antidepressive effects through distinct mechanisms. Such results are to be accounted for in development of pathway-specific somatostatin receptor agents in the treatment of hypercortisolism (Cushing's disease) and stress-related neuropsychiatric disorders.

  18. Y2-receptor-mediated selective inhibition of slow, inhibitory postsynaptic potential in submucous neurones of guinea-pig caecum.

    PubMed Central

    Cunningham, S M; Mihara, S; Lees, G M

    1994-01-01

    1. The subtype of neuropeptide Y receptor mediating the selective inhibition of the slow inhibitory postsynaptic potential (i.p.s.p.) of submucous neurones in guinea-pig caecum was investigated by use of conventional intracellular electrophysiological recording techniques. 2. Neuropeptide Y (NPY) (1-300 nM) was found to depress or abolish reversibly the slow i.p.s.p. evoked by focal stimulation of internodal fibre tracts. At low concentrations (1-30 nM), a reduction in the duration of the slow i.p.s.p. was often apparent before any inhibition of the amplitude of this synaptic potential. 3. These inhibitory effects of NPY were mimicked by peptide YY (PYY; 0.3-100 nM), NPY13-36 (1-300 nM) and NPY22-36 (10-100 nM); [Leu31,Pro34]NPY ([Pro34]NPY) and bovine pancreatic polypeptide (bPP) were without pre- or postsynaptic effects at concentrations of up to 300 nM. The IC50 +/- s.e. mean values for PYY, NPY, and NPY13-36 were 2.7 +/- 0.3, 7.8 +/- 2.1 and 30 +/- 4.8 nM, respectively, and were significantly different from each other. Thus, the apparent rank order of potency was PYY > NPY > NPY13-36 >> [Pro34]NPY and bPP. 4. In concentrations of up to 300 nM, NPY and its analogues had no depressant effects on the active and passive properties of the impaled neurone and did not affect the amplitude or duration of either cholinergic fast synaptic potentials or non-cholinergic, slow excitatory postsynaptic potentials (e.p.s.ps). Furthermore, none of these peptides altered the amplitude or time-course of changes in membrane potential induced by focal application of acetylcholine or noradrenaline.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858881

  19. A review of evidence for GABergic predominance/glutamatergic deficit as a common etiological factor in both schizophrenia and affective psychoses: more support for a continuum hypothesis of "functional" psychosis.

    PubMed

    Squires, R F; Saederup, E

    1991-10-01

    Virtually all antidepressant and antipsychotic drugs, including clozapine, rimcazole and lithium ion, are proconvulsants, and convulsive therapy, using metrazol, a known GABA-A antagonist, as well as electro-convulsive therapy, can be effective in treating both schizophrenia and affective psychoses. Many antidepressant and antipsychotic drugs, including clozapine, as well as some of their metabolites, reverse the inhibitory effect of GABA on 35S-TBPS binding, a reliable predictor of GABA-A receptor blockade. A review of relevant literature suggests that 1) "functional" psychoses constitute a continuum of disorders ranging from schizophrenia to affective psychoses with overlap of symptoms, heredity and treatments, 2) a weakening of GABergic inhibitory activity, or potentiation of counterbalancing glutamatergic neurotransmission, in the brain, may be involved in the therapeutic activities of both antidepressant and antipsychotic drugs, and 3) schizophrenia and the affective psychoses may be different expressions of the same underlying defect: GABergic preponderance/glutamatergic deficit. Schizophrenia and affective psychoses share the following: 1) several treatments are effective in both, 2) similar modes of inheritance, 3) congruent seasonal birth excesses, 4) enlarged cerebral ventricles and cerebellar vermian atrophy, 5) dexamethasone non-suppression. Both genetic and environmental factors are involved in both schizophrenia and affective psychoses, and several lines of evidence suggest that important environmental factors are neurotropic pathogens that selectively destroy glutamatergic neurons. One group of genes associated with psychoses may increase vulnerability to attack and destruction, by neurotropic pathogens, of excitatory glutamatergic neurons that counterbalance inhibitory GABergic neurons. A second group of genes may encode subunits of overactive GABA-A receptors, while a third group of genes may encode subunits of hypo-active glutamate receptors. Improved antipsychotic drugs may be found among selective blockers of GABA-A receptor subtypes and/or enhancers of glutamatergic neurotransmission. A mechanism similar to kindling, leading to long-lasting reduction of GABergic inhibition in the brain, may be involved in several treatments of psychoses.

  20. Cell growth inhibition and apoptotic effects of a specific anti-RTFscFv antibody on prostate cancer, but not glioblastoma, cells

    PubMed Central

    Nejatollahi, Foroogh; Bayat, Payam; Moazen, Bahareh

    2017-01-01

    Background: Single chain antibody (scFv) has shown interesting results in cancer immunotargeting approaches, due to its advantages over monoclonal antibodies. Regeneration and tolerance factor (RTF) is one of the most important regulators of extracellular and intracellular pH in eukaryotic cells. In this study, the inhibitory effects of a specific anti-RTF scFv were investigated and compared between three types of prostate cancer and two types of glioblastoma cells.  Methods: A phage antibody display library of scFv was used to select specific scFvs against RTF using panning process. The reactivity of a selected scFv was assessed by phage ELISA. The anti-proliferative and apoptotic effects of the antibody on prostate cancer (PC-3, Du-145 and LNCaP) and glioblastoma (U-87 MG and A-172) cell lines were investigated by MTT and Annexin V/PI assays.  Results: A specific scFv with frequency 35% was selected against RTF epitope. This significantly inhibited the proliferation of the prostate cells after 24 h. The percentages of cell viability (using 1000 scFv/cell) were 52, 61 and 73% for PC-3, Du-145 and LNCaP cells, respectively, compared to untreated cells. The antibody (1000 scFv/cell) induced apoptosis at 50, 40 and 25% in PC-3, Du-145 and LNCaP cells, respectively. No growth inhibition and apoptotic induction was detected for U-87 and A172 glioblastoma cells.  Conclusions: Anti-RTFscFv significantly reduced the proliferation of the prostate cancer cells. The inhibition of cell growth and apoptotic induction effects in PC-3 cells were greater than Du-145 and LNCaP cells. This might be due to higher expression of RTF antigen in PC-3 cells and/or better accessibility of RTF to scFv antibody. The resistance of glioblastoma cells to anti-RTF scFv offers the existence of mechanism(s) that abrogate the inhibitory effect(s) of the antibody to RTF. The results suggest that the selected anti-RTF scFv antibody could be an effective new alternative for prostate cancer immunotherapy. PMID:28491282

  1. Bacterial and fungal biofilm formation on contact lenses and their susceptibility to lens care solutions.

    PubMed

    Kackar, Siddharth; Suman, Ethel; Kotian, M Shashidhar

    2017-01-01

    Microbial biofilm formation on contact lenses and lens storage cases may be a risk factor for contact lens-associated corneal infections. Various types of contact lens care solutions are used to reduce microbial growths on lenses. The present study aimed at comparing the growths of biofilms on the different contact lenses and lens cases. The study also aimed at determining the effect of lens care solutions and bacteriophage on these biofilms. One type of hard lens and two types of soft lenses were used for the study. The organisms used were Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 60193 and Escherichia coli ATCC 25922. Biofilm production was performed by modified O'Toole and Kolter method and effect of lens cleaning solutions and a crude coliphage on biofilms was also studied. Results were visualised using scanning electron microscopy and quantitated by colony counting method and spectrophotometric measurement of optical density (OD). Statistical analysis was done by SPSS 11.5, Kruskal-Wallis test and Chi-square test. Soft lens cleaning solutions had a significant inhibitory effect (P = 0.020) on biofilm formation on soft lenses and also lens cases (P < 0.001). Soft lens cleaning solution 2 was more efficient than solution 1. However, no such inhibitory effect was observed with regard to hard lens cleaning solution, but for a significant reduction in the OD values (P < 0.001). There was no significant inhibitory effect by bacteriophages. This study showed the importance of selecting the appropriate lens cleaning solution to prevent biofilm production on contact lenses.

  2. Executive brain functions after exposure to nocturnal traffic noise: effects of task difficulty and sleep quality.

    PubMed

    Schapkin, Sergei A; Falkenstein, Michael; Marks, Anke; Griefahn, Barbara

    2006-04-01

    The after-effects of nocturnal traffic noise on cognitive performance and inhibitory brain activity were investigated. Twenty participants (18-30 years) performed an easy and a difficult visual Go/Nogo task with simultaneous EEG recording after a quiet night and then during three nights when aircraft noise was presented with equivalent noise levels of 39, 44, and 50 dBA, respectively, between 11 p.m. to 7 a.m. Based on subjective sleep quality rating, participants were separated into "good" versus "bad" sleepers. The performance and inhibition-related components (N2, P3) of event-related potentials were analysed. The N2 and P3 amplitudes were smaller and latencies were prolonged in the difficult than in the easy task. This effect was more pronounced for Nogo than for Go trials. The Nogo-P3 amplitude was smaller in Noise than in "Quiet" conditions in the difficult task only. In the difficult task, the Nogo-P3 latency was prolonged in bad sleepers than in good sleepers. The Nogo-P3 amplitude was reduced in Noise as compared to "Quiet" conditions in bad sleepers only. Sleep quality in bad sleepers worsened steadily with increasing noise levels. No effects of noise or subjective sleep quality on performance were found. Inhibitory processes appear to be selectively impaired after nocturnal noise exposure. The task difficulty and perceived sleep quality are important factors modulating noise effects. The results suggest that nocturnal traffic noise increase physiological costs for inhibitory functioning on the day even if no overt performance decrement is observed.

  3. Sub-inhibitory concentrations of gentamicin triggers the expression of aac(6')Ie-aph(2″)Ia, chaperons and biofilm related genes in Lactobacillus plantarum MCC 3011.

    PubMed

    George, Jaimee; Halami, Prakash Motiram

    2017-10-01

    The study aimed to analyze the effects of sub-inhibitory concentrations of gentamicin on the expressions of high level aminoglycoside resistant (HLAR) bifunctional aac(6')Ie-aph(2″)Ia, biofilm and chaperone genes in Lactobacillus plantarum. The analysis of the biofilm formation in five isolates obtained from chicken sausages indicated their role in exhibiting phenotypic resistance based on the varied MIC values despite carrying the bifunctional gene. The biofilm formation significantly increased when L. plantarum MCC 3011 was grown in sub-inhibitory concentrations of gentamicin (4 μg/ml), kanamycin (8 μg/ml) and streptomycin (2 μg/ml). Thirty day gentamicin selection increased minimum inhibitory concentration (MIC) values from 4 to 64 and 2 to 256 fold for gentamicin and kanamycin, respectively when compared to the parental cultures. Expression studies revealed that constant exposure to gentamicin had induced chaperon [groEL] and the bifunctional gene, aac(6')Ie-aph(2″)Ia upto nine fold. Induction of groEL, groES and lamC genes in gentamicin (4 μg/ml) preincubated MCC 3011 indicated their significant role in aminoglycoside mediated response. Our study indicates that constant exposure to sub inhibitory concentrations of gentamicin allows L. plantarum to adapt against higher doses of aminoglycosides. This highlights the risks and food safety issues associated with the use of aminoglycosides in livestock and consumption of farm oriented fermented food products. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Combined effects of plant extracts in inhibiting the growth of Bacillus cereus in reconstituted infant rice cereal.

    PubMed

    Jun, Hyejung; Kim, Jinsol; Bang, Jihyun; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2013-01-01

    A study was done to determine the potential use of plant extracts to inhibit the growth of Bacillus cereus in reconstituted infant rice cereal. A total of 2116 extracts were screened for inhibitory activity against B. cereus using an agar well diffusion assay. The minimal inhibitory concentrations (MIC) and minimal lethal concentrations (MLC) of 14 promising extracts in tryptic soy broth (TSB) were determined. Dryopteris erythrosora (autumn fern) root extract showed the lowest MIC (0.0156 mg/ml), followed by Siegesbeckia glabrescens (Siegesbeckia herb) leaf (0.0313 mg/ml), Morus alba (white mulberry) cortex (0.0313 mg/ml), Carex pumila (sand sedge) root (0.0625 mg/ml), and Citrus paradisi (grapefruit) seed (0.0625 mg/ml) extracts. The order of MLCs of extracts was D. erythrosora root (0.0156 mg/ml)

  5. Isolation of proanthocyanidins from red wine, and their inhibitory effects on melanin synthesis in vitro.

    PubMed

    Fujimaki, Takahiro; Mori, Shoko; Horikawa, Manabu; Fukui, Yuko

    2018-05-15

    The red wines made from Vitis vinifera were identified as skin-whitening effectors by using in vitro assays. OPCs in the wine were evaluated for tyrosinase activity and melanogenesis. Strong tyrosinase inhibitory activity was observed in fractions with high oligomeric proanthocyanidin (OPC) content. Among OPC dimers, a strong inhibitory effect on tyrosinase was observed with OPCs which contain (+)-catechin as an upper unit. Melanogenesis inhibitory effect was observed with OPCs which have (-)-epicatechin as upper units. Also, OPC trimers, upper and middle units joined with 4 → 8 bonds, showed stronger effects compared to trimers with 4 → 6 linkages. Interestingly, (-)-epicatechin-(4β → 8)-(-)-epicatechin 3-O-gallate, which is a unique component of grapes has potent inhibitory effects on both tyrosinase and melanogenesis. Our data provide structural information about such active compounds. These results suggest that red wines containing OPC, have high melanogenesis inhibitory effect and are supposed to have skin-whitening effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inhibitory effects of Bacillus subtilis on plant pathogens of conservatory in high latitudes

    NASA Astrophysics Data System (ADS)

    Xue, Chun-Mei; Wang, Xue; Yang, Jia-Li; Zhang, Yue-Hua

    2018-03-01

    Researching the effect of three kinds of Bacillus and their mixed strains inhibitory on common fungal diseases of conservatory vegetables. The results showed that B. megaterium culture medium had a significant inhibition effect on Cucumber Fusarium wilt, and the inhibition rate was up to 84.36%; B. mucilaginosus and B. megaterium sterile superna-tant had an obvious inhibitory effect on brown disease of eggplant, and the inhibition rate as high as 85.49%; B. subtilis sterile supernatant had a good inhibitory effect on the spore germination of C. Fusarium wilt, and the inhibition rate was 76.83%. The results revealed that Bacillus had a significant inhibitory effect on five common fungal pathogens. Three kinds of Bacillus can be used for the prevention and control of common fungal diseases in conservatory vegetables.

  7. Red wine and component flavonoids inhibit UGT2B17 in vitro

    PubMed Central

    2012-01-01

    Background The metabolism and excretion of the anabolic steroid testosterone occurs by glucuronidation to the conjugate testosterone glucuronide which is then excreted in urine. Alterations in UGT glucuronidation enzyme activity could alter the rate of testosterone excretion and thus its bioavailability. The aim of this study is to investigate if red wine, a common dietary substance, has an inhibitory effect on UGT2B17. Methods Testosterone glucuronidation was assayed using human UGT2B17 supersomes with quantification of unglucuronidated testosterone over time using HPLC with DAD detection. The selected red wine was analyzed using HPLC; and the inhibitory effects of the wine and phenolic components were tested independently in a screening assay. Further analyses were conducted for the strongest inhibitors at physiologically relevant concentrations. Control experiments were conducted to determine the effects of the ethanol on UGT2B17. Results Over the concentration range of 2 to 8%, the red wine sample inhibited the glucuronidation of testosterone by up to 70% over 2 hours. The ethanol content had no significant effect. Three red wine phenolics, identified by HPLC analyses, also inhibited the enzyme by varying amounts in the order of quercetin (72%), caffeic acid (22%) and gallic acid (9%); using a ratio of phenolic:testosterone of 1:2.5. In contrast p-coumaric acid and chlorogenic acid had no effect on the UGT2B17. The most active phenolic was selected for a detailed study at physiologically relevant concentrations, and quercetin maintained inhibitory activity of 20% at 2 μM despite a ten-fold excess of testosterone. Conclusion This study reports that in an in vitro supersome-based assay, the key steroid-metabolizing enzyme UGT2B17 is inhibited by a number of phenolic dietary substances and therefore may reduce the rate of testosterone glucuronidation in vivo. These results highlight the potential interactions of a number of common dietary compounds on testosterone metabolism. Considering the variety of foodstuffs that contain flavonoids, it is feasible that diet can elevate levels of circulating testosterone through reduction in urinary excretion. These results warrant further investigation and extension to a human trial to delineate the health implications. PMID:22958586

  8. OPC-13013, a cyclic nucleotide phosphodiesterase type III, inhibitor, inhibits cell proliferation and transdifferentiation of cultured rat hepatic stellate cells.

    PubMed

    Shimizu, E; Kobayashi, Y; Oki, Y; Kawasaki, T; Yoshimi, T; Nakamura, H

    1999-01-01

    Activated hepatic stellate cells (HSC; lipocytes; Ito cells) proliferate and are responsible for extracellular matrix synthesis during hepatic fibrogenesis. During activation, HSC undergo transdifferentiation into myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA). Adenosine 3', 5'-cyclic monophosphate (cyclic AMP) is an ubiquitous intracellular signaling molecule, and is upregulated by the activation of adenylate cyclase and downregulated via hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). Recently, increased intracellular cyclic AMP has been shown to inhibit HSC activation. The aim of the current study was to determine the effects of inhibition of PDEs on cell proliferation and transdifferentiation in cultured rat HSC. Cell proliferation was determined by [3H]thymidine incorporation, and Western blot analysis was performed for detection of alpha-SMA, a phenotypic marker of transdifferentiation into myofibroblast. When the cells were exposed to 3-isobutyl-1-methylxanthine (IBMX; 50-1000 microM), a nonselective PDE inhibitor, serum-stimulated [3H]thymidine incorporation was suppressed in a dose-dependent manner with a maximum inhibition of 66% at a concentration of 500 microM OPC-13013 (1-60 microM), a selective PDE III isoenzyme inhibitor, induced a dose-dependent inhibitory effect on serum-stimulated DNA synthesis that reached a maximum inhibition of 95% at a concentration of 60 microM, while neither 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MMX), a PDE I isoenzyme inhibitor, nor Ro-20-1724, a PDE IV isoenzyme inhibitor, had an inhibitory effect. Western blot analysis revealed that IBMX or OPC-13013 decreased alpha-SMA expression, while other selective PDE isoenzyme inhibitors did not have a suppressive effect. IBMX, OPC-13013 or Ro-20-1724, but not 8-MMX augmented forskolin-induced increase in intracellular cyclic AMP levels although cyclic AMP levels were not affected by treatment with any of these PDE inhibitors alone. These data indicate that inhibition of PDEs, especially PDE III isoenzyme, can produce an inhibitory effect on HSC activation. The PDE III isoenzyme may contribute to the regulation of HSC activation during fibrogenesis. In addition, OPC-13013 may have the potential to inhibit initiation and progression of hepatic fibrosis by interfering with HSC activation.

  9. Glutamatergic transmission in the central nucleus of the amygdala is selectively altered in Marchigian Sardinian alcohol-preferring rats: alcohol and CRF effects

    PubMed Central

    Herman, Melissa A.; Varodayan, Florence P.; Oleata, Christopher S.; Luu, George; Kirson, Dean; Heilig, Markus; Ciccocioppo, Roberto; Roberto, Marisa

    2015-01-01

    The CRF system of the central nucleus of the amygdala (CeA) is important for the processing of anxiety, stress, and effects of acute and chronic ethanol. We previously reported that ethanol decreases evoked glutamate transmission in the CeA of Sprague Dawley rats and that ethanol dependence alters glutamate release in the CeA. Here, we examined the effects of ethanol, CRF and a CRF1 receptor antagonist on spontaneous and evoked glutamatergic transmission in CeA neurons from Wistar and Marchigian Sardinian Preferring (msP) rats, a rodent line genetically selected for excessive alcohol drinking and characterized by heightened activity of the CRF1 system. Basal spontaneous and evoked glutamate transmission in CeA neurons from msP rats was increased compared to Wistar rats. Ethanol had divergent effects, either increasing or decreasing spontaneous glutamate release in the CeA of Wistar rats. This bidirectional effect was retained in msP rats, but the magnitude of the ethanol-induced increase in glutamate release was significantly smaller. The inhibitory effect of ethanol on evoked glutamatergic transmission was similar in both strains. CRF also either increased or decreased spontaneous glutamate release in CeA neurons of Wistar rats, however, in msP rats CRF only increased glutamate release. The inhibitory effect of CRF on evoked glutamatergic transmission was also lost in neurons from msP rats. A CRF1 antagonist produced only minor effects on spontaneous glutamate transmission, which were consistent across strains, and no effects on evoked glutamate transmission. These results demonstrate that the genetically altered CRF system of msP rats results in alterations in spontaneous and stimulated glutamate signaling in the CeA that may contribute to both the anxiety and drinking behavioral phenotypes. PMID:26519902

  10. High-Throughput and Rapid Screening of Novel ACE Inhibitory Peptides from Sericin Source and Inhibition Mechanism by Using in Silico and in Vitro Prescriptions.

    PubMed

    Sun, Huaju; Chang, Qing; Liu, Long; Chai, Kungang; Lin, Guangyan; Huo, Qingling; Zhao, Zhenxia; Zhao, Zhongxing

    2017-11-22

    Several novel peptides with high ACE-I inhibitory activity were successfully screened from sericin hydrolysate (SH) by coupling in silico and in vitro approaches for the first time. Most screening processes for ACE-I inhibitory peptides were achieved through high-throughput in silico simulation followed by in vitro verification. QSAR model based predicted results indicated that the ACE-I inhibitory activity of these SH peptides and six chosen peptides exhibited moderate high ACE-I inhibitory activities (log IC 50 values: 1.63-2.34). Moreover, two tripeptides among the chosen six peptides were selected for ACE-I inhibition mechanism analysis which based on Lineweaver-Burk plots indicated that they behave as competitive ACE-I inhibitors. The C-terminal residues of short-chain peptides that contain more H-bond acceptor groups could easily form hydrogen bonds with ACE-I and have higher ACE-I inhibitory activity. Overall, sericin protein as a strong ACE-I inhibition source could be deemed a promising agent for antihypertension applications.

  11. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates.

    PubMed

    Nongonierma, Alice B; Paolella, Sara; Mudgil, Priti; Maqsood, Sajid; FitzGerald, Richard J

    2018-04-01

    Nine novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (FLQY, FQLGASPY, ILDKEGIDY, ILELA, LLQLEAIR, LPVP, LQALHQGQIV, MPVQA and SPVVPF) were identified in camel milk proteins hydrolysed with trypsin. This was achieved using a sequential approach combining liquid chromatography tandem mass spectrometry (LC-MS/MS), qualitative/quantitative structure activity relationship (QSAR) and confirmatory studies with synthetic peptides. The most potent camel milk protein-derived DPP-IV inhibitory peptides, LPVP and MPVQA, had DPP-IV half maximal inhibitory concentrations (IC 50 ) of 87.0 ± 3.2 and 93.3 ± 8.0 µM, respectively. DPP-IV inhibitory peptide sequences identified within camel and bovine milk protein hydrolysates generated under the same hydrolysis conditions differ. This was linked to differences in enzyme selectivity for peptide bond cleavage of camel and bovine milk proteins as well as dissimilarities in their amino acid sequences. Camel milk proteins contain novel DPP-IV inhibitory peptides which may play a role in the regulation of glycaemia in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cortical inhibition and excitation by bilateral transcranial alternating current stimulation.

    PubMed

    Cancelli, Andrea; Cottone, Carlo; Zito, Giancarlo; Di Giorgio, Marina; Pasqualetti, Patrizio; Tecchio, Franca

    2015-01-01

    Transcranial electric stimulations (tES) with amplitude-modulated currents are promising tools to enhance neuromodulation effects. It is essential to select the correct cortical targets and inhibitory/excitatory protocols to reverse changes in specific networks. We aimed at assessing the dependence of cortical excitability changes on the current amplitude of 20 Hz transcranial alternating current stimulation (tACS) over the bilateral primary motor cortex. We chose two amplitude ranges of the stimulations, around 25 μA/cm2 and 63 μA/cm2 from peak to peak, with three values (at steps of about 2.5%) around each, to generate, respectively, inhibitory and excitatory effects of the primary motor cortex. We checked such changes online through transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). Cortical excitability changes depended upon current density (p = 0.001). Low current densities decreased MEP amplitudes (inhibition) while high current densities increased them (excitation). tACS targeting bilateral homologous cortical areas can induce online inhibition or excitation as a function of the current density.

  13. New isoxazolidinone and 3,4-dehydro-β-proline derivatives as antibacterial agents and MAO-inhibitors: A complex balance between two activities.

    PubMed

    Ferrazzano, Lucia; Viola, Angelo; Lonati, Elena; Bulbarelli, Alessandra; Musumeci, Rosario; Cocuzza, Clementina; Lombardo, Marco; Tolomelli, Alessandra

    2016-11-29

    Among the different classes of antibiotics, oxazolidinone derivatives represent important drugs, since their unique mechanism of action overcomes commonly diffused multidrug-resistant bacteria. Anyway, the structural similarity of these molecules to monoamino oxidase (MAO) inhibitors, like toloxatone and blefoxatone, induces in many cases loss of selectivity as a major concern. A small library of compounds based on isoxazolidinone and dehydro-β-proline scaffold was designed with the aim to obtain antibacterial agents, evaluating at the same time the potential effects of structural features on MAO inhibitory behaviour. The structural modification introduced in the backbone, starting from Linezolid model, lead to a significant loss in antibiotic activity, while a promising inhibitory effect could be observed on monoamino oxidases. These interesting results are also in agreement with docking experiments suggesting a good binding pose of the synthesized compounds into the pocket of the oxidase enzymes, in particular of MAO-B. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Characterization of polysaccharides with marked inhibitory effect on lipid accumulation in Pleurotus eryngii.

    PubMed

    Chen, Jingjing; Yong, Yangyang; Xing, Meichun; Gu, Yifan; Zhang, Zhao; Zhang, Shizhu; Lu, Ling

    2013-09-12

    Mushrooms have a great potential for the production of useful bioactive metabolites. To explore the bioactive compounds from edible mushrooms for interfering with the development of macrophage-derived foam cells, which is recognized as the hallmark of early atherosclerosis, eight types of mushrooms polysaccharides had been selected to be tested. Consequently, different mushrooms polysaccharides displayed diverse component profiles. Of polysaccharides that we tested, the Pleurotus eryngii polysaccharide had the strongest inhibitory effect on lipid accumulation. Furthermore, through fractionation of DEAE-52 and Sephadex G-100, the polysaccharide from P. eryngii had been successfully purified and identified. By the analysis of IR, GC, and HPLC, the purified polysaccharide was estimated to be 30-38 kDa for the average molecular weight with the monosaccharide composition mainly composed of D-types of mannose, glucose and galactose. Findings presented in this report firstly provide direct evidence, which links the purified polysaccharide moiety with the biological function in foam-cell model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The toxicity of selected gasoline components to glucose methanogenesis by aquifer microorganisms

    USGS Publications Warehouse

    Mormile, Melanie R.; Suflita, Joseph M.

    1996-01-01

    Six model hydrocarbons, representing various classes of chemicals found in gasoline, and methyl ethyl ketone, were assayed for their inhibitory effect on glucose methanogenesis in slurries prepared from aquifer sediments and ground water. Biogas (CH4and CO2) production was monitored with an automated pressure transducer system. Benzene, 1-methyl naphthalene, and methyltert-butyl ether (MTBE) were found to have no inhibitory influence on biogas production rates at concentrations up to 71·7 mg/L. Similarly, octane, cyclohexane, indan, and methyl ethyl ketone (MEK) were found to have only marginal negative effects on the rate of biogas production in aquifer slurries, at concentrations ranging from 51·7 to 72·1 mg/L. Thus, gasoline components had low apparent toxicities to microorganisms responsible for glucose methanogenesis in aquifier slurries. As the concentrations of the assayed hydrocarbons are about 100 times those typically reported after an aquifer has been contaminated with gasoline, it is unlikely that individual hydrocarbons will substantially impact anaerobic metabolic processes.

  16. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project is to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, is used to remove inhibitory byproducts during fermentation; thus, improving the yield while reducing the need for fresh water. The key objectives of this study are: Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems; Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system; Investigate the effect of gravity on emulsion coalescence within the membrane unit; Access the effect of water re-use on fermentation yields in a model microbial system; Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts; Work for the coming year will focus on the determination of toxicity of various solvents, selection of the emulsifying agents, as well as characterizing the mass transfer of hollow-fiber contactors.

  17. Synthesis and evaluation of new thiadiazole derivatives as potential inhibitors of human carbonic anhydrase isozymes (hCA-I and hCA-II).

    PubMed

    Altintop, Mehlika Dilek; Ozdemir, Ahmet; Kucukoglu, Kaan; Turan-Zitouni, Gulhan; Nadaroglu, Hayrunnisa; Kaplancikli, Zafer Asim

    2015-02-01

    2-[[5-(2,4-Difluoro/dichlorophenylamino)-1,3,4-thiadiazol-2-yl]thio] acetophenone derivatives (3a--s) were designed as human carbonic anhydrase isozymes (hCA-I and hCA-II) inhibitors and synthesized. hCA-I and hCA-II were purified from erythrocyte cells by the affinity chromatography. The inhibitory effects of 18 newly synthesized acetophenones on hydratase activity of these isoenzymes were studied in vitro. The average IC50 values of the new compounds for hydratase activity ranged from 0.033 to 0.14 μM for hCA-I and from 0.030 to 0.11 μM for hCA-II. Among the newly synthesized compounds, 2-[[5-(2,4-dichlorophenylamino)-1,3,4-thiadiazol-2-yl]thio]-4'-bromoacetophenone (3n) can be considered as a promising hCA-II inhibitor owing to its selective and potent inhibitory effect on hCA-II.

  18. Lactoferricin B-derived peptides with inhibitory effects on ECE-dependent vasoconstriction.

    PubMed

    Fernández-Musoles, Ricardo; López-Díez, José Javier; Torregrosa, Germán; Vallés, Salvador; Alborch, Enrique; Manzanares, Paloma; Salom, Juan B

    2010-10-01

    Endothelin-converting enzyme (ECE), a key peptidase in the endothelin (ET) system, cleaves inactive big ET-1 to produce active ET-1, which binds to ET(A) receptors to exert its vasoconstrictor and pressor effects. ECE inhibition could be beneficial in the treatment of hypertension. In this study, a set of eight lactoferricin B (LfcinB)-derived peptides, previously characterized in our laboratory as angiotensin-converting enzyme (ACE) inhibitory peptides, was examined for their inhibitory effects on ECE. In vitro inhibitory effects on ECE activity were assessed using both the synthetic fluorogenic peptide substrate V (FPS V) and the natural substrate big ET-1. To study vasoactive effects, an ex vivo functional assay was developed using isolated rabbit carotid artery segments. With FPS V, only four LfcinB-derived peptides induced inhibition of ECE activity, whereas the eight peptides showed ECE inhibitory effects with big ET-1 as substrate. Regarding the ex vivo assays, six LfcinB-derived peptides showed inhibition of big ET-1-induced, ECE-dependent vasoconstriction. A positive correlation between the inhibitory effects of LfcinB-derived peptides on ECE activity when using big ET-1 and the inhibitory effects on ECE-dependent vasoconstriction was shown. ECE-independent vasoconstriction induced by ET-1 was not affected, thus discarding effects of LfcinB-derived peptides on ET(A) receptors or intracellular signal transduction mechanisms. In conclusion, a combined in vitro and ex vivo method to assess the effects of potentially antihypertensive peptides on the ET system has been developed and applied to show the inhibitory effects on ECE-dependent vasoconstriction of six LfcinB-derived peptides, five of which were dual vasopeptidase (ACE/ECE) inhibitors. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Inhibitory effect of apocarotenoids on the activity of tyrosinase: Multi-spectroscopic and docking studies.

    PubMed

    Anantharaman, Amrita; Hemachandran, Hridya; Priya, Rajendra Rao; Sankari, Mohan; Gopalakrishnan, Mohan; Palanisami, Nallasamy; Siva, Ramamoorthy

    2016-01-01

    In this present study, the inhibitory mechanism of three selected apocarotenoids (bixin, norbixin and crocin) on the diphenolase activity of tyrosinase has been investigated. The preliminary screening results indicated that apocarotenoids inhibited tyrosinase activity in a dose-dependent manner. Kinetic analysis revealed that apocarotenoids reversibly inhibited tyrosinase activity. Analysis of fluorescence spectra showed that apocarotenoids quenched the intrinsic fluorescence intensity of the tyrosinase. Further, molecular docking results implied that apocarotenoids were allosterically bound to tyrosinase through hydrophobic interactions. The results of the in vitro studies suggested that higher concentrations of bixin and norbixin inhibited tyrosinase activity in B16F0 melanoma cells. Our results suggested that apocarotenoids could form the basis for the design of novel tyrosinase inhibitors. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Variable inhibitory effect of herbal supplements of different brands on human P450 CYP1A2

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Virapong

    2012-01-01

    Herbal supplements are not governed by the same regulations as prescription drugs, we hypothesize that the content of their active ingredients may vary largely among different manufacturers. This may produce variable therapeutic outcomes. This study aims to examine this hypothesis on commonly used herbal supplements among cancer patients. CYP1A2 has been implicated in the activation of many carcinogens and alteration in its activity may be a mechanism associated with the protective effect of herbal products. Activity of human CYP1A2 was used to determine the effect of four herbal supplements of different brands, namely, black cohosh (BC), ginseng, grape seed extract (GSE) and green tea extract (GTE). The herbal content was extracted with methanol, and extract aliquots were used to determine their effect on CYP1A2. Human liver microsomes, the CYP1A2 probe (7-ethoxyresorufin) and NADPH in buffer were incubated with and without herbal extract. Metabolite (resorufin) formation was monitored by HPLC. Seven BC products caused a mild inhibition of CYP1A2, ranging from 2.4 % by GNC Plus to 21.9 % by Nature's Resource. Among nine ginseng products tested, the inhibitory effect varied from 4.2 % by Imperial to 44.6 % by Solarays. The effect of nine GSE brands also varied, ranging from 1.7 % (Country Life) to 26.5 % (Veg Life). Of twelve GTE products, the inhibitory effect varied from 2.9 % by Henry's to 46.6 % by GNC Plus. It appears that the inhibition of selected herbal supplements on CYP1A2 activity varies considerably among different brands of the products. This may be due to variations in the herbal products' active ingredients content. PMID:27298605

  1. Purinoceptor modulation of noradrenaline release in rat tail artery: tonic modulation mediated by inhibitory P2Y- and facilitatory A2A-purinoceptors.

    PubMed Central

    Gonçalves, J.; Queiroz, G.

    1996-01-01

    1. The effects of analogues of adenosine and ATP on noradrenaline release elicited by electrical stimulation (5 Hz, 2700 pulses) were studied in superfused preparations of rat tail artery. The effects of purinoceptor antagonists, of adenosine deaminase and of adenosine uptake blockade were also examined. Noradrenaline was measured by h.p.l.c. electrochemical detection. 2. The A1-adenosine receptor agonist, N6-cyclopentyladenosine (CPA; 0.1-100 nM) reduced, whereas the A2A-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3-30 nM) increased evoked noradrenaline overflow. These effects were antagonized by the A1-adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 20 nM) and the A2-adenosine receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), respectively. The P2Y-purinoceptor agonist, 2-methylthio-ATP (1-100 microM) reduced noradrenaline overflow, an effect prevented by the P2-purinoceptor antagonist, cibacron blue 3GA (100 microM) and suramin (100 microM). 3. Adenosine deaminase (2 u ml-1), DMPX (100 nM) and inhibition of adenosine uptake with S-(p-nitrobenzyl)-6-thioinosine (NBTI; 50 nM) decreased evoked noradrenaline overflow. DPCPX alone did not change noradrenaline overflow but prevented the inhibition caused by NBTI. The P2Y-purinoceptor antagonist, cibacron blue 3GA (100 microM) increased evoked noradrenaline overflow as did suramin, a non-selective P2-antagonist. 4. It is concluded that, in rat tail artery, inhibitory (A1 and P2Y) and facilitatory (A2A) purinoceptors are present and modulate noradrenaline release evoked by electrical stimulation. Endogenous purines tonically modulate noradrenaline release through activation of inhibitory P2Y and facilitatory A2A purinoceptors, whereas a tonic activation of inhibitory A1 purinoceptors seems to be prevented by adenosine uptake. PMID:8825357

  2. Synthesis and Evaluation of Novel Benzofuran Derivatives as Selective SIRT2 Inhibitors.

    PubMed

    Zhou, Yumei; Cui, Huaqing; Yu, Xiaoming; Peng, Tao; Wang, Gang; Wen, Xiaoxue; Sun, Yunbo; Liu, Shuchen; Zhang, Shouguo; Hu, Liming; Wang, Lin

    2017-08-14

    A series of benzofuran derivatives were designed and synthesized, and their inhibitory activites were measured against the SIRT1-3. The enzymatic assay showed that all the compounds showed certain anti-SIRT2 activity and selective over SIRT1 and SIRT3 with IC 50 (half maximal inhibitory concentration) values at the micromolar level. The preliminary structure-activity relationships were analyzed and the binding features of compound 7e (IC 50 3.81 µM) was predicted using the CDOCKER program. The results of this research could provide informative guidance for further optimizing benzofuran derivatives as potent SIRT2 inhibitors.

  3. Effects of Condensed and Hydrolyzable Tannins on Rumen Metabolism with Emphasis on the Biohydrogenation of Unsaturated Fatty Acids.

    PubMed

    Costa, Mónica; Alves, Susana P; Cappucci, Alice; Cook, Shaun R; Duarte, Ana; Caldeira, Rui M; McAllister, Tim A; Bessa, Rui J B

    2018-04-04

    The hypothesis that condensed tannins have higher inhibitory effect on ruminal biohydrogenation than hydrolyzable tannins was tested. Condensed tannin extract from mimosa (CT) and hydrolyzable tannin extract from chestnut (HT) or their mixture (MIX) were incorporated (10%) into oil supplemented diets and fed to rumen fistulated sheep. Fatty acid and dimethyl acetal composition of rumen contents and bacterial biomass were determined. Selected rumen bacteria were analyzed by quantitative real time PCR. Lower ( P < 0.05) rumen volatile fatty acids concentrations were observed with CT compared to HT. Moreover, lower concentration ( P < 0.05) of Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, and Butyrivibrio proteoclasticus were observed with CT compared to HT. The extension of biohydrogenation of 18:2n-6 and 18:3n-3 did not differ among treatments but was much more variable with CT and MIX than with HT. The trans-/ cis-18:1 ratio in bacterial biomass was higher ( P < 0.05) with HT than CT. Thus, mimosa condensed tannins had a higher inhibitory effect on ruminal metabolism and biohydrogenation than chestnut hydrolyzable tannins.

  4. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.

    PubMed

    Mhlongo, Sizwe I; den Haan, Riaan; Viljoen-Bloom, Marinda; van Zyl, Willem H

    2015-12-01

    In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes. However, coniferyl aldehyde and syringaldehyde substantially decreased the activity of CBH1 and deactivated BGL1. Acetic and formic acids also showed strong inhibition of BGL1 but not CBH1 and EG2, whereas tannic, acetic and formic acid strongly inhibited a combination of CBH1 and EG2 during Avicel hydrolysis. Diminishing enzymatic hydrolysis is largely a function of inhibitor concentration and the enzyme-inhibitor relationship, rather than contact time during the hydrolysis process (i.e. deactivation). This suggests that decreased rates of hydrolysis during the enzymatic depolymerisation of lignocellulosic hydrolysates may be imparted by other factors related to substrate crystallinity and accessibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A comparison of the effects of the dopamine partial agonists aripiprazole and (-)-3-PPP with quinpirole on stimulated dopamine release in the rat striatum: Studies using fast cyclic voltammetry in vitro.

    PubMed

    O'Connor, John J; Lowry, John P

    2012-07-05

    The effects of aripiprazole, (-)-(3-hydroxyphenyl)-N-n-propylpiperidine ((-)-3-PPP) and quinpirole on single and multiple pulse stimulated dopamine release were investigated using the technique of fast cyclic voltammetry (FCV) in isolated rat striatal slices. Aripiprazole and (-)-3-PPP had no significant effect on single pulse dopamine release at concentrations from 10nM to 10μM indicating low agonist activity. The compounds failed to potentiate 5 pulse stimulated release of dopamine although inhibitory effects were seen at 10μM for aripiprazole. Both compounds were tested against the concentration-response curve for quinpirole's inhibition of stimulated single pulse dopamine release. Aripiprazole and (-)-3-PPP shifted the concentration-response curve for quinpirole to the right. In each case this was greater than a 100-fold shift for the 10μM test compound. Whilst these results indicate that both compounds show little agonist activity on dopamine release and significant antagonism of the inhibitory effect of quinpirole on dopamine release, whether they are functionally selective dopamine D(2) ligands remains controversial. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Arisugacins A and B, novel and selective acetylcholinesterase inhibitors from Penicillium sp. FO-4259. I. Screening, taxonomy, fermentation, isolation and biological activity.

    PubMed

    Kuno, F; Otoguro, K; Shiomi, K; Iwai, Y; Omura, S

    1996-08-01

    An in vitro screening method for selective acetylcholinesterase (AChE) inhibitors was established. Inhibitory activity of AChE and butyrylcholinesterase (BuChE) was measured and the culture broths of microorganisms that showed selective inhibition against AChE were characterized. By using this method, a strain producing the novel and selective inhibitors of AChE, arisugacins A and B, was picked out among over seven thousand microorganisms tested. Arisugacins were obtained as white powders from the culture broth together with three known compounds, territrems B and C and cyclopenin that also showed selective inhibition against AChE. Arisugacins and territrems are members of the meroterpenoid compounds. They showed potent inhibitory activities against AChE with IC50 values in range of 1.0 approximately 25.8 nM. Furthermore, they showed greater than 2,000-fold more potent inhibition against AChE than BuChE.

  7. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology.

    PubMed

    Suchyna, Thomas M

    2017-11-01

    Discovery of Piezo channels and the reporting of their sensitivity to the inhibitor GsMTx4 were important milestones in the study of non-selective cationic mechanosensitive channels (MSCs) in normal physiology and pathogenesis. GsMTx4 had been used for years to investigate the functional role of cationic MSCs, especially in muscle tissue, but with little understanding of its target or inhibitory mechanism. The sensitivity of Piezo channels to bilayer stress and its robust mechanosensitivity when expressed in heterologous systems were keys to determining GsMTx4's mechanism of action. However, questions remain regarding Piezo's role in muscle function due to the non-selective nature of GsMTx4 inhibition toward membrane mechanoenzymes and the implication of MCS channel types by genetic knockdown. Evidence supporting Piezo like activity, at least in the developmental stages of muscle, is presented. While the MSC targets of GsMTx4 in muscle pathology are unclear, its muscle protective effects are clearly demonstrated in two recent in situ studies on normal cardiomyocytes and dystrophic skeletal muscle. The muscle protective function may be due to the combined effect of GsMTx4's inhibitory action on cationic MSCs like Piezo and TRP, and its potentiation of repolarizing K + selective MSCs like K2P and SAKCa. Paradoxically, the potent in vitro action of GsMTx4 on many physiological functions seems to conflict with its lack of in situ side-effects on normal animal physiology. Future investigations into cytoskeletal control of sarcolemma mechanics and the suspected inclusion of MSCs in membrane micro/nano sized domains with distinct mechanical properties will aide our understanding of this dichotomy. Published by Elsevier Ltd.

  8. Self-selected music-induced reduction of perceived exertion during moderate-intensity exercise does not interfere with post-exercise improvements in inhibitory control.

    PubMed

    Tanaka, Daichi; Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Hamaoka, Takafumi; Hashimoto, Takeshi; Isaka, Tadao

    2018-05-26

    Acute aerobic exercise improves inhibitory control (IC). This improvement is often associated with increases in perceived exertion during exercise. However, listening to music during aerobic exercise mitigates an exercise-induced increase in perceived exertion. Thus, it is hypothesized that such effects of music may interfere with exercise-induced improvements in IC. To test this hypothesis, we examined the effect of music on post-exercise IC improvements that were induced by moderate-intensity exercise. Fifteen healthy young men performed cycle ergometer exercise with music or non-music. The exercise was performed using a moderate-intensity of 60% of VO 2 peak for 30 min. The music condition was performed while listening to self-selected music. The non-music condition involved no music. To evaluate IC, the Stroop task was administered before exercise, immediately after exercise, and during the 30-min post-exercise recovery period. The rate of perceived exertion immediately before moderate-intensity exercise completed was significantly lower in music condition than in non-music condition. The IC significantly improved immediately after exercise and during the post-exercise recovery period compared to before exercise in both music and non-music conditions. The post-exercise IC improvements did not significantly differ between the two conditions. These findings indicate that self-selected music-induced mitigation of the increase in perceived exertion during moderate-intensity exercise dose not interfere with exercise-induced improvements in IC. Therefore, we suggest that listening to music may be a beneficial strategy in mitigating the increase in perceived exertion during aerobic exercise without decreasing the positive effects on IC. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Design, synthesis and inhibitory activities of 8-(substituted styrol-formamido)phenyl-xanthine derivatives on monoamine oxidase B.

    PubMed

    Hu, Suwen; Nian, Siyun; Qin, Kuiyou; Xiao, Tong; Li, Lingna; Qi, Xiaolu; Ye, Faqing; Liang, Guang; Hu, Guoxin; He, Jincai; Yu, Yinfei; Song, Bo

    2012-01-01

    The design and synthesis of two series of 8-(substituted styrol-formamido)phenyl-xanthine derivatives are described. Their in vitro monoamine oxidase B (MAO-B) inhibition were tested and the effect of substituents on the N-7, phenyl and the substituted positions are discussed. It was observed that compound 9b displayed significant MAO-B inhibition activity and selectivity, fluorine substitution plays a key role in the selectivity of MAO-B inhibition, and the styrol-formamido group at position-3' may enhance the activity and selectivity of 8-phenyl-xanthine analogues. These results suggest that such compounds may be utilized for the development of new candidate MAO-B inhibitors for treatment of Parkinson's disease.

  10. Age-related changes in selective attention and perceptual load during visual search.

    PubMed

    Madden, David J; Langley, Linda K

    2003-03-01

    Three visual search experiments were conducted to test the hypothesis that age differences in selective attention vary as a function of perceptual load (E. A. Maylor & N. Lavie, 1998). Under resource-limited conditions (Experiments 1 and 2), the distraction from irrelevant display items generally decreased as display size (perceptual load) increased. This perceptual load effect was similar for younger and older adults, contrary to the findings of Maylor and Lavie. Distraction at low perceptual loads appeared to reflect both general and specific inhibitory mechanisms. Under more data-limited conditions (Experiment 3), an age-related decline in selective attention was evident, but the age difference was not attributable to capacity limitations as predicted by the perceptual load theory.

  11. Novel arylalkenylpropargylamines as neuroprotective, potent, and selective monoamine oxidase B inhibitors for the treatment of Parkinson's disease.

    PubMed

    Huleatt, Paul B; Khoo, Mui Ling; Chua, Yi Yuan; Tan, Tiong Wei; Liew, Rou Shen; Balogh, Balázs; Deme, Ruth; Gölöncsér, Flóra; Magyar, Kalman; Sheela, David P; Ho, Han Kiat; Sperlágh, Beáta; Mátyus, Péter; Chai, Christina L L

    2015-02-12

    To develop novel neuroprotective agents, a library of novel arylalkenylpropargylamines was synthesized and tested for inhibitory activities against monoamine oxidases. From this, a number of highly potent and selective monoamine oxidase B inhibitors were identified. Selected compounds were also tested for neuroprotection in in vitro studies with PC-12 cells treated with 6-OHDA and rotenone, respectively. It was observed that some of the compounds tested yielded a marked increase in survival in PC-12 cells treated with the neurotoxins. This indicates that these propargylamines are able to confer protection against the effects of the toxins and may also be considered as novel disease-modifying anti-Parkinsonian agents, which are much needed for the therapy of Parkinson's disease.

  12. Alpha Oscillations Are Causally Linked to Inhibitory Abilities in Ageing.

    PubMed

    Borghini, Giulia; Candini, Michela; Filannino, Cristina; Hussain, Masud; Walsh, Vincent; Romei, Vincenzo; Zokaei, Nahid; Cappelletti, Marinella

    2018-05-02

    Aging adults typically show reduced ability to ignore task-irrelevant information, an essential skill for optimal performance in many cognitive operations, including those requiring working memory (WM) resources. In a first experiment, young and elderly human participants of both genders performed an established WM paradigm probing inhibitory abilities by means of valid, invalid, and neutral retro-cues. Elderly participants showed an overall cost, especially in performing invalid trials, whereas younger participants' general performance was comparatively higher, as expected.Inhibitory abilities have been linked to alpha brain oscillations but it is yet unknown whether in aging these oscillations (also typically impoverished) and inhibitory abilities are causally linked. To probe this possible causal link in aging, we compared in a second experiment parietal alpha-transcranial alternating current stimulation (tACS) with either no stimulation (Sham) or with two control stimulation frequencies (theta- and gamma-tACS) in the elderly group while performing the same WM paradigm. Alpha- (but not theta- or gamma-) tACS selectively and significantly improved performance (now comparable to younger adults' performance in the first experiment), particularly for invalid cues where initially elderly showed the highest costs. Alpha oscillations are therefore causally linked to inhibitory abilities and frequency-tuned alpha-tACS interventions can selectively change these abilities in the elderly. SIGNIFICANCE STATEMENT Ignoring task-irrelevant information, an ability associated to rhythmic brain activity in the alpha frequency band, is fundamental for optimal performance. Indeed, impoverished inhibitory abilities contribute to age-related decline in cognitive functions like working memory (WM), the capacity to briefly hold information in mind. Whether in aging adults alpha oscillations and inhibitory abilities are causally linked is yet unknown. We experimentally manipulated frequency-tuned brain activity using transcranial alternating current stimulation (tACS), combined with a retro-cue paradigm assessing WM and inhibition. We found that alpha-tACS induced a significant improvement in target responses and misbinding errors, two indexes of inhibition. We concluded that in aging alpha oscillations are causally linked to inhibitory abilities, and that despite being impoverished, these abilities are still malleable. Copyright © 2018 the authors 0270-6474/18/384419-12$15.00/0.

  13. Frequency tuning of synaptic inhibition underlying duration-tuned neurons in the mammalian inferior colliculus

    PubMed Central

    Valdizón-Rodríguez, Roberto

    2017-01-01

    Inhibition plays an important role in creating the temporal response properties of duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC). Neurophysiological and computational studies indicate that duration selectivity in the IC is created through the convergence of excitatory and inhibitory synaptic inputs offset in time. We used paired-tone stimulation and extracellular recording to measure the frequency tuning of the inhibition acting on DTNs in the IC of the big brown bat (Eptesicus fuscus). We stimulated DTNs with pairs of tones differing in duration, onset time, and frequency. The onset time of a short, best-duration (BD), probe tone set to the best excitatory frequency (BEF) was varied relative to the onset of a longer-duration, nonexcitatory (NE) tone whose frequency was varied. When the NE tone frequency was near or within the cell’s excitatory bandwidth (eBW), BD tone-evoked spikes were suppressed by an onset-evoked inhibition. The onset of the spike suppression was independent of stimulus frequency, but both the offset and duration of the suppression decreased as the NE tone frequency departed from the BEF. We measured the inhibitory frequency response area, best inhibitory frequency (BIF), and inhibitory bandwidth (iBW) of each cell. We found that the BIF closely matched the BEF, but the iBW was broader and usually overlapped the eBW measured from the same cell. These data suggest that temporal selectivity of midbrain DTNs is created and preserved by having cells receive an onset-evoked, constant-latency, broadband inhibition that largely overlaps the cell’s excitatory receptive field. We conclude by discussing possible neural sources of the inhibition. NEW & NOTEWORTHY Duration-tuned neurons (DTNs) arise from temporally offset excitatory and inhibitory synaptic inputs. We used single-unit recording and paired-tone stimulation to measure the spectral tuning of the inhibitory inputs to DTNs. The onset of inhibition was independent of stimulus frequency; the offset and duration of inhibition systematically decreased as the stimulus departed from the cell’s best excitatory frequency. Best inhibitory frequencies matched best excitatory frequencies; however, inhibitory bandwidths were more broadly tuned than excitatory bandwidths. PMID:28100657

  14. Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging.

    PubMed

    Sottile, Sarah Y; Hackett, Troy A; Cai, Rui; Ling, Lynne; Llano, Daniel A; Caspary, Donald M

    2017-11-22

    Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population. Copyright © 2017 the authors 0270-6474/17/3711378-13$15.00/0.

  15. Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging

    PubMed Central

    Sottile, Sarah Y.; Hackett, Troy A.

    2017-01-01

    Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population. PMID:29061702

  16. Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    PubMed

    Surendran, A; Siddiqui, Y; Ali, N S; Manickam, S

    2018-06-01

    Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (V max and K m ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds. © 2018 The Society for Applied Microbiology.

  17. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve.

    PubMed

    Graham, James B; Muir, David

    2016-01-01

    The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs) are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase). The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections) show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding epineurium. Interestingly, chondroitinase ABC treatment increased greatly the growth-promoting properties of the epineurial tissue whereas chondroitinase C had little effect. Our evidence indicates that chondroitinase C effectively degrades and inactivates inhibitory CSPGs present in the endoneurial Schwann cell basal lamina and does so more specifically than chondroitinase ABC. These findings are discussed in the context of improving nerve repair and regeneration and the growth-promoting properties of processed nerve allografts.

  18. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

    PubMed Central

    2018-01-01

    Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions. PMID:29465399

  19. Structure-activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery.

    PubMed

    Amin, Sk Abdul; Adhikari, Nilanjan; Jha, Tarun

    2017-12-01

    The pan-histone deacetylase (HDAC) inhibitors comprise a fish-like structural orientation where hydrophobic aryl- and zinc-binding groups act as head and tail, respectively of a fish. The linker moiety correlates the body of the fish linking head and tail groups. Despite these pan-HDAC inhibitors, selective HDAC-8 inhibitors are still in demand as a safe remedy. HDAC-8 is involved in invasion and metastasis in cancer. This review deals with the rationale behind HDAC-8 inhibitory activity and selectivity along with detailed structure-activity relationships of diverse hydroxamate-based HDAC-8 inhibitors. HDAC-8 inhibitory potency may be increased by modifying the fish-like pharmacophoric features of such type of pan-HDAC inhibitors. This review may provide a preliminary basis to design and optimize new lead molecules with higher HDAC-8 inhibitory activity. This work may surely enlighten in providing useful information in the field of target-specific anticancer therapy.

  20. Influence of bovine lactoferrin on the growth of selected probiotic bacteria under aerobic conditions.

    PubMed

    Chen, Po-Wen; Ku, Yu-We; Chu, Fang-Yi

    2014-10-01

    Bovine lactoferrin (bLf) is a natural glycoprotein, and it shows broad-spectrum antimicrobial activity. However, reports on the influences of bLf on probiotic bacteria have been mixed. We examined the effects of apo-bLf (between 0.25 and 128 mg/mL) on both aerobic and anaerobic cultures of probiotics. We found that bLf had similar effects on the growth of probiotics under aerobic or anaerobic conditions, and that it actively and significantly (at concentrations of >0.25 mg/mL) retarded the growth rate of Bifidobacterium bifidum (ATCC 29521), B. longum (ATCC 15707), B. lactis (BCRC 17394), B. infantis (ATCC 15697), Lactobacillus reuteri (ATCC 23272), L. rhamnosus (ATCC 53103), and L. coryniformis (ATCC 25602) in a dose-dependent manner. Otherwise, minimal inhibitory concentrations (MICs) were 128 or >128 mg/mL against B. bifidum, B. longum, B. lactis, L. reuteri, and L. rhamnosus (ATCC 53103). With regard to MICs, bLf showed at least four-fold lower inhibitory effect on probiotics than on pathogens. Intriguingly, bLf (>0.25 mg/mL) significantly enhanced the growth of Rhamnosus (ATCC 7469) and L. acidophilus (BCRC 14065) by approximately 40-200 %, during their late periods of growth. Supernatants produced from aerobic but not anaerobic cultures of L. acidophilus reduced the growth of Escherichia coli by about 20 %. Thus, bLf displayed a dose-dependent inhibitory effect on the growth of most probiotic strains under either aerobic or anaerobic conditions. An antibacterial supernatant prepared from the aerobic cultures may have significant practical use.

  1. GABAB receptor modulation of the release of substance P from capsaicin-sensitive neurones in the rat trachea in vitro.

    PubMed Central

    Ray, N. J.; Jones, A. J.; Keen, P.

    1991-01-01

    1. The role of gamma-aminobutyric acid (GABA) as an inhibitory transmitter in the central nervous system is well documented. Recently, GABAA and GABAB receptors have been identified in the peripheral nervous system, notably on primary afferent neurones (PAN). We have utilised a multi-superfusion system to investigate the effect of selective GABA receptor agonists and antagonists on the release of substance P (SP) from the rat trachea in vitro. 2. GABA (1-100 microM) did not affect spontaneous release of SP-like immunoreactivity (LI) but caused dose-related inhibition of calcium-dependent potassium (60 mM)-stimulated SP-LI release. The greatest inhibition of 77.7 +/- 18.8% was observed at 100 microM. 3. The inhibitory effect of GABA was mimicked by the GABAB receptor agonist, (+/-)-baclofen (1-100 microM), but not the GABAA receptor agonist, 3-amino-1-propane-sulphonic acid (3-APS, 1-100 microM). Baclofen (100 microM) had no effect on SP-LI release stimulated by capsaicin (1 microM). 4. The inhibitory effect of baclofen (30 microM) was significantly reduced by prior and concomitant exposure to the GABAB receptor antagonist, phacolofen (100 microM) but not the GABAA receptor antagonist, bicuculline (10 microM). Neither antagonist, alone, affected spontaneous or potassium-stimulated SP-LI release. 5. We conclude that activation of pre-synaptic GABAB receptors on the peripheral termini of PANs in the rat trachea inhibits SP-LI release and suggest that GABAB receptor agonists may be of value in the therapeutic treatment of asthma. PMID:1713105

  2. Feeding deterrent and growth inhibitory activities of PONNEEM, a newly developed phytopesticidal formulation against Helicoverpa armigera (Hubner)

    PubMed Central

    Packiam, Soosaimanickam Maria; Baskar, Kathirvelu; Ignacimuthu, Savarimuthu

    2014-01-01

    Objective To assess the feeding deterrent, growth inhibitory and egg hatchability effects of PONNEEM on Helicoverpa armigera (H. armigera). Methods Five oil formulations were prepared at different ratios to assess the feeding deterrent, growth inhibitory and egg hatchability effects on H. armigera. Results Invariably all the newly formulated phytopesticidal oil formulations showed the feeding deterrent and growth inhibitory activities against H. armigera. The maximum feeding deterrent activity of 88.44% was observed at 15 µL/L concentration of PONNEEM followed by formulation A (74.54%). PONNEEM was found to be effective in growth inhibitory activities and egg hatchability at 10 µL/L concentration. It exhibited statistically significant feeding deterrent activity and growth inhibitory activity compared with all the other treatments. Conclusions PONNEEM was found to be effective phytopesticidal formulation to control the larval stage of H. armigera. This is the first report for the feeding deterrent activity of PONNEEM against H. armigera. This newly formulated phytopesticide was patented in India. PMID:25183105

  3. Proactive Selective Response Suppression Is Implemented via the Basal Ganglia

    PubMed Central

    Majid, D. S. Adnan; Cai, Weidong; Corey-Bloom, Jody

    2013-01-01

    In the welter of everyday life, people can stop particular response tendencies without affecting others. A key requirement for such selective suppression is that subjects know in advance which responses need stopping. We hypothesized that proactively setting up and implementing selective suppression relies on the basal ganglia and, specifically, regions consistent with the inhibitory indirect pathway for which there is scant functional evidence in humans. Consistent with this hypothesis, we show, first, that the degree of proactive motor suppression when preparing to stop selectively (indexed by transcranial magnetic stimulation) corresponds to striatal, pallidal, and frontal activation (indexed by functional MRI). Second, we demonstrate that greater striatal activation at the time of selective stopping correlates with greater behavioral selectivity. Third, we show that people with striatal and pallidal volume reductions (those with premanifest Huntington's disease) have both absent proactive motor suppression and impaired behavioral selectivity when stopping. Thus, stopping goals are used to proactively set up specific basal ganglia channels that may then be triggered to implement selective suppression. By linking this suppression to the striatum and pallidum, these results provide compelling functional evidence in humans of the basal ganglia's inhibitory indirect pathway. PMID:23946385

  4. Acylated Gly-(2-cyano)pyrrolidines as inhibitors of fibroblast activation protein (FAP) and the issue of FAP/prolyl oligopeptidase (PREP)-selectivity.

    PubMed

    Ryabtsova, Oxana; Jansen, Koen; Van Goethem, Sebastiaan; Joossens, Jurgen; Cheng, Jonathan D; Lambeir, Anne-Marie; De Meester, Ingrid; Augustyns, Koen; Van der Veken, Pieter

    2012-05-15

    A series of N-acylated glycyl-(2-cyano)pyrrolidines were synthesized with the aim of generating structure-activity relationship (SAR) data for this class of compounds as inhibitors of fibroblast activation protein (FAP). Specifically, the influence of (1) the choice of the N-acyl group and (2) structural modification of the 2-cyanopyrrolidine residue were investigated. The inhibitors displayed inhibitory potency in the micromolar to nanomolar range and showed good to excellent selectivity with respect to the proline selective dipeptidyl peptidases (DPPs) DPP IV, DPP9 and DPP II. Additionally, selectivity for FAP with respect to prolyl oligopeptidase (PREP) is reported. Not unexpectedly, the latter data suggest significant overlap in the pharmacophoric features that define FAP or PREP-inhibitory activity and underscore the importance of systematically evaluating the FAP/PREP-selectivity index for inhibitors of either of these two enzymes. Finally, this study forwards several compounds that can serve as leads or prototypic structures for future FAP-selective-inhibitor discovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Inhibitory effects of 2'-hydroxychalcones on rat lens aldose reductase and rat platelet aggregation.

    PubMed

    Lim, S S; Jung, S H; Ji, J; Shin, K H; Keum, S R

    2000-11-01

    Inhibitory effects of synthetic 2'-hydroxychalcone derivatives on rat lens aldose reductase (RLAR) and on platelet aggregation were investigated for the prevention or the treatment of chronic diabetic complications. 5'-chloro-4,2'-dihydroxychalcone (8) and 5'-chloro-3,2'-dihydroxychalcone (27) exhibited a potent inhibitory effect on rat platelet aggregation induced by ADP (IC50=0.10 and 0.06 mg/ml, respectively) and collagen (IC50=44 and 16 microg/ml, respectively) but showed relatively weak inhibitory activities on RLAR.

  6. Dissociating the influence of response selection and task anticipation on corticospinal suppression during response preparation.

    PubMed

    Duque, Julie; Labruna, Ludovica; Cazares, Christian; Ivry, Richard B

    2014-12-01

    Motor behavior requires selecting between potential actions. The role of inhibition in response selection has frequently been examined in tasks in which participants are engaged in some advance preparation prior to the presentation of an imperative signal. Under such conditions, inhibition could be related to processes associated with response selection, or to more general inhibitory processes that are engaged in high states of anticipation. In Experiment 1, we manipulated the degree of anticipatory preparation. Participants performed a choice reaction time task that required choosing between a movement of the left or right index finger, and used transcranial magnetic stimulation (TMS) to elicit motor evoked potentials (MEPs) in the left hand agonist. In high anticipation blocks, a non-informative cue (e.g., fixation marker) preceded the imperative; in low anticipation blocks, there was no cue and participants were required to divide their attention between two tasks to further reduce anticipation. MEPs were substantially reduced before the imperative signal in high anticipation blocks. In contrast, in low anticipation blocks, MEPs remained unchanged before the imperative signal but showed a marked suppression right after the onset of the imperative. This effect occurred regardless of whether the imperative had signalled a left or right hand response. After this initial inhibition, left MEPs increased when the left hand was selected and remained suppressed when the right hand was selected. We obtained similar results in Experiment 2 except that the persistent left MEP suppression when the left hand was not selected was attenuated when the alternative response involved a non-homologous effector (right foot). These results indicate that, even in the absence of an anticipatory period, inhibitory mechanisms are engaged during response selection, possibly to prevent the occurrence of premature and inappropriate responses during a competitive selection process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Isolation and characterization of a monoamine oxidase B selective inhibitor from tobacco smoke.

    PubMed

    Khalil, Ashraf A; Davies, Bruce; Castagnoli, Neal

    2006-05-15

    It is well established that tobacco smokers have reduced levels of monoamine oxidase activities both in the brain and peripheral organs. Furthermore, extensive evidence suggests that smokers are less prone to develop Parkinson's disease. These facts, plus the observation that inhibition of monoamine oxidase B protects against the parkinsonian inducing effects of the nigrostriatal neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, have prompted studies to identify monoamine oxidase inhibitors in the tobacco plant and tobacco cigarette smoke. Our previous efforts on cured tobacco leaf extracts have led to the characterization of 2,3,6-trimethyl-1,4-naphthoquinone, a non-selective monoamine oxidase inhibitor, and farnesylacetone, a selective monoamine oxidase B inhibitor. We now have extended these studies to tobacco smoke constituents. Fractionation of the smoke extracts has confirmed and extended the qualitative results of an earlier report [J. Korean Soc. Tob. Sci.1997, 19, 136] demonstrating the inhibitory activity of the terpene trans,trans-farnesol on rat brain MAO-B. In the present study, K(i) values for the inhibition of human, baboon, monkey, dog, rat, and mouse liver MAO-B have been determined. Noteworthy is the absence of inhibitory effects on human placental MAO-A and beef liver MAO-B. A limited structure-activity relationship study of analogs of trans,trans-farnesol is reported. Although the health hazards associated with the use of tobacco products preclude any therapeutic opportunities linked to smoking, these results suggest the possibility of identifying novel structures of compounds that could lead to the development of neuroprotective agents.

  8. Laboratory and Simulated Field Bioassays to Evaluate Larvicidal Activity of Pinus densiflora Hydrodistillate, Its Constituents and Structurally Related Compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in Relation to Their Inhibitory Effects on Acetylcholinesterase Activity

    PubMed Central

    Lee, Dong Chan; Ahn, Young-Joon

    2013-01-01

    The toxicity of Pinus densiflora (red pine) hydrodistillate, its 19 constituents and 28 structurally related compounds against early third-instar larvae of Aedes albopictus (Ae. albopictus), Aedes aegypti (Ae. aegypti) and Culex pipiens palles (Cx. p. pallens) was examined using direct-contact bioassays. The efficacy of active compounds was further evaluated in semi-field bioassays using field-collected larval Cx. p. pallens. Results were compared with those of two synthetic larvicides, temephos and fenthion. In laboratory bioassays, Pinus densiflora hydrodistillate was found to have 24 h LC50 values of 20.33, 21.01 and 22.36 mg/L against larval Ae. albopictus, Ae. aegypti and Cx. p. pallens respectively. Among the identified compounds, thymol, δ-3-carene and (+)-limonene exhibited the highest toxicity against all three mosquito species. These active compounds were found to be nearly equally effective in field trials as well. In vitro bioassays were conducted to examine the acetylcholinesterase (AChE) inhibitory activity of 10 selected compounds. Results showed that there is a noticeable correlation between larvicidal activity and AChE inhibitory activity. In light of global efforts to find alternatives for currently used insecticides against disease vector mosquitoes, Pinus densiflora hydrodistillate and its constituents merit further research as potential mosquito larvicides. PMID:26464387

  9. Differential control of central cardiorespiratory interactions by hypercapnia and the effect of prenatal nicotine.

    PubMed

    Huang, Zheng-Gui; Griffioen, Kathleen J S; Wang, Xin; Dergacheva, Olga; Kamendi, Harriet; Gorini, Christopher; Bouairi, Euguenia; Mendelowitz, David

    2006-01-04

    Hypercapnia evokes a strong cardiorespiratory response including gasping and a pronounced bradycardia; however, the mechanism responsible for these survival responses initiated in the brainstem is unknown. To examine the effects of hypercapnia on the central cardiorespiratory network, we used an in vitro medullary slice that allows simultaneous examination of rhythmic respiratory-related activity and inhibitory synaptic neurotransmission to cardioinhibitory vagal neurons (CVNs). Hypercapnia differentially modulated inhibitory neurotransmission to CVNs; whereas hypercapnia selectively depressed spontaneous glycinergic IPSCs in CVNs without altering respiratory-related increases in glycinergic neurotransmission, it decreased both spontaneous and inspiratory-associated GABAergic IPSCs. Because maternal smoking is the highest risk factor for sudden infant death syndrome (SIDS) and prenatal nicotine exposure is proposed to be the link between maternal smoking and SIDS, we examined the cardiorespiratory responses to hypercapnia in animals exposed to nicotine in the prenatal and perinatal period. In animals exposed to prenatal nicotine, hypercapnia evoked an exaggerated depression of GABAergic IPSCs in CVNs with no significant change in glycinergic neurotransmission. Hypercapnia altered inhibitory neurotransmission to CVNs at both presynaptic and postsynaptic sites. Although the results obtained in this study in vitro cannot be extrapolated with certainty to in vivo responses, the results of this study provide a likely neurochemical mechanism for hypercapnia-evoked bradycardia and the dysregulation of this response with exposure to prenatal nicotine, creating a higher risk for SIDS.

  10. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site.

    PubMed

    Hadda, Taibi Ben; Talhi, Oualid; Silva, Artur S M; Senol, Fatma Sezer; Orhan, Ilkay Erdogan; Rauf, Abdur; Mabkhot, Yahia N; Bachari, Khaldoun; Warad, Ismail; Farghaly, Thoraya A; Althagafi, Ismail I; Mubarak, Mohammad S

    2018-01-01

    Cholinesterase family consists of two sister enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which hydrolyze acetylcholine. Since deficit of acetylcholine has been evidenced in patients of Alzheimer's disease (AD), cholinesterase inhibitors are currently the most prescribed drugs for the treatment of AD. our aim in this article was to investigate the inhibitory potential of five known compounds (2-6) with spiro skeleton against AChE and BChE using ELISA microplate assays. In addition to their ChE inhibitory effect, their physico-chemical properties were also calculated. Moreover, the present work aims at investigating the charge/geometrical effect of a hypothetical pharmacophore or bidentate site in a bioactive group, on the inhibition efficiency of spiro compounds 2-6 by using Petra/Osiris/ molinspiration (POM) and X-ray analyses. In the present study, five compounds (2-6) with spiro skeleton have been synthesized and tested in vitro for their inhibitory potential against AChE and BChE using ELISA microtiter plate assays at 25 µg/mL. Results revealed that three of the spiro compounds tested exert more than 50% inhibition against one of cholinesterases. Compound 5 displayed 68.73 ± 4.73% of inhibition toward AChE, whereas compound 6 showed 56.17 ± 0.83% of inhibition toward BChE; these two previously synthesized compounds have been the most active hits. Our data obtained from screening of compounds 2-6 against the two cholinesterases indicate that three of these show good potential to selectively inhibit AChE or BChE. Spiro compounds 2, 5, and 6 exhibited the most potent activity of the series against AChE or BChE with inhibition values in the range 55-70%. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus.

    PubMed

    Suntsova, Natalia; Guzman-Marin, Ruben; Kumar, Sunil; Alam, Md Noor; Szymusiak, Ronald; McGinty, Dennis

    2007-02-14

    The perifornical-lateral hypothalamic area (PF/LH) contains neuronal groups playing an important role in control of waking and sleep. Among the brain regions that regulate behavioral states, one of the strongest sources of projections to the PF/LH is the median preoptic nucleus (MnPN) containing a sleep-active neuronal population. To evaluate the role of MnPN afferents in the control of PF/LH neuronal activity, we studied the responses of PF/LH cells to electrical stimulation or local chemical manipulation of the MnPN in freely moving rats. Single-pulse electrical stimulation evoked responses in 79% of recorded PF/LH neurons. No cells were activated antidromically. Direct and indirect transsynaptic effects depended on sleep-wake discharge pattern of PF/LH cells. The majority of arousal-related neurons, that is, cells discharging at maximal rates during active waking (AW) or during AW and rapid eye movement (REM) sleep, exhibited exclusively or initially inhibitory responses to stimulation. Sleep-related neurons, the cells with elevated discharge during non-REM and REM sleep or selectively active in REM sleep, exhibited exclusively or initially excitatory responses. Activation of the MnPN via microdialytic application of L-glutamate or bicuculline resulted in reduced discharge of arousal-related and in excitation of sleep-related PF/LH neurons. Deactivation of the MnPN with muscimol caused opposite effects. The results indicate that the MnPN contains subset(s) of neurons, which exert inhibitory control over arousal-related and excitatory control over sleep-related PF/LH neurons. We hypothesize that MnPN sleep-active neuronal group has both inhibitory and excitatory outputs that participate in the inhibitory control of arousal-promoting PF/LH mechanisms.

  12. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor.

    PubMed

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-01-01

    Duckweed (family Lemnaceae ) has recently been recognized as an ideal biomass feedstock for biofuel production due to its rapid growth and high starch content, which inspired interest in improving their productivity. Since microbes that co-exist with plants are known to have significant effects on their growth according to the previous studies for terrestrial plants, this study has attempted to understand the plant-microbial interactions of a duckweed, Lemna minor , focusing on the growth promotion/inhibition effects so as to assess the possibility of accelerated duckweed production by modifying co-existing bacterial community. Co-cultivation of aseptic L. minor and bacterial communities collected from various aquatic environments resulted in changes in duckweed growth ranging from -24 to +14% compared to aseptic control. A number of bacterial strains were isolated from both growth-promoting and growth-inhibitory communities, and examined for their co-existing effects on duckweed growth. Irrespective of the source, each strain showed promotive, inhibitory, or neutral effects when individually co-cultured with L. minor . To further analyze the interactions among these bacterial strains in a community, binary combinations of promotive and inhibitory strains were co-cultured with aseptic L. minor , resulting in that combinations of promotive-promotive or inhibitory-inhibitory strains generally showed effects similar to those of individual strains. However, combinations of promotive-inhibitory strains tended to show inhibitory effects while only Aquitalea magnusonii H3 exerted its plant growth-promoting effect in all combinations tested. Significant change in biomass production was observed when duckweed was co-cultivated with environmental bacterial communities. Promotive, neutral, and inhibitory bacteria in the community would synergistically determine the effects. The results indicate the possibility of improving duckweed biomass production via regulation of co-existing bacterial communities.

  13. Contribution of NK(2) tachykinin receptors to propulsion in the rabbit distal colon.

    PubMed

    Onori, L; Aggio, A; Taddei, G; Tonini, M

    2000-01-01

    The role of the tachykinin neurokinin (NK)(2) receptors on rabbit distal colon propulsion was investigated by using two selective NK(2)-receptor antagonists, MEN-10627 and SR-48968. Experiments on colonic circular muscle strips showed that contractile responses to [beta-Ala(8)]NKA-(4-10) (1 nM-1 microM), a selective NK(2)-receptor agonist, were competitively antagonized by MEN-10627 (1-100 nM), whereas SR-48968 (0.1-10 nM) caused an insurmountable antagonism, thus confirming the difference in the mode of action of the two compounds. Colonic propulsion was elicited by distending a mobile rubber balloon with 0.3 ml (submaximal stimulus) or 1.0 ml (maximal stimulus) of water. The velocity of anal displacement of the balloon (mm/s) was considered the main propulsion parameter. At low concentrations (1.0-100 nM and 0.1-10 nM, respectively), MEN-10627 and SR-48968 facilitated the velocity of propulsion, whereas at high concentrations (100 nM and 1 microM, respectively) they decelerated propulsion. The excitatory and inhibitory effects of both antagonists were observed only with submaximal stimulus. We focused on the hypothesis that the facilitatory effect on propulsion may result from blockade of neuronal NK(2) receptors and the inhibitory effect from suppression of the excitatory transmission mediated by NK(2) receptors on smooth muscle cells. In the presence of N(G)-nitro-L-arginine (300 microM), a nitric oxide synthase inhibitor, MEN-10627, at a concentration (10 nM) that was found to accelerate propulsion in control experiments inhibited the velocity of propulsion. In the presence of threshold (1-10 nM) or full (1 microM) concentration of atropine, which inhibited to a great extent the velocity of propulsion, the inhibitory effect of MEN-10627 (1 microM) was markedly increased. In conclusion, in the rabbit distal colon NK(2) receptors may decelerate propulsion by activating a nitric oxide-dependent neuronal mechanism and may accelerate it by a postjunctional synergistic interaction with cholinergic muscarinic receptors.

  14. Memory Effects of Benzodiazepines: Memory Stages and Types Versus Binding-Site Subtypes

    PubMed Central

    Savić, Miroslav M.; Obradović, Dragan I.; Ugrešić, Nenad D.; Bokonjić, Dubravko R.

    2005-01-01

    Benzodiazepines are well established as inhibitory modulators of memory processing. This effect is especially prominent when applied before the acquisition phase of a memory task. This minireview concentrates on the putative subtype selectivity of the acquisition-impairing action of benzodiazepines. Namely, recent genetic studies and standard behavioral tests employing subtype-selective ligands pointed to the predominant involvement of two subtypes of benzodiazepine binding sites in memory modulation. Explicit memory learning seems to be affected through the GABAA receptors containing the α1 and α1 subunits, whereas the effects on procedural memory can be mainly mediated by the α1 subunit. The pervading involvement of the α1 subunit in memory modulation is not at all unexpected because this subunit is the major subtype, present in 60% of all GABAA receptors. On the other hand, the role of α5 subunits, mainly expressed in the hippocampus, in modulating distinct forms of memory gives promise of selective pharmacological coping with certain memory deficit states. PMID:16444900

  15. Potent inhibitory effects of D-tagatose on the acid production and water-insoluble glucan synthesis of Streptococcus mutans GS5 in the presence of sucrose.

    PubMed

    Sawada, Daijo; Ogawa, Takaaki; Miyake, Minoru; Hasui, Yoshinori; Yamaguchi, Fuminori; Izumori, Ken; Tokuda, Masaaki

    2015-01-01

    We examined and compared the inhibitory effects of D-tagatose on the growth, acid production, and water-insoluble glucan synthesis of GS5, a bacterial strain of Streptococcus mutans, with those of xylitol, D-psicose, L-psicose and L-tagatose. GS5 was cultured for 12h in a medium containing 10% (w/v) of xylitol, D-psicose, L-psicose, D-tagatose or L-tagatose, and the inhibitory effect of GS5 growth was assessed. Each sugar showed different inhibitory effects on GS5. Both D-tagatose and xylitol significantly inhibited the acid production and water-insoluble glucan synthesis of GS5 in the presence of 1% (w/v) sucrose. However, the inhibitory effect of acid production by D-tagatose was significantly stronger than that of xylitol in presence of sucrose.

  16. Molecular docking and inhibition kinetics of α-glucosidase activity by labdane diterpenes isolated from tora seeds (Alpinia nigra B.L. Burtt.).

    PubMed

    Ghosh, Sudipta; Rangan, Latha

    2015-02-01

    Current approach against type 2 diabetes involves α-glucosidase inhibitors like acarbose associated with many side effects. Therefore, as an alternative to the existing drug, many natural products mainly from plant sources have been investigated which inhibit α-glucosidase. Here, we have selected medicinally important Alpinia nigra to explore its α-glucosidase inhibitory activity. Organic extracts of seeds and two purified natural diterpenes I: (E)-labda-8(17), 12-diene-15, 16-dial and II: (E)-8β, 17-epoxylabd-12-ene-15, 16-dial from A. nigra were investigated towards inhibition of α-glucosidase activity. Dose-dependent inhibition pattern were observed for seed extracts and both the compounds. Further, inhibition kinetics studies of the diterpenes indicated a non-competitive type of inhibition against α-glucosidase. Docking studies were carried out which revealed that both the diterpenes interacted within the active site of N-terminal and C-terminal domain of human maltase-glucoamylase enzyme, respectively. This is the first report of α-glucosidase inhibitory activity of these isolated diterpenes and their higher inhibitory potential than any terpenoids studied till date against α-glucosidase.

  17. SIRPα controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91(phox).

    PubMed

    van Beek, Ellen M; Zarate, Julian Alvarez; van Bruggen, Robin; Schornagel, Karin; Tool, Anton T J; Matozaki, Takashi; Kraal, Georg; Roos, Dirk; van den Berg, Timo K

    2012-10-25

    The phagocyte NADPH oxidase mediates oxidative microbial killing in granulocytes and macrophages. However, because the reactive oxygen species produced by the NADPH oxidase can also be toxic to the host, it is essential to control its activity. Little is known about the endogenous mechanism(s) that limits NADPH oxidase activity. Here, we demonstrate that the myeloid-inhibitory receptor SIRPα acts as a negative regulator of the phagocyte NADPH oxidase. Phagocytes isolated from SIRPα mutant mice were shown to have an enhanced respiratory burst. Furthermore, overexpression of SIRPα in human myeloid cells prevented respiratory burst activation. The inhibitory effect required interactions between SIRPα and its natural ligand, CD47, as well as signaling through the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Suppression of the respiratory burst by SIRPα was caused by a selective repression of gp91(phox) expression, the catalytic component of the phagocyte NADPH oxidase complex. Thus, SIRPα can limit gp91(phox) expression during myeloid development, thereby controlling the magnitude of the respiratory burst in phagocytes. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Effects of Working Memory Demand on Neural Mechanisms of Motor Response Selection and Control

    PubMed Central

    Barber, Anita D.; Caffo, Brian S.; Pekar, James J.; Mostofsky, Stewart H.

    2013-01-01

    Inhibitory control commonly recruits a number of frontal regions: pre-supplementary motor area (pre-SMA), frontal eye fields (FEFs), and right-lateralized posterior inferior frontal gyrus (IFG), dorsal anterior insula (DAI), dorsolateral prefrontal cortex (DLPFC), and inferior frontal junction (IFJ). These regions may directly implement inhibitory motor control or may be more generally involved in executive control functions. Two go/no-go tasks were used to distinguish regions specifically recruited for inhibition from those that additionally show increased activity with working memory demand. The pre-SMA and IFG were recruited for inhibition in both tasks and did not have greater activation for working memory demand on no-go trials, consistent with a role in inhibitory control. Activation in pre-SMA also responded to response selection demand and was increased with working memory on go trials specifically. The bilateral FEF and right DAI were commonly active for no-go trials. The FEF was also recruited to a greater degree with working memory demand on go trials and may bias top–down information when stimulus–response mappings change. The DAI, additionally responded to increased working memory demand on both go and no-go trials and may be involved in accessing sustained task information, alerting, or autonomic changes when cognitive demands increase. DLPFC activation was consistent with a role in working memory retrieval on both go and no-go trials. The inferior frontal junction, on the other hand, had greater activation with working memory specifically for no-go trials and may detect salient stimuli when the task requires frequent updating of working memory representations. PMID:23530923

  19. Evolution of antibiotic resistance in biofilm and planktonic P. aeruginosa populations exposed to sub-inhibitory levels of ciprofloxacin.

    PubMed

    Ahmed, Marwa N; Porse, Andreas; Sommer, Morten Otto Alexander; Høiby, Niels; Ciofu, Oana

    2018-05-14

    The opportunistic Gram-negative pathogen Pseudomonas aeruginosa , known for its intrinsic and acquired antibiotic resistance, has a notorious ability to form biofilms, which often facilitate chronic infections. The evolutionary paths to antibiotic resistance have mainly been investigated in planktonic cultures and are less studied in biofilms. We experimentally evolved P. aeruginosa PAO1 colony-biofilms and stationary-phase planktonic cultures for seven passages in the presence of sub-inhibitory levels (0.1 mg/L) of ciprofloxacin (CIP) and performed a genotypic (whole bacterial population sequencing) and phenotypic assessment of the populations. We observed a higher proportion of CIP resistance in the CIP-evolved biofilm populations compared to planktonic populations exposed to the same drug concentrations. However, the minimal inhibitory concentrations (MICs) of ciprofloxacin were lower in CIP-resistant isolates selected from biofilm population compared to the MICs of CIP-resistant isolates from the planktonic cultures. We found common evolutionary trajectories between the different lineages, with mutations in known CIP resistance determinants as well as growth condition-dependent adaptations. A general trend towards a reduction in type IV-pili dependent motility (twitching) in CIP-evolved populations, and towards loss of virulence associated traits in the populations evolved in the absence of antibiotic, was observed. In conclusion, our data indicate that biofilms facilitate the development of low-level mutational resistance, probably due to the lower effective drug exposure compared to planktonic cultures. These results provide a framework for the selection process of resistant variants and the evolutionary mechanisms in the two different growth conditions. Copyright © 2018 American Society for Microbiology.

  20. Control of working memory: effects of attention training on target recognition and distractor salience in an auditory selection task.

    PubMed

    Melara, Robert D; Tong, Yunxia; Rao, Aparna

    2012-01-09

    Behavioral and electrophysiological measures of target and distractor processing were examined in an auditory selective attention task before and after three weeks of distractor suppression training. Behaviorally, training improved target recognition and led to less conservative and more rapid responding. Training also effectively shortened the temporal distance between distractors and targets needed to achieve a fixed level of target sensitivity. The effects of training on event-related potentials were restricted to the distracting stimulus: earlier N1 latency, enhanced P2 amplitude, and weakened P3 amplitude. Nevertheless, as distractor P2 amplitude increased, so too did target P3 amplitude, connecting experience-dependent changes in distractor processing with greater distinctiveness of targets in working memory. We consider the effects of attention training on the processing priorities, representational noise, and inhibitory processes operating in working memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake.

    PubMed

    Liu, Shuyuan; Ai, Zeyi; Qu, Fengfeng; Chen, Yuqiong; Ni, Dejiang

    2017-11-01

    The objective of the present study was to evaluate the effect of steeping temperature on the biological activities of green tea, including the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, α-glucosidase and α-amylase inhibitory activities, and glucose uptake inhibitory activity in Caco-2 cells. Results showed that, with increasing extraction temperature, the polyphenol content increased, which contributed to enhance antioxidant activity and inhibitory effects on α-glucosidase and α-amylase. Green tea steeped at 100°C showed the highest DPPH radical-scavenging activity and inhibitory effects on α-glucosidase and α-amylase activities with EC 50 or IC 50 values of 6.15μg/mL, 0.09mg/mL, and 6.31mg/mL, respectively. However, the inhibitory potential on glucose uptake did not show an upward trend with increasing extraction temperature. Green tea steeped at 60°C had significantly stronger glucose uptake inhibitory activity (p<0.05). The integrated data suggested that steeping temperature should be considered when evaluating the biological activities of green tea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of oxotremorine and physostigmine on the inhibitory avoidance impairment produced by amitriptyline in male and female mice.

    PubMed

    Monleón, Santiago; Urquiza, Adoración; Vinader-Caerols, Concepción; Parra, Andrés

    2009-12-28

    We have previously observed that amitriptyline and other antidepressants produce impairing effects on inhibitory avoidance (also called passive avoidance) in mice of both sexes. In the present study we investigated the involvement of the cholinergic system in the inhibitory avoidance impairment produced by acute amitriptyline in male and female CD1 mice. For this purpose, the effects on said task of acute i.p. administration of several doses of amitriptyline, either alone or in combination with the cholinergic agonists oxotremorine and physostigmine, were evaluated. Pre-training administration of 5, 7.5, 10 or 15 mg/kg of amitriptyline produced a significant impairment of inhibitory avoidance in both males and females. When oxotremorine (0.05 or 0.1 mg/kg) was co-administered with amitriptyline, the antidepressant's impairing effect was partially counteracted, although inhibitory avoidance learning was not significant. Physostigmine (0.15, 0.3 or 0.6 mg/kg) counteracted the impairment produced by amitriptyline, as mice treated with both drugs exhibited inhibitory avoidance learning. These results show that the inhibitory avoidance impairment produced by amitriptyline in male and female mice is mediated, at least partially, by the cholinergic system.

  3. Dihydroartemisinin as a Putative STAT3 Inhibitor, Suppresses the Growth of Head and Neck Squamous Cell Carcinoma by Targeting Jak2/STAT3 Signaling

    PubMed Central

    Jia, Lifeng; Song, Qi; Zhou, Chenyang; Li, Xiaoming; Pi, Lihong; Ma, Xiuru; Li, Hui; Lu, Xiuying; Shen, Yupeng

    2016-01-01

    Developing drugs that can effectively block STAT3 activation may serve as one of the most promising strategy for cancer treatment. Currently, there is no putative STAT3 inhibitor that can be safely and effectively used in clinic. In the present study, we investigated the potential of dihydroartemisinin (DHA) as a putative STAT3 inhibitor and its antitumor activities in head and neck squamous cell carcinoma (HNSCC). The inhibitory effects of DHA on STAT3 activation along with its underlying mechanisms were studied in HNSCC cells. The antitumor effects of DHA against HNSCC cells were explored both in vitro and in vivo. An investigation on cooperative effects of DHA with cisplatin in killing HNSCC cells was also implemented. DHA exhibited remarkable and specific inhibitory effects on STAT3 activation via selectively blocking Jak2/STAT3 signaling. Besides, DHA significantly inhibited HNSCC growth both in vitro and in vivo possibly through induction of apoptosis and attenuation of cell migration. DHA also synergized with cisplatin in tumor inhibition in HNSCC cells. Our findings demonstrate that DHA is a putative STAT3 inhibitor that may represent a new and effective drug for cancer treatment and therapeutic sensitization in HNSCC patients. PMID:26784960

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalev, Moran; Rozenberg, Haim; Smolkin, Boris

    Leishmaniasis comprises an array of diseases caused by pathogenic species of Leishmania, resulting in a spectrum of mild to life-threatening pathologies. Currently available therapies for leishmaniasis include a limited selection of drugs. This coupled with the rather fast emergence of parasite resistance, presents a dire public health concern. Paromomycin (PAR), a broad-spectrum aminoglycoside antibiotic, has been shown in recent years to be highly efficient in treating visceral leishmaniasis (VL)—the life-threatening form of the disease. While much focus has been given to exploration of PAR activities in bacteria, its mechanism of action in Leishmania has received relatively little scrutiny and hasmore » yet to be fully deciphered. In the present study we present an X-ray structure of PAR bound to rRNA model mimicking its leishmanial binding target, the ribosomal A-site. We evaluate PAR inhibitory actions on leishmanial growth and ribosome function, as well as effects on auditory sensory cells, by comparing several structurally related natural and synthetic aminoglycoside derivatives. The results provide insights into the structural elements important for aminoglycoside inhibitory activities and selectivity for leishmanial cytosolic ribosomes, highlighting a novel synthetic derivative, compound 3, as a prospective therapeutic candidate for the treatment of VL.« less

  5. Inhibitory Effect of 2,3,5,6-Tetrafluoro-4-[4-(aryl)-1H-1,2,3-triazol-1-yl]benzenesulfonamide Derivatives on HIV Reverse Transcriptase Associated RNase H Activities

    PubMed Central

    Pala, Nicolino; Esposito, Francesca; Rogolino, Dominga; Carcelli, Mauro; Sanna, Vanna; Palomba, Michele; Naesens, Lieve; Corona, Angela; Grandi, Nicole; Tramontano, Enzo; Sechi, Mario

    2016-01-01

    The HIV-1 ribonuclease H (RNase H) function of the reverse transcriptase (RT) enzyme catalyzes the selective hydrolysis of the RNA strand of the RNA:DNA heteroduplex replication intermediate, and represents a suitable target for drug development. A particularly attractive approach is constituted by the interference with the RNase H metal-dependent catalytic activity, which resides in the active site located at the C-terminus p66 subunit of RT. Herein, we report results of an in-house screening campaign that allowed us to identify 4-[4-(aryl)-1H-1,2,3-triazol-1-yl]benzenesulfonamides, prepared by the “click chemistry” approach, as novel potential HIV-1 RNase H inhibitors. Three compounds (9d, 10c, and 10d) demonstrated a selective inhibitory activity against the HIV-1 RNase H enzyme at micromolar concentrations. Drug-likeness, predicted by the calculation of a panel of physicochemical and ADME properties, putative binding modes for the active compounds, assessed by computational molecular docking, as well as a mechanistic hypothesis for this novel chemotype are reported. PMID:27556447

  6. Extracorporeal adsorption of anti-factor VIII allo-antibodies on randomly functionalized polystyrene resins.

    PubMed

    Huguet, Hélène-Céline; Lasne, Dominique; Rothschild, Chantal; Siali, Rosa; Jozefonvicz, Jacqueline

    2004-02-01

    The occurrence of anti-factor VIII (FVIII) allo-antibodies is a severe complication of the treatment of haemophilia A patients, leading to the inhibition of transfused FVIII activity. The effective elimination of these inhibitory antibodies plays a decisive role in the management of affected patients. To achieve this, immunoadsorption devices employing synthetic adsorbers, which selectively eliminate inhibitors, are of interest in the treatment strategy of haemophilia A patients with inhibitors. Adsorbers consisting of polystyrene-based beads substituted with sulphonate and L-tyrosyl methylester groups, which mimic part of epitope of FVIII molecule recognized by inhibitors, exhibit selective binding capacities towards anti-FVIII antibodies. The adsorption of FVIII inhibitors was investigated by simulating an extracorporeal circulation of haemophilic plasma over these functionalized resins. These innovative adsorbers are able to remove around 25% of anti-FVIII antibodies in 15 minutes depending on the plasma tested. Furthermore, they do not modify the amount of essential plasmatic proteins or residual immunoglobulins G. Experiments which were carried out using different plasmas with various inhibitor titres demonstrate a good reproducibility regarding the adsorption capacity of the synthetic resin. The characteristics of adsorption are similar on either native or regenerated resins. Both the purely synthetic nature of the resin and its easy processability demonstrate the real advantages over currently available protocols. This synthetic adsorber is a major technological advance in selective removal of FVIII inhibitory antibodies.

  7. Segregating Top-Down Selective Attention from Response Inhibition in a Spatial Cueing Go/NoGo Task: An ERP and Source Localization Study.

    PubMed

    Hong, Xiangfei; Wang, Yao; Sun, Junfeng; Li, Chunbo; Tong, Shanbao

    2017-08-29

    Successfully inhibiting a prepotent response tendency requires the attentional detection of signals which cue response cancellation. Although neuroimaging studies have identified important roles of stimulus-driven processing in the attentional detection, the effects of top-down control were scarcely investigated. In this study, scalp EEG was recorded from thirty-two participants during a modified Go/NoGo task, in which a spatial-cueing approach was implemented to manipulate top-down selective attention. We observed classical event-related potential components, including N2 and P3, in the attended condition of response inhibition. While in the ignored condition of response inhibition, a smaller P3 was observed and N2 was absent. The correlation between P3 and CNV during the foreperiod suggested an inhibitory role of P3 in both conditions. Furthermore, source analysis suggested that P3 generation was mainly localized to the midcingulate cortex, and the attended condition showed increased activation relative to the ignored condition in several regions, including inferior frontal gyrus, middle frontal gyrus, precentral gyrus, insula and uncus, suggesting that these regions were involved in top-down attentional control rather than inhibitory processing. Taken together, by segregating electrophysiological correlates of top-down selective attention from those of response inhibition, our findings provide new insights in understanding the neural mechanisms of response inhibition.

  8. Evaluation of uridine 5'-eicosylphosphate as a stimulant of cyclic AMP-dependent cellular function.

    PubMed

    Yutani, Masahiro; Ogita, Akira; Fujita, Ken-Ichi; Usuki, Yoshinosuke; Tanaka, Toshio

    2011-03-01

    Sporulation of the yeast Saccharomyces cerevisiae is negatively regulated by cyclic AMP (cAMP). This microbial cell differentiation process was applied for the screening of a substance that can elevate the intracellular cAMP level. Among nucleoside 5'-alkylphosphates, uridine 5'-eicosylphosphate (UMPC20) selectively and predominantly inhibited ascospore formation of the yeast cells. We suppose the inhibitory effect of UMPC20 could indeed reflect the elevation of the cellular cAMP level.

  9. Inhibition of Rac GTPases in the Therapy of Chronic Myelogenous Leukemia

    DTIC Science & Technology

    2008-04-01

    procedure is only available to a minority of CML patients due to a lack of compatible donors and age [8-10]. Imatinib is an ABL kinase inhibitor that...provides an effective treatment in CML and has rejuvenated the field of rationalized drug design. The selective inhibitory activity of imatinib...Institute on Aging , NIH, Nov 16, 2007. 2. “Targeting Rac in chronic myelogenous leukemia.” Markey Cancer Center, University of Kentucky, Lexington, Aug

  10. An investigation into the inhibitory function of serotonin in diffuse noxious inhibitory controls in the neuropathic rat.

    PubMed

    Bannister, K; Lockwood, S; Goncalves, L; Patel, R; Dickenson, A H

    2017-04-01

    Following neuropathy α2-adrenoceptor-mediated diffuse noxious inhibitory controls (DNIC), whereby a noxious conditioning stimulus inhibits the activity of spinal wide dynamic range (WDR) neurons, are abolished, and spinal 5-HT7 receptor densities are increased. Here, we manipulate spinal 5-HT content in spinal nerve ligated (SNL) animals and investigate which 5-HT receptor mediated actions predominate. Using in vivo electrophysiology we recorded WDR neuronal responses to von frey filaments applied to the hind paw before, and concurrent to, a noxious ear pinch (the conditioning stimulus) in isoflurane-anaesthetised rats. The expression of DNIC was quantified as a reduction in WDR neuronal firing in the presence of conditioning stimulus and was investigated in SNL rats following spinal application of (1) selective serotonin reuptake inhibitors (SSRIs) citalopram or fluoxetine, or dual application of (2) SSRI plus 5-HT7 receptor antagonist SB269970, or (3) SSRI plus α2 adrenoceptor antagonist atipamezole. DNIC were revealed in SNL animals following spinal application of SSRI, but this effect was abolished upon joint application of SSRI plus SB269970 or atipamezole. We propose that in SNL animals the inhibitory actions (quantified as the presence of DNIC) of excess spinal 5-HT (presumed present following application of SSRI) were mediated via 5-HT7 receptors. The anti-nociception depends upon an underlying tonic noradrenergic inhibitory tone via the α2-adrenoceptor. Following neuropathy enhanced spinal serotonin availability switches the predominant spinal 5-HT receptor-mediated actions but also alters noradrenergic signalling. We highlight the therapeutic complexity of SSRIs and monoamine modulators for the treatment of neuropathic pain. © 2016 European Pain Federation - EFIC®.

  11. Structural relationship of curcumin derivatives binding to the BRCT domain of human DNA polymerase lambda.

    PubMed

    Takeuchi, Toshifumi; Ishidoh, Tomomi; Iijima, Hiroshi; Kuriyama, Isoko; Shimazaki, Noriko; Koiwai, Osamu; Kuramochi, Kouji; Kobayashi, Susumu; Sugawara, Fumio; Sakaguchi, Kengo; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2006-03-01

    We previously reported that phenolic compounds, petasiphenol and curcumin (diferuloylmethane), were a selective inhibitor of DNA polymerase lambda (pol lambda) in vitro. The purpose of this study was to investigate the molecular structural relationship of curcumin and 13 chemically synthesized derivatives of curcumin. The inhibitory effect on pol lambda (full-length, i.e. intact pol lambda including the BRCA1 C- terminal [BRCT] domain) by some derivatives was stronger than that by curcumin, and monoacetylcurcumin (compound 13) was the strongest pol lambda inhibitor of all the compounds tested, achieving 50% inhibition at a concentration of 3.9 microm. The compound did not influence the activities of replicative pols such as alpha, delta, and epsilon. It had no effect on pol beta activity either, although the three-dimensional structure of pol beta is thought to be highly similar to that of pol lambda. Compound 13 did not inhibit the activity of the C-terminal catalytic domain of pol lambda including the pol beta-like core, in which the BRCT motif was deleted from its N-terminal region. MALDI-TOF MS analysis demonstrated that compound 13 bound selectively to the N-terminal domain of pol lambda, but did not bind to the C-terminal region. Based on these results, the pol lambda-inhibitory mechanism of compound 13 is discussed.

  12. In vitro inhibitory effects of plant-derived by-products against Cryptosporidium parvum

    PubMed Central

    Teichmann, Klaus; Kuliberda, Maxime; Schatzmayr, Gerd; Pacher, Thomas; Zitterl-Eglseer, Karin; Joachim, Anja; Hadacek, Franz

    2016-01-01

    Disposal of organic plant wastes and by-products from the food or pharmaceutical industries usually involves high costs. In the present study, 42 samples derived from such by-products were screened in vitro against Cryptosporidium parvum, a protozoan parasite that may contaminate drinking water and cause diarrhoea. The novel bioassay was previously established in the microtitre plate format. Human ileocaecal adenocarcinoma (HCT-8) cell cultures were seeded with C. parvum oocysts and parasite development was monitored by an indirect fluorescent antibody technique (IFAT) and microscopic assessment for clusters of secondary infection (CSI). Minimum inhibitory concentrations (MICs) and potential detrimental effects on the host cells were determined. An ethanolic extract from olive (Olea europaea) pomace, after oil pressing and phenol recovery, reproducibly inhibited C. parvum development (MIC = 250–500 μg mL−1, IC50 = 361 (279–438) μg mL−1, IC90 = 467 (398–615) μg mL−1). Accordingly, tyrosol, hydroxytyrosol, trans-coniferyl alcohol and oleuropein were selected as reference test compounds, but their contributions to the observed activity of the olive pomace extract were insignificant. The established test system proved to be a fast and efficient assay for identifying anti-cryptosporidial activities in biological waste material and comparison with selected reference compounds. PMID:27627637

  13. Inhibitory effect of flavonoids from citrus plants on Epstein-Barr virus activation and two-stage carcinogenesis of skin tumors.

    PubMed

    Iwase, Y; Takemura, Y; Ju-ichi, M; Ito, C; Furukawa, H; Kawaii, S; Yano, M; Mou, X Y; Takayasu, J; Tokuda, H; Nishino, H

    2000-06-01

    To search for possible anti-tumor promoters, thirteen flavones (1-13) obtained from the peel of Citrus plants were examined for their inhibitory effects on the Epstein-Barr virus early antigen (EBV-EA) activation by a short-term in vitro assay. Of these flavones, 3,5,6,7,8,3',4'-heptamethoxyflavone (HPT) (13) exhibited significant inhibitory effects on the EBV-EA activation induced by the tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA). Further, compound 13 exhibited remarkable inhibitory effects on mouse skin tumor promotion in an in vivo two-stage carcinogenesis test.

  14. Electrophysiological effects of semantic context in picture and word naming.

    PubMed

    Janssen, Niels; Carreiras, Manuel; Barber, Horacio A

    2011-08-01

    Recent language production studies have started to use electrophysiological measures to investigate the time course of word selection processes. An important contribution with respect to this issue comes from studies that have relied on an effect of semantic context in the semantic blocking task. Here we used this task to further establish the empirical pattern associated with the effect of semantic context, and whether the effect arises during output processing. Electrophysiological and reaction time measures were co-registered while participants overtly named picture and word stimuli in the semantic blocking task. The results revealed inhibitory reaction time effects of semantic context for both words and pictures, and a corresponding electrophysiological effect that could not be interpreted in terms of output processes. These data suggest that the electrophysiological effect of semantic context in the semantic blocking task does not reflect output processes, and therefore undermine an interpretation of this effect in terms of word selection. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    PubMed

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Brands and Inhibition: A Go/No-Go Task Reveals the Power of Brand Influence

    PubMed Central

    Peatfield, Nicholas; Caulfield, Joanne; Parkinson, John; Intriligator, James

    2015-01-01

    Whether selecting a candy in a shop or picking a digital camera online, there are usually many options from which consumers may choose. With such abundance, consumers must use a variety of cognitive, emotional, and heuristic means to filter out and inhibit some of their responses. Here we use brand logos within a Go/No-Go task to probe inhibitory control during the presentation of familiar and unfamiliar logos. The results showed no differences in response times or in commission errors (CE) between familiar and unfamiliar logos. However, participants demonstrated a generally more cautious attitude of responding to the familiar brands: they were significantly slower and less accurate at responding to these brands in the Go trials. These findings suggest that inhibitory control can be exercised quite effectively for familiar brands, but that when such inhibition fails, the potent appetitive nature of brands is revealed. PMID:26544606

  17. Lactic acid bacteria from chicken carcasses with inhibitory activity against Salmonella spp. and Listeria monocytogenes.

    PubMed

    Sakaridis, I; Soultos, N; Dovas, C I; Papavergou, E; Ambrosiadis, I; Koidis, P

    2012-02-01

    This study was conducted to isolate psychrotrophic lactic acid bacteria (LAB) from chicken carcasses with inhibitory activity against strains of Salmonella spp. and Listeria monocytogenes. A total of 100 broiler samples were examined for the presence of LAB. Ninety-two LAB isolates that showed antimicrobial effects against Salmonella spp. and L. monocytogenes were further analysed to examine their LAB (Gram-positive, catalase negative, oxidase negative) and psychrotrophic characteristics (ability to grow at 7 °C). Fifty isolates were further selected and identified initially using standard biochemical tests in miniature (Micro-kits API CH 50) and then by sequencing of the 16s-23s rRNA gene boundary region (Intergenic Spacer Region). By molecular identification, these isolates were classified into 5 different LAB species: Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus johnsonii, Pediococcus acidilactici, and Lactobacillus paralimentarius. None of the isolates produced tyramine or histamine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Further evidence from functional studies for somatostatin receptor heterogeneity in guinea-pig isolated ileum, vas deferens and right atrium.

    PubMed Central

    Feniuk, W.; Dimech, J.; Jarvie, E. M.; Humphrey, P. P.

    1995-01-01

    1. Somatostatin (SRIF) causes a concentration-dependent inhibition of neurotransmission in guinea-pig ileum and vas deferens as well as negative inotropy in guinea-pig isolated right atrium. The SRIF receptors mediating these effects have now been further characterized by use of the peptides BIM-23027, BIM-23056 and L-362855, reported as selective for the recombinant SRIF receptor types, sst2, sst3 and sst5, respectively. 2. BIM-23027 was a highly potent agonist at causing an inhibition of neurotransmission in the guinea-pig ileum (EC50 value 1.9 nM), being about 3 times more potent than SRIF (EC50 value 6.8 nM). In contrast, in both guinea-pig vas deferens and right atrial preparations, BIM-23027 was a relatively weak agonist being at least 30-100 times weaker than SRIF. In guinea-pig atria, BIM-23027 (3 microM) antagonized the negative inotropic action of SRIF28 (apparent pKB = 5.9 +/- 0.1) but had no effect on the negative inotropic action of cyclohexyladenosine. 3. The inhibitory effect of BIM-23027 in the guinea-pig ileum was readily desensitized. Prior exposure to BIM-23027 (0.3 microM) markedly attenuated the inhibitory effect of SRIF but had no effect on the inhibitory action of clonidine suggesting that BIM-23027 and SRIF act via a common receptor mechanism. 4. L-362855 caused a concentration-dependent inhibition of neurotransmission in both the guinea-pig ileum and vas deferens as well as causing negative inotropy in the guinea-pig atrium but was at least 30-100 times weaker than SRIF. In guinea-pig isolated atria, L-362855 (3 microM) did not antagonize the negative inotropic action of SRIF28.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582529

  19. Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis.

    PubMed

    Wang, Ming; Chen, Dan-Qian; Chen, Lin; Cao, Gang; Zhao, Hui; Liu, Dan; Vaziri, Nosratola D; Guo, Yan; Zhao, Ying-Yong

    2018-07-01

    Tubulo-interstitial fibrosis is the final pathway in the progression of chronic kidney disease (CKD) to kidney failure. The renin-angiotensin system (RAS) plays a major role in CKD progression. Hence, we determined the efficacy of novel RAS inhibitors isolated from Poria cocos against renal fibrosis. Effects of three novel tetracyclic triterpenoid compounds, poricoic acid ZC (PZC), poricoic acid ZD (PZD) and poricoic acid ZE (PZE), were investigated on TGFβ1- and angiotensin II (AngII)-treated HK-2 cells and unilateral ureteral obstruction (UUO) in mice. Immunofluorescence staining, quantitative real-time PCR, siRNA, co-immunoprecipitation and Western blot analyses were used to evaluate expression of key molecules in RAS, Wnt/β-catenin and TGFβ/Smad pathways. Addition of the above compounds to culture media and their administration to UUO mice: (i) significantly attenuated epithelial-to-mesenchymal transition and extracellular matrix production in TGFβ1- and AngII-treated HK-2 cells and UUO mice by inhibiting Wnt/β-catenin pathway activation and Smad3 phosphorylation; (ii) selectively inhibited Smad3 phosphorylation by blocking the interaction of TGFBR1 with Smad3; and (iii) specifically inhibited Smad3 activation. PZC and PZD showed a strong inhibitory effect on all RAS components, and PZE showed a strong inhibitory effect on renin. Furthermore, the secolanostane tetracyclic triterpenoids, PZC and PZD, showed a stronger inhibitory effect than the lanostane tetracyclic triterpenoid PZE. Therefore, compounds with secolanostance skeleton showed stronger bioactivity than those with lanostance skeleton. The secolanostane tetracyclic triterpenoids effectively blocked RAS by simultaneously targeting multiple RAS components and lanostane tetracyclic triterpenoids inhibited renin and protected against tubulo-interstitial fibrosis. © 2018 The British Pharmacological Society.

  20. Biological effects of simple changes in functionality on rhodium metalloinsertors

    PubMed Central

    Weidmann, Alyson G.; Komor, Alexis C.; Barton, Jacqueline K.

    2013-01-01

    DNA mismatch repair (MMR) is crucial to ensuring the fidelity of the genome. The inability to correct single base mismatches leads to elevated mutation rates and carcinogenesis. Using metalloinsertors–bulky metal complexes that bind with high specificity to mismatched sites in the DNA duplex–our laboratory has adopted a new chemotherapeutic strategy through the selective targeting of MMR-deficient cells, that is, those that have a propensity for cancerous transformation. Rhodium metalloinsertors display inhibitory effects selectively in cells that are deficient in the MMR machinery, consistent with this strategy. However, a highly sensitive structure–function relationship is emerging with the development of new complexes that highlights the importance of subcellular localization. We have found that small structural modifications, for example a hydroxyl versus a methyl functional group, can yield profound differences in biological function. Despite similar binding affinities and selectivities for DNA mismatches, only one metalloinsertor shows selective inhibition of cellular proliferation in MMR-deficient versus -proficient cells. Studies of whole-cell, nuclear and mitochondrial uptake reveal that this selectivity depends upon targeting DNA mismatches in the cell nucleus. PMID:23776288

  1. Got Rhythm? Better Inhibitory Control Is Linked with More Consistent Drumming and Enhanced Neural Tracking of the Musical Beat in Adult Percussionists and Nonpercussionists.

    PubMed

    Slater, Jessica; Ashley, Richard; Tierney, Adam; Kraus, Nina

    2018-01-01

    Musical rhythm engages motor and reward circuitry that is important for cognitive control, and there is evidence for enhanced inhibitory control in musicians. We recently revealed an inhibitory control advantage in percussionists compared with vocalists, highlighting the potential importance of rhythmic expertise in mediating this advantage. Previous research has shown that better inhibitory control is associated with less variable performance in simple sensorimotor synchronization tasks; however, this relationship has not been examined through the lens of rhythmic expertise. We hypothesize that the development of rhythm skills strengthens inhibitory control in two ways: by fine-tuning motor networks through the precise coordination of movements "in time" and by activating reward-based mechanisms, such as predictive processing and conflict monitoring, which are involved in tracking temporal structure in music. Here, we assess adult percussionists and nonpercussionists on inhibitory control, selective attention, basic drumming skills (self-paced, paced, and continuation drumming), and cortical evoked responses to an auditory stimulus presented on versus off the beat of music. Consistent with our hypotheses, we find that better inhibitory control is correlated with more consistent drumming and enhanced neural tracking of the musical beat. Drumming variability and the neural index of beat alignment each contribute unique predictive power to a regression model, explaining 57% of variance in inhibitory control. These outcomes present the first evidence that enhanced inhibitory control in musicians may be mediated by rhythmic expertise and provide a foundation for future research investigating the potential for rhythm-based training to strengthen cognitive function.

  2. Selective Attention and Sensory Modality in Aging: Curses and Blessings.

    PubMed

    Van Gerven, Pascal W M; Guerreiro, Maria J S

    2016-01-01

    The notion that selective attention is compromised in older adults as a result of impaired inhibitory control is well established. Yet it is primarily based on empirical findings covering the visual modality. Auditory and especially, cross-modal selective attention are remarkably underexposed in the literature on aging. In the past 5 years, we have attempted to fill these voids by investigating performance of younger and older adults on equivalent tasks covering all four combinations of visual or auditory target, and visual or auditory distractor information. In doing so, we have demonstrated that older adults are especially impaired in auditory selective attention with visual distraction. This pattern of results was not mirrored by the results from our psychophysiological studies, however, in which both enhancement of target processing and suppression of distractor processing appeared to be age equivalent. We currently conclude that: (1) age-related differences of selective attention are modality dependent; (2) age-related differences of selective attention are limited; and (3) it remains an open question whether modality-specific age differences in selective attention are due to impaired distractor inhibition, impaired target enhancement, or both. These conclusions put the longstanding inhibitory deficit hypothesis of aging in a new perspective.

  3. Selectivity of coronaridine congeners at nicotinic acetylcholine receptors and inhibitory activity on mouse medial habenula.

    PubMed

    Arias, Hugo R; Jin, Xiaotao; Feuerbach, Dominik; Drenan, Ryan M

    2017-11-01

    The inhibitory activity of coronaridine congeners on human (h) α4β2 and α7 nicotinic acetylcholine receptors (AChRs) is determined by Ca 2+ influx assays, whereas their effects on neurons in the ventral inferior (VI) aspect of the mouse medial habenula (MHb) are determined by patch-clamp recordings. The Ca 2+ influx results clearly establish that coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to hα4β2 and hα7 subtypes, and with the following potency sequence, for hα4β2: (±)-18-methoxycoronaridine [(±)-18-MC]>(+)-catharanthine>(±)-18-methylaminocoronaridine [(±)-18-MAC] ∼ (±)-18-hydroxycoronaridine [(±)-18-HC]; and for hα7: (+)-catharanthine>(±)-18-MC>(±)-18-HC>(±)-18-MAC. Interestingly, the inhibitory potency of (+)-catharanthine (27±4μM) and (±)-18-MC (28±6μM) on MHb (VI) neurons was lower than that observed on hα3β4 AChRs, suggesting that these compounds inhibit a variety of endogenous α3β4* AChRs. In addition, the interaction of bupropion with (-)-ibogaine sites on hα3β4 AChRs is tested by [ 3 H]ibogaine competition binding experiments. The results indicate that bupropion binds to ibogaine sites at desensitized hα3β4 AChRs with 2-fold higher affinity than at resting receptors, suggesting that these compounds share the same binding sites. In conclusion, coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to other AChRs, by interacting with the bupropion (luminal) site. Coronaridine congeners also inhibit α3β4*AChRs expressed in MHb (VI) neurons, supporting the notion that these receptors are important endogenous targets for their anti-addictive activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Selectivity of coronaridine congeners at nicotinic acetylcholine receptors and inhibitory activity on mouse medial habenula

    PubMed Central

    Arias, Hugo R.; Jin, Xiaotao; Feuerbach, Dominik; Drenan, Ryan M.

    2018-01-01

    The inhibitory activity of coronaridine congeners on human (h) α4β2 and α7 nicotinic acetylcholine receptors (AChRs) is determined by Ca2+ influx assays, whereas their effects on neurons in the ventral inferior (VI) aspect of the mouse medial habenula (MHb) are determined by patch-clamp recordings. The Ca2+ influx results clearly establish that coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to hα4β2 and hα7 subtypes, and with the following potency sequence, for hα4β2: (±)-18-methoxycoronaridine [(±)-18-MC] > (+)-catharanthine > (±)-18-methylaminocoronaridine [(±)-18-MAC] ∼ (±)-18-hydroxycoronaridine [(±)-18-HC]; and for hα7: (+)-catharanthine > (±)-18-MC > (±)-18-HC > (±)-18-MAC. Interestingly, the inhibitory potency of (+)-catharanthine (27 ± 4 μM) and (±)-18-MC (28 ± 6 μM) on MHb (VI) neurons was lower than that observed on hα3β4 AChRs, suggesting that these compounds inhibit a variety of endogenous α3β4* AChRs. In addition, the interaction of bupropion with (−)-ibogaine sites on hα3β4 AChRs is tested by [3H]ibogaine competition binding experiments. The results indicate that bupropion binds to ibogaine sites at desensitized hα3β4 AChRs with 2-fold higher affinity than at resting receptors, suggesting that these compounds share the same binding sites. In conclusion, coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to other AChRs, by interacting with the bupropion (luminal) site. Coronaridine congeners also inhibit α3β4*AChRs expressed in MHb (VI) neurons, supporting the notion that these receptors are important endogenous targets for their anti-addictive activities. PMID:29042244

  5. Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes.

    PubMed

    Todorov, Svetoslav D; de Paula, Otávio A L; Camargo, Anderson C; Lopes, Danilo A; Nero, Luís A

    The Listeria monocytogenes strains selected in the present study exhibited similar behavior in biofilm formation, independently of the tested conditions (bacteriocin from L. plantarum ST8SH, vancomycin, propolis (a natural antimicrobial product) and EDTA (chelating agent)), individual or in associations. The individual application of vancomycin had better inhibitory activity than that of propolis and EDTA; however, the association of the previously mentioned antimicrobial agents with bacteriocins resulted in better performance. However, when we compared the effects of vancomycin, propolis and EDTA, we could clearly observe that the combined application of bacteriocin and vancomycin was more effective than the combination of bacteriocin and propolis, and bacteriocin and EDTA. Considering the current need to reduce the use of antimicrobials and chemical substances in food processing, propolis can represent an alternative to improve the inhibitory effect of bacteriocins against L. monocytogenes biofilm formation, based on the obtained results. In general, high concentrations of bacteriocin produced by L. plantarum ST8SH were more effective in biofilm inhibition, and similar results were observed for vancomycin and propolis; however, all tested EDTA concentrations had similar effect on biofilm formation. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Selective Memories: Infants' Encoding Is Enhanced in Selection via Suppression

    ERIC Educational Resources Information Center

    Markant, Julie; Amso, Dima

    2013-01-01

    The present study examined the hypothesis that inhibitory visual selection mechanisms play a vital role in memory by limiting distractor interference during item encoding. In Experiment 1a we used a modified spatial cueing task in which 9-month-old infants encoded multiple category exemplars in the contexts of an attention orienting mechanism…

  7. Research on Volatile Organic Compounds From Bacillus subtilis CF-3: Biocontrol Effects on Fruit Fungal Pathogens and Dynamic Changes During Fermentation

    PubMed Central

    Gao, Haiyan; Li, Peizhong; Xu, Xinxing; Zeng, Qing; Guan, Wenqiang

    2018-01-01

    The dynamic changes of the levels of volatile organic compounds (VOCs) produced by Bacillus subtilis CF-3 and their biocontrol effects on common fungal pathogens were researched in this study. The results showed that the VOCs in 24-h fermentation liquid (24hFL) of B. subtilis CF-3 inhibited mycelial growth of Botrytis cinerea, Colletotrichum gloeosporioides, Penicillium expansum, Monilinia fructicola, and Alternaria alternata, with a mean inhibition rate of 59.97%. The inhibitory effect on M. fructicola and C. gloeosporioides was the highest; they were therefore selected as target fungal pathogens for further experiments. Based on headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), 74 potential VOCs were identified during the fermentation: 15 alcohols, 18 ketones, 4 pyrazines, 4 esters, 10 acids, 5 phenols, 3 hydrocarbons, 3 amines, 2 aldehydes, 5 ethers, and 5 other components. At different fermentation times, the type and content of VOCs were different. Most of the potential VOCs (62 VOCs) were identified in the 48hFL. The inhibition rates of all VOCs reached their peaks (73.46% on M. fructicola and 63.63% on C. gloeosporioides) in the 24hFL. Among the identified VOCs, 2,4-di-tert-butylphenol, 1-octanol, and benzothiazole showed significant positive correlations with the rates of M. fructicola and C. gloeosporioides inhibition. Benzoic acid and benzaldehyde showed a significant positive correlation with the rates of M. fructicola inhibition, and anisole and 3-methylbutanal showed a significant positive correlation with the rates of C. gloeosporioides inhibition. In vitro, 2,4-di-tert-butylphenol showed a strong inhibitory effect on both M. fructicola and C. gloeosporioides. In vivo, benzothiazole showed the strongest inhibitory effect on the mycelial extensions of both M. fructicola and C. gloeosporioides, which also led to an increased rate of healthy fruit. The results of the present study clarified that 2,4-di-tert-butylthiophenol and benzothiazole are key inhibitory VOCs produced by B. subtilis CF-3. PMID:29593695

  8. Natural chalcones as dual inhibitors of HDACs and NF-κB

    PubMed Central

    ORLIKOVA, B.; SCHNEKENBURGER, M.; ZLOH, M.; GOLAIS, F.; DIEDERICH, M.; TASDEMIR, D.

    2012-01-01

    Histone deacetylase enzymes (HDACs) are emerging as a promising biological target for cancer and inflammation. Using a fluorescence assay, we tested the in vitro HDAC inhibitory activity of twenty-one natural chalcones, a widespread group of natural products with well-known anti-inflammatory and antitumor effects. Since HDACs regulate the expression of the transcription factor NF-κB, we also evaluated the inhibitory potential of the compounds on NF-κB activation. Only four chalcones, isoliquiritigenin (no. 10), butein (no. 12), homobutein (no. 15) and the glycoside marein (no. 21) showed HDAC inhibitory activity with IC50 values of 60–190 μM, whereas a number of compounds inhibited TNFα-induced NF-κB activation with IC50 values in the range of 8–41 μM. Interestingly, three chalcones (nos. 10, 12 and 15) inhibited both TNFα-induced NF-κB activity and total HDAC activity of classes I, II and IV. Molecular modeling and docking studies were performed to shed light into dual activity and to draw structure-activity relationships among chalcones (nos. 1–21). To the best of our knowledge this is the first study that provides evidence for HDACs as potential drug targets for natural chalcones. The dual inhibitory potential of the selected chalcones on NF-κB and HDACs was investigated for the first time. This study demonstrates that chalcones can serve as lead compounds in the development of dual inhibitors against both targets in the treatment of inflammation and cancer. PMID:22710558

  9. Evidence for selective inhibitory impairment in individuals with autism spectrum disorder.

    PubMed

    Christ, Shawn E; Kester, Lindsay E; Bodner, Kimberly E; Miles, Judith H

    2011-11-01

    The social and communicative challenges faced by individuals with autism spectrum disorder (ASD) are often compounded by additional difficulties with executive function. It remains unclear, however, to what the extent individuals with ASD experienced impairment in inhibitory control. The objective of the present study was to assess the three main subtypes of executive inhibitory control within a single ASD sample thus providing new insight into the unique ASD-related pattern of sparing and impairment observed across different aspects of inhibitory control. A sample of 28 children with ASD (mean age = 13.1 years) and a comparison group of 49 neurologically uncompromised children (mean age = 13.3 years) participated. A prepotent response inhibition task, a flanker visual filtering task, and a proactive interference memory task were used to evaluate prepotent response inhibition, resistance to distracter interference, and resistance to proactive interference, respectively. After accounting for individual differences in noninhibition abilities (e.g., processing speed) and overall level of functioning, there was no evidence of group-related differences in inhibitory performance on the prepotent response inhibition test or proactive interference test. ASD-related impairments in inhibitory control were evident, however, on the flanker visual filtering task. Taken together, the present findings indicate that ASD is associated with impairments in some, but not all, aspects of inhibitory control. Individuals with ASD appear to have difficulty ignoring distracting visual information, but prepotent response inhibition and resistance to proactive interference are relatively intact. The current findings also provide support for a multitype model of inhibitory control.

  10. 4′-O-substitutions determine selectivity of aminoglycoside antibiotics

    PubMed Central

    Perez-Fernandez, Déborah; Shcherbakov, Dmitri; Matt, Tanja; Leong, Ng Chyan; Kudyba, Iwona; Duscha, Stefan; Boukari, Heithem; Patak, Rashmi; Dubbaka, Srinivas Reddy; Lang, Kathrin; Meyer, Martin; Akbergenov, Rashid; Freihofer, Pietro; Vaddi, Swapna; Thommes, Pia; Ramakrishnan, V.; Vasella, Andrea; Böttger, Erik C.

    2014-01-01

    Clinical use of 2-deoxystreptamine aminoglycoside antibiotics, which target the bacterial ribosome, is compromised by adverse effects related to limited drug selectivity. Here we present a series of 4′,6′-O-acetal and 4′-O-ether modifications on glucopyranosyl ring I of aminoglycosides. Chemical modifications were guided by measuring interactions between the compounds synthesized and ribosomes harbouring single point mutations in the drug-binding site, resulting in aminoglycosides that interact poorly with the drug-binding pocket of eukaryotic mitochondrial or cytosolic ribosomes. Yet, these compounds largely retain their inhibitory activity for bacterial ribosomes and show antibacterial activity. Our data indicate that 4′-O-substituted aminoglycosides possess increased selectivity towards bacterial ribosomes and little activity for any of the human drug-binding pockets. PMID:24473108

  11. Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases.

    PubMed

    Point, Vanessa; Malla, Raj K; Diomande, Sadia; Martin, Benjamin P; Delorme, Vincent; Carriere, Frederic; Canaan, Stephane; Rath, Nigam P; Spilling, Christopher D; Cavalier, Jean-François

    2012-11-26

    A new series of customizable diastereomeric cis- and trans-monocyclic enol-phosphonate analogs to Cyclophostin and Cyclipostins were synthesized. Their potencies and mechanisms of inhibition toward six representative lipolytic enzymes belonging to distinct lipase families were examined. With mammalian gastric and pancreatic lipases no inhibition occurred with any of the compounds tested. Conversely, Fusarium solani Cutinase and lipases from Mycobacterium tuberculosis (Rv0183 and LipY) were all fully inactivated. The best inhibitors displayed a cis conformation (H and OMe) and exhibited higher inhibitory activities than the lipase inhibitor Orlistat toward the same enzymes. Our results have revealed that chemical group at the γ-carbon of the phosphonate ring strongly impacts the inhibitory efficiency, leading to a significant improvement in selectivity toward a target lipase over another. The powerful and selective inhibition of microbial (fungal and mycobacterial) lipases suggests that these seven-membered monocyclic enol-phosphonates should provide useful leads for the development of novel and highly selective antimicrobial agents.

  12. Synthesis and kinetic evaluation of Cyclophostin and Cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases

    PubMed Central

    Point, Vanessa; Malla, Raj K.; Diomande, Sadia; Martin, Benjamin P.; Delorme, Vincent; Carriere, Frederic; Canaan, Stephane; Rath, Nigam P.; Spilling, Christopher D.; Cavalier, Jean-François

    2012-01-01

    New series of customizable diastereomeric cis- and trans-monocyclic enol-phosphonate analogs to Cyclophostin and Cyclipostins were synthesized. Their potencies and mechanisms of inhibition toward six representative lipolytic enzymes belonging to distinct lipase families were examined. With mammalian gastric and pancreatic lipases no inhibition occurred with any of the compounds tested. Conversely, Fusarium solani Cutinase and lipases from Mycobacterium tuberculosis (Rv0183 and LipY) were all fully inactivated. Best inhibitors displayed a cis conformation (H and OMe) and exhibited higher inhibitory activities than the lipase inhibitor Orlistat towards same enzymes. Our results have revealed that chemical group at the γ-carbon of the phosphonate ring strongly impacts the inhibitory efficiency, leading to a significant improvement in selectivity toward a target lipase over another. The powerful and selective inhibition of microbial (fungal and mycobacterial) lipases suggests that these 7-membered monocyclic enol-phosphonates should provide useful leads for the development of novel and highly selective antimicrobial agents. PMID:23095026

  13. Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    PubMed Central

    Cambra, Inés; Hernández, David; Diaz, Isabel; Martinez, Manuel

    2012-01-01

    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed. PMID:22615948

  14. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets.

    PubMed

    Nixon, Sophie L; Cockell, Charles S

    2015-03-01

    The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases.

  15. Oxyresveratrol, a Stilbene Compound from Morus alba L. Twig Extract Active Against Trichophyton rubrum.

    PubMed

    Lu, Hai-Peng; Jia, Ya-Nan; Peng, Ya-Lin; Yu, Yan; Sun, Si-Long; Yue, Meng-Ting; Pan, Min-Hui; Zeng, Ling-Shu; Xu, Li

    2017-12-01

    Morus alba L. (mulberry) twig is known to have an inhibitory effect on pathogens in traditional Chinese medicine. In the present study, the dermophytic fungus, Trichophyton rubrum, was used to evaluate the inhibitory effect of total M. alba twig extract and extracts obtained using solvents with different polarities by the method of 96-well MTT colorimetry. The main active substance was isolated and identified by tracking its activity. In addition, the inhibitory effects of active extracts and a single active substance were investigated in combination with miconazole nitrate. Our data indicated that ethyl acetate extracts of mulberry twig (TEE) exhibited a desired inhibitory activity on T. rubrum with the minimum inhibitory concentration (MIC) of 1.000 mg/mL. With activity tracking, the main substance showing antimicrobial activity was oxyresveratrol (OXY), which was isolated from TEE. Its MIC for inhibiting the growth of T. rubrum was 0.500 mg/mL. The combined use of miconazole nitrate and OXY showed a synergistic inhibitory effect, as shown by a significant decrease in the MIC of both components. Based on the OXY content in TEE, the contribution rate of OXY to the inhibitory effect of TEE on T. rubrum was 80.52%, so it was determined to be the main antimicrobial substance in M. alba twig. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. [Effect of tea extracts, catechin and caffeine against type-I allergic reaction].

    PubMed

    Shiozaki, T; Sugiyama, K; Nakazato, K; Takeo, T

    1997-07-01

    The antiallergic effects of green tea, oolong tea, and black tea extracts by hot water were examined. These extracts inhibited the passive cutaneous anaphylaxis (PCA) reaction of rat after oral administration. Three tea catechins, (--)-epigallocatechin (EGC), (--)-epicatechin gallate (ECg), and (--)-epigallocatechin gallate (EGCg) isolated from green tea showed stronger inhibitory effects than that of a green tea extract on the PCA reaction. The inhibitory effects of EGC and EGCg on the PCA reaction were greater than that of ECg. Caffeine also showed a inhibitory effect on the PCA reaction. These results indicate that tea could provide a significant protection against the type-I allergic reaction. These findings also suggest that tea catechins and caffeine play an important role in having an inhibitory effect on the type-I allergic reaction.

  17. Anti-inflammatory effects of the selective phosphodiesterase 3 inhibitor, cilostazol, and antioxidants, enzymatically-modified isoquercitrin and α-lipoic acid, reduce dextran sulphate sodium-induced colorectal mucosal injury in mice.

    PubMed

    Kangawa, Yumi; Yoshida, Toshinori; Abe, Hajime; Seto, Yoshiki; Miyashita, Taishi; Nakamura, Michi; Kihara, Tohru; Hayashi, Shim-Mo; Shibutani, Makoto

    2017-04-04

    Developing effective treatments and preventing inflammatory bowel disease (IBD) are urgent challenges in improving patients' health. It has been suggested that platelet activation and reactive oxidative species generation are involved in the pathogenesis of IBD. We examined the inhibitory effects of a selective phosphodiesterase-3 inhibitor, cilostazol (CZ), and two antioxidants, enzymatically modified isoquercitrin (EMIQ) and α-lipoic acid (ALA), against dextran sulphate sodium (DSS)-induced colitis. BALB/c mice were treated with 0.3% CZ, 1.5% EMIQ, and 0.2% ALA in their feed. Colitis was induced by administering 5% DSS in drinking water for 8days. The inhibitory effects of these substances were evaluated by measuring relevant clinical symptoms (faecal blood, diarrhoea, and body weight loss), colon length, plasma cytokine and chemokine levels, whole genome gene expression, and histopathology. Diarrhoea was suppressed by each treatment, while CZ prevented shortening of the colon length. All treatment groups exhibited decreased plasma levels of interleukin (IL)-6 and tumour necrosis factor (TNF)-α compared with the DSS group. Microarray analysis showed that cell adhesion, cytoskeleton regulation, cell proliferation, and apoptosis, which might be related to inflammatory cell infiltration and mucosal healing, were affected in all the groups. DSS-induced mucosal injuries such as mucosal loss, submucosal oedema, and inflammatory cell infiltration in the distal colon were prevented by CZ or antioxidant treatment. These results suggest that anti-inflammatory effects of these agents reduced DSS-induced mucosal injuries in mice and, therefore, may provide therapeutic benefits in IBD. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Competition and cooperation among similar representations: toward a unified account of facilitative and inhibitory effects of lexical neighbors.

    PubMed

    Chen, Qi; Mirman, Daniel

    2012-04-01

    One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations (neighbors) have been shown to exhibit both facilitative and inhibitory effects on word recognition and production. Researchers generally ascribe these effects to interactive activation and competition, but there is no unified explanation for why the effects are facilitative in some cases and inhibitory in others. We present a series of simulations of a simple domain-general interactive activation and competition model that is broadly consistent with more specialized domain-specific models of lexical processing. The results showed that interactive activation and competition can indeed account for the complex pattern of reversals. Critically, the simulations revealed a core computational principle that determines whether neighbor effects are facilitative or inhibitory: strongly active neighbors exert a net inhibitory effect, and weakly active neighbors exert a net facilitative effect.

  19. Reciprocal Inhibitory Connections Within a Neural Network for Rotational Optic-Flow Processing

    PubMed Central

    Haag, Juergen; Borst, Alexander

    2007-01-01

    Neurons in the visual system of the blowfly have large receptive fields that are selective for specific optic flow fields. Here, we studied the neural mechanisms underlying flow–field selectivity in proximal Vertical System (VS)-cells, a particular subset of tangential cells in the fly. These cells have local preferred directions that are distributed such as to match the flow field occurring during a rotation of the fly. However, the neural circuitry leading to this selectivity is not fully understood. Through dual intracellular recordings from proximal VS cells and other tangential cells, we characterized the specific wiring between VS cells themselves and between proximal VS cells and horizontal sensitive tangential cells. We discovered a spiking neuron (Vi) involved in this circuitry that has not been described before. This neuron turned out to be connected to proximal VS cells via gap junctions and, in addition, it was found to be inhibitory onto VS1. PMID:18982122

  20. Aversive learning shapes neuronal orientation tuning in human visual cortex.

    PubMed

    McTeague, Lisa M; Gruss, L Forest; Keil, Andreas

    2015-07-28

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top-down projections as well as local inhibitory interactions.

  1. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors.

    PubMed

    Shinji, Chihiro; Maeda, Satoko; Imai, Keisuke; Yoshida, Minoru; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2006-11-15

    A series of hydroxamic acid derivatives bearing a cyclic amide/imide group as a linker and/or cap structure, prepared during our structural development studies based on thalidomide, showed class-selective potent histone deacetylase (HDAC)-inhibitory activity. Structure-activity relationship studies indicated that the steric character of the substituent introduced at the cyclic amide/imide nitrogen atom, the presence of the amide/imide carbonyl group, the hydroxamic acid structure, the shape of the linking group, and the distance between the zinc-binding hydroxamic acid group and the cap structure are all important for HDAC-inhibitory activity and class selectivity. A representative compound (30w) showed potent p21 promoter activity, comparable with that of trichostatin A (TSA), and its cytostatic activity against cells of the human prostate cell line LNCaP was more potent than that of the well-known HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA).

  2. Inhibitory ability of children with developmental dyscalculia.

    PubMed

    Zhang, Huaiying; Wu, Hanrong

    2011-02-01

    Inhibitory ability of children with developmental dyscalculia (DD) was investigated to explore the cognitive mechanism underlying DD. According to the definition of developmental dyscalculia, 19 children with DD-only and 10 children with DD&RD (DD combined with reading disability) were selected step by step, children in two control groups were matched with children in case groups by gender and age, and the match ratio was 1:1. Psychological testing software named DMDX was used to measure inhibitory ability of the subjects. The differences of reaction time in number Stroop tasks and differences of accuracy in incongruent condition of color-word Stroop tasks and object inhibition tasks between DD-only children and their controls reached significant levels (P<0.05), and the differences of reaction time in number Stroop tasks between dyscalculic and normal children did not disappear after controlling the non-executive components. The difference of accuracy in color-word incongruent tasks between children with DD&RD and normal children reached significant levels (P<0.05). Children with DD-only confronted with general inhibitory deficits, while children with DD&RD confronted with word inhibitory deficits only.

  3. Quantitative Structure-Activity Relationship Modeling Coupled with Molecular Docking Analysis in Screening of Angiotensin I-Converting Enzyme Inhibitory Peptides from Qula Casein Hydrolysates Obtained by Two-Enzyme Combination Hydrolysis.

    PubMed

    Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou

    2018-03-28

    In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.

  4. Effects of intrinsic aerobic capacity and ovariectomy on voluntary wheel running and nucleus accumbens dopamine receptor gene expression.

    PubMed

    Park, Young-Min; Kanaley, Jill A; Padilla, Jaume; Zidon, Terese; Welly, Rebecca J; Will, Matthew J; Britton, Steven L; Koch, Lauren G; Ruegsegger, Gregory N; Booth, Frank W; Thyfault, John P; Vieira-Potter, Victoria J

    2016-10-01

    Rats selectively bred for high (HCR) and low (LCR) aerobic capacity show a stark divergence in wheel running behavior, which may be associated with the dopamine (DA) system in the brain. HCR possess greater motivation for voluntary running along with greater brain DA activity compared to LCR. We recently demonstrated that HCR are not immune to ovariectomy (OVX)-associated reductions in spontaneous cage (i.e. locomotor) activity. Whether HCR and LCR rats differ in their OVX-mediated voluntary wheel running response is unknown. To determine whether HCR are protected from OVX-associated reduction in voluntary wheel running. Forty female HCR and LCR rats (age ~27weeks) had either SHM or OVX operations, and given access to a running wheel for 11weeks. Weekly wheel running distance was monitored throughout the intervention. Nucleus accumbens (NAc) was assessed for mRNA expression of DA receptors at sacrifice. Compared to LCR, HCR ran greater distance and had greater ratio of excitatory/inhibitory DA mRNA expression (both line main effects, P<0.05). Wheel running distance was significantly, positively correlated with the ratio of excitatory/inhibitory DA mRNA expression across animals. In both lines, OVX reduced wheel running (P<0.05). Unexpectedly, although HCR started with significantly greater voluntary wheel running, they had greater OVX-induced reduction in wheel running than LCR such that no differences were found 11weeks after OVX between HCROVX and LCROVX (interaction, P<0.05). This significant reduction in wheel running in HCR was associated with an OVX-mediated reduction in the ratio of excitatory/inhibitory DA mRNA expression. The DA system in the NAc region may play a significant role in motivation to run in female rats. Compared to LCR, HCR rats run significantly more, which associates with greater ratio of excitatory/inhibitory DA mRNA expression. However, despite greater inherent motivation to run and an associated brain DA mRNA expression profile, HCR rats are not protected against OVX-induced reduction in wheel running or OVX-mediated reduction in the ratio of excitatory/inhibitory DA receptor mRNA expression. OVX-mediated reduction in motivated physical activity may be partially explained by a reduced ratio of excitatory/inhibitory DA receptor mRNA expression for which intrinsic fitness does not confer protection. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Synthesis and anti-inflammatory effect of chalcones and related compounds.

    PubMed

    Hsieh, H K; Lee, T H; Wang, J P; Wang, J J; Lin, C N

    1998-01-01

    Mast cell and neutrophil degranulations are the important players in inflammatory disorders. Combined with potent inhibition of chemical mediators released from mast cells and neutrophil degranulations, it could be a promising anti-inflammatory agent. 2',5'-Dihydroxychalcone has been reported as a potent chemical mediator and cyclooxygenase inhibitor. In an effort to continually develop potent anti-inflammatory agents, a novel series of chalcone, 2'- and 3'-hydroxychalcones, 2',5'-dihydroxychalcones and flavanones were continually synthesized to evaluate their inhibitory effects on the activation of mast cells and neutrophils and the inhibitory effect on phlogist-induced hind-paw edema in mice. A series of chalcones and related compounds were prepared by Claisen-Schmidt condensation of appropriate acetophenones with appropriate aromatic aldehyde and the anti-inflammatory activities of these synthetic compounds were studied on inhibitory effects on the activation of mast cells and neutrophils. Some chalcones showed strong inhibitory effects on the release of beta-glucuronidase and histamine from rat peritoneal mast cells stimulated with compound 48/80. Almost all chalcones and 4'-hydroxyflavanone exhibited potent inhibitory effects on the release of beta-glucuronidase and lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP). Some chalcones showed potent inhibitory effects on superoxide formation of rat neutrophils stimulated with fMLP/cytochalasin B (CB) or phorbol myristate acetate (PMA). 2',3-Dihydroxy-, 2',5'-dihydroxy-4-chloro-, and 2',5'-dihydroxychalcone showed remarkable inhibitory effects on hind-paw edema induced by polymyxin B in normal as well as in adrenalectomized mice. These results indicated that the anti-inflammatory effects of these compounds were mediated, at least partly, through the suppression of chemical mediators released from mast cells and neutrophils.

  6. Inhibition of serotonin release by bombesin-like peptides in rat hypothalamus in vitro.

    PubMed

    Saporito, M S; Warwick, R O

    1989-01-01

    We investigated the activity of bombesin (BN), neuromedin-C (NM-C) and neuromedin-B (NM-B) on serotonin (5-HT) release and reuptake in rat hypothalamus (HYP) in vitro. BN and NM-C but not NM-B (all 1 microM) decreased K+ evoked 3H-5-HT release from superfused HYP slices by 25%. Bacitracin (BCN, 2 micrograms/ml), a nonspecific peptidase inhibitor, reversed the inhibitory effect of BN on K+ evoked 3H-5-HT release. Phosphoramidon (PAN, 10 microM) an endopeptidase 24.11 inhibitor, abolished the inhibitory effect of BN, but not NM-C, on K+ evoked 3H-5-HT release. The peptidyl dipeptidase A inhibitor enalaprilat (ENP, 10 microM), enhanced both BN and NM-C inhibition of 3H-5-HT release. Bestatin (BST, 10 microM) had no effect on BN or NM-C inhibitory activity on 3H-5-HT release. Neither BN, NM-C nor NM-B affected reuptake of 3H-5-HT into HYP synaptosomes alone or in combination with any of the peptidase inhibitors, nor did these peptides alter the ability of fluoxetine to inhibit 3H-5-HT uptake. These data suggest: a) that BN-like peptides may alter neurotransmission in the HYP by acting presynaptically on the 5-HT release mechanism; b) a similarity in the structural requirements for the BN induced inhibition of 5-HT release and BN evoked thermoregulatory disturbances; and c) that peptidases may selectively augment or reduce pharmacologic activity of BN-like peptides upon CNS administration.

  7. ANTI-VIRAL EFFECTS OF MEDICINAL PLANTS IN THE MANAGEMENT OF DENGUE: A SYSTEMATIC REVIEW.

    PubMed

    Frederico, Éric Heleno Freira Ferreira; Cardoso, André Luiz Bandeira Dionísio; Moreira-Marconi, Eloá; de Sá-Caputo, Danúbia da Cunha; Guimarães, Carlos Alberto Sampaio; Dionello, Carla da Fontoura; Morel, Danielle Soares; Paineiras-Domingos, Laisa Liane; de Souza, Patricia Lopes; Brandão-Sobrinho-Neto, Samuel; Carvalho-Lima, Rafaelle Pacheco; Guedes-Aguiar, Eliane de Oliveira; Costa-Cavalcanti, Rebeca Graça; Kutter, Cristiane Ribeiro; Bernardo-Filho, Mario

    2017-01-01

    Dengue is considered as an important arboviral disease. Safe, low-cost, and effective drugs that possess inhibitory activity against dengue virus (DENV) are mostly needed to try to combat the dengue infection worldwide. Medicinal plants have been considered as an important alternative to manage several diseases, such as dengue. As authors have demonstrated the antiviral effect of medicinal plants against DENV, the aim of this study was to review systematically the published research concerning the use of medicinal plants in the management of dengue using the PubMed database. Search and selection of publications were made using the PubMed database following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA statement). Six publications met the inclusion criteria and were included in the final selection after thorough analysis. It is suggested that medicinal plants' products could be used as potential anti-DENV agents.

  8. Cyclo(dehydroala-L-Leu), an alpha-glucosidase inhibitor from Penicillium sp. F70614.

    PubMed

    Kwon, O S; Park, S H; Yun, B S; Pyun, Y R; Kim, C J

    2000-09-01

    A diketopiperazine (1) has been isolated from the culture broth of Penicillium sp. F70614 and its structure has been determined to be cyclo(dehydroala-L-Leu) by various spectroscopic analyses. This compound selectively inhibited yeast alpha-glucosidase and porcine intestinal alpha-glucosidase with IC50 values of 35 and 50 microg/ml, respectively. However, it did not show significant inhibitory effects against almond beta3-glucosidase, Aspergillus alpha-galactosidase, Escherichia coli beta-galactosidase and jack bean alpha-mannosidase.

  9. Basic mechanisms of gabitril (tiagabine) and future potential developments.

    PubMed

    Meldrum, B S; Chapman, A G

    1999-01-01

    Gabitril (tiagabine) is a potent selective inhibitor of the principal neuronal gamma-aminobutyric acid (GABA) transporter (GAT-1) in the cortex and hippocampus. By slowing the reuptake of synaptically-released GABA, it prolongs inhibitory postsynaptic potentials. In animal models of epilepsy, tiagabine is particularly effective against kindled (limbic) seizures and against reflexly-induced generalized convulsive seizures. These data are predictive of its efficacy in complex partial seizures in humans. Possible clinical applications outside the field of epilepsy include bipolar disorder and pain.

  10. In vitro inhibition of bacterial growth by iron chelators.

    PubMed

    Qiu, Di-Hong; Huang, Zhu-Liang; Zhou, Tao; Shen, Chen; Hider, Robert C

    2011-01-01

    The antimicrobial activity of the iron(III)-selective 3-hydroxypyridin-4-one chelators, CP251(1) and CP252(2), was evaluated in comparison with that of diethylenetriamine-penta acetic acid (3). CP251 was found to exhibit an inhibitory effect on the growth of both Gram-positive and Gram-negative bacteria. CP251 may find application in the treatment of external infections such as those associated with wounds. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Short-Term Depression, Temporal Summation, and Onset Inhibition Shape Interval Tuning in Midbrain Neurons

    PubMed Central

    Baker, Christa A.

    2014-01-01

    A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals. PMID:25339741

  12. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors

    PubMed Central

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-01-01

    Glutamate acts at central synapses via ionotropic (iGluR – NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed. PMID:16945965

  13. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors.

    PubMed

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-11-15

    Glutamate acts at central synapses via ionotropic (iGluR--NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed.

  14. Growth inhibitory and proapoptotic effects of l-asparaginase from Fusarium culmorum ASP-87 on human leukemia cells (Jurkat).

    PubMed

    Meghavarnam, Anil K; Salah, Maryam; Sreepriya, Meenakshisundaram; Janakiraman, Savitha

    2017-06-01

    The objective of this study was to evaluate the anticancer properties of l-asparaginase purified from fungal isolate Fusarium culmorum ASP-87 against human T-cell leukemia cell line (Jurkat). The growth inhibitory and proapoptotic effects of purified l-asparaginase on Jurkat cell lines were investigated by determining its influence on cell viability, colony formation, DNA fragmentation, and cell cycle progression. The results revealed that purified l-asparaginase showed significant decrease in cell survival with IC 50 value of 90 μg/mL (9 IU/mL). The enzyme inhibited colony formation and showed characteristic laddering pattern on agarose gel thereby confirming the induction of apoptosis. Further, cell cycle analysis revealed that the enzyme induced apoptotic cell death by arresting the growth of cells at G 2 -M phase. However, the enzyme did not elicit any toxic effects on human erythrocytes. l-asparaginase purified from F. culmorum ASP-87 showed significant and selective cytotoxic and apoptotic effects on human T-cell leukemic cells in dose-dependent manner. Results of the study give leads for the anticancer effects of fungal l-asparaginase and its potential usefulness in the chemotherapy of leukemia. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  15. Short-term plasticity in auditory cognition.

    PubMed

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  16. Contingent involuntary motoric inhibition: the involuntary inhibition of a motor response contingent on top-down goals.

    PubMed

    Anderson, Brian A; Folk, Charles L

    2012-12-01

    Effective motor control involves both the execution of appropriate responses and the inhibition of inappropriate responses that are evoked by response-associated stimuli. The inhibition of a motor response has traditionally been characterized as either a voluntary act of cognitive control or a low-level perceptual bias arising from processes such as inhibition of return and priming. Involuntary effects of top-down goals on motoric inhibition have been reported, but involve the perseveration of an inhibitory strategy. It is unknown whether the inhibition of a motor response can be selectively triggered by a goal-relevant stimulus, reflecting the automatic activation of a top-down inhibitory strategy. Here we show that irrelevant flankers that share the color of a no-go target elicit the inhibition of their associated motor response while other-colored flankers do not, even when participants have sufficient time to prepare for the upcoming target while ignoring the flankers. Our results demonstrate contingent involuntary motoric inhibition: motoric inhibition can be automatically triggered by a stimulus based on top-down goals.

  17. Synthesis and antitumor activity of bis(hydroxymethyl)propionate analogs of pterostilbene in cisplatin-resistant human oral cancer cells.

    PubMed

    Hsieh, Min-Tsang; Huang, Li-Jiau; Wu, Tian-Shung; Lin, Hui-Yi; Morris-Natschke, Susan L; Lee, Kuo-Hsiung; Kuo, Sheng-Chu

    2018-06-08

    The aim of this study was to develop a new drug substance with low toxicity and effective inhibitory activity against cisplatin-resistant oral cancer. The naturally produced pterostilbene was selected as the lead compound for design and synthesis of a series of bis(hydroxymethyl)propionate-based prodrugs. All derivatives were screened for antiproliferative effects against the cisplatin-resistant oral squamous (CAR) cell line and the results indicated that several compounds demonstrated superior inhibitory activity compared with pterostilbene and resveratrol. Among them, the most promising compound, 12, was evaluated for in vivo antitumor activity in a CAR xenograft nude mouse model. Obvious antitumor activity was observed at the lowest oral dose (25 mg/kg/day). Increasing the dose of 12 to 100 mg/kg/day reduced the tumor size to 22% of the control group. Based on these findings as well as the extremely low toxicity seen in the in vivo studies, we believe that compound 12 could serve as a new lead for further development. Copyright © 2018. Published by Elsevier Ltd.

  18. Structure-guided cancer blockade between bioactive bursehernin and proteins: Molecular docking and molecular dynamics study.

    PubMed

    Tedasen, Aman; Choomwattana, Saowapak; Graidist, Potchanapond; Tipmanee, Varomyalin

    2017-06-01

    Bursehernin (5'-desmethoxyyatein) is a natural lignan, which has anti-tumor activity in vitro. In this study, the binding-inhibitory effects of bursehernin were screening on selected 80 proteins associated with cancer pathway. The computational analysis suggested inhibitory effect due to bursehernin towards proteins related to cancer proliferation, including FMS kinase receptor, heat shock protein 90-α (Hsp90-α), adenylate cyclase 10 (ADCY10), mitogen-activated protein kinase kinase (MEK1), and α-tubulin. Moreover, bursehernin could interfere with cell cycle progression via binding to cyclin B proteins. Among all screened proteins, the compound showed an interesting binding affinity to the FMS kinase receptor. The binding mode studies by molecular dynamic technique showed that aromatic ring of bursehernin compound was responsible for compound-protein interaction through pi-pi stacking with Tyr105 and Phe178 of the FMS kinase receptor. This study suggests that bursehernin has potential for development as an anti-tumor agent with an anti-proliferation, and cell cycle arrest inducing, although further studies are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. CRM1 inhibitory and antiproliferative activities of novel 4'-alkyl substituted klavuzon derivatives.

    PubMed

    Kanbur, Tuğçe; Kara, Murat; Kutluer, Meltem; Şen, Ayhan; Delman, Murat; Alkan, Aylin; Otaş, Hasan Ozan; Akçok, İsmail; Çağır, Ali

    2017-08-15

    Klavuzons are 6-(naphthalen-1-yl) substituted 5,6-dihydro-2H-pyran-2-one derivatives showing promising antiproliferative activities in variety of cancer cell lines. In this work, racemic syntheses of nine novel 4'-alkyl substituted klavuzon derivatives were completed in eight steps and anticancer properties of these compounds were evaluated. It is found that size of the substituent has dramatic effect over the potency and selectivity of the cytotoxic activity in cancerous and healthy pancreatic cell lines. The size of the substituent can also effect the CRM1 inhibitory properties of klavuzon derivatives. Strong cytotoxic activity and CRM1 inhibition can be observed only when a small substituent present at 4'-position of naphthalen-1-yl group. However, these substituents makes the molecule more cytotoxic in healthy pancreatic cells rather than cancerous pancreatic cells. Among the tested compounds 1,2,3,4-tetrahydrophenanthren-9-yl substituted lactone was the most cytotoxic compound and its antiproliferative activity was also tested in 3D spheroids generated from HuH-7 cell lines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing.

    PubMed

    Soave, Claire L; Guerin, Tracey; Liu, Jinbao; Dou, Q Ping

    2017-12-01

    In the past 15 years, the proteasome has been validated as an anti-cancer drug target and 20S proteasome inhibitors (such as bortezomib and carfilzomib) have been approved by the FDA for the treatment of multiple myeloma and some other liquid tumors. However, there are shortcomings of clinical proteasome inhibitors, including severe toxicity, drug resistance, and no effect in solid tumors. At the same time, extensive research has been conducted in the areas of natural compounds and old drug repositioning towards the goal of discovering effective, economical, low toxicity proteasome-inhibitory anti-cancer drugs. A variety of dietary polyphenols, medicinal molecules, metallic complexes, and metal-binding compounds have been found to be able to selectively inhibit tumor cellular proteasomes and induce apoptotic cell death in vitro and in vivo, supporting the clinical success of specific 20S proteasome inhibitors bortezomib and carfilzomib. Therefore, the discovery of natural proteasome inhibitors and researching old drugs with proteasome-inhibitory properties may provide an alternative strategy for improving the current status of cancer treatment and even prevention.

  1. Mechanisms underlying electrical and mechanical responses of the bovine retractor penis to inhibitory nerve stimulation and to an inhibitory extract.

    PubMed Central

    Byrne, N. G.; Muir, T. C.

    1985-01-01

    The response of the bovine retractor penis (BRP) to stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves and to an inhibitory extract prepared from this muscle have been studied using intracellular microelectrode, sucrose gap and conventional mechanical recording techniques. Both inhibitory nerve stimulation and inhibitory extract hyperpolarized the membrane potential and relaxed spontaneous or guanethidine (3 X 10(-5) M)-induced tone. These effects were accompanied by an increase in membrane resistance. Following membrane potential displacement from an average value of -53 +/- 7 mV (n = 184; Byrne & Muir, 1984) inhibitory potentials to nerve stimulation were abolished at approximately -30 mV; there was no evidence of reversal. Displacement by inward hyperpolarizing current over the range -45 to -60 mV increased the inhibitory response to nerve stimulation and to inhibitory extract; at more negative potential values (above approximately -60 mV) the inhibitory potential decreased and was abolished (approximately -103 mV). There was no evidence of reversal. Removal of [K+]o reversibly reduced hyperpolarization to nerve stimulation and inhibitory extract. No enhancement was observed. Increasing the [K+]o to 20 mM reduced the inhibitory potential to nerve stimulation but this was restored by passive membrane hyperpolarization. Inhibitory potentials were obtained at membrane potential values exceeding that of the estimated EK (-49 mV). [Cl-]o-free or [Cl-]o-deficient solutions reduced and abolished (after some 20-25 min) the hyperpolarization produced by inhibitory nerve stimulation or inhibitory extract. The inhibitory potential amplitude following nerve stimulation was not restored by passive displacement of the membrane potential from -26 to -104 mV approximately. Ouabain (1-5 X 10(-5) M) reduced then (45-60 min later) abolished the inhibitory potential to nerve stimulation. The effects of this drug on the extract were not investigated. It is concluded that the inhibitory response to nerve stimulation and extract in the BRP may involve several ionic species. However, unlike that in gastrointestinal muscles the NANC response in the BRP is accompanied by an increased membrane resistance and does not primarily involve K+. The underlying mechanisms for the inhibitory response to both NANC nerve stimulation and inhibitory extract appear to be similar, compatible with the view that the latter may contain the inhibitory transmitter released from these nerves in this tissue. PMID:4027462

  2. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades

    PubMed Central

    Jiang, Cheng-shi; Liang, Lin-fu; Guo, Yue-wei

    2012-01-01

    This article provides an overview of approximately 300 secondary metabolites with inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), which were isolated from various natural sources or derived from synthetic process in the last decades. The structure-activity relationship and the selectivity of some compounds against other protein phosphatases were also discussed. Potential pharmaceutical applications of several PTP1B inhibitors were presented. PMID:22941286

  3. Synthesis and antibacterial activity of aromatic and heteroaromatic amino alcohols.

    PubMed

    de Almeida, Camila G; Reis, Samira G; de Almeida, Angelina M; Diniz, Claudio G; da Silva, Vânia L; Le Hyaric, Mireille

    2011-11-01

    Two series of aromatic and heteroaromatic amino alcohols were synthesized from alcohols and aldehydes and evaluated for their antibacterial activities. All the octylated compounds displayed a better activity against the four bacteria tested when evaluated by the agar diffusion method and were selected for the evaluation of minimal inhibitory concentration. The best results were obtained for p-octyloxybenzyl derivatives against Staphylococcus epidermidis (minimal inhibitory concentrations = 32 μm). © 2011 John Wiley & Sons A/S.

  4. Design synthesis and evaluation of the inhibitory selectivity of novel trans-resveratrol analogues on human recombinant CYP1A1 CYP1A2 and CYP1B1

    USDA-ARS?s Scientific Manuscript database

    A series of trans-stilbene derivatives containing 4’-thiomethyl substituent were synthesized and evaluated for inhibitory activities on human recombinant cytochrome P450(s): CYP1A1, CYP1A2, and CYP1B1. CYP1A2-related metabolism of stilbene derivatives was estimated by using NADPH oxidation assay. A...

  5. Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex

    PubMed Central

    Houweling, Arthur R; Bazhenov, Maxim; Timofeev, Igor; Grenier, François; Steriade, Mircea; Sejnowski, Terrence J

    2002-01-01

    Thalamic stimulation at frequencies between 5 and 15 Hz elicits incremental or ‘augmenting’ cortical responses. Augmenting responses can also be evoked in cortical slices and isolated cortical slabs in vivo. Here we show that a realistic network model of cortical pyramidal cells and interneurones including short-term plasticity of inhibitory and excitatory synapses replicates the main features of augmenting responses as obtained in isolated slabs in vivo. Repetitive stimulation of synaptic inputs at frequencies around 10 Hz produced postsynaptic potentials that grew in size and carried an increasing number of action potentials resulting from the depression of inhibitory synaptic currents. Frequency selectivity was obtained through the relatively weak depression of inhibitory synapses at low frequencies, and strong depression of excitatory synapses together with activation of a calcium-activated potassium current at high frequencies. This network resonance is a consequence of short-term synaptic plasticity in a network of neurones without intrinsic resonances. These results suggest that short-term plasticity of cortical synapses could shape the dynamics of synchronized oscillations in the brain. PMID:12122156

  6. Screening of agelasine D and analogs for inhibitory activity against pathogenic protozoa; identification of hits for visceral leishmaniasis and Chagas disease.

    PubMed

    Vik, Anders; Proszenyák, Agnes; Vermeersch, Marieke; Cos, Paul; Maes, Louis; Gundersen, Lise-Lotte

    2009-01-08

    There is an urgent need for novel and improved drugs against several tropical diseases caused by protozoa. The marine sponge (Agelas sp.) metabolite agelasine D, as well as other agelasine analogs and related structures were screened for inhibitory activity against Plasmodium falciparum, Leishmania infantum, Trypanosoma brucei and T. cruzi, as well as for toxicity against MRC-5 fibroblast cells. Many compounds displayed high general toxicity towards both the protozoa and MRC-5 cells. However, two compounds exhibited more selective inhibitory activity against L. infantum (IC(50) <0.5 microg/mL) while two others displayed IC(50) <1 microg/mL against T. cruzi in combination with relatively low toxicity against MRC-5 cells. According to criteria set up by the WHO Special Programme for Research & Training in Tropical Diseases (TDR), these compounds could be classified as hits for leishmaniasis and for Chagas disease, respectively. Identification of the hits as well as other SAR data from this initial screening will be valuable for design of more potent and selective potential drugs against these neglected tropical diseases.

  7. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.

    PubMed

    Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I

    2015-07-01

    Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Antihypertensive properties of lactoferricin B-derived peptides.

    PubMed

    Ruiz-Giménez, Pedro; Ibáñez, Aida; Salom, Juan B; Marcos, Jose F; López-Díez, Jose Javier; Vallés, Salvador; Torregrosa, Germán; Alborch, Enrique; Manzanares, Paloma

    2010-06-09

    A set of eight lactoferricin B (LfcinB)-derived peptides was examined for inhibitory effects on angiotensin I-converting enzyme (ACE) activity and ACE-dependent vasoconstriction, and their hypotensive effect in spontaneously hypertensive rats (SHR). Peptides were derived from different elongations both at the C-terminal and N-terminal ends of the representative peptide LfcinB(20-25), which is known as the LfcinB antimicrobial core. All of the eight LfcinB-derived peptides showed in vitro inhibitory effects on ACE activity with different IC(50) values. Moreover, seven of them showed ex vivo inhibitory effects on ACE-dependent vasoconstriction. No clear correlation between in vitro and ex vivo inhibitory effects was found. Only LfcinB(20-25) and one of its fragments, F1, generated after a simulated gastrointestinal digestion, showed significant antihypertensive effects in SHR after oral administration. Remarkably, F1 did not show any effect on ACE-dependent vasoconstriction in contrast to the inhibitory effect showed by LfcinB(20-25). In conclusion, two LfcinB-derived peptides lower blood pressure and exhibit potential as orally effective antihypertensive compounds, yet a complete elucidation of the mechanism(s) involved deserves further ongoing research.

  9. Pharmacology of a selective cyclooxygenase-2 inhibitor, HN-56249: a novel compound exhibiting a marked preference for the human enzyme in intact cells.

    PubMed

    Berg, J; Fellier, H; Christoph, T; Kremminger, P; Hartmann, M; Blaschke, H; Rovensky, F; Towart, R; Stimmeder, D

    2000-04-01

    HN-56249 (3-(2,4-dichlorothiophenoxy)-4-methylsulfonylamino-benzenesu lfonamide), a highly selective cyclooxygenase (COX)-2 inhibitor, is the prototype of a novel series of COX inhibitors comprising bicyclic arylethersulfonamides; of this series HN-56249 is the most potent and selective human COX-2 inhibitor. HN-56249 inhibited platelet aggregation as a measure of COX-1 activity only moderately (IC50 26.5+/-1.7 microM). In LPS-stimulated monocytic cells the release of prostaglandin (PG) F1alpha as a measure of COX-2 was markedly inhibited (IC50 0.027+/-0.001 microM). Thus, HN-56249 showed an approximately 1000-fold selectivity for COX-2 in intact cells. In whole blood assays HN-56249 showed a potent inhibitory activity for COX-2 (IC50 0.78+/-0.37 microM) only. COX-1 was only weakly inhibited (IC50 867+/-181 microM). Hence, HN-56249 exhibited a greater than 1000-fold selectivity for whole blood COX-2. HN-56249 surpassed the COX-2 selectivities of the COX-2 selective inhibitors 3-cyclohexyloxy-4-methylsulfonylamino-nitrobenzene (NS-398) and 6-(2,4-difluorophenoxy)-5-methyl-sulfonylamino-1-indanone (flosulide) in the intact cell assays by eight- and threefold, respectively, and in the whole blood assays by approximately 40-fold. Following i.v. administration HN-56249 inhibited carrageenan-induced rat paw oedema only moderately (ID50 26.2+/-5.7 mg/kg, mean +/- SEM), approximately tenfold less potent than indomethacin (ID50 2.1+/-0.2 mg/kg, mean +/- SEM). After oral administration HN-56249 reversed thermal hyperalgesia in the carrageenan-induced rat paw oedema test, however, some 30-fold less potently than diclofenac. Comparing the inhibitory potency of HN-56249 against human COX-2 with that against murine COX-2 in intact cells revealed a 300-fold selectivity for the human enzyme. Similar effects were observed with other COX-2-selective arylethersulfonamides. In contrast, non-COX-2-selective arylethersulfonamides, including a highly selective COX-1 inhibitor, inhibited human and murine COX-2 approximately equipotently. In conclusion, HN-56249 is a novel potent and highly selective COX-2 inhibitor with a marked preference for the human COX-2 enzyme in vitro. Despite excellent bioavailability and the long plasma half-life of HN-56249, anti-inflammatory effects in rodents were only moderate. We suggest these differing in vitro-in vivo effects observed could be due to significant inflammatory prostaglandin synthesis by COX-1, or to the genetic differences between human and rodent COX-2, or to both.

  10. Effects of restriction on children’s intake differ by child temperament, food reinforcement, and parent’s chronic use of restriction.

    PubMed

    Rollins, Brandi Y; Loken, Eric; Savage, Jennifer S; Birch, Leann L

    2014-02-01

    Parents’ use of restrictive feeding practices is counterproductive, increasing children’s intake of restricted foods and risk for excessive weight gain. The aims of this research were to replicate Fisher and Birch’s (1999b) original findings that short-term restriction increases preschool children’s (3–5 y) selection, intake, and behavioral response to restricted foods, and to identify characteristics of children who were more susceptible to the negative effects of restriction. The experiment used a within-subjects design; 37 children completed the food reinforcement task and heights/weights were measured. Parents reported on their use of restrictive feeding practices and their child’s inhibitory control and approach. Overall, the findings replicated those of and revealed that the effects of restriction differed by children’s regulatory and appetitive tendencies. Greater increases in intake in response to restriction were observed among children lower in inhibitory control, higher in approach, who found the restricted food highly reinforcing, and who had previous experience with parental use of restriction. Results confirm that the use of restriction does not reduce children’s consumption of these foods, particularly among children with lower regulatory or higher appetitive tendencies.

  11. Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans, and Drosophila melanogaster

    PubMed Central

    Popova, Alexandra A.; Koksharova, Olga A.; Lipasova, Valentina A.; Zaitseva, Julia V.; Katkova-Zhukotskaya, Olga A.; Eremina, Svetlana Iu.; Mironov, Alexander S.; Chernin, Leonid S.; Khmel, Inessa A.

    2014-01-01

    In previous research, volatile organic compounds (VOCs) emitted by various bacteria into the chemosphere were suggested to play a significant role in the antagonistic interactions between microorganisms occupying the same ecological niche and between bacteria and target eukaryotes. Moreover, a number of volatiles released by bacteria were reported to suppress quorum-sensing cell-to-cell communication in bacteria, and to stimulate plant growth. Here, volatiles produced by Pseudomonas and Serratia strains isolated mainly from the soil or rhizosphere exhibited bacteriostatic action on phytopathogenic Agrobacterium tumefaciens and fungi and demonstrated a killing effect on cyanobacteria, flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans). VOCs emitted by the rhizospheric Pseudomonas chlororaphis strain 449 and by Serratia proteamaculans strain 94 isolated from spoiled meat were identified using gas chromatography-mass spectrometry analysis, and the effects of the main headspace compounds—ketones (2-nonanone, 2-heptanone, 2-undecanone) and dimethyl disulfide—were inhibitory toward the tested microorganisms, nematodes, and flies. The data confirmed the role of bacterial volatiles as important compounds involved in interactions between organisms under natural ecological conditions. PMID:25006575

  12. Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization

    NASA Astrophysics Data System (ADS)

    Li, Han; Yao, Qi-Zhi; Wang, Yu-Ying; Li, Yi-Liang; Zhou, Gen-Tao

    2015-01-01

    Recent studies have found that certain urinary proteins can efficiently inhibit stone formation. These discoveries are significant for developing effective therapies for stone disease, but the inhibition mechanism of crystallization remains elusive. In the present study, polyaspartic acid (PASP) was employed as a model peptide to investigate the effect of urinary proteins on the crystallization and morphological evolution of struvite. The results demonstrate that selective adsorption/binding of PASP onto the {010} and {101} faces of struvite crystals results in arrowhead-shaped morphology, which further evolves into X-shaped and unusual tabular structures with time. Noticeably, these morphologies are reminiscent of biogenic struvite morphology. Concentration-dependent experiments show that PASP can inhibit struvite growth and the inhibitory capacity increases with increasing PASP concentration, whereas aspartic acid monomers do not show a significant effect. Considering that PASP is a structural and functional analogue of the subdomains of aspartic acid-rich proteins, our results reveal that aspartic acid-rich proteins play a key role in regulating biogenic struvite morphology, and aspartic acid residues contribute to the inhibitory capacity of urinary proteins. The potential implications of PASP for developing therapeutic agents for urinary stone disease is also discussed.

  13. Phonological Codes Constrain Output of Orthographic Codes via Sublexical and Lexical Routes in Chinese Written Production

    PubMed Central

    Wang, Cheng; Zhang, Qingfang

    2015-01-01

    To what extent do phonological codes constrain orthographic output in handwritten production? We investigated how phonological codes constrain the selection of orthographic codes via sublexical and lexical routes in Chinese written production. Participants wrote down picture names in a picture-naming task in Experiment 1or response words in a symbol—word associative writing task in Experiment 2. A sublexical phonological property of picture names (phonetic regularity: regular vs. irregular) in Experiment 1and a lexical phonological property of response words (homophone density: dense vs. sparse) in Experiment 2, as well as word frequency of the targets in both experiments, were manipulated. A facilitatory effect of word frequency was found in both experiments, in which words with high frequency were produced faster than those with low frequency. More importantly, we observed an inhibitory phonetic regularity effect, in which low-frequency picture names with regular first characters were slower to write than those with irregular ones, and an inhibitory homophone density effect, in which characters with dense homophone density were produced more slowly than those with sparse homophone density. Results suggested that phonological codes constrained handwritten production via lexical and sublexical routes. PMID:25879662

  14. Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization.

    PubMed

    Li, Han; Yao, Qi-Zhi; Wang, Yu-Ying; Li, Yi-Liang; Zhou, Gen-Tao

    2015-01-16

    Recent studies have found that certain urinary proteins can efficiently inhibit stone formation. These discoveries are significant for developing effective therapies for stone disease, but the inhibition mechanism of crystallization remains elusive. In the present study, polyaspartic acid (PASP) was employed as a model peptide to investigate the effect of urinary proteins on the crystallization and morphological evolution of struvite. The results demonstrate that selective adsorption/binding of PASP onto the {010} and {101} faces of struvite crystals results in arrowhead-shaped morphology, which further evolves into X-shaped and unusual tabular structures with time. Noticeably, these morphologies are reminiscent of biogenic struvite morphology. Concentration-dependent experiments show that PASP can inhibit struvite growth and the inhibitory capacity increases with increasing PASP concentration, whereas aspartic acid monomers do not show a significant effect. Considering that PASP is a structural and functional analogue of the subdomains of aspartic acid-rich proteins, our results reveal that aspartic acid-rich proteins play a key role in regulating biogenic struvite morphology, and aspartic acid residues contribute to the inhibitory capacity of urinary proteins. The potential implications of PASP for developing therapeutic agents for urinary stone disease is also discussed.

  15. No Evidence for Inhibitory Deficits or Altered Reward Processing in ADHD: Data From a New Integrated Monetary Incentive Delay Go/No-Go Task.

    PubMed

    Demurie, Ellen; Roeyers, Herbert; Wiersema, Jan R; Sonuga-Barke, Edmund

    2016-04-01

    Cognitive and motivational factors differentially affect individuals with mental health problems such as ADHD. Here we introduce a new task to disentangle the relative contribution of inhibitory control and reward anticipation on task performance in children with ADHD and/or autism spectrum disorders (ASD). Typically developing children, children with ADHD,  ASD, or both disorders worked during separate sessions for monetary or social rewards in go/no-go tasks with varying inhibitory load levels. Participants also completed a monetary temporal discounting (TD) task. As predicted, task performance was sensitive to both the effects of anticipated reward amount and inhibitory load. Reward amount had different effects depending on inhibitory load level. TD correlated with inhibitory control in the ADHD group. The integration of the monetary incentive delay and go/no-go paradigms was successful. Surprisingly, there was no evidence of inhibitory control deficits or altered reward anticipation in the clinical groups. © The Author(s) 2013.

  16. Discovery of new class of methoxy carrying isoxazole derivatives as COX-II inhibitors: Investigation of a detailed molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Joy, Monu; Elrashedy, Ahmed A.; Mathew, Bijo; Pillay, Ashona Singh; Mathews, Annie; Dev, Sanal; Soliman, Mahmoud E. S.; Sudarsanakumar, C.

    2018-04-01

    Two novel isoxazole derivatives were synthesized and characterized by NMR and single crystal X-ray crystallography techniques. The methoxy and dimethoxy functionalized variants of isoxazole were screened for its anti-inflammatory profile using cyclooxygenase fluorescent inhibitor screening assay methods along with standard drugs, Celecoxib and Diclofenac. The potent and selective nature of the two isoxazole derivatives on COX-II isoenzyme with a greater magnitude of inhibitory concentration, as compared to the standard drugs and further exploited through molecular dynamics (MD) simulation. Classical, accelerated and multiple MD simulations were performed to investigate the actual binding mode of the two non-steroidal anti-inflammatory drug candidates and addressed their functional selectivity towards COX-II enzyme inhibitory nature.

  17. Long (27-nucleotides) small inhibitory RNAs targeting E6 protein eradicate effectively the cervical cancer cells harboring human papilloma virus.

    PubMed

    Cho, Jun Sik; Lee, Shin-Wha; Kim, Yong-Man; Kim, Dongho; Kim, Dae-Yeon; Kim, Young-Tak

    2015-05-01

    This study was to identify small inhibitory RNAs (siRNAs) that are effective in inhibiting growth of cervical cancer cell lines harboring human papilloma virus (HPV) and to examine how siRNAs interact with interferon beta (IFN-β) and thimerosal. The HPV18-positive HeLa and C-4I cell lines were used. Four types of siRNAs were designed according to their target (both E6 and E7 vs. E6 only) and sizes (21- vs. 27-nucleotides); Ex-18E6/21, Ex-18E6/27, Sp-18E6/21, and Sp-18E6/27. Each siRNA-transfected cells were cultured with or without IFN-b and thimerosal and their viability was measured. The viabilities of HPV18-positive tumor cells were reduced by 21- and 27-nucleotide siRNAs in proportion to the siRNA concentrations. Of the two types of siRNAs, the 27-nucleotide siRNA constructs showed greater inhibitory efficacy. Sp-18E6 siRNAs, which selectively downregulates E6 protein only, were more effective than the E6- and E7-targeting Ex-18E6 siRNAs. siRNAs and IFN-β showed the synergistic effect to inhibit HeLa cell survival and the effect was proportional to both siRNA and IFN-β concentrations. Thimerosal in the presence of siRNA exerted a dose-dependent inhibition of C-4I cell survival. Finally, co-treatment with siRNA, IFN-β, and thimerosal induced the most profound decrease in the viability of both cell lines. Long (27-nucleotides) siRNAs targeting E6-E7 mRNAs effectively reduce the viability of HPV18-positive cervical cancer cells and show the synergistic effect in combination with IFN-b and thimerosal. It is necessary to find the rational design of siRNAs and effective co-factors to eradicate particular cervical cancer.

  18. Characterization of angiotensin-converting enzyme inhibitory activity of fermented milk produced by Lactobacillus helveticus.

    PubMed

    Chen, Yongfu; Li, Changkun; Xue, Jiangang; Kwok, Lai-yu; Yang, Jie; Zhang, Heping; Menghe, Bilige

    2015-08-01

    Hypertension affects up to 30% of the adult population in most countries. It is a known risk factor for cardiovascular diseases, including coronary heart disease, peripheral artery disease, and stroke. Owing to the increased health awareness of consumers, the application of angiotensin-converting enzyme (ACE)-inhibitory peptides produced by Lactobacillushelveticus to prevent or control high blood pressure has drawn wide attention. A total of 59 L. helveticus strains were isolated from traditional fermented dairy products and the ACE-inhibitory activity of the fermented milks produced with the isolated microorganisms was assayed. The ACE-inhibitory activity of 38 L. helveticus strains was more than 50%, and 3 strains (IMAU80872, IMAU80852, and IMAU80851) expressing the highest ACE-inhibitory activity were selected for further studies. Particularly, the gastrointestinal protease tolerance and thermostability of the ACE-inhibitory activity in the fermented milks were assessed. Based on these 2 criteria, IMAU80872 was found to be superior over the other 2 strains. Furthermore, IMAU80872 exhibited a high in vitro ACE-inhibitory activity at the following fermentation conditions: fermentation temperature at 40°C, inoculation concentration of 1×10(6) cfu/mL, and fermentation for 18h. Finally, by using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis, we observed changes of the metabolome along the milk fermentation process of IMAU80872. Furthermore, 6 peptides were identified, which might have ACE-inhibitory activity. In conclusion, we identified a novel ACE-inhibitory L. helveticus strain suitable for the production of fermented milk or other functional dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Inhibitory phonetic priming: Where does the effect come from?

    PubMed

    Dufour, Sophie; Frauenfelder, Ulrich Hans

    2016-01-01

    Both phonological and phonetic priming studies reveal inhibitory effects that have been interpreted as resulting from lexical competition between the prime and the target. We present a series of phonetic priming experiments that contrasted this lexical locus explanation with that of a prelexical locus by manipulating the lexical status of the prime and the target and the task used. In the related condition of all experiments, spoken targets were preceded by spoken primes that were phonetically similar but shared no phonemes with the target (/bak/-/dεt/). In Experiments 1 and 2, word and nonword primes produced an inhibitory effect of equal size in shadowing and same-different tasks respectively. Experiments 3 and 4 showed robust inhibitory phonetic priming on both word and nonword targets in the shadowing task, but no effect at all in a lexical decision task. Together, these findings show that the inhibitory phonetic priming effect occurs independently of the lexical status of both the prime and the target, and only in tasks that do not necessarily require the activation of lexical representations. Our study thus argues in favour of a prelexical locus for this effect.

  20. Evaluation of Anti-Toxoplasma gondii Effect of Ursolic Acid as a Novel Toxoplasmosis Inhibitor.

    PubMed

    Choi, Won Hyung; Lee, In Ah

    2018-05-09

    This study was carried out to evaluate the anti-parasitic effect of ursolic acid against Toxoplasma gondii ( T. gondii ) that induces toxoplasmosis, particularly in humans. The anti-parasitic effects of ursolic acid against T. gondii -infected cells and T. gondii were evaluated through different specific assays, including immunofluorescence staining and animal testing. Ursolic acid effectively inhibited the proliferation of T. gondii when compared with sulfadiazine, and consistently induced anti- T. gondii activity/effect. In particular, the formation of parasitophorous vacuole membrane (PVM) in host cells was markedly decreased after treating ursolic acid, which was effectively suppressed. Moreover, the survival rate of T. gondii was strongly inhibited in T. gondii group treated with ursolic acid, and then 50% inhibitory concentration (IC 50 ) against T. gondii was measured as 94.62 μg/mL. The T. gondii -infected mice treated with ursolic acid indicated the same survival rates and activity as the normal group. These results demonstrate that ursolic acid causes anti- T. gondii action and effect by strongly blocking the proliferation of T. gondii through the direct and the selective T. gondii -inhibitory ability as well as increases the survival of T. gondii -infected mice. This study shows that ursolic acid has the potential to be used as a promising anti- T. gondii candidate substance for developing effective anti-parasitic drugs.

  1. Saccadic distractor effects: the remote distractor effect (RDE) and saccadic inhibition (SI): A response to McIntosh and Buonocore (2014).

    PubMed

    Walker, Robin; Benson, Valerie

    2015-02-04

    We (Walker & Benson, 2013) reported studies in which the spatial effects of distractors on the remote distractor effect (RDE) and saccadic inhibition (SI) were examined. Distractors remote from the target increased mean latency and the skew of the distractor-related distributions, without the presence of dips that are regarded as the hallmark of SI. We further showed that early onset distractors had similar effects although these would not be consistent with existing estimates of the duration of SI (of around 60-70 ms). McIntosh and Buonocore (2014) report a simulation showing that skewed latency distributions can arise from the putative SI mechanism and they also highlighted a number of methodological considerations regarding the RDE and SI as measures of saccadic distractor effects (SDEs). Here we evaluate these claims and note that the measures of SI obtained by subtracting latency distributions (specifically the decrease in saccade frequency--or dip duration) are no more diagnostic of a single inhibitory process, or more sensitive indicators of it, than is median latency. Furthermore the evidence of inhibitory influences of small distractors presented close to the target is incompatible with the explanations of both the RDE and SI. We conclude that saccadic distractor effects may be a more inclusive term to encompass the different characteristics of behavioral effects of underlying saccade target selection. © 2015 ARVO.

  2. Effect of essential oils prepared from Thai culinary herbs on sessile Candida albicans cultures.

    PubMed

    Hovijitra, Ray S; Choonharuangdej, Suwan; Srithavaj, Theerathavaj

    2016-01-01

    Although medicinal herbs with fungicidal effects have been ubiquitously employed in traditional medicine, such effects of culinary herbs and spices still have to be elucidated. Therefore, it is noteworthy to determine the antifungal efficacy of some edible herbs used in Thai cuisine against sessile Candida albicans cultures, and to inquire if they can be further utilized as naturally-derived antifungals. Fourteen essential oils extracted from Thai culinary herbs and spices were tested for their antifungal activity against C. albicans using the agar disk diffusion method followed by broth micro-dilution method for the determination of minimum inhibitory concentration (MIC) and minimum fungicidal concentration. The oils with potent antifungal effects against planktonic fungi were then assessed for their effect against sessile fungus (adherent organisms and established biofilm culture). MIC of the oils against sessile C. albicans was evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction assay. All selected culinary herbs and spices, except galangal, garlic, and turmeric, exhibited inhibitory effects on planktonic yeast cells. Cinnamon bark and sweet basil leaf essential oils exhibited potent fungicidal effect on planktonic and sessile fungus. Sessile MICs were 8-16 times higher than planktonic MICs. Consequently, both cinnamon bark and sweet basil leaf herbal oils seem to be highly effective anti-Candida choices. (J Oral Sci 58, 365-371, 2016).

  3. Selective ablation of dorsal horn NK1 expressing cells reveals a modulation of spinal alpha2-adrenergic inhibition of dorsal horn neurones.

    PubMed

    Rahman, Wahida; Suzuki, Rie; Hunt, Stephen P; Dickenson, Anthony H

    2008-06-01

    Activity in descending systems from the brainstem modulates nociceptive transmission through the dorsal horn. Intrathecal injection of the neurotoxin saporin conjugated to SP (SP-SAP) into the lumbar spinal cord results in the selective ablation of NK(1) receptor expressing (NK(1)+ve) neurones in the superficial dorsal horn (lamina I/III). Loss of these NK(1)+ve neurones attenuates excitability of deep dorsal horn neurones due to a disruption of both intrinsic spinal circuits and a spino-bulbo-spinal loop, which activates a descending excitatory drive, mediated through spinal 5HT(3) receptors. Descending inhibitory pathways also modulate spinal activity and hence control the level of nociceptive transmission relayed to higher centres. To ascertain the spinal origins of the major descending noradrenergic inhibitory pathway we studied the effects of a selective alpha2-adrenoceptor antagonist, atipamezole, on neuronal activity in animals pre-treated with SP-SAP. Intrathecal application of atipamezole dose dependently facilitated the mechanically evoked neuronal responses of deep dorsal horn neurones to low intensity von Frey hairs (5-15 g) and noxious thermal (45-50 degrees C) evoked responses in SAP control animals indicating a physiological alpha2-adrenoceptor control. This facilitatory effect of atipamezole was lost in the SP-SAP treated group. These data suggest that activity within noradrenergic pathways have a dependence on dorsal horn NK(1)+ve cells. Further, noradrenergic descending inhibition may in part be driven by lamina I/III (NK(1)+ve) cells, and mediated via spinal alpha2-adrenoceptor activation. Since the same neuronal population drives descending facilitation and inhibition, the reduced excitability of lamina V/VI WDR neurones seen after loss of these NK(1)+ve neurones indicates a dominant role of descending facilitation.

  4. Lipophilicity plays a major role in modulating the inhibition of monoamine oxidase B by 7-substituted coumarins.

    PubMed

    Carotti, Angelo; Altomare, Cosimo; Catto, Marco; Gnerre, Carmela; Summo, Luciana; De Marco, Agostino; Rose, Sarah; Jenner, Peter; Testa, Bernard

    2006-02-01

    A series of coumarin derivatives (1-22), bearing at the 7-position ether, ketone, ester, carbamate, or amide functions of varying size and lipophilicity, were synthesized and investigated for their in vitro monoamine oxidase-A and -B (MAO-A and -B) inhibitory activities. Most of the compounds acted preferentially as MAO-B inhibitors, with IC(50) values in the micromolar to low-nanomolar range. A structure-activity-relationship (SAR) study highlighted lipophilicity as an important property modulating the MAO-B inhibition potency of 7-substituted coumarins, as shown by a linear correlation (n=20, r(2)=0.72) between pIC(50) and calculated log P values. The stability of ester-containing coumarin derivatives in rat plasma provided information on factors that either favor (lipophilicity) or decrease (steric hindrance) esterase-catalyzed hydrolysis. Two compounds (14 and 22) were selected to investigate how lipophilicity and enzymatic stability may affect in vivo MAO activities, as assayed ex vivo in rat. The most-potent and -selective MAO-B inhibitor 22 (=7-[(3,4-difluorobenzyl)oxy]-3,4-dimethyl-1-benzopyran-2(2H)-one) within the examined series significantly inhibited (>60%) ex vivo rat-liver and striatal MAO-B activities 1 h after intraperitoneal administration of high doses (100 and 300 mumol kg(-1)), revealing its ability to cross the blood-brain barrier. At the same doses, liver and striatum MAO-A was less inhibited in vivo, somehow reflecting MAO-B selectivity, as assessed in vitro. In contrast, the metabolically less stable derivative 14, bearing an isopropyl ester in the lateral chain, had a weak effect on hepatic MAO-B activity in vivo, and none on striatal MAO-B, but, surprisingly, displayed inhibitory effects on MAO-A in both peripheral and brain tissues.

  5. Evaluation of potent inhibitors of dihydrofolate reductase in a culture model for growth of Pneumocystis carinii.

    PubMed

    Bartlett, M S; Shaw, M; Navaran, P; Smith, J W; Queener, S F

    1995-11-01

    Many antifolates are known to inhibit dihydrofolate reductase from murine Pneumocystis carinii, with 50% inhibitory concentrations (IC50s) ranging from 10(-4) to 10(-11) M. The relationship of the potency against isolated enzyme to the potency against intact murine P. carinii cells was explored with 17 compounds that had proven selectivity for or potency against P. carinii dihydrofolate reductase. Pyrimethamine and one analog were inhibitory to P. carinii in culture at concentrations two to seven times the IC50s for the enzyme, suggesting that the compounds may enter P. carinii cells in culture. Methotrexate was a potent inhibitor of P. carinii dihydrofolate reductase, but the concentrations effective in culture were more than 1,000-fold higher than IC50s for the enzyme, since P. carinii lacks an uptake system for methotrexate. Analogs of methotrexate in which chlorine, bromine, or iodine was added to the phenyl ring had improved potency against the isolated enzyme but were markedly less effective in culture; polyglutamation also lowered the activity in culture but improved activity against the enzyme. Substitution of a naphthyl group for the phenyl group of methotrexate produced a compound with improved activity against the enzyme (IC50, 0.00019 microM) and excellent activity in culture (IC50, 0.1 microM). One trimetrexate analog in which an aspartate or a chlorine replaced two of the methoxy groups of trimetrexate was much more potent and was much more selective toward P. carinii dihydrofolate reductase than trimetrexate; this analog was also as active as trimetrexate in culture. These studies suggest that modifications of antifolate structures can be made that facilitate activity against intact organisms while maintaining the high degrees of potency and the selectivities of the agents can be made.

  6. Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    Siah1/2 inhibitory peptide that effectively inhibits Siah1/2 activity, which was found to effectively attenuate the growth of prostate cancer tumors in...effectiveness on cell growth with potent toxicity. Second, we set to advance a Siah inhibitory peptide that we recently developed in parallel, as...vivo when transplanted subcutaneously or orthotopically into the prostate site. The assessment of the Siah1/2 inhibitory peptide in genetic models of

  7. Atrial natriuretic peptide provokes a dramatic increase in cyclic GMP formation and markedly inhibits muscarinic-stimulated Ca2+ mobilisation in SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells.

    PubMed

    Ding, K H; Ali, N; Abdel-Latif, A A

    1999-02-01

    We investigated the effects of cGMP-elevating agents, including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and sodium nitroprusside (SNP), on cGMP accumulation and on carbachol (CCh)-stimulated intracellular calcium ([Ca2+]i) mobilisation in SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells and in primary cultured cat iris sphincter smooth muscle (CISM) cells. The stimulatory effects of the natriuretic peptides on cGMP production correlated well with their inhibitory effects on CCh-induced [Ca+1]i mobilisation, and these effects were significantly more pronounced in the SV-CISM-2 cells than in the CISM cells. Thus, ANP (1 microM) increased cGMP production in the SV-CISM-2 cells and CISM cells by 487- and 1.7-fold, respectively, and inhibited CCh-induced [Ca2+]i mobilisation by 95 and 3%, respectively. In the SV-CISM-2 cells, ANP and CNP dose dependently inhibited CCh-induced [Ca2+]i mobilisation with IC50 values of 156 and 412 nM, respectively, and dose dependently stimulated cGMP formation with EC50 values of 24 and 88 nM, respectively, suggesting that the inhibitory actions of the peptides are mediated through cGMP. Both ANP and CNP stimulated cGMP accumulation in a time-dependent manner. The potency of the cGMP-elevating agents were in the following order: ANP>CNP>SNP; these agents had no effect on cAMP accumulation. The inhibitory effects of the natriuretic peptides were mimicked by 8-Br-cGMP, a selective activator of cGMP-dependent protein kinase. LY83583, a soluble guanylyl cyclase inhibitor, significantly inhibited SNP-induced cGMP formation but had no effect on those of ANP and CNP. The basal activities of the guanylyl cyclase and the dissociation constant (Kd) and total receptor density (Bmax) values of the natriuretic peptide receptor for [125I]ANP binding were not significantly different between the two cell types. The cGMP system, as with the cAMP system, has a major inhibitory influence on the muscarinic responses in the iris sphincter smooth muscle cells, and SV-CISM-2 cells can serve as an excellent model for investigating the cross talk between cGMP and the Ca2+ signalling system.

  8. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities.

    PubMed

    Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki

    2017-01-01

    A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.

  9. Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae.

    PubMed

    Maiorella, B L; Blanch, H W; Wilke, C R

    1984-10-01

    Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in the buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl(2), (NH(4))(2)xSO(4) > NaCl, NH(4)Cl > KH(2)PO(4) > xylose, MgCl(2) > MgSO(4) > KCl. Reduction of the water activity alone is not an adequate predictor of the variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. We postulate that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they relate to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80%decline in cell mass production at 0.23 mol Ca(2+)/L and calcium is present at substantial concentration in many carbohydrate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than onethird of the feed rate; otherwise inhibitory effects will be observed.

  10. Evaluation of antimicrobial and anti-inflammatory activities of seed extracts from six Nigella species.

    PubMed

    Landa, Premysl; Marsik, Petr; Havlik, Jaroslav; Kloucek, Pavel; Vanek, Tomas; Kokoska, Ladislav

    2009-04-01

    Seed extracts from six species of the genus Nigella (Family Ranunculaceae)-Nigella arvensis, Nigella damascena, Nigella hispanica, Nigella nigellastrum, Nigella orientalis, and Nigella sativa-obtained by successive extraction with n-hexane, chloroform, and methanol, were tested for their antimicrobial activity against 10 strains of pathogenic bacteria and yeast using the microdilution method as well as for anti-inflammatory properties by in vitro cyclooxygenase (COX)-1 and COX-2 assay. Chemical characterization of active extracts was carried out including free and fixed fatty acid analysis. Comparison of antimicrobial activity showed that N. arvensis chloroform extract was the most potent among all species tested, inhibiting Gram-positive bacterial and yeast strains with minimum inhibitory concentration (MIC) values ranging from 0.25 to 1 mg/mL. With the exception of selective inhibitory action of n-hexane extract of N. orientalis on growth of Bacteroides fragilis (MIC = 0.5 mg/mL), we observed no antimicrobial activity for other Nigella species. Anti-inflammatory screening revealed that N. sativa, N. orientalis, N. hispanica, N. arvensis n-hexane, and N. hispanica chloroform extracts had strong inhibitory activity (more than 80%) on COX-1 and N. orientalis, N. arvensis, and N. hispanica n-hexane extracts were most effective against COX-2, when the concentration of extracts was 100 microg/mL in both COX assays. In conclusion, N. arvensis, N. orientalis, and N. hispanica seeds, for the first time examined for antimicrobial and anti-inflammatory effects, revealed their significant activity in one or both assays.

  11. Inhibitory effects of thymus-independent type 2 antigens on MHC class II-restricted antigen presentation: comparative analysis of carbohydrate structures and the antigen presenting cell.

    PubMed

    González-Fernández, M; Carrasco-Marín, E; Alvarez-Domínguez, C; Outschoorn, I M; Leyva-Cobián, F

    1997-02-25

    The role of thymus-independent type 2 (TI-2) antigens (polysaccharides) on the MHC-II-restricted processing of protein antigens was studied in vitro. In general, antigen presentation is inhibited when both peritoneal and splenic macrophages (M phi) as well as Küpffer cells (KC) are preincubated with acidic polysaccharides or branched dextrans. However, the inhibitory effect of neutral polysaccharides was minimal when KC were used as antigen presenting cells (APC). Morphological evaluation of the uptake of fluoresceinated polysaccharides clearly correlates with this selective and differential interference. Polysaccharides do not block MHC-I-restricted antigen presentation. Some chemical characteristics shared by different saccharides seem to be specially related to their potential inhibitory abilities: (i) those where two anomeric carbon atoms of two interlinked sugars and (ii) those containing several sulfate groups per disaccharide repeating unit. No polysaccharide being inhibitory in M phi abrogated antigen processing in other APC: lipopolysaccharide-activated B cells, B lymphoma cells, or dendritic cells (DC). Using radiolabeled polysaccharides it was observed that DC and B cells incorporated less radioactivity as a function of time than M phi. Morphological evaluation of these different APC incubated for extended periods of time with inhibitory concentrations of polysaccharides revealed intense cytoplasmic vacuolization in M phi but not in B cells or DC. The large majority of M phi lysosomes containing polysaccharides fail to fuse with incoming endocytic vesicles and delivery of fluid-phase tracers was reduced, suggesting that indigestible carbohydrates reduced the fusion of these loaded lysosomes with endosomes containing recently internalized tracers. It is suggested that the main causes of this antigen presentation blockade are (i) the chemical characteristics of certain carbohydrates and whether the specific enzymatic machinery for their intracellular degradation exists; and (ii) the different phagocytic abilities of distinct APC populations, fluid-phase pinocytosis and receptor-mediated saccharide uptake, and existence of a differential antigen-processing pathway in M phi and DC or B cells, which could be based on a polysaccharide-inhibited step present in M phi but unaffected or irrelevant in both B cells and DC.

  12. Antifungal properties of fermentates and their potential to replace sorbate and propionate in pound cake.

    PubMed

    Samapundo, S; Devlieghere, F; Vroman, A; Eeckhout, M

    2016-11-21

    The major objective of this study was to assess the antifungal activities of commercially available 'clean label' fermentates and their potential to replace the preservative function of sorbate and propionate in cake. This study was performed in two parts. In the first part of the study the inhibitory activities of selected fermentates - FA, FB, FC and FD - towards Aspergillus tritici and Aspergillus amstelodami were assessed as a function of pH (5.0-6.5) on malt extract agar (MEA). In the second part of the study, challenge, shelf-life and sensorial tests were used to determine the suitability of these fermentates to replace potassium sorbate and calcium propionate in quarter pound cake. All the fermentates evaluated in this study all had significant (p<0.05) inhibitory activities towards A. tritici and A. amstelodami within the recommended dosage range for application in bakery products. In all cases, the inhibitory activity of the fermentates increased with a decrease in the pH and an increase in concentration. FC was generally the most inhibitory whilst FD was the least inhibitory. Significant (p<0.05) synergistic interactions were determined to occur between the effects of pH and concentration for all fermentates evaluated in this study. The sensorial tests with FC showed that cakes produced with ≤1% FC (on basis of the batter) did not differ significantly (p>0.05) in flavour from the reference cake (0.5% calcium propionate and 0.54% potassium sorbate). However, the challenge and shelf-life tests showed that cakes produced with ≤1% FC were not as microbiologically shelf-stable as the reference cake, especially when sliced. Therefore, it can be concluded that whilst fermentates have appreciable antifungal effects, their use could potentially result in reduced shelf-stabilities. Robust challenge and shelf-life tests would be recommended before the marketing of cakes were propionate and/or sorbate has been replaced to ensure accurate shelf-lives are stated. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts.

    PubMed

    Wu, Chi-Hao; Yen, Gow-Chin

    2005-04-20

    The objective of this study was to investigate the inhibitory effect of naturally occurring flavonoids on individual stage of protein glycation in vitro using the model systems of delta-Gluconolactone assay (early stage), BSA-methylglyoxal assay (middle stage), BSA-glucose assay, and G.K. peptide-ribose assay (last stage). In the early stage of protein glycation, luteolin, qucertin, and rutin exhibited significant inhibitory activity on HbA1C formation (p < 0.01), which were more effective than that of aminoguanidine (AG, 10 mM), a well-known inhibitor for advanced glycation endproducts (AGEs). For the middle stage, luteolin and rutin developed more significant inhibitory effect on methylglyoxal-medicated protein modification, and the IC50's were 66.1 and 71.8 microM, respectively. In the last stage of glycation, luteolin was found to be potent inhibitors of both the AGEs formation and the subsequent cross-linking of proteins. In addition, phenyl-tert-butyl-nitron served as a spin-trapping agent, and electron spin resonance (ESR) was used to explore the possible mechanism of the inhibitory effect of flavonoids on glycation. The results indicated that protein glycation was accompanied by oxidative reactions, as the ESR spectra showed a clear-cut radical signal. Statistical analysis showed that inhibitory capability of flavonoids against protein glycation was remarkably related to the scavenging free radicals derived from glycoxidation process (r = 0.79, p < 0.01). Consequently, the inhibitory mechanism of flavonoids against glycation was, at least partly, due to their antioxidant properties.

  14. Attenuation of HIV-associated human B cell exhaustion by siRNA downregulation of inhibitory receptors

    PubMed Central

    Kardava, Lela; Moir, Susan; Wang, Wei; Ho, Jason; Buckner, Clarisa M.; Posada, Jacqueline G.; O’Shea, Marie A.; Roby, Gregg; Chen, Jenny; Sohn, Hae Won; Chun, Tae-Wook; Pierce, Susan K.; Fauci, Anthony S.

    2011-01-01

    Chronic immune activation in HIV-infected individuals leads to accumulation of exhausted tissue-like memory B cells. Exhausted lymphocytes display increased expression of multiple inhibitory receptors, which may contribute to the inefficiency of HIV-specific antibody responses. Here, we show that downregulation of B cell inhibitory receptors in primary human B cells led to increased tissue-like memory B cell proliferation and responsiveness against HIV. In human B cells, siRNA knockdown of 9 known and putative B cell inhibitory receptors led to enhanced B cell receptor–mediated (BCR-mediated) proliferation of tissue-like memory but not other B cell subpopulations. The strongest effects were observed with the putative inhibitory receptors Fc receptor–like–4 (FCRL4) and sialic acid–binding Ig-like lectin 6 (Siglec-6). Inhibitory receptor downregulation also led to increased levels of HIV-specific antibody-secreting cells and B cell–associated chemokines and cytokines. The absence of known ligands for FCRL4 and Siglec-6 suggests these receptors may regulate BCR signaling through their own constitutive or tonic signaling. Furthermore, the extent of FCLR4 knockdown effects on BCR-mediated proliferation varied depending on the costimulatory ligand, suggesting that inhibitory receptors may engage specific pathways in inhibiting B cell proliferation. These findings on HIV-associated B cell exhaustion define potential targets for reversing the deleterious effect of inhibitory receptors on immune responses against persistent viral infections. PMID:21633172

  15. In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation.

    PubMed Central

    Yates, J L; Arfsten, A E; Nomura, M

    1980-01-01

    Escherichia coli ribosomal protein L1 (0.5 micro M) was found to inhibit the synthesis of both proteins of the L11 operon, L11 and L1, but not the synthesis of other proteins directed by lambda rifd 18 DNA. Similarly, S4 (1 micro M) selectively inhibited the synthesis of three proteins of the alpha operon, S13, S11, and S4, directed by lambda spcI DNA or a restriction enzyme fragment obtained from this DNA. S8 (3.6 micro M) also showed preferential inhibitory effects on the synthesis of some proteins encoded in the spc operon, L24 and L5 (and probably S14 and S8), directed by lambda spcl DNA or a restriction enzyme fragment carrying the genes for these proteins. The inhibitory effect of L1 was observed only with L1 and not with other proteins examined, including S4 and S8. Similarly, the effect of S4 was not observed with L1 or S8, and that of S8 was not seen with L1 or S4. Inhibition was shown to take place at the level of translation rather than transcription. Thus, at least some ribosomal proteins (L1 S4, and S8) have the ability to cause selective translational inhibition of the synthesis of certain ribosomal proteins whose genes are in the same operon as their own. These results support the hypothesis that certain free ribosomal proteins not assembled into ribosomes act as "autogenous" feedback inhibitors to regulate the synthesis of ribosomal proteins. Images PMID:6445562

  16. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors

    PubMed Central

    Anton, Olga M.; Vielkind, Susina; Peterson, Mary E.; Tagaya, Yutaka; Long, Eric O.

    2015-01-01

    IL-15 bound to the IL-15 receptor α chain (IL-15Rα) is presented in trans to cells bearing the IL-2 receptor β and γc chains. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor–ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR–HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to down-regulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A+ cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Co-engagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15 dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis. PMID:26453750

  17. Synthesis, SAR Study and Evaluation of Mannich and Schiff Bases of Pyrazol-5(4H)-one Moiety Containing 3-(Hydrazinyl)-2-phenylquinazolin-4(3H)-one

    PubMed Central

    Sivakumar, K. K.; Rajasekharan, A.; Rao, R.; Narasimhan, B.

    2013-01-01

    In the present investigation, a series of 12 Mannich bases (QP1-12) and 5 Schiff bases (QSP1-5) of pyrazol-5(4H)-one moiety containing 3-(hydrazinyl)-2-phenylquinazolin-4(3H)-one has been synthesized and characterized by physicochemical as well as spectral means. The synthesized Mannich and Schiff bases were screened for their preliminary antimicrobial activity against Gram-positive and Gram-negative bacterial as well as fungal strains by the determination of zone of inhibition. Mannich bases (QP1-12) were found to be more potent antibacterial agents against Gram-positive bacteria, whereas Schiff bases (QSP1-5) were more potent against Gram-negative bacteria and fungi. Minimum inhibitory concentration result demonstrated that Mannich base compound (QP7) having ortho -OH and para -COOH group showed some improvement in antibacterial activity (minimum inhibitory concentration of 48.88×10−3 μM/ml) among the tested Gram-positive organisms and it also exhibit minimum inhibitory concentration of value of 12.22×10−3 μM/ml for Klebsiella pneumoniae. The antitubercular activity of synthesized compounds against Mycobacterium tuberculosis (H37Rv) was determined using microplate alamar blue assay. Compound QP11 showed appreciable antitubercular activity (minimum inhibitory concentration of 6.49×10−3 μM/ml) which was more active than the standard drugs, ethambutol (minimum inhibitory concentration of 7.60×10−3 μM/ml) and ciprofloxacin (9.4×10−3 μM/ml). Compounds QP11, QP9, QSP1, QSP2, and QSP5 have good selective index and may be selected as a lead compound for the development of novel antitubercular agents. PMID:24302802

  18. In situ product removal in fermentation systems: improved process performance and rational extractant selection.

    PubMed

    Dafoe, Julian T; Daugulis, Andrew J

    2014-03-01

    The separation of inhibitory compounds as they are produced in biotransformation and fermentation systems is termed in situ product removal (ISPR). This review examines recent ISPR strategies employing several classes of extractants including liquids, solids, gases, and combined extraction systems. Improvement through the simple application of an auxiliary phase are tabulated and summarized to indicate the breadth of recent ISPR activities. Studies within the past 5 years that have highlighted and have discussed "second phase" properties, and that have an effect on fermentation performance, are particular focus of this review. ISPR, as a demonstrably effective processing strategy, continues to be widely adopted as more applications are explored; however, focus on the properties of extractants and their rational selection based on first principle considerations will likely be key to successfully applying ISPR to more challenging target molecules.

  19. Contralateral Associated Movements Correlate with Poorer Inhibitory Control, Attention and Visual Perception in Preschool Children.

    PubMed

    Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Zysset, Annina E; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Puder, Jardena J; Kriemler, Susi; Munsch, Simone; Jenni, Oskar G

    2017-10-01

    Contralateral associated movements (CAMs) frequently occur in complex motor tasks. We investigated whether and to what extent CAMs are associated with inhibitory control among preschool children in the Swiss Preschoolers' Health Study. Participants were 476 healthy, typically developing children (mean age = 3.88 years; 251 boys) evaluated on two consecutive afternoons. The children performed the Zurich Neuromotor Assessment, the statue subtest of the Neuropsychological Assessment for Children (NEPSY), and cognitive tests of the Intelligence and Development Scales-Preschool (IDS-P). CAMs were associated with poor inhibitory control on the statue test and poor selective attention and visual perception on the IDS-P. We attributed these findings to preschoolers' general immaturity of the central nervous system.

  20. Thalamic inhibition: diverse sources, diverse scales

    PubMed Central

    Halassa, Michael M.; Acsády, László

    2016-01-01

    The thalamus is the major source of cortical inputs shaping sensation, action and cognition. Thalamic circuits are targeted by two major inhibitory systems: the thalamic reticular nucleus (TRN) and extra-thalamic inhibitory (ETI) inputs. A unifying framework of how these systems operate is currently lacking. Here, we propose that TRN circuits are specialized to exert thalamic control at different spatiotemporal scales. Local inhibition of thalamic spike rates prevails during attentional selection whereas global inhibition more likely during sleep. In contrast, the ETI (arising from basal ganglia, zona incerta, anterior pretectum and pontine reticular formation) provides temporally-precise and focal inhibition, impacting spike timing. Together, these inhibitory systems allow graded control of thalamic output, enabling thalamocortical operations to dynamically match ongoing behavioral demands. PMID:27589879

  1. Too (mentally) busy to chill: Cognitive load and inhibitory cues interact to moderate triggered displaced aggression.

    PubMed

    Vasquez, Eduardo A; Howard-Field, Joanna

    2016-11-01

    Inhibitory information can be expected to reduce triggered displaced aggression by signaling the potential for negative consequences as a result of acting aggressively. We examined how cognitive load might interfere with these aggression-reducing effects of inhibitory cues. Participants (N = 80) were randomly assigned to a condition in a 2 (cognitive load: high/low) × 2 (inhibiting cues: yes/no) between-subjects design. Following procedures in the TDA paradigm, participants received an initial provocation from the experimenter and a subsequent triggering annoyance from another individual. In the inhibitory cue condition, participants were told, before they had the opportunity to aggress, that others would learn of their aggressive responses. In the high cognitive load condition, participants rehearsed a 10-digit number while aggressing. Those in the low cognitive load condition rehearsed a three digit number. We found significant main effects of cognitive load and inhibitory cue, which were qualified by the expected load × inhibitory cue interaction. Thus, inhibitory cues reduced displaced aggression under low-cognitive load. However, when participants in the inhibitory cue condition were under cognitive load, aggression increased, suggesting that mental busyness interfered with the full use of inhibitory information. Aggr. Behav. 42:598-604, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives.

    PubMed

    Liu, Jinbing; Chen, Changhong; Wu, Fengyan; Zhao, Liangzhong

    2013-07-01

    A series of chalcones and their derivatives were synthesized, and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant inhibitory activity, and four compounds exhibited more potent tyrosinase inhibitory activity than the reference standard inhibitor kojic acid (5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one). Specifically, 1-(-1-(4-methoxyphen- yl)-3-phenylallylidene)thiosemicarbazide (18) exhibited the most potent tyrosinase inhibitory activity with IC₅₀ value of 0.274 μM. The inhibition mechanism analysis of 1-(-1-(2,4-dihydroxyphenyl)-3-phenylallylidene) thiosemicarbazide (16) and 1-(-1-(4-methoxyphenyl)-3-phenylallylidene) thiosemicarbazide (18) demonstrated that the inhibitory effects of the two compounds on the tyrosinase were irreversible. Preliminary structure activity relationships' analysis suggested that further development of such compounds might be of interest. © 2013 John Wiley & Sons A/S.

  3. Auditory cortical plasticity induced by intracortical microstimulation under pharmacological blockage of inhibitory synapses.

    PubMed

    Yokota, R; Takahashi, H; Funamizu, A; Uchihara, M; Suzurikawa, J; Kanzaki, R

    2006-01-01

    Electrical stimulation that can reorganize our neural system has a potential for promising neurorehabilitation. We previously demonstrated that temporally controlled intracortical microstimulation (ICMS) could induce the spike time-dependant plasticity and modify tuning properties of cortical neurons as desired. A 'pairing' ICMS following tone-induced excitatory post-synaptic potentials (EPSPs) produced potentiation in response to the paired tones, while an 'anti-pairing' ICMS preceding the tone-induced EPSPs resulted in depression. However, the conventional ICMS affected both excitatory and inhibitory synapses, and thereby could not quantify net excitatory synaptic effects. In the present work, we evaluated the ICMS effects under a pharmacological blockage of inhibitory inputs. The pharmacological blockage enhanced the ICMS effects, suggesting that inhibitory inputs determine a plastic degree of the neural system. Alternatively, the conventional ICMS had an inadequate timing to control excitatory synaptic inputs, because inhibitory synapse determined the latency of total neural inputs.

  4. Effects of Trace Amine-associated Receptor 1 Agonists on the Expression, Reconsolidation, and Extinction of Cocaine Reward Memory.

    PubMed

    Liu, Jian-Feng; Thorn, David A; Zhang, Yanan; Li, Jun-Xu

    2016-07-01

    As a modulator of dopaminergic system, trace amine-associated receptor 1 has been shown to play a critical role in regulating the rewarding properties of additive drugs. It has been demonstrated that activation of trace amine-associated receptor 1 decreased the abuse-related behaviors of cocaine in rats. However, the role of trace amine-associated receptor 1 in specific stages of cocaine reward memory is still unclear. Here, using a cocaine-induced conditioned place preference model, we tested the effects of a selective trace amine-associated receptor 1 agonist RO5166017 on the expression, reconsolidation, and extinction of cocaine reward memory. We found that RO5166017 inhibited the expression but not retention of cocaine-induced conditioned place preference. RO5166017 had no effect on the reconsolidation of cocaine reward memory. Pretreatment with RO5166017 before extinction hindered the formation of extinction long-term memory. RO5166017 did not affect the movement during the conditioned place preference test, indicating the inhibitory effect of RO5166017 on the expression of cocaine-induced conditioned place preference was not caused by locomotion inhibition. Using a cocaine i.v. self-administration model, we found that the combined trace amine-associated receptor 1 partial agonist RO5263397 with extinction had no effect on the following cue- and drug-induced reinstatement of cocaine-seeking behavior. Repeated administration of the trace amine-associated receptor 1 agonist during extinction showed a continually inhibitory effect on the expression of cocaine reward memory both in cocaine-induced conditioned place preference and cocaine self-administration models. Taken together, these results indicate that activation of trace amine-associated receptor 1 specifically inhibited the expression of cocaine reward memory. The inhibitory effect of trace amine-associated receptor 1 agonists on cocaine reward memory suggests that trace amine-associated receptor 1 agonists could be a promising agent to prevent cocaine relapse. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  5. Synergistic Effects of Sulfated Polysaccharides from Mexican Seaweeds against Measles Virus

    PubMed Central

    Morán-Santibañez, Karla; Cruz-Suárez, Lucia Elizabeth; Ricque-Marie, Denis; Robledo, Daniel; Freile-Pelegrín, Yolanda; Peña-Hernández, Mario A.; Rodríguez-Padilla, Cristina

    2016-01-01

    Sulfated polysaccharides (SPs) extracted from five seaweed samples collected or cultivated in Mexico (Macrocystis pyrifera, Eisenia arborea, Pelvetia compressa, Ulva intestinalis, and Solieria filiformis) were tested in this study in order to evaluate their effect on measles virus in vitro. All polysaccharides showed antiviral activity (as measured by the reduction of syncytia formation) and low cytotoxicity (MTT assay) at inhibitory concentrations. SPs from Eisenia arborea and Solieria filiformis showed the highest antiviral activities (confirmed by qPCR) and were selected to determine their combined effect. Their synergistic effect was observed at low concentrations (0.0274 μg/mL and 0.011 μg/mL of E. arborea and S. filiformis SPs, resp.), which exhibited by far a higher inhibitory effect (96% syncytia reduction) in comparison to the individual SP effects (50% inhibition with 0.275 μg/mL and 0.985 μg/mL of E. arborea and S. filiformis, resp.). Time of addition experiments and viral penetration assays suggest that best activities of these SPs occur at different stages of infection. The synergistic effect would allow reducing the treatment dose and toxicity and minimizing or delaying the induction of antiviral resistance; sulfated polysaccharides of the tested seaweed species thus appear as promising candidates for the development of natural antiviral agents. PMID:27419139

  6. Inhibitory effect and mechanism of acarbose combined with gymnemic acid on maltose absorption in rat intestine

    PubMed Central

    Luo, Hong; Wang, Le Feng; Imoto, Toshiaki; Hiji, Yasutake

    2001-01-01

    AIM: To compare the combinative and individual effect of acarbose and gymnemic acid (GA) on maltose absorption and hydrolysis in small intestine to determine whether nutrient control in diabetic care can be improved by combination of them. METHODS: The absorption and hydrolysis of maltose were studied by cyclic perfusion of intestinal loops in situ and motility of the intestine was recorded with the intestinal ring in vitro using Wistar rats. RESULTS: The total inhibitory rate of maltose absorption was improved by the combination of GA (0.1 g/L-1.0 g/L) and acarbose (0.1 mmol/L-2.0 mmol/L) throughout their effective duration (P < 0.05, U test of Mann-Whitney), although the improvement only could be seen at a low dosage during the first hour. With the combination, inhibitory duration of acarbose on maltose absorption was prolonged to 3 h and the inhibitory effect onset of GA was fastened to 15 min. GA suppressed the intestinal mobility with a good correlation (r = 0.98) to the inhibitory effect of GA on maltose absorption and the inhibitory effect of 2 mmol/L (high dose) acarbose on maltose hydrolysis was dual modulated by 1 g/L GA in vivo indicating that the combined effects involved the functional alteration of intestinal barriers. CONCLUSION: There are augmented effects of acarbose and GA, which involve pre-cellular and paracellular barriers. Diabetic care can be improved by employing the combination. PMID:11819725

  7. Effects of Display Complexity on Location and Feature Inhibition

    PubMed Central

    K.Hu, Frank; Fan, Zhiwei; Samuel, Arthur G.; He, ShuChang

    2013-01-01

    Inhibition of return (IOR) refers to the slowing of reaction times to a target when a preceding stimulus has occupied the same location in space. Recently, we observed a robust inhibitory effect for color and shape in moderately complex displays: It is more difficult to detect a target with a particular nonspatial attribute if a stimulus with the same attribute was recently the focus of attention. Such nonspatial inhibitory effects have not generally been found in simpler displays. In the present study, we test how location-based and nonspatial inhibitory effects vary as a function of display complexity (8, 6, 4 and 2 locations). The results demonstrated that: (1) location based inhibition effects were much stronger in more complex displays, whereas the nonspatial inhibition was only slightly stronger in more complex displays; (2) Nonspatial inhibitory effects emerged at longer SOAs than location-based effects; and (3) Nonspatial inhibition only appeared when cues and targets occurred in the same locations, confirming that pure feature repetition does not produce a cost. Taken together, the results are consistent with perceptual processes based on object files that are organized by spatial location. Using somewhat more complex displays than are most commonly employed provides a more sensitive method to observe the role of inhibitory processes in facilitating visual search. In addition, using a relatively wide set of cue-target timing relationships is necessary in order to clearly see how inhibitory effects operate. PMID:23907617

  8. Which Approach Is More Effective in the Selection of Plants with Antimicrobial Activity?

    PubMed Central

    Silva, Ana Carolina Oliveira; Santana, Elidiane Fonseca; Saraiva, Antonio Marcos; Coutinho, Felipe Neves; Castro, Ricardo Henrique Acre; Pisciottano, Maria Nelly Caetano; Amorim, Elba Lúcia Cavalcanti; Albuquerque, Ulysses Paulino

    2013-01-01

    The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts was Staphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the three Candida strains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities. PMID:23878595

  9. The COX-2 Selective Blocker Etodolac Inhibits TNFα-Induced Apoptosis in Isolated Rabbit Articular Chondrocytes

    PubMed Central

    Kumagai, Kousuke; Kubo, Mitsuhiko; Imai, Shinji; Toyoda, Futoshi; Maeda, Tsutomu; Okumura, Noriaki; Matsuura, Hiroshi; Matsusue, Yoshitaka

    2013-01-01

    Chondrocyte apoptosis contributes to the disruption of cartilage integrity in osteoarthritis (OA). Recently, we reported that activation of volume-sensitive Cl− current (ICl,vol) mediates cell shrinkage, triggering apoptosis in rabbit articular chondrocytes. A cyclooxygenase (COX) blocker is frequently used for the treatment of OA. In the present study, we examined in vitro effects of selective blockers of COX on the TNFα-induced activation of ICl,vol in rabbit chondrocytes using the patch-clamp technique. Exposure of isolated chondrocytes to TNFα resulted in an obvious increase in membrane Cl− conductance. The TNFα-evoked Cl− current exhibited electrophysiological and pharmacological properties similar to those of ICl,vol. Pretreatment of cells with selective COX-2 blocker etodolac markedly inhibited ICl,vol activation by TNFα as well as subsequent apoptotic events such as apoptotic cell volume decrease (AVD) and elevation of caspase-3/7 activity. In contrast, a COX-1 blocker had no effect on the decrease in cell volume or the increase in caspase-3/7 activity induced by TNFα. Thus, the COX-2-selective blocker had an inhibitory effect on TNFα-induced apoptotic events, which suggests that this drug would have efficacy for the treatment of OA. PMID:24084720

  10. Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects.

    PubMed

    Zielińska, Ewelina; Baraniak, Barbara; Karaś, Monika

    2017-09-02

    This study investigated the effect of heat treatment of edible insects on antioxidant and anti-inflammatory activities of peptides obtained by in vitro gastrointestinal digestion and absorption process thereof. The antioxidant potential of edible insect hydrolysates was determined as free radical-scavenging activity, ion chelating activity, and reducing power, whereas the anti-inflammatory activity was expressed as lipoxygenase and cyclooxygenase-2 inhibitory activity. The highest antiradical activity against DPPH • (2,2-diphenyl-1-picrylhydrazyl radical) was noted for a peptide fraction from baked cricket Gryllodes sigillatus hydrolysate (IC 50 value 10.9 µg/mL) and that against ABTS •+ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical) was the highest for raw mealworm Tenebrio molitor hydrolysate (inhibitory concentration (IC 50 value) 5.3 µg/mL). The peptides obtained from boiled locust Schistocerca gregaria hydrolysate showed the highest Fe 2+ chelation ability (IC 50 value 2.57 µg/mL); furthermore, the highest reducing power was observed for raw G. sigillatus hydrolysate (0.771). The peptide fraction from a protein preparation from the locust S. gregaria exhibited the most significant lipoxygenase and cyclooxygenase-2 inhibitory activity (IC 50 value 3.13 µg/mL and 5.05 µg/mL, respectively).

  11. Feature-based attention elicits surround suppression in feature space.

    PubMed

    Störmer, Viola S; Alvarez, George A

    2014-09-08

    It is known that focusing attention on a particular feature (e.g., the color red) facilitates the processing of all objects in the visual field containing that feature [1-7]. Here, we show that such feature-based attention not only facilitates processing but also actively inhibits processing of similar, but not identical, features globally across the visual field. We combined behavior and electrophysiological recordings of frequency-tagged potentials in human observers to measure this inhibitory surround in feature space. We found that sensory signals of an attended color (e.g., red) were enhanced, whereas sensory signals of colors similar to the target color (e.g., orange) were suppressed relative to colors more distinct from the target color (e.g., yellow). Importantly, this inhibitory effect spreads globally across the visual field, thus operating independently of location. These findings suggest that feature-based attention comprises an excitatory peak surrounded by a narrow inhibitory zone in color space to attenuate the most distracting and potentially confusable stimuli during visual perception. This selection profile is akin to what has been reported for location-based attention [8-10] and thus suggests that such center-surround mechanisms are an overarching principle of attention across different domains in the human brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects

    PubMed Central

    Zielińska, Ewelina; Baraniak, Barbara; Karaś, Monika

    2017-01-01

    This study investigated the effect of heat treatment of edible insects on antioxidant and anti-inflammatory activities of peptides obtained by in vitro gastrointestinal digestion and absorption process thereof. The antioxidant potential of edible insect hydrolysates was determined as free radical-scavenging activity, ion chelating activity, and reducing power, whereas the anti-inflammatory activity was expressed as lipoxygenase and cyclooxygenase-2 inhibitory activity. The highest antiradical activity against DPPH• (2,2-diphenyl-1-picrylhydrazyl radical) was noted for a peptide fraction from baked cricket Gryllodes sigillatus hydrolysate (IC50 value 10.9 µg/mL) and that against ABTS•+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical) was the highest for raw mealworm Tenebrio molitor hydrolysate (inhibitory concentration (IC50 value) 5.3 µg/mL). The peptides obtained from boiled locust Schistocerca gregaria hydrolysate showed the highest Fe2+ chelation ability (IC50 value 2.57 µg/mL); furthermore, the highest reducing power was observed for raw G. sigillatus hydrolysate (0.771). The peptide fraction from a protein preparation from the locust S. gregaria exhibited the most significant lipoxygenase and cyclooxygenase-2 inhibitory activity (IC50 value 3.13 µg/mL and 5.05 µg/mL, respectively). PMID:28869499

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K{sup +}-induced ({sup 3}H)5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K{sup +} used to depolarize the synaptosomes and the concentration of external Ca{sup 2+}. Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of ({sup 3}H)5-HT releasemore » induced by the Ca{sup 2+}-ionophore A 23187 or Ca{sup 2+}-independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K{sup +}-induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca{sup 2+} channels and Ca{sup 2+} entry.« less

  14. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: development and biopharmacological profiling of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor.

    PubMed

    Pisani, Leonardo; Muncipinto, Giovanni; Miscioscia, Teresa Fabiola; Nicolotti, Orazio; Leonetti, Francesco; Catto, Marco; Caccia, Carla; Salvati, Patricia; Soto-Otero, Ramon; Mendez-Alvarez, Estefania; Passeleu, Celine; Carotti, Angelo

    2009-11-12

    In an effort to discover novel selective monoamine oxidase (MAO) B inhibitors with favorable physicochemical and pharmacokinetic profiles, 7-[(m-halogeno)benzyloxy]coumarins bearing properly selected polar substituents at position 4 were designed, synthesized, and evaluated as MAO inhibitors. Several compounds with MAO-B inhibitory activity in the nanomolar range and excellent MAO-B selectivity (selectivity index SI > 400) were identified. Structure-affinity relationships and docking simulations provided valuable insights into the enzyme-inhibitor binding interactions at position 4, which has been poorly explored. Furthermore, computational and experimental studies led to the identification and biopharmacological characterization of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate 22b (NW-1772) as an in vitro and in vivo potent and selective MAO-B inhibitor, with rapid blood-brain barrier penetration, short-acting and reversible inhibitory activity, slight inhibition of selected cytochrome P450s, and low in vitro toxicity. On the basis of this preliminary preclinical profile, inhibitor 22b might be viewed as a promising clinical candidate for the treatment of neurodegenerative diseases.

  15. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit.

    PubMed

    Volkmann, Robert A; Fanger, Christopher M; Anderson, David R; Sirivolu, Venkata Ramana; Paschetto, Kathy; Gordon, Earl; Virginio, Caterina; Gleyzes, Melanie; Buisson, Bruno; Steidl, Esther; Mierau, Susanna B; Fagiolini, Michela; Menniti, Frank S

    2016-01-01

    GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.

  16. Cannabinoid 1 (CB1) receptors coupled to cholinergic motorneurones inhibit neurogenic circular muscle contractility in the human colon

    PubMed Central

    Hinds, Nicholas M; Ullrich, Katja; Smid, Scott D

    2006-01-01

    The effects of cannabinoid subtype 1 (CB1) receptor activation were determined on smooth muscle, inhibitory and excitatory motorneuronal function in strips of human colonic longitudinal muscle (LM) and circular muscle (CM) in vitro. Electrical field stimulation (EFS; 0.5–20 Hz, 50 V) evoked a relaxation in LM and CM precontracted with a neurokinin-2 (NK-2) selective receptor agonist (β-ala8-neurokinin A; 10−6 M) in the presence of atropine (10−6 M); this was unaltered following pretreatment with the CB1-receptor selective agonist arachidonyl-2-chloroethylamide (ACEA; 10−6 M). In the presence of nitric oxide synthase blockade with N-nitro-L-arginine (10−4 M), EFS evoked a frequency-dependent ‘on-contraction' during stimulation and an ‘off-contraction' following stimulus cessation. On-contractions were significantly inhibited in CM strips by pretreatment with ACEA (10−6 M). These inhibitory effects were reversed in the presence of the CB1 receptor-selective antagonist N-(piperidine-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (10−7 M). ACEA did not alter LM or CM contractile responses to acetylcholine or NK-2 receptor-evoked contraction. Immunohistochemical studies revealed a colocalisation of CB1 receptors to cholinergic neurones in the human colon based on colabelling with choline acetyltransferase, in addition to CB1 receptor labelling in unidentified structures in the CM. In conclusion, activation of CB1 receptors coupled to cholinergic motorneurones selectively and reversibly inhibits excitatory nerve transmission in colonic human colonic CM. These results provide evidence of a direct role for cannabinoids in the modulation of motor activity in the human colon by coupling to cholinergic motorneurones. PMID:16520743

  17. Region-specificity of GABAA receptor mediated effects on orientation and direction selectivity in cat visual cortical area 18.

    PubMed

    Jirmann, Kay-Uwe; Pernberg, Joachim; Eysel, Ulf T

    2009-01-01

    The role of GABAergic inhibition in orientation and direction selectivity has been investigated with the GABA(A)-Blocker bicuculline in the cat visual cortex, and results indicated a region specific difference of functional contributions of GABAergic inhibition in areas 17 and 18. In area 17 inhibition appeared mainly involved in sculpturing orientation and direction tuning, while in area 18 inhibition seemed more closely associated with temporal receptive field properties. However, different types of stimuli were used to test areas 17 and 18 and further studies performed in area 17 suggested an important influence of the stimulus type (single light bars vs. moving gratings) on the evoked responses (transient vs. sustained) and inhibitory mechanisms (GABA(A) vs. GABA(B)) which in turn might be more decisive for the specific results than the cortical region. To insert the missing link in this chain of arguments it was necessary to study GABAergic inhibition in area 18 with moving light bars, which has not been done so far. Therefore, in the present study we investigated area 18 cells responding to oriented moving light bars with extracellular recordings and reversible microiontophoretic blockade of GABAergig inhibition with bicuculline methiodide. The majority of neurons was characterized by a pronounced orientation specificity and variable degrees of direction selectivity. GABA(A)ergic inhibition significantly influenced preferred orientation and preferred direction in area 18. During the action of bicuculline orientation tuning width increased and orientation and direction selectivity indices decreased. Our results obtained in area 18 with moving bar stimuli, although in the proportion of affected cells similar to those described in area 17, quantitatively matched the findings for direction and orientation specificity obtained with moving gratings in area 18. Accordingly, stimulus type is not decisive in area 18 and the GABA(A) dependent, inhibitory intracortical computations involved in orientation specificity are indeed region-specific and in comparison to area 17 less effective in area 18.

  18. A Critical Role for the Transient Receptor Potential Channel Type 6 in Human Platelet Activation

    PubMed Central

    Conlon, Christine; Khasawneh, Fadi T.

    2015-01-01

    While calcium signaling is known to play vital roles in platelet function, the mechanisms underlying its receptor-operated calcium entry component (ROCE) remain poorly understood. It has been proposed, but never proven in platelets, that the canonical transient receptor potential channel-6 (TRPC6) mediates ROCE. Nonetheless, we have previously shown that the mouse TRPC6 regulates hemostasis, thrombogenesis by regulating platelet aggregation. In the present studies, we used a pharmacological approach to characterize the role of TRPC6 in human platelet biology. Thus, interestingly, we observed that a TRPC6 inhibitor exerted significant inhibitory effects on human platelet aggregation in a thromboxane receptor (TPR)-selective manner; no additional inhibition was observed in the presence of the calcium chelator BAPTA. This inhibitor also significantly inhibited human platelet secretion (dense and alpha granules), integrin IIb-IIIa, Akt and ERK phosphorylation, again, in a TPR-selective manner; no effects were observed in response to ADP receptor stimulation. Furthermore, there was a causal relationship between these inhibitory effects, and the capacity of the TRPC6 inhibitor to abrogate elevation in intracellular calcium, that was again found to be TPR-specific. This effect was not found to be due to antagonism of TPR, as the TRPC6 inhibitor did not displace the radiolabeled antagonist [3H]SQ29,548 from its binding sites. Finally, our studies also revealed that TRPC6 regulates human clot retraction, as well as physiological hemostasis and thrombus formation, in mice. Taken together, our findings demonstrate, for the first time, that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Moreover, these data highlight TRPC6 as a novel promising therapeutic strategy for managing thrombotic disorders. PMID:25928636

  19. FABP4 blocker attenuates colonic hypomotility and modulates white adipose tissue-derived hormone levels in mouse models mimicking constipation-predominant IBS.

    PubMed

    Mosińska, P; Jacenik, D; Sałaga, M; Wasilewski, A; Cygankiewicz, A; Sibaev, A; Mokrowiecka, A; Małecka-Panas, E; Pintelon, I; Storr, M; Timmermans, J P; Krajewska, W M; Fichna, J

    2018-05-01

    The role of fatty acid binding protein 4 (FABP4) in lower gastrointestinal (GI) motility is unknown. We aimed to verify the effect of inhibition of FABP4 on GI transit in vivo, and to determine the expression of FABP4 in mouse and human tissues. Fatty acid binding protein 4 inhibitor, BMS309403, was administered acutely or chronically for 6 and 13 consecutive days and its effect on GI transit was assessed in physiological conditions and in loperamide-induced constipation. Intracellular recordings were made to examine the effects of BMS309403 on colonic excitatory and inhibitory junction potentials. Abdominal pain was evaluated using behavioral pain response. Localization and expression of selected adipokines were determined in the mouse colon and serum using immunohistochemistry and Enzyme-Linked ImmunoSorbent Assay respectively. mRNA expression of FABP4 and selected adipokines in colonic and serum samples from irritable bowel syndrome (IBS) patients and control group were assessed. Acute injection of BMS309403 significantly increased GI motility and reversed inhibitory effect of loperamide. BMS309403 did not change colonic membrane potentials. Chronic treatment with BMS309403 increased the number of pain-induced behaviors. In the mouse serum, level of resistin was significantly decreased after acute administration; no changes in adiponectin level were detected. In the human serum, level of adiponectin and resistin, but not of FABP4, were significantly elevated in patients with constipation-IBS (IBS-C). FABP4 mRNA expression was significantly downregulated in the human colon in IBS-C. Fatty acid binding protein 4 may be involved in IBS pathogenesis and become a novel target in the treatment of constipation-related diseases. © 2017 John Wiley & Sons Ltd.

  20. Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Kim, Sung Bong; Kang, Seong Woo; Han, Sung Ok; Park, Chulhwan; Kim, Seung Wook

    2012-01-01

    In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.

  1. Cannabidiol-2',6'-dimethyl ether, a cannabidiol derivative, is a highly potent and selective 15-lipoxygenase inhibitor.

    PubMed

    Takeda, Shuso; Usami, Noriyuki; Yamamoto, Ikuo; Watanabe, Kazuhito

    2009-08-01

    The inhibitory effect of nordihydroguaiaretic acid (NDGA) (a nonselective lipoxygenase (LOX) inhibitor)-mediated 15-LOX inhibition has been reported to be affected by modification of its catechol ring, such as methylation of the hydroxyl group. Cannabidiol (CBD), one of the major components of marijuana, is known to inhibit LOX activity. Based on the phenomenon observed in NDGA, we investigated whether or not methylation of CBD affects its inhibitory potential against 15-LOX, because CBD contains a resorcinol ring, which is an isomer of catechol. Although CBD inhibited 15-LOX activity with an IC(50) value (50% inhibition concentration) of 2.56 microM, its monomethylated and dimethylated derivatives, CBD-2'-monomethyl ether and CBD-2',6'-dimethyl ether (CBDD), inhibited 15-LOX activity more strongly than CBD. The number of methyl groups in the resorcinol moiety of CBD (as a prototype) appears to be a key determinant for potency and selectivity in inhibition of 15-LOX. The IC(50) value of 15-LOX inhibition by CBDD is 0.28 microM, and the inhibition selectivity for 15-LOX (i.e., the 5-LOX/15-LOX ratio of IC(50) values) is more than 700. Among LOX isoforms, 15-LOX is known to be able to oxygenate cholesterol esters in the low-density lipoprotein (LDL) particle (i.e., the formation of oxidized LDL). Thus, 15-LOX is suggested to be involved in development of atherosclerosis, and CBDD may be a useful prototype for producing medicines for atherosclerosis.

  2. Discovery of an Orally Bioavailable Gonadotropin-Releasing Hormone Receptor Antagonist.

    PubMed

    Kim, Seon-Mi; Lee, Minhee; Lee, So Young; Park, Euisun; Lee, Soo-Min; Kim, Eun Jeong; Han, Min Young; Yoo, Taekyung; Ann, Jihyae; Yoon, Suyoung; Lee, Jiyoun; Lee, Jeewoo

    2016-10-13

    We developed a compound library for orally available gonadotropin-releasing hormone (GnRH) receptor antagonists that were based on a uracil scaffold. On the basis of in vitro activity and CYP inhibition profile, we selected 18a (SKI2496) for further in vivo studies. Compound 18a exhibited more selective antagonistic activity toward the human GnRH receptors over the GnRHRs in monkeys and rats, and this compound also showed inhibitory effects on GnRH-mediated signaling pathways. Pharmacokinetic and pharmacodynamic evaluations of 18a revealed improved bioavailability and superior gonadotropic suppression activity compared with Elagolix, the most clinically advanced compound. Considering that 18a exhibited highly potent and selective antagonistic activity toward the hGnRHRs along with favorable pharmacokinetic profiles, we believe that 18a may represent a promising candidate for an orally available hormonal therapy.

  3. Influence of subsurface environment on oxidant activation and 1,4-dioxane degradation by in-situ chemical oxidation

    NASA Astrophysics Data System (ADS)

    Yan, N.; Brusseau, M. L. L.; Liu, F.

    2017-12-01

    The influence of groundwater and soil constituents on oxidant activation and 1,4-dioxane (dioxane) degradation by hydrogen peroxide coupled with persulfate was investigated through a series of batch experiments. The degradation of dioxane was considerably slower in groundwater compared to the tests conducted with ultrapure water. Additional tests were conducted to examine potential inhibitory effects of selected ions in isolation. The inhibition effect of anions on dioxane degradation, from strongest inhibition to weakest, was bicarbonate (HCO3-) > sulfate (SO42-) > chloride (Cl-). The inhibition effect of cations on dioxane degradation, from strongest inhibition to weakest, was calcium (Ca2+) > potassium (K+) > magnesium (Mg2+). Bicarbonate and calcium ions, which are the most abundant ions in the groundwater used herein, resulted in the greatest decrease in dioxane degradation rate compared to the other constituents. The impact of soil constituents was investigated by comparing dioxane degradation for bulk soil (soil without treatment), soil treated to remove organic matter (mineral fraction), and soil treated to remove organic matter and manganese oxides (iron fraction). Radical generation was measured by electron paramagnetic resonance (EPR) spectroscopy. The results of this study reveal potential inhibitory and synergistic effects caused by groundwater and soil constituents during the application of in-situ chemical oxidation.

  4. Inhibition of Fatty Acid Metabolism Reduces Human Myeloma Cells Proliferation

    PubMed Central

    Tirado-Vélez, José Manuel; Joumady, Insaf; Sáez-Benito, Ana; Cózar-Castellano, Irene; Perdomo, Germán

    2012-01-01

    Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40–70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma. PMID:23029529

  5. The effect of selected monoterpenoids on the cellular slime mold, Dictyostelium discoideum NC4.

    PubMed

    Hwang, J Y; Kim, J H; Yun, K W

    2004-06-01

    We tested the activity of 11 main compounds identified from Pinus plants on the growth of Dictyostelium discoideum NC4. Four concentrations (1, 0.1, 0.01, 0.001 microg/microl) of each compound were tested using a disk volatilization technique following germination of D. discoideum NC4 spores. Photographs of D. discoideum NC4 fruiting bodies were taken 2 days after treatment. Fenchone (at 0.1, 0.01, and 0.001 microg/microl) and camphene (at 0.01 microg/microl) stimulated growth of D. discoideum NC4. (1S)-(-)-verbenone, (1S)-(-)-alpha-pinene, (+)-beta-pinene, myrcene, (-)-menthone, (-)-bornyl acetate, (S)-(+)-carvone, (-)-camphene, and (R)-(+)-limonene inhibit its growth. All of the compounds at 1 microg/microl had a strong inhibitory effect on cell growth of D. discoideum NC4. Microscopic observation of the fruiting bodies matched the results of growth rate analysis. Most of the inhibitory effects were represented by changes in the shapes of the fruiting bodies. These changes include short sorophores, smaller sized sori, and sori without spores. Our results suggest that inhibition of growth is the most common effect of monoterpenoids on D. discoideum NC4. Nevertheless, some of them, like fenchone and camphene, seem to enhance its growth.

  6. Effects of Vancomycin Versus Nafcillin in Enhancing Killing of Methicillin-Susceptible Staphylococcus aureus Causing Bacteremia by Human Cathelicidin LL37

    PubMed Central

    Le, Jennifer; Dam, Quang; Schweizer, Marin; Thienphrapa, Wdee; Nizet, Victor; Sakoulas, George

    2016-01-01

    Recent studies have demonstrated that anti-staphylococcal beta-lactam antibiotics, like nafcillin, render methicillin-resistant Staphylococcus aureus (MRSA) more susceptible to killing by innate host defense peptides (HDPs), such as cathelicidin LL-37. We compared the effects of growth in 1/4 minimum inhibitory concentration (MIC) of nafcillin or vancomycin on LL-37 killing of 92 methicillin-susceptible S. aureus (MSSA) isolates. For three randomly selected strains among these, we examined the effects of nafcillin, vancomycin, daptomycin, or linezolid on LL-37 killing and autolysis. Growth in the presence of sub-inhibitory nafcillin significantly enhanced LL-37 killing of MSSA compared to vancomycin and antibiotic-free controls. Nafcillin also reduced MSSA production of the golden staphylococcal pigment staphyloxanthin in 39% of pigmented strains vs. 14% for vancomycin. Among antibiotics tested, only nafcillin resulted in significantly increased MSSA autolysis. These studies point to additional mechanisms of anti-staphylococcal activity of nafcillin beyond direct bactericidal activity, properties that vancomycin and other antibiotic classes do not exhibit. The ability of nafcillin to enhance sensitivity to innate host defense peptides may contribute to its superior effectiveness against MSSA as suggested by studies comparing clinical outcomes to vancomycin treatment. PMID:27234592

  7. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.

    PubMed

    Tan, Andrew Y Y; Brown, Brandon D; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J

    2011-08-24

    Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations, whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: (1) How does orientation selectivity in mouse V1 neurons compare with that in previously described species? (2) What is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity-based on membrane potential, synaptic excitation, and synaptic inhibition-to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats.

  8. Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex

    PubMed Central

    Tan (陈勇毅), Andrew Y. Y.; Brown, Brandon D.; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J.

    2011-01-01

    Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: 1) how does orientation selectivity in mouse V1 neurons compare with that in previously described species? 2) what is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity - based on membrane potential, synaptic excitation, and synaptic inhibition - to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats. PMID:21865476

  9. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor

    PubMed Central

    Dasa, Kris Triwulan; Westman, Supansa Y.; Cahyanto, Muhammad Nur; Niklasson, Claes

    2016-01-01

    Anaerobic digestion of lipid-containing wastes for biogas production is often hampered by the inhibitory effect of long-chain fatty acids (LCFAs). In this study, the inhibitory effects of LCFAs (palmitic, stearic, and oleic acid) on biogas production as well as the protective effect of a membrane bioreactor (MBR) against LCFAs were examined in thermophilic batch digesters. The results showed that palmitic and oleic acid with concentrations of 3.0 and 4.5 g/L resulted in >50% inhibition on the biogas production, while stearic acid had an even stronger inhibitory effect. The encased cells in the MBR system were able to perform better in the presence of LCFAs. This system exhibited a significantly lower percentage of inhibition than the free cell system, not reaching over 50% at any LCFA concentration tested. PMID:27699172

  10. The development of inhibitory control in preschool children: effects of "executive skills" training.

    PubMed

    Dowsett, S M; Livesey, D J

    2000-03-01

    As one of several processes involved in the executive functioning of the cognitive system, inhibitory control plays a significant role in determining how various mental processes work together in the successful performance of a task. Studies of response inhibition have shown that although 3-year-old children have the cognitive capacity to learn the rules required for response control, indicated by the correct verbal response, developmental constraints prevent them from withholding the correct response (Bell & Livesey, 1985; Livesey & Morgan, 1991). Some argue that these abulic dissociations are relative to children's ability to reflect on the rules required for response control (Zelazo, Reznick, & Pinon, 1995). The current study showed that repeated exposure to tasks facilitating the acquisition of increasingly complex rule structures could improve inhibitory control (as measured by a go/no-go discrimination learning task), even in children aged 3 years. These tasks included a variant of Diamond and Boyer's (1989) modified version of the Wisconsin Card Sort Task and a simplification of the change paradigm (Logan & Burkell, 1986). It is argued that experience with these tasks increased the acquisition of complex rules by placing demands on executive processes. This includes response control and other executive functions, such as representational flexibility, the ability to maintain information in working memory, the selective control of attention, and proficiency at error correction. The role of experiential variables in the development of inhibitory control is discussed in terms of the interaction between neural development and appropriate executive task experience in the early years. Copyright 2000 John Wiley & Sons, Inc.

  11. In vitro evaluation of Augmentin by broth microdilution and disk diffusion susceptibility testing: regression analysis, tentative interpretive criteria, and quality control limits.

    PubMed Central

    Fuchs, P C; Barry, A L; Thornsberry, C; Gavan, T L; Jones, R N

    1983-01-01

    Augmentin (Beecham Laboratories, Bristol, Tenn.), a combination drug consisting of two parts amoxicillin to one part clavulanic acid and a potent beta-lactamase inhibitor, was evaluated in vitro in comparison with ampicillin or amoxicillin or both for its inhibitory and bactericidal activities against selected clinical isolates. Regression analysis was performed and tentative disk diffusion susceptibility breakpoints were determined. A multicenter performance study of the disk diffusion test was conducted with three quality control organisms to determine tentative quality control limits. All methicillin-susceptible staphylococci and Haemophilus influenzae isolates were susceptible to Augmentin, although the minimal inhibitory concentrations for beta-lactamase-producing strains of both groups were, on the average, fourfold higher than those for enzyme-negative strains. Among the Enterobacteriaceae, Augmentin exhibited significantly greater activity than did ampicillin against Klebsiella pneumoniae, Citrobacter diversus, Proteus vulgaris, and about one-third of the Escherichia coli strains tested. Bactericidal activity usually occurred at the minimal inhibitory concentration. There was a slight inoculum concentration effect on the Augmentin minimal inhibitory concentrations. On the basis of regression and error rate-bounded analyses, the suggested interpretive disk diffusion susceptibility breakpoints for Augmentin are: susceptible, greater than or equal to 18 mm; resistant, less than or equal to 13 mm (gram-negative bacilli); and susceptible, greater than or equal to 20 mm (staphylococci and H. influenzae). The use of a beta-lactamase-producing organism, such as E. coli Beecham 1532, is recommended for quality assurance of Augmentin susceptibility testing. PMID:6625554

  12. CYP51 structures and structure-based development of novel, pathogen-specific inhibitory scaffolds.

    PubMed

    Hargrove, Tatiana Y; Kim, Kwangho; de Nazaré Correia Soeiro, Maria; da Silva, Cristiane França; Batista, Denise da Gama Jaen; Batista, Marcos Meuser; Yazlovitskaya, Eugenia M; Waterman, Michael R; Sulikowski, Gary A; Lepesheva, Galina I

    2012-12-01

    CYP51 (sterol 14α-demethylase) is a cytochrome P450 enzyme essential for sterol biosynthesis and the primary target for clinical and agricultural antifungal azoles. The azoles that are currently in clinical use for systemic fungal infections represent modifications of two basic scaffolds, ketoconazole and fluconazole, all of them being selected based on their antiparasitic activity in cellular experiments. By studying direct inhibition of CYP51 activity across phylogeny including human pathogens Trypanosoma brucei , Trypanosoma cruzi and Leishmania infantum , we identified three novel protozoa-specific inhibitory scaffolds, their inhibitory potency correlating well with antiprotozoan activity. VNI scaffold (carboxamide containing β-phenyl-imidazoles) is the most promising among them: killing T. cruzi amastigotes at low nanomolar concentration, it is also easy to synthesize and nontoxic. Oral administration of VNI (up to 400 mg/kg) neither leads to mortality nor reveals significant side effects up to 48 h post treatment using an experimental mouse model of acute toxicity. Trypanosomatidae CYP51 crystal structures determined in the ligand-free state and complexed with several azole inhibitors as well as a substrate analog revealed high rigidity of the CYP51 substrate binding cavity, which must be essential for the enzyme strict substrate specificity and functional conservation. Explaining profound potency of the VNI inhibitory scaffold, the structures also outline guidelines for its further development. First steps of the VNI scaffold optimization have been undertaken; the results presented here support the notion that CYP51 structure-based rational design of more efficient, pathogen-specific inhibitors represents a highly promising direction.

  13. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    PubMed

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  14. The Long-Lasting Enhancing Effect of Distigmine on Acetylcholine-Induced Contraction of Guinea Pig Detrusor Smooth Muscle Correlates with Its Anticholinesterase Activity.

    PubMed

    Obara, Keisuke; Ogawa, Tsukasa; Chino, Daisuke; Tanaka, Yoshio

    2017-01-01

    Distigmine bromide (distigmine), a reversible, long-lasting cholinesterase (ChE) inhibitor, is used for the treatment of underactive bladder in Japan and has been shown to potentiate urinary bladder (UB) contractility. We studied the duration of distigmine's potentiating effects on acetylcholine (ACh)-induced UB contraction and its inhibitory effects on ChE activity, and compared that with those of other ChE inhibitors (neostigmine, pyridostigmine, and ambenonium). The duration of potentiating/inhibitory effects of ChE inhibitors, including distigmine, on ACh-induced guinea pig UB contraction/ChE activity was evaluated for 12 h following washout. Dissociation rate constants (k) of the inhibitors were also tentatively calculated based on the time courses of their ChE inhibitory effects. The potentiating effect of distigmine (10 -6  M) on ACh-induced UB contraction and its inhibitory effect on ChE activity were significantly sustained 12 h after washout. The potentiating effect of other ChE inhibitors on ACh-induced UB contraction, however, was sustained only until 3 h after washout. The ChE inhibitory effects of these inhibitors dissipated in a time-dependent manner after washout, with more than 75% of ChE activity restored by 4 h after washout. The k values of ChE inhibitors approached 0.50 h -1 , except for distigmine, where k could not be determined. Compared with that of other ChE inhibitors, the potentiating effect of distigmine on UB contractile function was significantly more sustainable following washout, which was likely associated with its corresponding long-lasting ChE inhibitory effect. Distigmine may associate more strongly with UB ChE than other ChE inhibitors, which would partly explain its sustained effects.

  15. The moderating role of state inhibitory control in the effect of evaluative conditioning on temptation and unhealthy snacking.

    PubMed

    Haynes, Ashleigh; Kemps, Eva; Moffitt, Robyn

    2015-12-01

    The current study sought to test the effect of a brief evaluative conditioning intervention on experienced temptation to indulge, and consumption of, unhealthy snack foods. We expected that a training task associating unhealthy food with negative affect would result in lower experienced temptation across the sample, but would lead to lower snack consumption only among individuals with low state inhibitory control. Undergraduate women (N=134) aged 17-25 years were randomised to complete an evaluative conditioning procedure pairing unhealthy food with either positive or negative affect. Snack consumption was subsequently assessed using a taste-test procedure which offered four snack foods for ad libitum consumption. Participants also reported the strength of their experienced temptation to indulge in the foods presented. Additionally, they completed a Stop Signal Task as a measure of state inhibitory control. As predicted, participants in the food negative condition ate less than those in the food positive condition, but this effect was only observed among individuals with low inhibitory control. The same moderation pattern was observed for the effect of evaluative conditioning on temptation: only participants with low inhibitory control reported feeling less tempted by the snack foods in the food negative condition compared to the food positive condition. In addition, temptation mediated the effect of evaluative conditioning on intake for individuals with low inhibitory control. Findings suggest that evaluative conditioning of unhealthy food stimuli could be especially useful for reducing temptation and consumption of unhealthy snacks in situations where individuals experience low inhibitory control capacity. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients

    PubMed Central

    Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John LR; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E

    2016-01-01

    Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI: http://dx.doi.org/10.7554/eLife.13073.001 PMID:27458797

  17. Allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala on three selected weed species

    NASA Astrophysics Data System (ADS)

    Ishak, Muhamad Safwan; Sahid, Ismail

    2014-09-01

    A laboratory experiment was conducted to study the allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala. The aqueous extracts were individually tested on three selected weed species, namely goatweed (Ageratum conyzoides), coat buttons (Tridax procumbens) and lilac tasselflower (Emilia sonchifolia). The allelopathic effects of the leaf and seed extracts on germination, shoot length, root length and fresh weight of each of the selected weed species were determined. Germination of goatweed, coat buttons and lilac tasselflower were inhibited by the aqueous extracts of both the leaf and seed of L. leucocephala and was concentration dependent. Different concentrations of the aqueous extracts showed various germination patterns on the selected weeds species. Seedling length and fresh weight of goatweed, coat buttons and lilac tasselflower were reduced in response to respective increasing concentrations of the seed extracts. Maximum inhibition by the aqueous seed extract was observed more on the root rather than the shoot growth. The aqueous seed extract at T3 concentration reduced root length of goatweed, coat buttons and lilac tasselflower by 95%, 86% and 91% (of the control) respectively. The aqueous seed extract showed greater inhibitory effects than that of the aqueous leaf extract.

  18. Can Small Chemical Modifications of Natural Pan-inhibitors Modulate the Biological Selectivity? The Case of Curcumin Prenylated Derivatives Acting as HDAC or mPGES-1 Inhibitors.

    PubMed

    Iranshahi, Mehrdad; Chini, Maria Giovanna; Masullo, Milena; Sahebkar, Amirhossein; Javidnia, Azita; Chitsazian Yazdi, Mahsa; Pergola, Carlo; Koeberle, Andreas; Werz, Oliver; Pizza, Cosimo; Terracciano, Stefania; Piacente, Sonia; Bifulco, Giuseppe

    2015-12-24

    Curcumin, or diferuloylmethane, a polyphenolic molecule isolated from the rhizome of Curcuma longa, is reported to modulate multiple molecular targets involved in cancer and inflammatory processes. On the basis of its pan-inhibitory characteristics, here we show that simple chemical modifications of the curcumin scaffold can regulate its biological selectivity. In particular, the curcumin scaffold was modified with three types of substituents at positions C-1, C-8, and/or C-8' [C5 (isopentenyl, 5-8), C10 (geranyl, 9-12), and C15 (farnesyl, 13, 14)] in order to make these molecules more selective than the parent compound toward two specific targets: histone deacetylase (HDAC) and microsomal prostaglandin E2 synthase-1 (mPGES-1). From combined in silico and in vitro analyses, three selective inhibitors by proper substitution at position 8 were revealed. Compound 13 has improved HDAC inhibitory activity and selectivity with respect to the parent compound, while 5 and 9 block the mPGES-1 enzyme. We hypothesize about the covalent interaction of curcumin, 5, and 9 with the mPGES-1 binding site.

  19. 3-Coumaranone derivatives as inhibitors of monoamine oxidase.

    PubMed

    Van Dyk, Adriaan S; Petzer, Jacobus P; Petzer, Anél; Legoabe, Lesetja J

    2015-01-01

    The present study examines the monoamine oxidase (MAO) inhibitory properties of a series of 20 3-coumaranone [benzofuran-3(2H)-one] derivatives. The 3-coumaranone derivatives are structurally related to series of α-tetralone and 1-indanone derivatives, which have recently been shown to potently inhibit MAO, with selectivity for MAO-B (in preference to the MAO-A isoform). 3-Coumaranones are similarly found to selectively inhibit human MAO-B with half-maximal inhibitory concentration (IC50) values of 0.004-1.05 µM. Nine compounds exhibited IC50<0.05 µM for the inhibition of MAO-B. For the inhibition of human MAO-A, IC50 values ranged from 0.586 to >100 µM, with only one compound possessing an IC50<1 µM. For selected 3-coumaranone derivatives, it is established that MAO-A and MAO-B inhibition are reversible since dialysis of enzyme-inhibitor mixtures almost completely restores enzyme activity. On the basis of the selectivity profiles and potent action, it may be concluded that the 3-coumaranone derivatives are suitable leads for the development of selective MAO-B inhibitors as potential treatment for disorders such as Parkinson's disease and Alzheimer's disease.

  20. 3-Coumaranone derivatives as inhibitors of monoamine oxidase

    PubMed Central

    Van Dyk, Adriaan S; Petzer, Jacobus P; Petzer, Anél; Legoabe, Lesetja J

    2015-01-01

    The present study examines the monoamine oxidase (MAO) inhibitory properties of a series of 20 3-coumaranone [benzofuran-3(2H)-one] derivatives. The 3-coumaranone derivatives are structurally related to series of α-tetralone and 1-indanone derivatives, which have recently been shown to potently inhibit MAO, with selectivity for MAO-B (in preference to the MAO-A isoform). 3-Coumaranones are similarly found to selectively inhibit human MAO-B with half-maximal inhibitory concentration (IC50) values of 0.004–1.05 µM. Nine compounds exhibited IC50<0.05 µM for the inhibition of MAO-B. For the inhibition of human MAO-A, IC50 values ranged from 0.586 to >100 µM, with only one compound possessing an IC50<1 µM. For selected 3-coumaranone derivatives, it is established that MAO-A and MAO-B inhibition are reversible since dialysis of enzyme–inhibitor mixtures almost completely restores enzyme activity. On the basis of the selectivity profiles and potent action, it may be concluded that the 3-coumaranone derivatives are suitable leads for the development of selective MAO-B inhibitors as potential treatment for disorders such as Parkinson’s disease and Alzheimer’s disease. PMID:26491258

Top