Science.gov

Sample records for selective morphologic alterations

  1. Geranylgeranylacetone selectively binds to the HSP70 of Helicobacter pylori and alters its coccoid morphology

    PubMed Central

    Grave, Ewa; Yokota, Shin-ichi; Yamamoto, Soh; Tamura, Arisa; Ohtaki-Mizoguchi, Takako; Yokota, Kenji; Oguma, Keiji; Fujiwara, Kazuhiko; Ogawa, Nobuaki; Okamoto, Tomoya; Otaka, Michiro; Itoh, Hideaki

    2015-01-01

    Geranylgeranylacetone (GGA) is used to treat patients suffering from peptic ulcers and gastritis. We examined the effect of GGA on Helicobacter pylori, which is a causative factor of gastrointestinal diseases. Previously, we have reported that GGA binds specifically to the molecular chaperone HSP70. In this paper, we report that GGA bounds to H. pylori HSP70 (product of the DnaK gene) with 26-times higher affinity than to human HSP70, and induced large conformational changes as observed from surface plasmon resonance and circular dichroism. Binding of GGA suppressed the activity of the H. pylori chaperone. GGA also altered several characteristics of H. pylori cells. GGA-treated cells elicited enhanced interleukin-8 production by gastric cancer cell lines and potentiated susceptibility to complement as compared to untreated cells. GGA also caused morphological alterations in H. pylori as reflected in fewer coccoid-like cells, suggesting that GGA converts H. pylori to an actively dividing, spiral state (vegetative form) from a non-growing, coccoid state. This morphological conversion by GGA resulted in accelerated growth of H. pylori. These results suggest a model in which GGA sensitizes H. pylori to antibiotic treatment by converting the cells to an actively growing state. PMID:26345206

  2. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies

    PubMed Central

    Fritzsch, Bernd; Straka, Hans

    2014-01-01

    Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation, were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development. PMID:24281353

  3. Comparative study of the effect of BPA and its selected analogues on hemoglobin oxidation, morphological alterations and hemolytic changes in human erythrocytes.

    PubMed

    Maćczak, Aneta; Bukowska, Bożena; Michałowicz, Jaromir

    2015-01-01

    Bisphenol A (BPA) has been shown to provoke many deleterious impacts on human health, and thus it is now successively substituted by BPA analogues, whose effects have been poorly investigated. Up to now, only one study has been realized to assess the effect of BPA on human erythrocytes, which showed its significant hemolytic and oxidative potential. Moreover, no study has been conducted to evaluate the effect of BPA analogues on red blood cells. The purpose of the present study was to compare the impact of BPA and its selected analogues such as bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF) on hemolytic and morphological changes and hemoglobin oxidation (methemoglobin formation) of human erythrocytes. The erythrocytes were incubated with different bisphenols concentrations ranging from 0.5 to 500μg/ml for 1, 4 and 24h. The compounds examined caused hemolysis in human erythrocytes with BPAF exhibiting the strongest effect. All bisphenols examined caused methemoglobin formation with BPA inducing the strongest oxidative potential. Flow cytometry analysis showed that all bisphenols (excluding BPS) induced significant changes in erythrocytes size. Changes in red blood cells shape were conducted using phase contrast microscopy. It was noticed that BPA and BPAF induced echinocytosis, BPF caused stomatocytosis, while BPS did not provoke significant changes in shape of red blood cells. Generally, the results showed that BPS, which is the main substituent of bisphenol A in polymers and thermal paper production, exhibited significantly lower disturbance of erythrocyte functions than BPA.

  4. Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression

    PubMed Central

    2014-01-01

    Background Shewanella oneidensis MR-1 exhibits extracellular electron transfer (EET) activity that is influenced by various cellular components, including outer-membrane cytochromes, cell-surface polysaccharides (CPS), and regulatory proteins. Here, a random transposon-insertion mutant library of S. oneidensis MR-1 was screened after extended cultivation in electrochemical cells (ECs) with a working electrode poised at +0.2 V (vs. Ag/AgCl) to isolate mutants that adapted to electrode-respiring conditions and identify as-yet-unknown EET-related factors. Results Several mutants isolated from the enrichment culture exhibited rough morphology and extraordinarily large colonies on agar plates compared to wild-type MR-1. One of the isolated mutants, designated strain EC-2, produced 90% higher electric current than wild-type MR-1 in ECs and was found to have a transposon inserted in the SO_1860 (uvrY) gene, which encodes a DNA-binding response regulator of the BarA/UvrY two-component regulatory system. However, an in-frame deletion mutant of SO_1860 (∆SO_1860) did not exhibit a similar level of current generation as that of EC-2, suggesting that the enhanced current-generating capability of EC-2 was not simply due to the disruption of SO_1860. In both EC-2 and ∆SO_1860, the transcription of genes related to CPS synthesis was decreased compared to wild-type MR-1, suggesting that CPS negatively affects current generation. In addition, transcriptome analyses revealed that a number of genes, including those involved in biofilm formation, were differentially expressed in EC-2 compared to those in ∆SO_1860. Conclusions The present results indicate that the altered expression of the genes related to CPS biosynthesis and biofilm formation is associated with the distinct morphotype and high current-generating capability of strain EC-2, suggesting an important role of these genes in determining the EET activity of S. oneidensis. PMID:25028134

  5. Antiherbivore defenses alter natural selection on plant reproductive traits.

    PubMed

    Thompson, Ken A; Johnson, Marc T J

    2016-04-01

    While many studies demonstrate that herbivores alter selection on plant reproductive traits, little is known about whether antiherbivore defenses affect selection on these traits. We hypothesized that antiherbivore defenses could alter selection on reproductive traits by altering trait expression through allocation trade-offs, or by altering interactions with mutualists and/or antagonists. To test our hypothesis, we used white clover, Trifolium repens, which has a Mendelian polymorphism for the production of hydrogen cyanide-a potent antiherbivore defense. We conducted a common garden experiment with 185 clonal families of T. repens that included cyanogenic and acyanogenic genotypes. We quantified resistance to herbivores, and selection on six floral traits and phenology via male and female fitness. Cyanogenesis reduced herbivory but did not alter the expression of reproductive traits through allocation trade-offs. However, the presence of cyanogenic defenses altered natural selection on petal morphology and the number of flowers within inflorescences via female fitness. Herbivory influenced selection on flowers and phenology via female fitness independently of cyanogenesis. Our results demonstrate that both herbivory and antiherbivore defenses alter natural selection on plant reproductive traits. We discuss the significance of these results for understanding how antiherbivore defenses interact with herbivores and pollinators to shape floral evolution. PMID:26940904

  6. Astragalar Morphology of Selected Giraffidae.

    PubMed

    Solounias, Nikos; Danowitz, Melinda

    2016-01-01

    The artiodactyl astragalus has been modified to exhibit two trochleae, creating a double pullied structure allowing for significant dorso-plantar motion, and limited mediolateral motion. The astragalus structure is partly influenced by environmental substrates, and correspondingly, morphometric studies can yield paleohabitat information. The present study establishes terminology and describes detailed morphological features on giraffid astragali. Each giraffid astragalus exhibits a unique combination of anatomical characteristics. The giraffid astragalar morphologies reinforce previously established phylogenetic relationships. We find that the enlargement of the navicular head is a feature shared by all giraffids, and that the primitive giraffids possess exceptionally tall astragalar heads in relation to the total astragalar height. The sivatheres and the okapi share a reduced notch on the lateral edge of the astragalus. We find that Samotherium is more primitive in astragalar morphologies than Palaeotragus, which is reinforced by tooth characteristics and ossicone position. Diagnostic anatomical characters on the astragalus allow for giraffid species identifications and a better understanding of Giraffidae.

  7. Astragalar Morphology of Selected Giraffidae

    PubMed Central

    2016-01-01

    The artiodactyl astragalus has been modified to exhibit two trochleae, creating a double pullied structure allowing for significant dorso-plantar motion, and limited mediolateral motion. The astragalus structure is partly influenced by environmental substrates, and correspondingly, morphometric studies can yield paleohabitat information. The present study establishes terminology and describes detailed morphological features on giraffid astragali. Each giraffid astragalus exhibits a unique combination of anatomical characteristics. The giraffid astragalar morphologies reinforce previously established phylogenetic relationships. We find that the enlargement of the navicular head is a feature shared by all giraffids, and that the primitive giraffids possess exceptionally tall astragalar heads in relation to the total astragalar height. The sivatheres and the okapi share a reduced notch on the lateral edge of the astragalus. We find that Samotherium is more primitive in astragalar morphologies than Palaeotragus, which is reinforced by tooth characteristics and ossicone position. Diagnostic anatomical characters on the astragalus allow for giraffid species identifications and a better understanding of Giraffidae. PMID:27028515

  8. Astragalar Morphology of Selected Giraffidae.

    PubMed

    Solounias, Nikos; Danowitz, Melinda

    2016-01-01

    The artiodactyl astragalus has been modified to exhibit two trochleae, creating a double pullied structure allowing for significant dorso-plantar motion, and limited mediolateral motion. The astragalus structure is partly influenced by environmental substrates, and correspondingly, morphometric studies can yield paleohabitat information. The present study establishes terminology and describes detailed morphological features on giraffid astragali. Each giraffid astragalus exhibits a unique combination of anatomical characteristics. The giraffid astragalar morphologies reinforce previously established phylogenetic relationships. We find that the enlargement of the navicular head is a feature shared by all giraffids, and that the primitive giraffids possess exceptionally tall astragalar heads in relation to the total astragalar height. The sivatheres and the okapi share a reduced notch on the lateral edge of the astragalus. We find that Samotherium is more primitive in astragalar morphologies than Palaeotragus, which is reinforced by tooth characteristics and ossicone position. Diagnostic anatomical characters on the astragalus allow for giraffid species identifications and a better understanding of Giraffidae. PMID:27028515

  9. Metronidazole-induced alterations in murine spermatozoa morphology.

    PubMed

    Mudry, Marta D; Palermo, Ana M; Merani, María S; Carballo, Marta A

    2007-02-01

    The aim of this work was to assess the effect of metronidazole (MTZ) on the stages of the seminiferous epithelial cycle and spermatozoa morphology when the drug is administered in human therapeutic doses to 60-day-old CFW male mice. The frequency of the stages was established by counting spermatocytes in pachytene and spermatids. Abnormalities in the flagellum or the head, lack of maturity and multiple malformations, were considered in the morphological analysis. Murine control strain was compared with MTZ treated group (v.ip 130 mg/kg/bw) both kept in standard captivity conditions. Cellular composition or number of stages in the seminiferous tubules were not altered in MTZ exposed animals, though the number of cells in stages I, V and XII was increased. The sperm cell morphology was severely affected by the treatment with potentially serious consequences on the normal fertilization process. Thus, the MTZ has to be considered as a conceivable thread regarding male fertility. PMID:17184970

  10. Intracytoplasmic morphology-selected sperm injection.

    PubMed

    Simon, Luke; Wilcox, Aaron; Carrell, Douglas T

    2013-01-01

    Approximately 40% of sterility in couples can be attributed to male subfertility and intracytoplasmic sperm injection (ICSI) has become a powerful tool in assisted reproduction to overcome male infertility. Intracytoplasmic morphologically selected sperm injection (IMSI) is an advanced and sophisticated method of ICSI, where prior to sperm injection the morphology of the sperm is evaluated under high magnification. In addition, the IMSI procedure involves a few minor modifications in sperm preparation which are not carried out during the conventional ICSI procedure, such as the use of MSOME criteria, the requirement for a glass-bottomed dish for selection, prolonged sperm manipulation following separation from the seminal fluid, and sperm storage prior to microinjection. These variations are discussed in this chapter.

  11. Unusual Morphological Alteration in Sigmoid Notch: An Insight Through CBCT.

    PubMed

    Gupta, Anjali; Kant, Sanchita; Phulambrikar, Tushar; Kode, Manasi; Singh, Siddharth Kumar

    2015-12-01

    The Temporomandibular Joint (TMJ) is a ginglymo-diarthrodial joint known to be the most complex joint in human body. Growth disturbances, owing to genetic influences or trauma during the intrauterine life or during early developmental age may lead to morphological and functional variations in the mandible resulting in developmental anomaly. We report a rare case of altered sigmoid notch morphology on the right side and condylar hypoplasia on the left side, not related to any clear pathological disorder. Cone Beam Computed Tomography (CBCT) was helpful in evaluating this case. This case of unknown aetiology was thoroughly examined; based on clinical and radiographic findings, we suggest that this case is of congenital origin. PMID:26816996

  12. Prevention of shockwave induced functional and morphological alterations: an overview.

    PubMed

    Sarica, Kemal; Yencilek, Faruk

    2008-03-01

    Experimental as well as clinical findings reported in the literature suggest that treatment with shock wave lithotripsy (SWL) causes renal parenchymal damage mainly by generating free radicals through ischaemia/reperfusion injury mechanism. Although SWL-induced renal damage is well tolerated in the majority of healthy cases with no permanent functional and/or morphologic side effects, a subset of patients with certain risk factors requires close attention on this aspect among which the ones with pre-existing renal disorders, urinary tract infection, previous lithotripsy history and solitary kidneys could be mentioned. It is clear that in such patients lowering the number of shock waves (per session) could be beneficial and has been applied by the physicians as the first practical step of diminishing SWL induced parenchymal damage. On the other hand, taking the injurious effects of high energy shock wave (HESW) induced free radical formation on renal parenchyma and subsequent histopathologic alterations into account, physicians searched for some protective agents in an attempt to prevent or at least to limit the extent of the functional as well as the morphologic alterations. Among these agents calcium channel blocking agents (verapamil and nifedipine), antioxidant agents (allopurinol, vitamin E and selenium) and potassium citrate have been used to minimize these adverse effects. Additionally, therapeutic application of these agents on reducing stone recurrence particularly after SWL will gain more importance in the future in order to limit new stone formation in these cases. Lastly, as experimental and clinical studies have demonstrated, combination of anti-oxidants with free radical scavengers may provide superior renal protection against shock wave induced trauma. However, we believe that further investigations are certainly needed to determine the dose-response relationship between the damaging effects of SWL application and the protective role of these agents.

  13. Morphological Alteration and Survival of Burkholderia pseudomallei in Soil Microcosms.

    PubMed

    Kamjumphol, Watcharaporn; Chareonsudjai, Pisit; Taweechaisupapong, Suwimol; Chareonsudjai, Sorujsiri

    2015-11-01

    The resilience of Burkholderia pseudomallei, the causative agent of melioidosis, was evaluated in control soil microcosms and in soil microcosms containing NaCl or FeSO4 at 30°C. Iron (Fe(II)) promoted the growth of B. pseudomallei during the 30-day observation, contrary to the presence of 1.5% and 3% NaCl. Scanning electron micrographs of B. pseudomallei in soil revealed their morphological alteration from rod to coccoid and the formation of microcolonies. The smallest B. pseudomallei cells were found in soil with 100 μM FeSO4 compared with in the control soil or soil with 0.6% NaCl (P < 0.05). The colony count on Ashdown's agar and bacterial viability assay using the LIVE/DEAD(®) BacLight(™) stain combined with flow cytometry showed that B. pseudomallei remained culturable and viable in the control soil microcosms for at least 120 days. In contrast, soil with 1.5% NaCl affected their culturability at day 90 and their viability at day 120. Our results suggested that a low salinity and iron may influence the survival of B. pseudomallei and its ability to change from a rod-like to coccoid form. The morphological changes of B. pseudomallei cells may be advantageous for their persistence in the environment and may increase the risk of their transmission to humans. PMID:26324731

  14. PTEN knockdown alters dendritic spine/protrusion morphology, not density

    PubMed Central

    Haws, Michael E.; Jaramillo, Thomas C.; Espinosa-Becerra, Felipe; Widman, Allie; Stuber, Garret D.; Sparta, Dennis R.; Tye, Kay M.; Russo, Scott J.; Parada, Luis F.; Kaplitt, Michael; Bonci, Antonello; Powell, Craig M.

    2014-01-01

    Mutations in phosphatase and tensin homolog deleted on chromosome ten (PTEN) are implicated in neuropsychiatric disorders including autism. Previous studies report that PTEN knockdown in neurons in vivo leads to increased spine density and synaptic activity. To better characterize synaptic changes in neurons lacking PTEN, we examined the effects of shRNA knockdown of PTEN in basolateral amygdala neurons on synaptic spine density and morphology using fluorescent dye confocal imaging. Contrary to previous studies in dentate gyrus, we find that knockdown of PTEN in basolateral amygdala leads to a significant decrease in total spine density in distal dendrites. Curiously, this decreased spine density is associated with increased miniature excitatory post-synaptic current frequency and amplitude, suggesting an increase in number and function of mature spines. These seemingly contradictory findings were reconciled by spine morphology analysis demonstrating increased mushroom spine density and size with correspondingly decreased thin protrusion density at more distal segments. The same analysis of PTEN conditional deletion in dentate gyrus demonstrated that loss of PTEN does not significantly alter total density of dendritic protrusions in the dentate gyrus, but does decrease thin protrusion density and increases density of more mature mushroom spines. These findings suggest that, contrary to previous reports, PTEN knockdown may not induce de novo spinogenesis, but instead may increase synaptic activity by inducing morphological and functional maturation of spines. Furthermore, behavioral analysis of basolateral amygdala PTEN knockdown suggests that these changes limited only to the basolateral amygdala complex may not be sufficient to induce increased anxiety-related behaviors. PMID:24264880

  15. Insulin Resistance Alters Islet Morphology in Nondiabetic Humans

    PubMed Central

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio; Clemente, Gennaro; Hu, Jiang; Pontecorvi, Alfredo; Holst, Jens J.; Giaccari, Andrea; Kulkarni, Rohit N.

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell–to–α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from duct cells and transdifferentiation of α-cells are potential contributors to the β-cell compensatory response to insulin resistance in the absence of overt diabetes. PMID:24215793

  16. Three-dimensional Nasolabial Morphologic Alterations Following Le Fort I

    PubMed Central

    DeSesa, Christopher R.; Metzler, Philip; Sawh-Martinez, Rajendra

    2016-01-01

    Background: Le Fort I osteotomy imparts significant changes to the nasolabial region. Past studies have relied on 2-dimensional data and have not delineated differences among various Le Fort I subtypes. The purpose of this study is to 3-dimensionally analyze Le Fort I–induced nasal and lip changes comparing advancement alone versus widening alone [surgically assisted maxillary expansion (SAME)] versus advancement and widening. We hypothesize that the combination of maxillary advancement with widening will result in the most profound changes. Methods: A retrospective cohort study was performed. Included Le Fort I patients were grouped as: (1) nonsegmental straight advancement, (2) widening without advancement, and (3) segmental advancement and widening. Pre- and postoperative 3-dimensional photogrammetry (Canfield) were analyzed. Anthropometric landmarks were placed and measured by 2 independent observers. Statistics involved both paired and unpaired t tests (significance = P < 0.05). Results: One hundred eight photogrammetric data sets were analyzed, including 46 single-piece, 26 SAME, and 36 segmental. Significant postoperative nasal changes were observed within each intragroup analysis. The most dramatic changes were seen after segmental Le Fort I with advancement and widening, which included alar base width, alar width, nostril width, and soft triangle angle, all P < 0.05. Conclusions: Le Fort I osteotomy results in significant alteration of the nasolabial morphology. This is the first study to 3-dimensionally analyze nasal changes that occur comparing maxillary advancement alone versus widening alone (SAME) versus advancement with widening. These objective data permit improved patient counseling and surgical planning. PMID:27622116

  17. Three-dimensional Nasolabial Morphologic Alterations Following Le Fort I

    PubMed Central

    DeSesa, Christopher R.; Metzler, Philip; Sawh-Martinez, Rajendra

    2016-01-01

    Background: Le Fort I osteotomy imparts significant changes to the nasolabial region. Past studies have relied on 2-dimensional data and have not delineated differences among various Le Fort I subtypes. The purpose of this study is to 3-dimensionally analyze Le Fort I–induced nasal and lip changes comparing advancement alone versus widening alone [surgically assisted maxillary expansion (SAME)] versus advancement and widening. We hypothesize that the combination of maxillary advancement with widening will result in the most profound changes. Methods: A retrospective cohort study was performed. Included Le Fort I patients were grouped as: (1) nonsegmental straight advancement, (2) widening without advancement, and (3) segmental advancement and widening. Pre- and postoperative 3-dimensional photogrammetry (Canfield) were analyzed. Anthropometric landmarks were placed and measured by 2 independent observers. Statistics involved both paired and unpaired t tests (significance = P < 0.05). Results: One hundred eight photogrammetric data sets were analyzed, including 46 single-piece, 26 SAME, and 36 segmental. Significant postoperative nasal changes were observed within each intragroup analysis. The most dramatic changes were seen after segmental Le Fort I with advancement and widening, which included alar base width, alar width, nostril width, and soft triangle angle, all P < 0.05. Conclusions: Le Fort I osteotomy results in significant alteration of the nasolabial morphology. This is the first study to 3-dimensionally analyze nasal changes that occur comparing maxillary advancement alone versus widening alone (SAME) versus advancement with widening. These objective data permit improved patient counseling and surgical planning.

  18. Mutants in Arabidopsis thaliana Altered in Epicuticular Wax and Leaf Morphology.

    PubMed Central

    Jenks, M. A.; Rashotte, A. M.; Tuttle, H. A.; Feldmann, K. A.

    1996-01-01

    We report eight new mutants in Arabidopsis thaliana possessing altered leaf morphology and epicuticular wax. These were isolated from a T-DNA-mutagenized population using a visual screen for altered leaf reflectance, i.e. increased glaucousness or glossiness. The mutants were placed into three distinct classes based on alterations in overall plant morphology: knobhead (knb), bicentifolia (bcf), and wax. The four knb mutants formed callus-like growths in the axillary region of the rosette leaves and apical meristem, the two bcf mutants produced hundreds of narrow leaves, and the two wax mutants had leaves and stems that were more glossy than wild type and organs that fused during early development. Leaves of knb and bcf were more glaucous and abnormally shaped than wild type. Epicuticular wax crystals over knb and bcf leaf surfaces (where none were present on wild type) likely contributed to their more glaucous appearance. In contrast, the glossy appearance of the wax mutants was associated with a reduced epicuticular wax load on both leaves and stems. One representative from each phenotypic class was selected for detailed analyses of epicuticular wax chemistry. All three lines, knb1, bcf1, and wax1, had dramatic alterations in the total amounts and relative proportions of their leaf epicuticular wax constituents. PMID:12226189

  19. Shared and unique morphological responses of stream fishes to anthropogenic habitat alteration

    PubMed Central

    Franssen, Nathan R.; Harris, Jared; Clark, Scott R.; Schaefer, Jacob F.; Stewart, Laura K.

    2013-01-01

    Understanding population-level responses to novel selective pressures can elucidate evolutionary consequences of human-altered habitats. Stream impoundments (reservoirs) alter riverine ecosystems worldwide, exposing stream fishes to uncommon selective pressures. Assessing phenotypic trait divergence in reservoir habitats will be a first step in identifying the potential evolutionary and ecological consequences of stream impoundments. We tested for body shape divergence in four stream-adapted fishes found in both habitats within three separate basins. Shape variation among fishes was partitioned into shared (exhibited by all species) and unique (species-specific) responses to reservoir habitats. All fishes demonstrated consistent significant shared and unique morphological responses to reservoir habitats. Shared responses were linked to fin positioning, decreased body depths and larger caudal areas; traits likely related to locomotion. Unique responses were linked to head shape, suggesting species-specific responses to abiotic conditions or changes to their trophic ecology in reservoirs. Our results highlight how human-altered habitats can simultaneously drive similar and unique trait divergence in native populations. PMID:23235710

  20. Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits.

    PubMed

    Geng, Yan; Wang, Liang; Jin, Dongmei; Liu, Huiying; He, Jin-Sheng

    2014-06-01

    Leaves and fine roots are among the most important and dynamic components of terrestrial ecosystems. To what extent plants synchronize their resource capture strategies above- and belowground remains uncertain. Existing results of trait relationships between leaf and root showed great inconsistency, which may be partly due to the differences in abiotic environmental conditions such as climate and soil. Moreover, there is currently little evidence on whether and how the stringent environments of high-altitude alpine ecosystems alter the coordination between above- and belowground. Here we measured six sets of analogous traits for both leaves and fine roots of 139 species collected from Tibetan alpine grassland and Mongolian temperate grassland. N, P and N:P ratio of leaves and fine roots were positively correlated, independent of biogeographic regions, phylogenetic affiliation or climate. In contrast, leaves and fine roots seem to regulate morphological traits more independently. The specific leaf area (SLA)-specific root length (SRL) correlation shifted from negative at sites under low temperature to positive at warmer sites. The cold climate of alpine regions may impose different constraints on shoots and roots, selecting simultaneously for high SLA leaves for rapid C assimilation during the short growing season, but low SRL roots with high physical robustness to withstand soil freezing. In addition, there might be more community heterogeneity in cold soils, resulting in multidirectional strategies of root in resource acquisition. Thus our results demonstrated that alpine climate alters the relationships between leaf and root morphological but not chemical traits.

  1. Predator Diet and Trophic Position Modified with Altered Habitat Morphology

    PubMed Central

    Tewfik, Alexander; Bell, Susan S.; McCann, Kevin S.; Morrow, Kristina

    2016-01-01

    Empirical patterns that emerge from an examination of food webs over gradients of environmental variation can help to predict the implications of anthropogenic disturbance on ecosystems. This “dynamic food web approach” is rarely applied at the coastal margin where aquatic and terrestrial systems are coupled and human development activities are often concentrated. We propose a simple model of ghost crab (Ocypode quadrata) feeding that predicts changing dominant prey (Emerita talpoida, Talorchestia sp., Donax variablis) along a gradient of beach morphology and test this model using a suite of 16 beaches along the Florida, USA coast. Assessment of beaches included quantification of morphological features (width, sediments, slope), macrophyte wrack, macro-invertebrate prey and active ghost crab burrows. Stable isotope analysis of carbon (13C/12C) and nitrogen (15N/14N) and the SIAR mixing model were used to determine dietary composition of ghost crabs at each beach. The variation in habitat conditions displayed with increasing beach width was accompanied by quantifiable shifts in ghost crab diet and trophic position. Patterns of ghost crab diet were consistent with differences recorded across the beach width gradient with respect to the availability of preferred micro-habitats of principal macro-invertebrate prey. Values obtained for trophic position also suggests that the generalist ghost crab assembles and augments its diet in fundamentally different ways as habitat morphology varies across a highly dynamic ecosystem. Our results offer support for a functional response in the trophic architecture of a common food web compartment (ghost crabs, macro-invertebrate prey) across well-known beach morphologies. More importantly, our “dynamic food web approach” serves as a basis for evaluating how globally wide-spread sandy beach ecosystems should respond to a variety of anthropogenic impacts including beach grooming, beach re-nourishment, introduction of non

  2. Predator Diet and Trophic Position Modified with Altered Habitat Morphology.

    PubMed

    Tewfik, Alexander; Bell, Susan S; McCann, Kevin S; Morrow, Kristina

    2016-01-01

    Empirical patterns that emerge from an examination of food webs over gradients of environmental variation can help to predict the implications of anthropogenic disturbance on ecosystems. This "dynamic food web approach" is rarely applied at the coastal margin where aquatic and terrestrial systems are coupled and human development activities are often concentrated. We propose a simple model of ghost crab (Ocypode quadrata) feeding that predicts changing dominant prey (Emerita talpoida, Talorchestia sp., Donax variablis) along a gradient of beach morphology and test this model using a suite of 16 beaches along the Florida, USA coast. Assessment of beaches included quantification of morphological features (width, sediments, slope), macrophyte wrack, macro-invertebrate prey and active ghost crab burrows. Stable isotope analysis of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) and the SIAR mixing model were used to determine dietary composition of ghost crabs at each beach. The variation in habitat conditions displayed with increasing beach width was accompanied by quantifiable shifts in ghost crab diet and trophic position. Patterns of ghost crab diet were consistent with differences recorded across the beach width gradient with respect to the availability of preferred micro-habitats of principal macro-invertebrate prey. Values obtained for trophic position also suggests that the generalist ghost crab assembles and augments its diet in fundamentally different ways as habitat morphology varies across a highly dynamic ecosystem. Our results offer support for a functional response in the trophic architecture of a common food web compartment (ghost crabs, macro-invertebrate prey) across well-known beach morphologies. More importantly, our "dynamic food web approach" serves as a basis for evaluating how globally wide-spread sandy beach ecosystems should respond to a variety of anthropogenic impacts including beach grooming, beach re-nourishment, introduction of non

  3. Predator Diet and Trophic Position Modified with Altered Habitat Morphology.

    PubMed

    Tewfik, Alexander; Bell, Susan S; McCann, Kevin S; Morrow, Kristina

    2016-01-01

    Empirical patterns that emerge from an examination of food webs over gradients of environmental variation can help to predict the implications of anthropogenic disturbance on ecosystems. This "dynamic food web approach" is rarely applied at the coastal margin where aquatic and terrestrial systems are coupled and human development activities are often concentrated. We propose a simple model of ghost crab (Ocypode quadrata) feeding that predicts changing dominant prey (Emerita talpoida, Talorchestia sp., Donax variablis) along a gradient of beach morphology and test this model using a suite of 16 beaches along the Florida, USA coast. Assessment of beaches included quantification of morphological features (width, sediments, slope), macrophyte wrack, macro-invertebrate prey and active ghost crab burrows. Stable isotope analysis of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) and the SIAR mixing model were used to determine dietary composition of ghost crabs at each beach. The variation in habitat conditions displayed with increasing beach width was accompanied by quantifiable shifts in ghost crab diet and trophic position. Patterns of ghost crab diet were consistent with differences recorded across the beach width gradient with respect to the availability of preferred micro-habitats of principal macro-invertebrate prey. Values obtained for trophic position also suggests that the generalist ghost crab assembles and augments its diet in fundamentally different ways as habitat morphology varies across a highly dynamic ecosystem. Our results offer support for a functional response in the trophic architecture of a common food web compartment (ghost crabs, macro-invertebrate prey) across well-known beach morphologies. More importantly, our "dynamic food web approach" serves as a basis for evaluating how globally wide-spread sandy beach ecosystems should respond to a variety of anthropogenic impacts including beach grooming, beach re-nourishment, introduction of non

  4. Cerebellar morphological alterations in rats induced by prenatal ozone exposure.

    PubMed

    Rivas-Manzano, P; Paz, C

    1999-11-26

    The present study analyzes the morphological aspects of the cerebellum of rats with prenatal exposure to ozone. A double blind histological and planimetric analysis was performed studying sagittal sections of the anterior cerebellar lobe at postnatal days 0, 12 and 60. Ozone exposed rats showed cerebellar necrotic signs at age 0, diminished area of the molecular layer with Purkinje cells with pale nucleoli and perinucleolar bodies at age 12, and Purkinje cells showing nuclei with unusual clumps of chromatin in the periphery at age 60. We conclude that exposure to high concentrations of ozone during gestation induces permanent cerebellar damage in rats.

  5. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae : Morphological alterations in the midgut of A. mellifera.

    PubMed

    da Silva Cruz, Aline; da Silva-Zacarin, Elaine C M; Bueno, Odair C; Malaspina, Osmar

    2010-04-01

    Morphological alterations, by means of histological and ultrastructural analysis, have been used to determine the effects of boric acid and fipronil on midgut tissues of honeybee worker, Apis mellifera L. larvae. In order to observe possible morphological alterations in the midgut, two groups of bioassays were performed. In the first one, the larvae were chronically treated with different concentrations of boric acid added to the food (1.0, 2.5 and 7.5 mg/g). In the second group, the larvae were fed with diets containing different concentrations of fipronil (0.1 and 1 microg/g) and compared with control groups without these chemical compounds. In the first bioassay, the larvae were collected on day 3 and in the second bioassay on day 4, when the mortality rate obtained in the toxicological bioassay was not very high. The larval midguts were removed and processed for morphological analyses using a light and transmission electron microscopy. We observed cytoplasmic vacuolizations, with the absence of autophagic vacuoles, and chromatinic compacting in most of the cells in the groups treated with pesticides. The morphological alterations were far greater in the larvae treated with boric acid than in the larvae treated with fipronil. Our data suggest that the midgut cell death observed was in response to boric acid and fipronil action. This study significantly improves the understanding of the toxicological effect of these insecticides from the ecotoxicological perspective.

  6. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies

    PubMed Central

    Sarowar, Tasnuva

    2016-01-01

    Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains—the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling. PMID:27795858

  7. Morphological alterations in neocortical and cerebellar GABAergic neurons in a canine model of juvenile Batten disease.

    PubMed

    March, P A; Wurzelmann, S; Walkley, S U

    1995-06-01

    The pathogenesis of brain dysfunction in a canine model of juvenile Batten disease was studied with techniques designed to determine sequential changes in mitochondrial morphology and cytochrome oxidase (CO) activity, and in neurons and synapses using gamma-aminobutyric acid (GABA) as a neurotransmitter. Histochemical and immunocytochemical methods were employed. Mitochondrial alterations were found in a select population of nonpyramidal neurons in neocortex and claustrum, and in cerebellar basket cells. Proportions of affected neurons at any one time remained constant over the disease course, with morphologically-abnormal mitochondria first being recognized at age 6 months. Enlarged mitochondria were readily identifiable at the light microscope (LM) level as large CO-positive or mitochondrial antibody-positive granular structures. Colabelling with antibodies to GABA or to parvalbumin (PV) indicated that most of these cells were GABAergic. Ultrastructurally, atypical mitochondria were characterized by globular enlargement, intramitochondrial membranous inclusions, and disorganized internal structure. CO activity in all other cell somata and in neuropil was diminished compared with normal, age-matched tissue. Glutamic acid decarboxylase (GAD), PV, and GABA studies demonstrated loss of GABAergic neurons and synapses in cortex and cerebellum of affected dogs. These results indicate that abnormal mitochondria are present in neurons in Batten disease, and suggest that suboptimal mitochondrial function may play a role in the pathogenic mechanisms of brain dysfunction in this disorder.

  8. Different methods to alter surface morphology of high aspect ratio structures

    NASA Astrophysics Data System (ADS)

    Leber, M.; Shandhi, M. M. H.; Hogan, A.; Solzbacher, F.; Bhandari, R.; Negi, S.

    2016-03-01

    In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several methods such as laser ablation, focused ion beam, sputter etching, reactive ion etching (RIE) and deep reactive ion etching (DRIE). The surface modification processes were optimized for the high aspect ratio silicon structures of the UEA. The increase in real surface area while maintaining the geometrical surface area was verified using scanning electron

  9. Morphological alteration of microwave disinfected acrylic resins used for dental prostheses

    NASA Astrophysics Data System (ADS)

    Popescu, M. C.; Bita, B. I.; Avram, A. M.; Tucureanu, V.; Schiopu, P.

    2015-02-01

    In this paper we aim to perform a cross section morphological characterization of an acrylic polymer used for dental prostheses subjected to microwave disinfection. The method was largely investigated and the microbiological effectiveness is well established, but there are some issues regarding the in-depth alteration of the material. In our research, the surface roughness is insignificant and the samples were not polished or refined by any means. Two groups of 7 acrylic discs (20 mm diameter, 2 mm thickness) were prepared from a heat-cured powder. Half of the samples embedded a stainless steel reinforcement, in order to observe the changes at the interfaces between the polymer and metallic wire. After the gradual wet microwave treatment, the specimens - including the controls - were frozen in liquid nitrogen and broken into pieces. Fragments were selected for gold metallization to ensure a good contrast for SEM imaging. We examined the samples in cross section employing a high resolution SEM. We have observed the alterations occurred at the surface of the acrylic sample and at the interface with the metallic wire along with the increase of the power and exposure time. The bond configuration of acrylate samples was analysed by FTIR spectrometry.

  10. Natural selection on floral morphology can be influenced by climate.

    PubMed

    Campbell, Diane R; Powers, John M

    2015-06-01

    Climate has the potential to influence evolution, but how it influences the strength or direction of natural selection is largely unknown. We quantified the strength of selection on four floral traits of the subalpine herb Ipomopsis sp. in 10 years that differed in precipitation, causing extreme temporal variation in the date of snowmelt in the Colorado Rocky Mountains. The chosen floral traits were under selection by hummingbird and hawkmoth pollinators, with hawkmoth abundance highly variable across years. Selection for flower length showed environmental sensitivity, with stronger selection in years with later snowmelt, as higher water resources can allow translation of pollination success into fitness based on seed production. Selection on corolla width also varied across years, favouring narrower corolla tubes in two unusual years with hawkmoths, and wider corollas in another late snowmelt year. Our results illustrate how changes in climate could alter natural selection even when the primary selective agent is not directly influenced.

  11. Natural selection on floral morphology can be influenced by climate.

    PubMed

    Campbell, Diane R; Powers, John M

    2015-06-01

    Climate has the potential to influence evolution, but how it influences the strength or direction of natural selection is largely unknown. We quantified the strength of selection on four floral traits of the subalpine herb Ipomopsis sp. in 10 years that differed in precipitation, causing extreme temporal variation in the date of snowmelt in the Colorado Rocky Mountains. The chosen floral traits were under selection by hummingbird and hawkmoth pollinators, with hawkmoth abundance highly variable across years. Selection for flower length showed environmental sensitivity, with stronger selection in years with later snowmelt, as higher water resources can allow translation of pollination success into fitness based on seed production. Selection on corolla width also varied across years, favouring narrower corolla tubes in two unusual years with hawkmoths, and wider corollas in another late snowmelt year. Our results illustrate how changes in climate could alter natural selection even when the primary selective agent is not directly influenced. PMID:25972465

  12. Natural selection on floral morphology can be influenced by climate

    PubMed Central

    Campbell, Diane R.; Powers, John M.

    2015-01-01

    Climate has the potential to influence evolution, but how it influences the strength or direction of natural selection is largely unknown. We quantified the strength of selection on four floral traits of the subalpine herb Ipomopsis sp. in 10 years that differed in precipitation, causing extreme temporal variation in the date of snowmelt in the Colorado Rocky Mountains. The chosen floral traits were under selection by hummingbird and hawkmoth pollinators, with hawkmoth abundance highly variable across years. Selection for flower length showed environmental sensitivity, with stronger selection in years with later snowmelt, as higher water resources can allow translation of pollination success into fitness based on seed production. Selection on corolla width also varied across years, favouring narrower corolla tubes in two unusual years with hawkmoths, and wider corollas in another late snowmelt year. Our results illustrate how changes in climate could alter natural selection even when the primary selective agent is not directly influenced. PMID:25972465

  13. Morphological alterations in toxigenic Aspergillus parasiticus exposed to neem (Azadirachta indica) leaf and seed aqueous extracts.

    PubMed

    Razzaghi-Abyaneh, Mehdi; Allameh, Abdolamir; Tiraihi, Taki; Shams-Ghahfarokhi, Masoomeh; Ghorbanian, Mehdi

    2005-06-01

    The mode of action of the extracts prepared from neem plant i.e., Azadirachta indica on aflatoxin formation in toxigenic Aspergillus species is not well understood. Aflatoxin production by A. parasiticus was suppressed depending on the concentration of the plant aqueous extract (0, 1.56, 3.12, 6.25, 12.5, and 50% v/v) added to the culture media at the time of spore inoculation. Aflatoxin production in fungal mycelia grown for 96 h in culture media containing 50% neem leaf and seed extracts was inhibited by approximately 90 and approximately 65% respectively. Under similar conditions, culture media amended with 1.56% of leaf or seed extract caused approximately 23 and approximately 7% inhibition respectively. Mycelial samples exposed to selected concentrations of the plant extract (1.56 or 50% v/v) collected and processed for morphological studies. Semi-thin longitudinal and cross sections prepared from control (untreated) and treated mycelia (1.56% v/v) revealed that alterations are limited to the vacuolation of the mycelial cytoplasm. Nevertheless, exposure to high concentration i.e., 50% v/v of the extract resulted in vacuolation of the mycelial cytoplasm and vesicle deformation causing attenuation of cell wall at variable intervals. Herniation of the cytoplasmic contents that was protruding from the mycelium was associated with deformation of the mycelium. Some mycelia showed a cleft between the cell wall and cytoplasm. Association of aflatoxin production with morphological changes suggest that probably integrity of the cell barriers particularly cell wall is critical in regulation of aflatoxin production and excretion. PMID:15983743

  14. Selective Induced Altered Coccidians to Immunize and Prevent Enteritis

    PubMed Central

    2016-01-01

    Microbiomic flora in digestive tract is pivotal to the state of our health and disease. Antibiotics affect GI, control composition of microbiome, and shift equilibrium from health into disease status. Coccidiosis causes gastrointestinal inflammation. Antibiotic additives contaminate animal products and enter food chain, consumed by humans with possible allergic, antibiotic resistance and enigmatic side effects. Purposed study induced nonpathogenic, immunogenic organisms to protect against disease and abolish antibiotics' use in food animals and side effects in man. Diverse species of Coccidia were used as model. Immature organisms were treated with serial purification procedure prior to developmental stages to obtain altered strains. Chicks received oral gavage immunized with serial low doses of normal or altered organisms or sham treatment and were challenged with high infective normal organisms to compare pathogenicity and immunogenicity. Mature induced altered forms of E. tenella and E. necatrix lacked developmental stage of “sporocysts” and contained free sporozoites. In contrast, E. maxima progressed to normal forms or did not mature at all. Animals that received altered forms were considerably protected with higher weight gain and antibody titers against challenge infection compared to those that received normal organisms (p < 0.05). This is the first report to induce selected protective altered organisms for possible preventive measures to minimize antibiotic use in food animals. PMID:27721824

  15. Epigenetic Alterations in Density Selected Human Spermatozoa for Assisted Reproduction

    PubMed Central

    Yu, Bolan; Zhou, Hua; Liu, Min; Zheng, Ting; Jiang, Lu; Zhao, Mei; Xu, Xiaoxie; Huang, Zhaofeng

    2015-01-01

    Epidemiological evidence indicates that assisted reproductive technologies (ART) may be associated with several epigenetic diseases such as Beckwith-Wiedemann syndrome (BWS) or Silver-Russell syndrome (SRS). Selection of sperm by density-gradients in ART has improved DNA integrity and sperm quality; however, epigenetic alterations associated with this approach are largely unknown. In the present study, we investigated DNA methylation and histone retention profiles in raw sperm and selected sperm derived from the same individual and separated by using density-gradients. Results from a study group consisting of 93 males demonstrated that both global DNA methylation and histone retention levels decreased in density selected sperm. Compared to unselected raw sperm, histone transition rates decreased by an average of 27.2% in selected sperm, and the global methylation rate was 3.8% in unselected sperm and 3.3% in the selected sperm. DNA methylation and histone retention location profiling analyses suggested that these alterations displayed specific location patterns in the human genome. Changes in the pattern of hypomethylation largely occurred in transcriptional factor gene families such as HOX, FOX, and GATA. Histone retention increased in 67 genes, whereas it was significantly clustered in neural development-related gene families, particularly the olfactory sensor gene family. Although a causative relationship could not be established, the results of the present study suggest the possibility that sperm with good density also possess unique epigenetic profiles, particularly for genes involved in neural and olfactory development. As increasing evidence demonstrates that epigenetics plays a key role in embryonic development and offspring growth characteristics, the specific epigenetic alterations we observed in selected sperm may influence the transcriptional process and neural development in embryos. PMID:26709917

  16. Relevance of Ultrastructural Alterations of Intercellular Junction Morphology in Inflamed Human Esophagus

    PubMed Central

    Liu, Chia-Chin; Lee, Jeng Woei; Liu, Tso-Tsai; Yi, Chih-Hsun

    2013-01-01

    Background/Aims Detailed characterization of the ultrastructural morphology of intercellular space in gastroesophageal reflux disease has not been fully studied. We aimed to investigate whether subtle alteration in intercellular space structure and tight junction proteins might differ among patients with gastroesophageal reflux disease. Methods Esophageal biopsies at 5 cm above the gastroesophageal junction were obtained from 6 asymptomatic controls, 10 patients with reflux symptoms but without erosions, and 18 patients with erosions. The biopsies were morphologically evaluated by transmission electron microscopy, and by using immunohistochemistry for tight junction proteins (claudin-1 and claudin-2 proteins). Results The expressions of tight junction proteins did not differ between asymptomatic controls and gastroesophageal reflux disease patients. In patients with gastroesophageal reflux disease, altered desmosomal junction morphology was only found in upper stratified squamous epithelium. Dilated intercellular space occurred only in upper stratified squamous epithelium and in patients with erosive esophagitis. Conclusions This study suggests that dilated intercellular space may not be uniformly present inside the esophageal mucosa and predominantly it is located in upper squamous epithelium. Presence of desmosomal junction alterations is associated with increased severity of gastroesophageal reflux disease. Besides dilated intercellular space, subtle changes in ultrastructural morphology of intercellular space allow better identification of inflamed esophageal mucosa relevant to acid reflux. PMID:23875099

  17. Pesticide alters habitat selection and aquatic community composition.

    PubMed

    Vonesh, James R; Kraus, Johanna M

    2009-05-01

    Anthropogenic chemical contamination is an important issue for conservation of aquatic ecosystems. While recent research highlights that community context can mediate the consequences of contaminant exposure, little is known about how contaminants themselves might determine this context by altering habitat selection and thus initial community composition. Here we show that the insecticide carbaryl and its commercial counterpart Sevin can affect aquatic community composition by differentially altering oviposition and colonization of experimental pools by amphibians and insects. On average, contaminated pools received 20-fold more adult beetle and heteropteran colonists and 12-fold more Culex mosquito and chironomid midge egg masses. On the other hand, ovipositing Anopheles mosquitoes and cricket frogs showed no preference and we have shown previously that gray treefrogs strongly avoid contaminated pools. Overall, initial richness doubled in contaminated pools compared with controls. By affecting colonizing taxa differently and increasing richness, the contaminant may alter the ecological context under which subsequent effects of exposure will unfold. Given that community context is important for evaluating toxicity effects, understanding the net effects of contaminants in natural systems requires an understanding of their effects on community assembly via shifts in habitat selection.

  18. Some reflections on intracytoplasmic morphologically selected sperm injection.

    PubMed

    Ebner, Thomas; Shebl, Omar; Oppelt, Peter; Mayer, Richard Bernhard

    2014-07-01

    Although intracytoplasmic sperm injection (ICSI) allows proper fertilization in most cases of male sub fertility, it is one of the most unphysiological techniques in assisted reproductive technologies (ART). Thus, over the last decade, researchers have tried to improve sperm observation with higher-resolution microscopy techniques such as the intracytoplasmic morphologically selected sperm injection (IMSI) technique. In order to identify literatures for this review, the PubMed database was searched from 2000 onwards using the terms IMSI, motile sperm organelle morphology examination (MSOME) and sperm vacuole. Approximately 10 years after the introduction of the MSOME and IMSI procedures, several questions related to the prevalence, origin, location, and clinical consequences of sperm vacuoles have not yet been clarified. It seems that IMSI as a routine application is not state of the art and the only confirmed indications for IMSI are recurrent implantation failure following ICSI and severe male factor.

  19. Some Reflections on Intracytoplasmic Morphologically Selected Sperm Injection

    PubMed Central

    Ebner, Thomas; Shebl, Omar; Oppelt, Peter; Mayer, Richard Bernhard

    2014-01-01

    Although intracytoplasmic sperm injection (ICSI) allows proper fertilization in most cases of male sub fertility, it is one of the most unphysiological techniques in assisted reproductive technologies (ART). Thus, over the last decade, researchers have tried to improve sperm observation with higher-resolution microscopy techniques such as the intracytoplasmic morphologically selected sperm injection (IMSI) technique. In order to identify literatures for this review, the PubMed database was searched from 2000 onwards using the terms IMSI, motile sperm organelle morphology examination (MSOME) and sperm vacuole. Approximately 10 years after the introduction of the MSOME and IMSI procedures, several questions related to the prevalence, origin, location, and clinical consequences of sperm vacuoles have not yet been clarified. It seems that IMSI as a routine application is not state of the art and the only confirmed indications for IMSI are recurrent implantation failure following ICSI and severe male factor. PMID:25083173

  20. Monitoring morphological alterations during invasive ductal breast carcinoma progression using multiphoton microscopy.

    PubMed

    Wu, Yan; Fu, Fangmeng; Lian, Yuane; Chen, Jianxin; Wang, Chuan; Nie, Yuting; Zheng, Liqin; Zhuo, Shuangmu

    2015-04-01

    Morphological alteration of cells and matrices is critical for tumor initiation and progression. Monitoring these alterations during tumor progression is vitally important for making real-time histological diagnoses of tumor staging. In this study, 20 pairs of normal and cancerous human breast tissues were imaged by multiphoton microscopy (MPM), and nuclear area and collagen density were quantified by LSM 5 software (version 3.2). Comparison of MPM images from normal breast tissue with low- and high-grade invasive ductal carcinoma (IDC) lesions clearly showed changes in both cellular features and extracellular matrix architecture during IDC development. Moreover, analysis of nuclear area and collagen density established a quantitative link between these two morphological features and progression of IDC. Present results demonstrated that MPM can provide both qualitative and quantitative evaluations of tumor progression. With additional development, this technique has the potential to make real-time histological diagnoses of tumor staging and guide development of efficacious clinical therapies.

  1. Why climate change will invariably alter selection pressures on phenology

    PubMed Central

    Gienapp, Phillip; Reed, Thomas E.; Visser, Marcel E.

    2014-01-01

    The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations. PMID:25165771

  2. Why climate change will invariably alter selection pressures on phenology.

    PubMed

    Gienapp, Phillip; Reed, Thomas E; Visser, Marcel E

    2014-10-22

    The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.

  3. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats

    PubMed Central

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-01-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change. PMID:24363894

  4. Lithium Alters the Morphology of Neurites Regenerating from Cultured Adult Spiral Ganglion Neurons

    PubMed Central

    Shah, S. M.; Patel, C. H.; Feng, A. S.; Kollmar, R.

    2013-01-01

    The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and “wingless-related MMTV integration site” (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5 to 2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not

  5. Ethanol exposure during gastrulation alters neuronal morphology and behavior in zebrafish.

    PubMed

    Shan, Shubham D; Boutin, Savanna; Ferdous, Jannatul; Ali, Declan W

    2015-01-01

    Ethanol (EtOH) exposure during development has been shown to lead to deficits in fine and gross motor control. In this study we used zebrafish embryos to determine the effects of EtOH treatment during gastrulation. We treated embryos in the gastrulation stage (5.25 hours post fertilization (hpf) to 10.75 hpf) with 10 mM, 50 mM or 100 mM EtOH and examined the effects on general animal morphology, the c-start reflex behavior, Mauthner cell (M-cell) morphology and motor neuron morphology. EtOH treated fish exhibited a minor but significant increase in gross morphological deformities compared with untreated fish. Behavioral studies showed that EtOH treatment resulted in an increase in the peak speed of the tail during the escape response. Furthermore, there was a marked increase in abnormally directed c-starts, with treated fish showing greater incidences of c-starts in inappropriate directions. Immunolabeling of the M-cells, which are born during gastrulation, revealed that they were significantly smaller in fish treated with 100 mM EtOH compared with controls. Immunolabeling of primary motor neurons using anti-znp1, showed no significant effect on axonal branching, whereas secondary motor axons had a greater number of branches in ethanol treated fish compared with controls. Together these findings indicate that ethanol exposure during gastrulation can lead to alterations in behavior, neuronal morphology and possibly function. PMID:25599605

  6. Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial.

    PubMed

    Antinori, Monica; Licata, Emanuele; Dani, Gianluca; Cerusico, Fabrizio; Versaci, Caterina; d'Angelo, Daniela; Antinori, Severino

    2008-06-01

    The aim of this prospective randomized study was to assess the advantages of a new modified intracytoplasmic sperm injection (ICSI) technique called intracytoplasmic morphologically selected sperm injection (IMSI) over the conventional ICSI procedure in the treatment of patients with severe oligoasthenoteratozoospermia. The new procedure consisted of IMSI based on a preliminary motile sperm organellar morphology examination under x6600 high magnification. A total of 446 couples with at least two previous diagnoses of severe oligoasthenoteratozoospermia, 3 years of primary infertility, the woman aged 35 years or younger, and an undetected female factor were randomized to IVF micro-insemination treatments: ICSI (n = 219; group 1) and IMSI (n = 227; group 2). A comparison between the two different techniques was made in terms of pregnancy, miscarriage and implantation rates. The data showed that IMSI resulted in a higher clinical pregnancy rate (39.2% versus 26.5%; P = 0.004) than ICSI when applied to severe male infertility cases. Despite their initial poor reproductive prognosis, patients with two or more previous failed attempts benefited the most from IMSI in terms of pregnancy (29.8% versus 12.9%; P = 0.017) and miscarriage rates (17.4% versus 37.5%). At present, 35 healthy babies have been born following the introduction of this promising technique in daily IVF practice.

  7. The G protein alpha o subunit alters morphology, growth kinetics, and phospholipid metabolism of somatic cells.

    PubMed Central

    Bloch, D B; Bonventre, J V; Neer, E J; Seidman, J G

    1989-01-01

    The physiological role of the alpha o subunit of guanine nucleotide-binding (G) protein was investigated with a murine adrenal cell line (Y1) transfected with a rat alpha o cDNA cloned in a retroviral expression vector. The parental cell line lacked detectable alpha o subunit. Expression of the alpha o cDNA in transfected cell lines was confirmed by Western blot (immunoblot) analysis. The rat alpha o subunit interacted with murine beta and gamma subunits and associated with cell membranes. Y1 cells containing large amounts of alpha o subunit had altered cellular morphology and reduced rate of cell division. In addition, GTP-gamma S-stimulated release of arachidonic acid from these cells was significantly increased compared with that in control cells. The alpha o subunit appears directly or indirectly to regulate cellular proliferation, morphology, and phospholipid metabolism. Images PMID:2511433

  8. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    PubMed Central

    Mullen, Brian R.; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly

    2016-01-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. PMID:27364165

  9. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus.

    PubMed

    Choi, Moonseok; Ahn, Sangzin; Yang, Eun-Jeong; Kim, Hyunju; Chong, Young Hae; Kim, Hye-Sun

    2016-07-26

    Astrocytes have been reported to exist in two states, the resting and the reactive states. Morphological changes in the reactive state of astrocytes include an increase in thickness and number of processes, and an increase in the size of the cell body. Molecular changes also occur, such as an increase in the expression of glial fibrillary acidic protein (GFAP). However, the morphological and molecular changes during the process of learning and memory have not been elucidated. In the current study, we subjected Fvb/n mice to contextual fear conditioning, and checked for morphological and molecular changes in astrocytes. 1 h after fear conditioning, type II and type III astrocytes exhibited a unique status with an increased number of processes and decreased GFAP expression which differed from the typical resting or reactive state. In addition, the protein level of excitatory excitatory amino acid transporter 2 (EAAT2) was increased 1 h to 24 h after contextual fear conditioning while EAAT1 did not show any alterations. Connexin 43 (Cx43) protein was found to be increased at 24 h after fear conditioning. These data suggest that hippocampus-based contextual memory process induces changes in the status of astrocytes towards a novel status different from typical resting or reactive states. These morphological and molecular changes may be in line with functional changes.

  10. Morphology and Mineralogy of Libya Montes Layered Delta Deposits, Mars: Implications for Long-Term Aqueous Alteration

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Reiss, D.; Poulet, F.; Carter, J.; Loizeau, D.; Hiesinger, H.; Ivanov, M. A.; Hauber, E.; Jaumann, R.

    2011-03-01

    We present the first results of our morphologic and mineralogic investigation of layered delta-deposits in the Libya Montes, where our observations suggest long-term availability of water and aqueous alteration.

  11. Altered Gene Expression in Mice Selected for High Maternal Aggression

    PubMed Central

    Gammie, Stephen C.; Auger, Anthony P.; Jessen, Heather M.; Vanzo, Rena J.; Awad, Tarif A.; Stevenson, Sharon A.

    2007-01-01

    We previously applied selective breeding on outbred mice to increase maternal aggression (maternal defense). In this study, we compared gene expression within a continuous region of the CNS involved in maternal aggression (hypothalamus and preoptic regions) between lactating selected (S) and non-selected control (C) mice (n = 6 per group). Using microarrays representing over 40,000 genes or expressed sequence tags, two statistical algorithms were used to identify significant differences in gene expression: robust multi array and the probe logarithmic intensity error method. ∼ 200 genes were identified as significant using an intersection from both techniques. A subset of genes were examined for confirmation by real-time PCR. Significant decreases were found in S mice for neurotensin and neuropeptide Y receptor Y2 (both confirmed by PCR). Significant increases were found in S mice for neuronal nitric oxide synthase (confirmed by PCR), the K+ channel subunit, Kcna1 (confirmed by PCR), corticotrophin releasing factor binding protein (just above significance using PCR; p = 0.051), and GABA A receptor subunit 1A (not confirmed by PCR, but similar direction). S mice also exhibited significantly higher levels of the neurotransmitter receptor, adenosine A1 receptor, and the transcription factors, c-Fos, and Egr-1. Interestingly, for 24 genes related to metabolism, all were significantly elevated in S mice, suggesting altered metabolism in these mice. Together, this study provides a list of candidate genes (some previously implicated in maternal aggression and some novel) that may play an important role in the production of this behavior. PMID:16939635

  12. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals.

  13. Gestational protein restriction induces alterations in placental morphology and mitochondrial function in rats during late pregnancy.

    PubMed

    Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Moraes, Camila; Amaral, Maria Esmeria Corezola; Catisti, Rosana

    2013-12-01

    The placenta acts a regulator of nutrient composition and supply from mother to fetus and is the source of hormonal signals that affect maternal and fetal metabolism. Thus, appropriate development of the placenta is crucial for normal fetal development. We investigated the effect of gestational protein restriction (GPR) on placental morphology and mitochondrial function on day 19 of gestation. Pregnant dams were divided into two groups: normal (NP 17 % casein) or low-protein diet (LP 6 % casein). The placentas were processed for biochemical, histomorphometric and ultrastructural analysis. The integrity of rat placental mitochondria (RPM) isolated by conventional differential centrifugation was measured by oxygen uptake (Clark-type electrode). LP animals presented an increase in adipose tissue and triacylglycerol and a decrease in serum insulin levels. No alterations were observed in body, liver, fetus, or placenta weight. There was also no change in serum glucose, total protein, or lipid content. Gestational protein restriction had tissue-specific respiratory effects, with the observation of a small change in liver respiration (~13 %) and considerable respiratory inhibition in placenta samples (~37 %). The higher oxygen uptake by RPM in the LP groups suggests uncoupling between respiration and oxidative phosphorylation. In addition, ultrastructural analysis of junctional zone giant cells from LP placenta showed a disorganized cytoplasm, with loss of integrity of most organelles and intense vacuolization. The present results led us to hypothesize that GPR alters placental structure and morphology, induces sensitivity to insulin, mitochondrial abnormalities and suggests premature aging of the placenta. Further studies are needed to test this hypothesis.

  14. Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish

    PubMed Central

    Franssen, Nathan R

    2011-01-01

    Anthropogenic habitat alteration creates novel environments that can alter selection pressures. Construction of reservoirs worldwide has disturbed riverine ecosystems by altering biotic and abiotic environments of impounded streams. Changes to fish communities in impoundments are well documented, but effects of those changes on native species persisting in reservoirs, which are presumably subjected to novel selective pressures, are largely unexplored. I assessed body shape variation of a native stream fish in reservoir habitats and streams from seven reservoir basins in the Central Plains of the USA. Body shape significantly and consistently diverged in reservoirs compared with stream habitats within reservoir basins; individuals from reservoir populations were deeper-bodied and had smaller heads compared with stream populations. Individuals from reservoir habitats also exhibited lower overall shape variation compared with stream individuals. I assessed the contribution of genotypic divergence and predator-induced phenotypic plasticity on body shape variation by rearing offspring from a reservoir and a stream population with or without a piscivorous fish. Significant population-level differences in body shape persisted in offspring, and both populations demonstrated similar predator-induced phenotypic plasticity. My results suggest that, although components of body shape are plastic, anthropogenic habitat modification may drive trait divergence in native fish populations in reservoir-altered habitats. PMID:25568023

  15. Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish.

    PubMed

    Franssen, Nathan R

    2011-11-01

    Anthropogenic habitat alteration creates novel environments that can alter selection pressures. Construction of reservoirs worldwide has disturbed riverine ecosystems by altering biotic and abiotic environments of impounded streams. Changes to fish communities in impoundments are well documented, but effects of those changes on native species persisting in reservoirs, which are presumably subjected to novel selective pressures, are largely unexplored. I assessed body shape variation of a native stream fish in reservoir habitats and streams from seven reservoir basins in the Central Plains of the USA. Body shape significantly and consistently diverged in reservoirs compared with stream habitats within reservoir basins; individuals from reservoir populations were deeper-bodied and had smaller heads compared with stream populations. Individuals from reservoir habitats also exhibited lower overall shape variation compared with stream individuals. I assessed the contribution of genotypic divergence and predator-induced phenotypic plasticity on body shape variation by rearing offspring from a reservoir and a stream population with or without a piscivorous fish. Significant population-level differences in body shape persisted in offspring, and both populations demonstrated similar predator-induced phenotypic plasticity. My results suggest that, although components of body shape are plastic, anthropogenic habitat modification may drive trait divergence in native fish populations in reservoir-altered habitats.

  16. Retinal function and morphology are altered in cattle infected with the prion disease transmissible mink encephalopathy.

    PubMed

    Smith, J D; Greenlee, J J; Hamir, A N; Richt, J A; Greenlee, M H West

    2009-09-01

    Transmissible spongiform encephalopathies (TSEs) are a group of diseases that result in progressive and invariably fatal neurologic disease in both animals and humans. TSEs are characterized by the accumulation of an abnormal protease-resistant form of the prion protein in the central nervous system. Transmission of infectious TSEs is believed to occur via ingestion of prion protein-contaminated material. This material is also involved in the transmission of bovine spongiform encephalopathy ("mad cow disease") to humans, which resulted in the variant form of Creutzfeldt-Jakob disease. Abnormal prion protein has been reported in the retina of TSE-affected cattle, but despite these observations, the specific effect of abnormal prion protein on retinal morphology and function has not been assessed. The objective of this study was to identify and characterize potential functional and morphologic abnormalities in the retinas of cattle infected with a bovine-adapted isolate of transmissible mink encephalopathy. We used electroretinography and immunohistochemistry to examine retinas from 10 noninoculated and 5 transmissible mink encephalopathy-inoculated adult Holstein steers. Here we show altered retinal function, as evidenced by prolonged implicit time of the electroretinogram b-wave, in transmissible mink encephalopathy-infected cattle before the onset of clinical illness. We also demonstrate disruption of rod bipolar cell synaptic terminals, indicated by decreased immunoreactivity for the alpha isoform of protein kinase C and vesicular glutamate transporter 1, and activation of Müller glia, as evidenced by increased glial fibrillary acidic protein and glutamine synthetase expression, in the retinas of these cattle at the time of euthanasia due to clinical deterioration. This is the first study to identify both functional and morphologic alterations in the retinas of TSE-infected cattle. Our results support future efforts to focus on the retina for the development of

  17. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    vascular cells. However, few studies have been directed at assessing the effect of altered gravitational field on vascular cell fiction and metabolism, Using image analysis we examined how bovine aortic endothelial cells altered their morphological characteristics and their response to a denudation injury when cells were subjected to simulated microgravity and hypergravity.

  18. The association between regular cannabis exposure and alterations of human brain morphology: an updated review of the literature.

    PubMed

    Lorenzetti, Valentina; Solowij, Nadia; Fornito, Alex; Lubman, Dan Ian; Yucel, Murat

    2014-01-01

    Cannabis is the most widely used illicit drug worldwide, though it is unclear whether its regular use is associated with persistent alterations in brain morphology. This review examines evidence from human structural neuroimaging investigations of regular cannabis users and focuses on achieving three main objectives. These include examining whether the literature to date provides evidence that alteration of brain morphology in regular cannabis users: i) is apparent, compared to non-cannabis using controls; ii) is associated with patterns of cannabis use; and with iii) measures of psychopathology and neurocognitive performance. The published findings indicate that regular cannabis use is associated with alterations in medial temporal, frontal and cerebellar brain regions. Greater brain morphological alterations were evident among samples that used at higher doses for longer periods. However, the evidence for an association between brain morphology and cannabis use parameters was mixed. Further, there is poor evidence for an association between measures of brain morphology and of psychopathology symptoms/neurocognitive performance. Overall, numerous methodological issues characterize the literature to date. These include investigation of small sample sizes, heterogeneity across studies in sample characteristics (e.g., sex, comorbidity) and in employed imaging techniques, as well as the examination of only a limited number of brain regions. These factors make it difficult to draw firm conclusions from the existing findings. Nevertheless, this review supports the notion that regular cannabis use is associated with alterations of brain morphology, and highlights the need to consider particular methodological issues when planning future cannabis research.

  19. Morphological Alterations in Gastrocnemius and Soleus Muscles in Male and Female Mice in a Fibromyalgia Model

    PubMed Central

    Oezel, Lisa; Schwarzbach, Hans; Ocker, Matthias; Thieme, Kati; Di Fazio, Pietro; Kinscherf, Ralf

    2016-01-01

    Background Fibromyalgia (FM) is a chronic musculoskeletal pain disorder, characterized by chronic widespread pain and bodily tenderness and is often accompanied by affective disturbances, however often with unknown etiology. According to recent reports, physical and psychological stress trigger FM. To develop new treatments for FM, experimental animal models for FM are needed to be development and characterized. Using a mouse model for FM including intermittent cold stress (ICS), we hypothesized that ICS leads to morphological alterations in skeletal muscles in mice. Methods Male and female ICS mice were kept under alternating temperature (4°C/room temperature [22°C]); mice constantly kept at room temperature served as control. After scarification, gastrocnemius and soleus muscles were removed and snap-frozen in liquid nitrogen–cooled isopentane or fixed for electron microscopy. Results In gastrocnemius/soleus muscles of male ICS mice, we found a 21.6% and 33.2% decrease of fiber cross sectional area (FCSA), which in soleus muscle concerns the loss of type IIa and IIx FCSA. This phenomenon was not seen in muscles of female ICS mice. However, this loss in male ICS mice was associated with an increase in gastrocnemius of the density of MIF+ (8.6%)-, MuRF+ (14.7%)-, Fbxo32+ (17.8%)-cells, a 12.1% loss of capillary contacts/muscle fiber as well as a 30.7% increase of damaged mitochondria in comparison with male control mice. Moreover, significant positive correlations exist among densities (n/mm2) of MIF+, MuRF+, Fbxo32+-cells in gastrocnemius/ soleus muscles of male ICS mice; these cell densities inversely correlate with FCSA especially in gastrocnemius muscle of male ICS mice. Conclusion The ICS-induced decrease of FCSA mainly concerns gastrocnemius muscle of male mice due to an increase of inflammatory and atrogenic cells. In soleus muscle of male ICS and soleus/gastrocnemius muscles of female ICS mice morphological alterations seem to occur not at all or

  20. Alterations in braided rivers' morphology: a typology for Curvature Subcarpathians (Romania)

    NASA Astrophysics Data System (ADS)

    Ioana-Toroimac, Gabriela; Zaharia, Liliana; Ciobotaru, Nicu

    2015-04-01

    The morphology of braided rivers was altered by human pressures in the last century in Europe. Rivers from Curvature Subcarpathians have the highest sediment charges in Romania, therefore it seems relevant to evaluate the status of their braided sectors. Therefore, the aim of this work is to carry out an inventory of river morphology alterations suffered by braided rivers in Curvature Subcarpathians and to establish a typology based on indicators for channel adjustments and artificiality. For channel adjustments, we calculated the length of the braided sectors, the width of the active-channels and the length of banks covered by a riparian forest for 1900-2011 interval, in GIS. For artificiality, we counted dams, weirs, bridges, as well as artificial banks length for 2011 time horizon. The results indicate a diminishing braiding activity: all the rivers narrowed their braided active-channel (30-70% of the mean width); the majority suffered fluvial metamorphosis, transforming partially into single channels (0-75% of the braided sector length in 1900); artificial banks vary from 0 to 40% of the initial braided sector. We distinguished three main types of braided rivers based on morphological alterations. Type 1 includes rivers with human interventions and important braiding retraction, both upstream and downstream; a sub-type characterises by riparian forest lining the downstream metamorphosed reach; most rivers are in the south-western part of the studied region; the most demonstrative examples are Prahova and Ialomiţa rivers. Type 2 corresponds to rivers with important retraction upstream, without important values of artificiality; most demonstrative is Râmna River. Type 3 regroups rivers with a low level of channel adjustments and artificiality; actually, they had and still have the highest braiding activity in the studied region; they are located in the north-eastern part; typical examples are Putna and Şuşiţa rivers. As a discussion, the variations of active

  1. Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria)

    NASA Astrophysics Data System (ADS)

    Plan, Lukas; Tschegg, Cornelius; De Waele, Jo; Spötl, Christoph

    2012-10-01

    Whereas most karstic caves worldwide are formed by carbonic acid, a small but significant number of sub-surface cavities are the product of sulfuric acid speleogenesis (SAS). In the Eastern Alps, no cave has so far been attributed to this type. In this multidisciplinary study we demonstrate that Kraushöhle in northern Styria was indeed formed by SAS. The cave pattern shows individual chambers, 3D-mazes and blind galleries, as well as typical SAS morphologies such as cupolas, gypsum replacement pockets, corrosion notches and convection niches. "Ceiling pendant drip holes" are described here for the first time and these corrosion features are fully consistent with the SAS model. Other features of Kraushöhle include thick gypsum deposits with strongly depleted δ34S values and other minerals - mostly sulfates - indicating highly acidic conditions. We also studied acid-rock interaction processes giving rise to widespread corrosion and concomitant replacement by gypsum. Petrographic and geochemical analyses reveal the presence of a distinctive alteration layer of highly increased porosity at the interface between the host limestone and the secondary gypsum. Dissolution and replacement of the limestone was fast enough to prevent the development of C and O isotopic alteration halos but resulted in selective leaching of elements. This stable isotope signal is thus different from the pronounced isotope gradient commonly observed in CO2-dominated hypogenic caves. Petrographic observations reveal that the limestone-gypsum replacement was a nearly constant volume process.

  2. Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans.

    PubMed

    Braga, P C; Sasso, M Dal; Culici, M; Alfieri, M

    2007-09-01

    The envelope of Candida albicans, with its outermost array of macromolecules protruding towards the environment, is pivotal to the expression of major virulence factors such as adhesiveness, and the morphological transition to hyphal form. We tested the anticandidal activity of eugenol, main component of clove oil, and thymol, main component of thyme oil, alone or in combination, by investigating their ability to interfere with the architecture of the envelope of C. albicans. Both molecules alterated the morphogenesis of the envelope, but the effects of thymol were more pronounced than those of eugenol. Certain combinations of the two molecules led to a synergistic effect, which is interesting in the view of potentiating their inhibition of C. albicans colonisation and infectiousness. PMID:17590533

  3. Morphological alterations in the kidney of rats with natural and experimental Leptospira infection.

    PubMed

    Tucunduva de Faria, M; Athanazio, D A; Gonçalves Ramos, E A; Silva, E F; Reis, M G; Ko, A I

    2007-11-01

    Leptospirosis is a widespread anthropozoonosis, with a broad array of mammalian reservoirs, occurring as rural endemics, urban outbreaks related to floods, and emergent disease associated with water sports and recreational exposure in developed countries. Rats are the major source of human infection, particularly in urban areas; however few reports have focused on the pathology of leptospirosis in this host. This study reports pathological changes in 60 kidneys from captured wild rats and compares these with changes in the kidney of Wistar rats experimentally infected with Leptospira interrogans serovar Copenhageni strain FIOCRUZ L1-130. A broad range of morphological alterations were detected in the kidneys from captured rats but interstitial nephritis was the only feature reproduced under experimental conditions. The role of interstitial nephritis in the pathogenesis of leptospirosis is reviewed and it is suggested that rats may provide a potential tool for the study of colonization mechanisms and host resistance in acute leptospiral disease.

  4. Red blood cells in Rett syndrome: oxidative stress, morphological changes and altered membrane organization.

    PubMed

    Ciccoli, Lucia; De Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Cortelazzo, Alessio; Zollo, Gloria; Pecorelli, Alessandra; Rossi, Marcello; Hayek, Joussef

    2015-11-01

    In this review, we summarize the current evidence on the erythrocyte as a previously unrecognized target cell in Rett syndrome, a rare (1:10 000 females) and devastating neurodevelopmental disorder caused by loss-of-function mutations in a single gene (i.e. MeCP2, CDKL5, or rarely FOXG1). In particular, we focus on morphological changes, membrane oxidative damage, altered membrane fatty acid profile, and aberrant skeletal organization in erythrocytes from patients with typical Rett syndrome and MeCP2 gene mutations. The beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) are also summarized for this condition to be considered as a 'model' condition for autism spectrum disorders.

  5. Morphology Alters Fluid Transport and the Ability of Organisms to Mix Oceanic Waters.

    PubMed

    Katija, Kakani

    2015-10-01

    Mixing in the ocean is opposed by the stratification of fluid, such that density of seawater increases with greater depth. The mechanisms by which mixing occurs have been attributed largely to physical processes that include atmospheric forcing, tides, and internal waves. Biogenic mixing, another potential source of mixing in the ocean, may generate significant transport of fluid during diel vertical migrations of organisms. Biogenic mixing is not limited to the near-surface or to regions of rough bottom topography, as are other physical mixing processes, and may contribute significantly to the energy budget of mixing in mid-ocean. "Fluid drift", a mechanism first described by Charles Galton Darwin, has been identified as a mechanism that allows for long-distance, vertical transport of fluid by the smallest of swimming organisms. However, little is known about how fluid drift varies with morphology and behavior of swimming organisms. We conducted numerical simulations of theoretical and experimentally measured flows of swimming medusae (Phyllorhiza sp.), and compared the volume of the drift induced by these flows. Our numerical simulations of fluid drift showed that morphology coupled with swimming behavior alters the transport of fluid both spatially and temporally. Given empirical velocity field data, the methods presented here allow us to systematically compare fluid transport across taxa, and enable us to deduce the potential of swimming organisms to influence fluid transport.

  6. Morphology Alters Fluid Transport and the Ability of Organisms to Mix Oceanic Waters.

    PubMed

    Katija, Kakani

    2015-10-01

    Mixing in the ocean is opposed by the stratification of fluid, such that density of seawater increases with greater depth. The mechanisms by which mixing occurs have been attributed largely to physical processes that include atmospheric forcing, tides, and internal waves. Biogenic mixing, another potential source of mixing in the ocean, may generate significant transport of fluid during diel vertical migrations of organisms. Biogenic mixing is not limited to the near-surface or to regions of rough bottom topography, as are other physical mixing processes, and may contribute significantly to the energy budget of mixing in mid-ocean. "Fluid drift", a mechanism first described by Charles Galton Darwin, has been identified as a mechanism that allows for long-distance, vertical transport of fluid by the smallest of swimming organisms. However, little is known about how fluid drift varies with morphology and behavior of swimming organisms. We conducted numerical simulations of theoretical and experimentally measured flows of swimming medusae (Phyllorhiza sp.), and compared the volume of the drift induced by these flows. Our numerical simulations of fluid drift showed that morphology coupled with swimming behavior alters the transport of fluid both spatially and temporally. Given empirical velocity field data, the methods presented here allow us to systematically compare fluid transport across taxa, and enable us to deduce the potential of swimming organisms to influence fluid transport. PMID:26117832

  7. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    PubMed

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment.

  8. Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN

    PubMed Central

    Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.

    2015-01-01

    Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315

  9. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives. PMID:27192480

  10. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives.

  11. Altered Contralateral Auditory Cortical Morphology in Unilateral Sudden Sensorineural Hearing Loss

    PubMed Central

    Fan, Wenliang; Zhang, Wenjuan; Li, Jing; Zhao, Xueyan; Mella, Grace; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong; Xu, Haibo

    2015-01-01

    Objective: To investigate the cerebral gray matter volume alterations in unilateral sudden sensorineural hearing loss patients within the acute period by the voxel-based morphometry method, and to determine if hearing impairment is associated with regional gray matter alterations in unilateral sudden sensorineural hearing loss patients. Study Design: Prospective case study. Setting: Tertiary class A teaching hospital. Patients: Thirty-nine patients with left-side unilateral sudden sensorineural hearing loss and 47 patients with right-side unilateral sudden sensorineural hearing loss. Intervention: Diagnostic. Main Outcome Measure: To compare the regional gray matter of unilateral sudden sensorineural hearing loss patients and healthy control participants. Results: Compared with control groups, patients with left side unilateral sudden sensorineural hearing loss had significant gray matter reductions in the right middle temporal gyrus and right superior temporal gyrus, whereas patients with right side unilateral sudden sensorineural hearing loss showed gray matter decreases in the left superior temporal gyrus and left middle temporal gyrus. A significant negative correlation with the duration of the sudden sensorineural hearing loss (R = −0.427, p = 0.012 for left-side unilateral SSNHL and R = −0.412, p = 0.013 for right-side unilateral SSNHL) was also found in these brain areas. There was no region with increased gray matter found in both groups of unilateral sudden sensorineural hearing loss patients. Conclusions: This study confirms that detectable decreased contralateral auditory cortical morphological changes have occurred in unilateral SSNHL patients within the acute period by voxel-based morphometry methods. The gray matter volumes of these brain areas also perform a negative correlation with the duration of the disease, which suggests a gradual brain structural impairment after the progression of the disease. PMID:26595717

  12. Ultrastructural observation of altered chloroplast morphology in space-grown Brassica rapa cotyledons.

    PubMed

    Jiao, S; Hilaire, E; Paulsen, A Q; Guikema, J A

    1999-07-01

    Photosynthesis will be indispensable in a bioregenerative life-support systems for long space missions. It is critical understand the effects of space on this complex process, especially the loss of gravity. Past has noted changes in plant growth and development; differences about cell size, shape, division, and differentiation; and plastid distribution and structure alterations. The amyloplast-containing columelar cells in root tips were carefully examined since they are likely gravity-sensing sites. Changes on photosynthetic physiology and chloroplast structure have been reported. Both increases and decreases of chlorophyll and carotenoid contents were reported. Structural changes of thylakoid membranes in chloroplasts were observed in pea and Arabidopsis grown in space or clinorotation. Recently, a decrease of CO2 assimilation rate and of electron transport rate of both PSI and PSII on thylakoid membranes were reported in space-grown wheat. These imply an overall decrease of photosynthetic activities, and implicate thylakoid-old structural changes. For example, PSI activity, and its reaction center subunits (PsaA, PsaB, and PsaC) and the LHCIs, were decreased under microgravity. Here, we further examined cellular morphology and ultrastructural features of the chloroplast and its thylakoid membranes by electron microscopy and in situ immunolocalization.

  13. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils

    NASA Astrophysics Data System (ADS)

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F.; Currano, Ellen D.; Jacobs, Louis L.; Lyng Sylvestersen, Rene; Gabbott, Sarah E.; Vinther, Jakob

    2015-10-01

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns.

  14. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils.

    PubMed

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F; Currano, Ellen D; Jacobs, Louis L; Sylvestersen, Rene Lyng; Gabbott, Sarah E; Vinther, Jakob

    2015-10-13

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns.

  15. Crickets in space: morphological, physiological and behavioral alterations induced by space flight and hypergravity

    NASA Astrophysics Data System (ADS)

    Horn, E.; Agricola, H.; Böser, S.; Förster, S.; Kämper, G.; Riewe, P.; Sebastian, C.

    "Crickets in Space" was a Neurolab experiment by which the balance between genetic programs and the gravitational environment for the development of a gravity sensitive neuronal system was studied. The model character of crickets was justified by their external gravity receptors, identified position-sensitive interneurons (PSI) and gravity-related compensatory head response, and by the specific relation of this behavior to neuronal arousal systems activated by locomotion. These advantages allowed to study the impact of modified gravity on cellular processes in a complex organism. Eggs, 1st, 4th and 6th stage larvae of Acheta domesticus were used. Post-flight experiments revealed a low susceptibility of the behavior to micro- and hypergravity while the physiology of the PSI was significantly affected. Immunocytological investigations revealed a stage-dependent sensitivity of thoracic GABAergic motoneurons to 3g-conditions concerning their soma sizes but not their topographical arrangement. The morphology of neuromuscular junctions was not affected by 3g-hypergravity. Peptidergic neurons from cerebral sensorimotor centers revealed no significant modifications by microgravity (μg). The contrary physiological and behavioral results indicate a facilitation of 1g-readaptation originating from accessory gravity, proprioceptive and visual sense organs. Absence of anatomical modifications point to an effective time window of μg- or 3g-expo-sure related to the period of neuronal proliferation. The analysis of basic mechanisms of how animals and man adapt to altered gravitational conditions will profit from a continuation of the project "Crickets in Space".

  16. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils

    PubMed Central

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F.; Currano, Ellen D.; Jacobs, Louis L.; Sylvestersen, Rene Lyng; Gabbott, Sarah E.; Vinther, Jakob

    2015-01-01

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns. PMID:26417094

  17. Study of laser uncaging induced morphological alteration of rat cortical neurites using atomic force microscopy.

    PubMed

    Tian, Jian; Tu, Chunlong; Liang, Yitao; Zhou, Jian; Ye, Xuesong

    2015-09-30

    Activity-dependent structural remodeling is an important aspect of neuronal plasticity. In the previous researches, neuronal structure variations resulting from external interventions were detected by the imaging instruments such as the fluorescence microscopy, the scanning/transmission electron microscopy (SEM/TEM) and the laser confocal microscopy. In this article, a new platform which combined the photochemical stimulation with atomic force microscopy (AFM) was set up to detect the activity-dependent structural remodeling. In the experiments, the cortical neurites on the glass coverslips were stimulated by locally uncaged glutamate under the ultraviolet (UV) laser pulses, and a calcium-related structural collapse of neurites (about 250 nm height decrease) was observed by an AFM. This was the first attempt to combine the laser uncaging with AFM in living cell researches. With the advantages of highly localized stimulation (<5 μm), super resolution imaging (<3.8 nm), and convenient platform building, this system was suitable for the quantitative observation of the neuron mechanical property variations and morphological alterations modified by neural activities under different photochemical stimulations, which would be helpful for studying physiological and pathological mechanisms of structural and functional changes induced by the biomolecule acting.

  18. Altered trait variability in response to size-selective mortality.

    PubMed

    Uusi-Heikkilä, Silva; Lindström, Kai; Parre, Noora; Arlinghaus, Robert; Alós, Josep; Kuparinen, Anna

    2016-09-01

    Changes in trait variability owing to size-selective harvesting have received little attention in comparison with changes in mean trait values, perhaps because of the expectation that phenotypic variability should generally be eroded by directional selection typical for fishing and hunting. We show, however, that directional selection, in particular for large body size, leads to increased body-size variation in experimentally harvested zebrafish (Danio rerio) populations exposed to two alternative feeding environments: ad libitum and temporarily restricted food availability. Trait variation may influence population adaptivity, stability and resilience. Therefore, rather than exerting selection pressures that favour small individuals, our results stress the importance of protecting large ones, as they can harbour a great amount of variation within a population, to manage fish stocks sustainably. PMID:27651537

  19. Altered coagulability: an aid to selective breast biopsy.

    PubMed Central

    Spillert, C. R.; Passannante, M. R.; Salzer-Pagan, J. E.; Lazaro, E. J.

    1993-01-01

    Difficulty in discriminating nonadvanced breast cancer from benign breast disease results in many cancer negative biopsies. Development of a test to better differentiate between these two entities to reduce the number of cancer negative biopsies was the purpose of this blind study. The clue that prompted the development of this test resides in the state of hypercoagulability in cancer. Hypercoagulability can be measured by assessing tissue factor-mediated altered coagulability. The amount of tissue factor release is contingent on prior activation of the monocyte (the only blood cell that generates tissue factor) in vivo. PMID:8478968

  20. Selection for alternative male reproductive tactics alters intralocus sexual conflict.

    PubMed

    Plesnar Bielak, Agata; Skrzynecka, Anna M; Miler, Krzysztof; Radwan, Jacek

    2014-07-01

    Intralocus sexual conflict (IASC) arises when fitness optima for a shared trait differ between the sexes; such conflict may help maintain genetic variation within populations. Sex-limited expression of sexually antagonistic traits may help resolve the conflict, but the extent of this resolution remains a subject of debate. In species with alternative male reproductive tactics, unresolved conflict should manifest more in a more sexually dimorphic male phenotype. We tested this prediction in the bulb mite (Rhizoglyphus robini), a species in which aggressive fighters coexist with benign scramblers. To do this, we established replicated lines in which we increased the proportion of each of the alternative male morphs using artificial selection. After approximately 40 generations, the proportion of fighters and scramblers stabilized at >0.9 in fighter- and scrambler-selected lines, respectively. We then measured several female fitness components. As predicted by IASC theory, female fecundity and longevity were lower in lines selected for fighters and higher in lines selected for scramblers. This finding indicates that sexually selected phenotypes are associated with an ontogenetic conflict that is not easily resolved. Furthermore, we suggest that IASC may be an important mechanism contributing to the maintenance of genetic variation in the expression of alternative reproductive tactics.

  1. Memory generalization is selectively altered in the psychosis dimension.

    PubMed

    Ivleva, Elena I; Shohamy, Daphna; Mihalakos, Perry; Morris, David W; Carmody, Thomas; Tamminga, Carol A

    2012-06-01

    Global deficits in declarative memory are commonly reported in individuals with schizophrenia and psychotic bipolar disorder, and in their biological relatives. However, it remains unclear whether there are specific components within the global declarative memory dysfunction that are unique to schizophrenia and bipolar disorder, or whether these impairments overlap the two psychoses. This study sought to characterize differential components of learning and memory in individuals within the psychosis dimension: probands with schizophrenia (SZP, n=33), probands with psychotic bipolar I disorder (BDP, n=20), and biological relatives of SZP (SZR, n=21), contrasted with healthy controls (HC, n=26). A computerized cognitive paradigm, the Acquired Equivalence test, with probes for associative learning, memory for learned associations, and memory generalization was administered, along with standardized neuropsychological measures of declarative memory. All study groups were able to learn and remember the associations, although SZP were slower than HC in the initial learning stages. Both SZP (significantly) and BDP (at a trend level) showed altered memory generalization compared to HC (SZP vs. HC, p=.038, d=.8; BDP vs. HC, p=.069, d=.95). SZR showed memory generalization intermediate between SZP and HC, although their performance did not differ significantly from either group. These findings indicate that probands with schizophrenia and bipolar psychoses have similar alteration in the ability to flexibly generalize learned knowledge when probed with novel stimuli, despite overall sufficient associative learning and memory for what they learned. These results suggest that the two disorders present a clinical continuum with overlapping hippocampus-mediated memory generalization dysfunction underlying the psychosis phenotype.

  2. Diets Rich in Saturated and Polyunsaturated Fatty Acids Induce Morphological Alterations in the Rat Ventral Prostate

    PubMed Central

    Furriel, Angélica; Campos-Silva, Pamella; Silva, Paola Cariello Guedes Picarote; Costa, Waldemar Silva; Sampaio, Francisco José Barcellos; Gregório, Bianca Martins

    2014-01-01

    Aim To evaluate the influence of dietary lipid quality on the body mass, carbohydrate metabolism and morphology of the rat ventral prostate. Materials and Methods Wistar rats were divided into four groups: SC (standard chow), HF-S (high-fat diet rich in saturated fatty acids), HF-P (high-fat diet rich in polyunsaturated fatty acids) and HF-SP (high-fat diet rich in saturated and polyunsaturated fatty acids). We analyzed body mass, fat mass deposits, plasma blood, insulin resistance and the ventral prostate structure. Results Groups that received high-fat diets were heavier and presented larger fat deposits than SC group. The HF-S and HF-SP groups had higher glucose, insulin and total cholesterol serum levels and insulin resistance compared with the SC. The acinar area, epithelium height and area density of the lumen were higher in the HF-SP than in the other groups. The epithelium area density and epithelial cell proliferation were greater in the HF-P and HF-SP than in the SC group. All of the groups that received high-fat diets had greater area density of the stroma, area density of smooth muscle cells and stromal cell proliferation compared with the SC group. Conclusion Diets rich in saturated and/or polyunsaturated fatty acids induced overweight. Independently of insulin resistance, polyunsaturated fatty acids increased prostate stromal and epithelial cell proliferation. Saturated fatty acids influenced only stromal cellular proliferation. These structural and morphometric alterations may be considered risk factors for the development of adverse remodeling process in the rat ventral prostate. PMID:25029463

  3. Artificial Klebsiella pneumoniae biofilm model mimicking in vivo system: altered morphological characteristics and antibiotic resistance.

    PubMed

    Singla, Saloni; Harjai, Kusum; Chhibber, Sanjay

    2014-04-01

    The purpose of this study was to develop a biofilm model of Klebsiella pneumoniae B5055, mimicking in vivo biofilm system so as to determine susceptibility of different phases of biofilm to antibiotics by three-dimensional analysis. Artificial mature biofilm of K. pneumoniae was made on black, polycarbonate membranes. Biofilm structure was visualized by scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM). Viable count method, CLSM and SEM analysis confirmed that mature, uniform and viable biofilms can be formed on the polycarbonate membranes by this method. The three-dimensional heterogeneity of biofilm was confirmed on the basis of results of CLSM, which is an important characteristics of in vivo biofilm system. Staining with the LIVE/DEAD BacLight viability kit and acridine orange suggested that the center of biofilm had more inactive cells compared with actively dividing cells on the periphery. Amikacin at a concentration of 40 μg ml⁻¹ was effective against younger biofilm whereas ineffective against older biofilm that showed sparsely populated dead cells using the BacLight viability staining kit. Role of altered morphological characteristics toward increased antibiotic susceptibility was also studied for different phases of K. pneumoniae biofilm by CLSM and light microscopy. Thickness of biofilm increased from 0.093 to 0.231 mm with time. So, both heterogeneity and thickness of the biofilm are likely to influence the ineffectiveness of amikacin in older biofilm. The present model holds considerable clinical relevance and may be useful for evaluating the efficacy of antimicrobial agent on bacterial biofilms in vitro.

  4. Alterations induced by gestational stress in brain morphology and behaviour of the offspring.

    PubMed

    Weinstock, M

    2001-12-01

    Retrospective studies in humans suggest that chronic maternal stress during pregnancy, associated with raised plasma levels of CRH, ACTH and cortisol may increase the likelihood of preterm birth, developmental delays and behavioural abnormalities in the children. In adulthood, it may contribute to the significant association between the incidence of schizophrenia, increased left or mixed handedness, reduction in cerebral asymmetry and anomalies in brain morphology. Our studies and others have shown that prenatal stress in rats can mimic these developmental and behavioural alterations. These rats show a reduced propensity for social interaction, increased anxiety in intimidating or novel situations and a reduction in cerebral asymmetry and dopamine turnover, consistent with those in schizophrenic humans. Prenatally-stressed (PS) rats also show behaviour consistent with depression, including a phase-shift in their circadian rhythm for corticosterone, sleep abnormalities, a hedonic deficit and greater acquisition of learned helplessness under appropriate conditions. These behavioural abnormalities are associated with impaired regulation of the hypothalamic-pituitary-adrenal axis response to stress and increased CRH activity. PS males may show demasculinisation and feminisation of their sexual behaviour. The developmental and behavioural abnormalities in PS offspring could occur through sensitisation of the foetal brain by maternal stress hormones to the action of glucocorticoid and CRH and to neurotransmitters affected by them. This may have long-lasting consequences and could explain the precipitation of depressive symptoms or schizophrenia by psychosocial stress in later life. The character of the behavioural abnormalities probably depends on the timing of the maternal stress in relation to development of the particular neuronal systems. PMID:11689280

  5. Alteration of Cell Morphology with Nano- and Micro-Topographical Surface on Closed-Packed Silica Nanobeads.

    PubMed

    Park, Jeong Su; Lee, Dahyun; Park, Ji Yeon; Lee, Hyo Jin; Kim, Jin-Seok; Lee, Jin Seok

    2016-06-01

    The nanotopological cues are emerging field of in vivo study, because it stimulates alteration of cell morphology and cell behavior such as adhesion, proliferation, differentiation, apoptosis and migration. However, it has not studies nanosurface affected cancer cell behavior, therefore, in this study, we determined that effects the silica nanobeads used as nanotopological tools on cancer cells. For synthesis of silica beads, we made it using stober method and basic amino acid (L-arginine) instead of NH4OH. We carried out rubbing beads to obtain the monolayer silica beads and it used as nanotopological cues for fabrication. It was induced changing cell morphology at 1DIV in group-II (SB-450 and SB-570). However, it was maintained in group-I (SB-118, SB-230) and group-III (SB-1450) like control. Therefore, we separated type-I and type-II surface along with area of cell adhesion and morphology. The characteristic of type-II surface was long distance between contact points, resulting in increase of tension to cells. We found that the morphology rounded up by type-II surface at 1DIV. We described that the nanosurface-induced mechanical tension is associated with alteration of morphology, thus the silica nanobeads used as nanotopological tools for cancer research.

  6. Alteration of Cell Morphology with Nano- and Micro-Topographical Surface on Closed-Packed Silica Nanobeads.

    PubMed

    Park, Jeong Su; Lee, Dahyun; Park, Ji Yeon; Lee, Hyo Jin; Kim, Jin-Seok; Lee, Jin Seok

    2016-06-01

    The nanotopological cues are emerging field of in vivo study, because it stimulates alteration of cell morphology and cell behavior such as adhesion, proliferation, differentiation, apoptosis and migration. However, it has not studies nanosurface affected cancer cell behavior, therefore, in this study, we determined that effects the silica nanobeads used as nanotopological tools on cancer cells. For synthesis of silica beads, we made it using stober method and basic amino acid (L-arginine) instead of NH4OH. We carried out rubbing beads to obtain the monolayer silica beads and it used as nanotopological cues for fabrication. It was induced changing cell morphology at 1DIV in group-II (SB-450 and SB-570). However, it was maintained in group-I (SB-118, SB-230) and group-III (SB-1450) like control. Therefore, we separated type-I and type-II surface along with area of cell adhesion and morphology. The characteristic of type-II surface was long distance between contact points, resulting in increase of tension to cells. We found that the morphology rounded up by type-II surface at 1DIV. We described that the nanosurface-induced mechanical tension is associated with alteration of morphology, thus the silica nanobeads used as nanotopological tools for cancer research. PMID:27427740

  7. Urban Detection, Delimitation and Morphology: Comparative Analysis of Selective "MEGACITIES"

    NASA Astrophysics Data System (ADS)

    Alhaddad, B.; Arellano, B. E.; Roca, J.

    2012-08-01

    Over the last 50 years, the world has faced an impressive growth of urban population. The walled city, close to the outside, an "island"for economic activities and population density within the rural land, has led to the spread of urban life and urban networks in almost all the territory. There was, as said Margalef (1999), "a topological inversion of the landscape". The "urban" has gone from being an island in the ocean of rural land vastness, to represent the totally of the space in which are inserted natural and rural "systems". New phenomena such as the fall of the fordist model of production, the spread of urbanization known as urban sprawl, and the change of scale of the metropolis, covering increasingly large regions, called "megalopolis" (Gottmann, 1961), have characterized the century. However there are no rigorous databases capable of measuring and evaluating the phenomenon of megacities and in general the process of urbanization in the contemporary world. The aim of this paper is to detect, identify and analyze the morphology of the megacities through remote sensing instruments as well as various indicators of landscape. To understand the structure of these heterogeneous landscapes called megacities, land consumption and spatial complexity needs to be quantified accurately. Remote sensing might be helpful in evaluating how the different land covers shape urban megaregions. The morphological landscape analysis allows establishing the analogies and the differences between patterns of cities and studying the symmetry, growth direction, linearity, complexity and compactness of the urban form. The main objective of this paper is to develop a new methodology to detect urbanized land of some megacities around the world (Tokyo, Mexico, Chicago, New York, London, Moscow, Sao Paulo and Shanghai) using Landsat 7 images.

  8. Protective effect of soybeans as protein source in the diet against cadmium-aorta redox and morphological alteration

    SciTech Connect

    Pérez Díaz, Matías F.F.; Acosta, Mariano; Mohamed, Fabián H.; Ferramola, Mariana L.; Oliveros, Liliana B.; Gimenez, María S.

    2013-11-01

    We investigated the effects of cadmium exposition on thoracic aorta redox status and morphology, and the putative protective effect of soybeans in the diet. Male Wistar rats were separated into 6 groups: 3 fed with a diet containing casein and 3 containing soybeans, as protein source. Within each protein group, one was given tap water (control) and the other two tap water containing 15 and 100 ppm of Cd{sup 2+}, respectively, for two months. In rats fed with casein diet, 15 ppm of Cd induced an increase of thiobarbituric acid-reactive substances (TBARS), and of the catalase (CAT) and glutathione peroxidase (GPx) activities, which were even higher with 100 ppm of Cd{sup 2+}, in aorta. Also, 100 ppm Cd{sup 2+} exposure increased superoxide dismutase (CuZnSOD) activity; CAT, GPX, SOD, Nrf2 and metallothioneine II mRNA expressions and CAT, GPx and NOX-2 protein levels, compared with control. Aorta endothelial and cytoplasmic alterations were observed. However, with the soybeans diet, 15 and 100 ppm of Cd{sup 2+} did not modify TBARS levels; CAT, GPX and Nrf2 mRNA expressions; CAT, GPx and NOX-2 protein; and the aorta morphology, compared with control. The soybean diet attenuates the redox changes and protects against morphological alterations induced, in a dose-dependent way, by Cd in aorta. - Highlights: • Under casein diet, 100 ppm Cd{sup 2+} in drinking water induces oxidative stress in aorta. • Under casein diet, 100 ppm Cd{sup 2+} increases Nrf2, MT II and NOX2 expressions in aorta. • Under casein diet, 100 ppm Cd{sup 2+} induces morphological changes in rat aorta. • The soybean diet attenuates the redox changes induced by Cd in rat aorta. • The soybean diet attenuates morphological alterations induced by Cd in rat aorta.

  9. Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice

    SciTech Connect

    Nueesch, Juerg P.F. . E-mail: jpf.nuesch@dkfz-heidelberg.de; Lachmann, Sylvie; Rommelaere, Jean

    2005-01-05

    During a productive infection, the prototype strain of parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations to the fibroblast host cell A9, resulting in cell lysis and progeny virus release. In order to understand the mechanisms underlying these changes, we characterized the fate of various cytoskeletal filaments and investigated the nuclear/cytoplasmic compartmentalization of infected cells. While most pronounced effects could be seen on micro- and intermediate filaments, manifest in dramatic rearrangements and degradation of filamentous (F-)actin and vimentin structures, only little impact could be seen on microtubules or the nuclear envelope during the entire monitored time of infection. To further analyze the disruption of the cytoskeletal structures, we investigated the viral impact on selective regulatory pathways. Thereby, we found a correlation between microtubule stability and MVM-induced phosphorylation of {alpha}/{beta} tubulin. In contrast, disassembly of actin filaments late in infection could be traced back to the disregulation of two F-actin associated proteins gelsolin and Wiscott-Aldrich Syndrome Protein (WASP). Thereby, an increase in the amount of gelsolin, an F-actin severing protein was observed during infection, accounting for the disruption of stress fibers upon infection. Concomitantly, the actin polymerization activity also diminished due to a loss of WASP, the activator protein of the actin polymerization machinery the Arp2/3 complex. No effects could be seen in amount and distribution of other F-actin regulatory factors such as cortactin, cofilin, and profilin. In summary, the selective attack of MVM towards distinct host cell cytoskeletal structures argues for a regulatory feature during infection, rather than a collapse of the host cell as a mere side effect of virus production.

  10. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Sepúlveda, Maria S.; Lin, Tsang-Long; Jannasch, Amber S.; Freeman, Jennifer L.

    2016-01-01

    The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring. PMID:26891955

  11. Open and closed evolutionary paths for drastic morphological changes, involving serial gene duplication, sub-functionalization, and selection.

    PubMed

    Abe, Gembu; Lee, Shu-Hua; Li, Ing-Jia; Chang, Chun-Ju; Tamura, Koji; Ota, Kinya G

    2016-01-01

    Twin-tail goldfish strains are examples of drastic morphological alterations that emerged through domestication. Although this mutation is known to be caused by deficiency of one of two duplicated chordin genes, it is unknown why equivalent mutations have not been observed in other domesticated fish species. Here, we compared the chordin gene morphant phenotypes of single-tail goldfish and common carp (close relatives, both of which underwent chordin gene duplication and domestication). Morpholino-induced knockdown depleted chordin gene expression in both species; however, while knockdown reproduced twin-tail morphology in single-tail goldfish, it had no effect on common carp morphology. This difference can be explained by the observation that expression patterns of the duplicated chordin genes overlap completely in common carp, but are sub-functionalized in goldfish. Our finding implies that goldfish drastic morphological changes might be enhanced by the subsequent occurrence of three different types of evolutionary event (duplication, sub-functionalization, and selection) in a certain order. PMID:27220684

  12. Open and closed evolutionary paths for drastic morphological changes, involving serial gene duplication, sub-functionalization, and selection

    PubMed Central

    Abe, Gembu; Lee, Shu-Hua; Li, Ing-Jia; Chang, Chun-Ju; Tamura, Koji; Ota, Kinya G.

    2016-01-01

    Twin-tail goldfish strains are examples of drastic morphological alterations that emerged through domestication. Although this mutation is known to be caused by deficiency of one of two duplicated chordin genes, it is unknown why equivalent mutations have not been observed in other domesticated fish species. Here, we compared the chordin gene morphant phenotypes of single-tail goldfish and common carp (close relatives, both of which underwent chordin gene duplication and domestication). Morpholino-induced knockdown depleted chordin gene expression in both species; however, while knockdown reproduced twin-tail morphology in single-tail goldfish, it had no effect on common carp morphology. This difference can be explained by the observation that expression patterns of the duplicated chordin genes overlap completely in common carp, but are sub-functionalized in goldfish. Our finding implies that goldfish drastic morphological changes might be enhanced by the subsequent occurrence of three different types of evolutionary event (duplication, sub-functionalization, and selection) in a certain order. PMID:27220684

  13. Thermally contingent plasticity: temperature alters expression of predator-induced colour and morphology in a Neotropical treefrog tadpole.

    PubMed

    Touchon, Justin Charles; Warkentin, Karen Michelle

    2011-01-01

    1. Behavioural, morphological and coloration plasticity are common responses of prey to predation risk. Theory predicts that prey should respond to the relative magnitude of risk, rather than a single level of response to any risk level. In addition to conspecific and predator densities, prey growth and differentiation rates affect the duration of vulnerability to size- and stage-limited predators and therefore the relative value of defences. 2. We reared tadpoles of the Neotropical treefrog Dendropsophus ebraccatus with or without cues from a predator (Belostoma sp.) in ecologically relevant warm or cool temperatures. To track phenotypic changes, we measured morphology, tail coloration and developmental stage at three points during the larval period. 3. Cues from predators interacted with growth conditions causing tadpoles to alter their phenotype, changing only tail colour in response to predators in warm water, but both morphology and colour in cool growth conditions. Tadpoles with predators in warm water altered coloration early but converged on the morphology of predator-free controls. Water temperature alone had no effect on tadpole phenotype. 4. We demonstrate that seemingly small variation in abiotic environmental conditions can alter the expression of phenotypic plasticity, consistent with predictions about how growth rate affects risk. Predator-induced tadpole phenotypes depended on temperature, with strong expression only in temperatures that slow development. Thermal modulation of plastic responses to predators may be broadly relevant to poikilotherm development. It is important to include a range of realistic growth conditions in experiments to more fully understand the ecological and evolutionary significance of plasticity. PMID:20964684

  14. Impact of intracytoplasmic morphologically selected sperm injection on assisted reproduction outcome: a review.

    PubMed

    Nadalini, Marco; Tarozzi, Nicoletta; Distratis, Vincenzo; Scaravelli, Giulia; Borini, Andrea

    2009-01-01

    To date, several publications have focused their attention on a new method for observing spermatozoa called 'motile sperm organelle morphology examination' (MSOME), which enables the evaluation of the fine nuclear morphology of motile spermatozoa in real time at high magnification (>x6000). As a consequence, a new microinjection procedure called intracytoplasmic morphologically selected sperm injection (IMSI) has been developed. The aim of the present work is therefore to evaluate the efficacy of the IMSI technique in the light of the current literature, focusing attention on the potential clinical application of the selection of strictly morphologically normal spermatozoa in patients undergoing conventional intracytoplasmic sperm injection treatments. In addition, a brief analysis of preliminary data regarding the relationship between IMSI and assisted reproduction treatment outcome is presented.

  15. Disentangling the responses of boreal stream assemblages to low stressor levels of diffuse pollution and altered channel morphology.

    PubMed

    Turunen, Jarno; Muotka, Timo; Vuori, Kari-Matti; Karjalainen, Satu Maaria; Rääpysjärvi, Jaana; Sutela, Tapio; Aroviita, Jukka

    2016-02-15

    Non-point diffuse pollution from land use and alteration of hydromorphology are among the most detrimental stressors to stream ecosystems. We explored the independent and interactive effects of morphological channel alteration (channelization for water transport of timber) and diffuse pollution on species richness and community structure of four organism groups in boreal streams: diatoms, macrophytes, macroinvertebrates, and fish. Furthermore, the effect of these stressors on stream condition was evaluated by Ecological Quality Ratios (EQR) from the national Water Framework Directive (WFD) assessment system. We grouped 91 study sites into four groups that were impacted by either diffuse pollution or hydromorphological alteration, by both stressors, or by neither one. Macroinvertebrate richness was reduced by diffuse pollution, whereas other biological groups were unaltered. Hydromorphological modification had no effect on taxon richness of any of the assemblages. Community structure of all groups was significantly affected by diffuse pollution but not by hydromorphology. Similarly, EQRs indicated negative response by diatoms, macroinvertebrates and fish to diffuse pollution, but not to hydromorphological alteration. Agricultural diffuse pollution thus affected species identities and abundances rather than taxonomic richness. Our results suggest that channelization of boreal streams for timber transport has not altered hydromorphological conditions sufficiently to have a strong impact on stream biota, whereas even moderate nutrient enrichment may be ecologically harmful. Controlling diffuse pollution and associated land use stressors should be prioritized over restoration of in-stream habitat structure to improve the ecological condition of boreal streams.

  16. Disentangling the responses of boreal stream assemblages to low stressor levels of diffuse pollution and altered channel morphology.

    PubMed

    Turunen, Jarno; Muotka, Timo; Vuori, Kari-Matti; Karjalainen, Satu Maaria; Rääpysjärvi, Jaana; Sutela, Tapio; Aroviita, Jukka

    2016-02-15

    Non-point diffuse pollution from land use and alteration of hydromorphology are among the most detrimental stressors to stream ecosystems. We explored the independent and interactive effects of morphological channel alteration (channelization for water transport of timber) and diffuse pollution on species richness and community structure of four organism groups in boreal streams: diatoms, macrophytes, macroinvertebrates, and fish. Furthermore, the effect of these stressors on stream condition was evaluated by Ecological Quality Ratios (EQR) from the national Water Framework Directive (WFD) assessment system. We grouped 91 study sites into four groups that were impacted by either diffuse pollution or hydromorphological alteration, by both stressors, or by neither one. Macroinvertebrate richness was reduced by diffuse pollution, whereas other biological groups were unaltered. Hydromorphological modification had no effect on taxon richness of any of the assemblages. Community structure of all groups was significantly affected by diffuse pollution but not by hydromorphology. Similarly, EQRs indicated negative response by diatoms, macroinvertebrates and fish to diffuse pollution, but not to hydromorphological alteration. Agricultural diffuse pollution thus affected species identities and abundances rather than taxonomic richness. Our results suggest that channelization of boreal streams for timber transport has not altered hydromorphological conditions sufficiently to have a strong impact on stream biota, whereas even moderate nutrient enrichment may be ecologically harmful. Controlling diffuse pollution and associated land use stressors should be prioritized over restoration of in-stream habitat structure to improve the ecological condition of boreal streams. PMID:26706766

  17. A Neu differentiation factor (NDF) domain essential for proliferation and alterations in morphology of colonic epithelial cells in vitro.

    PubMed

    Whoriskey, J S; Pekar, S K; Elliott, G S; Hara, S; Liu, N; Lenz, D M; Zamborelli, T; Mayer, J P; Tarpley, J E; Lacey, D L; Ratzkin, B; Yoshinaga, S K

    1998-01-01

    The Neu Differentiation Factors (NDFs, also termed "heregulins") are a family of proteins that were first isolated as ligands for the HER2 (ergB2, or p185neu) receptor protein tyrosine kinase. Here we show that NDF acts to stimulate the proliferation and alter the cellular morphology of colonic epithelial cells in culture. Dramatic NDF-induced changes in cellular morphology were noted in the colonic epithelial cell line, LIM 1215. In addition, the expression of specific cell proteins, such as carcinoembryonic antigen and integrin beta 4, was induced in LIM 1215 cells by NDF. These effects were more pronounced with the beta isoform than with the alpha isoform of NDF. The EGF-homology domain of NDF beta was sufficient to stimulate the proliferation and alteration in cell morphology. The use of chemically synthesized chimeric NDF alpha and NDF beta proteins enabled use to identify a region of seven amino acids in the EGF-homology domain of NDF beta that is required for both activities. These in vitro experiments suggest that NDF may act as a regulator of growth and differentiation of colonic epithelial cells in vivo.

  18. Protective effect of soybeans as protein source in the diet against cadmium-aorta redox and morphological alteration.

    PubMed

    Pérez Díaz, Matías F F; Acosta, Mariano; Mohamed, Fabián H; Ferramola, Mariana L; Oliveros, Liliana B; Gimenez, María S

    2013-11-01

    We investigated the effects of cadmium exposition on thoracic aorta redox status and morphology, and the putative protective effect of soybeans in the diet. Male Wistar rats were separated into 6 groups: 3 fed with a diet containing casein and 3 containing soybeans, as protein source. Within each protein group, one was given tap water (control) and the other two tap water containing 15 and 100 ppm of Cd(2+), respectively, for two months. In rats fed with casein diet, 15 ppm of Cd induced an increase of thiobarbituric acid-reactive substances (TBARS), and of the catalase (CAT) and glutathione peroxidase (GPx) activities, which were even higher with 100 ppm of Cd(2+), in aorta. Also, 100 ppm Cd(2+) exposure increased superoxide dismutase (CuZnSOD) activity; CAT, GPX, SOD, Nrf2 and metallothioneine II mRNA expressions and CAT, GPx and NOX-2 protein levels, compared with control. Aorta endothelial and cytoplasmic alterations were observed. However, with the soybeans diet, 15 and 100 ppm of Cd(2+) did not modify TBARS levels; CAT, GPX and Nrf2 mRNA expressions; CAT, GPx and NOX-2 protein; and the aorta morphology, compared with control. The soybean diet attenuates the redox changes and protects against morphological alterations induced, in a dose-dependent way, by Cd in aorta.

  19. Photoinduced cell morphology alterations quantified within adipose tissues by spectral optical coherence tomography.

    PubMed

    Yanina, Irina Yu; Trunina, Natalia A; Tuchin, Valery V

    2013-11-01

    Morphological changes of the adipose tissue at phototreatment are studied in vitro using optical coherence tomography. The 200 to 600 μm fat tissue slices are used in the experiments. The observed change in the tissue structure was associated with fat cell lipolysis and destruction caused by the photodynamic effect. It is found that overall heating of a sample from room to physiological temperature leads to deeper and faster morphology tissue changes if other processing conditions are kept constant. These data support the hypothesis that photodynamic/photothermal treatment induces fat cell lipolysis during some period after treatment.

  20. Morphological and Physiological Alteration of Maize Root Architectures on Drought Stress.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Research experiments were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought s...

  1. Morphological and Biological alteration of maize root architectures on drought stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  2. Morphological and biological alteration of maize root architectures on drought stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  3. Chronic treatment with glucocorticoids alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels.

    PubMed

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Regunathan, Soundar

    2007-12-01

    In the present study, we examined the possible effect of chronic treatment with glucocorticoids on the morphology of the rat brain and levels of endogenous agmatine and arginine decarboxylase (ADC) protein, the enzyme essential for agmatine synthesis. Seven-day treatment with dexamethasone, at a dose (10 and 50 mug/kg/day) associated to stress effects contributed by glucocorticoids, did not result in obvious morphologic changes in the medial prefrontal cortex and hippocampus, as measured by immunocytochemical staining with beta-tubulin III. However, 21-day treatment (50 mug/kg/day) produced noticeable structural changes such as the diminution and disarrangement of dendrites and neurons in these areas. Simultaneous treatment with agmatine (50 mg/kg/day) prevented these morphological changes. Further measurement with HPLC showed that endogenous agmatine levels in the prefrontal cortex and hippocampus were significantly increased after 7-day treatments with dexamethasone in a dose-dependent manner. On the contrary, 21-day treatment with glucocorticoids robustly reduced agmatine levels in these regions. The treatment-caused biphasic alterations of endogenous agmatine levels were also seen in the striatum and hypothalamus. Interestingly, treatment with glucocorticoids resulted in a similar change of ADC protein levels in most brain areas to endogenous agmatine levels: an increase after 7-day treatment versus a reduction after 21-day treatment. These results demonstrated that agmatine has neuroprotective effects against structural alterations caused by glucocorticoids in vivo. The parallel alterations in the endogenous agmatine levels and ADC expression in the brain after treatment with glucocorticoids indicate the possible regulatory effect of these stress hormones on the synthesis and metabolism of agmatine in vivo.

  4. Altered Sonic hedgehog signaling is associated with morphological abnormalities in the penis of the BB/WOR diabetic rat.

    PubMed

    Podlasek, Carol A; Zelner, David J; Harris, Joseph D; Meroz, Cynthia L; Tang, Yi; McKenna, Kevin E; McVary, Kevin T

    2003-09-01

    Erectile dysfunction (ED) is a common and debilitating pathological development that affects up to 75% of diabetic males. Neural stimulation is a crucial aspect of the normal erection process. Nerve injury causes ED and disrupts signaling of the Sonic hedgehog (Shh) cascade in the smooth muscle of the corpora cavernosa. Shh and targets of its signaling establish normal corpora cavernosal morphology during postnatal differentiation of the penis and regulate homeostasis in the adult. Interruption of the Shh cascade in the smooth muscle of the corpora cavernosa results in extensive changes in corpora cavernosal morphology that lead to ED. Our hypothesis is that the neuropathy observed in diabetics causes morphological changes in the corpora cavernosa of the penis that result in ED. Disruption of the Shh cascade may be involved in this process. We tested this hypothesis by examining morphological changes in the penis, altered gene and protein expression, apoptosis, and bromodeoxyuridine incorporation in the BB/WOR rat model of diabetes. Extensive smooth muscle and endothelial degradation was observed in the corpora cavernosa of diabetic penes. This degradation accompanied profound ED, significantly decreased Shh protein in the smooth muscle of the corpora cavernosa, and increased penile Shh RNA expression in the intact penis (nerves, corpora, and urethra). Localization and expression of Shh targets were also disrupted in the corpora cavernosa. Increasing our understanding of the molecular mechanisms that regulate Shh signaling may provide valuable insight into improving treatment options for diabetic impotence. PMID:12748119

  5. Functional, biochemical and morphological alterations in the intestines of rats with an experimental blind-loop syndrome.

    PubMed

    Bloch, R; Menge, H; Lorenz-Meyer, H; Stöckert, H G; Riecken, E O

    1975-11-26

    In rat self-filling blind loops and in the contiguous regions of the intestinal tract, considerable functional impairment, accompanied by pronounced morphological transformations of the mucosa, has been observed. The histological alterations consist of mucosal hypertrophy and a reduction in the villus height: crypt length ratio, which is indicative of a hyper-regenerative change. Various enzyme activities of the epithelial cells are reduced and the absorption otinal juices is greatly altered in favour of the free acids. Two mec,anisms have 0een dicids, or meta0olites from bacterial degradation, on the absorptive epithelium; 2. Reduced cellular maturity in response to the effect of bile acids and/or bacteria on the lifespan of the cells.

  6. Genetic Alterations of Triple Negative Breast Cancer By Targeted Next Generation Sequencing And Correlation With Tumor Morphology

    PubMed Central

    Weisman, Paul S; Ng, Charlotte K.Y.; Brogi, Edi; Eisenberg, Rachel E; Won, Helen H.; Piscuoglio, Salvatore; De Filippo, Maria R.; Ioris, Rafael; Akram, Muzaffar; Norton, Larry; Weigelt, Britta; Berger, Michael F.; Reis-Filho, Jorge S.; Wen, Hannah Y.

    2016-01-01

    Triple negative breast cancer represents a heterogeneous group of breast carcinomas, both at the histologic and genetic level. While recent molecular studies have comprehensively characterized the genetic landscape of these tumors, few have integrated a detailed histologic examination into the analysis. In this study, we defined the genetic alterations in 39 triple negative breast cancers using a high-depth targeted massively parallel sequencing assay and correlated the findings with a detailed morphologic analysis. We obtained representative frozen tissue of primary triple negative breast cancers from patients treated at our institution between 2002 and 2010. We characterized tumors according to their histologic subtype and morphologic features. DNA was extracted from paired frozen primary tumor and normal tissue samples and was subjected to a targeted massively parallel sequencing platform comprising 229 cancer associated genes common across all experiments. The average number of non-synonymous mutations was 3 (range 0–10) per case. The most frequent somatic alterations were mutations in TP53 (74%) and PIK3CA (10%) and MYC amplifications (26%). Triple negative breast cancers with apocrine differentiation less frequently harbored TP53 mutations (25%) and MYC gains (0%), and displayed a high mutation frequency in PIK3CA and other PI3K signaling pathway related genes (75%). Using a targeted massively parallel sequencing platform, we identified the key somatic genetic alterations previously reported in triple negative breast cancers. Furthermore, our findings show that triple negative breast cancers with apocrine differentiation constitute a distinct subset, characterized by a high frequency of PI3K pathway alterations similar to luminal subtypes of breast cancer. PMID:26939876

  7. Morphological alterations on Citrobacter freundii bacteria induced by erythrosine dye and laser light.

    PubMed

    Silva, Josmary R; Cardoso, Gleidson; Maciel, Rafael R G; de Souza, Nara C

    2015-01-01

    The effect of the laser irradiation (532 nm) on films prepared from Citrobacter freundii mixed with erythrosine dye was investigated by using atomic force microscopy. It was observed that morphological changes of bacterial surfaces after irradiations, which were attributed to cellular damage of the outer membranes, are a result of a photodynamic effect. The results suggested that the combination of erythrosine and laser light at 532 nm could be a candidate to a photodynamic therapy against C. freundii.

  8. VARSEDIG: an algorithm for morphometric characters selection and statistical validation in morphological taxonomy.

    PubMed

    Guisande, Cástor; Vari, Richard P; Heine, Jürgen; García-Roselló, Emilio; González-Dacosta, Jacinto; Perez-Schofield, Baltasar J García; González-Vilas, Luis; Pelayo-Villamil, Patricia

    2016-09-12

    We present and discuss VARSEDIG, an algorithm which identifies the morphometric features that significantly discriminate two taxa and validates the morphological distinctness between them via a Monte-Carlo test. VARSEDIG is freely available as a function of the RWizard application PlotsR (http://www.ipez.es/RWizard) and as R package on CRAN. The variables selected by VARSEDIG with the overlap method were very similar to those selected by logistic regression and discriminant analysis, but overcomes some shortcomings of these methods. VARSEDIG is, therefore, a good alternative by comparison to current classical classification methods for identifying morphometric features that significantly discriminate a taxon and for validating its morphological distinctness from other taxa. As a demonstration of the potential of VARSEDIG for this purpose, we analyze morphological discrimination among some species of the Neotropical freshwater family Characidae.

  9. VARSEDIG: an algorithm for morphometric characters selection and statistical validation in morphological taxonomy.

    PubMed

    Guisande, Cástor; Vari, Richard P; Heine, Jürgen; García-Roselló, Emilio; González-Dacosta, Jacinto; Perez-Schofield, Baltasar J García; González-Vilas, Luis; Pelayo-Villamil, Patricia

    2016-01-01

    We present and discuss VARSEDIG, an algorithm which identifies the morphometric features that significantly discriminate two taxa and validates the morphological distinctness between them via a Monte-Carlo test. VARSEDIG is freely available as a function of the RWizard application PlotsR (http://www.ipez.es/RWizard) and as R package on CRAN. The variables selected by VARSEDIG with the overlap method were very similar to those selected by logistic regression and discriminant analysis, but overcomes some shortcomings of these methods. VARSEDIG is, therefore, a good alternative by comparison to current classical classification methods for identifying morphometric features that significantly discriminate a taxon and for validating its morphological distinctness from other taxa. As a demonstration of the potential of VARSEDIG for this purpose, we analyze morphological discrimination among some species of the Neotropical freshwater family Characidae. PMID:27615992

  10. A Pro23His Mutation Alters Prenatal Rod Photoreceptor Morphology in a Transgenic Swine Model of Retinitis Pigmentosa

    PubMed Central

    Scott, Patrick A.; Fernandez de Castro, Juan P.; Kaplan, Henry J.; McCall, Maureen A.

    2014-01-01

    Purpose. Functional studies have detected deficits in retinal signaling in asymptomatic children from families with inherited autosomal dominant retinitis pigmentosa (RP). Whether retinal abnormalities are present earlier during gestation or shortly after birth in a subset of children with autosomal dominant RP is unknown and no appropriate animal RP model possessing visual function at birth has been available to examine this possibility. In a recently developed transgenic P23H (TgP23H) rhodopsin swine model of RP, we tracked changes in pre- and early postnatal retinal morphology, as well as early postnatal retinal function. Methods. Domestic swine inseminated with semen from a TgP23H miniswine founder produced TgP23H hybrid and wild type (Wt) littermates. Outer retinal morphology was assessed at light and electron microscopic levels between embryonic (E) and postnatal (P) day E85 to P3. Retinal function was evaluated using the full field electroretinogram at P3. Results. Embryonic TgP23H rod photoreceptors are malformed and their rhodopsin expression pattern is abnormal. Consistent with morphological abnormalities, rod-driven function is absent at P3. In contrast, TgP23H and Wt cone photoreceptor morphology (E85–P3) and cone-driven retinal function (P3) are similar. Conclusions. Prenatal expression of mutant rhodopsin alters the normal morphological and functional development of rod photoreceptors in TgP23H swine embryos. Despite this significant change, cone photoreceptors are unaffected. Human infants with similarly aggressive RP might never have rod vision, although cone vision would be unaffected. Such aggressive forms of RP in preverbal children would require early intervention to delay or prevent functional blindness. PMID:24618321

  11. Verb Selection and Past-Tense Morphology: Crystal's Criteria Revisited

    ERIC Educational Resources Information Center

    Weiler, Brian

    2013-01-01

    Research findings concerning verb-level influences on past-tense morphology carry implications for the careful selection of treatment targets. Using 6 of the broad criteria for "good verbs to choose" proposed by D. Crystal (1985) more than 25 years ago as a framework, this article summarizes some of the more recent research with a nod…

  12. Altered Morphologies and Functions of the Olfactory Bulb and Hippocampus Induced by miR-30c

    PubMed Central

    Sun, Tingting; Li, Tianpeng; Davies, Henry; Li, Weiyun; Yang, Jing; Li, Shanshan; Ling, Shucai

    2016-01-01

    Adult neurogenesis is considered to contribute to a certain degree of plasticity for the brain. However, the effects of adult-born neurons on the brain are still largely unknown. Here, we specifically altered the expression of miR-30c in the subventricular zone (SVZ) and dentate gyrus (DG) by stereotaxic injection with their respective up- and down-regulated lentiviruses. Results showed an increased level of miR-30c enhanced adult neurogenesis by prompting cell-cycles of stem cells, whereas down-regulated miR-30c led to the opposite results. When these effects of miR-30c lasted for 3 months, we detected significant morphological changes in the olfactory bulb (OB) and lineage alteration in the hippocampus. Tests of olfactory sensitivity and associative and spatial memory showed that a certain amount of adult-born neurons are essential for the normal functions of the OB and hippocampus, but there also exist redundant newborn neurons that do not further improve the functioning of these areas. Our study revealed the interactions between miRNA, adult neurogenesis, brain morphology and function, and this provides a novel insight into understanding the role of newborn neurons in the adult brain. PMID:27242411

  13. Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters.

    PubMed

    Ikeno, Tomoko; Nelson, Randy J

    2015-02-01

    In the hippocampus of Siberian hamsters, dendritic length and dendritic complexity increase in the CA1 region whereas dendritic spine density decreases in the dentate gyrus region at night. However, the underlying mechanism of the diurnal rhythmicity in hippocampal neuronal remodeling is unknown. In mammals, most daily rhythms in physiology and behaviors are regulated by a network of circadian clocks. The central clock, located in the hypothalamus, controls melatonin secretion at night and melatonin modifies peripheral clocks by altering expression of circadian clock genes. In this study, we examined the effects of acute melatonin treatment on the circadian clock system as well as on morphological changes of hippocampal neurons. Male Siberian hamsters were injected with melatonin in the afternoon; 4 h later, mRNA levels of hypothalamic and hippocampal circadian clock genes and hippocampal neuron dendritic morphology were assessed. In the hypothalamus, melatonin treatment did not alter Period1 and Bmal1 expression. However, melatonin treatment increased both Period1 and Bmal1 expression in the hippocampus, suggesting that melatonin affected molecular oscillations in the hippocampus. Melatonin treatment also induced rapid remodeling of hippocampal neurons; melatonin increased apical dendritic length and dendritic complexity in the CA1 region and reduced the dendritic spine density in the dentate gyrus region. These data suggest that structural changes in hippocampal neurons are regulated by a circadian clock and that melatonin functions as a nighttime signal to coordinate the diurnal rhythm in neuronal remodeling.

  14. Pronounced alterations in T-wave morphology during dipyridamole-induced ischaemia.

    PubMed

    Ferrando-Castagnetto, F; Ricca-Mallada, R; Ferrando-Castagnetto, R

    2016-01-01

    The case describes a 77-year-old woman with multivessel coronary disease exhibiting marked changes of T-wave morphology induced by dipyridamole, an unusual finding in which the diagnostic accuracy in this clinical context is uncertain. Gated-SPECT imaging demonstrated severe ischaemia extending through inferior and posterolateral regions of the left ventricle with normal motility and contractile function in response to vasodilator stress. Possible underlying mechanisms and clinical implications of observed electrocardiographic changes are discussed. T-loop modifications during vasodilator stress SPECT and correlation of these changes with the amount of ischaemic injury need further evaluation.

  15. Structure-Guided Mutations in the Terminal Organelle Protein MG491 Cause Major Motility and Morphologic Alterations on Mycoplasma genitalium

    PubMed Central

    Querol, Enrique; Piñol, Jaume; Fita, Ignacio; Calisto, Bárbara M.

    2016-01-01

    The emergent human pathogen Mycoplasma genitalium, with one of the smallest genomes among cells capable of growing in axenic cultures, presents a flask-shaped morphology due to a protrusion of the cell membrane, known as the terminal organelle, that is involved in cell adhesion and motility and is an important virulence factor of this microorganism. The terminal organelle is supported by a cytoskeleton complex of about 300 nm in length that includes three substructures: the terminal button, the rod and the wheel complex. The crystal structure of the MG491 protein, a proposed component of the wheel complex, has been determined at ~3 Å resolution. MG491 subunits are composed of a 60-residue N-terminus, a central three-helix-bundle spanning about 150 residues and a C-terminal region that appears to be quite flexible and contains the region that interacts with MG200, another key protein of the terminal organelle. The MG491 molecule is a tetramer presenting a unique organization as a dimer of asymmetric pairs of subunits. The asymmetric arrangement results in two very different intersubunit interfaces between the central three-helix-bundle domains, which correlates with the formation of only ~50% of the intersubunit disulfide bridges of the single cysteine residue found in MG491 (Cys87). Moreover, M. genitalium cells with a point mutation in the MG491 gene causing the change of Cys87 to Ser present a drastic reduction in motility (as determined by microcinematography) and important alterations in morphology (as determined by electron microscopy), while preserving normal levels of the terminal organelle proteins. Other variants of MG491, designed also according to the structural information, altered significantly the motility and/or the cell morphology. Together, these results indicate that MG491 plays a key role in the functioning, organization and stabilization of the terminal organelle. PMID:27082435

  16. Structure-Guided Mutations in the Terminal Organelle Protein MG491 Cause Major Motility and Morphologic Alterations on Mycoplasma genitalium.

    PubMed

    Martinelli, Luca; García-Morales, Luis; Querol, Enrique; Piñol, Jaume; Fita, Ignacio; Calisto, Bárbara M

    2016-04-01

    The emergent human pathogen Mycoplasma genitalium, with one of the smallest genomes among cells capable of growing in axenic cultures, presents a flask-shaped morphology due to a protrusion of the cell membrane, known as the terminal organelle, that is involved in cell adhesion and motility and is an important virulence factor of this microorganism. The terminal organelle is supported by a cytoskeleton complex of about 300 nm in length that includes three substructures: the terminal button, the rod and the wheel complex. The crystal structure of the MG491 protein, a proposed component of the wheel complex, has been determined at ~3 Å resolution. MG491 subunits are composed of a 60-residue N-terminus, a central three-helix-bundle spanning about 150 residues and a C-terminal region that appears to be quite flexible and contains the region that interacts with MG200, another key protein of the terminal organelle. The MG491 molecule is a tetramer presenting a unique organization as a dimer of asymmetric pairs of subunits. The asymmetric arrangement results in two very different intersubunit interfaces between the central three-helix-bundle domains, which correlates with the formation of only ~50% of the intersubunit disulfide bridges of the single cysteine residue found in MG491 (Cys87). Moreover, M. genitalium cells with a point mutation in the MG491 gene causing the change of Cys87 to Ser present a drastic reduction in motility (as determined by microcinematography) and important alterations in morphology (as determined by electron microscopy), while preserving normal levels of the terminal organelle proteins. Other variants of MG491, designed also according to the structural information, altered significantly the motility and/or the cell morphology. Together, these results indicate that MG491 plays a key role in the functioning, organization and stabilization of the terminal organelle. PMID:27082435

  17. Morphological alterations in salivary glands of Rhipicephalus sanguineus ticks (Acari: Ixodidae) exposed to neem seed oil with known azadirachtin concentration.

    PubMed

    Remedio, R N; Nunes, P H; Anholeto, L A; Oliveira, P R; Sá, I C G; Camargo-Mathias, M I

    2016-04-01

    Neem (Azadirachta indica) has attracted the attention of researchers worldwide due to its repellent properties and recognized effects on the morphology and physiology of arthropods, including ticks. Therefore, this study aimed to demonstrate the effects of neem seed oil enriched with azadirachtin on salivary glands of Rhipicephalus sanguineus ticks, targets of great veterinary interest because of their ability to transmit pathogens to dogs. For this, R. sanguineus semi-engorged females were subjected to treatment with neem seed oil, with known azadirachtin concentrations (200, 400 and 600ppm). After dissection, salivary glands were collected and evaluated through morphological techniques in light microscopy, confocal scanning laser microscopy and transmission electron microscopy, so that the possible relation between neem action and further impairment in these ectoparasites feed performance could be established. Neem oil demonstrated a clear dose-dependent effect in the analyzed samples. The agranular (type I) and granular acini (types II and III) showed, particularly in individuals treated with the highest concentrations of the product, cells with irregular shape, intense cytoplasmic disorganization and vacuolation, dilation of rough endoplasmic reticulum lumen, besides alterations in mitochondrial intermembrane space. These morphological damages may indicate modifications in salivary glands physiology, demonstrating the harmful effects of compounds present in neem oil on ticks. These results reinforce the potential of neem as an alternative method for controlling R. sanguineus ticks, instead of synthetic acaricides. PMID:26852009

  18. One-hit effects in cancer: Altered proteome of morphologically normal colon crypts in Familial Adenomatous Polyposis

    PubMed Central

    Yeung, Anthony T.; Patel, Bhavinkumar B.; Li, Xin-Ming; Seeholzer, Steven H.; Coudry, Renata A.; Cooper, Harry S.; Bellacosa, Alfonso; Boman, Bruce M.; Zhang, Tao; Litwin, Samuel; Ross, Eric A.; Conrad, Peggy; Crowell, James A.; Kopelovich, Levy; Knudson, Alfred

    2008-01-01

    We studied patients with Familial Adenomatous Polyposis (FAP), because they are virtually certain to develop colon cancer, and because much is known about the causative APC gene. We hypothesized that the inherited heterozygous mutation itself leads to changes in the proteome of morphologically normal crypts and the proteins that changed may represent targets for preventive and therapeutic agents. We determined the differential protein expression of morphologically normal colon crypts of FAP patients versus those of individuals without the mutation, using two-dimensional gel electrophoresis, mass spectrometry and validation by 2D gel Western blotting. Approximately 13% of 1,695 identified proteins were abnormally expressed in the morphologically normal crypts of APC mutation carriers, indicating that a colon crypt cell under the one-hit state is already abnormal. Many of the expression changes affect pathways consistent with the function of the APC protein, including apoptosis, cell adhesion, cell motility, cytoskeletal organization and biogenesis, mitosis, transcription and oxidative stress response. Thus, heterozygosity for a mutant APC tumor suppressor gene alters the proteome of normal-appearing crypt cells in a gene-specific manner, consistent with a detectable one-hit event. These changes may represent the earliest biomarkers of colorectal cancer development, potentially leading to the identification of molecular targets for cancer prevention. PMID:18794146

  19. Morphological alterations in salivary glands of Rhipicephalus sanguineus ticks (Acari: Ixodidae) exposed to neem seed oil with known azadirachtin concentration.

    PubMed

    Remedio, R N; Nunes, P H; Anholeto, L A; Oliveira, P R; Sá, I C G; Camargo-Mathias, M I

    2016-04-01

    Neem (Azadirachta indica) has attracted the attention of researchers worldwide due to its repellent properties and recognized effects on the morphology and physiology of arthropods, including ticks. Therefore, this study aimed to demonstrate the effects of neem seed oil enriched with azadirachtin on salivary glands of Rhipicephalus sanguineus ticks, targets of great veterinary interest because of their ability to transmit pathogens to dogs. For this, R. sanguineus semi-engorged females were subjected to treatment with neem seed oil, with known azadirachtin concentrations (200, 400 and 600ppm). After dissection, salivary glands were collected and evaluated through morphological techniques in light microscopy, confocal scanning laser microscopy and transmission electron microscopy, so that the possible relation between neem action and further impairment in these ectoparasites feed performance could be established. Neem oil demonstrated a clear dose-dependent effect in the analyzed samples. The agranular (type I) and granular acini (types II and III) showed, particularly in individuals treated with the highest concentrations of the product, cells with irregular shape, intense cytoplasmic disorganization and vacuolation, dilation of rough endoplasmic reticulum lumen, besides alterations in mitochondrial intermembrane space. These morphological damages may indicate modifications in salivary glands physiology, demonstrating the harmful effects of compounds present in neem oil on ticks. These results reinforce the potential of neem as an alternative method for controlling R. sanguineus ticks, instead of synthetic acaricides.

  20. Aging alters contractile properties and fiber morphology in pigeon skeletal muscle.

    PubMed

    Pistilli, Emidio E; Alway, Stephen E; Hollander, John M; Wimsatt, Jeffrey H

    2014-12-01

    In this study, we tested the hypothesis that skeletal muscle from pigeons would display age-related alterations in isometric force and contractile parameters as well as a shift of the single muscle fiber cross-sectional area (CSA) distribution toward smaller fiber sizes. Maximal force output, twitch contraction durations and the force-frequency relationship were determined in tensor propatagialis pars biceps muscle from young 3-year-old pigeons, middle-aged 18-year-old pigeons, and aged 30-year-old pigeons. The fiber CSA distribution was determined by planimetry from muscle sections stained with hematoxylin and eosin. Maximal force output of twitch and tetanic contractions was greatest in muscles from young pigeons, while the time to peak force of twitch contractions was longest in muscles from aged pigeons. There were no changes in the force-frequency relationship between the age groups. Interestingly, the fiber CSA distribution in aged muscles revealed a greater number of larger sized muscle fibers, which was verified visually in histological images. Middle-aged and aged muscles also displayed a greater amount of slow myosin containing muscle fibers. These data demonstrate that muscles from middle-aged and aged pigeons are susceptible to alterations in contractile properties that are consistent with aging, including lower force production and longer contraction durations. These functional changes were supported by the appearance of slow myosin containing muscle fibers in muscles from middle-aged and aged pigeons. Therefore, the pigeon may represent an appropriate animal model for the study of aging-related alterations in skeletal muscle function and structure.

  1. [Teratozoospermia at the time of intracytoplasmic morphologically selected sperm injection (IMSI)].

    PubMed

    Junca, A-M; Cohen-Bacrie, P; Belloc, S; Dumont, M; Ménézo, Y

    2009-06-01

    Until now, the morphological sperm analysis (spermocytogram) allows to define sperm normality, but the relationship between sperm morphology and fertility is not yet assessed. Although several studies do not report any relationship between abnormal sperm morphology and ICSI results, nevertheless, the success rate of ICSI sems to be dependent on injected sperm morphological aspect. Detailed morphological sperm examination (especially sperm head) at high magnification (from x 6600 to x 12500) (MSOME) in real time allows to select the best spermatozoa before oocyte injection (IMSI). In some cases, implantation and ongoing pregnancy rates were improved with this sperm selection method. Ultramorphologic criteria were established and the most predictive factor of sperm quality is the presence of vacuoles in the sperm head. Those vacuoles appear to be related to DNA damage (fragmentation and/or denaturation) and affect embryo development. To standardize those observations, several authors tried to establish sperm MSOME classifications in order to be used in routine and to replace the conventional spermocytogram in the next future.

  2. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress

    PubMed Central

    Moench, Kelly M.; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2015-01-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  3. Housing Complexity Alters GFAP-Immunoreactive Astrocyte Morphology in the Rat Dentate Gyrus

    PubMed Central

    Salois, Garrick; Smith, Jeffrey S.

    2016-01-01

    Rats used in research are typically housed singly in cages with limited sensory stimulation. There is substantial evidence that housing rats in these conditions lead to numerous neuroanatomical and behavioral abnormalities. Alternatively, rats can be housed in an enriched environment in which rats are housed in groups and given room for exercise and exploration. Enriched environments result in considerable neuroplasticity in the rodent brain. In the dentate gyrus of the hippocampus, enriched environments evoke especially profound neural changes, including increases in the number of neurons and the number of dendritic spines. However, whether changes in astrocytes, a type of glia increasingly implicated in mediating neuroplasticity, are concurrent with these neural changes remains to be investigated. In order to assess morphological changes among astrocytes of the rat dentate gyrus, piSeeDB was used to optically clear 250 μm sections of tissue labeled using GFAP immunohistochemistry. Confocal imaging and image analysis were then used to measure astrocyte morphology. Astrocytes from animals housed in EE demonstrated a reduced distance between filament branch points. Furthermore, the most complex astrocytes were significantly more complex among animals housed in EE compared to standard environments. PMID:26989515

  4. Morphological alterations in the liver of yellow perch (Perca flavescens) from a biological mercury hotspot.

    PubMed

    Müller, Anne-Katrin; Brinkmann, Markus; Baumann, Lisa; Stoffel, Michael H; Segner, Helmut; Kidd, Karen A; Hollert, Henner

    2015-11-01

    Mercury (Hg) contamination is a global issue due to its anthropogenic release, long-range transport, and deposition in remote areas. In Kejimkujik National Park and National Historic Site, Nova Scotia, Canada, high concentrations of total mercury (THg) were found in tissues of yellow perch (Perca flavescens). The aim of this study was to evaluate a possible relationship between THg concentrations and the morphology of perch liver as a main site of metal storage and toxicity. Yellow perch were sampled from five lakes known to contain fish representing a wide range in Hg concentrations in fall 2013. The ultrastructure of hepatocytes and the distribution of Hg within the liver parenchyma were analyzed by transmission electron microscopy (TEM) and electron energy loss spectrometry (EELS). The relative area of macrophage aggregates (MAs) in the liver was determined using image analysis software and fluorescence microscopy. No relation between general health indicators (Fulton's condition index) and THg was observed. In line with this, TEM examination of the liver ultrastructure revealed no prominent pathologies related to THg accumulation. However, a morphological parameter that appeared to increase with muscle THg was the relative area of MAs in the liver. The hepatic lysosomes appeared to be enlarged in samples with the highest THg concentrations. Interestingly, EELS analysis revealed that the MAs and hepatic lysosomes contained Hg. PMID:25936831

  5. Amygdala Kindling Alters Estrus Cycle and Ovarian Morphology in the Rat.

    PubMed

    Pan, Juan; Zhang, Lingwu; Wang, Feng; Liu, Dan; Li, P Andy; Sun, Tao

    2013-11-01

    The objective of this study is to explore the effects of amygdala kindling on estrus cycle and ovarian morphology. Thirty-five female rats at the age of 8 weeks were randomly designated to electrode kindled, sham-kindled, and normal controls. Kindled rats were implanted with kindling electrodes in the left basolateral amygdala and kindled by brief suprathreshold stimulations with a bipolar electrode. Estrous cycles were daily monitored through vaginal smears. Electrographic and behavioral seizures were recorded and ovarian morphology was evaluated by light and electron microscopies. Our results showed that the kindled rats lost their ovarian periodicity displayed significant ovarian enlargement. H&E staining revealed increased number of growing follicles and total follicles, as well as polycysts in the ovaries of the kindled animals compared to sham and control animals. Ultrastructural study detected numerous apoptotic granulosa cells in growing follicles and thecal cell hyperplasia with secretary granules in the thecal cells in the kindled rats. The results suggest that amygdala kindling is a risk factor for the development of polycystic ovary syndrome.

  6. Amygdala Kindling Alters Estrus Cycle and Ovarian Morphology in the Rat

    PubMed Central

    Pan, Juan; Zhang, Lingwu; Wang, Feng; Liu, Dan

    2014-01-01

    The objective of this study is to explore the effects of amygdala kindling on estrus cycle and ovarian morphology. Thirty-five female rats at the age of 8 weeks were randomly designated to electrode kindled, sham-kindled, and normal controls. Kindled rats were implanted with kindling electrodes in the left basolateral amygdala and kindled by brief suprathreshold stimulations with a bipolar electrode. Estrous cycles were daily monitored through vaginal smears. Electrographic and behavioral seizures were recorded and ovarian morphology was evaluated by light and electron microscopies. Our results showed that the kindled rats lost their ovarian periodicity displayed significant ovarian enlargement. H&E staining revealed increased number of growing follicles and total follicles, as well as polycysts in the ovaries of the kindled animals compared to sham and control animals. Ultrastructural study detected numerous apoptotic granulosa cells in growing follicles and thecal cell hyperplasia with secretary granules in the thecal cells in the kindled rats. The results suggest that amygdala kindling is a risk factor for the development of polycystic ovary syndrome. PMID:25285307

  7. Amygdala Kindling Alters Estrus Cycle and Ovarian Morphology in the Rat.

    PubMed

    Pan, Juan; Zhang, Lingwu; Wang, Feng; Liu, Dan; Li, P Andy; Sun, Tao

    2013-11-01

    The objective of this study is to explore the effects of amygdala kindling on estrus cycle and ovarian morphology. Thirty-five female rats at the age of 8 weeks were randomly designated to electrode kindled, sham-kindled, and normal controls. Kindled rats were implanted with kindling electrodes in the left basolateral amygdala and kindled by brief suprathreshold stimulations with a bipolar electrode. Estrous cycles were daily monitored through vaginal smears. Electrographic and behavioral seizures were recorded and ovarian morphology was evaluated by light and electron microscopies. Our results showed that the kindled rats lost their ovarian periodicity displayed significant ovarian enlargement. H&E staining revealed increased number of growing follicles and total follicles, as well as polycysts in the ovaries of the kindled animals compared to sham and control animals. Ultrastructural study detected numerous apoptotic granulosa cells in growing follicles and thecal cell hyperplasia with secretary granules in the thecal cells in the kindled rats. The results suggest that amygdala kindling is a risk factor for the development of polycystic ovary syndrome. PMID:25285307

  8. Prenatal stress alters dendritic morphology and synaptic connectivity in the prefrontal cortex and hippocampus of developing offspring.

    PubMed

    Mychasiuk, Richelle; Gibb, Robbin; Kolb, Bryan

    2012-04-01

    The current study used stereological techniques in combination with Golg-Cox methods to examine the neuroanatomical alterations in the prefrontal cortex and hippocampus of developing offspring exposed to gestational stress. Morphological changes in dendritic branching, length, and spine density, were examined at weaning along with changes in actual numbers of neurons. Using this information we generated a gross estimation of synaptic connectivity. The results showed region-specific and sex-dependent alterations to neuroanatomy in response to prenatal stress. The two regions of the prefrontal cortex, medial prefrontal, and orbital prefrontal cortices, exhibited sexually dimorphic, opposite changes, in synaptic connectivity in response to the same experience. Both male and female offspring demonstrated a loss of neuron number and estimated synapse number in the hippocampus despite exhibiting increased spine density. The results from this study suggest that prenatal stress alters normal development and the organization of neuronal circuits in both neocortex and hippocampus early in development and thus likely influences the course of later experience-dependent synaptic changes.

  9. Membrane Domain Formation, Interdigitation, and Morphological Alterations Induced by the Very Long Chain Asymmetric C24:1 Ceramide

    PubMed Central

    Pinto, Sandra N.; Silva, Liana C.; de Almeida, Rodrigo F. M.; Prieto, Manuel

    2008-01-01

    Ceramide (Cer) is involved in the regulation of several biological processes, such as apoptosis and cell signaling. The alterations induced by Cer in the biophysical properties of membranes are thought to be one of the major routes of Cer action. To gain further knowledge about the alterations induced by Cer, membrane reorganization by the very long chain asymmetric nervonoylceramide (NCer) was studied. The application of an established fluorescence multiprobe approach, together with x-ray diffraction, differential scanning calorimetry, and confocal fluorescence microscopy, allowed the characterization of NCer and the determination of the phase diagram of palmitoyloleoylphosphatidylcholine (POPC)/NCer binary mixtures. Nervonoylceramide undergoes a transition from a mixed interdigitated gel phase to a partially interdigitated gel phase at ∼20°C, and a broad main transition to the fluid phase at ∼52°C. The solubility of NCer in the fluid POPC is low, driving gel-fluid phase separation, and the binary-phase diagram is characterized by multiple and large coexistence regions between the interdigitated gel phases and the fluid phase. At 37°C, the relevant phases are the fluid and the partially interdigitated gel. Moreover, the formation of NCer interdigitated gel phases leads to strong morphological alterations in the lipid vesicles, driving the formation of cochleate-type tubular structures. PMID:18586849

  10. Effect of cigarette smoke on DNA damage, oxidative stress, and morphological alterations in mouse testis and spermatozoa.

    PubMed

    La Maestra, Sebastiano; De Flora, Silvio; Micale, Rosanna T

    2015-01-01

    Although the adverse effects of active smoking on sperm quality and fertilization ability are well established, little is known about possible effects of involuntary exposures to cigarette smoke (CS). We designed an experimental study aimed at evaluating the induction of possible noxious effects on testicular morphology and functions in A/J mice exposed whole-body to CS during the first 70 days of life, from birth to early adulthood. Twenty-five sham-exposed neonatal mice and 23 CS-exposed neonatal mice were used. Exposure to CS caused a variety of interconnected alterations in male gonads, including loss of weight and histomorphological alterations of testis, accompanied by a significant increase in abnormalities affecting epidydimal spermatozoa. Induction of oxidative stress was demonstrated by significantly increased concentrations of both reactive oxygen species and lipid peroxidation products in sperm cells. Occurrence of DNA damage in the same cells was documented by using the single cell gel electrophoresis (comet) assay, which showed a remarkable increase in DNA single- and double-strand breaks in CS-exposed mice, as compared with sham-exposed mice. Since biochemical and molecular alterations of sperm cells are known to be associated with impaired sperm quality, our findings suggest that involuntary smoking is potentially able to impair fertility in subjects exposed early in life.

  11. Binary Matrix Shuffling Filter for Feature Selection in Neuronal Morphology Classification

    PubMed Central

    Sun, Congwei; Dai, Zhijun; Zhang, Hongyan; Li, Lanzhi; Yuan, Zheming

    2015-01-01

    A prerequisite to understand neuronal function and characteristic is to classify neuron correctly. The existing classification techniques are usually based on structural characteristic and employ principal component analysis to reduce feature dimension. In this work, we dedicate to classify neurons based on neuronal morphology. A new feature selection method named binary matrix shuffling filter was used in neuronal morphology classification. This method, coupled with support vector machine for implementation, usually selects a small amount of features for easy interpretation. The reserved features are used to build classification models with support vector classification and another two commonly used classifiers. Compared with referred feature selection methods, the binary matrix shuffling filter showed optimal performance and exhibited broad generalization ability in five random replications of neuron datasets. Besides, the binary matrix shuffling filter was able to distinguish each neuron type from other types correctly; for each neuron type, private features were also obtained. PMID:25893005

  12. Different Levels of DNA Methylation Detected in Human Sperms after Morphological Selection Using High Magnification Microscopy

    PubMed Central

    Cassuto, Nino Guy; Montjean, Debbie; Siffroi, Jean-Pierre; Bouret, Dominique; Marzouk, Flora; Copin, Henri; Benkhalifa, Moncef

    2016-01-01

    Objective. To analyze DNA methylation levels between two groups of spermatozoa taken from the same sample, following morphological selection by high magnification (HM) at 6100x microscopy. A prospective study was conducted and studied 876 spermatozoa from 10 randomly selected men. Sperm morphology was characterized at HM according to criteria previously established. High-scoring Score 6 and low-scoring Score 0 sperm were selected. Sperm DNA methylation level was assessed using an immunoassay method targeting 5-methylcytosine residues by fluorescence microscopy with imaging analysis system to detect DNA methylation in single spermatozoon. Results. In total, 448 S6 spermatozoa and 428 S0 spermatozoa were analyzed. A strong relationship was found between sperm DNA methylation levels and sperm morphology observed at HM. Sperm DNA methylation level in the S6 group was significantly lower compared with that in the S0 group (p < 10−6), OR = 2.4; and p < 0.001, as determined using the Wilcoxon test. Conclusion. Differences in DNA methylation levels are associated with sperm morphology variations as observed at HM, which allows spermatozoa with abnormal levels to be discarded and ultimately decrease birth defects, malformations, and epigenetic diseases that may be transmitted from sperm to offspring in ICSI. PMID:27148551

  13. Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology.

    PubMed

    Berner, D; Adams, D C; Grandchamp, A-C; Hendry, A P

    2008-11-01

    To what extent are patterns of biological diversification determined by natural selection? We addressed this question by exploring divergence in foraging morphology of threespine stickleback fish inhabiting lake and stream habitats within eight independent watersheds. We found that lake fish generally displayed more developed gill structures and had more streamlined bodies than did stream fish. Diet analysis revealed that these morphological differences were associated with limnetic vs. benthic foraging modes, and that the extent of morphological divergence within watersheds reflected differences in prey resources utilized by lake and stream fish. We also found that patterns of divergence were unrelated to patterns of phenotypic trait (co)variance within populations (i.e. the 'line of least resistance'). Instead, phenotypic (co)variances were more likely to have been shaped by adaptation to lake vs. stream habitats. Our study thus implicates natural selection as a strong deterministic force driving morphological diversification in lake-stream stickleback. The strength of this inference was obtained by complementing a standard analysis of parallel divergence in means between discrete habitat categories (lake vs. stream) with quantitative estimates of selective forces and information on trait (co)variances. PMID:18691241

  14. Growth Dynamics of Mechanically Impeded Lupin Roots: does Altered Morphology Induce Hypoxia?

    PubMed Central

    HANBURY, COLIN D.; ATWELL, BRIAN J.

    2005-01-01

    • Background and Aims Root axes elongate slowly and swell radially under mechanical impedance. However, temporal and spatial changes to impeded root apices have only been described qualitatively. This paper aims (a) to quantify morphological changes to root apices and (b) assess whether these changes pre-dispose young root tissues to hypoxia. • Methods Lupin (Lupinus angustifolius) seedlings were grown into coarse sand that was pressurized through a diaphragm to generate mechanical impedance on growing root axes. In situ observations yielded growth rates and root response to hypoxia. Roots were then removed to assess morphology, cell lengths and local growth velocities. Oxygen uptake into excised segments was measured. • Key Results An applied pressure of 15 kPa slowed root extension by 75 % after 10–20 h while the same axes thickened by about 50 %. The most terminal 2–3 mm of axes did not respond morphologically to impedance, in spite of the slower flux of cells out of this region. The basal boundary of root extension encroached to within 4 mm of the apex (cf. 10 mm in unimpeded roots), while radial swelling extended 10 mm behind the apex in impeded roots. Oxygen demand by segments of these short, thick, impeded roots was significantly different from segments of unimpeded roots when the zones of elongation in each treatment were compared. Specifically, impeded roots consumed O2 faster and O2 consumption was more likely to be O2-limited over a substantial proportion of the elongation zone, making these roots more susceptible to O2 deficit. Impeded roots used more O2 per unit growth (measured as either unit of elongation or unit of volumetric expansion) than unimpeded roots. Extension of impeded roots in situ was O2-limited at sub-atmospheric O2 levels (21 % O2), while unimpeded roots were only limited below 11 % O2. • Conclusions The shift in the zone of extension towards the apex in impeded roots coincided with greater vulnerability to

  15. Gender incidence of intracytoplasmic morphologically selected sperm injection-derived embryos: a prospective randomized study.

    PubMed

    Setti, Amanda S; Figueira, Rita C S; Braga, Daniela P A F; Iaconelli, Assumpto; Borges, Edson

    2012-04-01

    The aim of this prospective randomized study was to determine if the use of intracytoplasmic morphologically selected sperm injection (IMSI) is associated with gender incidence. Couples who underwent IVF-preimplantation genetic screening (PGS) cycles, as a result of advanced maternal age, were randomly allocated into two groups: intracytoplasmic sperm injection (ICSI; n=80) or intracytoplasmic morphologically selected sperm injection (IMSI; n=80). The incidences of genders were compared between ICSI- and IMSI-derived embryos. Considering all the biopsied embryos were characterized as normal for sex chromosome, the results showed that IMSI results in a significantly higher incidence of female embryos as compared with ICSI (65.1% versus 54.0%, respectively, P=0.0277). After analysing only euploid embryos for the eight selected chromosomes, a significantly higher incidence of XX embryos derived from IMSI was also observed compared with ICSI cycles (66.9% versus 52.5%, respectively, P=0.0322). This result was confirmed by logistic regression, which demonstrated a nearly 2-fold increase in euploid XX embryos derived from spermatozoa selected by high magnification (OR 1.83, 95% CI 1.05-3.35, P=0.032). A higher proportion of morphologically normal spermatozoa analysed under high magnification seem to carry the X chromosome. The aim of this study was to determine if the use of intracytoplasmic morphologically selected sperm injection (IMSI) is associated with gender incidence. Couples who underwent IVF with preimplantation genetic screening, as a result of advanced maternal age, were randomly allocated into two groups: intracytoplasmic sperm injection (ICSI; n=80) or intracytoplasmic morphologically selected sperm injection (IMSI; n=80). The incidences of genders were compared between ICSI- and IMSI-derived embryos. Our results showed that a significantly higher incidence of female embryos derived from IMSI compared with ICSI cycles (66.9% versus 52.5%, respectively, P=0

  16. Selective concentration of cesium in analcime during hydrothermal alteration, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Keith, T.E.C.; Thompson, J.M.; Mays, R.E.

    1983-01-01

    Chemical and mineralogical studies of fresh and hydrothermally altered rhyolitic material in Upper and Lower Geyser Basins, Yellowstone National Park, show that all the altered rocks are enriched in Cs and that Cs is selectively concentrated in analcime. The Cs content of unaltered rhyolite lava flows, including those from which the altered sediments are derived, ranges from 2.5 to 7.6 ppm. The Cs content of analcime-bearing altered sedimentary rocks is as high as 3000 ppm, and in clinoptilolite-bearing altered sedimentary rocks Cs content is as high as 180 ppm. Altered rhyolite lava flows which were initially vitrophyres, now contain up to 250 ppm Cs, and those which were crystallized prior to hydrothermal alteration contain up to 14 ppm. Mineral concentrates of analcime contain as much as 4700 ppm Cs. The Cs must have been incorporated into the analcime structure during crystallization, rather than by later cation substitution, because analcime does not readily exchange Cs. The Cs Cl of the fluids circulating through the hydrothermal system varies, suggesting that Cs is not always a conservative ion and that Cs is lost from upflowing thermal waters due to water-rock interaction resulting in crystallization of Cs-bearing analcime. The source of Cs for Cs enrichment of the altered rocks is from leaching of rhyolitic rocks underlying the geyser basins, and from the top of the silicic magma chamber that underlies the area. Analcime is an important natural Cs sink, and the high Cs concentrations reported here may prove to be an important indicator of the environment of analcime crystallization. ?? 1983.

  17. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function.

    PubMed

    Bocarsly, Miriam E; Fasolino, Maria; Kane, Gary A; LaMarca, Elizabeth A; Kirschen, Gregory W; Karatsoreos, Ilia N; McEwen, Bruce S; Gould, Elizabeth

    2015-12-22

    Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity.

  18. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Endothelial cell migration is important to vascular wall regeneration following injury or stress. However, the mechanism(s) governing this response is not well understood. The microgravity environment of space may complicate the response of these cells to injury. To date, there are no reports in this area. We examined how bovine aortic (BAEC) and pulmonary (BPEC) endothelial cells respond to denudation injury under hypergravity (HGrav) and simulated microgravity (MGrav), using image analysis. In 10% FBS, the migration of confluent BAEC and BPEC into the denuded area was not affected by HGrav or MGrav. However, in low FBS (0.5%), signficantly retarded migration under MGrav, and increased migration under HGrav was found. MGrav also decreased the migration of postconfluent BPEC while HGrav showed no difference. Both MGrav and HGrav strongly decreased the migration of postconfluent BAEC. Also, both cell lines showed significant morphological changes by scanning electron microscopy. These studies indicate that endothelial cell function is affected by changes in gravity.

  19. Stir-baked Fructus gardeniae (L.) extracts inhibit matrix metalloproteinases and alter cell morphology.

    PubMed

    Yang, Jin-gang; Shen, Ye-hua; Hong, Yuan; Jin, Feng-hai; Zhao, Shu-hua; Wang, Ming-cui; Shi, Xiu-juan; Fang, Xue-xun

    2008-05-01

    Matrix metalloproteinases (MMPs) play vital roles in many pathological conditions, including cancer, cardiovascular disease, arthritis and inflammation. Modulating MMP activity may therefore be a useful therapeutic approach in treating these diseases. Qing-Kai-Ling is a popular Chinese anti-inflammatory formulation used to treat symptoms such as rheumatoid arthritis, acute hypertensive cerebral hemorrhage, hepatitis and upper respiratory tract infection. In this paper, we report that one of the components of Qing-Kai-Ling, Fructus gardeniae, strongly inhibits MMP activity. The IC50 values for the primary herbal extract and water extract against MMP-16 were 32 and 27 microg/ml, respectively. In addition, we show that the herbal extracts influence HT1080 human fibrosarcoma cell growth and morphology. These data may provide molecular mechanisms for the therapeutic effects of Qing-Kai-Ling and herbal medicinal Fructus gardeniae.

  20. Altered corpus callosum morphology associated with autism over the first 2 years of life

    PubMed Central

    Gerig, Guido; Lewis, John D.; Soda, Takahiro; Styner, Martin A.; Vachet, Clement; Botteron, Kelly N.; Elison, Jed T.; Dager, Stephen R.; Estes, Annette M.; Hazlett, Heather C.; Schultz, Robert T.; Zwaigenbaum, Lonnie; Piven, Joseph

    2015-01-01

    Numerous brain imaging studies indicate that the corpus callosum is smaller in older children and adults with autism spectrum disorder. However, there are no published studies examining the morphological development of this connective pathway in infants at-risk for the disorder. Magnetic resonance imaging data were collected from 270 infants at high familial risk for autism spectrum disorder and 108 low-risk controls at 6, 12 and 24 months of age, with 83% of infants contributing two or more data points. Fifty-seven children met criteria for ASD based on clinical-best estimate diagnosis at age 2 years. Corpora callosa were measured for area, length and thickness by automated segmentation. We found significantly increased corpus callosum area and thickness in children with autism spectrum disorder starting at 6 months of age. These differences were particularly robust in the anterior corpus callosum at the 6 and 12 month time points. Regression analysis indicated that radial diffusivity in this region, measured by diffusion tensor imaging, inversely predicted thickness. Measures of area and thickness in the first year of life were correlated with repetitive behaviours at age 2 years. In contrast to work from older children and adults, our findings suggest that the corpus callosum may be larger in infants who go on to develop autism spectrum disorder. This result was apparent with or without adjustment for total brain volume. Although we did not see a significant interaction between group and age, cross-sectional data indicated that area and thickness differences diminish by age 2 years. Regression data incorporating diffusion tensor imaging suggest that microstructural properties of callosal white matter, which includes myelination and axon composition, may explain group differences in morphology. PMID:25937563

  1. Sublethal concentrations of carbapenems alter cell morphology and genomic expression of Klebsiella pneumoniae biofilms.

    PubMed

    Van Laar, Tricia A; Chen, Tsute; You, Tao; Leung, Kai P

    2015-03-01

    Klebsiella pneumoniae, a Gram-negative bacterium, is normally associated with pneumonia in patients with weakened immune systems. However, it is also a prevalent nosocomial infectious agent that can be found in infected surgical sites and combat wounds. Many of these clinical strains display multidrug resistance. We have worked with a clinical strain of K. pneumoniae that was initially isolated from a wound of an injured soldier. This strain demonstrated resistance to many commonly used antibiotics but sensitivity to carbapenems. This isolate was capable of forming biofilms in vitro, contributing to its increased antibiotic resistance and impaired clearance. We were interested in determining how sublethal concentrations of carbapenem treatment specifically affect K. pneumoniae biofilms both in morphology and in genomic expression. Scanning electron microscopy showed striking morphological differences between untreated and treated biofilms, including rounding, blebbing, and dimpling of treated cells. Comparative transcriptome analysis using RNA sequencing (RNA-Seq) technology identified a large number of open reading frames (ORFs) differentially regulated in response to carbapenem treatment at 2 and 24 h. ORFs upregulated with carbapenem treatment included genes involved in resistance, as well as those coding for antiporters and autoinducers. ORFs downregulated included those coding for metal transporters, membrane biosynthesis proteins, and motility proteins. Quantitative real-time PCR validated the general trend of some of these differentially regulated ORFs. Treatment of K. pneumoniae biofilms with sublethal concentrations of carbapenems induced a wide range of phenotypic and gene expression changes. This study reveals some of the mechanisms underlying how sublethal amounts of carbapenems could affect the overall fitness and pathogenic potential of K. pneumoniae biofilm cells. PMID:25583711

  2. Sublethal Concentrations of Carbapenems Alter Cell Morphology and Genomic Expression of Klebsiella pneumoniae Biofilms

    PubMed Central

    Van Laar, Tricia A.; Chen, Tsute; You, Tao

    2015-01-01

    Klebsiella pneumoniae, a Gram-negative bacterium, is normally associated with pneumonia in patients with weakened immune systems. However, it is also a prevalent nosocomial infectious agent that can be found in infected surgical sites and combat wounds. Many of these clinical strains display multidrug resistance. We have worked with a clinical strain of K. pneumoniae that was initially isolated from a wound of an injured soldier. This strain demonstrated resistance to many commonly used antibiotics but sensitivity to carbapenems. This isolate was capable of forming biofilms in vitro, contributing to its increased antibiotic resistance and impaired clearance. We were interested in determining how sublethal concentrations of carbapenem treatment specifically affect K. pneumoniae biofilms both in morphology and in genomic expression. Scanning electron microscopy showed striking morphological differences between untreated and treated biofilms, including rounding, blebbing, and dimpling of treated cells. Comparative transcriptome analysis using RNA sequencing (RNA-Seq) technology identified a large number of open reading frames (ORFs) differentially regulated in response to carbapenem treatment at 2 and 24 h. ORFs upregulated with carbapenem treatment included genes involved in resistance, as well as those coding for antiporters and autoinducers. ORFs downregulated included those coding for metal transporters, membrane biosynthesis proteins, and motility proteins. Quantitative real-time PCR validated the general trend of some of these differentially regulated ORFs. Treatment of K. pneumoniae biofilms with sublethal concentrations of carbapenems induced a wide range of phenotypic and gene expression changes. This study reveals some of the mechanisms underlying how sublethal amounts of carbapenems could affect the overall fitness and pathogenic potential of K. pneumoniae biofilm cells. PMID:25583711

  3. Altered corpus callosum morphology associated with autism over the first 2 years of life.

    PubMed

    Wolff, Jason J; Gerig, Guido; Lewis, John D; Soda, Takahiro; Styner, Martin A; Vachet, Clement; Botteron, Kelly N; Elison, Jed T; Dager, Stephen R; Estes, Annette M; Hazlett, Heather C; Schultz, Robert T; Zwaigenbaum, Lonnie; Piven, Joseph

    2015-07-01

    Numerous brain imaging studies indicate that the corpus callosum is smaller in older children and adults with autism spectrum disorder. However, there are no published studies examining the morphological development of this connective pathway in infants at-risk for the disorder. Magnetic resonance imaging data were collected from 270 infants at high familial risk for autism spectrum disorder and 108 low-risk controls at 6, 12 and 24 months of age, with 83% of infants contributing two or more data points. Fifty-seven children met criteria for ASD based on clinical-best estimate diagnosis at age 2 years. Corpora callosa were measured for area, length and thickness by automated segmentation. We found significantly increased corpus callosum area and thickness in children with autism spectrum disorder starting at 6 months of age. These differences were particularly robust in the anterior corpus callosum at the 6 and 12 month time points. Regression analysis indicated that radial diffusivity in this region, measured by diffusion tensor imaging, inversely predicted thickness. Measures of area and thickness in the first year of life were correlated with repetitive behaviours at age 2 years. In contrast to work from older children and adults, our findings suggest that the corpus callosum may be larger in infants who go on to develop autism spectrum disorder. This result was apparent with or without adjustment for total brain volume. Although we did not see a significant interaction between group and age, cross-sectional data indicated that area and thickness differences diminish by age 2 years. Regression data incorporating diffusion tensor imaging suggest that microstructural properties of callosal white matter, which includes myelination and axon composition, may explain group differences in morphology.

  4. Sublethal concentrations of carbapenems alter cell morphology and genomic expression of Klebsiella pneumoniae biofilms.

    PubMed

    Van Laar, Tricia A; Chen, Tsute; You, Tao; Leung, Kai P

    2015-03-01

    Klebsiella pneumoniae, a Gram-negative bacterium, is normally associated with pneumonia in patients with weakened immune systems. However, it is also a prevalent nosocomial infectious agent that can be found in infected surgical sites and combat wounds. Many of these clinical strains display multidrug resistance. We have worked with a clinical strain of K. pneumoniae that was initially isolated from a wound of an injured soldier. This strain demonstrated resistance to many commonly used antibiotics but sensitivity to carbapenems. This isolate was capable of forming biofilms in vitro, contributing to its increased antibiotic resistance and impaired clearance. We were interested in determining how sublethal concentrations of carbapenem treatment specifically affect K. pneumoniae biofilms both in morphology and in genomic expression. Scanning electron microscopy showed striking morphological differences between untreated and treated biofilms, including rounding, blebbing, and dimpling of treated cells. Comparative transcriptome analysis using RNA sequencing (RNA-Seq) technology identified a large number of open reading frames (ORFs) differentially regulated in response to carbapenem treatment at 2 and 24 h. ORFs upregulated with carbapenem treatment included genes involved in resistance, as well as those coding for antiporters and autoinducers. ORFs downregulated included those coding for metal transporters, membrane biosynthesis proteins, and motility proteins. Quantitative real-time PCR validated the general trend of some of these differentially regulated ORFs. Treatment of K. pneumoniae biofilms with sublethal concentrations of carbapenems induced a wide range of phenotypic and gene expression changes. This study reveals some of the mechanisms underlying how sublethal amounts of carbapenems could affect the overall fitness and pathogenic potential of K. pneumoniae biofilm cells.

  5. Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight

    SciTech Connect

    Kawakami, Takashige Yoshimi, Masaki; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2014-03-01

    The role of endoplasmic reticulum (ER) stress in pregnancy remains largely unknown. Pregnant mice were subcutaneously administered tunicamycin (Tun), an ER stressor, as a single dose [0, 50, and 100 μg Tun/kg/body weight (BW)] on gestation days (GDs) 8.5, 12.5, and 15.5. A high incidence (75%) of preterm delivery was observed only in the group treated with Tun 100 μg/kg BW at GD 15.5, indicating that pregnant mice during late gestation are more susceptible to ER stress on preterm delivery. We further examined whether prolonged in utero exposure to ER stress affects fetal development. Pregnant mice were subcutaneously administered a dose of 0, 20, 40, and 60 μg Tun/kg from GD 12.5 to 16.5. Tun treatment decreased the placental and fetal weights in a dose-dependent manner. Histological evaluation showed the formation of a cluster of spongiotrophoblast cells in the labyrinth zone of the placenta of Tun-treated mice. The glycogen content of the fetal liver and placenta from Tun-treated mice was lower than that from control mice. Tun treatment decreased mRNA expression of Slc2a1/glucose transporter 1 (GLUT1), which is a major transporter for glucose, but increased placental mRNA levels of Slc2a3/GLUT3. Moreover, maternal exposure to Tun resulted in a decrease in vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, and placental growth factor. These results suggest that excessive and exogenous ER stress may induce functional abnormalities in the placenta, at least in part, with altered GLUT and vascular-related gene expression, resulting in low infant birth weight. - Highlights: • Maternal exposure to excessive ER stress induced preterm birth and IUGR. • Prolonged excessive ER stress altered the formation of the placental labyrinth. • ER stress decreased GLUT1 mRNA expression in the placenta, but increased GLUT3. • ER stress-induced IUGR causes decreased glycogen and altered glucose transport.

  6. Gape-limited predators as agents of selection on the defensive morphology of an invasive invertebrate.

    PubMed

    Miehls, Andrea L J; Peacor, Scott D; McAdam, Andrew G

    2014-09-01

    Invasive species have widespread and pronounced effects on ecosystems and adaptive evolution of invaders is often considered responsible for their success. Despite the potential importance of adaptation to invasion, we still have limited knowledge of the agents of natural selection on invasive species. Bythotrephes longimanus, a cladoceran zooplankton, invaded multiple Canadian Shield lakes over the past several decades. Bythotrephes have a conspicuous caudal process (tail spine) that provides a morphological defense against fish predation. We measured viability selection on the longest component of the Bythotrephes spine, the distal spine segment, through a comparison of the lengths of first and second instar Bythotrephes collected from lakes differing in the dominance of gape-limited predation (GLP) and nongape-limited predation (NGLP) by fish. We found that natural selection varied by predator gape-limitation, with strong selection (selection intensity: 0.20-0.79) for increased distal spine length in lakes dominated by GLP, and no significant selection in lakes dominated by NGLP. Further, distal spine length was 17% longer in lakes dominated by GLP, suggesting the possibility of local adaptation. As all study lakes were invaded less than 20 years prior to our collections, our results suggest rapid divergence in defensive morphology in response to selection from fish predators. PMID:24916281

  7. Gape-limited predators as agents of selection on the defensive morphology of an invasive invertebrate.

    PubMed

    Miehls, Andrea L J; Peacor, Scott D; McAdam, Andrew G

    2014-09-01

    Invasive species have widespread and pronounced effects on ecosystems and adaptive evolution of invaders is often considered responsible for their success. Despite the potential importance of adaptation to invasion, we still have limited knowledge of the agents of natural selection on invasive species. Bythotrephes longimanus, a cladoceran zooplankton, invaded multiple Canadian Shield lakes over the past several decades. Bythotrephes have a conspicuous caudal process (tail spine) that provides a morphological defense against fish predation. We measured viability selection on the longest component of the Bythotrephes spine, the distal spine segment, through a comparison of the lengths of first and second instar Bythotrephes collected from lakes differing in the dominance of gape-limited predation (GLP) and nongape-limited predation (NGLP) by fish. We found that natural selection varied by predator gape-limitation, with strong selection (selection intensity: 0.20-0.79) for increased distal spine length in lakes dominated by GLP, and no significant selection in lakes dominated by NGLP. Further, distal spine length was 17% longer in lakes dominated by GLP, suggesting the possibility of local adaptation. As all study lakes were invaded less than 20 years prior to our collections, our results suggest rapid divergence in defensive morphology in response to selection from fish predators.

  8. Morphologic alteration of the olfactory bulb after acute ozone exposure in rats.

    PubMed

    Colín-Barenque, L; Avila-Costa, M R; Fortoul, T; Rugerio-Vargas, C; Machado-Salas, J P; Espinosa-Villanueva, J; Rivas-Arancibia, S

    1999-10-15

    The interaction of ozone with some molecules results in an increased production of free radicals. The objective of this study was to identify whether acute ozone exposure to 1-1.5 ppm for 4 h, produced cytological and ultrastructural modifications in the olfactory bulb cells. The results showed that in rats exposed to ozone there was a significant loss of dendritic spines on primary and secondary dendrites of granule cells, whereas the control rats did not present such changes. Besides these exposed cells showed vacuolation of neuronal cytoplasm, swelling of Golgi apparatus and mitochondrion, dilation cisterns of the rough endoplasmic reticulum. These findings suggest that oxidative stress produced by ozone induces alterations in the granule layer of the olfactory bulb, which may be related to functional modifications.

  9. Understory avifauna exhibits altered mobbing behavior in tropical forest degraded by selective logging.

    PubMed

    Hua, Fangyuan; Sieving, Kathryn E

    2016-11-01

    In understanding the impacts of selective logging on biodiversity, relatively little is known about the critical behavioral link between altered forest conditions and population persistence. Predator-mobbing is a widespread anti-predator behavior in birds that expresses a well-known trade-off influencing prey survival under predation risk. Here, we ask whether the predator-mobbing behavior of understory forest birds is altered by selective logging and associated forest structural changes in the highly endangered lowland rainforest of Sumatra. At four study sites spanning a gradient of logging-induced forest degradation, we used standardized mobbing and owl call playbacks with predator model presentation to elicit the predator-mobbing behavior of understory prey birds, compared birds' mobbing intensity across sites, and related variation in this intensity to forest vegetation structure. We found that selective logging altered birds' predator-mobbing intensity (measured by behavioral conspicuousness and propensity to approach the predator) as well as forest structure, and that vegetative changes to canopy and understory were correlated with contrasting responses by the two major bird foraging guilds, gleaning versus flycatching birds. We additionally discuss the implications of our findings for further hypothesis testing pertaining to the impacts of selective logging on the ecological processes underlying prey mobbing behavior, particularly with regards to predator-prey interactions and prey accruement of energy reserves. PMID:27417548

  10. Understory avifauna exhibits altered mobbing behavior in tropical forest degraded by selective logging.

    PubMed

    Hua, Fangyuan; Sieving, Kathryn E

    2016-11-01

    In understanding the impacts of selective logging on biodiversity, relatively little is known about the critical behavioral link between altered forest conditions and population persistence. Predator-mobbing is a widespread anti-predator behavior in birds that expresses a well-known trade-off influencing prey survival under predation risk. Here, we ask whether the predator-mobbing behavior of understory forest birds is altered by selective logging and associated forest structural changes in the highly endangered lowland rainforest of Sumatra. At four study sites spanning a gradient of logging-induced forest degradation, we used standardized mobbing and owl call playbacks with predator model presentation to elicit the predator-mobbing behavior of understory prey birds, compared birds' mobbing intensity across sites, and related variation in this intensity to forest vegetation structure. We found that selective logging altered birds' predator-mobbing intensity (measured by behavioral conspicuousness and propensity to approach the predator) as well as forest structure, and that vegetative changes to canopy and understory were correlated with contrasting responses by the two major bird foraging guilds, gleaning versus flycatching birds. We additionally discuss the implications of our findings for further hypothesis testing pertaining to the impacts of selective logging on the ecological processes underlying prey mobbing behavior, particularly with regards to predator-prey interactions and prey accruement of energy reserves.

  11. Clinical outcome of intracytoplasmic injection of spermatozoa morphologically selected under high magnification: a prospective randomized study.

    PubMed

    Balaban, Basak; Yakin, Kayhan; Alatas, Cengiz; Oktem, Ozgur; Isiklar, Aycan; Urman, Bulent

    2011-05-01

    Recent evidence shows that the selection of spermatozoa based on the analysis of morphology under high magnification (×6000) may have a positive impact on embryo development in cases with severe male factor infertility and/or previous implantation failures. The objective of this prospective randomized study was to compare the clinical outcome of 87 intracytoplasmic morphologically selected sperm injection (IMSI) cycles with 81 conventional intracytoplasmic sperm injection (ICSI) cycles in an unselected infertile population. IMSI did not provide a significant improvement in the clinical outcome compared with ICSI although there were trends for higher implantation (28.9% versus 19.5%), clinical pregnancy (54.0% versus 44.4%) and live birth rates (43.7% versus 38.3%) in the IMSI group. However, severe male factor patients benefited from the IMSI procedure as shown by significantly higher implantation rates compared with their counterparts in the ICSI group (29.6% versus 15.2%, P=0.01). These results suggest that IMSI may improve IVF success rates in a selected group of patients with male factor infertility. New technological developments enable the real time examination of motile spermatozoa with an inverted light microscope equipped with high-power differential interference contrast optics, enhanced by digital imaging. High magnification (over ×6000) provides the identification of spermatozoa with a normal nucleus and nuclear content. Intracytoplasmic injection of spermatozoa selected according to fine nuclear morphology under high magnification may improve the clinical outcome in cases with severe male factor infertility.

  12. Beyond the ecological: biological invasions alter natural selection on a native plant species.

    PubMed

    Lau, Jennifer A

    2008-04-01

    Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.

  13. Morphology in the Digital Age: Integrating High Resolution Description of Structural Alterations with Phenotypes and Genotypes

    PubMed Central

    Nast, Cynthia C.; Lemley, Kevin V.; Hodgin, Jeffrey B.; Bagnasco, Serena; Avila-Casado, Carmen; Hewitt, Stephen M; Barisoni, Laura

    2015-01-01

    Conventional light microscopy (CLM) has been used to characterize and classify renal diseases, evaluate histopathology in studies and trials, and educate renal pathologists and nephrologists. The advent of digital pathology, in which a glass slide can be scanned to create whole slide images (WSI) for viewing and manipulating on a computer monitor, provides real and potential advantages over CLM. Software tools such as annotation, morphometry and image analysis can be applied to WSIs for studies or educational purposes, and the digital images are globally available to clinicians, pathologists and investigators. New ways of assessing renal pathology with observational data collection may allow better morphologic correlations and integration with molecular and genetic signatures, refinements of classification schema, and understanding of disease pathogenesis. In multicenter studies, WSI, which require additional quality assurance steps, provide efficiencies by reducing slide shipping and consensus conference costs, and allowing anytime anywhere slide viewing. While validation studies for the routine diagnostic use of digital pathology still are needed, this is a powerful tool currently available for translational research, clinical trials and education in renal pathology. PMID:26215864

  14. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function

    PubMed Central

    Bocarsly, Miriam E.; Fasolino, Maria; Kane, Gary A.; LaMarca, Elizabeth A.; Kirschen, Gregory W.; Karatsoreos, Ilia N.; McEwen, Bruce S.; Gould, Elizabeth

    2015-01-01

    Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity. PMID:26644559

  15. Alteration of femoral bone morphology and density in COX-2−/− mice

    PubMed Central

    Robertson, Galen; Xie, Chao; Chen, Di; Awad, Hani; Schwarz, Edward M.; O’Keefe, Regis J.; Guldberg, Robert E.; Zhang, Xinping

    2009-01-01

    A role of COX-2 in pathological bone destruction and fracture repair has been established; however, few studies have been conducted to examine the involvement of COX-2 in maintaining bone mineral density and bone micro-architecture. In this study, we examined bone morphology in multiple trabecular and cortical regions within the distal and diaphyseal femur of 4-month-old wild-type and COX-2−/− mice using micro-computed tomography. Our results demonstrated that while COX-2−/− female mice had normal bone geometry and trabecular microarchitecture at 4 months of age, the male knockout mice displayed reduced bone volume fraction within the distal femoral metaphysis. Furthermore, male COX-2−/− mice had a significant reduction in cortical bone mineral density within the central cortical diaphysis and distal epiphysis and metaphysis. Consistent with the observed reduction in cortical mineral density, biomechanical testing via 4-point-bending showed that male COX-2−/− mice had a significant increase in postyield deformation, indicating a ductile bone phenotype in male COX-2−/− mice. In conclusion, our study suggests that genetic ablation of COX-2 may have a sex-related effect on cortical bone homeostasis and COX-2 plays a role in maintaining normal bone micro-architecture and density in mice. PMID:16731065

  16. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function.

    PubMed

    Bocarsly, Miriam E; Fasolino, Maria; Kane, Gary A; LaMarca, Elizabeth A; Kirschen, Gregory W; Karatsoreos, Ilia N; McEwen, Bruce S; Gould, Elizabeth

    2015-12-22

    Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity. PMID:26644559

  17. Continuous electrical stimulation decreases retinal excitability but does not alter retinal morphology.

    PubMed

    Ray, A; Lee, E-J; Humayun, M S; Weiland, J D

    2011-08-01

    Retinal prostheses aim to provide visual perception through electrical stimulation of the retina. Hence they have to operate between threshold charge density and maximum safe charge density. To date most studies in the retina have concentrated on understanding the threshold, while stimulation safety has predominantly been studied in structures other than the retina. Toward this end, the present study focuses on determining the effect of continuous electrical stimulation of the retina both on retinal morphology and on the electrically evoked responses in the superior colliculus in a rodent model. The results demonstrate that the retina is able to tolerate 1 h long stimulation with only minor changes evident in retinal histology when examined three to 14 days later, even at charge densities (0.68 mC cm(-2)) above the safe limit of platinum delivered at high stimulus frequency (300 Hz). However, this continuous electrical stimulation causes an elevation in the threshold of the electrically evoked response in the superior colliculus, indicating some form of adaptation to continuous stimulation. PMID:21775787

  18. Enhanced expression of dihydrofolate reductase by bovine kidney epithelial cells results in altered cell morphology, IGF-I responsiveness, and IGF binding protein-3 expression.

    PubMed

    Cohick, W S; Clemmons, D R

    1994-10-01

    The kidney epithelial cell line (MDBK) secretes primarily insulin-like growth factor binding protein (IGFBP)-2 under basal conditions, but exposure to forskolin decreases the synthesis of and induces IGFBP-3. Since IGFBP-3 has been shown to both potentiate and inhibit insulin-like growth factor (IGF) bioactivity, MDBK cells were transfected with an expression vector containing bovine IGFBP-3 cDNA and the dihydrofolate reductase (DHFR) gene as a selectable marker, with the goal of obtaining an epithelial cell line which constitutively secreted IGFBP-3. Stable clones which secreted greater than 100 ng/ml of IGFBP-3 were obtained and designated MDBKpMONBP-3. Northern blotting indicated that endogenous IGFBP-3 mRNA, which was undetectable in wild-type (WT) MDBK cells, was expressed in MDBKpMONBP-3 cells while the IGFBP-3 transgene did not appear to be expressed. DHFR mRNA transcripts were also expressed by MDBKp-MONBP-3 cells, whereas these transcripts were not detected in WT MDBK cells, suggesting that gene amplification of DHFR may have allowed cells to survive in methotrexate (MTX) without taking up the expression vector. In addition to the altered pattern of IGFBP-3 secretion, a marked alteration in cell morphology was observed. MDBKpMONBP-3 cells grew in distinct islands and exhibited dome formation (a characteristic of differentiated epithelial cells) whereas the WT cells did not. The alterations in morphology and IGFBP-3 expression were irreversible, since MDBKpMONBP-3 cells failed to revert to the WT phenotype upon removal of MTX and dialyzed serum. Since vectorial secretion of proteins is often associated with epithelial cell differentiation, cells were plated on tissue culture inserts which allowed conditioned media (CM) to be collected from both the apical and basal surfaces of confluent monolayers. Release of IGFBP-2 was approximately equal from apical and basal surfaces in WT MDBK cells. In contrast, release of both IGFBP-2 and IGFBP-3 was greater (3

  19. Heteroresistance to Itraconazole Alters the Morphology and Increases the Virulence of Cryptococcus gattii

    PubMed Central

    Ferreira, Gabriella Freitas; Santos, Julliana Ribeiro Alves; da Costa, Marliete Carvalho; de Holanda, Rodrigo Assunção; Denadai, Ângelo Márcio Leite; de Freitas, Gustavo José Cota; Santos, Áquila Rodrigues Costa; Tavares, Priscila Batista; Paixão, Tatiane Alves

    2015-01-01

    Cryptococcus gattii is the main etiological agent of cryptococcosis in immunocompetent individuals. The triazole drug itraconazole is one of the antifungals used to treat patients with cryptococcosis. Heteroresistance is an adaptive mechanism to counteract the stress of increasing drug concentrations, and it can enhance the ability of a microorganism to survive under antifungal pressure. In this study, we evaluated the ability of 11 C. gattii strains to develop itraconazole heteroresistance. Heteroresistant clones were analyzed for drug susceptibility, alterations in cell diameter, capsule properties, and virulence in a murine model. Heteroresistance to itraconazole was intrinsic in all of the strains analyzed, reduced both the capsule size and the cell diameter, induced molecular heterogeneity at the chromosomal level, changed the negatively charged cells, reduced ergosterol content, and improved the antioxidant system. A positive correlation between surface/volume ratio of original cells and the level of heteroresistance to itraconazole (LHI) was observed in addition to a negative correlation between capsule size of heteroresistant clones and LHI. Moreover, heteroresistance to itraconazole increased the engulfment of C. gattii by macrophages and augmented fungal proliferation inside these cells, which probably accounted for the reduced survival of the mice infected with the heteroresistant clones and the higher fungal burden in lungs and brain. Our results indicate that heteroresistance to itraconazole is intrinsic and increases the virulence of C. gattii. This phenomenon may represent an additional mechanism that contributes to relapses of cryptococcosis in patients during itraconazole therapy. PMID:26014951

  20. Depolarization of the tegument precedes morphological alterations in Echinococcus granulosus protoscoleces incubated with ivermectin.

    PubMed

    Pérez-Serrano, J; Grosman, C; Urrea-París, M A; Denegri, G; Casado, N; Rodríguez-Caabeiro, F

    2001-10-01

    The nematocidal activity of ivermectin (IVM) largely arises from its activity as a potent agonist of muscular and neuronal glutamate-gated chloride channels. A cestocidal effect has also been suggested following in vitro treatments, but the molecular basis of this activity is not clear. We studied the effect of IVM on the metacestode stage of the tapeworm Echinococcus granulosus by assessing the viability, ultrastructure, and tegumental membrane potential as a function of drug concentration and incubation time. Concentrations of 0.1 and 1.0 microg/ml of IVM had no effect on any of these three parameters for up to 6 days of treatment. A concentration of 10 microg/ml, however, elicited a sequence of alterations that started with a approximately 20-mV depolarization of the tegumental membrane, and was followed by rostellar disorganization, rigid paralysis and, eventually, loss of viability. It is likely that the IVM-induced depolarization of the tegument acts as the signal that initiates the cascade of degenerative processes that leads to the parasite's death. This would place the tegument as the primary target of action of IVM on cestodes. As an appropriate chemotherapy for the hydatid disease is still lacking, the cestocidal effect of IVM reported here is worth considering.

  1. Striatal dysregulation of Cdk5 alters locomotor responses to cocaine, motor learning, and dendritic morphology.

    PubMed

    Meyer, Douglas A; Richer, Edmond; Benkovic, Stanley A; Hayashi, Kanehiro; Kansy, Janice W; Hale, Carly F; Moy, Lily Y; Kim, Yong; O'Callaghan, James P; Tsai, Li-Huei; Greengard, Paul; Nairn, Angus C; Cowan, Christopher W; Miller, Diane B; Antich, Pietro; Bibb, James A

    2008-11-25

    Motor learning and neuro-adaptations to drugs of abuse rely upon neuronal signaling in the striatum. Cyclin-dependent kinase 5 (Cdk5) regulates striatal dopamine neurotransmission and behavioral responses to cocaine. Although the role for Cdk5 in neurodegeneration in the cortex and hippocampus and in hippocampal-dependent learning has been demonstrated, its dysregulation in the striatum has not been examined. Here we show that strong activation of striatal NMDA receptors produced p25, the truncated form of the Cdk5 co-activator p35. Furthermore, inducible overexpression of p25 in the striatum prevented locomotor sensitization to cocaine and attenuated motor coordination and learning. This corresponded with reduced dendritic spine density, increased neuro-inflammation, altered dopamine signaling, and shifted Cdk5 specificity with regard to physiological and aberrant substrates, but no apparent loss of striatal neurons. Thus, dysregulation of Cdk5 dramatically affects striatal-dependent brain function and may be relevant to non-neurodegenerative disorders involving dopamine neurotransmission.

  2. Intracytoplasmic morphologically selected sperm injection improves development and quality of preimplantation embryos in teratozoospermia patients.

    PubMed

    Knez, Katja; Tomazevic, Tomaz; Zorn, Branko; Vrtacnik-Bokal, Eda; Virant-Klun, Irma

    2012-08-01

    This prospective randomized study investigated whether intracytoplasmic sperm injection (ICSI) outcome can be improved with sperm preselection under ×6000 magnification and intracytoplasmic morphologically selected sperm injection (IMSI) in patients with teratozoospermia and characterized embryo development and quality regarding sperm morphology and presence of head vacuoles. Couples with isolated teratozoospermia were divided into two groups: IMSI group (n=52) and ICSI group (n=70) and fertilization, blastocyst and clinical pregnancy rates were compared. Oocytes from 30 randomly chosen patients from the IMSI group were injected with spermatozoa that had been previously classified under ×6000 magnification into four classes according to the number and size of vacuoles in the head and then cultured separately. Pronuclear morphology, embryo development and blastomere viability were estimated to investigate the influence of sperm morphology, especially vacuoles, on embryo developmental capacity. A significantly higher clinical pregnancy rate was achieved in the IMSI group compared with the ICSI group (48% versus 24%, P<0.05). Fertilization with spermatozoa without head vacuoles yielded higher number of morphologically normal zygotes, higher blastocyst rate and smaller proportion of arrested embryos than spermatozoa with vacuoles and other head defects. IMSI is a method of choice in patients with teratozoospermia.

  3. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics

    NASA Astrophysics Data System (ADS)

    Mao, Zhilei; Xu, Bo; Ji, Xiaoli; Zhou, Kun; Zhang, Xuemei; Chen, Minjian; Han, Xiumei; Tang, Qiusha; Wang, Xinru; Xia, Yankai

    2015-04-01

    Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder, disruption, retraction, and decreased intensity of the microtubules after TiO2 NPs treatment. Both α and β tubule expressions did not change in the TiO2 NP-treated group, but the percentage of soluble tubules was increased. A microtubule dynamic study in living cells indicated that TiO2 NPs caused a lower growth rate and a higher shortening rate of microtubules as well as shortened lifetimes of de novo microtubules. TiO2 NPs did not cause changes in the expression and phosphorylation state of tau proteins, but a tau-TiO2 NP interaction was observed. TiO2 NPs could interact with tubule heterodimers, microtubules and tau proteins, which led to the instability of microtubules, thus contributing to the neurotoxicity of TiO2 NPs.Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder

  4. Alterations in Rat Fetal Morphology Following Abuse Patterns of Toluene Exposure

    PubMed Central

    Bowen, Scott E.; Irtenkauf, Susan; Hannigan, John H.; Stefanski, Adrianne L.

    2009-01-01

    Toluene is a commonly abused organic solvent. Inhalant abusers are increasingly women in their prime childbearing years. Children born to mothers who abused solvents during pregnancy may exhibit characteristics of a “fetal solvent syndrome” which may include dysmorphic features. This study examined the teratological effects of an abuse pattern of binge toluene exposure during gestation on skeletal and soft tissue abnormalities, body weight, and body size in fetal rats. Pregnant Sprague–Dawley rats were exposed for 30 min, twice daily, from gestational day (GD) 8 through GD20 to either air (0 ppm), 8,000 ppm, 12,000 ppm, or 16,000 ppm toluene. Two-thirds of each litter was prepared for skeletal examination using Alizarin Red S staining while the remaining third of each litter was fixed in Bouin’s solution for Wilson’s soft tissue evaluation. Exposure to toluene at all levels significantly reduced growth, including decreases in placental weight, fetal weight, and crown-rump length. In addition, numerous gross morphological anomalies were observed such as short or missing digits and missing limbs. Skeletal examination revealed that ossification of the extremities was significantly reduced as a result of toluene exposure at all levels. Specific skeletal defects included misshapen scapula, missing and supernumerary vertebrae and ribs, and fused digits. Soft tissue anomalies were also observed at all toluene levels and there was a dose-dependent increase in the number of anomalies which included cryptorchidism, displaced abdominal organs, gastromegaly, distended/hypoplastic bladder, and delayed cardiac development, among others. These results indicate that animals exposed prenatally to levels and patterns of toluene typical of inhalant abuse are at increased risk for skeletal and soft tissue abnormalities. PMID:19429395

  5. Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder

    PubMed Central

    Hercher, Christa; Chopra, Vikramjit; Beasley, Clare L.

    2014-01-01

    Background Brain imaging studies suggest that volume reductions and compromised white matter integrity occur in schizophrenia and bipolar disorder (BD). However, the cellular correlates have not yet been identified. To address this issue we assessed oligodendrocyte, astrocyte and microglial populations in postmortem white matter from schizophrenia, BD and nonpsychiatric control samples. Methods The density, areal fraction and spatial distribution of glial fibrillary acidic protein (GFAP)-expressing astrocytes and ionized calcium-binding adaptor molecule-1 (IBA-1)-expressing microglia as well as the density, nuclear size and spatial distribution of Nissl-stained oligodendrocytes were quantified in postmortem white matter adjacent to the dorsolateral prefrontal cortex (Brodmann area 9) in schizophrenia, BD and control samples (n = 20). In addition, the oligodendrocyte-associated proteins myelin basic protein and 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) were quantified in the same samples by enzyme-linked immunosorbent assay and immunoblotting. Results Oligodendrocyte density (p = 0.012) and CNPase protein levels (p = 0.038) differed between groups, being increased in BD compared with control samples. The GFAP area fraction (p = 0.05) and astrocyte spatial distribution (p = 0.040) also differed between groups, reflecting decreased area fraction and increased cell clustering in both schizophrenia and BD samples. Limitations Oligodendrocytes were identified using morphological criteria. Conclusion This study provides evidence for glial pathology in prefrontal white matter in schizophrenia and BD. Changes in oligodendrocyte and astrocyte populations in white matter in the major psychiatric disorders may reflect disruptions in structural or metabolic support of axons. PMID:24936776

  6. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis.

    PubMed

    Müller, Christian; McIntyre, Mhairi; Hansen, Kim; Nielsen, Jens

    2002-04-01

    Morphology and alpha-amylase production during submerged cultivation were examined in a wild-type strain (A1560) and in strains of Aspergillus oryzae in which chitin synthase B (chsB) and chitin synthesis myosin A (csmA) have been disrupted (ChsB/G and CM101). In a flowthrough cell, the growth of submerged hyphal elements was studied online, making it possible to examine the growth kinetics of the three strains. The average tip extension rates of the CM101 and ChsB/G strains were 25 and 88% lower, respectively, than that of the wild type. The branching intensity in the CM101 strain was 25% lower than that in the wild type, whereas that in the ChsB/G strain was 188% higher. During batch cultivation, inseparable clumps were formed in the wild-type strain, while no or fewer large inseparable clumps existed in the cultivations of the ChsB/G and CM101 strains. The alpha-amylase productivity was not significantly different in the three strains. A strain in which the transcription of chsB could be controlled by the nitrogen source-regulated promoter niiA (NiiA1) was examined during chemostat cultivation, and it was found that the branching intensity could be regulated by regulating the promoter, signifying an important role for chsB in branching. However, the pattern of branching responded very slowly to the change in transcription, and increased branching did not affect alpha-amylase productivity. alpha-Amylase residing in the cell wall was stained by immunofluorescence, and the relationship between tip number and enzyme secretion is discussed.

  7. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability.

    PubMed

    Li, J; Yu, B; Zhao, C; Nowak, Robert S; Zhao, Z; Sheng, Y; Li, J

    2013-01-01

    Riparian plants in arid areas are subject to frequent hydrological fluctuations induced through natural flow variation and water use by humans. Although many studies have focused on the success of Tamarix ramosissima Ledeb. in its invaded ranges, its major competitor in its home range, Populus euphratica Oliv., historically has dominated riparian forests where both species occur naturally. Thus, identifying ecophysiological differences between T. ramosissima and its co-evolved competitor under varying hydrological conditions may help us understand how flow regimes affect dominance in its home range and promote invasion in new ranges. We examined ecophysiological responses of T. ramosissima and P. euphratica, which are both native to the Tarim River Basin, northwest China, to experimental alterations in groundwater. Seedlings of both species were grown in lysimeters, first under well-watered conditions and then exposed to different groundwater treatments: inundation, drought, and relatively shallow, moderate and deep groundwater. Under inundation, T. ramosissima showed little growth whereas P. euphratica died after ~45 days. Droughted seedlings of both species suffered from considerable water stress evidenced by slow growth, decreased total leaf area and specific leaf area, and decreased xylem water potential (ψ), maximum photosynthetic rate and carboxylation efficiency. Both species had better ecophysiological performances under shallow and moderate groundwater conditions. When groundwater declined below rooting depth, seedlings of both species initially experienced decreased ψ, but ψ of T. ramosissima recovered late in the experiment whereas P. euphratica maintained decreased ψ. This ability of T. ramosissima to recover from water deficit might result from its rapid root elongation and subsequent ability to acquire groundwater, which in turn likely provides ecophysiological advantages over P. euphratica. Our results suggest that recent groundwater declines

  8. Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight.

    PubMed

    Kawakami, Takashige; Yoshimi, Masaki; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2014-03-01

    The role of endoplasmic reticulum (ER) stress in pregnancy remains largely unknown. Pregnant mice were subcutaneously administered tunicamycin (Tun), an ER stressor, as a single dose [0, 50, and 100 μg Tun/kg/body weight (BW)] on gestation days (GDs) 8.5, 12.5, and 15.5. A high incidence (75%) of preterm delivery was observed only in the group treated with Tun 100 μg/kg BW at GD 15.5, indicating that pregnant mice during late gestation are more susceptible to ER stress on preterm delivery. We further examined whether prolonged in utero exposure to ER stress affects fetal development. Pregnant mice were subcutaneously administered a dose of 0, 20, 40, and 60 μg Tun/kg from GD 12.5 to 16.5. Tun treatment decreased the placental and fetal weights in a dose-dependent manner. Histological evaluation showed the formation of a cluster of spongiotrophoblast cells in the labyrinth zone of the placenta of Tun-treated mice. The glycogen content of the fetal liver and placenta from Tun-treated mice was lower than that from control mice. Tun treatment decreased mRNA expression of Slc2a1/glucose transporter 1 (GLUT1), which is a major transporter for glucose, but increased placental mRNA levels of Slc2a3/GLUT3. Moreover, maternal exposure to Tun resulted in a decrease in vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, and placental growth factor. These results suggest that excessive and exogenous ER stress may induce functional abnormalities in the placenta, at least in part, with altered GLUT and vascular-related gene expression, resulting in low infant birth weight.

  9. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability.

    PubMed

    Li, J; Yu, B; Zhao, C; Nowak, Robert S; Zhao, Z; Sheng, Y; Li, J

    2013-01-01

    Riparian plants in arid areas are subject to frequent hydrological fluctuations induced through natural flow variation and water use by humans. Although many studies have focused on the success of Tamarix ramosissima Ledeb. in its invaded ranges, its major competitor in its home range, Populus euphratica Oliv., historically has dominated riparian forests where both species occur naturally. Thus, identifying ecophysiological differences between T. ramosissima and its co-evolved competitor under varying hydrological conditions may help us understand how flow regimes affect dominance in its home range and promote invasion in new ranges. We examined ecophysiological responses of T. ramosissima and P. euphratica, which are both native to the Tarim River Basin, northwest China, to experimental alterations in groundwater. Seedlings of both species were grown in lysimeters, first under well-watered conditions and then exposed to different groundwater treatments: inundation, drought, and relatively shallow, moderate and deep groundwater. Under inundation, T. ramosissima showed little growth whereas P. euphratica died after ~45 days. Droughted seedlings of both species suffered from considerable water stress evidenced by slow growth, decreased total leaf area and specific leaf area, and decreased xylem water potential (ψ), maximum photosynthetic rate and carboxylation efficiency. Both species had better ecophysiological performances under shallow and moderate groundwater conditions. When groundwater declined below rooting depth, seedlings of both species initially experienced decreased ψ, but ψ of T. ramosissima recovered late in the experiment whereas P. euphratica maintained decreased ψ. This ability of T. ramosissima to recover from water deficit might result from its rapid root elongation and subsequent ability to acquire groundwater, which in turn likely provides ecophysiological advantages over P. euphratica. Our results suggest that recent groundwater declines

  10. Sturge-Weber syndrome: altered blood vessel fibronectin expression and morphology.

    PubMed

    Comi, Anne M; Weisz, Catherine J C; Highet, Bridget H; Skolasky, Richard L; Pardo, Carlos A; Hess, Ellen J

    2005-07-01

    Sturge-Weber syndrome presents with vascular malformations of the brain, skin, and eye. Fibronectin has potent effects on angiogenesis, vessel remodeling, and vessel innervation density. To determine fibronectin expression in the blood vessels of Sturge-Weber syndrome brain and skin tissue and to quantify the density and circumference of Sturge-Weber syndrome blood vessels by type compared with controls, we performed in situ hybridization for fibronectin messenger ribonucleic acid (RNA) expression on six Sturge-Weber syndrome cortical brain samples, six epilepsy brain samples, skin from two port-wine stain skin lesions, and two normal skin samples from two subjects with Sturge-Weber syndrome. Fibronectin messenger RNA was expressed in blood vessels and endothelial cells in the parenchyma of both Sturge-Weber syndrome and control brain tissues and in skin samples. Fibronectin expression was significantly reduced by 23% in the Sturge-Weber syndrome meningeal vessels compared with the epilepsy controls (P < .01). Fibronectin expression was significantly increased by 19% in the Sturge-Weber syndrome parenchymal vessels compared with the epilepsy controls (P < .05). No difference was found in the expression of fibronectin in port-wine stain skin blood vessels. The density of leptomeningeal blood vessels in the Sturge-Weber syndrome brain tissue samples was 45% greater than in the epilepsy samples (P < .05). Blood vessel circumference was significantly decreased in the Sturge-Weber syndrome meningeal vessels compared with the controls (27%; P < .05). When blood vessels from different brain regions were compared, fibronectin expression was decreased in Sturge-Weber syndrome meningeal vessels and was increased in the parenchymal vessels. Altered blood vessel fibronectin expression in Sturge-Weber syndrome could contribute to abnormal vascular structure and function in this disorder. PMID:16159522

  11. Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity.

    PubMed

    Hughes-Fulford, Millie; Rodenacker, Karsten; Jütting, Uta

    2006-10-01

    Bone loss has been repeatedly documented in astronauts after flight, yet little is known about the mechanism of bone loss in space flight. Osteoblasts were activated during space flight in microgravity (microg) with and without a 1 gravity (1 g) field and 24 genes were analyzed for early induction. Induction of proliferating cell nuclear antigen (PCNA), transforming growth factor beta (TGFbeta), cyclo-oxygenase-2 (cox-2), cpla2, osteocalcin (OC), c-myc, fibroblast growth factor-2 (fgf-2), bcl2, bax, and fgf-2 message as well as FGF-2 protein were significantly depressed in microg when compared to ground (gr). Artificial onboard gravity normalized the induction of c-myc, cox-2, TGFbeta, bax, bcl2, and fgf-2 message as well as FGF-2 protein synthesis in spaceflight samples. In normal gravity, FGF-2 induces bcl2 expression; we found that bcl2 expression was significantly reduced in microgravity conditions. Since nuclear shape is known to elongate in the absence of mitogens like FGF-2, we used high-resolution image-based morphometry to characterize changes in osteoblast nuclear architecture under microgravity, 1 g flight, and ground conditions. Besides changes in cell shape (roundish/elliptic), other high-resolution analyses show clear influences of gravity on the inner nuclear structure. These changes occur in the texture, arrangement, and contrast of nuclear particles and mathematical modeling defines the single cell classification of the osteoblasts. Changes in nuclear structure were evident as early as 24 h after exposure to microgravity. This documented alteration in nuclear architecture may be a direct result of decreased expression of autocrine and cell cycle genes, suggesting an inhibition of anabolic response in microg. Life on this planet has evolved in a normal gravity field and these data suggest that gravity plays a significant role in regulation of osteoblast transcription.

  12. Age-Dependent Morphologic Alterations in the Outer Retinal and Choroidal Thicknesses Using Swept Source Optical Coherence Tomography

    PubMed Central

    2016-01-01

    Purpose To evaluate the age-dependent morphologic alterations in the outer retina and choroid at the macula using swept-source optical coherence tomography (OCT). Methods Thirty eyes (30 normal subjects; average age, 49 years) were examined; five (age range, third-eighth decades of life) had refractive errors of ±2 diopters or less and no fundus abnormalities. An Early Treatment Diabetic Retinopathy Study (ETDRS) map of the outer retinal and choroidal thickness was constructed using swept-source OCT. The outer retinal and choroidal segmentation lines were drawn automatically, partially manually, within 6 millimeters of the macula. Results The mean outer retinal and choroidal thicknesses in the 6-millimeter-diameter circle were 145±13 and 236±68 microns, respectively. The choroidal thickness and age were negatively (r = -0.66, P<0.01) correlated; the outer retinal thickness and age were not correlated (r = -0.16, P = 0.39). The outer retinal and choroidal thicknesses in the ETDRS map were not correlated (r = -0.13, P = 0.49) within 1 millimeter but correlated (r = 0.32, P<0.01) within 6 millimeters. Conclusions The choroid thins with aging. The outer retina remains stable. Outer retina and choroid are correlated in the entire macula except for the center. ETDRS map can be useful for evaluation of the morphologic relationship between the outer retina and choroid. PMID:27467879

  13. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges.

  14. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  15. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    PubMed

    Aliniaeifard, Sasan; Malcolm Matamoros, Priscila; van Meeteren, Uulke

    2014-12-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L-plants were sprayed with ABA (abscisic acid) during exposure to L. L-plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M-plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L-plants were almost similar to the M-plants, while their transpiration rate and stomatal conductance were identical to that of L-plants. The stomatal response to ABA was lost in L-plants, but also after 1-day exposure of M-plants to low VPD. The level of foliar ABA sharply decreased within 1-day exposure to L, while the level of ABA-GE (ABA-glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1-day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4-day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli.

  16. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    PubMed

    Aliniaeifard, Sasan; Malcolm Matamoros, Priscila; van Meeteren, Uulke

    2014-12-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L-plants were sprayed with ABA (abscisic acid) during exposure to L. L-plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M-plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L-plants were almost similar to the M-plants, while their transpiration rate and stomatal conductance were identical to that of L-plants. The stomatal response to ABA was lost in L-plants, but also after 1-day exposure of M-plants to low VPD. The level of foliar ABA sharply decreased within 1-day exposure to L, while the level of ABA-GE (ABA-glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1-day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4-day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli. PMID:24773210

  17. Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder.

    PubMed

    Bringas, M E; Carvajal-Flores, F N; López-Ramírez, T A; Atzori, M; Flores, G

    2013-06-25

    Valproic acid (VPA) is a blocker of histone deacetylase widely used to treat epilepsy, bipolar disorders, and migraine; its administration during pregnancy increases the risk of autism spectrum disorder (ASD) in the child. Thus, prenatal VPA exposure has emerged as a rodent model of ASD. In the present study, we aimed to investigate the effect of prenatal administration of VPA (500mg/kg) at E12.5 on the exploratory behavior and locomotor activity in a novel environment, as well as on neuronal morphological rearrangement in the prefrontal cortex (PFC), in the hippocampus, in the nucleus accumbens (NAcc), and in the basolateral amygdala (BLA) at three different ages: immediately after weaning (postnatal day 21 [PD21]), prepubertal (PD35) and postpubertal (PD70) ages. Hyper-locomotion was observed in a novel environment in VPA animals at PD21 and PD70. Interestingly, exploratory behavior assessed by the hole board test at PD70 showed a reduced frequency but an increase in the duration of head-dippings in VPA-animals compared to vehicle-treated animals. In addition, the latency to the first head-dip was longer in prenatal VPA-treated animals at PD70. Quantitative morphological analysis of dendritic spine density revealed a reduced number of spines at PD70 in the PFC, dorsal hippocampus and BLA, with an increase in the dendritic spine density in NAcc and ventral hippocampus, in prenatal VPA-treated rats. In addition, at PD70 increases in neuronal arborization were observed in the NAcc, layer 3 of the PFC, and BLA, with retracted neuronal arborization in the ventral and dorsal hippocampus. Our results extend the list of altered behaviors (exploratory behavior) detected in this model of ASD, and indicate that the VPA behavioral phenotype is accompanied by previously undescribed morphological rearrangement in limbic regions.

  18. Prenatal stress alters the behavior and dendritic morphology of the medial orbitofrontal cortex in mouse offspring during lactation.

    PubMed

    Gutiérrez-Rojas, Cristian; Pascual, Rodrigo; Bustamante, Carlos

    2013-11-01

    Several preclinical and clinical studies have shown that prenatal stress alters neuronal dendritic development in the prefrontal cortex, together with behavioral disturbances (anxiety). Nevertheless, neither whether these alterations are present during the lactation period, nor whether such findings may reflect the onset of anxiety disorders observed in childhood and adulthood has been studied. The central aim of the present study was to determine the effects of prenatal stress on the neuronal development and behavior of mice offspring during lactation (postnatal days 14 and 21). We studied 24 CF-1 male mice, grouped as follows: (i) control P14 (n=6), (ii) stressed P14 (n=6), (iii) control P21 (n=6) and (iv) stressed P21 (n=6). On the corresponding days, animals were evaluated with the open field test and sacrificed. Their brains were then stained in Golgi-Cox solution for 30 days. The morphological analysis dealt with the study of 96 pyramidal neurons. The results showed, first, that prenatal stress resulted in a significant (i) decrease in the apical dendritic length of pyramidal neurons in the orbitofrontal cortex at postnatal day 14, (ii) increase in the apical dendritic length of pyramidal neurons in the orbitofrontal cortex at postnatal day 21, and (iii) reduction in exploratory behavior at postnatal day 14 and 21.

  19. Morphologies of Radio-, X-ray-, and Mid-infrared-selected Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Griffith, Roger L.; Stern, Daniel

    2010-08-01

    We investigate the optical morphologies of candidate active galaxies identified at radio, X-ray, and mid-infrared wavelengths. We use the Advanced Camera for Surveys General Catalog (ACS-GC) to identify 372, 1360, and 1238 active galactic nucleus (AGN) host galaxies from Very Large Array, XMM-Newton, and Spitzer Space Telescope observations of the COSMOS field, respectively. We investigate both quantitative (GALFIT) and qualitative (visual) morphologies of these AGN host galaxies, split by brightness in their selection band. We find that the samples are largely distinct, though extensive overlap exists between certain samples, most particularly for the X-ray- and mid-IR-selected sources with unresolved optical morphologies. We find that the radio-selected AGNs are most distinct, with a very low incidence of having unresolved optical morphologies and a high incidence of being hosted by early-type galaxies. In comparison to X-ray-selected AGNs, mid-IR-selected AGNs have a slightly higher incidence of being hosted by disk galaxies. These morphological results conform to the results of Hickox et al. who studied the colors and large-scale clustering of AGNs and found a general association of radio-selected AGNs with "red sequence" galaxies, mid-IR-selected AGNs with "blue cloud" galaxies, and X-ray-selected AGNs straddling these samples in the "green valley." We also find that optical brightness scales with X-ray and mid-IR brightnesses, while little correlation is evident between optical and radio brightnesses. This suggests that X-ray- and mid-IR-selected AGNs have similar Eddington ratios, while radio-selected AGNs represent a different accretion mechanism with a lower and wider range of Eddington ratios. In the general scenario where AGN activity marks and regulates the transition from late-type disk galaxies into massive elliptical galaxies, this work suggests that the earlier stages are most evident as mid-IR-selected AGNs. Mid-IR emission is less susceptible to

  20. Morphological Characterization of Cherry Rootstock Candidates Selected from Central and East Black Sea Regions in Turkey

    PubMed Central

    Koc, Aysen; Celik, Zumrut; Akbulut, Mustafa; Bilgener, Sukriye; Ercisli, Sezai; Gunes, Mehmet; Gercekcioglu, Resul; Esitken, Ahmet

    2013-01-01

    The use of rootstocks particularly for sweet cherry cultivars is of great importance for successful and sustainable production. Choosing the right cherry rootstocks is just as important as choosing the right cultivar. In this study, 110 sweet cherry, 30 sour cherry, and 41 mahaleb types displaying rootstock potential for sweet cherry cultivars were selected from Central and East Black Sea Regions in Turkey. The morphologic characteristics of the studied genotypes were compared with the standard clonal rootstocks PHL-A, MaxMa 14, Montmorency, Weiroot 158, Gisela 5, Gisela 6, and SL 64. A total of 42 morphological UPOV characteristics were evaluated in the selected genotypes and clonal rootstocks. The obtained data were analyzed by using principal component analysis and it revealed that eigenvalues of the first 3 components were able to represent 36.43% of total variance. The most significant positive correlations of the plant vigor were determined with leaf blade length and petiole thickness. According to the diversity analysis of coefficients, the 05 C 002 and 08 C 039 genotypes were identified as being similar (6.66), while the 05 C 002 and 55 S 012 genotypes were determined as the most distant genotypes (325.84) in terms of morphology. PMID:24453921

  1. Evolution through mutation and selection of biological and morphological features in the intertidal zone

    NASA Astrophysics Data System (ADS)

    Da Lio, C.; D'Alpaos, A.; Marani, M.

    2011-12-01

    The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with the presence/absence of halophytic vegetation. In fact, observations and models coupling morphodynamic and biological processes indicate that vegetation crucially affects the marsh equilibrium configurations in relation to the dissipation of wind waves and to the production of organic soil associated with the presence of plants. Often, different vegetation species live within very narrow elevation intervals, associated with similarly narrow ranges of environmental pressures (chiefly hypersalinity and hypoxia). Here we develop and use a 1D model of coupled biological-morphological mutation and selection to study how observed ecosystem properties emerge and how feedbacks between biological and morphological properties concur to select observed bio-morphic 'traits'. We see that the ability to transform their own environment, through increased inorganic deposition and organic soil production, allows vegetation species to more quickly develop adaptations to a changing forcing (e.g. sea level rise). Furthermore, we observe the emergence of zonation and succession and characterize the emerging biodiversity and ecosystem properties as a function of forcing characteristics (e.g. tidal range, rate of sea level rise, and inorganic sediment availability).

  2. Postcopulatory sexual selection is associated with accelerated evolution of sperm morphology.

    PubMed

    Rowe, Melissah; Albrecht, Tomáš; Cramer, Emily R A; Johnsen, Arild; Laskemoen, Terje; Weir, Jason T; Lifjeld, Jan T

    2015-04-01

    Rapid diversification of sexual traits is frequently attributed to sexual selection, though explicit tests of this hypothesis remain limited. Spermatozoa exhibit remarkable variability in size and shape, and studies report a correlation between sperm morphology (sperm length and shape) and sperm competition risk or female reproductive tract morphology. However, whether postcopulatory processes (e.g., sperm competition and cryptic female choice) influence the speed of evolutionary diversification in sperm form is unknown. Using passerine birds, we quantified evolutionary rates of sperm length divergence among lineages (i.e., species pairs) and determined whether these rates varied with the level of sperm competition (estimated as relative testes mass). We found that relative testes mass was significantly and positively associated with more rapid phenotypic divergence in sperm midpiece and flagellum lengths, as well as total sperm length. In contrast, there was no association between relative testes mass and rates of evolutionary divergence in sperm head size, and models suggested that head length is evolutionarily constrained. Our results are the first to show an association between the strength of sperm competition and the speed of sperm evolution, and suggest that postcopulatory sexual selection promotes rapid evolutionary diversification of sperm morphology.

  3. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound. PMID:27012396

  4. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    PubMed

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound.

  5. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    SciTech Connect

    Bartling, Stephan Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina

    2015-09-21

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology.

  6. Channel-morphology data for the Tongue River and selected tributaries, southeastern Montana, 2001-02

    USGS Publications Warehouse

    Chase, Katherine J.

    2004-01-01

    Coal-bed methane exploration and production have begun within the Tongue River watershed in southeastern Montana. The development of coal-bed methane requires production of large volumes of ground water, some of which may be discharged to streams, potentially increasing stream discharge and sediment load. Changes in stream discharge or sediment load may result in changes to channel morphology through changes in erosion and vegetation. These changes might be subtle and difficult to detect without baseline data that indicate stream-channel conditions before extensive coal-bed methane development began. In order to provide this baseline channel-morphology data, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, collected channel-morphology data in 2001-02 to document baseline conditions for several reaches along the Tongue River and selected tributaries. This report presents channel-morphology data for five sites on the mainstem Tongue River and four sites on its tributaries. Bankfull, water-surface, and thalweg elevations, channel sections, and streambed-particle sizes were measured along reaches near streamflow-gaging stations. At each site, the channel was classified using methods described by Rosgen. For six sites, bankfull discharge was determined from the stage- discharge relation at the gage for the stage corresponding to the bankfull elevation. For three sites, the step-backwater computer model HEC-RAS was used to estimate bankfull discharge. Recurrence intervals for the bankfull discharge also were estimated for eight of the nine sites. Channel-morphology data for each site are presented in maps, tables, graphs, and photographs.

  7. Instrument-assisted cross fiber massage increases tissue perfusion and alters microvascular morphology in the vicinity of healing knee ligaments

    PubMed Central

    2013-01-01

    Background Ligament injuries are common clinical problems for which there are few established interventions. Instrument-assisted cross fiber massage (IACFM) was recently shown to accelerate the restoration of biomechanical properties in injured rodent knee medial collateral ligaments (MCL). The current study aimed to investigate the influence of IACFM on regional perfusion and vascularity in the vicinity of healing rodent knee MCL injuries. Methods Bilateral knee MCL injuries were induced in female Sprague–Dawley rats. Commencing 1 week post-injury, 1 minute of IACFM was introduced unilaterally 3 times/week for 3 weeks. The contralateral injured MCL served as an internal control. Regional tissue perfusion was assessed in vivo throughout healing using laser Doppler imaging, whereas regional microvascular morphology was assessed ex vivo via micro-computed tomography of vessels filled with contrast. Results IACFM had no effect on tissue perfusion when assessed immediately, or at 5, 10, 15 or 20 min following intervention (all p > 0.05). However, IACFM-treated hindlimbs had enhanced tissue perfusion when assessed 1 day following the 4th and 9th (last) treatment sessions (all p < 0.05). IACFM-treated hindlimbs also had greater perfusion when assessed 1 wk following the final treatment session (32 days post-injury) (p < 0.05). Subsequent investigation of microvascular morphology found IACFM to increase the proportion of arteriole-sized blood vessels (5.9 to <41.2 μm) in the tibial third of the ligament (p < 0.05). Conclusions These findings suggest IACFM alters regional perfusion and vascularity in the vicinity of healing rodent knee MCL injuries. This effect may contribute to the beneficial effect of IACFM observed on the recovery of knee ligament biomechanical properties following injury. PMID:24073942

  8. Growth Inhibition and Morphological Alterations of Trichophyton Rubrum Induced by Essential oil from Cymbopogon Winterianus Jowitt Ex Bor

    PubMed Central

    de Oliveira Pereira, Fillipe; Alves Wanderley, Paulo; Cavalcanti Viana, Fernando Antônio; Baltazar de Lima, Rita; Barbosa de Sousa, Frederico; de Oliveira Lima, Edeltrudes

    2011-01-01

    Trichophyton rubrum is one of the most common fungi causer of dermatophytosis, mycosis that affect humans and animals around the world. Researches aiming new products with antifungal activity become necessary to overcome difficulties on treatment of these infections. Accordingly, this study aimed to investigate the antifungal activity of essential oil from Cymbopogon winterianus against the dermatophyte T. rubrum. The antifungal screening was performed by solid medium diffusion method with 16 T. rubrum strains, minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) were determined using the microdilution method. The effects on mycelial dry weight and morphology were also observed. Screening showed essential oil in natura inhibited all the tested strains, with inhibition zones between 24-28 mm diameter. MIC50 and MIC90 values of the essential oil were 312 μg/mL for nearly all the essayed strains (93.75 %) while the MFC50 and MFC90 values were about eight times higher than MIC for all tested strains. All tested essential oil concentrations managed to inhibit strongly the mycelium development. Main morphological changes on the fungal strains observed under light microscopy, which were provided by the essential oil include loss of conidiation, alterations concerning form and pigmentation of hyphae. In the oil presence, colonies showed folds, cream color and slightly darker than the control, pigment production was absent on the reverse and with evident folds. It is concluded that C. winterianus essential oil showed activity against T. rubrum. Therefore, it could be known as potential antifungal compound especially for protection against dermatophytosis. PMID:24031626

  9. Bicuspid Aortic Cusp Fusion Morphology Alters Aortic 3D Outflow Patterns, Wall Shear Stress and Expression of Aortopathy

    PubMed Central

    Mahadevia, Riti; Barker, Alex J; Schnell, Susanne; Entezari, Pegah; Kansal, Preeti; Fedak, Paul W.M.; Malaisrie, S Chris; McCarthy, Patrick; Collins, Jeremy; Carr, James; Markl, Michael

    2014-01-01

    Background: Aortic 3D blood flow was analyzed to investigate altered ascending aorta (AAo) hemodynamics in bicuspid aortic valve (BAV) patients and its association with differences in cusp fusion patterns (right-left, RL versus right-noncoronary, RN) and expression of aortopathy. Methods and Results: 4D flow MRI measured in vivo 3D blood flow in the aorta of 75 subjects: BAV patients with aortic dilatation stratified by leaflet fusion pattern (n=15 RL-BAV, mid AAo diameter=39.9±4.4mm; n=15 RN-BAV, 39.6±7.2mm); aorta size controls with tricuspid aortic valves (n=30, 41.1±4.4mm); healthy volunteers (n=15, 24.9±3.0mm). Aortopathy type (0-3), systolic flow angle, flow displacement, and regional wall shear stress (WSS) were determined for all subjects. Eccentric outflow jet patterns in BAV patients resulted in elevated regional WSS (p<0.0125) at the right-anterior walls for RL-BAV and right-posterior walls for RN-BAV compared to aorta size controls. Dilatation of the aortic root only (type 1) or involving the entire AAo and arch (type 3) was found in the majority of RN-BAV patients (87%) but was mostly absent for RL-BAV (87% type 2). Differences in aortopathy type between RL-BAV and RN-BAV were associated with altered flow displacement in the proximal and mid AAo for type 1 (42-81% decrease versus type 2) and distal AAo for type 3 (33-39% increase versus type 2). Conclusions: The presence and type of BAV fusion was associated with changes in regional WSS distribution, systolic flow eccentricity, and expression of BAV aortopathy. Hemodynamic markers suggest a physiologic mechanism by which valve morphology phenotype can influence phenotypes of BAV aortopathy. PMID:24345403

  10. Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum

    PubMed Central

    Das, Sudipta; Bhatanagar, Suyash; Morrisey, Joanne M.; Daly, Thomas M.; Burns, James M.; Coppens, Isabelle; Vaidya, Akhil B.

    2016-01-01

    Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i) within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2), glycosylphosphotidylinositol (GPI)-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble “rhoptries” and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise. PMID:27227970

  11. Unravelling anisogamy: egg size and ejaculate size mediate selection on morphology in free-swimming sperm.

    PubMed

    Monro, Keyne; Marshall, Dustin J

    2016-07-13

    Gamete dimorphism (anisogamy) defines the sexes in most multicellular organisms. Theoretical explanations for its maintenance usually emphasize the size-related selection pressures of sperm competition and zygote survival, assuming that fertilization of all eggs precludes selection for phenotypes that enhance fertility. In external fertilizers, however, fertilization is often incomplete due to sperm limitation, and the risk of polyspermy weakens the advantage of high sperm numbers that is predicted to limit sperm size, allowing alternative selection pressures to target free-swimming sperm. We asked whether egg size and ejaculate size mediate selection on the free-swimming sperm of Galeolaria caespitosa, a marine tubeworm with external fertilization, by comparing relationships between sperm morphology and male fertility across manipulations of egg size and sperm density. Our results suggest that selection pressures exerted by these factors may aid the maintenance of anisogamy in external fertilizers by limiting the adaptive value of larger sperm in the absence of competition. In doing so, our study offers a more complete explanation for the stability of anisogamy across the range of sperm environments typical of this mating system and identifies new potential for the sexes to coevolve via mutual selection pressures exerted by gametes at fertilization.

  12. Unravelling anisogamy: egg size and ejaculate size mediate selection on morphology in free-swimming sperm.

    PubMed

    Monro, Keyne; Marshall, Dustin J

    2016-07-13

    Gamete dimorphism (anisogamy) defines the sexes in most multicellular organisms. Theoretical explanations for its maintenance usually emphasize the size-related selection pressures of sperm competition and zygote survival, assuming that fertilization of all eggs precludes selection for phenotypes that enhance fertility. In external fertilizers, however, fertilization is often incomplete due to sperm limitation, and the risk of polyspermy weakens the advantage of high sperm numbers that is predicted to limit sperm size, allowing alternative selection pressures to target free-swimming sperm. We asked whether egg size and ejaculate size mediate selection on the free-swimming sperm of Galeolaria caespitosa, a marine tubeworm with external fertilization, by comparing relationships between sperm morphology and male fertility across manipulations of egg size and sperm density. Our results suggest that selection pressures exerted by these factors may aid the maintenance of anisogamy in external fertilizers by limiting the adaptive value of larger sperm in the absence of competition. In doing so, our study offers a more complete explanation for the stability of anisogamy across the range of sperm environments typical of this mating system and identifies new potential for the sexes to coevolve via mutual selection pressures exerted by gametes at fertilization. PMID:27412273

  13. Focus on intracytoplasmic morphologically selected sperm injection (IMSI): a mini-review

    PubMed Central

    Lo Monte, Giuseppe; Murisier, Fabien; Piva, Isabella; Germond, Marc; Marci, Roberto

    2013-01-01

    Intracytoplasmic sperm injection (ICSI) is the recommended treatment in many cases of male-factor infertility. Several studies have demonstrated a positive correlation between optimal sperm morphology and positive ICSI outcomes. In fact, spermatozoa with severe abnormalities of the head are well documented to be associated with low fertilisation, implantation and pregnancy rates. However, a spermatozoon which is classified as ‘normal' by microscopic observation at low magnification could contain ultrastructural defects that impair both the fertilisation process and embryonic development. The intracytoplasmic morphologically selected sperm injection (IMSI) procedure changed the perception of how a spermatozoon suitable for injection should appear. Sperm selection is carried out at ×6000 magnification, allowing improved assessment of the sperm nucleus. Currently, standardized clinical indications for IMSI are lacking and the candidates are selected on the grounds of their medical history or of a careful analysis of the sperm suspension. Further prospective randomized studies are needed to confirm the advantages of IMSI in specific groups of patients. In addition to providing a brief overview of the IMSI procedure, this study aims to review the literature, which explains the theoretical basis and the clinical outcomes of this technique. Several reports show that IMSI is associated with improved implantation and clinical pregnancy rates as well as lower abortion rates when compared to ICSI. Although a possible correlation between the sperm's abnormal nucleus shape, increased DNA fragmentation and negative laboratory and clinical outcomes has been long investigated, the results are conflicting. PMID:23832017

  14. Focus on intracytoplasmic morphologically selected sperm injection (IMSI): a mini-review.

    PubMed

    Lo Monte, Giuseppe; Murisier, Fabien; Piva, Isabella; Germond, Marc; Marci, Roberto

    2013-09-01

    Intracytoplasmic sperm injection (ICSI) is the recommended treatment in many cases of male-factor infertility. Several studies have demonstrated a positive correlation between optimal sperm morphology and positive ICSI outcomes. In fact, spermatozoa with severe abnormalities of the head are well documented to be associated with low fertilisation, implantation and pregnancy rates. However, a spermatozoon which is classified as 'normal' by microscopic observation at low magnification could contain ultrastructural defects that impair both the fertilisation process and embryonic development. The intracytoplasmic morphologically selected sperm injection (IMSI) procedure changed the perception of how a spermatozoon suitable for injection should appear. Sperm selection is carried out at ×6000 magnification, allowing improved assessment of the sperm nucleus. Currently, standardized clinical indications for IMSI are lacking and the candidates are selected on the grounds of their medical history or of a careful analysis of the sperm suspension. Further prospective randomized studies are needed to confirm the advantages of IMSI in specific groups of patients. In addition to providing a brief overview of the IMSI procedure, this study aims to review the literature, which explains the theoretical basis and the clinical outcomes of this technique. Several reports show that IMSI is associated with improved implantation and clinical pregnancy rates as well as lower abortion rates when compared to ICSI. Although a possible correlation between the sperm's abnormal nucleus shape, increased DNA fragmentation and negative laboratory and clinical outcomes has been long investigated, the results are conflicting.

  15. Treadmill Exercise Improves Fracture Toughness and Indentation Modulus without Altering the Nanoscale Morphology of Collagen in Mice

    PubMed Central

    Hammond, Max A.; Laine, Tyler J.; Berman, Alycia G.

    2016-01-01

    The specifics of how the nanoscale properties of collagen (e.g., the crosslinking profile) affect the mechanical integrity of bone at larger length scales is poorly understood despite growing evidence that collagen’s nanoscale properties are altered with disease. Additionally, mass independent increases in postyield displacement due to exercise suggest loading-induced improvements in bone quality associated with collagen. To test whether disease-induced reductions in bone quality driven by alterations in collagen can be rescued or prevented via exercise-mediated changes to collagen’s nanoscale morphology and mechanical properties, the effects of treadmill exercise and β-aminopropionitrile treatment were investigated. Eight week old female C57BL/6 mice were given a daily subcutaneous injection of either 164 mg/kg β-aminopropionitrile or phosphate buffered saline while experiencing either normal cage activity or 30 min of treadmill exercise for 21 consecutive days. Despite differences in D-spacing distribution (P = 0.003) and increased cortical area (tibial: P = 0.005 and femoral: P = 0.015) due to β-aminopropionitrile treatment, an overt mechanical disease state was not achieved as there were no differences in fracture toughness or 4 point bending due to β-aminopropionitrile treatment. While exercise did not alter (P = 0.058) the D-spacing distribution of collagen or prevent (P < 0.001) the β-aminopropionitrile-induced changes present in the unexercised animals, there were differential effects in the distribution of the reduced elastic modulus due to exercise between control and β-aminopropionitrile-treated animals (P < 0.001). Fracture toughness was increased (P = 0.043) as a main effect of exercise, but no significant differences due to exercise were observed using 4 point bending. Future studies should examine the potential for sex specific differences in the dose of β-aminopropionitrile required to induce mechanical effects in mice and the

  16. Altering morphology of membranes

    SciTech Connect

    Narayan, R.S.

    1987-01-01

    The use of membranes in industrial gas processing and separation has been on the increase in the last eight years, especially since the successful introduction and commercialization of PRISM separators by Monsanto in 1979. Since that time, a number of gas separation applications have been successfully applied on an industrial scale. Separation of hydrogen from N/sub 2/ and hydrocarbons using membranes have become commonplace, and separation of carbon dioxide from hydrocarbons is gaining increasing acceptance. More recently, the separation of nitrogen from oxygen from air has been gaining considerable attention. The economic benefits of using membranes for on-site generation of N/sub 2/ containing less than 5% O/sub 2/ for inert blanketing such as, product storage, packaging, on board ships, airplanes and oil/gas production platforms, etc., are demonstrated to be significant.

  17. Suppression of Radixin and Moesin Alters Growth Cone Morphology, Motility, and Process Formation In Primary Cultured Neurons

    PubMed Central

    Paglini, Gabriela; Kunda, Patricia; Quiroga, Santiago; Kosik, Kenneth; Cáceres, Alfredo

    1998-01-01

    In this study we have examined the cellular functions of ERM proteins in developing neurons. The results obtained indicate that there is a high degree of spatial and temporal correlation between the expression and subcellular localization of radixin and moesin with the morphological development of neuritic growth cones. More importantly, we show that double suppression of radixin and moesin, but not of ezrin–radixin or ezrin–moesin, results in reduction of growth cone size, disappearance of radial striations, retraction of the growth cone lamellipodial veil, and disorganization of actin filaments that invade the central region of growth cones where they colocalize with microtubules. Neuritic tips from radixin–moesin suppressed neurons displayed high filopodial protrusive activity; however, its rate of advance is 8–10 times slower than the one of growth cones from control neurons. Radixin–moesin suppressed neurons have short neurites and failed to develop an axon-like neurite, a phenomenon that appears to be directly linked with the alterations in growth cone structure and motility. Taken collectively, our data suggest that by regulating key aspects of growth cone development and maintenance, radixin and moesin modulate neurite formation and the development of neuronal polarity. PMID:9786954

  18. Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations.

    PubMed

    Mangum, Joshua E; Hardee, Justin P; Fix, Dennis K; Puppa, Melissa J; Elkes, Johnathon; Altomare, Diego; Bykhovskaya, Yelena; Campagna, Dean R; Schmidt, Paul J; Sendamarai, Anoop K; Lidov, Hart G W; Barlow, Shayne C; Fischel-Ghodsian, Nathan; Fleming, Mark D; Carson, James A; Patton, Jeffrey R

    2016-01-01

    Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1(-/-) animals. Pus1(-/-) mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1(-/-) mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1(-/-) mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1(-/-) mice. PMID:27197761

  19. Multiwalled carbon nanotubes induce altered morphology and loss of barrier function in human bronchial epithelium at noncytotoxic doses.

    PubMed

    Snyder, Ryan J; Hussain, Salik; Rice, Annette B; Garantziotis, Stavros

    2014-01-01

    Multiwalled carbon nanotubes (MWCNTs) have seen increasing application in consumer products over the past decade, resulting in an increasing risk of human exposure. While numerous toxicological studies have been performed using acute high doses of various carbonaceous nanomaterials, the effects of longer-term, low doses of MWCNTs remain relatively unexplored. This study examined bronchoscopy-derived healthy human bronchial epithelial cells exposed in submerged culture to noncytotoxic doses of MWCNTs over 7 days. Under these conditions, doses as low as 3 μg/mL caused altered cell morphology, superficially resembling fibroblasts. Electrical impedance of the epithelial monolayer was greatly reduced following MWCNT exposure. However, Western blot and polymerase chain reaction showed no elevated expression of the fibroblast markers, vimentin, α-smooth muscle actin, or fibronectin, indicating that a mechanism other than epithelial-mesenchymal transition may be responsible for the changes. Phalloidin and tubulin immunostaining showed disruption of the cytoskeleton, and confocal imaging showed a reduction of the tight junction proteins, zona occludens 1 and occludin. We propose that MWCNTs interfere with the cytoskeleton of the lung epithelium, which can result in a harmful reduction in barrier function over time, even at noncytotoxic doses.

  20. Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations

    PubMed Central

    Mangum, Joshua E.; Hardee, Justin P.; Fix, Dennis K.; Puppa, Melissa J.; Elkes, Johnathon; Altomare, Diego; Bykhovskaya, Yelena; Campagna, Dean R.; Schmidt, Paul J.; Sendamarai, Anoop K.; Lidov, Hart G. W.; Barlow, Shayne C.; Fischel-Ghodsian, Nathan; Fleming, Mark D.; Carson, James A.; Patton, Jeffrey R.

    2016-01-01

    Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1−/− animals. Pus1−/− mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1−/− mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1−/− mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1−/− mice. PMID:27197761

  1. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy.

    PubMed

    Park, Jungha; Jeong, Kyoung Hoon; Shin, Won-Ho; Bae, Young-Seuk; Jung, Un Ju; Kim, Sang Ryong

    2016-10-19

    Granule cell dispersion (GCD) in the dentate gyrus (DG) of the hippocampus is a morphological alteration characteristic of temporal lobe epilepsy. Recently, we reported that treatment with naringin, a flavonoid found in grapefruit and citrus fruits, reduced spontaneous recurrent seizures by inhibiting kainic acid (KA)-induced GCD and neuronal cell death in mouse hippocampus, suggesting that naringin might have beneficial effects for preventing epileptic events in the adult brain. However, it is still unclear whether the beneficial effects of naringin treatment are mediated by the metabolism of naringin into naringenin in the KA-treated hippocampus. To investigate this possibility, we evaluated whether intraperitoneal injections of naringenin could mimic naringin-induced effects against GCD caused by intrahippocampal KA injections in mice. Our results showed that treatment with naringenin delayed the onset of KA-induced seizures and attenuated KA-induced GCD by inhibiting activation of the mammalian target of rapamycin complex 1 in both neurons and reactive astrocytes in the DG. In addition, its administration attenuated the production of proinflammatory cytokines such as tumor necrosis tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from microglial activation in the DG following KA treatment. These results suggest that naringenin may be an active metabolite of naringin and help prevent the progression of epileptic insults in the hippocampus in vivo; therefore, naringenin may be a beneficial metabolite of naringin for the treatment of epilepsy. PMID:27584687

  2. Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA.

    PubMed

    Naik, Milind Mohan; Dubey, Santosh Kumar

    2011-02-01

    A lead-resistant bacterial strain 4EA from soil contaminated with car battery waste from Goa, India was isolated and identified as Pseudomonas aeruginosa. This lead-resistant bacterial isolate interestingly revealed lead-enhanced siderophore (pyochelin and pyoverdine) production up to 0.5 mM lead nitrate whereas cells exhibit a significant decline in siderophore production above 0.5 mM lead nitrate. The bacterial cells also revealed significant alteration in cell morphology as size reduction when exposed to 0.8 mM lead nitrate. Enhanced production of siderophore was evidently detected by chrome azurol S agar diffusion (CASAD) assay as increase in diameter of orange halo, and reduction in bacterial size along with significant biosorption of lead was recorded by scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX). Pseudomonas aeruginosa strain 4EA also exhibits cross tolerance to other toxic metals viz. cadmium, mercury, and zinc besides resistance to multiple antibiotics such as ampicillin, erythromycin, amikacin, cephalexin, co-trimoxazole, mecillinam, lincomycin, ciphaloridine, oleondamycin, and nalidixic acid. PMID:20661573

  3. Naringenin ameliorates kainic acid-induced morphological alterations in the dentate gyrus in a mouse model of temporal lobe epilepsy.

    PubMed

    Park, Jungha; Jeong, Kyoung Hoon; Shin, Won-Ho; Bae, Young-Seuk; Jung, Un Ju; Kim, Sang Ryong

    2016-10-19

    Granule cell dispersion (GCD) in the dentate gyrus (DG) of the hippocampus is a morphological alteration characteristic of temporal lobe epilepsy. Recently, we reported that treatment with naringin, a flavonoid found in grapefruit and citrus fruits, reduced spontaneous recurrent seizures by inhibiting kainic acid (KA)-induced GCD and neuronal cell death in mouse hippocampus, suggesting that naringin might have beneficial effects for preventing epileptic events in the adult brain. However, it is still unclear whether the beneficial effects of naringin treatment are mediated by the metabolism of naringin into naringenin in the KA-treated hippocampus. To investigate this possibility, we evaluated whether intraperitoneal injections of naringenin could mimic naringin-induced effects against GCD caused by intrahippocampal KA injections in mice. Our results showed that treatment with naringenin delayed the onset of KA-induced seizures and attenuated KA-induced GCD by inhibiting activation of the mammalian target of rapamycin complex 1 in both neurons and reactive astrocytes in the DG. In addition, its administration attenuated the production of proinflammatory cytokines such as tumor necrosis tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) from microglial activation in the DG following KA treatment. These results suggest that naringenin may be an active metabolite of naringin and help prevent the progression of epileptic insults in the hippocampus in vivo; therefore, naringenin may be a beneficial metabolite of naringin for the treatment of epilepsy.

  4. A mutation in the FZL gene of Arabidopsis causing alteration in chloroplast morphology results in a lesion mimic phenotype

    PubMed Central

    Landoni, Michela

    2013-01-01

    Lesion mimic mutants (LMMs) are a class of mutants in which hypersensitive cell death and defence responses are constitutively activated in the absence of pathogen attack. Various signalling molecules, such as salicylic acid (SA), reactive oxygen species (ROS), nitric oxide (NO), Ca2+, ethylene, and jasmonate, are involved in the regulation of multiple pathways controlling hypersensitive response (HR) activation, and LMMs are considered useful tools to understand the role played by the key elements of the HR cell death signalling cascade. Here the characterization of an Arabidopsis LMM lacking the function of the FZL gene is reported. This gene encodes a membrane-remodelling GTPase playing an essential role in the determination of thylakoid and chloroplast morphology. The mutant displayed alteration in chloroplast number, size, and shape, and the typical characteristics of an LMM, namely development of chlorotic lesions on rosette leaves and constitutive expression of genetic and biochemical markers associated with defence responses. The chloroplasts are a major source of ROS, and the characterization of this mutant suggests that their accumulation, triggered by damage to the chloroplast membranes, is a signal sufficient to start the HR signalling cascade, thus confirming the central role of the chloroplast in HR activation. PMID:23963675

  5. Chronic ethanol consumption alters the selective usage of phosphatidylethanolamine molecular species by methyltransferases

    SciTech Connect

    Ellingson, J.S.; Pukys, T.; Rubin, E. )

    1992-01-01

    The authors have examined the effects of chronic ethanol consumption on phospholipid methyltransferases, which may play a special role by synthesizing phosphatidylcholine (PC) molecules containing predominantly polyunsaturated fatty acids. Rat liver microsomes from adenosylmethionine to convert endogenous phoshatidylethanolamine (PE) to radiolabeled PC, which was separated into its individual molecular species by reversed-phase HPLC. To assess the selective usage of PE molecular species for methylation, the authors determined the mole % of the PE molecular species in microsomes from control and ethanol-fed rats. Chronic ethanol consumption increased the selective usage of phospholipid molecular species containing palmitic acid combined with arachidonic acid or docosahexaenoic acid, whereas it did not affect the use of the corresponding stearic acid species. These results suggest that the long term interference with cellular physiology by altering the metabolism of a specific metabolic pool of molecular species is a mechanism by which chronic ethanol consumption could exert adverse effects of the liver.

  6. Morphological and metabolic changes in transgenic wheat with altered glycerol-3-phosphate acyltransferase or acyl-acyl carrier protein (ACP) thioesterase activities.

    PubMed

    Edlin, D A; Kille, P; Wilkinson, M D; Jones, H D; Harwood, J L

    2000-12-01

    We have transformed varieties of wheat with a Pisum sativum glycerol-3-phosphate acyltransferase gene, and also with an Arabidopsis thaliana acyl-ACP thioesterase gene. Morphological (growth, organelle development) and metabolic changes (fatty acid labelling of chloroplast and non-chloroplast lipids) have been observed in transgenics with altered gene expression for either enzyme. PMID:11171169

  7. High temperature during grain fill alters the morphology of protein and starch deposits in the starchy endosperm cells of the developing wheat (Triticum aestivum L.) grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperature during grain fill reduces wheat yield and alters flour quality. Starchy endosperm cell morphology was investigated in wheat (Triticum aestivum L. ‘Butte 86’) grain produced under a 24/17 °C or 37/28 °C day/night regimen imposed from anthesis to maturity to identify changes in cell s...

  8. Speeding up Growth: Selection for Mass-Independent Maximal Metabolic Rate Alters Growth Rates.

    PubMed

    Downs, Cynthia J; Brown, Jessi L; Wone, Bernard W M; Donovan, Edward R; Hayes, Jack P

    2016-03-01

    Investigations into relationships between life-history traits, such as growth rate and energy metabolism, typically focus on basal metabolic rate (BMR). In contrast, investigators rarely examine maximal metabolic rate (MMR) as a relevant metric of energy metabolism, even though it indicates the maximal capacity to metabolize energy aerobically, and hence it might also be important in trade-offs. We studied the relationship between energy metabolism and growth in mice (Mus musculus domesticus Linnaeus) selected for high mass-independent metabolic rates. Selection for high mass-independent MMR increased maximal growth rate, increased body mass at 20 weeks of age, and generally altered growth patterns in both male and female mice. In contrast, there was little evidence that the correlated response in mass-adjusted BMR altered growth patterns. The relationship between mass-adjusted MMR and growth rate indicates that MMR is an important mediator of life histories. Studies investigating associations between energy metabolism and life histories should consider MMR because it is potentially as important in understanding life history as BMR.

  9. Altering the interfacial activation mechanism of a lipase by solid-phase selective chemical modification.

    PubMed

    López-Gallego, Fernando; Abian, Olga; Guisán, Jose Manuel

    2012-09-01

    This study presents a combined protein immobilization, directed mutagenesis, and site-selective chemical modification approach, which was used to create a hyperactivated semisynthetic variant of BTL2. Various alkane chains were tethered at three different positions in order to mimic the lipase interfacial activation exogenously triggered by detergents. Optimum results were obtained when a dodecane chain was introduced at position 320 by solid-phase site-selective chemical modification. The resulting semisynthetic variant showed a 2.5-fold higher activity than the wild-type nonmodified variant in aqueous conditions. Remarkably, this is the maximum hyperactivation ever observed for BTL2 in the presence of detergents such as Triton X-100. We present evidence to suggest that the endogenous dodecane chain hyperactivates the enzyme in a similar fashion as an exogenous detergent molecule. In this way, we also observe a faster irreversible enzyme inhibition and an altered detergent sensitivity profile promoted by the site-selective chemical modification. These findings are also supported by fluorescence studies, which reveal that the structural conformation changes of the semisynthetic variant are different to those of the wild type, an effect that is more pronounced in the presence of detergent. Finally, the optimal immobilized semisynthetic variant was successfully applied to the selective synthesis of oxiran-2-yl butyrate. Significantly, this biocatalyst is 12-fold more efficient than the immobilized wild-type enzyme, producing the S-enantiomer with higher enantiospecificity (ee = 92%). PMID:22876885

  10. Estrogen-induced breast cancer: Alterations in breast morphology and oxidative stress as a function of estrogen exposure

    SciTech Connect

    Mense, Sarah M.; Remotti, Fabrizio; Bhan, Ashima; Singh, Bhupendra; El-Tamer, Mahmoud; Hei, Tom K.; Bhat, Hari K.

    2008-10-01

    Epidemiological evidence indicates that prolonged lifetime exposure to estrogen is associated with elevated breast cancer risk in women. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. In the present study, we investigated changes in breast morphology and oxidative stress following estrogen exposure. Female ACI rats were treated with 17{beta}-estradiol (E{sub 2}, 3 mg, s.c.) for either 7, 15, 120 or 240 days. Animals were euthanized, tissues were excised, and portions of the tissues were either fixed in 10% buffered formalin or snap-frozen in liquid nitrogen. Paraffin-embedded tissues were examined for histopathologic changes. Proliferative changes appeared in the breast after 7 days of E{sub 2} exposure. Atypical ductal proliferation and significant reduction in stromal fat were observed following 120 days of E{sub 2} exposure. Both in situ and invasive carcinomas were observed in the majority of the mammary glands from rats treated with E{sub 2} for 240 days. Palpable breast tumors were observed in 82% of E{sub 2}-treated rats after 228 days, with the first palpable tumor appearing after 128 days. No morphological changes were observed in the livers, kidneys, lungs or brains of rats treated with E{sub 2} for 240 days compared to controls. Furthermore, 8-isoprostane (8-isoPGF{sub 2{alpha}}) levels as well as the activities of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase, were quantified in the breast tissues of rats treated with E{sub 2} for 7, 15, 120 and 240 days and compared to activity levels in age-matched controls. 8-isoPGF{sub 2{alpha}} levels displayed time-dependent increases upon E{sub 2} treatment and were significantly higher than control levels at the 15, 120 and 240 day time-points. 8-isoPGF{sub 2{alpha}} observed in E{sub 2}-induced mammary tumors were significantly higher than levels found in control

  11. Does selection or genetic drift explain geographic differentiation of morphological characters in house sparrows Passer domesticus?

    PubMed

    Holand, Anna M; Jensen, Henrik; Tufto, Jarle; Moe, Rune

    2011-10-01

    Understanding the relative influence of genetic drift and selection is fundamental in evolutionary biology. The theory of neutrality predicts that the genetic differentiation of a quantitative trait (QST) equals the genetic differentiation at neutral molecular markers (FST) if the quantitative trait has not been under selection. Thus, the relative magnitude of observed QST and expected QST under neutral expectations suggests the importance of selection and genetic drift for any observed phenotypic divergence. Because QST is based on additive genetic variance, estimating QST based on phenotypic measurements is problematic due to unknown environmental effects. To account for this, we used a model where the environmental component was allowed to vary when estimating QST. The model was used on data from 14 house sparrow (Passer domesticus) populations in Norway. In accordance with the significant phenotypic inter-population differences our analyses suggested that directional selection may have favoured different optimal phenotypes for some morphological traits across populations. In particular, different body mass and male ornamental phenotypes seemed to have been favoured. The conclusions are, however, dependent on assumptions regarding the proportion of the observed inter-population variation that is due to additive genetic differences, showing the importance of collecting such information in natural populations. By estimating QST, allowing the additive genetic proportion of phenotypic inter-population variation to vary, and by making use of recent statistical methods to compare observed QST with neutral expectations, we can use data that are relatively easy to collect to identify adaptive variation in natural populations.

  12. The Rose-comb Mutation in Chickens Constitutes a Structural Rearrangement Causing Both Altered Comb Morphology and Defective Sperm Motility

    PubMed Central

    Boije, Henrik; Bed'hom, Bertrand; Fillon, Valérie; Dorshorst, Ben; Rubin, Carl-Johan; Liu, Ranran; Gao, Yu; Gu, Xiaorong; Wang, Yanqiang; Gourichon, David; Zody, Michael C.; Zecchin, William; Vieaud, Agathe; Tixier-Boichard, Michèle; Hu, Xiaoxiang; Hallböök, Finn; Li, Ning; Andersson, Leif

    2012-01-01

    Rose-comb, a classical monogenic trait of chickens, is characterized by a drastically altered comb morphology compared to the single-combed wild-type. Here we show that Rose-comb is caused by a 7.4 Mb inversion on chromosome 7 and that a second Rose-comb allele arose by unequal crossing over between a Rose-comb and wild-type chromosome. The comb phenotype is caused by the relocalization of the MNR2 homeodomain protein gene leading to transient ectopic expression of MNR2 during comb development. We also provide a molecular explanation for the first example of epistatic interaction reported by Bateson and Punnett 104 years ago, namely that walnut-comb is caused by the combined effects of the Rose-comb and Pea-comb alleles. Transient ectopic expression of MNR2 and SOX5 (causing the Pea-comb phenotype) occurs in the same population of mesenchymal cells and with at least partially overlapping expression in individual cells in the comb primordium. Rose-comb has pleiotropic effects, as homozygosity in males has been associated with poor sperm motility. We postulate that this is caused by the disruption of the CCDC108 gene located at one of the inversion breakpoints. CCDC108 is a poorly characterized protein, but it contains a MSP (major sperm protein) domain and is expressed in testis. The study illustrates several characteristic features of the genetic diversity present in domestic animals, including the evolution of alleles by two or more consecutive mutations and the fact that structural changes have contributed to fast phenotypic evolution. PMID:22761584

  13. Morphological and molecular characterisation of fungal populations possibly involved in the biological alteration of stones in historical buildings.

    PubMed

    Scrano, L; Boccone, L Fraddosio; Bufo, S A; Carrieri, R; Lahoz, E; Crescenzi, A

    2012-01-01

    The deterioration process of historical building is progressive and irreversible, and the timing and mode of impact are different depending on the characteristics of building materials used, local microclimate, air pollution, presence of specific flora and fauna. The chemical and microbiological characterisation of building materials is mandatory in preventing and eventually recovering degradation effects. Ideally, the analysis of structural stones should be complete, efficient, rapid, and non destructive when dealing with a precious or unique construction. The investigation has been performed on a private historical building made using calcarenite stones and sited between the archaeological site of Lavello, a little town located in the Basilicata Region (South Italy), and the industrial area surrounding this town. To study in progress the degradation of stone materials, a new building sample (ca. 1 m3) was constructed by using the same stones (33 x 15cm), collected from a local quarry. The intact calcarenite stone was characterised by using different methods of surface analysis (XRD, XPS, SEM), and exposed to outdoor conditions. The analyses of the stone material were repeated after three and six months to early evaluate the progression of alterations and the forward modifications of calcarenite structure. After only three months of the new building sample exposure, the adopted analytical methods were able to provide a series of data, which allowed the assessment of the incipient modification of the stone surfaces. The degradation appeared worsened performing the same observations on sixth month replicates, suggesting that environmental conditions modified the structure and the compactness of stones and favoured the biological colonization of surfaces especially in the South-East direction of prevailing winds. For this reason the presence of fungi on the stones' surface was investigated and a morphological and molecular characterization of sampled fungi was

  14. The Rose-comb mutation in chickens constitutes a structural rearrangement causing both altered comb morphology and defective sperm motility.

    PubMed

    Imsland, Freyja; Feng, Chungang; Boije, Henrik; Bed'hom, Bertrand; Fillon, Valérie; Dorshorst, Ben; Rubin, Carl-Johan; Liu, Ranran; Gao, Yu; Gu, Xiaorong; Wang, Yanqiang; Gourichon, David; Zody, Michael C; Zecchin, William; Vieaud, Agathe; Tixier-Boichard, Michèle; Hu, Xiaoxiang; Hallböök, Finn; Li, Ning; Andersson, Leif

    2012-06-01

    Rose-comb, a classical monogenic trait of chickens, is characterized by a drastically altered comb morphology compared to the single-combed wild-type. Here we show that Rose-comb is caused by a 7.4 Mb inversion on chromosome 7 and that a second Rose-comb allele arose by unequal crossing over between a Rose-comb and wild-type chromosome. The comb phenotype is caused by the relocalization of the MNR2 homeodomain protein gene leading to transient ectopic expression of MNR2 during comb development. We also provide a molecular explanation for the first example of epistatic interaction reported by Bateson and Punnett 104 years ago, namely that walnut-comb is caused by the combined effects of the Rose-comb and Pea-comb alleles. Transient ectopic expression of MNR2 and SOX5 (causing the Pea-comb phenotype) occurs in the same population of mesenchymal cells and with at least partially overlapping expression in individual cells in the comb primordium. Rose-comb has pleiotropic effects, as homozygosity in males has been associated with poor sperm motility. We postulate that this is caused by the disruption of the CCDC108 gene located at one of the inversion breakpoints. CCDC108 is a poorly characterized protein, but it contains a MSP (major sperm protein) domain and is expressed in testis. The study illustrates several characteristic features of the genetic diversity present in domestic animals, including the evolution of alleles by two or more consecutive mutations and the fact that structural changes have contributed to fast phenotypic evolution.

  15. Number and Brightness analysis of alpha-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells

    PubMed Central

    Plotegher, N.; Gratton, E.; Bubacco, L.

    2014-01-01

    Background Alpha-synuclein oligomerization is associated to Parkinson's disease etiopathogenesis. The study of alpha-synuclein oligomerization properties in live cell and the definition of their effects on cellular viability are among fields expected to provide the knowledge required to unravel the mechanism(s) of toxicity that lead to the disease. Methods We used Number and Brightness method, which is a method based on fluorescence fluctuation analysis, to monitor alpha-synuclein tagged with EGFP aggregation in living SH-SY5Y cells. The presence of alpha-synuclein oligomers detected with this method was associated with intracellular structure conditions, evaluated by fluorescence confocal imaging. Results Cells overexpressing alpha-synuclein-EGFP present a heterogeneous ensemble of oligomers constituted by less than 10 monomers, when the protein approaches a threshold concentration value of about 90 nM in the cell cytoplasm. We show that the oligomeric species are partially sequestered by lysosomes and that the mitochondria morphology is altered in cells presenting oligomers, suggesting that these mitochondria may be dysfunctional. Conclusions We showed that alpha-synuclein overexpression in SH-SY5Y causes the formation of alpha-synuclein oligomeric species, whose presence is associated with mitochondrial fragmentation and autophagic-lysosomal pathway activation in live cells. General significance The unique capability provided by the Number and Brightness analysis to study alpha-synuclein oligomers distribution and properties, and the study their association to intracellular components in single live cells is important to forward our understanding of the molecular mechanisms Parkinson’s disease and it may be of general significance when applied to the study of other aggregating proteins in cellular models. PMID:24561157

  16. Selective cortical alteration after hypoxic-ischemic injury in the very immature rat brain.

    PubMed

    Sizonenko, Stephane V; Sirimanne, Ernest; Mayall, Yvette; Gluckman, Peter D; Inder, Terrie; Williams, Chris

    2003-08-01

    Distinctive cerebral lesions with disruptions to the developing white matter are found in very low birth weight (VLBW) infants. Although hypoxia-ischemia (HI) is a causal pathway, the pathogenesis of cerebral white matter injury in the VLBW infant is not fully understood. Pertinent murine models would facilitate the investigation of the processes leading to these cerebral lesions and enable the evaluation of therapeutic strategies. Postnatal d 3 (P3) rats are at a stage of cortical oligodendroglial maturation and axonal outgrowth similar to very preterm infants. Our aim was to characterize the effects of a focal hypoxic-ischemic injury at P3 on subsequent cerebral development. Three groups of P3 Wistar rats were investigated: group I underwent right carotid ligation followed by 6% hypoxia for 30 min (HI), group 2 had carotid ligation only, and group 3 had no intervention. At P21, in the HI group, the right cortical area was reduced compared with controls (p < 0.01). There were no significant alterations in the size of the dorsal hippocampus, striatum, and thalamus. The cortical myelinated area was reduced in the HI animals compared with controls (p < 0.01). There was a corresponding loss of myelinated axons extending up into the cortex, with deep cortical neuronal and axonal architecture markedly disrupted. Glial fibrillary acidic protein immunohistology showed a reactive gliosis in the deep parietal cortex (p < 0.01). Moderate HI injury in the immature rat brain compromised cortical growth and led to a selective alteration of cortical myelinated axons with persistent gliosis. These alterations induced at P3 by unilateral HI share neuropathological similarities with the diffuse white matter lesions found in VLBW infants.

  17. Long-term exercise training selectively alters serum cytokines involved in fever.

    PubMed

    Rowsey, Pamela Johnson; Metzger, Bonnie L; Carlson, John; Gordon, Christopher J

    2009-04-01

    Long-term exercise training selectively alters serum cytokines involved in fever. Chronic exercise training has a number of effects on the immune system that may mimic the physiological response to fever. Female rats that voluntarily exercise on running wheels develop an elevated daytime core temperature after several weeks of training. It remains to be seen whether the elevation in daytime temperature involves inflammatory patterns characteristic of an infectious fever. We assessed whether chronic exercise training in the rat would alter levels of cytokines involved in fever. Female Sprague Dawley rats at 45 days of age weighing 90-110 g were divided into two groups (exercise and sedentary) and housed at an ambient temperature of 22( degrees )C. Interleukin-1 beta (IL-1beta), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-alpha), iron, and zinc levels were analyzed. Rats underwent 8 weeks of exercise on running wheels. Exercise led to altered levels of some key cytokines that are involved in fever. Exercise animals had significantly higher IL-1beta levels and lower IL-10 levels compared to sedentary animals. Although IL-6 levels were slightly lower in the exercise animals, these levels were not significantly affected by training. TNF-alpha activity was similar in the two groups. Training also led to a slight increase in serum zinc and decrease in serum unsaturated iron binding capacity (UIBC). The data suggest that chronic exercise training evokes immune responses that mimic some, but not all, aspects of fever. This may explain why exercise leads to elevated daytime core temperature. PMID:19190031

  18. Microcystins alter chemotactic behavior in Caenorhabditis elegans by selectively targeting the AWA sensory neuron.

    PubMed

    Moore, Caroline E; Lein, Pamela J; Puschner, Birgit

    2014-06-01

    Harmful algal blooms expose humans and animals to microcystins (MCs) through contaminated drinking water. While hepatotoxicity following acute exposure to MCs is well documented, neurotoxicity after sub-lethal exposure is poorly understood. We developed a novel statistical approach using a generalized linear model and the quasibinomial family to analyze neurotoxic effects in adult Caenorhabditis elegans exposed to MC-LR or MC-LF for 24 h. Selective effects of toxin exposure on AWA versus AWC sensory neuron function were determined using a chemotaxis assay. With a non-monotonic response MCs altered AWA but not AWC function, and MC-LF was more potent than MC-LR. To probe a potential role for protein phosphatases (PPs) in MC neurotoxicity, we evaluated the chemotactic response in worms exposed to the PP1 inhibitor tautomycin or the PP2A inhibitor okadaic acid for 24 h. Okadaic acid impaired both AWA and AWC function, while tautomycin had no effect on function of either neuronal cell type at the concentrations tested. These findings suggest that MCs alter the AWA neuron at concentrations that do not cause AWC toxicity via mechanisms other than PP inhibition.

  19. Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection

    PubMed Central

    Buscaglia, Robert; Miller, M. Clarke; Dean, William L.; Gray, Robert D.; Lane, Andrew N.; Trent, John O.; Chaires, Jonathan B.

    2013-01-01

    Polyethylene glycols (PEGs) are widely used to perturb the conformations of nucleic acids, including G-quadruplexes. The mechanism by which PEG alters G-quadruplex conformation is poorly understood. We describe here studies designed to determine how PEG and other co-solutes affect the conformation of the human telomeric quadruplex. Osmotic stress studies using acetonitrile and ethylene glycol show that conversion of the ‘hybrid’ conformation to an all-parallel ‘propeller’ conformation is accompanied by the release of about 17 water molecules per quadruplex and is energetically unfavorable in pure aqueous solutions. Sedimentation velocity experiments show that the propeller form is hydrodynamically larger than hybrid forms, ruling out a crowding mechanism for the conversion by PEG. PEGs do not alter water activity sufficiently to perturb quadruplex hydration by osmotic stress. PEG titration experiments are most consistent with a conformational selection mechanism in which PEG binds more strongly to the propeller conformation, and binding is coupled to the conformational transition between forms. Molecular dynamics simulations show that PEG binding to the propeller form is sterically feasible and energetically favorable. We conclude that PEG does not act by crowding and is a poor mimic of the intranuclear environment, keeping open the question of the physiologically relevant quadruplex conformation. PMID:23804761

  20. Desired Alteration of Protein Affinities: Competitive Selection of Protein Variants Using Yeast Signal Transduction Machinery

    PubMed Central

    Kaishima, Misato; Fukuda, Nobuo; Ishii, Jun; Kondo, Akihiko

    2014-01-01

    Molecules that can control protein-protein interactions (PPIs) have recently drawn attention as new drug pipeline compounds. Here, we report a technique to screen desirable affinity-altered (affinity-enhanced and affinity-attenuated) protein variants. We previously constructed a screening system based on a target protein fused to a mutated G-protein γ subunit (Gγcyto) lacking membrane localization ability. This ability, required for signal transmission, is restored by recruiting Gγcyto into the membrane only when the target protein interacts with an artificially membrane-anchored candidate protein, thereby allowing interacting partners (Gγ recruitment system) to be searched and identified. In the present study, the Gγ recruitment system was altered by integrating the cytosolic expression of a third protein as a competitor to set a desirable affinity threshold. This enabled the reliable selection of both affinity-enhanced and affinity-attenuated protein variants. The presented approach may facilitate the development of therapeutic proteins that allow the control of PPIs. PMID:25244640

  1. Environmentally Realistic Exposure to the Herbicide Atrazine Alters Some Sexually Selected Traits in Male Guppies

    PubMed Central

    Shenoy, Kausalya

    2012-01-01

    Male mating signals, including ornaments and courtship displays, and other sexually selected traits, like male-male aggression, are largely controlled by sex hormones. Environmental pollutants, notably endocrine disrupting compounds, can interfere with the proper functioning of hormones, thereby impacting the expression of hormonally regulated traits. Atrazine, one of the most widely used herbicides, can alter sex hormone levels in exposed animals. I tested the effects of environmentally relevant atrazine exposures on mating signals and behaviors in male guppies, a sexually dimorphic freshwater fish. Prolonged atrazine exposure reduced the expression of two honest signals: the area of orange spots (ornaments) and the number of courtship displays performed. Atrazine exposure also reduced aggression towards competing males in the context of mate competition. In the wild, exposure levels vary among individuals because of differential distribution of the pollutants across habitats; hence, differently impacted males often compete for the same mates. Disrupted mating signals can reduce reproductive success as females avoid mating with perceptibly suboptimal males. Less aggressive males are at a competitive disadvantage and lose access to females. This study highlights the effects of atrazine on ecologically relevant mating signals and behaviors in exposed wildlife. Altered reproductive traits have important implications for population dynamics, evolutionary patterns, and conservation of wildlife species. PMID:22312428

  2. In vivo selection of basic region-leucine zipper proteins with altered DNA-binding specificities

    SciTech Connect

    Sera, T.; Schultz, P.G.

    1996-04-02

    A transcription interference assay was used to generate mutant basic region-leucine zipper proteins with altered DNA-binding specificities. A library of mutants of a CCAAT/enhancer binding protein was constructed by randomizing five DNA-contacting amino acids in the basic region Asn{sup {minus}18}, Ala{sup {minus}15}, Val{sup {minus}14}, Ser{sup {minus}11}, And Arg{sup {minus}10}. These mutants were then selected for their ability to bind mutant recognition sequences containing substitutions at the 2 and 3 positions of the wild-type sequence 5{prime}-A{sup 5}T{sup 4}T{sup 3}G{sup 2}C{sup 1}G{sup 1{prime}}C{sup 2{prime}}A{sup 3}A{sup 4{prime}}T{sup 5{prime}}-3{prime}. Mutants containing the sequence Leu{sup {minus}18}Tyr{sup {minus}15}Xaa{sup {minus}14}-Tyr{sup {minus}11}Arg{sup {minus}10}, in which four of the five contact residues are altered, were identified that recognize the palindromic sequence 5{prime}-ACTCYCGY{prime}GAT-3{prime} (Xaa=asparagine when Y = G; Xaa = methionine when Y = A). Moreover, in a selection against the sequence 5{prime}-ATTACGTAAT-3{prime}, mutants were obtained containing substitutions not only in the basic region but also in the hinge region between the basic and leucine zipper regions. The mutant proteins showed high specificity in a functional transcription interference assay. A model for the interaction of these mutants with the target DNA sequences is discussed. 28 refs., 1 fig., 4 tabs.

  3. Intense natural selection caused a rapid morphological transition in a living marine snail

    PubMed Central

    Seeley, Robin Hadlock

    1986-01-01

    Shell shape and shell thickness of the intertidal snail Littorina obtusata changed markedly between 1871 and 1984 in northern New England. Shells collected prior to 1900 were high-spired with thin walls, whereas shells collected in 1982-84 were low-spired with thick walls. An intertidal crab (Carcinus maenas) which preys on L. obtusata expanded its range into northern New England around 1900. This suggests that the change in snail shell form was a response to predation by Carcinus. Field and laboratory experiments demonstrated that the high-spired form of L. obtusata, which can still be found in some Maine localities, is more vulnerable to predation by Carcinus than is the low-spired form of L. obtusata. Electrophoretic comparisons of high- and low-spired populations of L. obtusata confirmed that these populations represent different morphological forms of L. obtusata rather than different species [Nei's D (unbiased measure of genetic distance) = 0.003]. These data demonstrate that classical Darwinian selection can produce a rapid morphological transition without speciation. Images PMID:16593760

  4. Intense natural selection caused a rapid morphological transition in a living marine snail.

    PubMed

    Seeley, R H

    1986-09-01

    Shell shape and shell thickness of the intertidal snail Littorina obtusata changed markedly between 1871 and 1984 in northern New England. Shells collected prior to 1900 were high-spired with thin walls, whereas shells collected in 1982-84 were low-spired with thick walls. An intertidal crab (Carcinus maenas) which preys on L. obtusata expanded its range into northern New England around 1900. This suggests that the change in snail shell form was a response to predation by Carcinus. Field and laboratory experiments demonstrated that the high-spired form of L. obtusata, which can still be found in some Maine localities, is more vulnerable to predation by Carcinus than is the low-spired form of L. obtusata. Electrophoretic comparisons of high- and low-spired populations of L. obtusata confirmed that these populations represent different morphological forms of L. obtusata rather than different species [Nei's D (unbiased measure of genetic distance) = 0.003]. These data demonstrate that classical Darwinian selection can produce a rapid morphological transition without speciation. PMID:16593760

  5. Intracytoplasmic sperm injection outcome versus intracytoplasmic morphologically selected sperm injection outcome: a meta-analysis.

    PubMed

    Souza Setti, Amanda; Ferreira, Renata Cristina; Paes de Almeida Ferreira Braga, Daniela; de Cássia Sávio Figueira, Rita; Iaconelli, Assumpto; Borges, Edson

    2010-10-01

    The development of a modified intracytoplasmic sperm injection (ICSI), called intracytoplasmic morphologically selected sperm injection (IMSI), demonstrated that a profound morphological investigation of the spermatozoon, under the magnification of 6600 x, enables outcome improvement. The aim of this study was to compare ICSI outcome with IMSI outcome. The meta-analysis results demonstrated no significant difference in fertilization rate between ICSI and IMSI groups. However, a significantly improved implantation (odds ratio (OR) 2.72; 95% confidence interval (CI) 1.50-4.95) and pregnancy rate (OR 3.12; 95% CI 1.55-6.26) was observed in IMSI cycles. Moreover, the results showed a significantly decreased miscarriage rate (OR 0.42; 95% CI 0.23-0.78) in IMSI cycles as compared with ICSI cycles. This is the first meta-analysis of published data to evaluate the potential benefits of IMSI. The pooled data of IMSI cycles demonstrate a statistically significant improvement in implantation and pregnancy rates and a statistically significant reduction in miscarriage rates. However, more randomized controlled trials are needed to confirm these results.

  6. Sequencing, speech production, and selective effects of aging on phonological and morphological speech errors.

    PubMed

    MacKay, Donald G; James, Lori E

    2004-03-01

    To test age-linked predictions of node structure theory (NST) and other theories, young and older adults performed a task that elicited large numbers of phonological and morphological speech errors. Stimuli were visually presented words containing either /p/ or /b/, and participants changed the /p/ to /b/ or vice versa and produced the resulting word as quickly as possible. For example, the correct response was "bunk" for the stimulus PUNK, and "ripped" for RIBBED. Consistent with NST predictions, the elicited speech errors exhibited selective effects of aging. Some error types decreased with aging. For example, young adults produced more nonsequential substitution errors (as a percentage of total errors) than older adults (e.g., intended bills misproduced as "gills"). However, other error types remained constant or increased with aging. For example, older adults produced more omission errors than young adults, especially omissions involving inflectional endings (e.g. intended ripped misproduced as "np"). In addition, older adults exhibited special difficulties with 2 types of phonological and morphological sequencing processes.

  7. Controlled morphology of regular GaN microrod arrays by selective area growth with HVPE

    NASA Astrophysics Data System (ADS)

    Lekhal, Kaddour; Bae, Si-Young; Lee, Ho-Jun; Mitsunari, Tadashi; Tamura, Akira; Deki, Manato; Honda, Yoshio; Amano, Hiroshi

    2016-08-01

    The selective area growth (SAG) of GaN was implemented on patterned GaN/sapphire templates by hydride vapor phase epitaxy (HVPE) to fabricate regular arrays of Ga-polar GaN microrods. The control of growth parameters such as H2/N2 carrier gas ratio, growth temperature, and absolute NH3/HCl gas flow resulted in changes in the growth morphology. In particular, for an optimized mixed-carrier gas ratio of H2 to N2, we achieved vertically well-aligned microrods. The topmost regions of the GaN microrods were terminated with pyramidal facets, indicating typical Ga polarity. The optical properties of the grown microrods were characterized by cathodoluminescence (CL) at a low temperature. This revealed that the GaN microrods had high crystal quality since they exhibited suppressed yellow luminescence as well as strong band edge emission.

  8. Radio morphology and parent population of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Laurent-Muehleisen, S. A.; Kollgaard, R. I.; Moellenbrock, G. A.; Feigelson, E. D.

    1993-01-01

    High-dynamic range (typically 1700:1) radio maps of 15 X-ray BL Lac (XBL) objects from the HEAO-1 Large Area Sky Survey are presented. Morphological characteristics of these sources are compared with Fanaroff-Riley (FR) class I radio galaxies in the context of unified schemes, with reference to one-sided kiloparsec-scale emission. Evidence that cluster membership of XBLs is significantly higher than previously thought is also presented. It is shown that the extended radio powers, X-ray emission, core-to-lobe ratios, and linear sizes of the radio selected BL Lac (RBL) and XBL populations are consistent with an FR I radio galaxy parent population. A source list and VLA observing log and map parameters are provided.

  9. Surface morphology of Ti-6Al-4V plate fabricated by vacuum selective laser melting

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Tsukamoto, M.; Yamashita, Y.

    2015-06-01

    A plate made of Ti-6Al-4V (Ti64) was built by vacuum selective laser melting (SLM) at a pressure of 10-2 Pa. The vacuum SLM system employed a single-mode fiber laser and three-axis galvanic mirror in order to form 3D metallic structure. In order to investigate the surface morphology on the fabricated plates, Vickers microhardness and surface roughness R a were measured. From the results, the Vickers microhardness of the fabricated plates was recorded at 391 HV, higher than the typical 340 HV for a Ti64 plate. It was also determined that crystal orientation was evaluated with X-ray diffraction. From the results, the crystal orientation of powder is composed mainly of martensitic alpha. Diffraction peaks corresponding to β (110) were detected in vacuum SLM processed samples.

  10. Selective Leptin Insensitivity and Alterations in Female-Reproductive Patterns Linked to Hyperleptinemia during Infancy

    PubMed Central

    Schroeder, Mariana; Kronfeld-Schor, Noga; Weller, Aron

    2013-01-01

    The dramatic increase in the prevalence of childhood obesity worldwide makes the investigation of its early developmental stages and effective prevention strategies an urgent issue. CCK1 deficient OLETF rats are a model of obesity previously used to study the early phases of this disorder. Here, we exposed wild type (LETO) females to an early obesogenic environment and genetically obese OLETF females to a lean postnatal environment, to assess long term alterations in leptin sensitivity, predisposition to diet induced obesity and adult female health. We found that genetically lean females reared by obese mothers presented early postnatal hyperleptemia, selectively reduced response to leptin and sensitivity to diet induced obesity when exposed to a high palatable diet as adults. The estrous cycle structure and intake profile were permanently disrupted, despite presenting normal adiposity/body weight/food intake. Genetically obese females reared by lean dams showed normalized early levels of leptin and reduced body weight, food intake and body fat at adulthood; normalized estrous cycle structure and food intake across the cycle, improved hormonal profile and peripheral leptin sensitivity and a remarkable progress in self-control when exposed to a high fat/palatable diet. Altogether, it appears that the early postnatal environment plays a critical role in determining later life coping with metabolic challenges and has an additive effect on the genetic predisposition that makes OLETF females morbidly obese as adults. This work also links, for the first time, alterations in the leptin system during early development to later life abnormalities related to female reproduction and health. PMID:23544111

  11. Selective depletion of Mac-1-expressing microglia in rat subventricular zone does not alter neurogenic response early after stroke.

    PubMed

    Heldmann, Ursula; Mine, Yutaka; Kokaia, Zaal; Ekdahl, Christine T; Lindvall, Olle

    2011-06-01

    Ischemic stroke induces migration of newly formed neuroblasts, generated by neural stem cells in the adult rat subventricular zone (SVZ), towards the injured striatum where they differentiate into mature neurons. Stroke also leads to accumulation of microglia in the SVZ but their role for neurogenesis is unclear. Here we developed a method for selective depletion of the macrophage antigen complex-1 (Mac-1)-expressing microglia population in the SVZ by intraventricular injection of the immunotoxin Mac-1-saporin in rats. We found that the vast majority of Mac-1+ cells were Iba-1+ microglia. The Mac-1+ population was heterogeneous and included both a small proliferative pool of cells, which was not affected by middle cerebral artery occlusion (MCAO), and a larger subpopulation that changed morphologically into a semi-activated state in response to the insult. This subpopulation did not increase its expression of the phagocytic marker ED1 but exhibited high levels of triggering receptor expressed on myeloid cells-2 (TREM-2), associated with alternative microglia activation. A minor portion of the SVZ Mac-1+ cells originated from the blood early after stroke, but this macrophage population became much more substantial at later stages. Almost 80% reduction of Mac-1-expressing microglia, caused by Mac-1 saporin delivered just before and at 1 week after MCAO, did not alter the numbers of newly formed neuroblasts in the striatum or their migratory distance. These findings indicate that the Mac-1-expressing microglia in the SVZ do not play a major role either for the number of neuroblasts which exit the SVZ or their migration in the striatum early following stroke.

  12. Do Adult Phenotypes Reflect Selection on Juvenile Performance? A Comparative Study on Performance and Morphology in Lizards.

    PubMed

    Herrel, Anthony; Lopez-Darias, Marta; Vanhooydonck, Bieke; Cornette, Raphaël; Kohlsdorf, Tiana; Brandt, Renata

    2016-09-01

    When competing for food or other resources, or when confronted with predators, young animals may be at a disadvantage relative to adults because of their smaller size. Additionally, the ongoing differentiation and growth of tissues may constrain performance during early ontogenetic stages. However, juveniles must feed before they can become reproductively active adults and as such the adult phenotype may be the result of an ontogenetic filter imposing selection on juvenile phenotype and performance. Here we present ontogenetic data on head morphology and bite force for different lizard species. We test whether adults reflect selection on juveniles by comparing slopes of growth trajectories before and after sexual maturity in males and females and by examining the variance in head morphology and bite force in juveniles versus adults. Finally, we also present the first results of a selection study where animals were measured, marked and released, and recaptured the subsequent year to test whether head morphology and bite force impact survival. PMID:27400973

  13. Viable and morphologically normal boar spermatozoa alter the expression of heat-shock protein genes in oviductal epithelial cells during co-culture in vitro.

    PubMed

    Yeste, Marc; Holt, William V; Bonet, Sergi; Rodríguez-Gil, Joan E; Lloyd, Rhiannon E

    2014-09-01

    The principal aim of this study was to determine if boar spermatozoa influence the expression of four selected chaperone and heat-shock protein (HSP) genes-namely clusterin (CLU), HSP90AA1, HSPA5, and HSPA8-in oviductal epithelial cells (OECs) during in vitro co-culture. All corresponding proteins of these genes were previously identified in a sperm-interacting, 70-kDa soluble fraction derived from apical plasma membranes of OECs. The present study also sought to determine whether or not: (i) spermatozoa must directly bind to OEC for an effect on gene expression to be elicited and (ii) reproductive and nonreproductive epithelial cell types (LLC-PK1, pig kidney) respond equivalently, in terms of alterations in chaperone and HSP gene expression, during co-culture with sperm. Spermatozoa induced a significant upregulation (P < 0.05) in HSP90AA1 and HSPA5 in OECs after 3 hr, and in HSPA8 after 6 hr of co-culture when they were in direct contact with epithelial cells. Conversely, no upregulation of HSP transcription was observed when spermatozoa did not directly bind to OECs. Spermatozoa also induced a significant upregulation (P < 0.05) of the same three genes when in direct contact with LLC-PK1 cells, but the timing occurred later than with OECs. Interestingly, the extent of HSP gene upregulation induced by direct contact of spermatozoa with epithelial cells was dependent on sperm-binding index and on the viability and morphological quality of the bound sperm population. In conclusion, the upregulation of HSP genes caused by direct contact between spermatozoa and OECs, rather than nonreproductive epithelial cells, suggests HSPs could play an integral role in the modulation of sperm function in the oviductal reservoir.

  14. Intracytoplasmic morphologically selected sperm injection (IMSI): a critical and evidence-based review.

    PubMed

    De Vos, Anick; Polyzos, Nikolaos P; Verheyen, Greta; Tournaye, Herman

    2013-01-01

    Introduced in 2001, intracytoplasmic morphologically selected sperm injection (IMSI) represents a more sophisticated way of ICSI whereby, prior to injection, the spermatozoon is selected at higher magnification. Doing so, the spermatozoon can be evaluated for fine integrity of its nucleus and the injection of a normal spermatozoon with a vacuole-free head can be assured. Additional research is needed to unravel the underlying mechanisms responsible for the presence of vacuoles in sperm heads. Associations with acrosome status, chromatin condensation, DNA fragmentation and sperm aneuploidy have been documented, however, controversy on their nature exists. Spermatozoon shape and large vacuoles are detected and deselected in conventional ICSI as well. However, the detection of subtle small vacuoles depends on the resolving power of the optical system and may impact oocyte fertilization, embryo development and implantation. Several comparative studies have indicated that the use of high-magnification sperm selection was associated with both higher pregnancy and delivery rates, whereas also lower miscarriage rates were observed. However, still to date randomized, well-powered studies to confirm these findings are scarce and show conflicting results. Hence, the most relevant indications for IMSI still remain to be determined. Two groups of patients have been put forward i.e. severe male-factor infertility patients and patients with a history of repeated ICSI failures. However, for both groups limited to no proof of any benefit does exist. IMSI is a time-consuming procedure at the expense of oocyte ageing. The lack of proof and understanding of its benefit does not justify its routine clinical application at present.

  15. Loss of Nogo receptor homolog NgR2 alters spine morphology of CA1 neurons and emotionality in adult mice

    PubMed Central

    Borrie, Sarah C.; Sartori, Simone B.; Lehmann, Julian; Sah, Anupam; Singewald, Nicolas; Bandtlow, Christine E.

    2014-01-01

    Molecular mechanisms which stabilize dendrites and dendritic spines are essential for regulation of neuronal plasticity in development and adulthood. The class of Nogo receptor proteins, which are critical for restricting neurite outgrowth inhibition signaling, have been shown to have roles in developmental, experience and activity induced plasticity. Here we investigated the role of the Nogo receptor homolog NgR2 in structural plasticity in a transgenic null mutant for NgR2. Using Golgi-Cox staining to analyze morphology, we show that loss of NgR2 alters spine morphology in adult CA1 pyramidal neurons of the hippocampus, significantly increasing mushroom-type spines, without altering dendritic tree complexity. Furthermore, this shift is specific to apical dendrites in distal CA1 stratum radiatum (SR). Behavioral alterations in NgR2−/− mice were investigated using a battery of standardized tests and showed that whilst there were no alterations in learning and memory in NgR2−/− mice compared to littermate controls, NgR2−/− displayed reduced fear expression in the contextual conditioned fear test, and exhibited reduced anxiety- and depression-related behaviors. This suggests that the loss of NgR2 results in a specific phenotype of reduced emotionality. We conclude that NgR2 has role in maintenance of mature spines and may also regulate fear and anxiety-like behaviors. PMID:24860456

  16. Residues Controlling Facial Selectivity in an Alkene Reductase and Semirational Alterations to Create Stereocomplementary Variants

    PubMed Central

    2015-01-01

    A systematic saturation mutagenesis campaign was carried out on an alkene reductase from Pichia stipitis (OYE 2.6) to develop variants with reversed stereoselectivities. Wild-type OYE 2.6 reduces three representative Baylis–Hillman adducts to the corresponding S products with almost complete stereoselectivities and good catalytic efficiencies. We created and screened 13 first-generation, site-saturation mutagenesis libraries, targeting residues found near the bound substrate. One variant (Tyr78Trp) showed high R selectivity toward one of the three substrates, but no change (cyclohexenone derivative) and no catalytic activity (acrylate derivative) for the other two. Subsequent rounds of mutagenesis retained the Tyr78Trp mutation and explored other residues that impacted stereoselectivity when altered in a wild-type background. These efforts yielded double and triple mutants that possessed inverted stereoselectivities for two of the three substrates (conversions >99% and at least 91% ee (R)). To understand the reasons underlying the stereochemical changes, we solved crystal structures of two key mutants: Tyr78Trp and Tyr78Trp/Ile113Cys, the latter with substrate partially occupying the active site. By combining these experimental data with modeling studies, we have proposed a rationale that explains the impacts of the most useful mutations. PMID:25068071

  17. Selected clinical, biochemical, and electrolyte alterations in anesthetized captive tigers (Panthera tigris) and lions (Panthera leo).

    PubMed

    Reilly, Sabrina; Seddighi, M Reza; Steeil, James C; Sura, Patricia; Whittemore, Jacqueline C; Gompf, Rebecca E; Elliott, Sarah B; Ramsay, Edward C

    2014-06-01

    A prospective study to assess changes in selected plasma biochemistry and electrolyte values, plasma insulin and aldosterone concentrations, and electrocardiography (ECG) was performed on eight female captive tigers (Panthera tigris) and three lions (Panthera leo) undergoing general anesthesia for elective laparoscopic ovariectomy. Each animal was sedated with medetomidine (18-25 microg/kg) and midazolam (0.06-0.1 mg/kg) intramuscularly, and anesthesia was induced with ketamine (1.9-3.5 mg/kg) intramuscularly and maintained with isoflurane. Venous blood samples were collected and analyzed for plasma biochemistry parameters and insulin and aldosterone concentrations. An ECG was recorded at the time of each blood sample collection. Mean plasma potassium, glucose, phosphorus, and aldosterone concentrations increased during anesthesia (P < or = 0.05). One tiger developed hyperkalemia (6.5 mmol/L) 2.5 hr after anesthetic induction. Plasma insulin concentrations were initially below the low end of the domestic cat reference interval (72-583 pmol/L), but mean insulin concentration increased (P < or = 0.05) over time compared with the baseline values. Three tigers and two lions had ECG changes that were representative of myocardial hypoxemia. Based on these results, continuous monitoring of clinical and biochemical alterations during general anesthesia in large nondomestic felids is warranted, and consideration should be given to reversal of medetomidine in these animals should significant changes in electrolytes or ECG occur.

  18. Selected clinical, biochemical, and electrolyte alterations in anesthetized captive tigers (Panthera tigris) and lions (Panthera leo).

    PubMed

    Reilly, Sabrina; Seddighi, M Reza; Steeil, James C; Sura, Patricia; Whittemore, Jacqueline C; Gompf, Rebecca E; Elliott, Sarah B; Ramsay, Edward C

    2014-06-01

    A prospective study to assess changes in selected plasma biochemistry and electrolyte values, plasma insulin and aldosterone concentrations, and electrocardiography (ECG) was performed on eight female captive tigers (Panthera tigris) and three lions (Panthera leo) undergoing general anesthesia for elective laparoscopic ovariectomy. Each animal was sedated with medetomidine (18-25 microg/kg) and midazolam (0.06-0.1 mg/kg) intramuscularly, and anesthesia was induced with ketamine (1.9-3.5 mg/kg) intramuscularly and maintained with isoflurane. Venous blood samples were collected and analyzed for plasma biochemistry parameters and insulin and aldosterone concentrations. An ECG was recorded at the time of each blood sample collection. Mean plasma potassium, glucose, phosphorus, and aldosterone concentrations increased during anesthesia (P < or = 0.05). One tiger developed hyperkalemia (6.5 mmol/L) 2.5 hr after anesthetic induction. Plasma insulin concentrations were initially below the low end of the domestic cat reference interval (72-583 pmol/L), but mean insulin concentration increased (P < or = 0.05) over time compared with the baseline values. Three tigers and two lions had ECG changes that were representative of myocardial hypoxemia. Based on these results, continuous monitoring of clinical and biochemical alterations during general anesthesia in large nondomestic felids is warranted, and consideration should be given to reversal of medetomidine in these animals should significant changes in electrolytes or ECG occur. PMID:25000694

  19. Membrane permeability alteration of some bacterial clinical isolates by selected antihistaminics.

    PubMed

    El-Nakeeb, Moustafa A; Abou-Shleib, Hamida M; Khalil, Amal M; Omar, Hoda G; El-Halfawy, Omar M

    2011-07-01

    Several antihistaminics possess antibacterial activity against a broad spectrum of bacteria. However, the exact mechanism of such activity was unclear. Hence, the aim of this study is to investigate their mechanism of antibacterial activity especially their effect upon the permeability of the bacterial cytoplasmic membrane. The effects of azelastine, cetirizine, cyproheptadine and diphenhydramine were studied using Gram-positive and Gram-negative multiresistant clinical isolates. Leakage of 260 and 280 nm UV-absorbing materials was detected upon treatment with the tested antihistaminics; indicative of membrane alteration. Using an artificial membrane model, cholesterol-free negatively-charged unilamellar liposomes, confirmed the effect of antihistaminics upon the membrane permeability both by showing an apparent membrane damage as observed microscopically and by detection of leakage of preloaded dye from the liposomes colorimatrically. Moreover, examination of the ultrastructure of cells treated with azelastine and cetirizine under the transmission electron microscope substantiated the detected abnormalities in the cell wall and membrane. Furthermore, the effect of pretreating certain isolates for both short and long periods with selected antihistaminics was followed by the viable count technique. Increased vulnerability towards further exposure to azelastine was observed in cells pretreated with azelastine for 2 days and those pretreated with azelastine or cetrizine for 30 days. PMID:24031716

  20. Selective turnover and alteration of soluble and cell wall polysaccharides in grasses

    SciTech Connect

    Gibeaut, D.M.; Carpita, N.C. )

    1991-05-01

    Cells of proso millet in liquid culture and leaves of maize seedlings readily incorporated radioactive glucose and arabinose into soluble and cell wall polymers. Radioactivity from arabinose accumulated selectively in polymers containing arabinose or xylose because a salvage pathway and C-4 epimerase yields both nucleotide-pentoses. On the other hand, radioactivity from glucose was found in all sugars and polymers. Pulse-chase experiments with proso millet cells in liquid culture demonstrated turnover of buffer soluble polymers within minutes and accumulation of radioactive polymers in the cell wall. In leaves of maize seedlings, radioactive polymers accumulated quickly and peaked 30 hours after the pulse, then decreased slowly for the remaining time course. During further growth of the seedling, radioactive polymers became more tenaciously bound in the cell wall. Sugars were constantly recycled from turnover of polysaccharides of the cell wall. Arabinose, hydrolyzed from glucuronoarabinoxylans, and glucose, hydrolyzed from mixed-linkage {beta}-D-glucans, constituted most of the sugar participating in turnover. Arabinogalactans were a large portion of the buffer soluble (cytoplasmic) polymers of both proso millet cells and maize seedling, and these polymers also exhibited turnover. Our results indicate that the primary cell wall is not simply a sink for various polysaccharide components, but rather a dynamic compartment exhibiting long-term re-organization by turnover and alteration of specific polymers during development.

  1. Intracytoplasmic morphologically selected sperm injection and congenital birth defects: a retrospective cohort study.

    PubMed

    Hershko-Klement, A; Sukenik-Halevy, R; Biron Shental, T; Miller, N; Berkovitz, A

    2016-09-01

    Our objective was to study the birth defect rates in intracytoplasmic morphologically selected sperm injection (IMSI) pregnancies. A cohort of couples presenting male factor infertility between January 2006 and January 2014 was retrospectively analyzed. Discharge letters and a telephone interview were performed for assessing pregnancy outcome. All clinical data were reviewed by a board certified medical geneticist. Main outcomes were fetal/birth defect and chromosomal abnormality rates. Two thousand two hundred and fifty-eight pregnancies were available for analysis, of them, 1669 (73.9%) resulting from ICSI and 2258 (26.1%) achieved by IMSI. Pregnancy outcome distribution did not show a significant difference. For the fresh embryo transfer cohort, fetal/birth defect rate was 4.5%, chromosomal aberration rate was 1.0%, and structural malformation rate was 3.5%. IMSI vs. ICSI pregnancies were less likely to involve a fetal/birth defect: 3.5% vs. 4.8%, respectively, but did not reach a statistical significance OR 0.71 (95% CI 0.39-1.22). Split by multiplicity, this trend existed only for singleton pregnancies; 1.4% structural malformations rate vs. 3.8%, respectively, OR 0.35 (95% CI 0.11-0.9). The frozen cohort demonstrated a significantly lower birth defect rate (OR 0.25, 95% CI 0.09-0.58). We conclude that IMSI procedure does not involve an increased malformation rate and may offer a reduced anomaly incidence. Further studies are required.

  2. Morphological alterations in the synganglion and integument of Rhipicephalus sanguineus ticks exposed to aqueous extracts of neem leaves (Azadirachta indica A. JUSS).

    PubMed

    Remedio, R N; Nunes, P H; Anholeto, L A; Camargo-Mathias, M I

    2014-12-01

    Currently, the necessity of controlling infestation by ticks, especially by Rhipicephalus sanguineus, has led researchers and public health managers around the world to search for new and more efficient control methods. This way, we can highlight neem (Azadirachta indica A. Juss) leaf, bark, and seed extracts, which have been very effective on tick control, and moreover causing less damage to the environment and to the host. This study showed the potential of neem as a control method for R. sanguineus through morphological and morphometric evaluation of the integument and synganglion of females, in semiengorged stage. To attain this, routine techniques of optical microscopy, scanning electron microscopy and morphometry of the cuticle and subcuticle of the integument were applied. Expressive morphological alterations were observed in both organs, presenting a dose-dependent effect. Integument epithelial cells and nerve cells of the synganglion showed signs of cell vacuolation, dilated intercellular boundaries, and cellular disorganization, alterations not previously reported in studies with neem. In addition, variations in subcuticle thickness were also observed. In general, the effects of neem are multiple, and affect the morphology and physiology of target animals in various ways. The results presented in this work are the first evidence of its effects in the coating and nervous system of ticks, thus allowing an indication of neem aqueous extracts as a potential control method of the brown dog tick and opening new perspectives on acaricide use.

  3. Morphological alterations in the synganglion and integument of Rhipicephalus sanguineus ticks exposed to aqueous extracts of neem leaves (Azadirachta indica A. JUSS).

    PubMed

    Remedio, R N; Nunes, P H; Anholeto, L A; Camargo-Mathias, M I

    2014-12-01

    Currently, the necessity of controlling infestation by ticks, especially by Rhipicephalus sanguineus, has led researchers and public health managers around the world to search for new and more efficient control methods. This way, we can highlight neem (Azadirachta indica A. Juss) leaf, bark, and seed extracts, which have been very effective on tick control, and moreover causing less damage to the environment and to the host. This study showed the potential of neem as a control method for R. sanguineus through morphological and morphometric evaluation of the integument and synganglion of females, in semiengorged stage. To attain this, routine techniques of optical microscopy, scanning electron microscopy and morphometry of the cuticle and subcuticle of the integument were applied. Expressive morphological alterations were observed in both organs, presenting a dose-dependent effect. Integument epithelial cells and nerve cells of the synganglion showed signs of cell vacuolation, dilated intercellular boundaries, and cellular disorganization, alterations not previously reported in studies with neem. In addition, variations in subcuticle thickness were also observed. In general, the effects of neem are multiple, and affect the morphology and physiology of target animals in various ways. The results presented in this work are the first evidence of its effects in the coating and nervous system of ticks, thus allowing an indication of neem aqueous extracts as a potential control method of the brown dog tick and opening new perspectives on acaricide use. PMID:25130979

  4. Morphologic and functional alterations induced by low doses of mercuric chloride in the kidney OK cell line: ultrastructural evidence for an apoptotic mechanism of damage.

    PubMed

    Carranza-Rosales, Pilar; Said-Fernández, Salvador; Sepúlveda-Saavedra, Julio; Cruz-Vega, Delia E; Gandolfi, A Jay

    2005-06-01

    Mercury produces acute renal failure in experimental animal models, but the mechanism of tubular injury has not completely been clarified. There is an increased interest in the role of apoptosis in the pathogenesis of renal diseases that result primarily from injury to renal tubular epithelial cells. However, detailed studies of morpho-functional alterations induced by mercuric chloride in kidney cell lines are scarce. This work characterizes these alterations in OK cell cultures. Morphological alterations were profiled using light microscopy, transmission electron microscopy, and confocal microscopy, as well as mitochondrial functional assays in the cells exposed to low concentrations of HgCl2. At concentrations of 1 and 10 microM of HgCl2 there were no morphological or ultrastructural alterations, but the mitochondrial function (MTT assay) and intracellular ATP content was increased, especially at longer incubation times (6 and 9 h). At 15 microM HgCl2, both the mitochondrial activity and the endogenous ATP decreased significantly. At this concentration the OK cells rounded up, had increased number of cytoplasmic vacuoles, and detached from the cell monolayer. At 15 microM HgCl2 ultrastructural changes were characterized by dispersion of the ribosomes, dilatation of the cisterns of the rough endoplasmic reticulum, increase of number of cytoplasmic vacuoles, chromatin condensation, invaginations of the nuclear envelope, presence of cytoplasmic inclusion bodies, and alterations in the size and morphology of mitochondria. At 15 microM HgCl2 apoptotic signs included membrane blebbing, chromatin condensation, mitochondrial alterations, apoptotic bodies, and nuclear envelope rupture. Using confocal microscopy and the mitochondrial specific dye MitoTracker Red, it was possible to establish qualitative changes induced by mercury on the mitochondrial membrane potential after incubation of the cells for 6 and 9h with 15 microM HgCl2. This effect was not observed at short

  5. The LRRC26 Protein Selectively Alters the Efficacy of BK Channel Activators

    PubMed Central

    Almassy, Janos

    2012-01-01

    Large conductance, Ca2+-activated K channel proteins are involved in a wide range of physiological activities, so there is considerable interest in the pharmacology of large conductance calcium-activated K (BK) channels. One potent activator of BK channels is mallotoxin (MTX), which produces a very large hyperpolarizing shift of the voltage gating of heterologously expressed BK channels and causes a dramatic increase in the activity of BK channels in human smooth muscle cells. However, we found that MTX shifted the steady-state activation of BK channels in native parotid acinar cells by only 6 mV. This was not because the parotid BK isoform (parSlo) is inherently insensitive to MTX as MTX shifted the activation of heterologously expressed parSlo channels by 70 mV. Even though MTX had a minimal effect on steady-state activation of parotid BK channels, it produced an approximate 2-fold speeding of the channel-gating kinetics. The BK channels in parotid acinar cells have a much more hyperpolarized voltage activation range than BK channels in most other cell types. We found that this is probably attributable to an accessory protein, LRRC26, which is expressed in parotid glands: expressed parSlo + LRRC26 channels were resistant to the actions of MTX. Another class of BK activators is the benzimidazalones that includes 1,3-dihydro-1-(2-hydroxy-5-(trifluoromethyl)phenyl)-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619). Although the LRRC26 accessory protein strongly inhibited the ability of MTX to activate BK channels, we found that it had only a small effect on the action of NS-1619 on BK channels. Thus, the LRRC26 BK channel accessory protein selectively alters the pharmacology of BK channels. PMID:21984254

  6. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function

    PubMed Central

    Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.

    2016-01-01

    Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379

  7. Early postnatal respiratory viral infection alters hippocampal neurogenesis, cell fate, and neuron morphology in the neonatal piglet.

    PubMed

    Conrad, Matthew S; Harasim, Samantha; Rhodes, Justin S; Van Alstine, William G; Johnson, Rodney W

    2015-02-01

    Respiratory viral infections are common during the neonatal period in humans, but little is known about how early-life infection impacts brain development. The current study used a neonatal piglet model as piglets have a gyrencephalic brain with growth and development similar to human infants. Piglets were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV) to evaluate how chronic neuroinflammation affects hippocampal neurogenesis and neuron morphology. Piglets in the neurogenesis study received one bromodeoxyuridine injection on postnatal day (PD) 7 and then were inoculated with PRRSV. Piglets were sacrificed at PD 28 and the number of BrdU+ cells and cell fate were quantified in the dentate gyrus. PRRSV piglets showed a 24% reduction in the number of newly divided cells forming neurons. Approximately 15% of newly divided cells formed microglia, but this was not affected by sex or PRRSV. Additionally, there was a sexual dimorphism of new cell survival in the dentate gyrus where males had more cells than females, and PRRSV infection caused a decreased survival in males only. Golgi impregnation was used to characterize dentate granule cell morphology. Sholl analysis revealed that PRRSV caused a change in inner granule cell morphology where the first branch point was extended further from the cell body. Males had more complex dendritic arbors than females in the outer granule cell layer, but this was not affected by PRRSV. There were no changes to dendritic spine density or morphology distribution. These findings suggest that early-life viral infection can impact brain development.

  8. The impact of cyclin D1 mRNA isoforms, morphology and p53 in mantle cell lymphoma: p53 alterations and blastoid morphology are strong predictors of a high proliferation index

    PubMed Central

    Slotta-Huspenina, Julia; Koch, Ina; de Leval, Laurence; Keller, Gisela; Klier, Margit; Bink, Karin; Kremer, Marcus; Raffeld, Mark; Fend, Falko; Quintanilla-Martinez, Leticia

    2012-01-01

    Background Mantle cell lymphoma is a clinically heterogeneous disease characterized by overexpression of cyclin D1 protein. Blastoid morphology, high proliferation, and secondary genetic aberrations are markers of aggressive behavior. Expression profiling of mantle cell lymphoma revealed that predominance of the 3’UTR-deficient, short cyclin D1 mRNA isoform was associated with high cyclin D1 levels, a high “proliferation signature” and poor prognosis. Design and Methods Sixty-two cases of mantle cell lymphoma were analyzed for cyclin D1 mRNA isoforms and total cyclin D1 levels by real-time reverse transcriptase polymerase chain reaction, and TP53 alterations were assessed by immunohistochemistry and molecular analysis. Results were correlated with proliferation index and clinical outcome. Results Predominance of the short cyclin D1 mRNA was found in 14 (23%) samples, including four with complete loss of the standard transcript. TP53 alterations were found in 15 (24%) cases. Predominance of 3’UTR-deficient mRNA was significantly associated with high cyclin D1 mRNA levels (P=0.009) and more commonly found in blastoid mantle cell lymphoma (5/11, P=0.060) and cases with a proliferation index of >20% (P=0.026). Both blastoid morphology (11/11, P<0.001) and TP53 alterations (15/15, P<0.001) were significantly correlated with a high proliferation index. A proliferation index of 10% was determined to be a significant threshold for survival in multivariate analysis (P=0.01). Conclusions TP53 alterations are strongly associated with a high proliferation index and aggressive behavior in mantle cell lymphoma. Predominance of the 3’UTR-deficient transcript correlates with higher cyclin D1 levels and may be a secondary contributing factor to high proliferation, but failed to reach prognostic significance in this study. PMID:22315488

  9. Morphological assessment on day 4 and its prognostic power in selecting viable embryos for transfer.

    PubMed

    Fabozzi, Gemma; Alteri, Alessandra; Rega, Emilia; Starita, Maria Flavia; Piscitelli, Claudio; Giannini, Pierluigi; Colicchia, Antonio

    2016-08-01

    The aim of this study was to describe a system for embryo morphology scoring at the morula stage and to determine the efficiency of this model in selecting viable embryos for transfer. In total, 519 embryos from 122 patients undergoing intracytoplasmic sperm injection (ICSI) were scored retrospectively on day 4 according to the grading system proposed in this article. Two separate quality scores were assigned to each embryo in relation to the grade of compaction and fragmentation and their developmental fate was then observed on days 5 and 6. Secondly, the prediction value of this scoring system was compared with the prediction value of the traditional scoring system adopted on day 3. Morulas classified as grade A showed a significant higher blastocyst formation rate (87.2%) compared with grades B, C and D (63.8, 41.3 and 15.0%, respectively), (P < 0.001). Furthermore, the ability to form top quality blastocysts was significantly higher for grade A morulas with respect to grades B, and C and D (37.8% vs. 22.4% vs. 11.1%), (P < 0.001). Finally, the morula scoring system showed more prediction power with respect to the embryo scoring a value of 1 [Akaike information criterion (AIC) index 16.4 vs. 635.3 and Bayesian information criterion (BIC) index -68.8 vs. -30.0 for morulas and embryos respectively]. In conclusion, results demonstrated that the presented scoring system allows for the evaluation of eligible embryos for transfer as a significant correlation between the grade of morula, blastulation rate and blastocyst quality was observed. Furthermore, the morula scoring system was shown to be the best predictive model when compared with the traditional scoring system performed on day 3.

  10. Leaf morphological and physiological adjustments to the spectrally selective shade imposed by anthocyanins in Prunus cerasifera.

    PubMed

    Kyparissis, A; Grammatikopoulos, G; Manetas, Y

    2007-06-01

    Prunus domestica L. has green leaves, whereas Prunus cerasifera Ehrh. var. atropurpurea has red leaves due to the presence of mesophyll anthocyanins. We compared morphological and photosynthetic characteristics of leaves of these species, which were sampled from shoots grafted in pairs on P. domestica rootstocks, each pair comprising one shoot of each species. Two hypotheses were tested: (1) anthocyanins protect red leaves against photoinhibition; and (2) red leaves display shade characteristics because of light attenuation by anthocyanins. Parameters were measured seasonally, during a period of increasing water stress, which caused a similar drop in shoot water potential in each species. As judged by predawn measurements of maximum PSII yield, chronic photoinhibition did not develop in either species and, despite the anthocyanic screen, the red leaves of P. cerasifera displayed lower light-adapted PSII yields and higher non-photochemical quenching than the green leaves of P. domestica. Thus, it appears that, in this system, anthocyanins afford little photoprotection. As predicted by the shade acclimation hypothesis, red leaves were thinner and had a lower stomatal frequency, area- based CO2 assimilation rate, apparent carboxylation efficiency and chlorophyll a:b ratio than green leaves. However, red leaves were similar to green leaves in conductivity to water vapor diffusion, dry-mass-based chlorophyll concentrations and carotenoid:chlorophyll ratios. The data for red leaves indicate adaptations to a green-depleted, red-enriched shade, rather than a neutral or canopy-like shade. Thus, green light attenuation by anthocyanins may impose a limitation on leaf thickness. Moreover, the selective depletion of light at wavelengths that are preferentially absorbed by PSII and chlorophyll b may lead to adjustments in chlorophyll pigment ratios to compensate for the uneven spectral distribution of internal light. The apparent photosynthetic cost associated with lost photons

  11. Biochemical evaluation of a 108-member deglycobleomycin library: viability of a selection strategy for identifying bleomycin analogues with altered properties.

    PubMed

    Ma, Qian; Xu, Zhidong; Schroeder, Benjamin R; Sun, Wenyue; Wei, Fang; Hashimoto, Shigeki; Konishi, Kazuhide; Leitheiser, Christopher J; Hecht, Sidney M

    2007-10-17

    The bleomycins (BLMs) are clinically used glycopeptide antitumor antibiotics that have been shown to mediate the sequence-selective oxidative damage of both DNA and RNA. Previously, we described the solid-phase synthesis of a library of 108 unique analogues of deglycoBLM A6, a congener that cleaves DNA analogously to BLM itself. Each member of the library was assayed for its ability to effect single- and double-strand nicking of duplex DNA, sequence-selective DNA cleavage, and RNA cleavage in the presence and absence of a metal ion cofactor. All of the analogues tested were found to mediate concentration-dependent plasmid DNA relaxation to some extent, and a number exhibited double-strand cleavage with an efficiency comparable to or greater than deglycoBLM A6. Further, some analogues having altered linker and metal-binding domains mediated altered sequence-selective cleavage, and a few were found to cleave a tRNA3Lys transcript both in the presence and in the absence of a metal cofactor. The results provide insights into structural elements within BLM that control DNA and RNA cleavage. The present study also permits inferences to be drawn regarding the practicality of a selection strategy for the solid-phase construction and evaluation of large libraries of BLM analogues having altered properties.

  12. Experiment K-6-02. Biomedical, biochemical and morphological alterations of muscle and dense, fibrous connective tissues during 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A.; Zernicke, R.; Grindeland, R.; Kaplanski, A.

    1990-01-01

    Findings on the connective tissue response to short-term space flight (12 days) are discussed. Specifically, data regarding the biochemical, biomechanical and morphological characteristics of selected connective tissues (humerus, vertebral body, tendon and skeletal muscle) of growing rats is given. Results are given concerning the humerus cortical bone, the vertebral bone, nutritional effects on bone biomechanical properties, and soft tense fiber connective tissue response.

  13. No difference in high-magnification morphology and hyaluronic acid binding in the selection of euploid spermatozoa with intact DNA

    PubMed Central

    Mongkolchaipak, Suchada; Vutyavanich, Teraporn

    2013-01-01

    In this study, we compared conventional sperm selection with high-magnification morphology based on the motile sperm organellar morphology examination (MSOME) criteria, and hyaluronic acid (HA) binding for sperm chromosome aneuploidy and DNA fragmentation rates. Semen from 50 severe male factor cases was processed through density gradient centrifugation, and subjected to sperm selection by using the conventional method (control), high magnification at ×6650 or HA binding. Aneuploidy was detected by fluorescence in situ hybridization with probes for chromosomes 13, 18, 21, X and Y, and DNA fragmentation by the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) method. Spermatozoa selected under high-magnification had a lower DNA fragmentation rate (2.6% vs. 1.7% P=0.032), with no significant difference in aneuploidy rate (0.8% vs 0.7% P=0.583), than those selected by the HA binding method. Spermatozoa selected by both methods had much lower aneuploidy and DNA fragmentation rate than the controls (7% aneuploidy and 26.8% DNA fragmentation rates, respectively). In the high-magnification group, the aneuploidy rate was lower when the best spermatozoa were selected than when only the second-best spermatozoa were available for selection, but the DNA fragmentation rate was not different. In conclusion, sperm selection under high magnification was more effective than under HA binding in selecting spermatozoa with low DNA fragmentation rate, but the small difference (0.9%) might not be clinically meaningful. Both methods were better than the conventional method of sperm selection. PMID:23435468

  14. Deletion of glucose-inhibited division (gidA) gene alters the morphological and replication characteristics of Salmonella enterica Serovar typhimurium.

    PubMed

    Shippy, Daniel C; Heintz, Joseph A; Albrecht, Ralph M; Eakley, Nicholas M; Chopra, Ashok K; Fadl, Amin A

    2012-06-01

    Salmonella is an important food-borne pathogen that continues to plague the United States food industry. Characterization of bacterial factors involved in food-borne illnesses could help develop new ways to control salmonellosis. We have previously shown that deletion of glucose-inhibited division gene (gidA) significantly altered the virulence potential of Salmonella in both in vitro and in vivo models of infection. Most importantly, the gidA mutant cells displayed a filamentous morphology compared to the wild-type Salmonella cells. In our current study, we investigated the role of GidA in Salmonella cell division using fluorescence and electron microscopy, transcriptional, and proteomic assays. Scanning electron microscopy data indicated a filamentous morphology with few constrictions in the gidA mutant cells. The filamentation of the gidA mutant cells is most likely due to the defect in chromosome segregation, with little to no sign of septa formation observed using fluorescence and transmission electron microscopy. Furthermore, deletion of gidA altered the expression of many genes and proteins responsible for cell division and chromosome segregation as indicated by global transcriptional profiling and semi-quantitative western blot analysis. Taken together, our data indicate GidA as a potential regulator of Salmonella cell division genes.

  15. Tuning the Morphology and Performance of Low Bandgap Polymer: Fullerene Heterojunctions via Solvent Annealing in Selective Solvents

    SciTech Connect

    Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin; Dadmun, Mark D

    2014-01-01

    Low bandgap polymer (LBG):fullerene mixtures are some of the most promising organic photovoltaic active layers. Unfortunately, there are no post-deposition treatments available to rationally improve the morphology and performance of as-cast LBG:fullerene OPV active layers, where thermal annealing usually fails. Therefore, there is a glaring need to develop postdeposition methods to guide the morphology of LBG:fullerene bulk heterojunctions towards targeted structures and performance. In this paper, the structural evolution of PCPDTBT:PCBM mixtures with solvent annealing (SA) is examined, focusing on the effect of solvent quality of the fullerene and polymer in the annealing vapor on morphological evolution and device performance. The results indicate that exposure of this active layer to the solvent vapor controls the ordering of PCPDTBT and PCBM phase separation very effectively, presumably by inducing component mobility as the solvent plasticizes the mixture. These results also unexpectedly indicate that solvent annealing in a selective solvent provides a method to invert the morphology of the LBG:fullerene mixture from a polymer aggregate dispersed in a polymer:fullerene matrix to fullerene aggregates dispersed in a polymer:fullerene matrix. The judicious choice of solvent vapor, therefore, provides a unique method to exquisitely control and optimize the morphology of LBG conjugated polymer/fullerene mixtures.

  16. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative.

    PubMed

    Wagner, Maggie R; Lundberg, Derek S; Coleman-Derr, Devin; Tringe, Susannah G; Dangl, Jeffery L; Mitchell-Olds, Thomas

    2014-06-01

    Plant phenology is known to depend on many different environmental variables, but soil microbial communities have rarely been acknowledged as possible drivers of flowering time. Here, we tested separately the effects of four naturally occurring soil microbiomes and their constituent soil chemistries on flowering phenology and reproductive fitness of Boechera stricta, a wild relative of Arabidopsis. Flowering time was sensitive to both microbes and the abiotic properties of different soils; varying soil microbiota also altered patterns of selection on flowering time. Thus, soil microbes potentially contribute to phenotypic plasticity of flowering time and to differential selection observed between habitats. We also describe a method to dissect the microbiome into single axes of variation that can help identify candidate organisms whose abundance in soil correlates with flowering time. This approach is broadly applicable to search for microbial community members that alter biological characteristics of interest.

  17. The use of an ion-beam source to alter the surface morphology of biological implant materials

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1978-01-01

    An electron bombardment, ion thruster was used as a neutralized-ion beam sputtering source to texture the surfaces of biological implant materials. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane were obtained.

  18. High-Efficiency Nonfullerene Polymer Solar Cell Enabling by Integration of Film-Morphology Optimization, Donor Selection, and Interfacial Engineering.

    PubMed

    Zhang, Xin; Li, Weiping; Yao, Jiannian; Zhan, Chuanlang

    2016-06-22

    Carrier mobility is a vital factor determining the electrical performance of organic solar cells. In this paper we report that a high-efficiency nonfullerene organic solar cell (NF-OSC) with a power conversion efficiency of 6.94 ± 0.27% was obtained by optimizing the hole and electron transportations via following judicious selection of polymer donor and engineering of film-morphology and cathode interlayers: (1) a combination of solvent annealing and solvent vapor annealing optimizes the film morphology and hence both hole and electron mobilities, leading to a trade-off of fill factor and short-circuit current density (Jsc); (2) the judicious selection of polymer donor affords a higher hole and electron mobility, giving a higher Jsc; and (3) engineering the cathode interlayer affords a higher electron mobility, which leads to a significant increase in electrical current generation and ultimately the power conversion efficiency (PCE). PMID:27246160

  19. High-Efficiency Nonfullerene Polymer Solar Cell Enabling by Integration of Film-Morphology Optimization, Donor Selection, and Interfacial Engineering.

    PubMed

    Zhang, Xin; Li, Weiping; Yao, Jiannian; Zhan, Chuanlang

    2016-06-22

    Carrier mobility is a vital factor determining the electrical performance of organic solar cells. In this paper we report that a high-efficiency nonfullerene organic solar cell (NF-OSC) with a power conversion efficiency of 6.94 ± 0.27% was obtained by optimizing the hole and electron transportations via following judicious selection of polymer donor and engineering of film-morphology and cathode interlayers: (1) a combination of solvent annealing and solvent vapor annealing optimizes the film morphology and hence both hole and electron mobilities, leading to a trade-off of fill factor and short-circuit current density (Jsc); (2) the judicious selection of polymer donor affords a higher hole and electron mobility, giving a higher Jsc; and (3) engineering the cathode interlayer affords a higher electron mobility, which leads to a significant increase in electrical current generation and ultimately the power conversion efficiency (PCE).

  20. H-ras-transformed NRK-52E renal epithelial cells have altered growth, morphology, and cytoskeletal structure that correlates with renal cell carcinoma in vivo.

    PubMed

    Best, C J; Tanzer, L R; Phelps, P C; Merriman, R L; Boder, G G; Trump, B F; Elliget, K A

    1999-04-01

    We studied the effect of the ras oncogene on the growth kinetics, morphology, cytoskeletal structure, and tumorigenicity of the widely used NRK-52E rat kidney epithelial cell line and two H-ras oncogene-transformed cell lines, H/1.2-NRK-52E (H/1.2) and H/6.1-NRK-52E (H/6.1). Population doubling times of NRK-52E, H/1.2, and H/6.1 cells were 28, 26, and 24 h, respectively, with the transformed cells reaching higher saturation densities than the parent cells. NRK-52E cells had typical epithelial morphology with growth in colonies. H/1.2 and H/6.1 cell colonies were more closely packed, highly condensed, and had increased plasma membrane ruffling compared to parent cell colonies. NRK-52E cells showed microfilament, microtubule, and intermediate filament networks typical of epithelial cells, while H/1.2 and H/6.1 cells showed altered cytoskeleton architecture, with decreased stress fibers and increased microtubule and intermediate filament staining at the microtubule organizing center. H/1.2 and H/6.1 cells proliferated in an in vitro soft agar transformation assay, indicating anchorage-independence, and rapidly formed tumors in vivo with characteristics of renal cell carcinoma, including mixed populations of sarcomatoid, granular, and clear cells. H/6.1 cells consistently showed more extensive alterations of growth kinetics, morphology, and cytoskeleton than H/1.2 cells, and formed tumors of a more aggressive phenotype. These data suggest that analysis of renal cell characteristics in vitro may have potential in predicting tumor behavior in vivo, and significantly contribute to the utility of these cell lines as in vitro models for examining renal epithelial cell biology and the role of the ras proto-oncogene in signal transduction involving the cytoskeleton.

  1. Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients.

    PubMed

    Allen, Scott P; Duffy, Lynn M; Shaw, Pamela J; Grierson, Andrew J

    2015-10-01

    Mitochondria play a key role in aging, which is a well-established risk factor in amyotrophic lateral sclerosis (ALS). We have previously modeled metabolic dysregulation in ALS using fibroblasts isolated from sporadic ALS (SALS) and familial ALS patients. In the present study, we show that fibroblasts from SALS patients have an altered metabolic response to aging. Control fibroblasts demonstrated increased mitochondrial network complexity and spare respiratory capacity with age which was not seen in the SALS cases. SALS cases displayed an increase in uncoupled mitochondrial respiration, which was not evident in control cases. Unlike SALS cases, controls showed a decrease in glycolysis and an increase in the oxygen consumption rate/extracellular acidification rate ratio, indicating an increased reliance on mitochondrial function. Switching to a more oxidative state by removing glucose with in the culture media resulted in a loss of the mitochondrial interconnectivity and spare respiratory capacity increases observed in controls grown in glucose. Glucose removal also led to an age-independent increase in glycolysis in the SALS cases. This study is, to the best our knowledge, the first to assess the effect of aging on both mitochondrial and glycolytic function simultaneously in intact human fibroblasts and demonstrates that the SALS disease state shifts the cellular metabolic response to aging to a more glycolytic state compared with age-matched control fibroblasts. This work highlights that ALS alters the metabolic equilibrium even in peripheral tissues outside the central nervous system. Elucidating at a molecular level how this occurs and at what stage in the disease process is crucial to understanding why ALS affects cellular energy metabolism and how the disease alters the natural cellular response to aging. PMID:26344876

  2. A Bed Load Monitoring System for Real Time Sediment Transport and Bed Morphology during Channel Altering Events

    NASA Astrophysics Data System (ADS)

    Curran, J. C.; Waters, K. A.; Cannatelli, K.

    2014-12-01

    A new technique is presented that provides continuous measurement of sediment movement over the length of a flume. Real-time measurements of bed changes over a reach are a missing piece needed to link bed morphology with sediment transport processes during unsteady flows when the bed adjusts quickly to changing transport rates or visual observation of the bed is precluded by fine sediment in the water column. A bed load monitoring system (BLMS) was developed that records the sediment and water loads over discrete bed lengths throughout a flow event. It was designed for laboratory application where controlled measurement methods are possible. Upon data processing, the BLMS provides a continuous measure of the sediment load across the bed from which sediment movement rates through the reach, including areas of temporary aggradation or degradation, can be reconstructed. Examples are provided of how the bed load monitoring system has been applied during sediment feed and sediment recirculation experiments to further the interpretation of channel processes occurring during large flows. We detail the use of the BLMS to measure bed slopes during unsteady flows and to measure the movement of sediment downstream following different methods of dam removal. We evaluate the BLMS for use where DEM differencing was also applied to illustrate the information provided by each measurement method. Exciting implications of future research that incorporates a BLMS include a more informed management of river systems as a result of improved temporal predictions of sediment movement and the associated changes in channel slope and morphology.

  3. arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplastid proliferation and morphology in shoot and root apices.

    PubMed

    Robertson, E J; Pyke, K A; Leech, R M

    1995-09-01

    The arc6 (accumulation and replication of chloroplasts) mutant of Arabidopsis has only two greatly enlarged chloroplasts per mature leaf mesophyll cell compared with ninety chloroplasts per cell in the wild type. The mutation is a single nuclear gene and the plant phenotype is normal. Shoot and root apical meristems of arc6 plants have been examined to determine how early during plastid development the mutant arc6 phenotype can be recognised. In the cells of the arc6 apical meristem there are only two proplastids, which are larger than wild type with a highly variable morphology. In the cells of the leaf primordia where differentiation of proplastids to chloroplasts occurs arc6 plastids are larger and at a more advanced developmental stage than wild-type plastids. In arc6 root cells statoliths and other plastids also show grossly abnormal morphology and the statoliths are greatly increased in size. During arc6 stomatal guard cell development the perturbation in proplastid population dynamics affects plastid segregation and 30% of stomata lack plastids in one or both guard cells. Our evidence would suggest that ARC6 is expressed throughout the vegetative cells of the Arabidopsis seedling with major effects on both the proplastid phenotype and the proplastid population. ARC6 is the first gene to be identified in Arabidopsis which has a global effect on plastid development in cells arising from both the shoot and root meristems, and is of major importance in the nuclear control of plastid differentiation in higher plants.

  4. Mutagenesis of squash (Cucurbita moschata) glycerol-3-phosphate acyltransferase (GPAT) to produce an enzyme with altered substrate selectivity.

    PubMed

    Hayman, M W; Fawcett, T; Schierer, T F; Simon, J W; Kroon, J T; Gilroy, J S; Rice, D W; Rafferty, J; Turnbull, A P; Sedelnikova, S E; Slabas, A R

    2000-12-01

    In an attempt to rationalize the relationship between structure and substrate selectivity of glycerol-3-phosphate acyltransferase (GPAT, 1AT, EC 2.3.1.15) we have cloned a number of cDNAs into the pET overexpression system using a PCR-based approach. Following assay of the recombinant enzyme we noted that the substrate selectivity of the squash (Cucurbita moschata) enzyme had altered dramatically. This form of GPAT has now been crystallized and its full three-dimensional structure elucidated. Since we now have two forms of the enzyme that display different substrate selectivities this should provide a powerful tool to determine the basis of the selectivity changes. Kinetic and structural analyses are currently being performed to rationalize the changes which have taken place.

  5. QUANTITATIVE MORPHOLOGY

    EPA Science Inventory

    Abstract: In toxicology, the role of quantitative assessment of brain morphology can be understood in the context of two types of treatment-related alterations. One type of alteration is specifically associated with treatment and is not observed in control animals. Measurement ...

  6. Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules

    PubMed Central

    2014-01-01

    Background Soybean (Glycine max) seeds are the primary source of edible oil in the United States. Despite its widespread utility, soybean oil is oxidatively unstable. Until recently, the majority of soybean oil underwent chemical hydrogenation, a process which also generates trans fats. An alternative to chemical hydrogenation is genetic modification of seed oil through identification and introgression of mutant alleles. One target for improvement is the elevation of a saturated fat with no negative cardiovascular impacts, stearic acid, which typically constitutes a minute portion of seed oil (~3%). Results We examined radiation induced soybean mutants with moderately increased stearic acid (10-15% of seed oil, ~3-5 X the levels in wild-type soybean seeds) via comparative whole genome hybridization and genetic analysis. The deletion of one SACPD isoform encoding gene (SACPD-C) was perfectly correlated with moderate elevation of seed stearic acid content. However, SACPD-C deletion lines were also found to have altered nodule fatty acid composition and grossly altered morphology. Despite these defects, overall nodule accumulation and nitrogen fixation were unaffected, at least under laboratory conditions. Conclusions Although no yield penalty has been reported for moderate elevated seed stearic acid content in soybean seeds, our results demonstrate that genetic alteration of seed traits can have unforeseen pleiotropic consequences. We have identified a role for fatty acid biosynthesis, and SACPD activity in particular, in the establishment and maintenance of symbiotic nitrogen fixation. PMID:24886084

  7. Effect of Tricyclazole on morphology, virulence and enzymatic alterations in pathogenic fungi Bipolaris sorokiniana for management of spot blotch disease in barley.

    PubMed

    Kumar, Manoj; Chand, Ramesh; Dubey, R S; Shah, Kavita

    2015-01-01

    Bipolaris sorokiniana synthesizes the 1,8-dihydroxynaphthalene (DHN) melanin via pentaketide pathway and promotes the development of aerial mycelia and conidia. A melanin biosynthesis inhibitor Tricyclazole (TCZ), brought changes when applied at 5-100 μg ml(-1) concentration in the colony morphology, radial growth, mycelia weight, melanin content, antioxidant enzymes (SOD and CAT) and extracellular hydrolytic enzymes (cellulase, pectinase, amylase and protease) in black, mixed and white isolates of B. sorokiniana. A significant alteration was recorded in antioxidant enzymes in black and mixed isolates; however, non-significant alteration was recorded in white isolate. Isolates of B. sorokiniana exposed to 100 µg ml(-1) TCZ showed significantly increased formation of superoxide radical (O 2 (·-) ) and hydrogen peroxide (H2O2)·H2O2 was detected significantly high in hyphae and conidia while, O 2 (·-) was found primarily in the conidia. Microscopic results suggest that TCZ damages not only the cell wall but also the cell membrane. The foliar application of TCZ (25, 50 and 100 µg ml(-1)) decreases the area under disease progress curve, lesion development and spore formation on barley leaves thereby reducing potential for the disease development. In conclusion TCZ influences the pathogenic ability by damaging the cell structure of hyphae and conidia and also alters the antioxidant enzyme levels in B. sorokiniana. TCZ may therefore, works against to pathogen for better management of spot blotch disease in barley infected with B. sorokiniana.

  8. [Early reception of Darwin's selection theory and its sequelae for comparative morphology today].

    PubMed

    Rehkämper, G

    1997-01-01

    It is argued that Darwin's concept of evolutionary change is primarily based on the idea of functional adaptation. Genealogical aspects are seen as a secondary consequence of this hypothesis. Unfortunately, the reception of Darwin's work was concentrated on the genealogical aspects from the very beginning (Huxley, Haeckel) and thus channeled future development of evolutionary morphology in a very one-sided way. This direction of development led to the adoption of cladism as a very sophisticated concept of comparative morphology. Though cladism claims to contribute to our understanding of evolution, it is demonstrated that it suffers in this regard because of the incompatibility of "pure morphology" with the demands of functional thinking as an integrative part of Darwin's proposition.

  9. Bisphenol A and its analogs induce morphological and biochemical alterations in human peripheral blood mononuclear cells (in vitro study).

    PubMed

    Michałowicz, Jaromir; Mokra, Katarzyna; Bąk, Agata

    2015-10-01

    Few studies have addressed the cellular effects of bisphenol S (BPS) and bisphenol AF (BPAF) on cells, and no study has been conducted to analyze the mechanism of action of bisphenols in blood cells. In this study, the effect of bisphenol A (BPA), bisphenol F (BPF), BPS and BPAF on human peripheral blood mononuclear cells (PBMCs) was analyzed. It was shown that BPA, BPF and BPAF in particular, decreased cell viability, which was associated with depletion of intracellular ATP level and alterations in PBMCs size and granulation. Bisphenols enhanced ROS (including OH˙) formation, which led to damage to lipids and proteins in PBMCs. The most significant alterations in ROS level were induced by BPF, and particularly BPAF. Moreover, it was shown that BPAF most strongly provoked lipid peroxidation, while BPA and BPS caused the greatest damage to proteins. It may be concluded that BPA and its analogs were capable of inducing oxidative stress and damage in PBMCs in the concentrations ranging from 0.06 to 0.5 μM (0.02-0.1 μg/ml), which may be present in human blood as a result of environmental exposure. Although, most of bisphenols studied decreased cell viability, size and ATP level at higher concentrations, BPAF exhibited its cytotoxic potential at low concentrations ranging from 0.3 to 3 μM (0.1-1.0 μg/ml) that may correspond to concentrations in humans following occupational exposure. PMID:26028149

  10. Bisphenol A and its analogs induce morphological and biochemical alterations in human peripheral blood mononuclear cells (in vitro study).

    PubMed

    Michałowicz, Jaromir; Mokra, Katarzyna; Bąk, Agata

    2015-10-01

    Few studies have addressed the cellular effects of bisphenol S (BPS) and bisphenol AF (BPAF) on cells, and no study has been conducted to analyze the mechanism of action of bisphenols in blood cells. In this study, the effect of bisphenol A (BPA), bisphenol F (BPF), BPS and BPAF on human peripheral blood mononuclear cells (PBMCs) was analyzed. It was shown that BPA, BPF and BPAF in particular, decreased cell viability, which was associated with depletion of intracellular ATP level and alterations in PBMCs size and granulation. Bisphenols enhanced ROS (including OH˙) formation, which led to damage to lipids and proteins in PBMCs. The most significant alterations in ROS level were induced by BPF, and particularly BPAF. Moreover, it was shown that BPAF most strongly provoked lipid peroxidation, while BPA and BPS caused the greatest damage to proteins. It may be concluded that BPA and its analogs were capable of inducing oxidative stress and damage in PBMCs in the concentrations ranging from 0.06 to 0.5 μM (0.02-0.1 μg/ml), which may be present in human blood as a result of environmental exposure. Although, most of bisphenols studied decreased cell viability, size and ATP level at higher concentrations, BPAF exhibited its cytotoxic potential at low concentrations ranging from 0.3 to 3 μM (0.1-1.0 μg/ml) that may correspond to concentrations in humans following occupational exposure.

  11. Alteration of Kupffer cell function and morphology by low melt point paraffin wax in female Fischer-344 but not Sprague-Dawley rats.

    PubMed

    Hoglen, N C; Regan, S P; Hensel, J L; Younis, H S; Sauer, J M; Steup, D R; Miller, M J; Waterman, S J; Twerdok, L E; Sipes, I G

    1998-11-01

    This study was conducted to compare the effects of 60-day dietary exposure (2%) to low melt point paraffin wax (LMPW) on both general liver morphology and Kupffer cell (KC) function and morphology in female F-344 and Sprague-Dawley (SD) rats. Livers from only F-344 rats fed LMPW had granuloma formation/lymphoid cell aggregates with small areas of necrosis. Significant increases in serum alanine and aspartate aminotransferase as well as gamma-glutamyltransferase activities were detected only in treated F-344 rats. Additionally, detectable amounts of LMPW were present only in livers of treated F-344 rats. Because KC can be involved in granuloma formation, their morphology and function were examined. Electron microscopy revealed the presence of large, irregularly shaped, membrane-associated vacuoles in cells isolated from F-344 rats exposed to LMPW. These vacuoles were not seen in KC from control rats and rarely detected in KC isolated from LMPW-exposed SD rats. Moreover, indices of KC function including phagocytic activity and nitric oxide and superoxide anion production were significantly increased by KC isolated from F-344 rats exposed to LMPW (1.6-, 36-, and 2.2-fold increases, respectively) over untreated controls. In contrast, LPS-stimulated production of TNF and LTB4 was significantly decreased only in KC of LMPW-fed F-344 rats. No significant changes in these functions were observed in KC isolated from SD rats exposed to LMPW or from KC isolated from control F-344 or SD rats. These data provide evidence that dietary LMPW alters the morphology and functional capacity of KC of F-344 but not SD rats and these changes may ultimately lead to granuloma formation.

  12. Virus-induced gene silencing of PEAM4 affects floral morphology by altering the expression pattern of PsSOC1a and PsPVP in pea.

    PubMed

    Chen, Zhe-Hao; Jia, Fei-Fei; Hu, Jiang-Qin; Pang, Ji-Liang; Xu, Lei; Wang, Li-Lin

    2014-01-15

    pea-MADS4 (PEAM4) regulates floral morphology in Pisum sativum L., however, its molecular mechanisms still remain unclear. Virus-induced gene silencing (VIGS) is a recently developed reverse genetic approach that facilities an easier and more rapid study of gene functions. In this study, the PEAM4 gene was effectively silenced by VIGS using a pea early browning virus (PEBV) in wild type pea JI992. The infected plants showed abnormal phenotypes, as the floral organs, especially the sepals and petals changed in both size and shape, which made the corolla less closed. The petals changed in morphology and internal symmetry with, the stamens reduced and carpel dehisced. Larger sepals and longer tendrils with small cauline leaves appeared, with some sepals turning into bracts, and secondary inflorescences with fused floral organs were formed, indicating a flower-to-inflorescence change. The infected plants also displayed a delayed and prolonged flowering time. The PEAM4-VIGS plants with altered floral morphology were similar to the pim (proliferating inflorescence meristem) mutant and also mimicked the phenotypes of ap1 mutants in Arabidopsis. The expression pattern of the homologous genes PsSOC1a and PsSVP, which were involved in flowering time and florescence morphological control downstream of PEAM4, were analyzed by real-time RT-PCR and mRNA in situ hybridization. PsSOC1a and PsSVP were ectopically expressed and enhanced in the floral meristems from PEAM4-silenced plants. Our data suggests that PEAM4 may have a similar molecular mechanism as AtAP1, which inhibits the expression of PsSOC1a and PsSVP in the floral meristem from the early stages of flower development. As such, in this way PEAM4 plays a crucial role in maintaining floral organ identity and flower development in pea.

  13. Virus-induced gene silencing of PEAM4 affects floral morphology by altering the expression pattern of PsSOC1a and PsPVP in pea.

    PubMed

    Chen, Zhe-Hao; Jia, Fei-Fei; Hu, Jiang-Qin; Pang, Ji-Liang; Xu, Lei; Wang, Li-Lin

    2014-01-15

    pea-MADS4 (PEAM4) regulates floral morphology in Pisum sativum L., however, its molecular mechanisms still remain unclear. Virus-induced gene silencing (VIGS) is a recently developed reverse genetic approach that facilities an easier and more rapid study of gene functions. In this study, the PEAM4 gene was effectively silenced by VIGS using a pea early browning virus (PEBV) in wild type pea JI992. The infected plants showed abnormal phenotypes, as the floral organs, especially the sepals and petals changed in both size and shape, which made the corolla less closed. The petals changed in morphology and internal symmetry with, the stamens reduced and carpel dehisced. Larger sepals and longer tendrils with small cauline leaves appeared, with some sepals turning into bracts, and secondary inflorescences with fused floral organs were formed, indicating a flower-to-inflorescence change. The infected plants also displayed a delayed and prolonged flowering time. The PEAM4-VIGS plants with altered floral morphology were similar to the pim (proliferating inflorescence meristem) mutant and also mimicked the phenotypes of ap1 mutants in Arabidopsis. The expression pattern of the homologous genes PsSOC1a and PsSVP, which were involved in flowering time and florescence morphological control downstream of PEAM4, were analyzed by real-time RT-PCR and mRNA in situ hybridization. PsSOC1a and PsSVP were ectopically expressed and enhanced in the floral meristems from PEAM4-silenced plants. Our data suggests that PEAM4 may have a similar molecular mechanism as AtAP1, which inhibits the expression of PsSOC1a and PsSVP in the floral meristem from the early stages of flower development. As such, in this way PEAM4 plays a crucial role in maintaining floral organ identity and flower development in pea. PMID:24331430

  14. New insights into the thermal behaviour of organic ionic plastic crystals: magnetic resonance imaging of polycrystalline morphology alterations induced by solid-solid phase transitions.

    PubMed

    Romanenko, Konstantin; Pringle, Jennifer M; O'Dell, Luke A; Forsyth, Maria

    2015-07-15

    Organic ionic plastic crystals (OIPCs) show strong potential as solid-state electrolytes for lithium battery applications, demonstrating promising electrochemical performance and eliminating the need for a volatile and flammable liquid electrolyte. The ionic conductivity (σ) in these systems has recently been shown to depend strongly on polycrystalline morphology, which is largely determined by the sample's thermal history. [K. Romanenko et al., J. Am. Chem. Soc., 2014, 136, 15638]. Tailoring this morphology could lead to conductivities sufficiently high for battery applications, so a more complete understanding of how phenomena such as solid-solid phase transitions can affect the sample morphology is of significant interest. Anisotropic relaxation of nuclear spin magnetisation provides a new MRI based approach for studies of polycrystalline materials at both a macroscopic and molecular level. In this contribution, morphology alterations induced by solid-solid phase transitions in triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI) and diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate (P1224PF6) are examined using magnetic resonance imaging (MRI), alongside nuclear magnetic resonance (NMR) spectroscopy, diffusion measurements and conductivity data. These observations are linked to molecular dynamics and structural behaviour crucial for the conductive properties of OIPCs. A distinct correlation is established between the conductivity at a given temperature, σ(T), and the intensity of the narrow NMR signal that is attributed to a mobile fraction, fm(T), of ions in the OIPC. To explain these findings we propose an analogy with the well-studied relationship between permeability (k) and void fraction (θ) in porous media, with k(θ) commonly quantified by a power-law dependence that can also be employed to describe σ(fm).

  15. p53 alteration in morphologically normal/benign breast tissue in patients with triple-negative high-grade breast carcinomas: breast p53 signature?

    PubMed

    Wang, Xi; Stolla, Moritz; Ring, Brian Z; Yang, Qi; Laughlin, Todd S; Rothberg, Paul G; Skinner, Kristin; Hicks, David G

    2016-09-01

    p53 alterations have been identified in approximately 23% of breast carcinomas, particularly in hormone receptor-negative high-grade carcinomas. It is considered to be an early event in breast carcinogenesis. Nevertheless, the putative precursor lesion of high-grade breast carcinoma remains elusive. Breast excision specimens from 93 triple-negative high-grade invasive ductal carcinomas, 48 estrogen receptor (ER)-positive/progesterone receptor-positive/Her2-negative non-high-grade invasive ductal carcinomas, and 50 mammoplasty breasts were selected. At least 2 tissue blocks with tumor and adjacent benign tissue were sectioned and subjected to immunohistochemistry staining for p53. TP53 gene sequencing was performed on select tumors. Further immunohistochemistry staining for ER and Ki-67 was performed on consecutive sections of tissue with p53-positive normal/benign cells. Of the 93 high-grade carcinomas, 51 (55%) were positive for p53 alteration, whereas only 3 (6.25%) of the 48 non-high-grade carcinomas were p53 altered. Focal p53 positivity in adjacent normal/benign breast tissue was identified in 19 cases, and 18 of them also had p53 alteration in their carcinomas. Only 1 case had focal p53 staining in normal/benign tissue, but the tumor was negative for p53 alteration. No p53 staining positivity was identified in the mammoplasty specimens. The p53-stained normal/benign cells were ER negative and did not show an increase in the Ki-67 labeling index. These findings indicate that the p53 staining positivity in normal/benign breast tissue is not a random event. It could be considered as the "p53 signature" in breast and serve as an indicator for future potential risk of p53-positive high-grade breast carcinoma.

  16. Retinol induces morphological alterations and proliferative focus formation through free radical-mediated activation of multiple signaling pathways

    PubMed Central

    Gelain, Daniel Pens; Pasquali, Matheus Augusto de Bittencourt; Caregnato, Fernanda Freitas; Castro, Mauro Antonio Alves; Moreira, José Claudio Fonseca

    2012-01-01

    Aim: Toxicity of retinol (vitamin A) has been previously associated with apoptosis and/or cell malignant transformation. Thus, we investigated the pathways involved in the induction of proliferation, deformation and proliferative focus formation by retinol in cultured Sertoli cells of rats. Methods: Sertoli cells were isolated from immature rats and cultured. The cells were subjected to a 24-h treatment with different concentrations of retinol. Parameters of oxidative stress and cytotoxicity were analyzed. The effects of the p38 inhibitor SB203580 (10 μmol/L), the JNK inhibitor SP600125 (10 μmol/L), the Akt inhibitor LY294002 (10 μmol/L), the ERK inhibitor U0126 (10 μmol/L) the pan-PKC inhibitor Gö6983 (10 μmol/L) and the PKA inhibitor H89 (1 μmol/L) on morphological and proliferative/transformation-associated modifications were studied. Results: Retinol (7 and 14 μmol/L) significantly increases the reactive species production in Sertoli cells. Inhibition of p38, JNK, ERK1/2, Akt, and PKA suppressed retinol-induced [3H]dT incorporation into the cells, while PKC inhibition had no effect. ERK1/2 and p38 inhibition also blocked retinol-induced proliferative focus formation in the cells, while Akt and JNK inhibition partially decreased focus formation. ERK1/2 and p38 inhibition hindered transformation-associated deformation in retinol-treated cells, while other treatments had no effect. Conclusion: Our results suggest that activation of multiple kinases is responsible for morphological and proliferative changes associated to malignancy development in Sertoli cells by retinol at the concentrations higher than physiological level. PMID:22426700

  17. A nucleolar protein that affects mating efficiency in Saccharomyces cerevisiae by altering the morphological response to pheromone.

    PubMed Central

    Kim, J; Hirsch, J P

    1998-01-01

    SSF1 and SSF2 are redundant essential yeast genes that, when overexpressed, increase the mating efficiency of cells containing a defective Ste4p Gbeta subunit. To identify the precise function of these genes in mating, different responses to pheromone were assayed in cells that either lacked or overexpressed SSF gene products. Cells containing null alleles of both SSF1 and SSF2 displayed the normal transcriptional induction response to pheromone but were unable to form mating projections. Overexpression of SSF1 conferred the ability to form mating projections on cells containing a temperature-sensitive STE4 allele, but had only a small effect on transcriptional induction. SSF1 overexpression preferentially increased the mating efficiency of a strain containing a null allele of SPA2, a gene that functions specifically in cell morphology. To investigate whether Ssf1p plays a direct physical role in mating projection formation, its subcellular location was determined. An Ssf1p-GFP fusion was found to localize to the nucleolus, implying that the role of SSF gene products in projection formation is indirect. The region of Ssf1p-GFP localization in cells undergoing projection formation was larger and more diffuse, and was often present in a specific orientation with respect to the projection. Although the function of Ssf1p appears to originate in the nucleus, it is likely that it ultimately acts on one or more of the proteins that is directly involved in the morphological response to pheromone. Because many of the proteins required for projection formation during mating are also required for bud formation during vegetative growth, regulation of the activity or amount of one or more of these proteins by Ssf1p could explain its role in both mating and dividing cells. PMID:9611192

  18. Chemotactic selection with insulin, di-iodotyrosine and histamine alters the phagocytotic responsiveness of Tetrahymena.

    PubMed

    Schiess, N; Csaba, G; Kohidai, L

    2001-04-01

    Chemotactic selection is a method by which populations of cells exposed to ligands can be isolated and subsequently cultivated. We used Tetrahymena pyriformis GL cultures selected by chemotactic selection to insulin (10 nM), histamine (0.1 nM) and di-iodotyrosine (T2, 10 nM) to study the phagocytotic capacity under the induction of selector hormones. Our results show a long-lasting link between chemotactically selected cultures and phagocytotic activity. Cells selected to histamine produced the highest phagocytotic activity upon a second exposure to the selector hormone. T2 selection was also strongly effective, however, the phagocytosis stimulation was not specific to the hormone given later. Insulin selected sub-populations had different phagocytotic responses to the control substance itself, whereas histamine selected sub-populations seem to be heterogeneous in the phagocytotic response to histamine. For insulin, the increased endocytotic or metabolic activity was demonstrated by the lack of non-phagocytotic cells. These experiments call attention to the evolutionary role of selection in the later developing receptor-hormone relationship.

  19. Protective Effect of Urtica dioica L. (Urticaceae) on Morphometric and Morphologic Alterations of Seminiferous Tubules in STZ Diabetic Rats

    PubMed Central

    Golalipour, Mohammad Jafar; Kabiri Balajadeh, Babak; Ghafari, Soraya; Azarhosh, Ramin; Khori, Vahid

    2011-01-01

    Objective(s) Urtica dioica L. has been known as a medicinal plant in the world. This study was conducted to determine the effects of the hydroalcoholic extract of Urtica dioica leaves on seminiferous tubules of diabetic rats. Materials and Methods Animals were allocated to control, diabetic and protective groups. Treated animals received extract of U. dioica (100 mg/ kg/ day) IP for the first 5 days and STZ injection on the 6th day. After 5 weeks, testes removed and stained with H&E technique. Results Tubular cell disintegration, sertoli and spermatogonia cell vacuolization, and decrease in sperm concentration observed in diabetic in comparison with control and protective groups. External seminiferous tubular diameter and seminiferous epithelial height significantly reduced (P< 0.05) in diabetic compared with controls, and these parameters increased (P< 0.05) in the treated compared with diabetics. Conclusion Hydroalcoholic extract of U. dioica, before induction of diabetes; has protective role on seminiferous tubules alterations. PMID:23493848

  20. Altered brain morphology and functional connectivity reflect a vulnerable affective state after cumulative multigenerational stress in rats.

    PubMed

    McCreary, J Keiko; Truica, L Sorina; Friesen, Becky; Yao, Youli; Olson, David M; Kovalchuk, Igor; Cross, Albert R; Metz, Gerlinde A S

    2016-08-25

    Prenatal stress is a risk factor for abnormal neuroanatomical, cognitive, behavioral and mental health outcomes with potentially transgenerational consequences. Females in general seem more resilient to the effects of prenatal stress than males. Here, we examined if repeated stress across generations may diminish stress resiliency and cumulatively enhance the susceptibility for adverse health outcomes in females. Pregnant female rats of three successive generations were exposed to stress from gestational days 12-18 to generate multigenerational prenatal stress (MPS) in the maternal lineage. Stress response was measured by plasma corticosterone levels and open-field exploration in each generation. Neuromorphological consequences of MPS were investigated in the F3 generation using in vivo manganese-enhanced magnetic resonance imaging (MEMRI), T2-relaxometry, and cytoarchitectonics in relation to candidate gene expression involved in brain plasticity and mental health. Each additional generation of prenatal stress incrementally elevated hypothalamic-pituitary-adrenal axis activation, anxiety-like and aversive behaviors in adult female offspring. Elevated stress responses in the MPS F3 generation were accompanied by reduced neural density in prefrontal cortex, hippocampus and whole brain along with altered brain activation patterns in in vivo MEMRI. MPS increased ephrin receptor A5 (Epha5), neuronal growth regulator (Negr1) and synaptosomal-associated protein 25 (Snap25) gene expression and reduced fibroblast growth factor 12 (Fgf12) in prefrontal cortex. These genes regulate neuronal maturation, arborization and synaptic plasticity and may explain altered brain cytoarchitectonics and connectivity. These findings emphasize that recurrent stress across generations may cumulatively increase stress vulnerability and the risk of adverse health outcomes through perinatal programing in females. PMID:27241944

  1. Dietary vitamin E and pulmonary biochemical and morphological alterations of rats exposed to 0. 1 ppM ozone

    SciTech Connect

    Chow, C.K.; Plopper, C.G.; Chiu, M.; Dungworth, D.L.

    1981-04-01

    Three groups of 28 1-month-old male Sprague-Dawley rats each were fed a basal vitamin E-deficient diet and supplemented with either 0, 11, or 110 ppM vitamin E for 38 days, and were then exposed to 0 or 0.1 ppM ozone continuously for 7 days. Following ozone exposure, the level of reduced glutathione (GSH) and activities of GSH peroxidase, GSH reductase, glucose-6-phosphate dehydrogenase (G-6-PD), and lactate dehydrogenase (LDH), but not of malic dehydrogenase, were significantly elevated in the lungs of rats fed the vitamin E deficient diet. The level of GSH and activities of GSH peroxidase and G-6-PD were also significantly increased in the lungs of the animal group fed the 11 ppM vitamin E diet, while none of the biochemical measurements made was significantly altered by ozone in the 110-ppM vitamin E diet fed rats. Scanning electron microscope examination revealed that five out of six rats on the vitamin E-deficient diet and four out of six from the 11-ppM vitamin E diet had detectable lesions following ozone exposure, as compared with only one of the six exposed animals from the 110-ppM vitamin E diet. The lesion was restricted to bronchiolar epithelium and alveoli immediately adjacent to the bronchiole-alveolar duct junction. None of the control animals had detectable lesions. The results suggest that exposure to ozone at 0.1-ppM level can produce detectable pulmonary damage, and that dietary vitamin E alters pulmonary susceptibility to ozone exposure.

  2. 17alpha-ethinylestradiol alters reproductive behaviors, circulating hormones, and sexual morphology in male fathead minnows (Pimephales promelas).

    PubMed

    Salierno, James D; Kane, Andrew S

    2009-05-01

    Ecologically relevant indicators of endocrine disruption in fish must be linked with measures of reproductive success. The ability of male fathead minnows (Pimephales promelas) to compete for, maintain, and defend a spawning substrate is paramount to reproductive success. The present study quantified alterations in male fathead minnow reproductive behaviors after exposure to environmentally relevant concentrations (0, 10, 20, or 40 ng/L) of 17alpha-ethinylestradiol (EE2) for 21 d. A video-based behavioral quantification system examined changes in male-male competitive behaviors (chasing and head-butting) and ability of males to maintain spawning substrates (nibbling and scrubbing). Behaviors analyzed included time under the spawning substrate, frequency of substrate cleaning, and conspecific aggression. Plasma hormone levels (11-ketotestosterone [11-KT], testosterone, and estradiol [E2]), vitellogenin (VTG), secondary male characteristics (tubercle count and dorsal nape pad rank), gonadosomatic index (GSI), and gonad histology also were evaluated. Exposure to 40 ng/L of EE2 decreased the ability of exposed males to compete with control males for spawning substrates (p = 0.09). Furthermore, exposed males displayed reduced frequency of substrate cleaning activities as well as chasing male competitors (p < or = 0.05). 11-Ketotestosterone, testosterone, and E2 were lower, and VTG was notably higher, in EE2-exposed males compared with control males (p < or = 0.03). 17alpha-Ethinylestradiol exposure in males also was associated with reductions in tubercles; lower GSI, gonadal maturity ranks, and number of resorbed tubercles; and presence of an ovipositor (p < or = 0.001). These data reveal alterations in male reproductive behavior that coincide with decreased hormone levels and secondary sex characteristics. Behavioral endpoints to discern potential ecological consequences in fish exposed to low concentrations of endocrine-disrupting chemicals may provide sensitive and

  3. Down-regulation of the cancer/testis antigen 45 (CT45) is associated with altered tumor cell morphology, adhesion and migration

    PubMed Central

    2013-01-01

    Background Due to their restricted expression in male germ cells and certain tumors, cancer/testis (CT) antigens are regarded as promising targets for tumor therapy. CT45 is a recently identified nuclear CT antigen that was associated with a severe disease score in Hodgkin’s lymphoma and poor prognosis in multiple myeloma. As for many CT antigens, the biological function of CT45 in developing germ cells and in tumor cells is largely unknown. Methods CT45 expression was down-regulated in CT45-positive Hodgkin’s lymphoma (L428), fibrosarcoma (HT1080) and myeloma (U266B1) cells using RNA interference. An efficient CT45 knock-down was confirmed by immunofluorescence staining and/or Western blotting. These cellular systems allowed us to analyze the impact of CT45 down-regulation on proliferation, cell cycle progression, morphology, adhesion, migration and invasive capacity of tumor cells. Results Reduced levels of CT45 did not coincide with changes in cell cycle progression or proliferation. However, we observed alterations in cell adherence, morphology and migration/invasion after CT45 down-regulation. Significant changes in the distribution of cytoskeleton-associated proteins were detected by confocal imaging. Changes in cell adherence were recorded in real-time using the xCelligence system with control and siRNA-treated cells. Altered migratory and invasive capacity of CT45 siRNA-treated cells were visualized in 3D migration and invasion assays. Moreover, we found that CT45 down-regulation altered the level of the heterogeneous nuclear ribonucleoprotein syncrip (hnRNP-Q1) which is known to be involved in the control of focal adhesion formation and cell motility. Conclusions Providing first evidence of a cell biological function of CT45, we suggest that this cancer/testis antigen is involved in the modulation of cell morphology, cell adherence and cell motility. Enhanced motility and/or invasiveness of CT45-positive cells could contribute to the more severe

  4. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation.

    PubMed

    Chen, Jun; Joshi, Shailen K; DiDomenico, Stanley; Perner, Richard J; Mikusa, Joe P; Gauvin, Donna M; Segreti, Jason A; Han, Ping; Zhang, Xu-Feng; Niforatos, Wende; Bianchi, Bruce R; Baker, Scott J; Zhong, Chengmin; Simler, Gricelda H; McDonald, Heath A; Schmidt, Robert G; McGaraughty, Steve P; Chu, Katharine L; Faltynek, Connie R; Kort, Michael E; Reilly, Regina M; Kym, Philip R

    2011-05-01

    Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). It is >1000-fold selective over other TRP channels, and is >150-fold selective over 75 other ion channels, enzymes, and G-protein-coupled receptors. Oral dosing of A-967079 produces robust drug exposure in rodents, and exhibits analgesic efficacy in allyl isothiocyanate-induced nocifensive response and osteoarthritic pain in rats (ED(50): 23.2 mg/kg, p.o.). A-967079 attenuates cold allodynia produced by nerve injury but does not alter noxious cold sensation in naive animals, suggesting distinct roles of TRPA1 in physiological and pathological states. Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects.

  5. Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott-Aldrich syndrome.

    PubMed

    Kolhatkar, Nikita S; Brahmandam, Archana; Thouvenel, Christopher D; Becker-Herman, Shirly; Jacobs, Holly M; Schwartz, Marc A; Allenspach, Eric J; Khim, Socheath; Panigrahi, Anil K; Luning Prak, Eline T; Thrasher, Adrian J; Notarangelo, Luigi D; Candotti, Fabio; Torgerson, Troy R; Sanz, Ignacio; Rawlings, David J

    2015-09-21

    Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disorder frequently associated with systemic autoimmunity, including autoantibody-mediated cytopenias. WAS protein (WASp)-deficient B cells have increased B cell receptor (BCR) and Toll-like receptor (TLR) signaling, suggesting that these pathways might impact establishment of the mature, naive BCR repertoire. To directly investigate this possibility, we evaluated naive B cell specificity and composition in WASp-deficient mice and WAS subjects (n = 12). High-throughput sequencing and single-cell cloning analysis of the BCR repertoire revealed altered heavy chain usage and enrichment for low-affinity self-reactive specificities in murine marginal zone and human naive B cells. Although negative selection mechanisms including deletion, anergy, and receptor editing were relatively unperturbed, WASp-deficient transitional B cells showed enhanced proliferation in vivo mediated by antigen- and Myd88-dependent signals. Finally, using both BCR sequencing and cell surface analysis with a monoclonal antibody recognizing an intrinsically autoreactive heavy chain, we show enrichment in self-reactive cells specifically at the transitional to naive mature B cell stage in WAS subjects. Our combined data support a model wherein modest alterations in B cell-intrinsic, BCR, and TLR signals in WAS, and likely other autoimmune disorders, are sufficient to alter B cell tolerance via positive selection of self-reactive transitional B cells. PMID:26371186

  6. Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott-Aldrich syndrome

    PubMed Central

    Kolhatkar, Nikita S.; Brahmandam, Archana; Thouvenel, Christopher D.; Becker-Herman, Shirly; Jacobs, Holly M.; Schwartz, Marc A.; Allenspach, Eric J.; Khim, Socheath; Panigrahi, Anil K.; Luning Prak, Eline T.; Thrasher, Adrian J.; Notarangelo, Luigi D.; Candotti, Fabio; Torgerson, Troy R.; Sanz, Ignacio

    2015-01-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disorder frequently associated with systemic autoimmunity, including autoantibody-mediated cytopenias. WAS protein (WASp)–deficient B cells have increased B cell receptor (BCR) and Toll-like receptor (TLR) signaling, suggesting that these pathways might impact establishment of the mature, naive BCR repertoire. To directly investigate this possibility, we evaluated naive B cell specificity and composition in WASp-deficient mice and WAS subjects (n = 12). High-throughput sequencing and single-cell cloning analysis of the BCR repertoire revealed altered heavy chain usage and enrichment for low-affinity self-reactive specificities in murine marginal zone and human naive B cells. Although negative selection mechanisms including deletion, anergy, and receptor editing were relatively unperturbed, WASp-deficient transitional B cells showed enhanced proliferation in vivo mediated by antigen- and Myd88-dependent signals. Finally, using both BCR sequencing and cell surface analysis with a monoclonal antibody recognizing an intrinsically autoreactive heavy chain, we show enrichment in self-reactive cells specifically at the transitional to naive mature B cell stage in WAS subjects. Our combined data support a model wherein modest alterations in B cell–intrinsic, BCR, and TLR signals in WAS, and likely other autoimmune disorders, are sufficient to alter B cell tolerance via positive selection of self-reactive transitional B cells. PMID:26371186

  7. Successful childbirth after intracytoplasmic morphologically selected sperm injection without assisted oocyte activation in a patient with globozoospermia.

    PubMed

    Sermondade, N; Hafhouf, E; Dupont, C; Bechoua, S; Palacios, C; Eustache, F; Poncelet, C; Benzacken, B; Lévy, R; Sifer, C

    2011-11-01

    We here report a successful pregnancy and healthy childbirth obtained in a case of total globozoospermia after intracytoplasmic morphologically selected sperm injection (IMSI) without assisted oocyte activation (AOA). Two semen analyses showed 100% globozoospermia on classic spermocytogram. Motile sperm organelle morphology examination (MSOME) analysis at ×10,000 magnification confirmed the round-headed aspect for 100% of sperm cells, but 1% of the spermatozoa seemed to present a small bud of acrosome. This particular aspect was confirmed by transmission electron microscopy and anti-CD46 staining analysis. Results from sperm DNA fragmentation and fluorescence in situ hybridization analyses were normal. The karyotype was 46XY, and no mutations or deletions in SPATA16 and DPY19L2 genes were detected. Considering these results, a single IMSI cycle was performed, and spermatozoa were selected for the absence of vacuoles and the presence of a small bud of acrosome. A comparable fertilization rate with or without calcium-ionophore AOA was observed. Two fresh top-quality embryos obtained without AOA were transferred at Day 2 after IMSI, leading to pregnancy and birth of a healthy baby boy. This successful outcome suggests that MSOME may be useful in cases of globozoospermia in order to carefully evaluate sperm morphology and to maximize the benefit of ICSI/IMSI.

  8. Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents

    PubMed Central

    Chavis, Michelle A.; Smilgies, Detlef-M.; Wiesner, Ulrich B.; Ober, Christopher K.

    2015-01-01

    Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, we investigated solvent vapor annealing in supported thin films of poly(2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate) [PHEMA-b-PMMA] by means of grazing incidence small angle X–ray scattering (GISAXS). A spin-coated thin film of lamellar block copolymer was solvent vapor annealed to induce microphase separation and improve the long-range order of the self-assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents (methanol, MeOH, and tetrahydrofuran, THF), which are chosen to be preferential for each block, enabled selective formation of ordered lamellae, gyroid, hexagonal or spherical morphologies from a single block copolymer with a fixed volume fraction. The selected microstructure was then kinetically trapped in the dry film by rapid drying. To our knowledge, this paper describes the first reported case where in-situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram. PMID:26819574

  9. Morphological comparison between a selected fast-growing strain and the common cultured strain of turbot Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Liang, Xingming; Ma, Aijun; Wang, Xin'an; Li, Juan; Huang, Zhihui; Shang, Xiaomei

    2012-07-01

    To evaluate the effect of genetic improvement of the turbot Scophthalmus maximus, we analyzed morphological differences between a fast-growing strain obtained by family selection and the common cultured strain, by principal component analysis, stepwise discriminant analysis, and t -tests. Although they clearly differed morphologically, plots of the principal components of the two strains partially overlapped. However, the difference between the strains was supported with very high precision by discriminant analysis. The t -tests revealed that 4 of the 13 morphological traits analyzed were highly significantly different ( P <0.01), 4 traits also differed significantly ( P <0.05), and the remainder did not differ significantly. The coefficients of difference of the 13 traits were all lower than the threshold value between subspecies (1.28). Together, the results indicate that a trend for segregation of characters from the common cultured strain have already appeared in the selected fast-growing strain but the degree of segregation have not risen to subspecies level.

  10. Soluble polysaccharide and biomass of red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats.

    PubMed

    Dvir, I; Chayoth, R; Sod-Moriah, U; Shany, S; Nyska, A; Stark, A H; Madar, Z; Arad, S M

    2000-10-01

    The present study investigated the effects of the red microalga Porphyridium sp. on gastrointestinal physiology and lipid metabolism in male Sprague-Dawley rats. Diets containing dietary fibre from pelleted red microalgal cells (biomass) or their sulfated polysaccharide, pectin or cellulose (control) were fed to rats for a period of 30 d. All three fibre-supplemented diets increased the length of both the small intestine and colon, with a significantly greater effect in rats fed the algal polysaccharide. The polysaccharide also increased mucosa and muscularis cross-sectional area of the jejunum, and caused hypertrophy in the muscularis layer. The algal biomass significantly lowered gastrointestinal transit time by 44% in comparison with the control rats. Serum and mucosal cholecystokinin levels were lower in rats on the pectin and polysaccharide diets, while cholecystokinin levels in rats fed algal biomass were not different from those in the control animals. In comparison with the control diet, all the experimental diets significantly lowered serum cholesterol levels (22-29%). Feeding of non-fermentable algal polysaccharide or biomass significantly increased faecal weight and bile acid excretion compared with pectin-fed or control rats. The algal polysaccharide and biomass were thus shown to be potent hypocholesterolaemic agents active at low concentrations in the diet. Both metabolic and morphological changes were observed following consumption of algae, suggesting several possible mechanisms by which the alga affects lipid metabolism. The results presented in the present study encourage the use of red microalga as a functional food.

  11. Altered gill morphology in benthic macroinvertebrates from mercury enriched streams in the Neversink Reservoir Watershed, New York.

    PubMed

    Skinner, Kathleen M; Bennett, Jessica D

    2007-04-01

    Aquatic macroinvertebrates were collected from five sites in the Neversink Reservoir Watershed in Sullivan County, New York: Aden Brook, Biscuit Brook, Main Branch, Tison and Winnisook, and examined for gill abnormalities. The Neversink Reservoir is part of the New York City water supply system and is located in the Catskill Mountains. Total mercury and methylmercury concentrations were measured by the New York State Department of Environmental Conservation (NYSDEC) in composite samples of macroinvertebrates at the five sites and ranged from 13.6 to 20.9 ng/g total mercury and 2.4-9.8 ng/g methylmercury. Gill deformities in the organisms were evident from each sampling site. These were observed as puckering or dimpling of the gill lamellae and interior spotting. The greatest percentage of gill morphological abnormalities were from invertebrates at the Main Branch site where 28% of invertebrate gills exhibited abnormalities. This site had the highest mercury/methylmercury concentration in composite invertebrate samples. Macroinvertebrates from a reference location showed little evidence of gill abnormalities. Other factors may have contributed to the abnormalities such as dissolved oxygen, pH, temperature, other contaminants, and/or stream profiles.

  12. Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549).

    PubMed

    Gualtieri, Maurizio; Mantecca, Paride; Corvaja, Viviana; Longhin, Eleonora; Perrone, Maria Grazia; Bolzacchini, Ezio; Camatini, Marina

    2009-07-10

    Samples of PM(2.5) were gravimetrically collected during the winter 2005/2006 in the urban area of Milan (North Italy). Samples were chemically characterized and the particles were detached from filters to determine their cytotoxic effects on the A549 cell line. Based on the potential toxicological relevance of its components, Milan winter PM(2.5) contained high concentrations of pro-oxidant transition metals and PAHs, while re-suspended particles showed a relatively high frequency of dimensional classes ranging from 40 nm to 300 nm. A549 cells exposed to particle suspensions showed a concentration-dependent decrease in viability, starting from 10 microg/cm(2). Phagocytosis of particles by A549 cells and particle aggregates were morphologically characterized and seemed to depend on both particle concentration and exposure time, with the majority of particles being engulfed in membrane-bound vacuoles after 24h of exposure. The ability of ultrafine particles to penetrate and spread throughout the cells was also verified. Cell membrane lysis and mitochondrial ultrastructural disruption appeared to be the main modifications induced by PM(2.5) on A549 cells. Concomitantly to the adverse effects observed in terms of cell mortality and ultrastructural lesions, a significant intracellular production of reactive oxygen species (ROS) was observed, suggesting that the cytotoxicity, exerted by the winter PM(2.5) in Milan, derived also from its oxidative potential, probably associated with particle-adsorbed metals and PAHs. PMID:19433270

  13. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    PubMed

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.

  14. Reconstructing impairment of secretory ameloblast function in porcine teeth by analysis of morphological alterations in dental enamel

    PubMed Central

    Witzel, Carsten; Kierdorf, Uwe; Dobney, Keith; Ervynck, Anton; Vanpoucke, Sofie; Kierdorf, Horst

    2006-01-01

    We studied the relationship between the macroscopic appearance of hypoplastic defects in the dental enamel of wild boar and domestic pigs, and microstructural enamel changes, at both the light and the scanning electron microscopic levels. Deviations from normal enamel microstructure were used to reconstruct the functional and related morphological changes of the secretory ameloblasts caused by the action of stress factors during amelogenesis. The deduced reaction pattern of the secretory ameloblasts can be grouped in a sequence of increasingly severe impairments of cell function. The reactions ranged from a slight enhancement of the periodicity of enamel matrix secretion, over a temporary reduction in the amount of secreted enamel matrix, with reduction of the distal portion of the Tomes' process, to either a temporary or a definite cessation of matrix formation. The results demonstrate that analysis of structural changes in dental enamel allows a detailed reconstruction of the reaction of secretory ameloblasts to stress events, enabling an assessment of duration and intensity of these events. Analysing the deviations from normal enamel microstructure provides a deeper insight into the cellular changes underlying the formation of hypoplastic enamel defects than can be achieved by mere inspection of tooth surface characteristics alone. PMID:16822273

  15. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    PubMed

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. PMID:26569044

  16. Morphological evolution and electronic alteration of ZnO nanomaterials induced by Ni/Fe co-doping.

    PubMed

    Fletcher, Cameron; Jiang, Yijiao; Sun, Chenghua; Amal, Rose

    2014-07-01

    Zinc oxide (ZnO) nanocrystals mono- and co-doped with nickel/iron were prepared using a facile solvothermal procedure. A significant change in the surface morphology from nanorods to plate-like nanoparticles was observed with an increase in the dopant concentration. The variations of their optical and electronic properties induced by metal dopants were investigated using a combination of characterization techniques and ab initio calculations. It is found that both nickel and iron atoms have been successfully incorporated into the crystal lattice rather than forming a secondary phase, suggesting good dispersion of dopants within the ZnO matrix. Doping with iron has red-shifted the absorption edges of ZnO towards the visible portion resulting in lower band gap energies with increasing dopant concentration. Evidenced by Raman and EPR spectroscopy, the addition of iron has been shown to promote the formation of more oxygen vacancy and crystal defects within the host lattice as well as increasing the free-electron density of the nanomaterial. The DFT plus Hubbard model calculations confirm that low concentration Ni-doping does not induce band gap narrowing but results in localized states. The calculations show that Fe-doping has the potential to greatly improve the optical absorption characteristics and lead to structural deformation, corroborating the UV-Vis, Raman, and EPR spectra. PMID:24848323

  17. Zeta Sperm Selection Improves Pregnancy Rate and Alters Sex Ratio in Male Factor Infertility Patients: A Double-Blind, Randomized Clinical Trial

    PubMed Central

    Nasr Esfahani, Mohammad Hossein; Deemeh, Mohammad Reza; Tavalaee, Marziyeh; Sekhavati, Mohammad Hadi; Gourabi, Hamid

    2016-01-01

    Background Selection of sperm for intra-cytoplasmic sperm injection (ICSI) is usually considered as the ultimate technique to alleviate male-factor infertility. In routine ICSI, selection is based on morphology and viability which does not necessarily preclude the chance injection of DNA-damaged or apoptotic sperm into the oocyte. Sperm with high negative surface electrical charge, named “Zeta potential”, are mature and more likely to have intact chromatin. In addition, X-bearing spermatozoa carry more negative charge. Therefore, we aimed to compare the clinical outcomes of Zeta procedure with routine sperm selection in infertile men candidate for ICSI. Materials and Methods From a total of 203 ICSI cycles studied, 101 cycles were allocated to density gradient centrifugation (DGC)/Zeta group and the remaining 102 were included in the DGC group in this prospective study. Clinical outcomes were com- pared between the two groups. The ratios of Xand Y bearing sperm were assessed by fluorescence in situ hybridization (FISH) and quantitative polymerase chain reaction (qPCR) methods in 17 independent semen samples. Results In the present double-blind randomized clinical trial, a significant increase in top quality embryos and pregnancy rate were observed in DGC/Zeta group compared to DGC group. Moreover, sex ratio (XY/XX) at birth significantly was lower in the DGC/Zeta group compared to DGC group despite similar ratio of X/Y bearings sper- matozoa following Zeta selection. Conclusion Zeta method not only improves the percentage of top embryo quality and pregnancy outcome but also alters the sex ratio compared to the conventional DGC method, despite no significant change in the ratio of Xand Ybearing sperm population (Registration number: IRCT201108047223N1). PMID:27441060

  18. Reduced Anxiety-Like Behavior and Altered Hippocampal Morphology in Female p75NTRexon IV−/− Mice

    PubMed Central

    Puschban, Zoe; Sah, Anupam; Grutsch, Isabella; Singewald, Nicolas; Dechant, Georg

    2016-01-01

    The presence of the p75 neurotrophin receptor (p75NTR) in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTRexon III−/− model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety–associated behavior in p75NTRexon IV−/− mice lacking both p75NTR isoforms. Comparing p75NTRexon IV−/− and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice. Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTRexon IV−/− mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice. PMID:27313517

  19. Melatonin treatment during early life interacts with restraint to alter neuronal morphology and provoke depressive-like responses

    PubMed Central

    Aubrecht, Taryn G.; Weil, Zachary M.; Nelson, Randy J.

    2014-01-01

    Stressors during early life induce anxiety- and depressive-like responses in adult rodents. Siberian hamsters (Phodopus sungorus) exposed to short days post-weaning also increase adult anxiety- and depressive-like behaviors. To test the hypothesis that melatonin and exposure to stressors early in life interact to alter adult affective responses, we administered melatonin either during the perinatal (gestational day 7 to postnatal day 14) or postnatal (day 15–56) periods and also exposed a subset of dams to restraint during gestation (1 h–2×/day for 4 days). During the final week of injections, depressive-like behaviors were assessed using the sucrose anhedonia and forced swim tests. Hamsters exposed to prenatal restraint and treated with melatonin only during the postnatal period increased depressive-like responses in the forced swim test relative to all other groups. Offspring from restrained dams increased the number of fecal boli produced during the forced swim test, an anxiety-like response. In the present study, prenatal restraint reduced CA1 dendritic branching overall and perinatal melatonin protected hamsters from this restraint-induced reduction. These results suggest that the photoperiodic conditions coincident with birth and early life stressors are important in the development of adult affective responses. PMID:24486255

  20. Expression of LIF in transgenic mice results in altered thymic epithelium and apparent interconversion of thymic and lymph node morphologies.

    PubMed Central

    Shen, M M; Skoda, R C; Cardiff, R D; Campos-Torres, J; Leder, P; Ornitz, D M

    1994-01-01

    Leukemia inhibitory factor (LIF) is a cytokine involved in embryonic and hematopoietic development. To investigate the effects of LIF on the lymphoid system, we generated a line of transgenic mice that expresses diffusible LIF protein specifically in T cells. These mice display two categories of phenotype that were not previously attributed to LIF overexpression. First, they display B cell hyperplasia, polyclonal hypergammaglobulinemia and mesangial proliferative glomerulonephritis, defects similar to those described for transgenic mice overexpressing the functionally related cytokine, interleukin-6. Secondly, the LIF transgenic mice display novel thymic and lymph node abnormalities. In the thymus, cortical CD4+CD8+ lymphocytes are lost, while numerous B cell follicles develop. Peripheral lymph nodes contain a vastly expanded CD4+CD8+ lymphocyte population. Furthermore, the thymic epithelium is profoundly disorganized, suggesting that disruption of stroma-lymphocyte interactions is responsible for many observed defects. Transplantation of transgenic bone marrow into wild type recipients transfers both the thymic and lymph node defects. However, transplantation of wild type marrow into transgenic recipients rescues the lymph node abnormality, but not the thymic defect, indicating the thymic epithelium is irreversibly altered. Our observations are consistent with a role for LIF in maintaining a functional thymic epithelium that will support proper T cell maturation. Images PMID:8137821

  1. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena.

    PubMed

    Mariscal, Vicente; Nürnberg, Dennis J; Herrero, Antonia; Mullineaux, Conrad W; Flores, Enrique

    2016-09-01

    Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.

  2. Melatonin treatment during early life interacts with restraint to alter neuronal morphology and provoke depressive-like responses.

    PubMed

    Aubrecht, Taryn G; Weil, Zachary M; Nelson, Randy J

    2014-04-15

    Stressors during early life induce anxiety- and depressive-like responses in adult rodents. Siberian hamsters (Phodopus sungorus) exposed to short days post-weaning also increase adult anxiety- and depressive-like behaviors. To test the hypothesis that melatonin and exposure to stressors early in life interact to alter adult affective responses, we administered melatonin either during the perinatal (gestational day 7 to postnatal day 14) or postnatal (day 15-56) periods and also exposed a subset of dams to restraint during gestation (1 h-2×/day for 4 days). During the final week of injections, depressive-like behaviors were assessed using the sucrose anhedonia and forced swim tests. Hamsters exposed to prenatal restraint and treated with melatonin only during the postnatal period increased depressive-like responses in the forced swim test relative to all other groups. Offspring from restrained dams increased the number of fecal boli produced during the forced swim test, an anxiety-like response. In the present study, prenatal restraint reduced CA1 dendritic branching overall and perinatal melatonin protected hamsters from this restraint-induced reduction. These results suggest that the photoperiodic conditions coincident with birth and early life stressors are important in the development of adult affective responses. PMID:24486255

  3. Reduced Anxiety-Like Behavior and Altered Hippocampal Morphology in Female p75NTR(exon IV-/-) Mice.

    PubMed

    Puschban, Zoe; Sah, Anupam; Grutsch, Isabella; Singewald, Nicolas; Dechant, Georg

    2016-01-01

    The presence of the p75 neurotrophin receptor (p75NTR) in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR(exon III-/-) model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety-associated behavior in p75NTR(exon IV-/-) mice lacking both p75NTR isoforms. Comparing p75NTR(exon IV-/-) and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice. Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR(exon IV-/-) mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice. PMID:27313517

  4. Interacting effects of discharge and channel morphology on transport of semibuoyant fish eggs in large, altered river systems

    USGS Publications Warehouse

    Worthington, Thomas A.; Brewer, Shannon K.; Farless, Nicole; Grabowski, Timothy B.; Gregory, Mark S.

    2014-01-01

    Habitat fragmentation and flow regulation are significant factors related to the decline and extinction of freshwater biota. Pelagic-broadcast spawning cyprinids require moving water and some length of unfragmented stream to complete their life cycle. However, it is unknown how discharge and habitat features interact at multiple spatial scales to alter the transport of semi-buoyant fish eggs. Our objective was to assess the relationship between downstream drift of semi-buoyant egg surrogates (gellan beads) and discharge and habitat complexity. We quantified transport time of a known quantity of beads using 2–3 sampling devices at each of seven locations on the North Canadian and Canadian rivers. Transport time was assessed based on median capture time (time at which 50% of beads were captured) and sampling period (time period when 2.5% and 97.5% of beads were captured). Habitat complexity was assessed by calculating width:depth ratios at each site, and several habitat metrics determined using analyses of aerial photographs. Median time of egg capture was negatively correlated to site discharge. The temporal extent of the sampling period at each site was negatively correlated to both site discharge and habitat-patch dispersion. Our results highlight the role of discharge in driving transport times, but also indicate that higher dispersion of habitat patches relates to increased retention of beads within the river. These results could be used to target restoration activities or prioritize water use to create and maintain habitat complexity within large, fragmented river systems.

  5. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena.

    PubMed

    Mariscal, Vicente; Nürnberg, Dennis J; Herrero, Antonia; Mullineaux, Conrad W; Flores, Enrique

    2016-09-01

    Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation. PMID:27273832

  6. Prenatal exposure to ethinylestradiol alters the morphologic patterns and increases the predisposition for prostatic lesions in male and female gerbils during ageing.

    PubMed

    Perez, Ana P S; Biancardi, Manoel F; Caires, Cássia R S; Falleiros-Junior, Luiz R; Góes, Rejane M; Vilamaior, Patricia S L; Santos, Fernanda C A; Taboga, Sebastião R

    2016-02-01

    Ethinylestradiol (EE) is an endocrine disruptor (ED) which acts as an oestrogen agonist; this compound is known as an oral contraceptive. Male and female rodents exposed to EE during critical time points of development, such as in the prenatal period, show alterations in their reproductive tract during adulthood. Few studies have placed an emphasis on the effects of EE during ageing. Thus, this study had as it's objective the analysis of the morphological and immunohistochemical effects of exposure to EE in the prenatal period on ventral male prostate and female prostate of gerbils (Meriones unguiculatus) during ageing. The animals were exposed to EE (15 μg/kg/day) during the 18-22th days of prenatal life (EE/PRE group), and the analyses were performed when the male and female reached 12 months of age. Our results showed an increase in the development of prostatic intraepithelial neoplasia (PIN), which was observed in the male and female prostate of EE/PRE groups. Immunohistochemistry showed a rise in prostatic epithelial and basal cells immunoreactivity, respectively, and to AR and p63 in the male EE/PRE. There were alterations in the morphological pattern of the prostatic glands and increase in predisposition to emergence of prostatic lesions of both sexes during ageing. Despite male and female having been exposed to the same doses of EE, the "exposure to EE promoted modifications" more accentuated in the male prostate. Thus the male gland is more sensitive to the action of this synthetic oestrogen than the female prostate. PMID:26852889

  7. Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex.

    PubMed

    Luczynski, Pauline; Moquin, Luc; Gratton, Alain

    2015-01-01

    We have previously reported that interhemispheric regulation of medial prefrontal cortex (PFC)-mediated stress responses is subserved by glutamate (GLU)- containing callosal neurons. Evidence of chronic stress-induced dendritic and spine atrophy among PFC pyramidal neurons led us to examine how chronic restraint stress (CRS) might alter the apical dendritic morphology of callosal neurons and the acute GLU stress responses in the left versus right PFC. Morphometric analyses of retrogradely labeled, dye-filled PFC callosal neurons revealed hemisphere-specific CRS-induced dendritic retraction; whereas significant dendritic atrophy occurred primarily within the distal arbor of left PFC neurons, it was observed within both the proximal and distal arbor of right PFC neurons. Overall, CRS also significantly reduced spine densities in both hemispheres with the greatest loss occurring among left PFC neurons, mostly at the distal extent of the arbor. While much of the overall decrease in dendritic spine density was accounted by the loss of thin spines, the density of mushroom-shaped spines, despite being fewer in number, was halved. Using microdialysis we found that, compared to controls, basal PFC GLU levels were significantly reduced in both hemispheres of CRS animals and that their GLU response to 30 min of tail-pinch stress was significantly prolonged in the left, but not the right PFC. Together, these findings show that a history of chronic stress alters the dendritic morphology and spine density of PFC callosal neurons and suggest a mechanism by which this might disrupt the interhemispheric regulation of PFC-mediated responses to subsequent stressors.

  8. Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production

    PubMed Central

    Fu, Chunxiang; Sunkar, Ramanjulu; Zhou, Chuanen; Shen, Hui; Zhang, Ji-Yi; Matts, Jessica; Wolf, Jennifer; Mann, David G J; Stewart, C Neal; Tang, Yuhong; Wang, Zeng-Yu

    2012-01-01

    Switchgrass (Panicum virgatum L.) has been developed into a dedicated herbaceous bioenergy crop. Biomass yield is a major target trait for genetic improvement of switchgrass. microRNAs have emerged as a prominent class of gene regulatory factors that has the potential to improve complex traits such as biomass yield. A miR156b precursor was overexpressed in switchgrass. The effects of miR156 overexpression on SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes were revealed by microarray and quantitative RT-PCR analyses. Morphological alterations, biomass yield, saccharification efficiency and forage digestibility of the transgenic plants were characterized. miR156 controls apical dominance and floral transition in switchgrass by suppressing its target SPL genes. Relatively low levels of miR156 overexpression were sufficient to increase biomass yield while producing plants with normal flowering time. Moderate levels of miR156 led to improved biomass but the plants were non-flowering. These two groups of plants produced 58%–101% more biomass yield compared with the control. However, high miR156 levels resulted in severely stunted growth. The degree of morphological alterations of the transgenic switchgrass depends on miR156 level. Compared with floral transition, a lower miR156 level is required to disrupt apical dominance. The improvement in biomass yield was mainly because of the increase in tiller number. Targeted overexpression of miR156 also improved solubilized sugar yield and forage digestibility, and offered an effective approach for transgene containment. PMID:22239253

  9. Morphological evolution and electronic alteration of ZnO nanomaterials induced by Ni/Fe co-doping

    NASA Astrophysics Data System (ADS)

    Fletcher, Cameron; Jiang, Yijiao; Sun, Chenghua; Amal, Rose

    2014-06-01

    Zinc oxide (ZnO) nanocrystals mono- and co-doped with nickel/iron were prepared using a facile solvothermal procedure. A significant change in the surface morphology from nanorods to plate-like nanoparticles was observed with an increase in the dopant concentration. The variations of their optical and electronic properties induced by metal dopants were investigated using a combination of characterization techniques and ab initio calculations. It is found that both nickel and iron atoms have been successfully incorporated into the crystal lattice rather than forming a secondary phase, suggesting good dispersion of dopants within the ZnO matrix. Doping with iron has red-shifted the absorption edges of ZnO towards the visible portion resulting in lower band gap energies with increasing dopant concentration. Evidenced by Raman and EPR spectroscopy, the addition of iron has been shown to promote the formation of more oxygen vacancy and crystal defects within the host lattice as well as increasing the free-electron density of the nanomaterial. The DFT plus Hubbard model calculations confirm that low concentration Ni-doping does not induce band gap narrowing but results in localized states. The calculations show that Fe-doping has the potential to greatly improve the optical absorption characteristics and lead to structural deformation, corroborating the UV-Vis, Raman, and EPR spectra.Zinc oxide (ZnO) nanocrystals mono- and co-doped with nickel/iron were prepared using a facile solvothermal procedure. A significant change in the surface morphology from nanorods to plate-like nanoparticles was observed with an increase in the dopant concentration. The variations of their optical and electronic properties induced by metal dopants were investigated using a combination of characterization techniques and ab initio calculations. It is found that both nickel and iron atoms have been successfully incorporated into the crystal lattice rather than forming a secondary phase

  10. Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles.

    PubMed

    Srikanth, Koigoora; Pereira, Eduarda; Duarte, Armando C; Rao, Janapala Venkateswara

    2016-05-01

    The current study is aimed to study cytotoxicity and oxidative stress mediated changes induced by copper oxide nanoparticles (CuO NPs) in Chinook salmon cells (CHSE-214). To this end, a number of biochemical responses are evaluated in CHSE-214 cells which are as follows [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] MTT, neutral red uptake (NRU), lactate dehydrogenase (LDH), protein carbonyl (PC), lipid peroxidation (LPO), oxidised glutathione (GSSG), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione sulfo-transferase (GST), superoxide dismutase (SOD), catalase (CAT), 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS), respectively. The 50% inhibition concentration (IC50) of CuO NPs to CHSE-214 cells after 24 h exposure was found to be 19.026 μg ml(-1). Viability of cells was reduced by CuO NPs, and the decrease was dose dependent as revealed by the MTT and NRU assay. CHSE-214 cells exposed to CuO NPs induced morphological changes. Initially, cells started to detach from the surface (12 h), followed by polyhedric, fusiform appearance (19 h) and finally the cells started to shrink. Later, the cells started losing their cellular contents leading to their death only after 24 h. LDH, PC, LPO, GSH, GPx, GST, SOD, CAT, 8-OHdG and ROS responses were seen significantly increased with the increase in the concentration of CuO NPs when compared to their respective controls. However, significant decrease in GSSG was perceptible in CHSE-214 cells exposed to CuO NPs in a dose-dependent manner. Our data demonstrated that CuO NPs induced cytotoxicity in CHSE-214 cells through the mediation of oxidative stress. The current study provides a baseline for the CuO NPs-mediated cytotoxic assessment in CHSE-214 cells for the future studies. PMID:26115719

  11. Zearalenone Altered the Serum Hormones, Morphologic and Apoptotic Measurements of Genital Organs in Post-weaning Gilts

    PubMed Central

    Chen, X. X.; Yang, C. W.; Huang, L. B.; Niu, Q. S.; Jiang, S. Z.; Chi, F.

    2015-01-01

    The present study was aimed at investigating the adverse effects of dietary zearalenone (ZEA) (1.1 to 3.2 mg/kg diet) on serum hormones, morphologic and apoptotic measurements of genital organs in post-weaning gilts. A total of twenty gilts (Landrace×Yorkshire×Duroc) weaned at 21 d with an average body weight of 10.36±1.21 kg were used in the study. Gilts were fed a basal diet with an addition of 0, 1.1, 2.0, or 3.2 mg/kg purified ZEA for 18 d ad libitum. Results showed that 3.2 mg/kg ZEA challenged gilts decreased (p<0.05) the serum levels of luteinizing hormone, however, serum levels of prolactin in gilts fed the diet containing 2.0 mg/kg ZEA or more were increased (p<0.05) compared to those in the control. Linear effects on all tested serum hormones except progesterone were observed as dietary ZEA levels increased (p<0.05). Gilts fed ZEA-contaminated diet showed increase (p<0.05) in genital organs size, hyperplasia of submucosal smooth muscles in the corpus uteri in a dose-dependent manner. However, the decreased numbers of follicles in the cortex and apoptotic cells in the ovarian were observed in gilts treated with ZEA in a dose-dependent manner. Degeneration and structural abnormalities of genital organs tissues were also observed in the gilts fed diet containing 1.1 mg/kg ZEA or more. Results suggested that dietary ZEA at 1.1 to 3.2 mg/kg can induce endocrine disturbance and damage genital organs in post-weaning gilts. PMID:25557812

  12. Altered Competitive Fitness, Antimicrobial Susceptibility, and Cellular Morphology in a Triclosan-Induced Small-Colony Variant of Staphylococcus aureus.

    PubMed

    Forbes, Sarah; Latimer, Joe; Bazaid, Abdulrahman; McBain, Andrew J

    2015-08-01

    Staphylococcus aureus can produce small-colony variants (SCVs) that express various phenotypes. While their significance is unclear, SCV propagation may be influenced by relative fitness, antimicrobial susceptibility, and the underlying mechanism. We have investigated triclosan-induced generation of SCVs in six S. aureus strains, including methicillin-resistant S. aureus (MRSA). Parent strains (P0) were repeatedly passaged on concentration gradients of triclosan using a solid-state exposure system to generate P10. P10 was subsequently passaged without triclosan to generate X10. Susceptibility to triclosan and 7 antibiotics was assessed at all stages. For S. aureus ATCC 6538, SCVs were further characterized by determining microbicide susceptibility and competitive fitness. Cellular morphology was examined using electron microscopy, and protein expression was evaluated through proteomics. Triclosan susceptibility in all SCVs (which could be generated from 4/6 strains) was markedly decreased, while antibiotic susceptibility was significantly increased in the majority of cases. An SCV of S. aureus ATCC 6538 exhibited significantly increased susceptibility to all tested microbicides. Cross-wall formation was impaired in this bacterium, while expression of FabI, a target of triclosan, and IsaA, a lytic transglycosylase involved in cell division, was increased. The P10 SCV was 49% less fit than P0. In summary, triclosan exposure of S. aureus produced SCVs in 4/6 test bacteria, with decreased triclosan susceptibility but with generally increased antibiotic susceptibility. An SCV derived from S. aureus ATCC 6538 showed reduced competitive fitness, potentially due to impaired cell division. In this SCV, increased FabI expression could account for reduced triclosan susceptibility, while IsaA may be upregulated in response to cell division defects.

  13. Altered Active Zones, Vesicle Pools, Nerve Terminal Conductivity, and Morphology during Experimental MuSK Myasthenia Gravis

    PubMed Central

    Patel, Vishwendra; Oh, Anne; Voit, Antanina; Sultatos, Lester G.; Babu, Gopal J.; Wilson, Brenda A.; Ho, Mengfei; McArdle, Joseph J.

    2014-01-01

    Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG. PMID:25438154

  14. Comparing selected morphological models of hydrated Nafion using large scale molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Knox, Craig K.

    Experimental elucidation of the nanoscale structure of hydrated Nafion, the most popular polymer electrolyte or proton exchange membrane (PEM) to date, and its influence on macroscopic proton conductance is particularly challenging. While it is generally agreed that hydrated Nafion is organized into distinct hydrophilic domains or clusters within a hydrophobic matrix, the geometry and length scale of these domains continues to be debated. For example, at least half a dozen different domain shapes, ranging from spheres to cylinders, have been proposed based on experimental SAXS and SANS studies. Since the characteristic length scale of these domains is believed to be ˜2 to 5 nm, very large molecular dynamics (MD) simulations are needed to accurately probe the structure and morphology of these domains, especially their connectivity and percolation phenomena at varying water content. Using classical, all-atom MD with explicit hydronium ions, simulations have been performed to study the first-ever hydrated Nafion systems that are large enough (~2 million atoms in a ˜30 nm cell) to directly observe several hydrophilic domains at the molecular level. These systems consisted of six of the most significant and relevant morphological models of Nafion to-date: (1) the cluster-channel model of Gierke, (2) the parallel cylinder model of Schmidt-Rohr, (3) the local-order model of Dreyfus, (4) the lamellar model of Litt, (5) the rod network model of Kreuer, and (6) a 'random' model, commonly used in previous simulations, that does not directly assume any particular geometry, distribution, or morphology. These simulations revealed fast intercluster bridge formation and network percolation in all of the models. Sulfonates were found inside these bridges and played a significant role in percolation. Sulfonates also strongly aggregated around and inside clusters. Cluster surfaces were analyzed to study the hydrophilic-hydrophobic interface. Interfacial area and cluster volume

  15. Morphological abnormalities in gall-forming aphids in a radiation-contaminated area near Fukushima Daiichi: selective impact of fallout?

    PubMed

    Akimoto, Shin-Ichi

    2014-02-01

    To evaluate the impact of fallout from the Fukushima Daiichi Nuclear Power Plant accident on organisms, this study compared the morphology and viability of gall-forming aphids between the Fukushima population and control populations from noncontaminated areas. This study, in particular, focused on the morphology of first-instar gall formers derived from the first sexual reproduction after the accident. Of 164 first instars from Tetraneura sorini galls collected 32 km from Fukushima Daiichi in spring 2012, 13.2% exhibited morphological abnormalities, including four conspicuously malformed individuals (2.4%). In contrast, in seven control areas, first instars with abnormal morphology accounted for 0.0-5.1% (on average, 3.8%). The proportions of abnormalities and mortality were significantly higher in Fukushima than in the control areas. Similarly, of 134 first instars from T. nigriabdominalis galls, 5.9% exhibited morphological abnormalities, with one highly malformed individual. However, of 543 second-generation larvae produced in T. sorini galls, only 0.37% had abnormalities, suggesting that abnormalities found in the first generation were not inherited by the next generation. Although investigation is limited to one study site, this result suggests that radioactive contamination had deleterious effects on embryogenesis in eggs deposited on the bark surface, but a negligible influence on the second generation produced in closed galls. Furthermore, analysis of both species samples collected in spring 2013 indicated that the viability and healthiness of the aphids were significantly improved compared to those in the 2012 samples. Thus, the results of this study suggest the possibility that a reduced level of radiation and/or selection for radiation tolerance may have led to the improved viability and healthiness of the Fukushima population.

  16. Morphological abnormalities in gall-forming aphids in a radiation-contaminated area near Fukushima Daiichi: selective impact of fallout?

    PubMed Central

    Akimoto, Shin-ichi

    2014-01-01

    To evaluate the impact of fallout from the Fukushima Daiichi Nuclear Power Plant accident on organisms, this study compared the morphology and viability of gall-forming aphids between the Fukushima population and control populations from noncontaminated areas. This study, in particular, focused on the morphology of first-instar gall formers derived from the first sexual reproduction after the accident. Of 164 first instars from Tetraneura sorini galls collected 32 km from Fukushima Daiichi in spring 2012, 13.2% exhibited morphological abnormalities, including four conspicuously malformed individuals (2.4%). In contrast, in seven control areas, first instars with abnormal morphology accounted for 0.0–5.1% (on average, 3.8%). The proportions of abnormalities and mortality were significantly higher in Fukushima than in the control areas. Similarly, of 134 first instars from T. nigriabdominalis galls, 5.9% exhibited morphological abnormalities, with one highly malformed individual. However, of 543 second-generation larvae produced in T. sorini galls, only 0.37% had abnormalities, suggesting that abnormalities found in the first generation were not inherited by the next generation. Although investigation is limited to one study site, this result suggests that radioactive contamination had deleterious effects on embryogenesis in eggs deposited on the bark surface, but a negligible influence on the second generation produced in closed galls. Furthermore, analysis of both species samples collected in spring 2013 indicated that the viability and healthiness of the aphids were significantly improved compared to those in the 2012 samples. Thus, the results of this study suggest the possibility that a reduced level of radiation and/or selection for radiation tolerance may have led to the improved viability and healthiness of the Fukushima population. PMID:24634721

  17. Structure−Activity Relationships in Peptide Modulators of β-Amyloid Protein Aggregation: Variation in α,α-Disubstitution Results in Altered Aggregate Size and Morphology

    PubMed Central

    2010-01-01

    Neuronal cytotoxicity observed in Alzheimer’s disease (AD) is linked to the aggregation of β-amyloid peptide (Aβ) into toxic forms. Increasing evidence points to oligomeric materials as the neurotoxic species, not Aβ fibrils; disruption or inhibition of Aβ self-assembly into oligomeric or fibrillar forms remains a viable therapeutic strategy to reduce Aβ neurotoxicity. We describe the synthesis and characterization of amyloid aggregation mitigating peptides (AAMPs) whose structure is based on the Aβ “hydrophobic core” Aβ17−20, with α,α-disubstituted amino acids (ααAAs) added into this core as potential disrupting agents of fibril self-assembly. The number, positional distribution, and side-chain functionality of ααAAs incorporated into the AAMP sequence were found to influence the resultant aggregate morphology as indicated by ex situ experiments using atomic force microscopy (AFM) and transmission electron microscopy (TEM). For instance, AAMP-5, incorporating a sterically hindered ααAA with a diisobutyl side chain in the core sequence, disrupted Aβ1−40 fibril formation. However, AAMP-6, with a less sterically hindered ααAA with a dipropyl side chain, altered fibril morphology, producing shorter and larger sized fibrils (compared with those of Aβ1−40). Remarkably, ααAA-AAMPs caused disassembly of existing Aβ fibrils to produce either spherical aggregates or protofibrillar structures, suggesting the existence of equilibrium between fibrils and prefibrillar structures. PMID:22778850

  18. Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice.

    PubMed

    Peng, Wei-Hau; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2016-01-01

    Arecoline, a major alkaloid in areca nuts, is involved in the pathogenesis of oral diseases. Mammalian taste buds are the structural unit for detecting taste stimuli in the oral cavity. The effects of arecoline on taste bud morphology are poorly understood. Arecoline was injected intraperitoneally (IP) into C57BL/6 mice twice daily for 1-4 weeks. After arecoline treatment, the vallate papillae were processed for electron microscopy and immunohistochemistry analysis of taste receptor proteins (T1R2, T1R3, T1R1, and T2R) and taste associated proteins (α-gustducin, PLCβ2, and SNAP25). Body weight, food intake and water consumption were recorded. A 2-bottle preference test was also performed. The results demonstrated that 1) arecoline treatment didn't change the number and size of the taste buds or taste bud cells, 2) electron microscopy revealed the change of organelles and the accumulation of autophagosomes in type II cells, 3) immunohistochemistry demonstrated a decrease of taste receptor T1R2- and T1R3-expressing cells, 4) the body weight and food intake were markedly reduced, and 5) the sweet preference behavior was reduced. We concluded that the long-term injection of arecoline alters the morphology of type II taste bud cells, retards the growth of mice, and affects discrimination competencies for sweet tastants.

  19. Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice.

    PubMed

    Peng, Wei-Hau; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2016-01-01

    Arecoline, a major alkaloid in areca nuts, is involved in the pathogenesis of oral diseases. Mammalian taste buds are the structural unit for detecting taste stimuli in the oral cavity. The effects of arecoline on taste bud morphology are poorly understood. Arecoline was injected intraperitoneally (IP) into C57BL/6 mice twice daily for 1-4 weeks. After arecoline treatment, the vallate papillae were processed for electron microscopy and immunohistochemistry analysis of taste receptor proteins (T1R2, T1R3, T1R1, and T2R) and taste associated proteins (α-gustducin, PLCβ2, and SNAP25). Body weight, food intake and water consumption were recorded. A 2-bottle preference test was also performed. The results demonstrated that 1) arecoline treatment didn't change the number and size of the taste buds or taste bud cells, 2) electron microscopy revealed the change of organelles and the accumulation of autophagosomes in type II cells, 3) immunohistochemistry demonstrated a decrease of taste receptor T1R2- and T1R3-expressing cells, 4) the body weight and food intake were markedly reduced, and 5) the sweet preference behavior was reduced. We concluded that the long-term injection of arecoline alters the morphology of type II taste bud cells, retards the growth of mice, and affects discrimination competencies for sweet tastants. PMID:26453050

  20. The selective 5-lipoxygenase inhibitor, A63162 reduces PC3 proliferation and initiates morphologic changes consistent with secretion.

    SciTech Connect

    Anderson, K. M.; Seed, T.; Ondrey, F.; Harris, J. E.; Center for Mechanistic Biology and Biotechnology; Rush Medical Coll.; Univ. of Minnesota

    1994-09-01

    We examined the effect of A63162 (Abbott), a selective inhibitor of 5-lipoxygenase on human prostate (PC3) cell proliferation. Within 5 min DNA synthesis was reversibly inhibited by 40 {micro}M A63162, without altered cellular attachment or uptake of trypan blue. After 72 Hr, cells continues to be attached and exclude dye, were reduced in number and their histology was altered. Many treated cells were larger, more pleomorphic, with nuclear and cytoplasmic ultrastructural changes consistent with preparation for secretion. Some cells contained moderately swollen, distorted mitochondria. ETYA, a less selective inhibitor of 5-lipoxygenase that also inhibits cell replication, acutely reduced O2 uptake by 40%, but A63162 did not. The retention of the supravital mitochondrial dye, rhodamine 123 was increased by ETYA at 4 hr, but not after 24 hr; retention was not altered by A63162. Although the mechanism by which A63162 reversibly inhibits PC3 proliferation and initiates preparation for secretion is not identified, additional studies should further define its role in these events

  1. Social play in juvenile hamsters alters dendritic morphology in the medial prefrontal cortex and attenuates effects of social stress in adulthood.

    PubMed

    Burleson, Cody A; Pedersen, Robert W; Seddighi, Sahba; DeBusk, Lauren E; Burghardt, Gordon M; Cooper, Matthew A

    2016-08-01

    Social play is a fundamental aspect of behavioral development in many species. Social play deprivation in rats alters dendritic morphology in the ventromedial prefrontal cortex (vmPFC) and we have shown that this brain region regulates responses to social defeat stress in Syrian hamsters. In this study, we tested whether play deprivation during the juvenile period disrupts dendritic morphology in the prefrontal cortex and potentiates the effects of social defeat stress. At weaning, male hamsters were either group-housed with peers or pair-housed with their mother, with whom they do not play. In adulthood, animals received acute social defeat stress or no-defeat control treatment. The hamsters were then tested for a conditioned defeat response in a social interaction test with a novel intruder, and were also tested for social avoidance of a familiar opponent. Brains were collected for Golgi-Cox staining and analysis of dendritic morphology in the infralimbic (IL), prelimbic (PL), and orbitofrontal cortex (OFC). Play-deprived animals showed an increased conditioned defeat response and elevated avoidance of a familiar opponent compared with play-exposed animals. Furthermore, play-deprived animals showed increased total length and branch points in apical dendrites of pyramidal neurons in the IL and PL cortices, but not in the OFC. These findings suggest that social play deprivation in juvenile hamsters disrupts neuronal development in the vmPFC and increases vulnerability to the effects of social stress in adulthood. Overall, these results suggest that social play is necessary for the natural dendritic pruning process during adolescence and promotes coping with stress in adulthood. (PsycINFO Database Record PMID:27176563

  2. Social play in juvenile hamsters alters dendritic morphology in the medial prefrontal cortex and attenuates effects of social stress in adulthood.

    PubMed

    Burleson, Cody A; Pedersen, Robert W; Seddighi, Sahba; DeBusk, Lauren E; Burghardt, Gordon M; Cooper, Matthew A

    2016-08-01

    Social play is a fundamental aspect of behavioral development in many species. Social play deprivation in rats alters dendritic morphology in the ventromedial prefrontal cortex (vmPFC) and we have shown that this brain region regulates responses to social defeat stress in Syrian hamsters. In this study, we tested whether play deprivation during the juvenile period disrupts dendritic morphology in the prefrontal cortex and potentiates the effects of social defeat stress. At weaning, male hamsters were either group-housed with peers or pair-housed with their mother, with whom they do not play. In adulthood, animals received acute social defeat stress or no-defeat control treatment. The hamsters were then tested for a conditioned defeat response in a social interaction test with a novel intruder, and were also tested for social avoidance of a familiar opponent. Brains were collected for Golgi-Cox staining and analysis of dendritic morphology in the infralimbic (IL), prelimbic (PL), and orbitofrontal cortex (OFC). Play-deprived animals showed an increased conditioned defeat response and elevated avoidance of a familiar opponent compared with play-exposed animals. Furthermore, play-deprived animals showed increased total length and branch points in apical dendrites of pyramidal neurons in the IL and PL cortices, but not in the OFC. These findings suggest that social play deprivation in juvenile hamsters disrupts neuronal development in the vmPFC and increases vulnerability to the effects of social stress in adulthood. Overall, these results suggest that social play is necessary for the natural dendritic pruning process during adolescence and promotes coping with stress in adulthood. (PsycINFO Database Record

  3. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    PubMed

    Luz, Anthony L; Rooney, John P; Kubik, Laura L; Gonzalez, Claudia P; Song, Dong Hoon; Meyer, Joel N

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes. PMID:26106885

  4. Brain morphological alterations and cellular metabolic changes in patients with generalized anxiety disorder: A combined DARTEL-based VBM and (1)H-MRS study.

    PubMed

    Moon, Chung-Man; Jeong, Gwang-Woo

    2016-05-01

    Generalized anxiety disorder (GAD) is characterized by emotional dysregulation and cognitive deficit in conjunction with brain morphometric and metabolic alterations. This study assessed the combined neural morphological deficits and metabolic abnormality in patients with GAD. Thirteen patients with GAD and 13 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted MRI and proton magnetic resonance spectroscopy ((1)H-MRS) at 3Tesla. In this study, the combination of voxel-based morphometry (VBM) and (1)H-MRS was used to assess the brain morphometric and metabolic alterations in GAD. The patients showed significantly reduced white matter (WM) volumes in the midbrain (MB), precentral gyrus (PrG), dorsolateral prefrontal cortex (DLPFC) and anterior limb of the internal capsule (ALIC) compared to the controls. In MRS study, the choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC were significantly lower in the patients. Particularly, the WM volume variation of the DLPFC was positively correlated with both of the Cho/Cr and Cho/NAA ratios in patients with GAD. This study provides an evidence for the association between the morphometric deficit and metabolic changes in GAD. This finding would be helpful to understand the neural dysfunction and pathogenesis in connection with cognitive impairments in GAD. PMID:26708039

  5. Brain morphological alterations and cellular metabolic changes in patients with generalized anxiety disorder: A combined DARTEL-based VBM and (1)H-MRS study.

    PubMed

    Moon, Chung-Man; Jeong, Gwang-Woo

    2016-05-01

    Generalized anxiety disorder (GAD) is characterized by emotional dysregulation and cognitive deficit in conjunction with brain morphometric and metabolic alterations. This study assessed the combined neural morphological deficits and metabolic abnormality in patients with GAD. Thirteen patients with GAD and 13 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted MRI and proton magnetic resonance spectroscopy ((1)H-MRS) at 3Tesla. In this study, the combination of voxel-based morphometry (VBM) and (1)H-MRS was used to assess the brain morphometric and metabolic alterations in GAD. The patients showed significantly reduced white matter (WM) volumes in the midbrain (MB), precentral gyrus (PrG), dorsolateral prefrontal cortex (DLPFC) and anterior limb of the internal capsule (ALIC) compared to the controls. In MRS study, the choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC were significantly lower in the patients. Particularly, the WM volume variation of the DLPFC was positively correlated with both of the Cho/Cr and Cho/NAA ratios in patients with GAD. This study provides an evidence for the association between the morphometric deficit and metabolic changes in GAD. This finding would be helpful to understand the neural dysfunction and pathogenesis in connection with cognitive impairments in GAD.

  6. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    PubMed

    Luz, Anthony L; Rooney, John P; Kubik, Laura L; Gonzalez, Claudia P; Song, Dong Hoon; Meyer, Joel N

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  7. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes

    PubMed Central

    Luz, Anthony L.; Rooney, John P.; Kubik, Laura L.; Gonzalez, Claudia P.; Song, Dong Hoon; Meyer, Joel N.

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes. PMID:26106885

  8. Genital morphology and fertilization success in the dung beetle Onthophagus taurus: an example of sexually selected male genitalia.

    PubMed

    House, Clarissa M; Simmons, Leigh W

    2003-03-01

    In animals with internal fertilization and promiscuous mating, male genitalia show rapid and divergent evolution. Three hypotheses have been suggested to explain the evolutionary processes responsible for genital evolution: the lock-and-key hypothesis, the pleiotropy hypothesis and the sexual-selection hypothesis. Here, we determine whether variation in male genital morphology influences fertilization success in the dung beetle Onthophagus taurus, as predicted by the sexual-selection hypothesis. Variation in four out of five genital sclerites of the endophallus influenced a male's fertilization success, supporting the general hypothesis that male genitalia can evolve under sexual selection. Furthermore, different genital sclerites were found to enhance first versus second male paternity, indicating that different sclerites serve offensive and defensive roles. Genital-trait variability was comparable to that in other species but was less variable than a non-genital sexually selected trait (head horns). We suggest that directional selection for genital elaboration may be countered by natural selection, which should favour genitalia of a size and shape necessary for efficient coupling and sperm transfer.

  9. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    PubMed

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour. PMID:18226573

  10. Neuropeptide Y response to alcohol is altered in nucleus accumbens of mice selectively bred for drinking to intoxication.

    PubMed

    Barkley-Levenson, Amanda M; Ryabinin, Andrey E; Crabbe, John C

    2016-04-01

    The High Drinking in the Dark (HDID) mice have been selectively bred for drinking to intoxicating blood alcohol levels and represent a genetic model of risk for binge-like drinking. Presently, little is known about the specific genetic factors that promote excessive intake in these mice. Previous studies have identified neuropeptide Y (NPY) as a potential target for modulating alcohol intake. NPY expression differs in some rodent lines that have been selected for high and low alcohol drinking phenotypes, as well as inbred mouse strains that differ in alcohol preference. Alcohol drinking and alcohol withdrawal also produce differential effects on NPY expression in the brain. Here, we assessed brain NPY protein levels in HDID mice of two replicates of selection and control heterogeneous stock (HS) mice at baseline (water drinking) and after binge-like alcohol drinking to determine whether selection is associated with differences in NPY expression and its sensitivity to alcohol. NPY levels did not differ between HDID and HS mice in any brain region in the water-drinking animals. HS mice showed a reduction in NPY levels in the nucleus accumbens (NAc) - especially in the shell - in ethanol-drinking animals vs. water-drinking controls. However, HDID mice showed a blunted NPY response to alcohol in the NAc core and shell compared to HS mice. These findings suggest that the NPY response to alcohol has been altered by selection for drinking to intoxication in a region-specific manner. Thus, the NPY system may represent a potential target for altering binge-like alcohol drinking in these mice. PMID:26779672

  11. Is intracytoplasmic morphologically selected sperm injection (IMSI) beneficial in the first ART cycle? a multicentric randomized controlled trial.

    PubMed

    Leandri, R D; Gachet, A; Pfeffer, J; Celebi, C; Rives, N; Carre-Pigeon, F; Kulski, O; Mitchell, V; Parinaud, J

    2013-09-01

    Intracytoplasmic morphologically selected sperm injection (IMSI), by selecting spermatozoa at high magnification improves the outcome of intracytoplasmic sperm injection (ICSI) mainly after several failures. However, only few monocentric randomized studies are available and they do not analyse results as a function of sperm characteristics. In 255 couples attempting their first assisted reproductive technology (ART) attempt for male infertility (motile sperm count <1×10⁶ after sperm selection, but at least 3×10⁶ spermatozoa per ejaculate to allow a detailed analysis of sperm characteristics), a prospective randomized trial was performed to compare the clinical outcomes of IMSI and ICSI and to evaluate the influence of sperm characteristics on these outcomes. IMSI did not provide any significant improvement in the clinical outcomes compared with ICSI neither for implantation (24% vs. 23%), nor clinical pregnancy (31% vs. 33%) nor live birth rates (27% vs. 30%). Moreover, the results of IMSI were similar to the ICSI ones whatever the degree of sperm DNA fragmentation, nuclear immaturity and sperm morphology. These results show that IMSI instead of ICSI has no advantage in the first ART attempts. However, this does not rule out IMSI completely and more randomized trials must be performed especially regarding patients carrying severe teratozoospermia, or high sperm DNA fragmentation levels or having previous ICSI failures.

  12. Morphological alterations and acetylcholinesterase and monoamine oxidase inhibition in liver of zebrafish exposed to Aphanizomenon flos-aquae DC-1 aphantoxins.

    PubMed

    Zhang, De Lu; Zhang, Jing; Hu, Chun Xiang; Wang, Gao Hong; Li, Dun Hai; Liu, Yong Ding

    2014-12-01

    Aphanizomenon flos-aquae is a cyanobacterium that produces neurotoxins or paralytic shellfish poisons (PSPs) called aphantoxins, which present threats to environmental safety and human health via eutrophication of water bodies worldwide. Although the molecular mechanisms of this neurotoxin have been studied, many questions remain unsolved, including those relating to in vivo hepatic neurotransmitter inactivation, physiological detoxification and histological and ultrastructural alterations. Aphantoxins extracted from the natural strain of A. flos-aquae DC-1 were analyzed by high-performance liquid chromatography. The main components were gonyautoxins 1 and 5 (GTX1, GTX5) and neosaxitoxin (neoSTX), which comprised 34.04%, 21.28%, and 12.77% respectively. Zebrafish (Danio rerio) were exposed intraperitoneally to 5.3 or 7.61 μg STX equivalents (eq)/kg (low and high doses, respectively) of A. flos-aquae DC-1 aphantoxins. Morphological alterations and changes in neurotransmitter conduction functions of acetylcholinesterase (AChE) and monoamine oxidase (MAO) in zebrafish liver were detected at different time points 1-24h post-exposure. Aphantoxin significantly enhanced hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histological and ultrastructural damage in zebrafish liver at 3-12 h post-exposure. Toxin exposure increased the reactive oxygen species content and reduced total antioxidative capacity in zebrafish liver, suggesting oxidative stress. AChE and MAO activities were significantly inhibited, suggesting neurotransmitter inactivation/conduction function abnormalities in zebrafish liver. All alterations were dose- and time-dependent. Overall, the results indicate that aphantoxins/PSPs induce oxidative stress through inhibition of AChE and MAO activities, leading to neurotoxicity in zebrafish liver. The above parameters may be useful as bioindicators for investigating aphantoxins/PSPs and cyanobacterial blooms in nature

  13. Selection and geographic isolation influence hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed sabrewing (Campylopterus curvipennis)

    PubMed Central

    2011-01-01

    Background Mesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa. In species with highly differentiated populations selective and/or neutral factors can induce rapid changes to traits involved in mate choice, promoting reproductive isolation between allopatric populations that can eventually lead to speciation. We present the results of genetic differentiation, and explore drift and selection effects in promoting acoustic and morphological divergence among populations of Campylopterus curvipennis, a lekking hummingbird with an extraordinary vocal variability across Mesoamerica. Results Analyses of two mitochondrial genes and ten microsatellite loci genotyped for 160 individuals revealed the presence of three lineages with no contemporary gene flow: C. c. curvipennis, C. c. excellens, and C. c. pampa disjunctly distributed in the Sierra Madre Oriental, the Tuxtlas region and the Yucatan Peninsula, respectively. Sequence mtDNA and microsatellite data were congruent with two diversification events: an old vicariance event at the Isthmus of Tehuantepec (c. 1.4 Ma), and a more recent Pleistocene split, isolating populations in the Tuxtlas region. Hummingbirds of the excellens group were larger, and those of the pampa group had shorter bills, and lineages that have been isolated the longest shared fewer syllables and differed in spectral and temporal traits of a shared syllable. Coalescent simulations showed that fixation of song types has occurred faster than expected under neutrality but the null hypothesis that morphological divergence resulted from drift was not rejected. Conclusions Our phylogeographic analyses uncovered the presence of three Mesoamerican wedge-tailed sabrewing lineages, which diverged at different time scales. These results highlight the importance of the Isthmus of Tehuantepec and more

  14. Genomic and physiological responses to strong selective pressure during late organogenesis: few gene expression changes found despite striking morphological differences

    PubMed Central

    2013-01-01

    Background Adaptations to a new environment, such as a polluted one, often involve large modifications of the existing phenotypes. Changes in gene expression and regulation during critical developmental stages may explain these phenotypic changes. Embryos from a population of the teleost fish, Fundulus heteroclitus, inhabiting a clean estuary do not survive when exposed to sediment extract from a site highly contaminated with polycyclic aromatic hydrocarbons (PAHs) while embryos derived from a population inhabiting a PAH polluted estuary are remarkably resistant to the polluted sediment extract. We exposed embryos from these two populations to surrogate model PAHs and analyzed changes in gene expression, morphology, and cardiac physiology in order to better understand sensitivity and adaptive resistance mechanisms mediating PAH exposure during development. Results The synergistic effects of two model PAHs, an aryl hydrocarbon receptor (AHR) agonist (β-naphthoflavone) and a cytochrome P4501A (CYP1A) inhibitor (α-naphthoflavone), caused significant developmental delays, impaired cardiac function, severe morphological alterations and failure to hatch, leading to the deaths of reference embryos; resistant embryos were mostly unaffected. Unexpectedly, patterns of gene expression among normal and moderately deformed embryos were similar, and only severely deformed embryos showed a contrasting pattern of gene expression. Given the drastic morphological differences between reference and resistant embryos, a surprisingly low percentage of genes, 2.24% of 6,754 analyzed, show statistically significant differences in transcript levels during late organogenesis between the two embryo populations. Conclusions Our study demonstrates important contrasts in responses between reference and resistant natural embryo populations to synergistic effects of surrogate model PAHs that may be important in adaptive mechanisms mediating PAH effects during fish embryo development. These

  15. Selective alteration of native, but not second language articulation in a patient with foreign accent syndrome.

    PubMed

    Avila, César; González, Julio; Parcet, Maria-Antònia; Belloch, Vicente

    2004-10-01

    The present study deals with a right-handed female polyglot suffering from a Foreign Accent Syndrome (FAS) which affects her native language (L1), but not her other languages learnt since the age of 12. She had a small infarct in the left corona radiata as the result of a carotid occlusion. Her L1 was Spanish, but she also had a good command of French, English and Catalan (L2). Aphasia tests did not reveal any other significant alteration in any language. Analyses of pre-morbid and post-morbid voice recordings revealed that FAS affected Spanish dramatically, but no important changes were observed for French. Results were interpreted as showing that different brain areas control articulation of L1 and L2 learnt after a critical period. PMID:15371747

  16. Selective alteration of native, but not second language articulation in a patient with foreign accent syndrome.

    PubMed

    Avila, César; González, Julio; Parcet, Maria-Antònia; Belloch, Vicente

    2004-10-01

    The present study deals with a right-handed female polyglot suffering from a Foreign Accent Syndrome (FAS) which affects her native language (L1), but not her other languages learnt since the age of 12. She had a small infarct in the left corona radiata as the result of a carotid occlusion. Her L1 was Spanish, but she also had a good command of French, English and Catalan (L2). Aphasia tests did not reveal any other significant alteration in any language. Analyses of pre-morbid and post-morbid voice recordings revealed that FAS affected Spanish dramatically, but no important changes were observed for French. Results were interpreted as showing that different brain areas control articulation of L1 and L2 learnt after a critical period.

  17. Binding among Select Episodic Elements Is Altered via Active Short-Term Retrieval

    ERIC Educational Resources Information Center

    Bridge, Donna J.; Voss, Joel L.

    2015-01-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated…

  18. Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits.

    PubMed

    Lau, Jennifer A; Lennon, Jay T

    2011-10-01

    • Below-ground microbial communities influence plant diversity, plant productivity, and plant community composition. Given these strong ecological effects, are interactions with below-ground microbes also important for understanding natural selection on plant traits? • Here, we manipulated below-ground microbial communities and the soil moisture environment on replicated populations of Brassica rapa to examine how microbial community structure influences selection on plant traits and mediates plant responses to abiotic environmental stress. • In soils with experimentally simplified microbial communities, plants were smaller, had reduced chlorophyll content, produced fewer flowers, and were less fecund when compared with plant populations grown in association with more complex soil microbial communities. Selection on plant growth and phenological traits also was stronger when plants were grown in simplified, less diverse soil microbial communities, and these effects typically were consistent across soil moisture treatments. • Our results suggest that microbial community structure affects patterns of natural selection on plant traits. Thus, the below-ground microbial community can influence evolutionary processes, just as recent studies have demonstrated that microbial diversity can influence plant community and ecosystem processes.

  19. Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits.

    PubMed

    Lau, Jennifer A; Lennon, Jay T

    2011-10-01

    • Below-ground microbial communities influence plant diversity, plant productivity, and plant community composition. Given these strong ecological effects, are interactions with below-ground microbes also important for understanding natural selection on plant traits? • Here, we manipulated below-ground microbial communities and the soil moisture environment on replicated populations of Brassica rapa to examine how microbial community structure influences selection on plant traits and mediates plant responses to abiotic environmental stress. • In soils with experimentally simplified microbial communities, plants were smaller, had reduced chlorophyll content, produced fewer flowers, and were less fecund when compared with plant populations grown in association with more complex soil microbial communities. Selection on plant growth and phenological traits also was stronger when plants were grown in simplified, less diverse soil microbial communities, and these effects typically were consistent across soil moisture treatments. • Our results suggest that microbial community structure affects patterns of natural selection on plant traits. Thus, the below-ground microbial community can influence evolutionary processes, just as recent studies have demonstrated that microbial diversity can influence plant community and ecosystem processes. PMID:21658184

  20. Morphological Comparison and Taxonomic Utility of Copulatory Structures of Selected Nematode Species

    PubMed Central

    Rammah, Abdallah; Hirschmann, Hedwig

    1987-01-01

    Spicules of 9 Meloidogyne, 2 Heterodera, 3 Globodera, and 12 other plant-parasitic, insect-parasitic, and free-living nematodes were excised and examined using scanning electron microscopy (SEM). Gubernacula of some of the species were also excised, and their structure was determined. The two spicules of all species examined were symmetrically identical in morphology. The spicule typically consisted of three parts: head, shaft, and blade with dorsal and ventral vela. The spicular nerve entered through the cytoplasmic core opening on the lateral outer surface of the spicule head and generally communicated with the exterior through one or two pores at the spicule tip. Spicules of Xiphinema sp. and Aporcelaimellus sp. were not composed of three typical parts, were less sclerotized, and lacked a cytoplasmic core opening and distal pores. Spicules of Aphelenchoides spp. had heads expanded into apex and rostrum and had very arcuate blades with thick dorsal and ventral edges (limbs). Gubernaculum shapes were stable within a species, but differed among species examined. The accessory structures of Hoplolaimus galeatus consisted of a tongue-shaped gubernaculum with two titillae at its distal end and a plate-like capitulum terminating distally in two flat, wing-like structures. A comparison of spicules of several species of Meloidogyne by SEM and light microscopy revealed no striking morphological differences. PMID:19290150

  1. Position-Related Differences in Selected Morphological Body Characteristics of Top-Level Female Handball Players.

    PubMed

    Bon, Marta; Pori, Primoz; Sibila, Marko

    2015-09-01

    The study aimed to establish the main morphological characteristics of Slovenian junior and senior female national handball team players. Morphological characteristics of various player subgroups (goalkeepers, wings, back players and pivots) were also determined so as to establish whether they had distinct profiles. The subjects were 87 handball players who were members of the Slovenian junior and senior female national teams in the period from 2003 to 2009. A standardised anthropometric protocol was used to assess the subjects' morphological characteristics. The measurements included 23 different anthropometric measures. First, basic statistical characteristics of anthropometric measures were obtained for all subjects together and then for each group separately. Somatotypes were determined using Heath-Carter's method. Endomorphic, mesomorphic and ectomorphic components were calculated by computer on the basis of formulas. In order to determine differences in the body composition and anthropometric data of the subjects playing in different positions, a one-way analysis of variance was employed. The results show that, on average, the wings differed the most from the other player groups in terms of their morphological body characteristics. The wings differed most prominently from the other player groups in terms of their morphological body parameters as they were significantly smaller and had a statistically significantly lower body mass than the other groups. In terms of transversal measures of the skeleton and the circumferences, the wings significantly differed mainly from the pivots and goalkeepers and less from the backs. The goalkeepers were the tallest, with high values of body mass and low values of transversal measures compared to P. Their skin folds were the most pronounced among all the groups on average and their share of subcutaneous fat in total body mass was the highest. Consequently, their endomorphic component of the somatotype was pronounced

  2. Systematic study on the influence of the morphology of α-MoO3 in the selective oxidation of propylene

    NASA Astrophysics Data System (ADS)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin; Jensen, Anker Degn; Beato, Pablo; Patzke, Greta R.; Grunwaldt, Jan-Dierk

    2015-08-01

    A variety of morphologically different α-MoO3 samples were prepared by hydrothermal synthesis and applied in the selective oxidation of propylene. Their catalytic performance was compared to α-MoO3 prepared by flame spray pyrolysis (FSP) and a classical synthesis route. Hydrothermal synthesis from ammonium heptamolybdate (AHM) and nitric acid at pH 1-2 led to ammonium containing molybdenum oxide phases that were completely transformed into α-MoO3 after calcination at 550 °C. A one-step synthesis of α-MoO3 rods was possible starting from MoO3·2H2O with acetic acid or nitric acid and from AHM with nitric acid at 180 °C. Particularly, if nitric acid was used during synthesis, the rod-like morphology of the samples could be stabilized during calcination at 550 °C and the following catalytic activity tests, which was beneficial for the catalytic performance in propylene oxidation. Characterization studies using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy showed that those samples, which retained their rod-like morphology during the activity tests, yielded the highest propylene conversion.

  3. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres

    NASA Astrophysics Data System (ADS)

    Dai, Donghua; Gu, Dongdong

    2015-11-01

    A selective laser melting (SLM) physical model of the change from heat conduction to keyhole-mode process is proposed, providing the transformation of the thermal behavior in the SLM process. Both thermo-capillary force and recoil pressure, which are the major driving forces for the molten flow, are incorporated in the formulation. The effect of the protective atmosphere on the thermal behavior, molten pool dynamics, velocity field of the evaporation material and resultant surface morphology has been investigated. It shows that the motion direction of the evaporation material plays a crucial role in the formation of the terminally solidified surface morphology of the SLM-processed part. For the application of N2 protective atmosphere, the evaporation material has a tendency to encounter in the frontier of the laser scan direction, resulting in the stack of molten material and the attendant formation of humps in the top surface. As Ar protective atmosphere is used, the vector direction of the evaporation material is typically upwards, leading to a uniform recoil pressure forced on the free surface and the formation of fine and flat melt pool surface. The surface quality and morphology are experimentally acquired, which are in a good agreement with the results predicted by simulation.

  4. Selection criteria in resectable pancreatic cancer: a biological and morphological approach.

    PubMed

    Tamburrino, Domenico; Partelli, Stefano; Crippa, Stefano; Manzoni, Alberto; Maurizi, Angela; Falconi, Massimo

    2014-08-28

    Pancreatic ductal adenocarcinoma (PDA) remains one of the most aggressive tumors with a low rate of survival. Surgery is the only curative treatment for PDA, although only 20% of patients are resectable at diagnosis. During the last decade there was an improvement in survival in patients affected by PDA, possibly explained by the advances in cancer therapy and by improve patient selection by pancreatic surgeons. It is necessary to select patients not only on the basis of surgical resectability, but also on the basis of the biological nature of the tumor. Specific preoperative criteria can be identified in order to select patients who will benefit from surgical resection. Duration of symptoms and level of carbohydrate antigen 19.9 in resectable disease should be considered to avoid R1 resection and early relapse. Radiological assessment can help surgeons to distinguish resectable disease from borderline resectable disease and locally advanced pancreatic cancer. Better patient selection can increase survival rate and neoadjuvant treatment can help surgeons select patients who will benefit from surgery.

  5. Adaptations and selection of harmful and other dinoflagellate species in upwelling systems 1. Morphology and adaptive polymorphism

    NASA Astrophysics Data System (ADS)

    Smayda, T. J.

    2010-04-01

    The complex three-dimensional physical structure, spatial scale and the variations in the upwelling-relaxation cycles characterizing eastern boundary upwelling systems are summarized. It is suggested that upwelling systems and their bloom dynamics should be accorded the status of biomes. A unique upwelling dinoflagellate flora is not found. The harmful, red tide and other dinoflagellates selected to bloom are cosmopolitan in distribution and commonly bloom in coastal habitats. The morphological features of 27 dinoflagellate species that bloom in upwelling systems are compared to identify commonalities in form and function adaptations relevant to their upwelling occurrences. The upwelling dinoflagellate species are morphologically, physiologically, ecologically and toxicologically diverse; a unique set of morphological traits specifically evolved for growth in upwelling systems is not evident. The absence of a unique dinoflagellate upwelling flora is unexpected given the challenges to survival and growth in upwelling systems posed by the energetic physical conditions and spatial and temporal complexity of upwelling dynamics. Cellular defense mechanisms - “armouring” and small cell formation - against external and internal cellular damage resulting from turbulence-induced stress-strain, and the occurrence of morphological streamlining to facilitate swimming-based strategies adaptive to growth in upwelling systems are evaluated. The occurrence of autotomy, ecdysis, thecal resorption and regeneration, seasonal cyclomorphosis and polymorphism (form variation) among dinoflagellates is evaluated. The impressive commonality and rapidity of ecomorph formation suggest autoregulated polymorphism is potentially an important mode of adaptation available to upwelling dinoflagellates, and specifically directed towards adjustment of their flotation (swim:sink ratio) capacity. However, seasonal cyclomorphosis and regional and local displays of adaptive polymorphism are traits

  6. Phosphatidylinositol 4,5-bisphosphate alters pharmacological selectivity for epilepsy-causing KCNQ potassium channels.

    PubMed

    Zhou, Pingzheng; Yu, Haibo; Gu, Min; Nan, Fa-jun; Gao, Zhaobing; Li, Min

    2013-05-21

    Pharmacological augmentation of neuronal KCNQ muscarinic (M) currents by drugs such as retigabine (RTG) represents a first-in-class therapeutic to treat certain hyperexcitatory diseases by dampening neuronal firing. Whereas all five potassium channel subtypes (KCNQ1-KCNQ5) are found in the nervous system, KCNQ2 and KCNQ3 are the primary players that mediate M currents. We investigated the plasticity of subtype selectivity by two M current effective drugs, retigabine and zinc pyrithione (ZnPy). Retigabine is more effective on KCNQ3 than KCNQ2, whereas ZnPy is more effective on KCNQ2 with no detectable effect on KCNQ3. In neurons, activation of muscarinic receptor signaling desensitizes effects by retigabine but not ZnPy. Importantly, reduction of phosphatidylinositol 4,5-bisphosphate (PIP2) causes KCNQ3 to become sensitive to ZnPy but lose sensitivity to retigabine. The dynamic shift of pharmacological selectivity caused by PIP2 may be induced orthogonally by voltage-sensitive phosphatase, or conversely, abolished by mutating a PIP2 site within the S4-S5 linker of KCNQ3. Therefore, whereas drug-channel binding is a prerequisite, the drug selectivity on M current is dynamic and may be regulated by receptor signaling pathways via PIP2. PMID:23650395

  7. Archaerhodopsin Selectively and Reversibly Silences Synaptic Transmission through Altered pH.

    PubMed

    El-Gaby, Mohamady; Zhang, Yu; Wolf, Konstantin; Schwiening, Christof J; Paulsen, Ole; Shipton, Olivia A

    2016-08-23

    Tools that allow acute and selective silencing of synaptic transmission in vivo would be invaluable for understanding the synaptic basis of specific behaviors. Here, we show that presynaptic expression of the proton pump archaerhodopsin enables robust, selective, and reversible optogenetic synaptic silencing with rapid onset and offset. Two-photon fluorescence imaging revealed that this effect is accompanied by a transient increase in pH restricted to archaerhodopsin-expressing boutons. Crucially, clamping intracellular pH abolished synaptic silencing without affecting the archaerhodopsin-mediated hyperpolarizing current, indicating that changes in pH mediate the synaptic silencing effect. To verify the utility of this technique, we used trial-limited, archaerhodopsin-mediated silencing to uncover a requirement for CA3-CA1 synapses whose afferents originate from the left CA3, but not those from the right CA3, for performance on a long-term memory task. These results highlight optogenetic, pH-mediated silencing of synaptic transmission as a spatiotemporally selective approach to dissecting synaptic function in behaving animals. PMID:27524609

  8. Cadherin 13: Human cis-Regulation and Selectively Altered Addiction Phenotypes and Cerebral Cortical Dopamine in Knockout Mice

    PubMed Central

    Drgonova, Jana; Walther, Donna; Hartstein, G Luke; Bukhari, Mohammad O; Baumann, Michael H; Katz, Jonathan; Hall, F Scott; Arnold, Elizabeth R; Flax, Shaun; Riley, Anthony; Rivero, Olga; Lesch, Klaus-Peter; Troncoso, Juan; Ranscht, Barbara; Uhl, George R

    2016-01-01

    The cadherin 13 (CDH13) gene encodes a cell adhesion molecule likely to influence development and connections of brain circuits that modulate addiction, locomotion and cognition, including those that involve midbrain dopamine neurons. Human CDH13 mRNA expression differs by more than 80% in postmortem cerebral cortical samples from individuals with different CDH13 genotypes, supporting examination of mice with altered CDH13 expression as models for common human variation at this locus. Constitutive CDH13 knockout mice display evidence for changed cocaine reward: shifted dose response relationship in tests of cocaine-conditioned place preference using doses that do not alter cocaine-conditioned taste aversion. Reduced adult CDH13 expression in conditional knockouts also alters cocaine reward in ways that correlate with individual differences in cortical CDH13 mRNA levels. In control and comparison behavioral assessments, knockout mice display modestly quicker acquisition of rotarod and water maze tasks, with a trend toward faster acquisition of 5-choice serial reaction time tasks that otherwise displayed no genotype-related differences. They display significant differences in locomotion in some settings, with larger effects in males. In assessments of brain changes that might contribute to these behavioral differences, there are selective alterations of dopamine levels, dopamine/metabolite ratios, dopaminergic fiber densities and mRNA encoding the activity dependent transcription factor npas4 in cerebral cortex of knockout mice. These novel data and previously reported human associations of CDH13 variants with addiction, individual differences in responses to stimulant administration and attention deficit hyperactivity disorder (ADHD) phenotypes suggest that levels of CDH13 expression, through mechanisms likely to include effects on mesocortical dopamine, influence stimulant reward and may contribute modestly to cognitive and locomotor phenotypes relevant to ADHD.

  9. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    NASA Astrophysics Data System (ADS)

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-08-01

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.

  10. Semi-automated, Quantitative Analysis of Retinal Ganglion Cell Morphology in Mice Selectively Expressing Yellow Fluorescent Protein

    PubMed Central

    Oglesby, Ericka; Quigley, Harry A.; Zack, Donald J.; Cone, Frances E.; Steinhart, Matthew R.; Tian, Jing; Pease, Mary E.; Kalesnykas, Giedrius

    2012-01-01

    The development of transgenic mouse lines that selectively label a subset of neurons provides unique opportunities to study detailed neuronal morphology and morphological changes under experimental conditions. In the present study, a mouse line in which a small number of retinal ganglion cells (RGCs) express yellow fluorescent protein (YFP) under control of the Thy-1 promoter was used (Feng et al., 2000). We characterized the number, distribution by retinal region and eccentricity of YFP-labeled RGCs using fluorescence microscopy and StereoInvestigator software (MicroBrightField, VT, USA). Then, we captured images of 4–6 YFP-expressing RGCs from each of 8 retinal regions by confocal microscopy, producing 3-dimensional and flattened data sets. A new semi-automated method to quantify the soma size, dendritic length and dendritic arbor complexity was developed using MetaMorph software (Molecular Devices, PA, USA). Our results show that YFP is expressed in 0.2% of all RGCs. Expression of YFP was not significantly different in central versus peripheral retina, but there were higher number of YFP expressing RGCs in the temporal quadrant than in the nasal. By confocal-based analysis, 58% of RGCs expressing YFP did so at a high level, with the remainder distributed in decreasing levels of brightness. Variability in detailed morphometric parameters was as great between two fellow retinas as in retinas from different mice. The analytic methods developed for this selective YFP expressing RGC model permit quantitative comparisons of parameters relevant to neuronal injury. PMID:22210127

  11. Heritability and correlation among some selected morphological traits and their relationship with fall armyworm damage in sweet corn.

    PubMed

    Rea, Ramón A; Watson, Clarence E; Williams, William P; Davis, Frank M

    2002-01-01

    Fall armyworm [Spodoptera frugiperda J. E. Smith] (FAW) is a serious pest in field corn and sweet corn [Zea mays L.] in many parts of the world. Sweet corn germplasm with effective levels of resistance to damage by the fall armyworm is needed to transfer resistance to commercial hybrids. The objectives of this study were to estimate heritability and to estimate the correlation among some selected morphological traits and their relationship with FAW damage. Seven shrunken-2 (sh2) inbred lines and four commercial sh2 hybrids of sweet corn were crossed to Mp708, a FAW-resistant field corn line. The F2 populations were subdivided with one half being selected for the sh2 trait and the other half was left unselected. Parent, F2, and F3 populations were artificially infested with FAW and evaluated for leaf damage caused by FAW. Heritability estimates for FAW resistance ranged from 0.22 to 0.61 depending on method of estimation used. The highest correlations occurred between silk color and anther color (0.70) and silk color and glume color (0.49). There were no consistent correlations of most morphological traits with FAW damage. A linkage between white silk and shrunken-2 was observed. PMID:12658873

  12. Heritability and correlation among some selected morphological traits and their relationship with fall armyworm damage in sweet corn.

    PubMed

    Rea, Ramón A; Watson, Clarence E; Williams, William P; Davis, Frank M

    2002-01-01

    Fall armyworm [Spodoptera frugiperda J. E. Smith] (FAW) is a serious pest in field corn and sweet corn [Zea mays L.] in many parts of the world. Sweet corn germplasm with effective levels of resistance to damage by the fall armyworm is needed to transfer resistance to commercial hybrids. The objectives of this study were to estimate heritability and to estimate the correlation among some selected morphological traits and their relationship with FAW damage. Seven shrunken-2 (sh2) inbred lines and four commercial sh2 hybrids of sweet corn were crossed to Mp708, a FAW-resistant field corn line. The F2 populations were subdivided with one half being selected for the sh2 trait and the other half was left unselected. Parent, F2, and F3 populations were artificially infested with FAW and evaluated for leaf damage caused by FAW. Heritability estimates for FAW resistance ranged from 0.22 to 0.61 depending on method of estimation used. The highest correlations occurred between silk color and anther color (0.70) and silk color and glume color (0.49). There were no consistent correlations of most morphological traits with FAW damage. A linkage between white silk and shrunken-2 was observed. PMID:12216502

  13. Morphological evaluation of sperm from infertile men selected by magnetic activated cell sorting (MACS).

    PubMed

    Curti, Gianni; Skowronek, Fernanda; Vernochi, Rita; Rodriguez-Buzzi, Ana Laura; Rodriguez-Buzzi, Juan Carlos; Casanova, Gabriela; Sapiro, Rossana

    2014-12-01

    Electron microscopy analysis performed in five infertile human subjects after sperm selection by swim-up followed by magnetic activated cell sorting (MACS) demonstrated a decrease in the number of spermatozoa with characteristics compatible with cell death. However, no significant differences were found when the swim-up/MACS semen fraction was compared with swim-up fraction alone.

  14. Binding among select episodic elements is altered via active short-term retrieval.

    PubMed

    Bridge, Donna J; Voss, Joel L

    2015-08-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated memory of associated objects, which was associated with unique patterns of viewing behavior during study and enhanced ERP correlates of retrieval during test, relative to other reminder cues that were not actively retrieved. Active short-term retrieval therefore enhanced binding of retrieved elements with others, thus creating powerful memory cues for entire episodes. PMID:26179229

  15. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.

    PubMed

    Green, Stephanie J; Côté, Isabelle M

    2014-11-01

    Understanding how predators select their prey can provide important insights into community structure and dynamics. However, the suite of prey species available to a predator is often spatially and temporally variable. As a result, species-specific selectivity data are of limited use for predicting novel predator-prey interactions because they are assemblage specific. We present a method for predicting diet selection that is applicable across prey assemblages, based on identifying general morphological and behavioural traits of prey that confer vulnerability to predation independent of species identity. We apply this trait-based approach to examining prey selection by Indo-Pacific lionfish (Pterois volitans and Pterois miles), invasive predators that prey upon species-rich reef fish communities and are rapidly spreading across the western Atlantic. We first generate hypotheses about morphological and behavioural traits recurring across fish species that could facilitate or deter predation by lionfish. Constructing generalized linear mixed-effects models that account for relatedness among prey taxa, we test whether these traits predict patterns of diet selection by lionfish within two independent data sets collected at different spatial scales: (i) in situ visual observations of prey consumption and availability for individual lionfish and (ii) comparisons of prey abundance in lionfish stomach contents to availability on invaded reefs at large. Both analyses reveal that a number of traits predicted to affect vulnerability to predation, including body size, body shape, position in the water column and aggregation behaviour, are important determinants of diet selection by lionfish. Small, shallow-bodied, solitary fishes found resting on or just above reefs are the most vulnerable. Fishes that exhibit parasite cleaning behaviour experience a significantly lower risk of predation than non-cleaning fishes, and fishes that are nocturnally active are at significantly

  16. Selective IgM deficiency in adults: phenotypically and functionally altered profiles of peripheral blood lymphocytes.

    PubMed Central

    Ohno, T; Inaba, M; Kuribayashi, K; Masuda, T; Kanoh, T; Uchino, H

    1987-01-01

    Peripheral blood lymphocytes from four patients with selective IgM deficiency were examined phenotypically and functionally. Although B cell subpopulations determined by surface immunoglobulins were within normal or nearly normal range, T8+ cells were significantly increased and T4/T8 ratios were inverted in three patients. IgM specific hyporesponsiveness in the PWM-driven immunoglobulin production system was observed in all four patients. Ia-like antigen positive T cells were increased in two patients; both had increased Leu2a+ Leu15+ suppressor-effector cells. In addition, Leu3a+ Leu8+ suppressor-inducer cells were increased in one of these two patients. Excessive (either IgM-specific or isotype non-specific) suppressor activity of T cells and IgM specific hyporesponsiveness of non-T cells were observed in these two patients in the recombination plaque assay. Although these results showed the complexity of the pathogenesis of this syndrome, they suggested that suppressor-associated T cells may play a role in some patients with selective IgM deficiency. PMID:2958191

  17. Selective kallikrein inhibitors alter human neutrophil elastase release during extracorporeal circulation.

    PubMed

    Wachtfogel, Y T; Hack, C E; Nuijens, J H; Kettner, C; Reilly, T M; Knabb, R M; Bischoff, R; Tschesche, H; Wenzel, H; Kucich, U

    1995-03-01

    Cardiopulmonary bypass causes hemorrhagic complications and initiates a biochemical and cellular "whole body inflammatory response." This study investigates whether a variety of selective inhibitors of the contact pathway of intrinsic coagulation modulate complement and neutrophil activation during simulated extracorporeal circulation. After 60 min of recirculation in the presence of the slow tight-binding boronic acid inhibitor, Bz-Pro-Phe-boroArg-OH (10.7 microM), complete inhibition of kallikrein-C1-inhibitor complex formation and marked inhibition of C1-C1-inhibitor complex formation and the release of human neutrophil elastase were observed. Arg15-aprotinin (3.1 microM), Ala357,Arg358 alpha 1-antitrypsin (2.6 microM), and soybean trypsin inhibitor (48.0 microM) either completely or partially inhibited the generation of kallikrein-C1-inhibitor complexes but were less effective inhibitors of human neutrophil elastase release. The second-order rate constants for the inhibition of kallikrein in purified systems are consistent with the order of effectiveness of the inhibitors in blocking human neutrophil elastase release in heparinized blood. Our results suggest that low-molecular-weight selective inhibitors of kallikrein may be effective agents in the attenuation of the contact-mediated inflammatory response in cardiopulmonary bypass.

  18. Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene.

    PubMed

    Atwal, Gurinder Singh; Kirchhoff, Tomas; Bond, Elisabeth E; Montagna, Marco; Monagna, Marco; Menin, Chiara; Bertorelle, Roberta; Scaini, Maria Chiara; Bartel, Frank; Böhnke, Anja; Pempe, Christina; Gradhand, Elise; Hauptmann, Steffen; Offit, Kenneth; Levine, Arnold J; Bond, Gareth L

    2009-06-23

    A large body of evidence strongly suggests that the p53 tumor suppressor pathway is central in reducing cancer frequency in vertebrates. The protein product of the haploinsufficient mouse double minute 2 (MDM2) oncogene binds to and inhibits the p53 protein. Recent studies of human genetic variants in p53 and MDM2 have shown that single nucleotide polymorphisms (SNPs) can affect p53 signaling, confer cancer risk, and suggest that the pathway is under evolutionary selective pressure (1-4). In this report, we analyze the haplotype structure of MDM4, a structural homolog of MDM2, in several different human populations. Unusual patterns of linkage disequilibrium (LD) in the haplotype distribution of MDM4 indicate the presence of candidate SNPs that may also modify the efficacy of the p53 pathway. Association studies in 5 different patient populations reveal that these SNPs in MDM4 confer an increased risk for, or early onset of, human breast and ovarian cancers in Ashkenazi Jewish and European cohorts, respectively. This report not only implicates MDM4 as a key regulator of tumorigenesis in the human breast and ovary, but also exploits for the first time evolutionary driven linkage disequilibrium as a means to select SNPs of p53 pathway genes that might be clinically relevant.

  19. Ultraviolet B radiation alters movement and thermal selection of zebrafish (Danio rerio).

    PubMed

    Seebacher, Frank; Kazerouni, Ensiyeh Ghanizadeh; Franklin, Craig E

    2016-08-01

    Temperature and ultraviolet B (UV-B) interact in causing cellular damage and impairing locomotor performance. Here, we test the hypothesis that movement and thermal selection of zebrafish (Danio rerio) change in the presence of UV-B, and in particular, that fish which were chronically exposed to UV-B avoid high and low temperature extremes to maximize activities of antioxidant enzymes. Fish chronically (two to three weeks) exposed to UV-B had increased reactive oxygen species (ROS)-induced damage to proteins and membranes, and reduced swimming performance at high (more than 26°C) temperatures. In an open field arena with a thermal gradient, chronically exposed fish avoided high and low temperature extremes compared with control fish. Additionally, both control and chronically exposed fish showed slower voluntary swimming speeds in the presence of UV-B. We suggest that in the presence of UV-B fish may reduce muscular activity to minimize intrinsic ROS production. Our data show that the interaction between UV-B and temperature determines movement and microhabitat selection of fish, which is therefore of ecological importance particularly in anthropogenically modified environments. PMID:27531156

  20. Selection for high and low oxygen consumption altered hepatic mitochondrial energy efficiency in mice.

    PubMed

    Hong, Yu; Ardiyanti, Astrid; Kikusato, Motoi; Shimazu, Tomoyuki; Toyomizu, Masaaki; Suzuki, Keiichi

    2015-09-01

    Selection for high (H) and low (L) oxygen consumption (OC) as an indirect estimation of maintenance energy requirement was determined. Feed intake and body weight were measured and feed conversion ratio (FCR) of 4-8-week-old mice was calculated. Respiratory activity of hepatic mitochondria was measured at 12 weeks. Total feed intake (H: 103.74 g, L: 97.92 g, P < 0.01), daily feed intake (H: 3.70 g/day, L: 3.50 g/day, P < 0.01) and FCR (H: 18.79, L: 15.50, P < 0.01) were significantly different between lines. The line by sex interaction was significant for FCR. No line differences were observed in males; and the FCR of the H line was greater than in the L line in females. H line mice had the highest hepatic mitochondrial respiratory activity in state 2 (P < 0.01), the highest uncoupled respiratory rate of mitochondria in the presence of an uncoupling agent (P < 0.001), and the mitochondrial proton leak. The adenosine diphosphate/ O ratio was highest in the L line (P < 0.05). This suggests that the selection for high and low OC induced differences in basal mitochondrial respiration and basal metabolism, resulting in difference in FCR between H and L lines.

  1. Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress

    PubMed Central

    Floor, Stephen N.; Purzner, James; Martin, Lance; Do, Brian T.; Schubert, Simone; Vaka, Dedeepya; Morrissy, Sorana; Li, Yisu; Kool, Marcel; Hovestadt, Volker; Jones, David T.W.; Northcott, Paul A.; Risch, Thomas; Warnatz, Hans-Jörg; Yaspo, Marie-Laure; Adams, Christopher M.; Leib, Ryan D.; Breese, Marcus; Marra, Marco A.; Malkin, David; Lichter, Peter; Doudna, Jennifer A.; Pfister, Stefan M.; Taylor, Michael D.; Chang, Howard Y.; Cho, Yoon-Jae

    2016-01-01

    DDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3′s interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5′UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3′s role in this process. Arsenite-induced stress shifts DDX3 binding from the 5′UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation. PMID:27058758

  2. Estrogen alters the diurnal rhythm of alpha 1-adrenergic receptor densities in selected brain regions

    SciTech Connect

    Weiland, N.G.; Wise, P.M.

    1987-11-01

    Norepinephrine regulates the proestrous and estradiol-induced LH surge by binding to alpha 1-adrenergic receptors. The density of alpha 1-receptors may be regulated by estradiol, photoperiod, and noradrenergic neuronal activity. We wished to determine whether alpha 1-receptors exhibit a diurnal rhythm in ovariectomized and/or estradiol-treated female rats, whether estradiol regulates alpha 1-receptors in those areas of brain involved with LH secretion and/or sexual behavior, and whether the concentrations of alpha-receptors vary inversely relative to previously reported norepinephrine turnover patterns. Young female rats, maintained on a 14:10 light-dark cycle were ovariectomized. One week later, half of them were outfitted sc with Silastic capsules containing estradiol. Groups of animals were decapitated 2 days later at 0300, 1000, 1300, 1500, 1800, and 2300 h. Brains were removed, frozen, and sectioned at 20 micron. Sections were incubated with (/sup 3/H)prazosin in Tris-HCl buffer, washed, dried, and exposed to LKB Ultrofilm. The densities of alpha 1-receptors were quantitated using a computerized image analysis system. In ovariectomized rats, the density of alpha 1-receptors exhibited a diurnal rhythm in the suprachiasmatic nucleus (SCN), medial preoptic nucleus (MPN), and pineal gland. In SCN and MPN, receptor concentrations were lowest during the middle of the day and rose to peak levels at 1800 h. In the pineal gland, the density of alpha 1-receptors was lowest at middark phase, rose to peak levels before lights on, and remained elevated during the day. Estradiol suppressed the density of alpha 1 binding sites in the SCN, MPN, median eminence, ventromedial nucleus, and the pineal gland but had no effect on the lateral septum. Estrogen treatment altered the rhythm of receptor densities in MPN, median eminence, and the pineal gland.

  3. Diffuse Midline Gliomas with Histone H3-K27M Mutation: A Series of 47 Cases Assessing the Spectrum of Morphologic Variation and Associated Genetic Alterations.

    PubMed

    Solomon, David A; Wood, Matthew D; Tihan, Tarik; Bollen, Andrew W; Gupta, Nalin; Phillips, Joanna J J; Perry, Arie

    2016-09-01

    Somatic mutations of the H3F3A and HIST1H3B genes encoding the histone H3 variants, H3.3 and H3.1, were recently identified in high-grade gliomas arising in the thalamus, pons and spinal cord of children and young adults. However, the complete range of patients and locations in which these tumors arise, as well as the morphologic spectrum and associated genetic alterations remain undefined. Here, we describe a series of 47 diffuse midline gliomas with histone H3-K27M mutation. The 25 male and 22 female patients ranged in age from 2 to 65 years (median = 14). Tumors were centered not only in the pons, thalamus, and spinal cord, but also in the third ventricle, hypothalamus, pineal region and cerebellum. Patients with pontine tumors were younger (median = 7 years) than those with thalamic (median = 24 years) or spinal (median = 25 years) tumors. A wide morphologic spectrum was encountered including gliomas with giant cells, epithelioid and rhabdoid cells, primitive neuroectodermal tumor (PNET)-like foci, neuropil-like islands, pilomyxoid features, ependymal-like areas, sarcomatous transformation, ganglionic differentiation and pleomorphic xanthoastrocytoma (PXA)-like areas. In this series, histone H3-K27M mutation was mutually exclusive with IDH1 mutation and EGFR amplification, rarely co-occurred with BRAF-V600E mutation, and was commonly associated with p53 overexpression, ATRX loss (except in pontine gliomas), and monosomy 10. PMID:26517431

  4. Shifting habitats, morphology, and selective pressures: developmental polyphenism in an adaptive radiation of Hawaiian spiders.

    PubMed

    Brewer, Michael S; Carter, Rebecca A; Croucher, Peter J P; Gillespie, Rosemary G

    2015-01-01

    Particularly intriguing examples of adaptive radiation are those in which lineages show parallel or convergent evolution, suggesting utilization of similar genetic or developmental pathways. The current study focuses on an adaptive radiation of Hawaiian "spiny-leg" spiders in which diversification is associated with repeated convergent evolution leading to similar sets of ecomorphs on each island. However, two species on the oldest islands in the archipelago exhibit variability, occurring as two different ecomorphs. More derived species on the younger islands show much less variability, any one species displaying a single ecomorph. We measured ecomorphological features within individuals over time to determine the nature of the variability. Then, using transcriptomes, we conducted lineage-based tests for selection under varying models and analyses of gene tree versus species tree incongruencies. Our results provide strong evidence that variability in color in Tetragnatha kauaiensis and T. polychromata is associated with development within individuals (polyphenism). Moreover, a total of 28 loci showed a signature of selection associated with loss of the color-changing phenotype, and 37 loci showed a signature of selection associated with the colonization of a new environment. The results illustrate how developmental polyphenism might provide an avenue for the repeated evolution of ecomorphs during adaptive radiation.

  5. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    DOE PAGESBeta

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-08-02

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. We expand on traditional DSA chemical patterning. Moreover, a blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This contrastsmore » with typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.« less

  6. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    PubMed Central

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-01-01

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist. PMID:27480327

  7. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.

    PubMed Central

    Chen, W; Lee, R C

    1994-01-01

    The effects of large magnitude transmembrane potential pulses on voltage-gated Na and K channel behavior in frog skeletal muscle membrane were studied using a modified double vaseline-gap voltage clamp. The effects of electroconformational damage to ionic channels were separated from damage to lipid bilayer (electroporation). A 4 ms transmembrane potential pulse of -600 mV resulted in a reduction of both Na and K channel conductivities. The supraphysiologic pulses also reduced ionic selectivity of the K channels against Na+ ions, resulting in a depolarization of the membrane resting potential. However, TTX and TEA binding effects were unaltered. The kinetics of spontaneous reversal of the electroconformational damage of channel proteins was found to be dependent on the magnitude of imposed membrane potential pulse. These results suggest that muscle and nerve dysfunction after electrical shock may be in part caused by electroconformational damage to voltage-gated ion channels. PMID:7948676

  8. Does Anticoagulant Medication Alter Fracture-Healing? A Morphological and Biomechanical Evaluation of the Possible Effects of Rivaroxaban and Enoxaparin Using a Rat Closed Fracture Model

    PubMed Central

    Prodinger, Peter Michael; Burgkart, Rainer; Kreutzer, Kilian; Liska, Franz; Pilge, Hakan; Schmitt, Andreas; Knödler, Martina; Holzapfel, Boris Michael; Hapfelmeier, Alexander; Tischer, Thomas; Bissinger, Oliver

    2016-01-01

    Low molecular weight heparin (LMWH) is routinely used to prevent thromboembolism in orthopaedic surgery, especially in the treatment of fractures or after joint-replacement. Impairment of fracture-healing due to increased bone-desorption, delayed remodelling and lower calcification caused by direct osteoclast stimulation is a well-known side effect of unfractioned heparin. However, the effect of LMWH is unclear and controversial. Recent studies strongly suggest impairment of bone-healing in-vitro and in animal models, characterized by a significant decrease in volume and quality of new-formed callus. Since October 2008, Rivaroxaban (Xarelto) is available for prophylactic use in elective knee- and hip-arthroplasty. Recently, some evidence has been found indicating an in vitro dose independent reduction of osteoblast function after Rivaroxaban treatment. In this study, the possible influence of Rivaroxaban and Enoxaparin on bone-healing in vivo was studied using a standardized, closed rodent fracture-model. 70 male Wistar-rats were randomized to Rivaroxaban, Enoxaparin or control groups. After pinning the right femur, a closed, transverse fracture was produced. 21 days later, the animals were sacrificed and both femora harvested. Analysis was done by biomechanical testing (three-point bending) and micro CT. Both investigated substances showed histomorphometric alterations of the newly formed callus assessed by micro CT analysis. In detail the bone (callus) volume was enhanced (sign. for Rivaroxaban) and the density reduced. The bone mineral content was enhanced accordingly (sign. for Rivaroxaban). Trabecular thickness was reduced (sign. for Rivaroxaban). Furthermore, both drugs showed significant enlarged bone (callus) surface and degree of anisotropy. In contrast, the biomechanical properties of the treated bones were equal to controls. To summarize, the morphological alterations of the fracture-callus did not result in functionally relevant deficits. PMID:27455072

  9. Does Anticoagulant Medication Alter Fracture-Healing? A Morphological and Biomechanical Evaluation of the Possible Effects of Rivaroxaban and Enoxaparin Using a Rat Closed Fracture Model.

    PubMed

    Prodinger, Peter Michael; Burgkart, Rainer; Kreutzer, Kilian; Liska, Franz; Pilge, Hakan; Schmitt, Andreas; Knödler, Martina; Holzapfel, Boris Michael; Hapfelmeier, Alexander; Tischer, Thomas; Bissinger, Oliver

    2016-01-01

    Low molecular weight heparin (LMWH) is routinely used to prevent thromboembolism in orthopaedic surgery, especially in the treatment of fractures or after joint-replacement. Impairment of fracture-healing due to increased bone-desorption, delayed remodelling and lower calcification caused by direct osteoclast stimulation is a well-known side effect of unfractioned heparin. However, the effect of LMWH is unclear and controversial. Recent studies strongly suggest impairment of bone-healing in-vitro and in animal models, characterized by a significant decrease in volume and quality of new-formed callus. Since October 2008, Rivaroxaban (Xarelto) is available for prophylactic use in elective knee- and hip-arthroplasty. Recently, some evidence has been found indicating an in vitro dose independent reduction of osteoblast function after Rivaroxaban treatment. In this study, the possible influence of Rivaroxaban and Enoxaparin on bone-healing in vivo was studied using a standardized, closed rodent fracture-model. 70 male Wistar-rats were randomized to Rivaroxaban, Enoxaparin or control groups. After pinning the right femur, a closed, transverse fracture was produced. 21 days later, the animals were sacrificed and both femora harvested. Analysis was done by biomechanical testing (three-point bending) and micro CT. Both investigated substances showed histomorphometric alterations of the newly formed callus assessed by micro CT analysis. In detail the bone (callus) volume was enhanced (sign. for Rivaroxaban) and the density reduced. The bone mineral content was enhanced accordingly (sign. for Rivaroxaban). Trabecular thickness was reduced (sign. for Rivaroxaban). Furthermore, both drugs showed significant enlarged bone (callus) surface and degree of anisotropy. In contrast, the biomechanical properties of the treated bones were equal to controls. To summarize, the morphological alterations of the fracture-callus did not result in functionally relevant deficits. PMID:27455072

  10. Protective effect of systemic L-kynurenine and probenecid administration on behavioural and morphological alterations induced by toxic soluble amyloid beta (25-35) in rat hippocampus.

    PubMed

    Carrillo-Mora, Paul; Méndez-Cuesta, Luis A; Pérez-De La Cruz, Verónica; Fortoul-van Der Goes, Teresa I; Santamaría, Abel

    2010-07-11

    Amyloid beta (Abeta) peptide exerts different toxic effects at a cellular level, including over-activation of N-methyl-D-aspartate receptor (NMDAr) and excitotoxicity, synaptic dysfunction and neuronal death. Kynurenic acid (KYNA) is an endogenous antagonist of NMDAr and alpha7 nicotinic receptors. Systemic administrations of both the immediate metabolic precursor of KYNA, L-kynurenine (L-KYN), and a proved inhibitor of KYNA's brain transport, probenecid (PROB), have shown to produce neuroprotective effects in a considerable number of experimental toxic conditions; however, this strategy has not been tested in the toxic model Abeta peptide so far. In this study we evaluated the effects of systemic administration of PROB (50 mg/kg/day for 7 days), L-KYN (75 mg/kg/day for 7 days) and their combination, on behavioural (locomotor activity and spatial memory) and morphological alterations induced by an intrahippocampal infusion of Abeta 25-35 to rats. An additional group was administered with the potent NMDAr antagonist dizocilpine (MK-801, 0.8 mg/kg/day for 7 days) for comparative purposes. A significant improvement of spatial memory was evident in Abeta-lesioned rats since post-lesion day 21 with all treatments tested and this effect was correlated with a reduction of cell damage and a decrease in reactive gliosis in hippocampal CA1 area. Neither L-KYN, nor PROB, or their combination, produced major alterations in motor function when given alone to rats. These results suggest that modulation of NMDAr activity by mean of therapeutic strategies designed to enhance KYNA in the brain may help to counteract neurodegenerative events coursing with Abeta toxicity and excitotoxic patterns.

  11. Acoustic noise alters selective attention processes as indicated by direct current (DC) brain potential changes.

    PubMed

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts-which are discussed to represent different states of cortical activation-of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest-besides some limitations-that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested "attention shift". Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  12. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC) Brain Potential Changes

    PubMed Central

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed. PMID:25264675

  13. Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex.

    PubMed

    Miller, M W

    1996-02-01

    The present in vivo study tests the hypothesis that limited (4-day) exposure to ethanol differentially affects the proliferation of cortical precursors in the two cortical germinal zones [the ventricular zone (VZ) and the subventricular zone (SZ)] and their descendants in the mature brain. The offspring of pregnant rats fed a liquid diet containing 6.7% (v/v) ethanol when prosencephalic stem cells [gestation day (G) 6-69], VZ cells (G12-G15), and SZ cells were proliferating (G18- G21) throughout much of gestation (G6-G21). In addition, the offspring of rats pair-fed a liquid control diet or fed chow were examined. The pregnant dams were administered with bromodeoxyuridine (BrdU) on either G15 or G21. The ratio of the number of cells that incorporated BrdU to the total number (the labeling index) was determined 1-hr postinjection (i.e., on G15 or G21) or on postnatal day 60, Ethanol treatment between G6 and G21 reduced the ratio of cells labeled by an injection of BrdU on G15 in the fetus and in the adult, and increased the ratio of cells labeled on G21. Regardless of when the injection was placed, ethanol treatment between G6 and G9 had no effect upon the ratio of BrdU-labeled cells in the fetus or mature cortex. Exposure from G12 to G15 decreased the number of VZ cells in the fetus and the number of immunolabeled cells in the adult cortex labeled by an injection on G15. This exposure had no effect on the incorporation by SZ cells. In contrast, ethanol exposure from G18 to G21 increased the labeling indices for fetal SZ cells and for cells in the adult, but it had no effect on the ratio of labeled VZ cells. Although ethanol had no apparent effect on the proliferation of stem cells, it did alter the proliferation of cells in the VZ and SZ. These effects are time-dependent and underlie the ethanol-induced changes in the number of cells in the adult.

  14. [The effect of vegetarian diet on selected biochemical and blood morphology parameters].

    PubMed

    Nazarewicz, Rafał

    2007-01-01

    The objective was to examine whether vegetarian diet influence biochemical parameters of blood and plasma urea in selective vegetarian group. The investigation covered 41 subject, 22 of them had been applying vegetarian diet and 19 were omnivorous. The study shows statistically significant lower values of white blood cells, % and amounts of neutrocytes and insignificant lower level of red blood cells, hemoglobine, hematocrit and platelet in vegetarian group. Significant lower plasma urea level was observed in that group. These changes indicate that high quality deficiency protein was due to vegetarian diet.

  15. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro

    SciTech Connect

    Schlie-Wolter, Sabrina; Ngezahayo, Anaclet; Chichkov, Boris N.

    2013-06-10

    Cell binding to the extracellular matrix (ECM) is essential for cell and tissue functions. In this context, each tissue consists of a unique ECM composition, which may be responsible for tissue-specific cell responses. Due to the complexity of ECM-cell interactions—which depend on the interplay of inside-out and outside-in signaling cascades, cell and tissue specificity of ECM-guidance is poorly understood. In this paper, we investigate the role of different ECM components like laminin, fibronectin, and collagen type I with respect to the essential cell behaviour patterns: attachment dynamics such as adhesion kinetic and force, formation of focal adhesion complexes, morphology, proliferation, and intercellular communication. A detailed in vitro comparison of fibroblasts, endothelial cells, osteoblasts, smooth muscle cells, and chondrocytes reveals significant differences in their cell responses to the ECM: cell behaviour follows a cell specific ligand priority ranking, which was independent of the cell type origin. Fibroblasts responded best to fibronectin, chondrocytes best to collagen I, the other cell types best to laminin. This knowledge is essential for optimization of tissue-biomaterial interfaces in all tissue engineering applications and gives insight into tissue-specific cell guidance. -- Highlights: • We analyse the impact of ECM components on cell behaviour in vitro. • We compare five different cell types, using the same culture conditions. • The ECM significantly guides all cell responses. • Cell behaviour follows a cell specific ligand-priority ranking. • This gives insight in tissue formation and is essential for biomedical applications.

  16. Reef fishes can recognize bleached habitat during settlement: sea anemone bleaching alters anemonefish host selection.

    PubMed

    Scott, Anna; Dixson, Danielle L

    2016-05-25

    Understanding how bleaching impacts the settlement of symbiotic habitat specialists and whether there is flexibility in settlement choices with regard to habitat quality is essential given our changing climate. We used five anemonefishes (Amphiprion clarkii, Amphiprion latezonatus, Amphiprion ocellaris, Amphiprion percula and Premnas biaculeatus) and three host sea anemones (Entacmaea quadricolor, Heteractis crispa and Heteractis magnifica) in paired-choice flume experiments to determine whether habitat naive juveniles have the olfactory capabilities to distinguish between unbleached and bleached hosts, and how this may affect settlement decisions. All anemonefishes were able to distinguish between bleached and unbleached hosts, and responded only to chemical cues from species-specific host anemones irrespective of health status, indicating a lack of flexibility in host use. While bleached hosts were selected as habitat, this occurred only when unbleached options were unavailable, with the exception of A. latezonatus, which showed strong preferences for H. crispa regardless of health. This study highlights the potential deleterious indirect impacts of declining habitat quality during larval settlement in habitat specialists, which could be important in the field, given that bleaching events are becoming increasingly common. PMID:27226472

  17. IgH sequences in common variable immune deficiency reveal altered B cell development and selection**

    PubMed Central

    Roskin, Krishna M.; Simchoni, Noa; Liu, Yi; Lee, Ji-Yeun; Seo, Katie; Hoh, Ramona A.; Pham, Tho; Park, Joon H.; Furman, David; Dekker, Cornelia L.; Davis, Mark M.; James, Judith A.; Nadeau, Kari C.; Cunningham-Rundles, Charlotte; Boyd, Scott D.

    2015-01-01

    Common variable immune deficiency (CVID) is the most common symptomatic primary immune deficiency, affecting ∼1 in 25,000 persons. These patients suffer from impaired antibody responses, autoimmunity, and susceptibility to lymphoid cancers. To explore the cellular basis for these clinical phenotypes, we conducted high-throughput DNA sequencing of immunoglobulin heavy chain gene rearrangements from 93 CVID patients and 105 control subjects and sorted naïve and memory B cells from 13 of the CVID patients and 10 of the control subjects. CVID patients showed abnormal VDJ rearrangement and abnormal formation of complementarity determining region 3 (CDR3). We observed decreased selection against antibodies with long CDR3 regions in memory repertoires and decreased V gene replacement, offering possible mechanisms for increased patient autoreactivity. Our data indicate that patient immunodeficiency might derive both from decreased diversity of the naïve B cell pool and decreased somatic hypermutation in memory repertoires. CVID patients also exhibited abnormal clonal expansion of unmutated B cells relative to controls. Although impaired B cell germinal center activation is commonly viewed as causative in CVID, these data indicate that CVID B cells diverge from controls as early as the pro-B cell stage and suggest possible explanations for the increased incidence of autoimmunity, immunodeficiency, and lymphoma CVID patients. PMID:26311730

  18. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy.

    PubMed

    Ronan, Baptiste; Flamand, Odile; Vescovi, Lionel; Dureuil, Christine; Durand, Laurence; Fassy, Florence; Bachelot, Marie-France; Lamberton, Annabelle; Mathieu, Magali; Bertrand, Thomas; Marquette, Jean-Pierre; El-Ahmad, Youssef; Filoche-Romme, Bruno; Schio, Laurent; Garcia-Echeverria, Carlos; Goulaouic, Hélène; Pasquier, Benoit

    2014-12-01

    Vps34 is a phosphoinositide 3-kinase (PI3K) class III isoform that has attracted major attention over the recent years because of its role in autophagy. Herein we describe the biological characterization of SAR405, which is a low-molecular-mass kinase inhibitor of Vps34 (KD 1.5 nM). This compound has an exquisite protein and lipid kinase selectivity profile that is explained by its unique binding mode and molecular interactions within the ATP binding cleft of human Vps34. To the best of our knowledge, this is the first potent and specific Vps34 inhibitor described so far. Our results demonstrate that inhibition of Vps34 kinase activity by SAR405 affects both late endosome-lysosome compartments and prevents autophagy. Moreover, we show that the concomitant inhibition of Vps34 and mTOR, with SAR405 and the US Food and Drug Administration-approved mTOR inhibitor everolimus, results in synergistic antiproliferative activity in renal tumor cell lines, indicating a potential clinical application in cancer.

  19. Altering small and medium alcohol selectivity in the wax ester synthase.

    PubMed

    Barney, Brett M; Ohlert, Janet M; Timler, Jacobe G; Lijewski, Amelia M

    2015-11-01

    The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT or wax ester synthase) catalyzes the terminal reaction in the bacterial wax ester biosynthetic pathway, utilizing a range of alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. The wild-type wax ester synthase Maqu_0168 from Marinobacter aquaeolei VT8 exhibits a preference for longer fatty alcohols, while applications with smaller alcohols would yield products with desired biotechnological properties. Small and medium chain length alcohol substrates are much poorer substrates for the native enzyme, which may hinder broad application of the wax ester synthase in many proposed biosynthetic schemes. Developing approaches to improve enzyme activity toward specific smaller alcohol substrates first requires a clear understanding of which amino acids of the primary sequences of these enzymes contribute to substrate specificity in the native enzyme. In this report, we surveyed a range of potential residues and identified the leucine at position 356 and methionine at position 405 in Maqu_0168 as residues that affected selectivity toward small, branched, and aromatic alcohols when substituted with different amino acids. This analysis provides evidence of residues that line the binding site for wax ester synthase, which will aid rational approaches to improve this enzyme with specific substrates.

  20. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats.

    PubMed

    Romano-López, Antonio; Méndez-Díaz, Mónica; García, Fabio García; Regalado-Santiago, Citlalli; Ruiz-Contreras, Alejandra E; Prospéro-García, Oscar

    2016-08-01

    A considerable amount experimental studies have shown that maternal separation (MS) is associated with adult offspring abnormal behavior and cognition disorder. Accordingly, this experimental procedure has been proposed as a predictor for alcohol and drug dependence based on the neurodevelopmental soon after birth. Endocannabinoid system (eCBs) has been implicated in reward processes, including drug abuse and dependence. MS and associated stress causes changes in the eCBs that seem to facilitate alcohol consumption. In this study, we seek to evaluate potential morphological changes in neurons of the frontal cortex (FCx) and nucleus accumbens (NAcc), in the expression of receptors and enzymes of the endocannabinoid and dopamine systems and in second messengers, such as Akt, in adult rats subjected to MS and early stress (MS + ES; 2 × 180 min daily) vs. nonseparated rats (NMS). Results showed that MS + ES induces higher D2R expression and lower D3R, FAAH, and MAGL expression compared with NMS rats. Alterations in total dendritic length were also detected and were characterized by increases in the NAcc while there were decreases in the FCx. We believe MS + ES-induced changes in the dopaminergic and endocannabinergic systems and in the neuronal microstructure might be contributing to alcohol seeking behavior and, potential vulnerability to other drugs in rats. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 819-831, 2016.

  1. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    PubMed

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus.

  2. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats.

    PubMed

    Porrino, L J; Domer, F R; Crane, A M; Sokoloff, L

    1988-05-01

    The 2-[14C]deoxyglucose method was used to examine the effects of acute intravenous administration of cocaine on local cerebral glucose utilization in rats. These effects were correlated with the effects of cocaine on locomotor activity assessed simultaneously in the same animals. At the lowest dose of cocaine, 0.5 mg/kg (1.47 mumol/kg), alterations in glucose utilization were restricted to the medial prefrontal cortex and nucleus accumbens. Metabolic activity at 1.0 mg/kg (2.9 mumol/kg) was altered in these structures, but in the substantia nigra reticulata and lateral habenula as well. The selectivity of cocaine's effects at low doses demonstrates the particular sensitivity of these structures to cocaine's actions in the brain. In contrast, 5.0 mg/kg (14.7 mumol/kg) produced widespread changes in glucose utilization, particularly in the extrapyramidal system. Only this dose significantly increased locomotor activity above levels in vehicle-treated controls. Rates of glucose utilization were positively correlated with locomotor activity in the globus pallidus, substantia nigra reticulata, and subthalamic nucleus, and negatively correlated in the lateral habenula.

  3. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats

    SciTech Connect

    Porrino, L.J.; Domer, F.R.; Crane, A.M.; Sokoloff, L.

    1988-05-01

    The 2-(/sup 14/C)deoxyglucose method was used to examine the effects of acute intravenous administration of cocaine on local cerebral glucose utilization in rats. These effects were correlated with the effects of cocaine on locomotor activity assessed simultaneously in the same animals. At the lowest dose of cocaine, 0.5 mg/kg (1.47 mumol/kg), alterations in glucose utilization were restricted to the medial prefrontal cortex and nucleus accumbens. Metabolic activity at 1.0 mg/kg (2.9 mumol/kg) was altered in these structures, but in the substantia nigra reticulata and lateral habenula as well. The selectivity of cocaine's effects at low doses demonstrates the particular sensitivity of these structures to cocaine's actions in the brain. In contrast, 5.0 mg/kg (14.7 mumol/kg) produced widespread changes in glucose utilization, particularly in the extrapyramidal system. Only this dose significantly increased locomotor activity above levels in vehicle-treated controls. Rates of glucose utilization were positively correlated with locomotor activity in the globus pallidus, substantia nigra reticulata, and subthalamic nucleus, and negatively correlated in the lateral habenula.

  4. Selective probe of the morphology and local vibrations at carbon nanoasperities

    SciTech Connect

    Fujimori, Toshihiko; Endo, Morinobu; Kaneko, Katsumi; Urita, Koki; Moriguchi, Isamu; Tomanek, David; Ohba, Tomonori

    2012-02-14

    We introduce a way to selectively probe local vibration modes at nanostructured asperities such as tips of carbon nanohorns. Our observations benefit from signal amplification in surface-enhanced Raman scattering (SERS) at sites near a silver surface. We observe nanohorn tip vibration modes in the range 200-500 cm{sup -1}, which are obscured in regular Raman spectra. Ab initio density functional calculations assign modes in this frequency range to local vibrations at the nanohorn cap resembling the radial breathing mode of fullerenes. Careful interpretation of our SERS spectra indicates presence of caps with 5 or 6 pentagons, which are chemically the most active sites. Changes in the peak intensities and frequencies with time indicate that exposure to laser irradiation may cause structural rearrangements at the cap.

  5. Selection of an actinobacteria mixed culture for chlordane remediation. Pesticide effects on microbial morphology and bioemulsifier production.

    PubMed

    Fuentes, María S; Colin, Verónica L; Amoroso, María J; Benimeli, Claudia S

    2016-02-01

    Chlordane bioremediation using actinobacteria mixed culture is an attractive clean-up technique. Their ability to produce bioemulsifiers could increase the bioavailability of this pesticide. In order to select a defined actinobacteria mixed culture for chlordane remediation, compatibility assays were performed among six Streptomyces strains. The strains did not show growth inhibition, and they were assayed for chlordane removal, either as pure or as mixed cultures. In pure cultures, all of the strains showed specific dechlorination activity (1.42-24.20 EU mg(-1)) and chlordane removal abilities (91.3-95.5%). The specific dechlorination activity was mainly improved with cultures of three or four microorganisms. The mixed culture consisting of Streptomyces sp. A2-A5-A13 was selected. Their ability to produce bioemulsifiers in the presence of glucose or chlordane was tested, but no significant differences were observed (p > 0.05). However, the stability of the emulsions formed was linked to the carbon source used. Only in chlordane presence the emulsions retained 100% of their initial height. Finally, the selected consortium showed a high degree of sporulation in the pesticide presence. This is the first study on the effects that chlordane exerts on microbe morphology and emulsifier production for a defined mixed culture of Streptomyces with ability to remediate the pesticide. PMID:26554742

  6. Selection of an actinobacteria mixed culture for chlordane remediation. Pesticide effects on microbial morphology and bioemulsifier production.

    PubMed

    Fuentes, María S; Colin, Verónica L; Amoroso, María J; Benimeli, Claudia S

    2016-02-01

    Chlordane bioremediation using actinobacteria mixed culture is an attractive clean-up technique. Their ability to produce bioemulsifiers could increase the bioavailability of this pesticide. In order to select a defined actinobacteria mixed culture for chlordane remediation, compatibility assays were performed among six Streptomyces strains. The strains did not show growth inhibition, and they were assayed for chlordane removal, either as pure or as mixed cultures. In pure cultures, all of the strains showed specific dechlorination activity (1.42-24.20 EU mg(-1)) and chlordane removal abilities (91.3-95.5%). The specific dechlorination activity was mainly improved with cultures of three or four microorganisms. The mixed culture consisting of Streptomyces sp. A2-A5-A13 was selected. Their ability to produce bioemulsifiers in the presence of glucose or chlordane was tested, but no significant differences were observed (p > 0.05). However, the stability of the emulsions formed was linked to the carbon source used. Only in chlordane presence the emulsions retained 100% of their initial height. Finally, the selected consortium showed a high degree of sporulation in the pesticide presence. This is the first study on the effects that chlordane exerts on microbe morphology and emulsifier production for a defined mixed culture of Streptomyces with ability to remediate the pesticide.

  7. Probing the effect of human normal sperm morphology rate on cycle outcomes and assisted reproductive methods selection.

    PubMed

    Li, Bo; Ma, Yefei; Huang, Jianlei; Xiao, Xifeng; Li, Li; Liu, Chuang; Shi, Yongqian; Wang, Dong; Wang, Xiaohong

    2014-01-01

    Sperm morphology is the best predictor of fertilization potential, and the critical predictive information for supporting assisted reproductive methods selection. Given its important predictive value and the declining reality of semen quality in recent years, the threshold of normal sperm morphology rate (NSMR) is being constantly corrected and controversial, from the 4th edition (14%) to the 5th version (4%). We retrospectively analyzed 4756 cases of infertility patients treated with conventional-IVF(c-IVF) or ICSI, which were divided into three groups according to NSMR: ≥14%, 4%-14% and <4%. Here, we demonstrate that, with decrease in NSMR(≥14%, 4%-14%, <4%), in the c-IVF group, the rate of fertilization, normal fertilization, high-quality embryo, multi-pregnancy and birth weight of twins gradually decreased significantly (P<0.05), while the miscarriage rate was significantly increased (p<0.01) and implantation rate, clinical pregnancy rate, ectopic pregnancy rate, preterm birth rate, live birth rate, sex ratio, and birth weight(Singleton) showed no significant change. In the ICSI group, with decrease in NSMR (≥14%, 4%-14%, <4%), high-quality embryo rate, multi-pregnancy rate and birth weight of twins were gradually decreased significantly (p<0.05), while other parameters had no significant difference. Considering the clinical assisted methods selection, in the NFMR ≥14% group, normal fertilization rate of c-IVF was significantly higher than the ICSI group (P<0.05), in the 4%-14% group, birth weight (twins) of c-IVF were significantly higher than the ICSI group, in the <4% group, miscarriage of IVF was significantly higher than the ICSI group. Therefore, we conclude that NSMR is positively related to embryo reproductive potential, and when NSMR<4% (5th edition), ICSI should be considered first, while the NSMR≥4%, c-IVF assisted reproduction might be preferred.

  8. Changes in lagoonal marsh morphology at selected northeastern Atlantic coast sites of significance to migratory waterbirds

    USGS Publications Warehouse

    Erwin, R.M.; Sanders, G.M.; Prosser, D.J.

    2004-01-01

    Five lagoonal salt marsh areas, ranging from 220 ha to 3,670 ha, were selected from Cape Cod, Massachusetts to the southern DelMarVa peninsula, Virginia, USA to examine the degree to which Spartina marsh area and microhabitats had changed from the early or mid- 1900s to recent periods. We chose areas based on their importance to migratory bird populations, agency concerns about marsh loss and sea-level rise, and availability of historic imagery. We georeferenced and processed aerial photographs from a variety of sources ranging from 1932 to 1994. Of particular interest were changes in total salt marsh area, tidal creeks, tidal flats, tidal and non-tidal ponds, and open water habitats. Nauset Marsh, within Cape Cod National Seashore, experienced an annual marsh loss of 0.40% (19% from 1947 to 1994) with most loss attributed to sand overwash and conversion to open water. At Forsythe National Wildlife Refuge in southern New Jersey, annual loss was 0.27% (17% from 1932 to 1995), with nearly equal attribution of loss to open water and tidal pond expansion. At Curlew Bay, Virginia, annual loss was 0.20% (9% from 1949 to 1994) and almost entirely due to perimeter erosion to open water. At Gull Marsh, Virginia, a site chosen because of known erosional losses, we recorded the highest annual loss rate, 0.67% per annum, again almost entirely due to erosional, perimeter loss. In contrast, at the southernmost site, Mockhorn Island Wildlife Management Area, Virginia, there was a net gain of 0.09% per annum (4% from 1949 to 1994), with tidal flats becoming increasingly vegetated. Habitat. implications for waterbirds are considerable; salt marsh specialists such as laughing gulls (Larus atricilla), Forster's terns (Sterna forsteri), black rail, (Laterallus jamaicensis), seaside sparrow (Ammodramus maritimus), and saltmarsh sharp-tailed sparrow (Ammodramus caudacutus) are particularly at risk if these trends continue, and all but the laughing gull are species of concern to state

  9. Breeding biology and nest-site selection of red-tailed hawks in an altered desert grassland

    USGS Publications Warehouse

    Hobbs, R.J.; DeStefano, S.; Halvorson, W.L.

    2006-01-01

    Red-tailed Hawks (Buteo jamaicensis) have expanded their range as trees have invaded formerly-open grasslands. Desert grasslands of southern Arizona have been invaded by mesquite trees (Prosopis velutina) since Anglo-American settlement and now support a large population of Red-tailed Hawks. We studied a population of Red-tailed Hawks in an altered desert grassland in southern Arizona. Our objectives were to determine what environmental characteristics influence Red-tailed Hawk habitat selection in mesquite-invaded desert grasslands and to evaluate the habitat quality of these grasslands for Red-tailed Hawks based on nesting density, nest success, and productivity. Red-tailed Hawks had 86% (95% C.I. = 73-99) nest success and 1.82 young per breeding pair (95% C.I. = 1.41-2.23). Nesting density was 0.15 (95% CI = 0.08-0.21) breeding pairs/km2 and the mean nearest-neighbor distance was 1.95 km (95% C.I. = 1.74-2.16). Red-tailed Hawks selected nest-sites with taller nest-trees and greater tree height and cover than were available at random. Mesquite trees in desert grasslands provide abundant potential nesting structures for Red-tailed Hawks. ?? 2006 The Raptor Research Foundation, Inc.

  10. Rats selectively bred for low levels of 50 kHz ultrasonic vocalizations exhibit alterations in early social motivation.

    PubMed

    Harmon, K M; Cromwell, H C; Burgdorf, J; Moskal, J R; Brudzynski, S M; Kroes, R A; Panksepp, J

    2008-05-01

    In rats, the rates of 50 kHz ultrasonic vocalizations (USVs) can be used as a selective breeding phenotype and variations in this phenotype can be an indicator of affective states. The 50 kHz USV is elicited by rewarding stimuli (e.g., food, sexual behavior) and therefore can express a positive affective state. Conversely, the 22 kHz USV is elicited by aversive stimuli (e.g., presence of a predator, social defeat) indicating a negative affective state. In the present study, we tested the effect of selectively breeding for 50 kHz USVs on a variety of maternal social/emotional behaviors in young rat pups (PND 10-12). These measures consisted of an assessment of isolation calls and conditioned odor preference paradigm. Results indicate that animals selected for low levels of 50 kHz USVs show the greatest alterations in social behaviors compared to the control animals. The low line animals had an increase in isolation calls tested during place preference conditioning and a decrease in 50 kHz ultrasonic calls in all conditions. These same low line animals failed to show a typical preference for a maternally-associated odor during the place preference test. The different social behaviors of the high line animals did not consistently vary from those of the control group. These results have important implications for the study of genetic and epigenetic mechanisms underlying emotional states, and possibly contribute to the research underlying the emotional changes in developmental disorders such as autistic spectrum disorder by providing a novel animal model that displays communication deficits that are interdependent with significant social behavioral impairments. PMID:18393285

  11. Comparison between intracytoplasmic sperm injection and intracytoplasmic morphologically selected sperm injection in oligo-astheno-teratozoospermia patients

    PubMed Central

    Yoon, Hye Jin; Jang, Jung Mi; Oh, Hwa Soon; Lee, Yong Jun; Lee, Won Don; Yoon, San Hyun; Lim, Jin Ho

    2014-01-01

    Objective The aim of this study was to evaluate the efficiency of the intracytoplasmic morphologically selected sperm injection (IMSI) technique compared with conventional ICSI and previous ICSI attempts in oligo-astheno-teratozoospermia (OAT) patients. Methods The sperms were selected under high magnification (6,600×) and used to induce fertilization in previous ICSI patients by IMSI. These results were compared with previous conventional ICSI cycles in patients with OAT infertility. Results These results demonstrated no significant difference in the fertilization rate between IMSI and previous ICSI cycles (67.7% vs. 65.0%). However, the pregnancy and implantation rates with IMSI were significantly higher than those of the ICSI cycles (33.3% vs. 12.5% and 14.6% vs. 5.4%, respectively; p<0.05). The miscarriage rate among pregnant patients (18.2% vs. 37.5%) showed no statistically significant difference between groups. Conclusion Compared to conventional ICSI, this study found that IMSI increased the IVF-ET success rates in patients with OAT. PMID:24693492

  12. STRUCTURE AND MORPHOLOGY OF X-RAY-SELECTED ACTIVE GALACTIC NUCLEUS HOSTS AT 1 < z < 3 IN THE CANDELS-COSMOS FIELD

    SciTech Connect

    Fan, Lulu; Chen, Yang; Li, Jinrong; Lv, Xuanyi; Kong, Xu; Fang, Guanwen; Knudsen, Kirsten K.

    2014-03-20

    We analyze morphologies of the host galaxies of 35 X-ray-selected active galactic nuclei (AGNs) at z ∼ 2 in the Cosmic Evolution Survey field using Hubble Space Telescope/WFC3 imaging taken from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. We build a control sample of 350 galaxies in total by selecting 10 non-active galaxies drawn from the same field with a similar stellar mass and redshift for each AGN host. By performing two-dimensional fitting with GALFIT on the surface brightness profile, we find that the distribution of the Sérsic index (n) of AGN hosts does not show a statistical difference from that of the control sample. We measure the nonparametric morphological parameters (the asymmetry index A, the Gini coefficient G, the concentration index C, and the M {sub 20} index) based on point-source-subtracted images. All the distributions of these morphological parameters of AGN hosts are consistent with those of the control sample. We finally investigate the fraction of distorted morphologies in both samples by visual classification. Only ∼15% of the AGN hosts have highly distorted morphologies, possibly due to a major merger or interaction. We find there is no significant difference in the distortion fractions between the AGN host sample and control sample. We conclude that the morphologies of X-ray-selected AGN hosts are similar to those of non-active galaxies and most AGN activity is not triggered by a major merger.

  13. CHOLESTEROL DEPLETION ALTERS DETERGENT-SPECIFIC SOLUBILITY PROFILES OF SELECTED TIGHT JUNCTION PROTEINS AND THE PHOSPHORYLATION OF OCCLUDIN

    PubMed Central

    Lynch, Robert D.; Francis, Stacy A.; McCarthy, Karin M.; Casas, Elizabeth; Thiele, Christoph; Schneeberger, Eveline E.

    2007-01-01

    Differential centrifugation of Triton X-100 or CHAPS lysates from control and cholesterol (CH) depleted MDCK II cells, segregated integral tight junction (TJ) proteins associated with detergent resistant membranes (DRMs) into two groups. Group A proteins (occludin, claudin-2 and -3) were detected in large, intermediate and small aggregates in both detergents, whereas group B proteins (claudin-1, -4 and -7) were observed in small aggregates in TX-100 and in intermediate and small aggregates in CHAPS. Depletion of CH altered the distribution of group A and B proteins among the three size categories in a detergent-specific manner. In lysates produced with octyl glucoside, a detergent that selectively extracts proteins from DRMs, group A proteins were undetectable in large aggregates and CH depletion did not alter the distribution of either group A or B proteins in intermediate or small aggregates. Neither occludin (group A) nor claudin-1 (group B) was in intimate enough contact with CH to be cross-linked to [3H]-photo-cholesterol. However, antibodies to either TJ protein co-immunoprecipitated caveolin-1, a CH-binding protein. Unlike claudins, occludin’s presence in TJs and DRMs did not require palmitoylation. Equilibrium density centrifugation on discontinuous OptiPrep gradients revealed detergent-related differences in the densities of TJ-bearing DRMs. There was little or no change in those densities after CH depletion. Removing CH from the plasma membrane increased tyrosine and threonine phosphorylation of occludin, and transepithelial electrical resistance (TER) within 30 min. After 2 h of CH efflux, phospho-occludin levels and TER fell below control values. We conclude that the association of integral TJ proteins with DRMS, pelleted at low speeds, is partially CH dependent. However, the buoyant density of TJ-associated DRMs is a function of the detergent used and is insensitive to decreases in CH. PMID:17574235

  14. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    PubMed Central

    2012-01-01

    Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution. PMID:22296923

  15. Bottles as models: predicting the effects of varying swimming speed and morphology on size selectivity and filtering efficiency in fishes.

    PubMed

    Paig-Tran, E W Misty; Bizzarro, Joseph J; Strother, James A; Summers, Adam P

    2011-05-15

    We created physical models based on the morphology of ram suspension-feeding fishes to better understand the roles morphology and swimming speed play in particle retention, size selectivity and filtration efficiency during feeding events. We varied the buccal length, flow speed and architecture of the gills slits, including the number, size, orientation and pore size/permeability, in our models. Models were placed in a recirculating flow tank with slightly negatively buoyant plankton-like particles (~20-2000 μm) collected at the simulated esophagus and gill rakers to locate the highest density of particle accumulation. Particles were captured through sieve filtration, direct interception and inertial impaction. Changing the number of gill slits resulted in a change in the filtration mechanism of particles from a bimodal filter, with very small (≤ 50 μm) and very large (>1000 μm) particles collected, to a filter that captured medium-sized particles (101-1000 μm). The number of particles collected on the gill rakers increased with flow speed and skewed the size distribution towards smaller particles (51-500 μm). Small pore sizes (105 and 200 μm mesh size) had the highest filtration efficiencies, presumably because sieve filtration played a significant role. We used our model to make predictions about the filtering capacity and efficiency of neonatal whale sharks. These results suggest that the filtration mechanics of suspension feeding are closely linked to an animal's swimming speed and the structural design of the buccal cavity and gill slits. PMID:21525310

  16. Morphological and genetic analyses reveal a cryptic species complex in the echinoid Echinocardium cordatum and rule out a stabilizing selection explanation.

    PubMed

    Egea, E; David, B; Choné, T; Laurin, B; Féral, J P; Chenuil, A

    2016-01-01

    Preliminary analyses revealed the presence of at least five mitochondrial clades within the widespread sea urchin Echinocardium cordatum (Spatangoida). In this study, we analyzed the genetic (two mitochondrial and two nuclear sequence loci) and morphological characteristics (20 indices) from worldwide samples of this taxon to establish the species limits, morphological diversity and differentiation. Co-occurring spatangoid species were also analyzed with mitochondrial DNA. The nuclear sequences confirm that mitochondrial lineages correspond to true genetic entities and reveal that two clades (named A and B1) hybridize in their sympatry area, although a more closely related pair of clades (B1 and B2), whose distributions widely overlap, does not display hybridization. The morphology of all E. cordatum clade pairs was significantly differentiated, but no morphological diagnostic character was evidenced. By contrast, other spatangoid species pairs that diverged more recently than the E. cordatum clades display clear diagnostic characters. Morphological diversity thus appears responsible for the absence of diagnostic characters, ruling out stabilizing selection, a classical explanation for cryptic species. Alternative classical explanations are (i) environmental plasticity or (ii) a high diversity of genes determining morphology, maintained by varying environmental conditions. We suggest a new hypothesis that the observed morphological diversity is selectively neutral and reflects high effective population sizes in the E. cordatum complex. It is supported by the higher abundance of this taxon compared with other taxa, a trend for the genetic and morphological diversity to be correlated in Europe, and the higher genetic and morphological diversities found in clades of E cordatum (except B1) than in other spatangoid samples in Europe. However, the Pacific clades do not confirm these trends. PMID:26265259

  17. Relationships between locomotor activation and alterations in brain temperature during selective blockade and stimulation of dopamine transmission.

    PubMed

    Brown, P L; Bae, D; Kiyatkin, E A

    2007-03-01

    It is well known that the dopamine (DA) system plays an essential role in the organization and regulation of brain activational processes. Various environmental stimuli that induce locomotor activation also increase DA transmission, while DA antagonists decrease spontaneous locomotion. Our previous work supports close relationships between locomotor activation and brain and body temperature increases induced by salient environmental challenges or occurring during motivated behavior. While this correlation was also true for psychomotor stimulant drugs such as methamphetamine and MDMA, more complex relationships or even inverted correlations were found for other drugs that are known to increase DA transmission (i.e. heroin and cocaine). In the present study we examined brain, muscle and skin temperatures together with conventional locomotion during selective interruption of DA transmission induced by a mixture of D1 and D2 antagonists (SCH-23390 and eticlopride at 0.2 mg/kg, s.c.) and its selective activation by apomorphine (APO; 0.05 and 0.25 mg/kg, i.v.) in rats. While full DA receptor blockade decreased spontaneous locomotion, it significantly increased brain, muscle and skin temperatures, suggesting metabolic brain activation under conditions of vasodilatation (or weakening of normal vascular tone). In contrast, APO strongly decreased skin temperature but tended to decrease brain and muscle temperatures despite strong hyperlocomotion and stereotypy. The brain temperature response to APO was strongly dependent on basal brain temperature, with hypothermia at high basal temperatures and weak hyperthermia at low temperatures. While supporting the role of DA in locomotor activation, these data suggest more complex relationships between drug-induced alterations in DA transmission, behavioral activation and metabolic brain activation.

  18. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part I. Morphological and crystallographic studies of the variant selection rule

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Nishiura, T.; Kawano, H.; Inamura, T.

    2012-06-01

    The self-accommodation morphologies of B19‧ martensite in Ti-Ni alloys have been investigated by optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Twelve pairs of minimum units consisting of two habit plane variants (HPVs) with V-shaped morphology connected to a ? B19‧ type I variant accommodation twin were observed. Three types of self-accommodation morphologies, based on the V-shaped minimum unit, developed around one of the {111}B2 traces, which were triangular, rhombic and hexangular and consisted of three, four and six HPVs, respectively. In addition, the variant selection rule and the number of possible HPV combinations in each of these self-accommodation morphologies are discussed.

  19. Sunlight-driven Ag-AgCl(1-x)Br(x) photocatalysts: enhanced catalytic performances via continuous bandgap-tuning and morphology selection.

    PubMed

    Zhu, Mingshan; Chen, Chuncheng; Chen, Penglei; Lei, Bin; Ma, Wanhong; Liu, Minghua

    2013-08-14

    The solid solution (SS) method is an effective way to design impactful photocatalysts, owing to its merit of continuous bandgap-tuning. A calcination, usually breaking the morphology of a material, has to be used to synthesize such catalysts, although the morphology is a critical issue affecting its catalytic behavior. It thus is strongly desired to construct SS-based catalysts with a shaped morphology. Here, we report that AgCl(1-x)Br(x) SS-based photocatalysts, Ag-AgCl(1-x)Br(x), with a shaped morphology, can be produced via an ion-exchange between nanostructured Ag-AgCl and KBr. It is found that when sphere-like Ag-AgCl is employed as a precursor, the Ag-AgCl(1-x)Br(x), maintains its morphology when x is in the range of 0-1. The bandgap, and the catalytic activities of these Ag-AgCl(1-x)Br(x) for the degradation of methyl orange, display a monotonic narrowing and a continuous enhancement, respectively, with the increase of x. In contrast, when cube-like Ag-AgCl is used as a precursor, the Ag-AgCl(1-x)Br(x) preserves its morphological features when x ≤ 0.5, while a morphology distortion is observed when x ≥ 0.75. Fascinatingly, although the bandgap of thus-constructed Ag-AgCl(1-x)Br(x) also exhibits a monotonic narrowing with the increase of x, they (x ≠ 0, 1) display enhanced catalytic activity compared with the two terminal materials, Ag-AgCl and Ag-AgBr, wherein Ag-AgCl0.5Br0.5, with a cube-like morphology, shows the highest catalytic performance. The synergistic effect of morphology selection and bandgap narrowing plays an important role for these intriguing new findings. Our work provides a unique forum for an optimized selection of SS-based photocatalysts in terms of morphology selection and bandgap-tuning.

  20. Relationship between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distribution.

    PubMed

    Hartl, G B; Lang, G; Klein, F; Willing, R

    1991-06-01

    Morphological characters in red deer (Cervus elaphus), which serve as criteria for selective hunting, were examined in relation to electrophoretic variation in three populations from the Vosges in eastern France. From the polymorphic loci examined, certain alleles at Idh-2, Me-1 and Acp-1 showed significant associations with a special development of body and antler characters selected for by hunters. Idh-2(125) was associated with larger hind foot length in females and a higher number of antler points in males. Me-1(90) and Acp-1(100) were associated with small spikes. The populations studied differed from one another in the duration and intensity of selective hunting and the increase or decrease in the respective allele frequencies could be explained by selection for large body size, a high number of antler points and against small spikes in yearlings, rather than by genetic drift. Among other morphological characters examined, the length of the main beam was significantly associated with the allele Acp-2(100). In contrast, no associations could be detected between overall heterozygosity and the development or the degree of asymmetry (in paired structures) of any of the morphological traits in question. Although no obvious differences in the overall values of polymorphism or heterozygosity were found between the populations, selective hunting leads towards a change in allele frequencies and eventually to the loss of one or the other rare allele. PMID:1880046

  1. Blood morphology and the levels of selected cytokines related to hematopoiesis in occupational short-term exposure to lead.

    PubMed

    Dobrakowski, Michał; Boroń, Marta; Czuba, Zenon P; Birkner, Ewa; Chwalba, Artur; Hudziec, Edyta; Kasperczyk, Sławomir

    2016-08-15

    The aim of the study was to investigate the influence of a short-term exposure to lead on the blood morphology and the levels of selected cytokines related to hematopoiesis in occupationally exposed workers. The study population included 37 males occupationally exposed to lead for 36 to 44days. Their blood lead level raised from 10.7±7.67μg/dl at baseline to the level of 49.1±14.1μg/dl at the end of the study. The level of hemoglobin and values of MCH and MCHC were decreased due to a short-term exposure to lead by 2%, 2%, and 1%, respectively. The counts of WBC, LYM, and MXD increased significantly by 5%, 7%, and 35%. Similarly, the count of PLT increased by 7%, while PDW, MPV, and P-LCR decreased by 6%, 3%, and 9%, respectively. The levels of IL-7, G-CSF, HGF, PDGF AB/BB, SCF, and PECAM-1, decreased significantly by 30%, 33%, 8%, 30%, 25%, and 20%, respectively. A short-term occupational exposure to lead results in a decreased hemoglobin level and increased counts of WBC and PLT. Changes in counts and proportions of different types of leukocytes and decreased values of PLT indices, such as PDW, MPV, and P-LCR, due to the subacute lead-exposure may be associated with lead-induced decreased levels of cytokines related to hematopoiesis, including SCF, G-CSF, IL-7, and PDGF. PMID:27298078

  2. Correlation of morphologic brain lesions with physiologic alterations and blood-brain barrier impairment in 3-nitropropionic acid toxicity in rats.

    PubMed

    Hamilton, B F; Gould, D H

    1987-01-01

    3-Nitropropionic acid (NPA), a toxin which irreversibly inhibits the Krebs cycle enzyme succinate dehydrogenase, causes severe neurologic disease and a specific pattern of morphologic brain damage when given subcutaneously to rats. To determine whether hypotension or hypoxemia were necessary for development of morphologic brain lesions in NPA neurotoxicity, systemic blood pressure and arterial blood gases were measured in NPA-intoxicated rats. The extent and distribution of albumin extravasation was examined by immunohistochemistry, and was compared to the extent and severity of morphological injury in the caudate-putamen. Neither hypotension nor hypoxemia were necessary for the development of morphologic injury in the brains of NPA-intoxicated rats. In fact, intoxicated rats had significantly higher systolic blood pressure and arterial blood oxygen than did controls. Arterial bicarbonate and pH were significantly lower in intoxicated rats than controls, however, suggesting that acidosis may be involved in the pathogenesis of NPA toxicity. When morphologic injury was severe, albumin extravasation was extensive occupying approximately 30%-80% of the lesion area in the caudate-putamen of NPA-intoxicated rats. When morphologic injury was mild, albumin extravasation was absent, or limited to small cuffs around individual capillaries (less than 1% of the lesion area). There was no leakage of albumin in the cerebral cortex, which was resistant to morphologic injury. It was concluded that leakage of protein-rich fluid into cerebral parenchyma from blood-brain barrier impairment is not responsible for the initiation of morphologic injury in NPA toxicity, but may contribute to the severity of injury later in the evolution of brain lesions.

  3. Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems.

    PubMed

    Mohammed, Mohammedalmojtaba; Babadagli, Tayfun

    2015-06-01

    Changing the wetting state of materials is a growing field of research in many areas of engineering and science. In the oil industry, the term wettability alteration usually refers to the process of making the reservoir rock more water-wet. This is of particular importance in naturally hydrophobic carbonates, fractured formations, and heavy-oil systems. This shift in wettability enhances oil recovery in oil-wet and weakly water-wet reservoirs and eventually increases the ultimate oil recovery. For wettability alteration, two methods have been traditionally used: Thermal and chemical. Although many attempts have been made on reviewing the advancement of research in certain aspects of wettability, a comprehensive review of these techniques, especially in terms of the classification of the chemicals used, has been ignored. In this paper, we begin with this review and provide the past experience of wettability alteration in sandstone and carbonate reservoirs. More than 100 papers were reviewed extensively with an in-depth analysis of different methods suggested in literature. The areas of controversy and contradicted observations are discussed. The limitations and the applicability of each method were analyzed. Concerns on up-scaling laboratory findings to field scale are also addressed. The most promising potential methods are identified and their critical conditions highlighted. At the end, a selection of reviewed methods is validated experimentally for one of the most challenging cases: Extra heavy-oil and bitumen recovery from fractured-strongly-oil-wet carbonates. Berea sandstone (aged to be oil-wet) and Indiana limestone samples were saturated with heavy oil (3600cp). Next, the process was initiated by soaking the cores into solvent (heptane or diluent oil) and the oil recovery was estimated using refractive index measurements. Note that solvent was selected to dilute the oil and recover a considerable amount of oil as any chemical or thermal methods yielded

  4. Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems.

    PubMed

    Mohammed, Mohammedalmojtaba; Babadagli, Tayfun

    2015-06-01

    Changing the wetting state of materials is a growing field of research in many areas of engineering and science. In the oil industry, the term wettability alteration usually refers to the process of making the reservoir rock more water-wet. This is of particular importance in naturally hydrophobic carbonates, fractured formations, and heavy-oil systems. This shift in wettability enhances oil recovery in oil-wet and weakly water-wet reservoirs and eventually increases the ultimate oil recovery. For wettability alteration, two methods have been traditionally used: Thermal and chemical. Although many attempts have been made on reviewing the advancement of research in certain aspects of wettability, a comprehensive review of these techniques, especially in terms of the classification of the chemicals used, has been ignored. In this paper, we begin with this review and provide the past experience of wettability alteration in sandstone and carbonate reservoirs. More than 100 papers were reviewed extensively with an in-depth analysis of different methods suggested in literature. The areas of controversy and contradicted observations are discussed. The limitations and the applicability of each method were analyzed. Concerns on up-scaling laboratory findings to field scale are also addressed. The most promising potential methods are identified and their critical conditions highlighted. At the end, a selection of reviewed methods is validated experimentally for one of the most challenging cases: Extra heavy-oil and bitumen recovery from fractured-strongly-oil-wet carbonates. Berea sandstone (aged to be oil-wet) and Indiana limestone samples were saturated with heavy oil (3600cp). Next, the process was initiated by soaking the cores into solvent (heptane or diluent oil) and the oil recovery was estimated using refractive index measurements. Note that solvent was selected to dilute the oil and recover a considerable amount of oil as any chemical or thermal methods yielded

  5. Effect of Infection Duration on Habitat Selection and Morphology of Adult Echinostoma caproni (Digenea: Echinostomatidae) in ICR Mice.

    PubMed

    Platt, Thomas R; Zelmer, Derek A

    2016-02-01

    The course of infection of Echinostoma caproni was followed in female ICR mice, a permissive laboratory host, from infection to natural termination. Twenty-one mice were infected with 20 metacercariae via oral intubation and housed 3 per cage. Three mice from a randomly selected cage were necropsied at 1 mo intervals. A second group of 15 mice was infected approximately 1 yr later to replace mice negative at necropsy in the first group. Mice in the second group were examined weekly for the presence of eggs in the feces. Mice negative for eggs on consecutive days were killed and necropsied. The location of individual worms and worm clusters were located in 20 segments of the small intestine. Adult worms were killed and fixed in hot formalin, stained, and prepared as whole mounts. Standard measurements were taken using a compound microscope fitted with an ocular micrometer. The infection spontaneously resolved in 10 mice from 7 to 32 wk PI, indicating the host response is highly variable and extending the maximum recorded length of E. caproni infections in ICR mice to 31 wk. A moribund worm was found in the feces of an animal that continued to pass eggs for an additional 2 mo indicating individual variation in worm responses. Worms located preferentially in the ileum (segments 11-13) during the first 3 mo of the infection but shifted to the jejunum (segments 8-9) during weeks 4-6. Morphologically, worms of different ages clustered together in multivariate space, with substantial overlap between the 3- and 4-mo-old infrapopulations and between the 5- and 6-mo-old infrapopulations. Muscular structures increased in size throughout the experiment, while the gonads increased in size for the first 3 mo and then declined during the last 3 mo. The relationship between E. caproni and ICR mice is more nuanced than previously reported. The reduction in gonad size and the shift from the ileum to the jejunum in the last 3 mo likely are related. These changes might be attributable

  6. Morphological selection and the evaluation of potential tradeoffs between escape from predators and the climbing of waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni.

    PubMed

    Blob, Richard W; Kawano, Sandy M; Moody, Kristine N; Bridges, William C; Maie, Takashi; Ptacek, Margaret B; Julius, Matthew L; Schoenfuss, Heiko L

    2010-12-01

    Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (∼100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had

  7. Morphological selection and the evaluation of potential tradeoffs between escape from predators and the climbing of waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni.

    PubMed

    Blob, Richard W; Kawano, Sandy M; Moody, Kristine N; Bridges, William C; Maie, Takashi; Ptacek, Margaret B; Julius, Matthew L; Schoenfuss, Heiko L

    2010-12-01

    Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (∼100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had

  8. Nutritional Omega-3 Deficiency Alters Glucocorticoid Receptor-Signaling Pathway and Neuronal Morphology in Regionally Distinct Brain Structures Associated with Emotional Deficits

    PubMed Central

    Larrieu, Thomas; Hilal, Muna L.; De Smedt-Peyrusse, Véronique; Sans, Nathalie; Layé, Sophie

    2016-01-01

    Extensive evidence suggests that long term dietary n-3 polyunsaturated fatty acids (PUFAs) deficiency results in altered emotional behaviour. We have recently demonstrated that n-3 PUFAs deficiency induces emotional alterations through abnormal corticosterone secretion which leads to altered dendritic arborisation in the prefrontal cortex (PFC). Here we show that hypothalamic-pituitary-adrenal (HPA) axis feedback inhibition was not compromised in n-3 deficient mice. Rather, glucocorticoid receptor (GR) signaling pathway was inactivated in the PFC but not in the hippocampus of n-3 deficient mice. Consequently, only dendritic arborisation in PFC was affected by dietary n-3 PUFAs deficiency. In addition, occlusion experiment with GR blockade altered GR signaling in the PFC of control mice, with no further alterations in n-3 deficient mice. In conclusion, n-3 PUFAs deficiency compromised PFC, leading to dendritic atrophy, but did not change hippocampal GR function and dendritic arborisation. We argue that this GR sensitivity contributes to n-3 PUFAs deficiency-related emotional behaviour deficits. PMID:27057368

  9. Multiple behavioural, morphological and cognitive developmental changes arise from a single alteration to early life spatial environment, resulting in fitness consequences for released pheasants

    PubMed Central

    Whiteside, Mark A.; Sage, Rufus; Madden, Joah R.

    2016-01-01

    Subtle variations in early rearing environment influence morphological, cognitive and behavioural processes that together impact on adult fitness. We manipulated habitat complexity experienced by young pheasants (Phasianus colchicus) in their first seven weeks, adding a third accessible dimension by placing elevated perches in their rearing pens mimicking natural variation in habitat complexity. This simple manipulation provoked an interrelated suite of morphological, cognitive and behavioural changes, culminating in decreased wild mortality of birds from complex habitats compared with controls. Three mechanisms contribute to this: Pheasants reared with perches had a morphology which could enable them to fly to the higher branches and cope with prolonged roosting. They had a higher propensity to roost off the ground at night in the wild. More generally, these birds had more accurate spatial memory. Consequently, birds were at a reduced risk of terrestrial predation. The fitness consequences of variation in early rearing on behavioural development are rarely studied in the wild but we show that this is necessary because the effects can be broad ranging and not simple, depending on a complex interplay of behavioural, cognitive and morphological elements, even when effects that the treatments provoke are relatively short term and plastic. PMID:27069666

  10. Multiple behavioural, morphological and cognitive developmental changes arise from a single alteration to early life spatial environment, resulting in fitness consequences for released pheasants.

    PubMed

    Whiteside, Mark A; Sage, Rufus; Madden, Joah R

    2016-03-01

    Subtle variations in early rearing environment influence morphological, cognitive and behavioural processes that together impact on adult fitness. We manipulated habitat complexity experienced by young pheasants (Phasianus colchicus) in their first seven weeks, adding a third accessible dimension by placing elevated perches in their rearing pens mimicking natural variation in habitat complexity. This simple manipulation provoked an interrelated suite of morphological, cognitive and behavioural changes, culminating in decreased wild mortality of birds from complex habitats compared with controls. Three mechanisms contribute to this: Pheasants reared with perches had a morphology which could enable them to fly to the higher branches and cope with prolonged roosting. They had a higher propensity to roost off the ground at night in the wild. More generally, these birds had more accurate spatial memory. Consequently, birds were at a reduced risk of terrestrial predation. The fitness consequences of variation in early rearing on behavioural development are rarely studied in the wild but we show that this is necessary because the effects can be broad ranging and not simple, depending on a complex interplay of behavioural, cognitive and morphological elements, even when effects that the treatments provoke are relatively short term and plastic. PMID:27069666

  11. Structural, morphological and optical studies of l-cysteine modified silver nanoparticles and its application as a probe for the selective colorimetric detection of Hg(2+).

    PubMed

    Nidya, M; Umadevi, M; Rajkumar, Beulah J M

    2014-12-10

    We report an extensive study on the evolution of a highly facile, selective colorimetric probe for Hg(2+) detection using cysteine modified silver nanoparticles. The nanoparticles are stable in a basic medium and the Surface Enhanced Raman Spectrum (SERS) reveal that the cysteine is bound to the Ag surface through the thiolate moiety with the charged carboxylate group pointing outwards in a morphology that lends itself to sensor applications. In the presence of Hg(2+), the absorption peak is quenched resulting in a drastic colour change. The sensor displays high selectivity to Hg(2+) over other metallic ions. PMID:24950383

  12. Control of morphology and function of low band gap polymer-bis-fullerene mixed heterojunctions in organic photovoltaics with selection solvent vapor annealing

    SciTech Connect

    Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin; Dadmun, Mark D

    2014-01-01

    Replacing PCBM with a bis-adduct fullerene (i.e. ICBA) has been reported to significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. However, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. The results show that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Moreover, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.

  13. Control of morphology and function of low band gap polymer bis-fullerene mixed heterojunctions in organic photovoltaics with selective solvent vapor annealing.

    SciTech Connect

    Chen, Huipeng; Hsiao, Yu-Che; Dadmun, Mark D

    2014-01-01

    Replacing PCBM with a bis-adduct fullerene (i.e. ICBA) has been reported to significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. However, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. The results show that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Moreover, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.

  14. Morphological selection in an extreme flow environment: body shape and waterfall-climbing success in the Hawaiian stream fish Sicyopterus stimpsoni.

    PubMed

    Blob, Richard W; Bridges, William C; Ptacek, Margaret B; Maie, Takashi; Cediel, Roberto A; Bertolas, Morgan M; Julius, Matthew L; Schoenfuss, Heiko L

    2008-12-01

    Flow characteristics are a prominent factor determining body shapes in aquatic organisms, and correlations between body shape and ambient flow regimes have been established for many fish species. In this study, we investigated the potential for a brief period of extreme flow to exert selection on the body shape of juvenile climbing Hawaiian gobiid fishes. Because of an amphidromous life history, juvenile gobies that complete an oceanic larval phase return to freshwater habitats, where they become adults. Returning juveniles often must scale waterfalls (typically with the use of a ventral sucker) in order to reach the habitats they will use as adults, thereby exposing these animals to brief periods of extreme velocities of flow. Hydrodynamic theory predicts that bodies with larger suckers and with lower heights that reduce drag would have improved climbing success and, thus, be well suited to meet the demands of the flows in waterfalls. To test the potential for the flow environment of waterfalls to impose selection that could contribute to differences in body shape between islands, we subjected juvenile Sicyopterus stimpsoni to climbing trials up artificial waterfalls (∼100 body lengths) and measured differences in body shape between successful and unsuccessful climbers. Waterfalls appear to represent a significant selective barrier to these fishes, as nearly 30% failed our climbing test. However, the effects of selection on morphology were not straightforward, as significant differences in shape between successful and unsuccessful climbers did not always match hydrodynamic predictions. In both selection experiments and in adult fish collected from habitats with different prevailing conditions of flow (the islands of Hawai'i versus Kaua'i), lower head heights were associated with exposure to high-flow regimes, as predicted by hydrodynamic theory. Thus, a premium appears to be placed on the reduction of drag via head morphology throughout the ontogeny of this

  15. Morphological selection in an extreme flow environment: body shape and waterfall-climbing success in the Hawaiian stream fish Sicyopterus stimpsoni.

    PubMed

    Blob, Richard W; Bridges, William C; Ptacek, Margaret B; Maie, Takashi; Cediel, Roberto A; Bertolas, Morgan M; Julius, Matthew L; Schoenfuss, Heiko L

    2008-12-01

    Flow characteristics are a prominent factor determining body shapes in aquatic organisms, and correlations between body shape and ambient flow regimes have been established for many fish species. In this study, we investigated the potential for a brief period of extreme flow to exert selection on the body shape of juvenile climbing Hawaiian gobiid fishes. Because of an amphidromous life history, juvenile gobies that complete an oceanic larval phase return to freshwater habitats, where they become adults. Returning juveniles often must scale waterfalls (typically with the use of a ventral sucker) in order to reach the habitats they will use as adults, thereby exposing these animals to brief periods of extreme velocities of flow. Hydrodynamic theory predicts that bodies with larger suckers and with lower heights that reduce drag would have improved climbing success and, thus, be well suited to meet the demands of the flows in waterfalls. To test the potential for the flow environment of waterfalls to impose selection that could contribute to differences in body shape between islands, we subjected juvenile Sicyopterus stimpsoni to climbing trials up artificial waterfalls (∼100 body lengths) and measured differences in body shape between successful and unsuccessful climbers. Waterfalls appear to represent a significant selective barrier to these fishes, as nearly 30% failed our climbing test. However, the effects of selection on morphology were not straightforward, as significant differences in shape between successful and unsuccessful climbers did not always match hydrodynamic predictions. In both selection experiments and in adult fish collected from habitats with different prevailing conditions of flow (the islands of Hawai'i versus Kaua'i), lower head heights were associated with exposure to high-flow regimes, as predicted by hydrodynamic theory. Thus, a premium appears to be placed on the reduction of drag via head morphology throughout the ontogeny of this

  16. Sequential morphologic alterations in the foveola and cornea of nonhuman subjects after exposure to coherent light. Annual report, March-September 1985. Final report, October 1979-September 1985

    SciTech Connect

    Spencer, W.H.

    1985-09-01

    This is an investigation of the sequential (one hour, one day, one week, one month) clinical and morphologic (light and electron microscopic) effects upon the foveolar and parafoveolar retina of single short-duration pulses of coherent light at 694.3 nm and 532 nm at total intraocular energy levels of approximately three times ed50. Focal injury to the retina and subjacent choroid is found to be less marked at 532 nm than at 694.3 nm. The lesions are sharply circumscribed and primarily involve the outer layers of the retina and the retinal pigment epithelium. Lesser damage occurs in the inner retina and in the choroid. Morphologic evidence of healing is noted within one hour and progresses almost to completion within one month. The process involves a combination of phagocytosis, cellular migration, and possibly cellular proliferation. Inflammatory cell infiltration and scarring is not observed.

  17. Differences between effects of psychological versus pharmacological treatments on functional and morphological brain alterations in anxiety disorders and major depressive disorder: a systematic review.

    PubMed

    Quidé, Yann; Witteveen, Anke B; El-Hage, Wissam; Veltman, Dick J; Olff, Miranda

    2012-01-01

    The most prevalent mental disorders, anxiety and mood disorders, are associated with both functional and morphological brain changes that commonly involve the 'fear network' including the (medial) prefrontal cortex, hippocampus and amygdala. Patients suffering from anxiety disorders and major depressive disorder often show excessive amygdala and reduced prefrontal cortex functioning. It is, however, still unclear whether these brain abnormalities disappear or diminish following effective treatment. This review aims to compare the effects of psychotherapy and pharmacotherapy on functional and morphological brain measures in these disorders. Sixty-three studies were included, 30 investigating psychotherapy effects and 33 investigating pharmacotherapy effects. Despite methodological differences, results suggest a functional normalization of the 'fear network'. Pharmacotherapy particularly decreases over-activity of limbic structures (bottom-up effect) while psychotherapy tends to increase activity and recruitment of frontal areas (top-down effect), especially the anterior cingulate cortex. Additionally, pharmacotherapy, but not psychotherapy, has been associated with morphological changes, depending on the disorder. These findings suggest that both types of treatments normalize (functional) brain abnormalities each in specific ways.

  18. The Murine Dilute Suppressor Gene Dsu Suppresses the Coat-Color Phenotype of Three Pigment Mutations That Alter Melanocyte Morphology, D, Ash and Ln

    PubMed Central

    Moore, K. J.; Swing, D. A.; Rinchik, E. M.; Mucenski, M. L.; Buchberg, A. M.; Copeland, N. G.; Jenkins, N. A.

    1988-01-01

    The murine dilute suppressor gene, dsu, was identified because of its ability to suppress the dilute coat color of mice homozygous for the retrovirally induced allele (d(v)) of the dilute locus (d). dsu is unlinked to the d locus and has recently been shown to be semidominantly inherited. The dilute phenotype of d/d mice is the consequence of abnormal melanocyte morphology. While wild-type melanocytes are dendritic, d/d melanocytes are adendritic. dsu apparently suppresses the dilute phenotype by restoring normal melanocyte morphology. In addition to d, two other loci, ashen (ash) and leaden (ln), have been identified that produce a diluted coat color associated with adendritic melanocytes. Interestingly, d and ash are closely linked on chromosome 9 while dsu and ln are located on chromosome 1. In experiments described here, we present genetic mapping data between ash and d indicating that, despite their identical phenotypes, they are separate genes and are not intragenic complementing alleles of the same locus. We also show that dsu is only loosely linked to ln (approximately 9 cM proximal) and that dsu can suppress, at least partially, the coat color of ln/ln mice and ash/ash mice. The partial suppression of ln and ash coat colors is associated with the partial restoration of normal melanocyte morphology. These studies provide new insights into the mechanism of action of dsu and into the interrelationships between members of a family of pigment genes. PMID:3410303

  19. Selection on the timing of adult emergence results in altered circadian clocks in fruit flies Drosophila melanogaster.

    PubMed

    Kumar, Shailesh; Kumar, Dhanya; Paranjpe, Dhanashree A; R, Akarsh C; Sharma, Vijay Kumar

    2007-03-01

    To investigate whether circadian clocks in fruit flies Drosophila melanogaster evolve as a consequence of selection on the timing of adult emergence, we raised four replicate populations each of early (early(1..4)) and late (late(1..4)) emerging flies by selecting for adults that emerged during the morning and the evening hours. We estimated the percentage of flies that emerged during the two selection windows to evaluate the direct response to selection, and the circadian phenotypes of adult emergence and locomotor activity rhythms under light/dark (LD) and constant darkness (DD) to assess the correlated response to selection. After 55 generations, the percentage of flies emerging during the morning window increased in the early populations, but decreased in the late populations. The percentage of flies emerging during the evening window increased in the late populations, but decreased in the early populations. The time course and waveform of emergence and locomotor activity rhythms of the selected populations diverged from each other as well as from the controls. Further, the circadian periodicity of the early populations was significantly shorter than the controls, while that of the late populations was significantly longer than the controls. The light-induced phase response curve of the selected populations differed significantly within groups as well as from the controls. Such modifications in the circadian phenotypes of the selected populations due to heritable changes in genetic architecture, in response to imposed selection pressure, suggest that the circadian clocks underlying emergence and locomotor activity rhythms in D. melanogaster evolve as a correlated response to selection on the timing of adult emergence.

  20. The Most Luminous Heavily Obscured Quasars Have a High Merger Fraction: Morphological Study of WISE-selected Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Fang, Guanwen; Gao, Ying; Zhang, Dandan; Jiang, Xiaoming; Wu, Qiaoqian; Yang, Jun; Li, Zhao

    2016-05-01

    Previous studies have shown that Wide-field Infrared Survey Explorer-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick active galactic nuclei (AGNs). High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at z ˜ 3 using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction (62 ± 14%). By fitting the surface brightness profiles, we find that the distribution of Sérsic indices in our Hot DOG sample peaks around 2, which suggests that most Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity (˜1014 L ⊙) of our Hot DOG sample by using IR spectral energy distributions decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction. Both the high merger fraction in an IR-luminous AGN sample and relatively low merger fraction in a UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst-dominated phase to the unobscured QSO phase.

  1. Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea.

    PubMed

    Horvath, Kimmaree M; Castillo, Karl D; Armstrong, Pualani; Westfield, Isaac T; Courtney, Travis; Ries, Justin B

    2016-07-29

    Atmospheric pCO2 is predicted to rise from 400 to 900 ppm by year 2100, causing seawater temperature to increase by 1-4 °C and pH to decrease by 0.1-0.3. Sixty-day experiments were conducted to investigate the independent and combined impacts of acidification (pCO2 = 424-426, 888-940 ppm-v) and warming (T = 28, 32 °C) on calcification rate and skeletal morphology of the abundant and widespread Caribbean reef-building scleractinian coral Siderastrea siderea. Hierarchical linear mixed-effects modelling reveals that coral calcification rate was negatively impacted by both warming and acidification, with their combined effects yielding the most deleterious impact. Negative effects of warming (32 °C/424 ppm-v) and high-temperature acidification (32 °C/940 ppm-v) on calcification rate were apparent across both 30-day intervals of the experiment, while effects of low-temperature acidification (28 °C/888 ppm-v) were not apparent until the second 30-day interval-indicating delayed onset of acidification effects at lower temperatures. Notably, two measures of coral skeletal morphology-corallite height and corallite infilling-were negatively impacted by next-century acidification, but not by next-century warming. Therefore, while next-century ocean acidification and warming will reduce the rate at which corals build their skeletons, next-century acidification will also modify the morphology and, potentially, function of coral skeletons.

  2. Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea.

    PubMed

    Horvath, Kimmaree M; Castillo, Karl D; Armstrong, Pualani; Westfield, Isaac T; Courtney, Travis; Ries, Justin B

    2016-01-01

    Atmospheric pCO2 is predicted to rise from 400 to 900 ppm by year 2100, causing seawater temperature to increase by 1-4 °C and pH to decrease by 0.1-0.3. Sixty-day experiments were conducted to investigate the independent and combined impacts of acidification (pCO2 = 424-426, 888-940 ppm-v) and warming (T = 28, 32 °C) on calcification rate and skeletal morphology of the abundant and widespread Caribbean reef-building scleractinian coral Siderastrea siderea. Hierarchical linear mixed-effects modelling reveals that coral calcification rate was negatively impacted by both warming and acidification, with their combined effects yielding the most deleterious impact. Negative effects of warming (32 °C/424 ppm-v) and high-temperature acidification (32 °C/940 ppm-v) on calcification rate were apparent across both 30-day intervals of the experiment, while effects of low-temperature acidification (28 °C/888 ppm-v) were not apparent until the second 30-day interval-indicating delayed onset of acidification effects at lower temperatures. Notably, two measures of coral skeletal morphology-corallite height and corallite infilling-were negatively impacted by next-century acidification, but not by next-century warming. Therefore, while next-century ocean acidification and warming will reduce the rate at which corals build their skeletons, next-century acidification will also modify the morphology and, potentially, function of coral skeletons. PMID:27470426

  3. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities.

    PubMed

    Ferrari, Maud C O; Munday, Philip L; Rummer, Jodie L; McCormick, Mark I; Corkill, Katherine; Watson, Sue-Ann; Allan, Bridie J M; Meekan, Mark G; Chivers, Douglas P

    2015-05-01

    Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.

  4. Chemical Engineering of Enzymes: Altered Catalytic Activity, Predictable Selectivity and Exceptional Stability of the Semisynthetic Peroxidase Seleno-Subtilisin

    NASA Astrophysics Data System (ADS)

    Häring, Dietmar; Schreier, Peter

    The increasing demand for enzymes as highly selective, mild, and environmentally benign catalysts is often limited by the lack of an enzyme with the desired catalytic activity or substrate selectivity and by their instability in biotechnological processes. The previous answers to these problems comprised genetically engineered enzymes and several classes of enzyme mimics. Here we describe the potential of chemical enzyme engineering: native enzymes can be modified by merely chemical means and basic equipment yielding so-called semisynthetic enzymes. Thus, the high substrate selectivity of the enzymatic peptide framework is combined with the catalytic versatility of a synthetic active site. We illustrate the potential of chemically engineered enzymes with the conception of the semisynthetic peroxidase seleno-subtilisin. First, the serine endoprotease subtilisin was crystallized and cross-linked with glutaraldehyde to give cross-linked enzyme crystals which were found to be insoluble in water or organic solvents and highly stable. Second, serine 221 in the active site (Enz-OH) was chemically converted into an oxidized derivative of selenocystein (Enz-SeO2H). As a consequence, the former proteolytic enzyme gained peroxidase activity and catalyzed the selective reduction of hydroperoxides. Due to the identical binding sites of the semisynthetic peroxidase and the protease, the substrate selectivity of seleno-subtilisin was predictable in view of the well-known selectivity of subtilisin.

  5. Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell

    PubMed Central

    Klenowski, Paul M.; Shariff, Masroor R.; Belmer, Arnauld; Fogarty, Matthew J.; Mu, Erica W. H.; Bellingham, Mark C.; Bartlett, Selena E.

    2016-01-01

    The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc) similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks) and long-term (12 weeks) binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs) from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age-matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology. PMID:27047355

  6. Overexpression of a pectin methylesterase inhibitor in Arabidopsis thaliana leads to altered growth morphology of the stem and defective organ separation

    PubMed Central

    Müller, Kerstin; Levesque-Tremblay, Gabriel; Fernandes, Anwesha; Wormit, Alexandra; Bartels, Sebastian; Usadel, Bjoern; Kermode, Allison

    2013-01-01

    The methylesterification status of cell wall pectins, mediated through the interplay of pectin methylesterases (PMEs) and pectin methylesterase inhibitors (PMEIs), influences the biophysical properties of plant cell walls. We found that the overexpression of a PMEI gene in Arabidopsis thaliana plants caused the stems to develop twists and loops, most strongly around points on the stem where leaves or inflorescences failed to separate from the main stem. Altered elasticity of the stem, underdevelopment of the leaf cuticle, and changes in the sugar composition of the cell walls of stems were evident in the PMEI overexpression lines. We discuss the mechanisms that potentially underlie the aberrant growth phenotypes. PMID:24675171

  7. Selective alteration of human value decisions with medial frontal tDCS is predicted by changes in attractor dynamics.

    PubMed

    Hämmerer, D; Bonaiuto, J; Klein-Flügge, M; Bikson, M; Bestmann, S

    2016-01-01

    During value-based decision making, ventromedial prefrontal cortex (vmPFC) is thought to support choices by tracking the expected gain from different outcomes via a competition-based process. Using a computational neurostimulation approach we asked how perturbing this region might alter this competition and resulting value decisions. We simulated a perturbation of neural dynamics in a biophysically informed model of decision-making through in silico depolarization at the level of neuronal ensembles. Simulated depolarization increased baseline firing rates of pyramidal neurons, which altered their susceptibility to background noise, and thereby increased choice stochasticity. These behavioural predictions were compared to choice behaviour in healthy participants performing similar value decisions during transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique. We placed the soma depolarizing electrode over medial frontal PFC. In line with model predictions, this intervention resulted in more random choices. By contrast, no such effect was observed when placing the depolarizing electrode over lateral PFC. Using a causal manipulation of ventromedial and lateral prefrontal function, these results provide support for competition-based choice dynamics in human vmPFC, and introduce computational neurostimulation as a mechanistic assay for neurostimulation studies of cognition. PMID:27146700

  8. Selective alteration of human value decisions with medial frontal tDCS is predicted by changes in attractor dynamics

    PubMed Central

    Hämmerer, D.; Bonaiuto, J.; Klein-Flügge, M.; Bikson, M.; Bestmann, S.

    2016-01-01

    During value-based decision making, ventromedial prefrontal cortex (vmPFC) is thought to support choices by tracking the expected gain from different outcomes via a competition-based process. Using a computational neurostimulation approach we asked how perturbing this region might alter this competition and resulting value decisions. We simulated a perturbation of neural dynamics in a biophysically informed model of decision-making through in silico depolarization at the level of neuronal ensembles. Simulated depolarization increased baseline firing rates of pyramidal neurons, which altered their susceptibility to background noise, and thereby increased choice stochasticity. These behavioural predictions were compared to choice behaviour in healthy participants performing similar value decisions during transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique. We placed the soma depolarizing electrode over medial frontal PFC. In line with model predictions, this intervention resulted in more random choices. By contrast, no such effect was observed when placing the depolarizing electrode over lateral PFC. Using a causal manipulation of ventromedial and lateral prefrontal function, these results provide support for competition-based choice dynamics in human vmPFC, and introduce computational neurostimulation as a mechanistic assay for neurostimulation studies of cognition. PMID:27146700

  9. Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea

    PubMed Central

    Horvath, Kimmaree M.; Castillo, Karl D.; Armstrong, Pualani; Westfield, Isaac T.; Courtney, Travis; Ries, Justin B.

    2016-01-01

    Atmospheric pCO2 is predicted to rise from 400 to 900 ppm by year 2100, causing seawater temperature to increase by 1–4 °C and pH to decrease by 0.1–0.3. Sixty-day experiments were conducted to investigate the independent and combined impacts of acidification (pCO2 = 424–426, 888–940 ppm-v) and warming (T = 28, 32 °C) on calcification rate and skeletal morphology of the abundant and widespread Caribbean reef-building scleractinian coral Siderastrea siderea. Hierarchical linear mixed-effects modelling reveals that coral calcification rate was negatively impacted by both warming and acidification, with their combined effects yielding the most deleterious impact. Negative effects of warming (32 °C/424 ppm-v) and high-temperature acidification (32 °C/940 ppm-v) on calcification rate were apparent across both 30-day intervals of the experiment, while effects of low-temperature acidification (28 °C/888 ppm-v) were not apparent until the second 30-day interval—indicating delayed onset of acidification effects at lower temperatures. Notably, two measures of coral skeletal morphology–corallite height and corallite infilling–were negatively impacted by next-century acidification, but not by next-century warming. Therefore, while next-century ocean acidification and warming will reduce the rate at which corals build their skeletons, next-century acidification will also modify the morphology and, potentially, function of coral skeletons. PMID:27470426

  10. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats

    PubMed Central

    Norazlimi, Nor Atiqah; Ramli, Rosli

    2015-01-01

    A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus), Common redshank (Tringa totanus), Whimbrel (Numenius phaeopus), and Little heron (Butorides striata)) and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder). The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R = 0.443, p < 0.05), bill size and prey size (R = −0.052, p < 0.05), bill size and probing depth (R = 0.42, p = 0.003), and leg length and water/mud depth (R = 0.706, p < 0.005). A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm) and species (H = 15.96, p = 0.0012). Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging. PMID:26345324

  11. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats.

    PubMed

    Norazlimi, Nor Atiqah; Ramli, Rosli

    2015-01-01

    A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus), Common redshank (Tringa totanus), Whimbrel (Numenius phaeopus), and Little heron (Butorides striata)) and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder). The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R = 0.443, p < 0.05), bill size and prey size (R = -0.052, p < 0.05), bill size and probing depth (R = 0.42, p = 0.003), and leg length and water/mud depth (R = 0.706, p < 0.005). A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm) and species (H = 15.96, p = 0.0012). Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging. PMID:26345324

  12. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats.

    PubMed

    Norazlimi, Nor Atiqah; Ramli, Rosli

    2015-01-01

    A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus), Common redshank (Tringa totanus), Whimbrel (Numenius phaeopus), and Little heron (Butorides striata)) and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder). The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R = 0.443, p < 0.05), bill size and prey size (R = -0.052, p < 0.05), bill size and probing depth (R = 0.42, p = 0.003), and leg length and water/mud depth (R = 0.706, p < 0.005). A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm) and species (H = 15.96, p = 0.0012). Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging.

  13. Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects

    PubMed Central

    Khokhar, Jibran Y; Tyndale, Rachel F

    2011-01-01

    Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (r=0.76, P=0.0009), but not plasma (r=0.24, P=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain. PMID:21107310

  14. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.

    PubMed

    Murphy-Baum, Benjamin L; Taylor, W Rowland

    2015-09-30

    Much of the computational power of the retina derives from the activity of amacrine cells, a large and diverse group of GABAergic and glycinergic inhibitory interneurons. Here, we identify an ON-type orientation-selective, wide-field, polyaxonal amacrine cell (PAC) in the rabbit retina and demonstrate how its orientation selectivity arises from the structure of the dendritic arbor and the pattern of excitatory and inhibitory inputs. Excitation from ON bipolar cells and inhibition arising from the OFF pathway converge to generate a quasi-linear integration of visual signals in the receptive field center. This serves to suppress responses to high spatial frequencies, thereby improving sensitivity to larger objects and enhancing orientation selectivity. Inhibition also regulates the magnitude and time course of excitatory inputs to this PAC through serial inhibitory connections onto the presynaptic terminals of ON bipolar cells. This presynaptic inhibition is driven by graded potentials within local microcircuits, similar in extent to the size of single bipolar cell receptive fields. Additional presynaptic inhibition is generated by spiking amacrine cells on a larger spatial scale covering several hundred microns. The orientation selectivity of this PAC may be a substrate for the inhibition that mediates orientation selectivity in some types of ganglion cells. Significance statement: The retina comprises numerous excitatory and inhibitory circuits that encode specific features in the visual scene, such as orientation, contrast, or motion. Here, we identify a wide-field inhibitory neuron that responds to visual stimuli of a particular orientation, a feature selectivity that is primarily due to the elongated shape of the dendritic arbor. Integration of convergent excitatory and inhibitory inputs from the ON and OFF visual pathways suppress responses to small objects and fine textures, thus enhancing selectivity for larger objects. Feedback inhibition regulates the

  15. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles.

    PubMed

    Cahill, Bethaney K; Seeley, Kent W; Gutel, Dedra; Ellis, Terri N

    2015-11-01

    Klebsiella pneumoniae is a nosocomial pathogen which naturally secretes lipopolysaccharide (LPS) and cell envelope associated proteins into the environment through the production of outer membrane vesicles (OMVs). The loss of the LPS O antigen has been demonstrated in other bacterial species to significantly alter the composition of OMVs. Therefore, this study aimed to comprehensively analyze the impact of O antigen loss on the sub-proteomes of both the outer membrane and secreted OMVs from K. pneumoniae. As determined by LC-MS/MS, OMVs were highly enriched with outer membrane proteins involved in cell wall, membrane, and envelope biogenesis as compared to the source cellular outer membrane. Deletion of wbbO, the enzyme responsible for O antigen attachment to LPS, decreased but did not eliminate this enrichment effect. Additionally, loss of O antigen resulted in OMVs with increased numbers of proteins involved in post-translational modification, protein turnover, and chaperones as compared to secreted vesicles from the wild type. This alteration of OMV composition may be a compensatory mechanism to deal with envelope stress. This comprehensive analysis confirms the highly distinct protein composition of OMVs as compared to their source membrane, and provides evidence for a selective sorting mechanism that involves LPS polysaccharides. These data support the hypothesis that modifications to LPS alters both the mechanics of protein sorting and the contents of secreted OMVs and significantly impacts the protein composition of the outer membrane.

  16. Diet complexity in early life affects survival in released pheasants by altering foraging efficiency, food choice, handling skills and gut morphology.

    PubMed

    Whiteside, Mark A; Sage, Rufus; Madden, Joah R

    2015-11-01

    Behavioural and physiological deficiencies are major reasons why reintroduction programmes suffer from high mortality when captive animals are used. Mitigation of these deficiencies is essential for successful reintroduction programmes. Our study manipulated early developmental diet to better replicate foraging behaviour in the wild. Over 2 years, we hand-reared 1800 pheasants (Phasianus colchicus), from 1 day old, for 7 weeks under different dietary conditions. In year one, 900 pheasants were divided into three groups and reared with (i) commercial chick crumb, (ii) crumb plus 1% live mealworm or (iii) crumb plus 5% mixed seed and fruit. In year two, a further 900 pheasants were divided into two groups and reared with (i) commercial chick crumb or (ii) crumb plus a combination of 1% mealworm and 5% mixed seed and fruit. In both years, the commercial chick crumb acted as a control treatment, whilst those with live prey and mixed seeds and fruits mimicking a more naturalistic diet. After 7 weeks reared on these diets, pheasants were released into the wild. Postrelease survival was improved with exposure to more naturalistic diets prior to release. We identified four mechanisms to explain this. Pheasants reared with more naturalistic diets (i) foraged for less time and had a higher likelihood of performing vigilance behaviours, (ii) were quicker at handling live prey items, (iii) were less reliant on supplementary feed which could be withdrawn and (iv) developed different gut morphologies. These mechanisms allowed the pheasants to (i) reduce the risk of predation by reducing exposure time whilst foraging and allowing more time to be vigilant; (ii) be better at handling and discriminating natural food items and not be solely reliant on supplementary feed; and (iii) have a better gut system to cope with the natural forage after the cessation of supplementary feeding in the spring. Learning food discrimination, preference and handling skills by the provision of a more

  17. The Autoimmunity-Associated Gene CLEC16A Modulates Thymic Epithelial Cell Autophagy and Alters T Cell Selection.

    PubMed

    Schuster, Cornelia; Gerold, Kay D; Schober, Kilian; Probst, Lilli; Boerner, Kevin; Kim, Mi-Jeong; Ruckdeschel, Anna; Serwold, Thomas; Kissler, Stephan

    2015-05-19

    CLEC16A variation has been associated with multiple immune-mediated diseases, including type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, celiac disease, Crohn's disease, Addison's disease, primary biliary cirrhosis, rheumatoid arthritis, juvenile idiopathic arthritis, and alopecia areata. Despite strong genetic evidence implicating CLEC16A in autoimmunity, this gene's broad association with disease remains unexplained. We generated Clec16a knock-down (KD) mice in the nonobese diabetic (NOD) model for type 1 diabetes and found that Clec16a silencing protected against autoimmunity. Disease protection was attributable to T cell hyporeactivity, which was secondary to changes in thymic epithelial cell (TEC) stimuli that drive thymocyte selection. Our data indicate that T cell selection and reactivity were impacted by Clec16a variation in thymic epithelium owing to Clec16a's role in TEC autophagy. These findings provide a functional link between human CLEC16A variation and the immune dysregulation that underlies the risk of autoimmunity. PMID:25979422

  18. The application of rules in morphology, syntax and number processing: a case of selective deficit of procedural or executive mechanisms?

    PubMed Central

    Macoir, Joël; Fossard, Marion; Nespoulous, Jean-Luc; Demonet, Jean-François; Bachoud-Lévi, Anne-Catherine

    2010-01-01

    Declarative memory is a long-term store for facts, concepts and words. Procedural memory subserves the learning and control of sensorimotor and cognitive skills, including the mental grammar. In this study, we report a single-case study of a mild aphasic patient who showed procedural deficits in the presence of preserved declarative memory abilities. We administered several experiments to explore rule application in morphology, syntax and number processing. Results partly support the differentiation between declarative and procedural memory. Moreover, the patient’s performance varied according to the domain in which rules were to be applied, which underlines the need for more fine-grained distinctions in cognition between procedural rules. PMID:20446168

  19. Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape.

    PubMed

    Sun, Liang; Rodriguez, Gustavo R; Clevenger, Josh P; Illa-Berenguer, Eudald; Lin, Jinshan; Blakeslee, Joshua J; Liu, Wenli; Fei, Zhangjun; Wijeratne, Asela; Meulia, Tea; van der Knaap, Esther

    2015-10-01

    fs8.1 is a major quantitative trait locus (QTL) that controls the elongated shape of tomato (Solanum lycopersicum) fruit. In this study, we fine-mapped the locus from a 47Mb to a 3.03Mb interval on the long arm of chromosome 8. Of the 122 annotated genes found in the fs8.1 region, 51 were expressed during floral development and six were differentially expressed in anthesis-stage ovaries in fs8.1 and wild-type (WT) lines. To identify possible nucleotide polymorphisms that may underlie the fruit shape phenotype, genome sequence analyses between tomato cultivars carrying the mutant and WT allele were conducted. This led to the identification of 158 single-nucleotide polymorphisms (SNPs) and five small indels in the fs8.1 interval, including 31 that could be associated with changes in gene expression or function. Morphological and histological analyses showed that the effects of fs8.1 were mainly on reproductive organ elongation by increasing cell number in the proximal-distal direction. Fruit weight was also increased in fs8.1 compared with WT, which was predominantly attributed to the increased fruit length. By combining the findings from the different analyses, we consider 12 likely candidate genes to underlie fs8.1, including Solyc08g062580 encoding a pentatricopeptide repeat protein, Solyc08g061560 encoding a putative orthologue of ERECTA, which is known to control fruit morphology and inflorescence architecture in Arabidopsis, Solyc08g061910 encoding a GTL2-like trihelix transcription factor, Solyc08g061930 encoding a protein that regulates cytokinin degradation, and two genes, Solyc08g062340 and Solyc08g062450, encoding 17.6kDa class II small heat-shock proteins. PMID:26175354

  20. Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape.

    PubMed

    Sun, Liang; Rodriguez, Gustavo R; Clevenger, Josh P; Illa-Berenguer, Eudald; Lin, Jinshan; Blakeslee, Joshua J; Liu, Wenli; Fei, Zhangjun; Wijeratne, Asela; Meulia, Tea; van der Knaap, Esther

    2015-10-01

    fs8.1 is a major quantitative trait locus (QTL) that controls the elongated shape of tomato (Solanum lycopersicum) fruit. In this study, we fine-mapped the locus from a 47Mb to a 3.03Mb interval on the long arm of chromosome 8. Of the 122 annotated genes found in the fs8.1 region, 51 were expressed during floral development and six were differentially expressed in anthesis-stage ovaries in fs8.1 and wild-type (WT) lines. To identify possible nucleotide polymorphisms that may underlie the fruit shape phenotype, genome sequence analyses between tomato cultivars carrying the mutant and WT allele were conducted. This led to the identification of 158 single-nucleotide polymorphisms (SNPs) and five small indels in the fs8.1 interval, including 31 that could be associated with changes in gene expression or function. Morphological and histological analyses showed that the effects of fs8.1 were mainly on reproductive organ elongation by increasing cell number in the proximal-distal direction. Fruit weight was also increased in fs8.1 compared with WT, which was predominantly attributed to the increased fruit length. By combining the findings from the different analyses, we consider 12 likely candidate genes to underlie fs8.1, including Solyc08g062580 encoding a pentatricopeptide repeat protein, Solyc08g061560 encoding a putative orthologue of ERECTA, which is known to control fruit morphology and inflorescence architecture in Arabidopsis, Solyc08g061910 encoding a GTL2-like trihelix transcription factor, Solyc08g061930 encoding a protein that regulates cytokinin degradation, and two genes, Solyc08g062340 and Solyc08g062450, encoding 17.6kDa class II small heat-shock proteins.

  1. Maternal use of flaxseed oil during pregnancy and lactation prevents morphological alterations in pancreas of female offspring from rat dams with experimental diabetes.

    PubMed

    Correia-Santos, André Manoel; Vicente, Gabriela C; Suzuki, Akemi; Pereira, Aline D; dos Anjos, Juliana S; Lenzi-Almeida, Kátia C; Boaventura, Gilson T

    2015-04-01

    Nutritional recommendations have promoted the increased need to consume n-3 polyunsaturated fatty acids. Flaxseed is the richest dietary source of n-3 fatty acids among plant sources and is widely used for its edible oil. This study aimed to investigate whether maternal use of flaxseed oil has effects on pancreas morphology in the female offspring of diabetic mothers. Female Wistar rats (n = 12) were induced into diabetes by a high-fat diet and low dose of streptozotocin. After confirmation of the diabetes, rats were mated, and once pregnancy was confirmed, they were allocated into three groups (n = 6): high-fat group (HG); flaxseed oil group (FOG); and control group (CG) (non-diabetic rats). At weaning, female offspring (n = 6/group) received standard chow diet. The animals were euthanized at 180 days. Pancreas was collected for histomorphometric and immunohistochemistry analysis. HG showed hypertrophy of pancreatic islets (P < 0.0001), whereas FOG offspring had islets with smaller diameters compared to HG (P < 0.0001). HG offspring showed higher percentage of larger (P = 0.0061) and lower percentage of smaller islets (P = 0.0036). HG showed lower islet insulin immunodensity at 180 days (P < 0.0001), whereas FOG was similar to CG (P < 0.0001). Flaxseed oil reduced the damage caused by maternal hyperglycaemia, promoting normal pancreas histomorphometry and β-cell mass in female offspring.

  2. Osteopontin deficiency enhances parathyroid hormone/ parathyroid hormone related peptide receptor (PPR) signaling-induced alteration in tooth formation and odontoblastic morphology.

    PubMed

    Morishita, Maki; Ono, Noriaki; Miyai, Kentano; Nakagawa, Tomomi; Hanyu, Ryo; Nagao, Masashi; Kamolratanakul, Paksinee; Notomi, Takuya; Rittling, Susan R; Denhardt, David T; Kronenberg, Henry M; Ezura, Yoichi; Hayata, Tadayoshi; Nakamoto, Tetsuya; Noda, Masaki

    2011-06-01

    Parathyroid hormone/parathyroid hormone-related protein receptor (PPR) signaling is known to be involved in tooth development. In bone, extracellular matrix protein osteopontin (OPN) is a negative regulator of PPR signaling in bone formation. However, the role of OPN in modulation of PPR action in tooth development is not understood. Therefore, we examined the tooth in double mutant mice. Constitutively active PPR was expressed specifically in the odontoblasts and osteoblasts (caPPR-tg) in the presence or absence of OPN. Radiographic analysis indicated that the length of the third molar (M3) and the incisor was decreased in the caPPR-tg mice compared to wild type, and such reduction in molar and incisor length was further enhanced in the absence of OPN (caPPR-tg OPN-KO). With respect to histology of incisors, caPPR-tg induced high cellularity and irregularity in odontoblastic shape and this was enhanced by the absence of OPN. These morphological observations suggest that OPN modulates PPR signaling that are involved in tooth formation.

  3. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.).

    PubMed

    Rollins, J A; Habte, E; Templer, S E; Colby, T; Schmidt, J; von Korff, M

    2013-08-01

    The objective of this study was to identify barley leaf proteins differentially regulated in response to drought and heat and the combined stresses in context of the morphological and physiological changes that also occur. The Syrian landrace Arta and the Australian cultivar Keel were subjected to drought, high temperature, or a combination of both treatments starting at heading. Changes in the leaf proteome were identified using differential gel electrophoresis and mass spectrometry. The drought treatment caused strong reductions of biomass and yield, while photosynthetic performance and the proteome were not significantly changed. In contrast, the heat treatment and the combination of heat and drought reduced photosynthetic performance and caused changes of the leaf proteome. The proteomic analysis identified 99 protein spots differentially regulated in response to heat treatment, 14 of which were regulated in a genotype-specific manner. Differentially regulated proteins predominantly had functions in photosynthesis, but also in detoxification, energy metabolism, and protein biosynthesis. The analysis indicated that de novo protein biosynthesis, protein quality control mediated by chaperones and proteases, and the use of alternative energy resources, i.e. glycolysis, play important roles in adaptation to heat stress. In addition, genetic variation identified in the proteome, in plant growth and photosynthetic performance in response to drought and heat represent stress adaption mechanisms to be exploited in future crop breeding efforts. PMID:23918963

  4. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.)

    PubMed Central

    von Korff, M.

    2013-01-01

    The objective of this study was to identify barley leaf proteins differentially regulated in response to drought and heat and the combined stresses in context of the morphological and physiological changes that also occur. The Syrian landrace Arta and the Australian cultivar Keel were subjected to drought, high temperature, or a combination of both treatments starting at heading. Changes in the leaf proteome were identified using differential gel electrophoresis and mass spectrometry. The drought treatment caused strong reductions of biomass and yield, while photosynthetic performance and the proteome were not significantly changed. In contrast, the heat treatment and the combination of heat and drought reduced photosynthetic performance and caused changes of the leaf proteome. The proteomic analysis identified 99 protein spots differentially regulated in response to heat treatment, 14 of which were regulated in a genotype-specific manner. Differentially regulated proteins predominantly had functions in photosynthesis, but also in detoxification, energy metabolism, and protein biosynthesis. The analysis indicated that de novo protein biosynthesis, protein quality control mediated by chaperones and proteases, and the use of alternative energy resources, i.e. glycolysis, play important roles in adaptation to heat stress. In addition, genetic variation identified in the proteome, in plant growth and photosynthetic performance in response to drought and heat represent stress adaption mechanisms to be exploited in future crop breeding efforts. PMID:23918963

  5. Languages of shape feature description and syntactic methods for recognition of morphological changes in organs in analysis of selected x-ray images

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.

    1998-06-01

    The presented paper treats a subject of elaboration of new algorithms for recognition of lesions and analysis of shape features of selected abdominal cavity organs visible on radiograms or tomograms. The aim of the methods is to determine and examine morphological shapes of the analyzed anatomical structures in order to diagnose cancerous lesions and inflammatory processes. The formulated target was accomplished in the case of the diagnosis of cancer and chronic inflammation of the pancreas made on the base of X- ray images obtained during the ERCP examinations. For this purpose an effective algorithm for thresholding of the ERCP images was employed. Hence it was possible to extract the pancreas duct together with morphological changes which could occur. Then, thanks to determination and application of special sequence of geometric operations (skeletonizing and rotations of contour points about a skeleton), a linear graph representing the width of pancreas duct and showing morphological changes was obtained. In order to find these changes the context-free attributed grammars, enabling description of all searched morphological changes were used. These attributes contained an additional information (height and width of the discovered change) used for recognition of ambiguous cases. For proper description and recognition of symptoms, for which the 2D analysis is required (i.e. e.g. large cavernous bulges), the language of shape features description with a special multidirectional sinquad distribution were employed. Research on usefulness of the proposed methods, performed so far, justified the application of syntactic methods to recognition of medical images, especially to support medical diagnostics.

  6. Round and large: morphological and genetic consequences of artificial selection on the gourd tree Crescentia cujete by the Maya of the Yucatan Peninsula, Mexico

    PubMed Central

    Aguirre-Dugua, Xitlali; Eguiarte, Luis E.; González-Rodríguez, Antonio; Casas, Alejandro

    2012-01-01

    Background and Aims Artificial selection, the main driving force of domestication, depends on human perception of intraspecific variation and operates through management practices that drive morphological and genetic divergences with respect to wild populations. This study analysed the recognition of varieties of Crescentia cujete by Maya people in relation to preferred plant characters and documents ongoing processes of artificial selection influencing differential chloroplast DNA haplotype distribution in sympatric wild and home-garden populations. Methods Fifty-three home gardens in seven villages (93 trees) and two putative wild populations (43 trees) were sampled. Through semi-structured interviews we documented the nomenclature of varieties, their distinctive characters, provenance, frequency and management. Phenotypic divergence of fruits was assessed with morphometric analyses. Genetic analyses were performed through five cpDNA microsatellites. Key Results The Maya recognize two generic (wild/domesticated) and two specific domesticated (white/green) varieties of Crescentia cujete. In home gardens, most trees (68 %) were from domesticated varieties while some wild individuals (32 %) were tolerated. Cultivation involves mainly vegetative propagation (76 %). Domesticated fruits were significantly rounder, larger and with thicker pericarp than wild fruits. Haplotype A was dominant in home gardens (76 %) but absent in wild populations. Haplotypes B–F were found common in the wild but at low frequency (24 %) in home gardens. Conclusions The gourd tree is managed through clonal and sexual propagules, fruit form and size being the main targets of artificial selection. Domesticated varieties belong to a lineage preserved by vegetative propagation but propagation by seeds and tolerance of spontaneous trees favour gene flow from wild populations. Five mutational steps between haplotypes A and D suggest that domesticated germplasm has been introduced to the region

  7. Astrocyte-Secreted Factors Selectively Alter Neural Stem and Progenitor Cell Proliferation in the Fragile X Mouse

    PubMed Central

    Sourial, Mary; Doering, Laurie C.

    2016-01-01

    An increasing body of evidence indicates that astrocytes contribute to the governance and fine tuning of stem and progenitor cell production during brain development. The effect of astrocyte function in cell production in neurodevelopmental disorders is unknown. We used the Neural Colony Forming Cell assay to determine the effect of astrocyte conditioned media (ACM) on the generation of neurospheres originating from either progenitor cells or functional stem cells in the knock out (KO) Fragile X mouse model. ACM from both normal and Fmr1-KO mice generated higher percentages of smaller neurospheres indicative of restricted proliferation of the progenitor cell population in Fmr1-KO brains. Wild type (WT) neurospheres, but not KO neurospheres, showed enhanced responses to ACM from the Fmr1-KO mice. In particular, Fmr1-KO ACM increased the percentage of large neurospheres generated, representative of spheres produced from neural stem cells. We also used 2D DIGE to initiate identification of the astrocyte-secreted proteins with differential expression between Fmr1-KO and WT cortices and hippocampi. The results further support the critical role of astrocytes in governing neural cell production in brain development and point to significant alterations in neural cell proliferation due to astrocyte secreted factors from the Fragile X brain. Highlights: • We studied the proliferation of neural stem and progenitor cells in Fragile X. • We examined the role of astrocyte-secreted factors in neural precursor cell biology. • Astrocyte-secreted factors with differential expression in Fragile X identified. PMID:27242437

  8. Hope and fear for new classes of type 2 diabetes drugs: is there preclinical evidence that incretin-based therapies alter pancreatic morphology?

    PubMed

    Lamont, Benjamin J; Andrikopoulos, Sofianos

    2014-04-01

    Incretin-based therapies appear to offer many advantages over other approaches for treating type 2 diabetes. Some preclinical studies have suggested that chronic activation of glucagon-like peptide 1 receptor (GLP1R) signalling in the pancreas may result in the proliferation of islet β-cells and an increase in β-cell mass. This provided hope that enhancing GLP1 action could potentially alter the natural progression of type 2 diabetes. However, to date, there has been no evidence from clinical trials suggesting that GLP1R agonists or dipeptidyl peptidase-4 (DPP4) inhibitors can increase β-cell mass. Nevertheless, while the proliferative capacity of these agents remains controversial, some studies have raised concerns that they could potentially contribute to the development of pancreatitis and hence increase the risk of pancreatic cancer. Currently, there are very limited clinical data to directly assess these potential benefits and risks of incretin-based therapies. However, a review of the preclinical studies indicates that incretin-based therapies probably have only a limited capacity to regenerate pancreatic β-cells, but may be useful for preserving any remaining β-cells in type 2 diabetes. In addition, the majority of preclinical evidence does not support the notion that GLP1R agonists or DPP4 inhibitors cause pancreatitis.

  9. Maternal use of flaxseed oil during pregnancy and lactation prevents morphological alterations in pancreas of female offspring from rat dams with experimental diabetes

    PubMed Central

    Correia-Santos, André Manoel; Vicente, Gabriela C; Suzuki, Akemi; Pereira, Aline D; dos Anjos, Juliana S; Lenzi-Almeida, Kátia C; Boaventura, Gilson T

    2015-01-01

    Nutritional recommendations have promoted the increased need to consume n-3 polyunsaturated fatty acids. Flaxseed is the richest dietary source of n-3 fatty acids among plant sources and is widely used for its edible oil. This study aimed to investigate whether maternal use of flaxseed oil has effects on pancreas morphology in the female offspring of diabetic mothers. Female Wistar rats (n = 12) were induced into diabetes by a high-fat diet and low dose of streptozotocin. After confirmation of the diabetes, rats were mated, and once pregnancy was confirmed, they were allocated into three groups (n = 6): high-fat group (HG); flaxseed oil group (FOG); and control group (CG) (non-diabetic rats). At weaning, female offspring (n = 6/group) received standard chow diet. The animals were euthanized at 180 days. Pancreas was collected for histomorphometric and immunohistochemistry analysis. HG showed hypertrophy of pancreatic islets (P < 0.0001), whereas FOG offspring had islets with smaller diameters compared to HG (P < 0.0001). HG offspring showed higher percentage of larger (P = 0.0061) and lower percentage of smaller islets (P = 0.0036). HG showed lower islet insulin immunodensity at 180 days (P < 0.0001), whereas FOG was similar to CG (P < 0.0001). Flaxseed oil reduced the damage caused by maternal hyperglycaemia, promoting normal pancreas histomorphometry and β-cell mass in female offspring. PMID:25808815

  10. Selective type 5 phosphodiesterase inhibition alters pulmonary hemodynamics and lung liquid production in near-term fetal lambs.

    PubMed

    Dukarm, Robert C; Steinhorn, Robin H; Russell, James A; Lakshminrusimha, Satyan; Swartz, Daniel; Cummings, James J

    2005-12-