Sample records for selective oxidation final

  1. Oxidation Catalysts in the Dark and the Light

    DTIC Science & Technology

    2010-01-01

    TiO2 with added silver, chromium, vanadium, manganese, carbon, and/or sulfur (selected transition metal ions and selected non- metals ) are very...Ranjit, Koodali T.; Klabunde, Kenneth J.; “ Catalysis by Metal Oxides,” Surface and Nanomolecular Catalysis , ed. Ryan Richards, CRC Press, NY, Ch. 2, pgs...REPORT Oxidation Catalysts in the Dark and the Light--Final Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Extensive research on mixed metal oxide

  2. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  3. Rare-Earth Oxide (Yb2O3) Selective Emitter Fabrication and Evaluation

    NASA Technical Reports Server (NTRS)

    Jennette, Bryan; Gregory, Don A.; Herren, Kenneth; Tucker, Dennis; Smith, W. Scott (Technical Monitor)

    2001-01-01

    This investigation involved the fabrication and evaluation of rare-earth oxide selective emitters. The first goal of this study was to successfully fabricate the selective emitter samples using paper and ceramic materials processing techniques. The resulting microstructure was also analyzed using a Scanning Electron Microscope. All selective emitter samples fabricated for this study were made with ytterbium oxide (Yb2O3). The second goal of this study involved the measurement of the spectral emission and the radiated power of all the selective emitter samples. The final goal of this study involved the direct comparison of the radiated power emitted by the selective emitter samples to that of a standard blackbody at the same temperature and within the same wavelength range.

  4. Development of diamond-lanthanide metal oxide affinity composites for the selective capture of endogenous serum phosphopeptides.

    PubMed

    Hussain, Dilshad; Musharraf, Syed Ghulam; Najam-ul-Haq, Muhammad

    2016-02-01

    Development of affinity materials for the selective enrichment of phosphopeptides has attracted attention during the last decade. In this work, diamond-lanthanum oxide and diamond-samarium oxide composites have been fabricated via the hydrothermal method. The composites are characterized by scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDAX), and atomic force microscopy (AFM). The analyses confirm the size and composition of the nanocomposites. They have been applied to selectively capture phosphorylated peptides from standard proteins (β-casein and BSA). Selectivity is calculated as 1:3000 and 1:1500 while sensitivity down to 1 and 20 fmol for diamond-lanthanum oxide and diamond-samarium oxide nanocomposites, respectively. Enrichment efficiency has also been evaluated for non-fat milk digest where 18 phosphopeptides are enriched. Total of 213 and 187 phosphopeptides are captured from tryptic digest of HeLa cells extracted proteins by diamond-lanthanum oxide and diamond-samarium oxide, respectively. Finally, human serum, without any pre-treatment, is applied and nanocomposites capture the endogenous serum phosphopeptides.

  5. Buffer layers for coated conductors

    DOEpatents

    Stan, Liliana [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2011-08-23

    A composite structure is provided including a base substrate, an IBAD oriented material upon the base substrate, and a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material. Additionally, an article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and a thick film upon the cubic metal oxide material. Finally, a superconducting article is provided including a base substrate, an IBAD oriented material upon the base substrate, a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the IBAD oriented material, and an yttrium barium copper oxide material upon the cubic metal oxide material.

  6. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    PubMed

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  7. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE PAGES

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.; ...

    2018-05-09

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  8. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  9. Molecular origin of the selectivity differences between palladium and gold-palladium in benzyl alcohol oxidation: Different oxygen adsorption properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savara, Aditya Ashi; Chan-Thaw, Carine E.; Sutton, Jonathan E.

    The same mechanism and microkinetic model used for benzyl alcohol oxidation over Pd/C was shown to apply to benzyl alcohol oxidation over AuPd/C. Almost all of the selectivity differences could be explained by a decrease in oxygen adsorption on AuPd. After isolating oxygen adsorption as being the origin of the selectivity differences, density functional theory was used to investigate the oxygen adsorption properties of a pure Pd surface, a pure Au surface, and an alloyed AuPd surface. Finally, the calculations showed that Au–Pd alloying decreased the oxygen adsorption properties relative to pure Pd, which explained the selectivity differences, consistent withmore » the microkinetic modeling.« less

  10. 75 FR 63259 - Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... Thermal Oxidizer SBA Small Business Administration SCR Selective Catalytic Reduction SNCR Selective Non...). Finally, on June 4, 2010, EPA proposed a definition of non- hazardous solid waste (75 FR 31844) under the...

  11. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  12. Transient studies of low temperature catalysts for methane conversion. Final report, [September 1992--March 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, E.E.

    1996-09-30

    The objective of this project is to use transient techniques to study gas surface interactions during the oxidative conversion of methane. Two groups of catalysts were studied: a double oxide of vanadium and phosphate or VPO, and double oxides of Ni, Co and Rh and lanthana. The objective of the studies involving the VPO catalyst was to understand gas-surface interactions leading to the formation of formaldehyde. In the second group of catalysts, involving metallo-oxides, the main objective was to study the gas-surface interactions that determine the selectivity to C{sub 2} hydrocarbons or synthesis gas. Transient techniques were used to studymore » the methane-surface interactions and the role of lattice oxygen. The selection of the double oxides was made on the hypothesis that the metal oxide would provide an increase interaction with methane whereas the phosphate or lanthanide would provide the sites for oxygen adsorption. The hypothesis behind this selection of catalysts was that increasing the methane interaction with the catalysts would lower the reaction temperature and thus increase the selectivity to the desired products over the total oxidation reaction. In both groups of catalysts the role of Li as a modifier of the selectivity was also studied in detail.« less

  13. Area-Selective Atomic Layer Deposition of Metal Oxides on Noble Metals through Catalytic Oxygen Activation

    PubMed Central

    2017-01-01

    Area-selective atomic layer deposition (ALD) is envisioned to play a key role in next-generation semiconductor processing and can also provide new opportunities in the field of catalysis. In this work, we developed an approach for the area-selective deposition of metal oxides on noble metals. Using O2 gas as co-reactant, area-selective ALD has been achieved by relying on the catalytic dissociation of the oxygen molecules on the noble metal surface, while no deposition takes place on inert surfaces that do not dissociate oxygen (i.e., SiO2, Al2O3, Au). The process is demonstrated for selective deposition of iron oxide and nickel oxide on platinum and iridium substrates. Characterization by in situ spectroscopic ellipsometry, transmission electron microscopy, scanning Auger electron spectroscopy, and X-ray photoelectron spectroscopy confirms a very high degree of selectivity, with a constant ALD growth rate on the catalytic metal substrates and no deposition on inert substrates, even after 300 ALD cycles. We demonstrate the area-selective ALD approach on planar and patterned substrates and use it to prepare Pt/Fe2O3 core/shell nanoparticles. Finally, the approach is proposed to be extendable beyond the materials presented here, specifically to other metal oxide ALD processes for which the precursor requires a strong oxidizing agent for growth. PMID:29503508

  14. Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase

    DOE PAGES

    Dou, Jian; Tang, Yu; Nguyen, Luan; ...

    2016-12-22

    Nanoporous gold with minor silver content has been identified as a new type of gold based catalyst for selective oxidation of cyclohexene with molecular oxygen in liquid. By oxidation of the leached nanoporous gold foils in ozone, the minor silver content was oxidized in this paper to form silver oxide nanoclusters on the surface of nanoporous gold. With further treatment in methanol, the surface silver oxide was reduced and surface alloy was formed on gold ligaments. Both nanoporous gold treated with ozone only and the one with ozone and then methanol are very active for selective oxidation of cyclohexene withmore » molecular oxygen in liquid of cyclohexene with a turn-over-frequency (TOF) of 0.55–0.99 molecules per surface Au atom per second under a solvent-free and initiator- free condition. The total selectivity for production of 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was increased from 57.5 % to 80.8 % by an additional treatment of nanoporous gold in methanol after activation in zone. Finally, the correlation of catalytic selectivity for the production of the three products and corresponding surface chemistry of ligament suggests that (1) the formed Au–Ag alloy surface is favorable for the formation of 2-cyclohexen-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide and (2) the surface silver oxide is favorable for the production of cyclohexenyl hydroperoxide.« less

  15. Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Jian; Tang, Yu; Nguyen, Luan

    Nanoporous gold with minor silver content has been identified as a new type of gold based catalyst for selective oxidation of cyclohexene with molecular oxygen in liquid. By oxidation of the leached nanoporous gold foils in ozone, the minor silver content was oxidized in this paper to form silver oxide nanoclusters on the surface of nanoporous gold. With further treatment in methanol, the surface silver oxide was reduced and surface alloy was formed on gold ligaments. Both nanoporous gold treated with ozone only and the one with ozone and then methanol are very active for selective oxidation of cyclohexene withmore » molecular oxygen in liquid of cyclohexene with a turn-over-frequency (TOF) of 0.55–0.99 molecules per surface Au atom per second under a solvent-free and initiator- free condition. The total selectivity for production of 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was increased from 57.5 % to 80.8 % by an additional treatment of nanoporous gold in methanol after activation in zone. Finally, the correlation of catalytic selectivity for the production of the three products and corresponding surface chemistry of ligament suggests that (1) the formed Au–Ag alloy surface is favorable for the formation of 2-cyclohexen-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide and (2) the surface silver oxide is favorable for the production of cyclohexenyl hydroperoxide.« less

  16. Development of oxide dispersion strengthened turbine blade alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Merrick, H. F.; Curwick, L. R. R.; Kim, Y. G.

    1977-01-01

    There were three nickel-base alloys containing up to 18 wt. % of refractory metal examined initially for oxide dispersion strengthening. To provide greater processing freedom, however, a leaner alloy was finally selected. This base alloy, alloy D, contained 0.05C/15Cr / 2Mo/4W/2Ta/4.5Al/2.Ti/015Zr/0.01-B/Bal. Ni. Following alloy selection, the effect of extrusion, heat treatment, and oxide volume fraction and size on microstructure and properties were examined. The optimum structure was achieved in zone annealed alloy D which contained 2.5 vol. % of 35 mm Y2O3 and which was extruded 16:1 at 1038 C.

  17. Developing Sensitive and Selective Nanosensors: A Single Molecule - Multiple Excitation Source Approach. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing

    DTIC Science & Technology

    2012-03-13

    Source Approach Part II. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing Report Title ABSTRACT This final report for Contract W911NF-09-C-0135 transmits the...prototype development. The second (Part II.) is "Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Test Report". The

  18. Selective reduction of N-oxides to amines: application to drug metabolism.

    PubMed

    Kulanthaivel, Palaniappan; Barbuch, Robert J; Davidson, Rita S; Yi, Ping; Rener, Gregory A; Mattiuz, Edward L; Hadden, Chad E; Goodwin, Lawrence A; Ehlhardt, William J

    2004-09-01

    Phase I oxidative metabolism of nitrogen-containing drug molecules to their corresponding N-oxides is a common occurrence. There are instances where liquid chromatography/tandem mass spectometry techniques are inadequate to distinguish this pathway from other oxidation processes, including C-hydroxylations and other heteroatom oxidations, such as sulfur to sulfoxide. Therefore, the purpose of the present study was to develop and optimize an efficient and practical chemical method to selectively convert N-oxides to their corresponding amines suitable for drug metabolism applications. Our results indicated that efficient conversion of N-oxides to amines could be achieved with TiCl(3) and poly(methylhydrosiloxane). Among them, we found TiCl(3) to be a facile and easy-to-use reagent, specifically applicable to drug metabolism. There are a few reports describing the use of TiCl(3) to reduce N-O bonds in drug metabolism studies, but this methodology has not been widely used. Our results indicated that TiCl(3) is nearly as efficient when the reductions were carried out in the presence of biological matrices, including plasma and urine. Finally, we have shown a number of examples where TiCl(3) can be successfully used to selectively reduce N-oxides in the presence of sulfoxides and other labile groups.

  19. Theoretical insights into the selective oxidation of methane to methanol in copper-exchanged mordenite

    DOE PAGES

    Zhao, Zhi -Jian; Kulkarni, Ambarish; Vilella, Laia; ...

    2016-05-02

    Selective oxidation of methane to methanol is one of the most difficult chemical processes to perform. A potential group of catalysts to achieve CH 4 partial oxidation are Cu-exchanged zeolites mimicking the active structure of the enzyme methane monooxygenase. However, the details of this conversion, including the structure of the active site, are still under debate. In this contribution, periodic density functional theory (DFT) methods were employed to explore the molecular features of the selective oxidation of methane to methanol catalyzed by Cu-exchanged mordenite (Cu-MOR). We focused on two types of previously suggested active species, CuOCu and CuOOCu. Our calculationsmore » indicate that the formation of CuOCu is more feasible than that of CuOOCu. In addition, a much lower C–H dissociation barrier is located on the former active site, indicating that C–H bond activation is easily achieved with CuOCu. We calculated the energy barriers of all elementary steps for the entire process, including catalyst activation, CH 4 activation, and CH 3OH desorption. Finally, our calculations are in agreement with experimental observations and present the first theoretical study examining the entire process of selective oxidation of methane to methanol.« less

  20. Zinc oxide nanoparticles as selective killers of proliferating cells

    PubMed Central

    Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    Background: It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Methods: Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. Results: In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Conclusion: Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant. PMID:21698081

  1. Zinc oxide nanoparticles as selective killers of proliferating cells.

    PubMed

    Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant.

  2. Selective chloroform sensor using thiol functionalized reduced graphene oxide at room temperature

    NASA Astrophysics Data System (ADS)

    Midya, Anupam; Mukherjee, Subhrajit; Roy, Shreyasee; Santra, Sumita; Manna, Nilotpal; Ray, Samit K.

    2018-02-01

    This paper presents a highly selective chloroform sensor using functionalised reduced graphene oxide (RGO) as a sensing layer. Thiol group is covalently attached on the basal plan of RGO film by a simple one-step aryl diazonium chemistry to improve its selectivity. Several spectroscopic techniques like X-ray photoelectron, Raman and Fourier transform infrared spectroscopy confirm successful thiol functionalization of RGO. Finally, the fabricated chemiresistor type sensor is exposed to chloroform in the concentration range 200-800 ppm (parts per million). The sensor shows a 4.3% of response towards 800 ppm chloroform. The selectivity of the sensor is analyzed using various volatile organic compounds as well. The devices show enhanced response and faster recovery attributed to the physiosorption of chloroform onto thiol functionalized graphene making them attractive for 2D materials based sensing applications.

  3. Copper(II) complex of new non-innocent O-aminophenol-based ligand as biomimetic model for galactose oxidase enzyme in aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko

    2017-04-01

    Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.

  4. Takovite-aluminosilicate-Cr materials prepared by adsorption of Cr3+ from industrial effluents as catalysts for hydrocarbon oxidation reactions.

    PubMed

    Ciuffi, Katia J; de Faria, Emerson H; Marçal, Liziane; Rocha, Lucas A; Calefi, Paulo S; Nassar, Eduardo J; Pepe, Iuri; da Rocha, Zênis N; Vicente, Miguel A; Trujillano, Raquel; Gil, Antonio; Korili, Sophia A

    2012-05-01

    The catalytic efficiency of takovite-aluminosilicate-chromium catalysts obtained by adsorption of Cr(3+) ions from aqueous solutions by a takovite-aluminosilicate nanocomposite adsorbent is reported. The adsorbent was synthesized by the coprecipitation method. The catalytic activity of the final Cr-catalysts depended on the amount of adsorbed chromium. (Z)-cyclooctene conversion up to 90% with total selectivity for the epoxide was achieved when the oxidation was carried out with hydrogen peroxide, at room temperature. After five consecutive runs, the catalysts maintained high activity, although after the sixth reuse, the epoxide yields strongly decreased to 35%. The catalysts were also efficient for cyclohexane oxidation, reaching up to 18% conversion, with cyclohexanone/cyclohexanol selectivity close to 1.2. On the whole, their use as catalysts gives a very interesting application for the solids obtained by adsorption of a contaminant cation such as Cr(3+).

  5. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    PubMed

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Clinical Outcomes of Zirconium-Oxide Posts: Up-to-Date Systematic Review.

    PubMed

    Al-Thobity, Ahmad M

    2016-06-01

    The aim of this systematic review was to investigate the clinical outcomes of the use of zirconium-oxide posts in the past 20 years. The addressed question was: Do zirconium-oxide posts maintain the long-term survival rate of endodontically treated teeth? A database search was made of articles from January 1995 to December 2014; it included combinations of the following keywords: "zirconia," "zirconium oxide," "dowel/dowels," "post/posts," and "post and core." Exclusion criteria included review articles, experimental studies, case reports, commentaries, and articles published in a language other than English. Articles were reviewed by the titles, followed by the abstracts, and, finally, the full text of the selected studies. Four studies were included after filtering the selected studies according to the inclusion and exclusion criteria. In one study, the prefabricated zirconia posts with indirect glass-ceramic cores had significantly higher failure rates than other posts with direct composite cores. In two studies, no failure of the cemented posts was observed throughout the follow-up period. Due to the limited number of clinical studies, it can be concluded that the long-term success rate of prefabricated zirconium-oxide posts is unclear.

  7. Mesoporous MnCeO x solid solutions for low temperature and selective oxidation of hydrocarbons

    DOE PAGES

    Zhang, Pengfei; Lu, Hanfeng; Zhou, Ying; ...

    2015-10-15

    The development of noble-metal-free heterogeneous catalysts that can realize the aerobic oxidation of C–H bonds at low temperature is a profound challenge in the catalysis community. Here we report the synthesis of a mesoporous Mn 0.5Ce 0.5O x solid solution that is highly active for the selective oxidation of hydrocarbons under mild conditions (100–120 °C). Notably, the catalytic performance achieved in the oxidation of cyclohexane to cyclohexanone/cyclohexanol (100 °C, conversion: 17.7%) is superior to those by the state-of-art commercial catalysts (140–160 °C, conversion: 3-5%). Finally, the high activity can be attributed to the formation of a Mn 0.5Ce 0.5O xmore » solid solution with an ultrahigh manganese doping concentration in the CeO 2 cubic fluorite lattice, leading to maximum active surface oxygens for the activation of C–H bonds and highly reducible Mn 4+ ions for the rapid migration of oxygen vacancies from the bulk to the surface.« less

  8. Size-selective reactivity of subnanometer Ag 4 and Ag 16 clusters on a TiO 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Po-Tuan; Tyo, Eric C.; Hayashi, Michitoshi

    Size-selected Ag 4 and Ag 16 clusters on a titania surface have been studied for their potential in CO oxidation using theoretical calculations and X-ray absorption near edge spectroscopy. The first peak at the measured Ag K-edge of Ag 16@TiO 2 is more prominent in air than in carbon monoxide environment, but no variation was found between the spectra of Ag 4@TiO 2 in air and in carbon monoxide environments. Density functional theory calculations show a preference for molecular oxygen adsorption for Ag 4@TiO 2 and that for a dissociative one on Ag 16@TiO 2, while carbon monoxide reactions withmore » adsorbed oxygen reduced the Ag 16@TiO 2 cluster. The dissociated oxygen atoms increased the oxidation state of Ag 16 cluster and resulted in the prominent first peak in Ag K-edge spectrum in quasi-particle theory calculations, with the subsequent carbon monoxide oxidation reversing the character of Ag K-edge spectrum associated with the reduction of the cluster. Finally, the results provide insight into the size selectivity of supported subnanometer silver clusters in their interactions with oxygen and carbon monoxide, with implications on the cluster catalytic properties in oxidative reactions.« less

  9. Size-selective reactivity of subnanometer Ag 4 and Ag 16 clusters on a TiO 2 surface

    DOE PAGES

    Chen, Po-Tuan; Tyo, Eric C.; Hayashi, Michitoshi; ...

    2017-03-08

    Size-selected Ag 4 and Ag 16 clusters on a titania surface have been studied for their potential in CO oxidation using theoretical calculations and X-ray absorption near edge spectroscopy. The first peak at the measured Ag K-edge of Ag 16@TiO 2 is more prominent in air than in carbon monoxide environment, but no variation was found between the spectra of Ag 4@TiO 2 in air and in carbon monoxide environments. Density functional theory calculations show a preference for molecular oxygen adsorption for Ag 4@TiO 2 and that for a dissociative one on Ag 16@TiO 2, while carbon monoxide reactions withmore » adsorbed oxygen reduced the Ag 16@TiO 2 cluster. The dissociated oxygen atoms increased the oxidation state of Ag 16 cluster and resulted in the prominent first peak in Ag K-edge spectrum in quasi-particle theory calculations, with the subsequent carbon monoxide oxidation reversing the character of Ag K-edge spectrum associated with the reduction of the cluster. Finally, the results provide insight into the size selectivity of supported subnanometer silver clusters in their interactions with oxygen and carbon monoxide, with implications on the cluster catalytic properties in oxidative reactions.« less

  10. Ag(I)-Promoted Dehydroxylation and Site-Selective 1,7-Disulfonylation of Diaryl(1 H-indol-2-yl)methanols.

    PubMed

    Zhou, Yu; Cao, Wen-Bin; Zhang, Ling-Ling; Xu, Xiao-Ping; Ji, Shun-Jun

    2018-06-01

    A novel dehydroxylation and site-selective 1,7-disulfonylation reaction of diaryl(1 H-indol-2-yl)methanols with sodium sulfinates was described. The protocol provided an efficient strategy for the synthesis of disulfonylated 2-(diarylmethyl)indoles by exploring a range of substrates. The mechanistic studies revealed that silver nitrate served as both a Lewis acid and an oxidant for the sequential 1,7-disulfonylation process leading to the formation of final products.

  11. Bulk Preparation of Holey Graphene via Controlled Catalytic Oxidation

    NASA Technical Reports Server (NTRS)

    Connell, John (Inventor); Watson, Kent (Inventor); Ghose, Sayata (Inventor); Lin, Yi (Inventor)

    2015-01-01

    A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO.sub.2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.

  12. Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics

    NASA Astrophysics Data System (ADS)

    Perez-Aguilar, Nancy Veronica; Muñoz-Sandoval, Emilio; Diaz-Flores, Paola Elizabeth; Rangel-Mendez, Jose Rene

    2010-02-01

    Nitrogen-doped multiwall carbon nanotubes (CNx) were chemically oxidized and tested to adsorb cadmium and lead from aqueous solution. Physicochemical characterization of carbon nanotubes included morphological analysis, textural properties, and chemical composition. In addition, the cadmium adsorption capacity of oxidized-CNx was compared with commercially available activated carbon and single wall carbon nanotubes. Carboxylic and nitro groups on the surface of oxidized CNx shifted the point of zero charge from 6.6 to 3.1, enhancing their adsorption capacity for cadmium and lead to 0.083 and 0.139 mmol/g, respectively, at pH 5 and 25 °C. Moreover, oxidized-CNx had higher selectivity for lead when both metal ions were in solution. Kinetic experiments for adsorption of cadmium showed that the equilibrium was reached at about 4 min. Finally, the small size, geometry, and surface chemical composition of oxidized-CNx are the key factors for their higher adsorption capacity than activated carbon.

  13. Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering

    DOE PAGES

    Mamontov, Eugene

    2016-09-24

    In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less

  14. Melamine-Schiff base/manganese complex with denritic structure: An efficient catalyst for oxidation of alcohols and one-pot synthesis of nitriles.

    PubMed

    Kazemnejadi, Milad; Nikookar, Mahsa; Mohammadi, Mohammad; Shakeri, Alireza; Esmaeilpour, Mohsen

    2018-05-18

    Efficient and selective oxidation of alcohol to the corresponding carbonyl and/or nitrile was carried out by a new water-soluble melamine-based dendritic Mn(III) complex (Melamine-Mn (III)-Schiff base complex) in the presence of 2,4,6-trichloro-1,3,5-triazine (TCT) and O 2 at room temperature. Also, the oxidation of amine to the corresponding nitrile with high selectivity and conversion was performed at room temperature using the current method and high amounts of turnover frequencies (TOFs) were obtained for reactions. This system was also applicable for direct preparation of oxime through oxidation of alcohol. The catalyst was characterized by Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis), thermogravimetric analysis (TGA), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), CHN and inductively coupled plasma (ICP) analyses. Also, oxidation/reduction behavior of the catalyst was studied by cyclic voltammetry (CV). Moreover, chemoselectivity of the catalyst was discussed with various combinations. The water-soluble catalyst could be recycled from the reaction mixture and reused for several times with a very low losing in efficiency. The recovered catalyst was also investigated with various analyses. Finally, gram scale preparation of nitrile was evaluated by present method. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment.

    PubMed

    Pérez, G; Fernández-Alba, A R; Urtiaga, A M; Ortiz, I

    2010-05-01

    This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200A/m(2)) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100A/m(2) did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Control of Gallium Oxide Growth on Liquid Metal Eutectic Gallium/Indium Nanoparticles via Thiolation.

    PubMed

    Farrell, Zachary J; Tabor, Christopher

    2018-01-09

    Eutectic gallium-indium alloy (EGaIn, a room-temperature liquid metal) nanoparticles are of interest for their unique potential uses in self-healing and flexible electronic devices. One reason for their interest is due to a passivating oxide skin that develops spontaneously on exposure to ambient atmosphere which resists deformation and rupture of the resultant liquid particles. It is then of interest to develop methods for control of this oxide growth process. It is hypothesized here that functionalization of EGaIn nanoparticles with thiolated molecules could moderate oxide growth based on insights from the Cabrera-Mott oxidation model. To test this, the oxidation dynamics of several thiolated nanoparticle systems were tracked over time with X-ray photoelectron spectroscopy. These results demonstrate the ability to suppress gallium oxide growth by up to 30%. The oxide progressively matures over a 28 day period, terminating in different final thicknesses as a function of thiol selection. These results indicate not only that thiols moderate gallium oxide growth via competition with oxygen for surface sites but also that different thiols alter the thermodynamics of oxide growth through modification of the EGaIn work function.

  17. Characterization of a Flavoprotein Oxidase from Opium Poppy Catalyzing the Final Steps in Sanguinarine and Papaverine Biosynthesis*

    PubMed Central

    Hagel, Jillian M.; Beaudoin, Guillaume A. W.; Fossati, Elena; Ekins, Andrew; Martin, Vincent J. J.; Facchini, Peter J.

    2012-01-01

    Benzylisoquinoline alkaloids are a diverse class of plant specialized metabolites that includes the analgesic morphine, the antimicrobials sanguinarine and berberine, and the vasodilator papaverine. The two-electron oxidation of dihydrosanguinarine catalyzed by dihydrobenzophenanthridine oxidase (DBOX) is the final step in sanguinarine biosynthesis. The formation of the fully conjugated ring system in sanguinarine is similar to the four-electron oxidations of (S)-canadine to berberine and (S)-tetrahydropapaverine to papaverine. We report the isolation and functional characterization of an opium poppy (Papaver somniferum) cDNA encoding DBOX, a flavoprotein oxidase with homology to (S)-tetrahydroprotoberberine oxidase and the berberine bridge enzyme. A query of translated opium poppy stem transcriptome databases using berberine bridge enzyme yielded several candidate genes, including an (S)-tetrahydroprotoberberine oxidase-like sequence selected for heterologous expression in Pichia pastoris. The recombinant enzyme preferentially catalyzed the oxidation of dihydrosanguinarine to sanguinarine but also converted (RS)-tetrahydropapaverine to papaverine and several protoberberine alkaloids to oxidized forms, including (RS)-canadine to berberine. The Km values of 201 and 146 μm for dihydrosanguinarine and the protoberberine alkaloid (S)-scoulerine, respectively, suggested high concentrations of these substrates in the plant. Virus-induced gene silencing to reduce DBOX transcript levels resulted in a corresponding reduction in sanguinarine, dihydrosanguinarine, and papaverine accumulation in opium poppy roots in support of DBOX as a multifunctional oxidative enzyme in BIA metabolism. PMID:23118227

  18. Long-term oxidization and phase transition of InN nanotextures

    PubMed Central

    2011-01-01

    The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-Ox-Ny oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase. PMID:21711908

  19. Dithizone-modified graphene oxide nano-sheet as a sorbent for pre-concentration and determination of cadmium and lead ions in food.

    PubMed

    Moghadam Zadeh, Hamid Reza; Ahmadvand, Parvaneh; Behbahani, Ali; Amini, Mostafa M; Sayar, Omid

    2015-01-01

    Graphene oxide nano-sheet was modified with dithizone as a novel sorbent for selective pre-concentration and determination of Cd(II) and Pb(II) in food. The sorbent was characterised by various analytical methods and the effective parameters for Cd(II) and Pb(II) adsorption were optimised during this work. The high adsorption capacity and selectivity of this sorbent makes the method capable of fast determinations of the Cd(II) and Pb(II) content in complicated matrices even at μg l(-1) levels using commonly available instrumentation. The precision of this method was < 1.9% from 10 duplicate determinations and its accuracy verified using standard reference materials. Finally, this method was applied to the determination of Cd(II) and Pb(II) ions in common food samples and satisfactory results were obtained.

  20. CO 2 hydrogenation on Pt, Pt/SiO 2 and Pt/TiO 2: Importance of synergy between Pt and oxide support

    DOE PAGES

    Kattel, Shyam; Yan, Binhang; Chen, Jingguang G.; ...

    2016-01-27

    In this paper we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO 2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO 2 binding on the catalyst. Once CO 2 is stabilized, the hydrogenation of CO 2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH 4 is lessmore » significant and no CH 3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH 4 and CH 3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H 2COH species. Using SiO 2 and TiO 2 as the support, Pt NP is able to promote the overall CO 2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. Finally, the enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role.« less

  1. CO 2 hydrogenation on Pt, Pt/SiO 2 and Pt/TiO 2: Importance of synergy between Pt and oxide support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kattel, Shyam; Yan, Binhang; Chen, Jingguang G.

    In this paper we combined density functional theory (DFT), kinetic Monte Carlo (KMC) simulations and experimental measurements to gain insight into the mechanisms of CO 2 conversion by hydrogen on the Pt nanoparticle (NP). The results show that in spite of the presence of active, low-coordinated sites, Pt NP alone is not able to catalyze the reaction due to the weak CO 2 binding on the catalyst. Once CO 2 is stabilized, the hydrogenation of CO 2 to CO via the reverse-water–gas shift (RWGS) reaction is promoted; in contrast, the enhancement for further *CO hydrogenation to CH 4 is lessmore » significant and no CH 3OH is observed. The selectivity to CO is mainly determined by CO binding energy and the energetics of *CO hydrogenation to *HCO, while that for CH 4 and CH 3OH is determined by the competition between hydrogenation and C–O bond scission reactions of the *H 2COH species. Using SiO 2 and TiO 2 as the support, Pt NP is able to promote the overall CO 2 conversion, while the impact on the selectivity is rather small. The theoretically predicted trend in activity and selectivity is in good agreement with the experimental results. Finally, the enhanced activity of Pt/oxide over Pt is originated from the sites at the Pt–oxide interface, where the synergy between Pt and oxide plays an important role.« less

  2. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (Final Report)

    EPA Science Inventory

    EPA has finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. This assessment addresses the potential carcinogenicity from long-term inhalation exposure to ethylene oxide. Now final, this assessment updates the carcinogenicity information in EPA’s 1985 Hea...

  3. Fabrication of sub-diffraction-limit molecular structures by scanning near-field photolithography

    NASA Astrophysics Data System (ADS)

    Ducker, Robert E.; Montague, Matthew T.; Sun, Shuqing; Leggett, Graham J.

    2007-09-01

    Using a scanning near-field optical microscope coupled to a UV laser, an approach we term scanning near-field photolithography (SNP), structures as small as 9 nm (ca. λ/30) may be fabricated in self-assembled monolayers of alkanethiols on gold surfaces. Selective exposure of the adsorbate molecules in the near field leads to photoconversion of the alkylthiolate to a weakly bound alkylsulfonate which may be displaced readily be a contrasting thiol, leading to a chemical pattern, or used as a resist for the selective etching of the underlying metal. A novel ultra-mild etch for gold is reported, and used to etch structures as small as 9 nm. Photopatterning of oligo(ethylene glycol) (OEG) terminated selfassembled monolayers facilitates the fabrication of biomolecular nanostructures. Selective removal of the protein-resistant OEG terminated adsorbates created regions that may be functionalized with a second thiol and derivatized with a biomolecule. Finally, the application of SNP to nanopatterning on oxide surfaces is demonstrated. Selective exposure of monolayers of phosphonic acids adsorbed onto aluminum oxide leads to cleavage of the P-C bond and desorption of the adsorbate molecule. Subsequent etching, using aqueous based, yields structures as small as 100 nm.

  4. The role of astrocytic glycogen in supporting the energetics of neuronal activity.

    PubMed

    Dinuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2012-11-01

    Energy homeostasis in the brain is maintained by oxidative metabolism of glucose, primarily to fulfil the energy demand associated with ionic movements in neurons and astrocytes. In this contribution we review the experimental evidence that grounds a specific role of glycogen metabolism in supporting the functional energetic needs of astrocytes during the removal of extracellular potassium. Based on theoretical considerations, we further discuss the hypothesis that the mobilization of glycogen in astrocytes serves the purpose to enhance the availability of glucose for neuronal glycolytic and oxidative metabolism at the onset of stimulation. Finally, we provide an evolutionary perspective for explaining the selection of glycogen as carbohydrate reserve in the energy-sensing machinery of cell metabolism.

  5. Characterization of the Potent, Selective Nrf2 Activator, 3-(Pyridin-3-Ylsulfonyl)-5-(Trifluoromethyl)-2H-Chromen-2-One, in Cellular and In Vivo Models of Pulmonary Oxidative Stress.

    PubMed

    Yonchuk, John G; Foley, Joseph P; Bolognese, Brian J; Logan, Gregory; Wixted, William E; Kou, Jen-Pyng; Chalupowicz, Diana G; Feldser, Heidi G; Sanchez, Yolanda; Nie, Hong; Callahan, James F; Kerns, Jeffrey K; Podolin, Patricia L

    2017-10-01

    Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key regulator of oxidative stress and cellular repair and can be activated through inhibition of its cytoplasmic repressor, Kelch-like ECH-associated protein 1 (Keap1). Several small molecule disrupters of the Nrf2-Keap1 complex have recently been tested and/or approved for human therapeutic use but lack either potency or selectivity. The main goal of our work was to develop a potent, selective activator of NRF2 as protection against oxidative stress. In human bronchial epithelial cells, our Nrf2 activator, 3-(pyridin-3-ylsulfonyl)-5-(trifluoromethyl)-2 H -chromen-2-one (PSTC), induced Nrf2 nuclear translocation, Nrf2-regulated gene expression, and downstream signaling events, including induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme activity and heme oxygenase-1 protein expression, in an Nrf2-dependent manner. As a marker of subsequent functional activity, PSTC restored oxidant ( tert -butyl hydroperoxide)-induced glutathione depletion. The compound's engagement of the Nrf2 signaling pathway translated to an in vivo setting, with induction of Nrf2-regulated gene expression and NQO1 enzyme activity, as well as restoration of oxidant (ozone)-induced glutathione depletion, occurring in the lungs of PSTC-treated rodents. Under disease conditions, PSTC engaged its target, inducing the expression of Nrf2-regulated genes in human bronchial epithelial cells derived from patients with chronic obstructive pulmonary disease, as well as in the lungs of cigarette smoke-exposed mice. Subsequent to the latter, a dose-dependent inhibition of cigarette smoke-induced pulmonary inflammation was observed. Finally, in contrast with bardoxolone methyl and sulforaphane, PSTC did not inhibit interleukin-1 β -induced nuclear factor- κ B translocation or insulin-induced S6 phosphorylation in human cells, emphasizing the on-target activity of this compound. In summary, we characterize a potent, selective Nrf2 activator that offers protection against pulmonary oxidative stress in several cellular and in vivo models. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Electrochemical mineralization pathway of quinoline by boron-doped diamond anodes.

    PubMed

    Wang, Chunrong; Ma, Keke; Wu, Tingting; Ye, Min; Tan, Peng; Yan, Kecheng

    2016-04-01

    Boron-doped diamond anodes were selected for quinoline mineralization, and the resulting intermediates, phenylpropyl aldehyde, phenylpropionic acid, and nonanal were identified and followed during quinoline oxidation by gas chromatography-mass spectrometry and high-performance liquid chromatography. The evolutions of formic acid, acetic acid, oxalic acid, NO2(-), NO3(-), and NH4(+) were quantified. A new reaction pathway for quinoline mineralization by boron-doped diamond anodes has been proposed, where the pyridine ring in quinoline is cleaved by a hydroxyl radical giving phenylpropyl aldehyde and NH4(+). Phenylpropyl aldehyde is quickly oxidized into phenylpropionic acid, and the benzene ring is cleaved giving nonanal. This is further oxidized to formic acid, acetic acid, and oxalic acid. Finally, these organic intermediates are mineralized to CO2 and H2O. NH4(+) is also oxidized to NO2(-) and on to NO3(-). The results will help to gain basic reference for clearing intermediates and their toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes

    NASA Astrophysics Data System (ADS)

    Carlson, Jacob C.; Li, Shengying; Gunatilleke, Shamila S.; Anzai, Yojiro; Burr, Douglas A.; Podust, Larissa M.; Sherman, David H.

    2011-08-01

    Elucidation of natural product biosynthetic pathways provides important insights into the assembly of potent bioactive molecules, and expands access to unique enzymes able to selectively modify complex substrates. Here, we show full reconstitution, in vitro, of an unusual multi-step oxidative cascade for post-assembly-line tailoring of tirandamycin antibiotics. This pathway involves a remarkably versatile and iterative cytochrome P450 monooxygenase (TamI) and a flavin adenine dinucleotide-dependent oxidase (TamL), which act co-dependently through the repeated exchange of substrates. TamI hydroxylates tirandamycin C (TirC) to generate tirandamycin E (TirE), a previously unidentified tirandamycin intermediate. TirE is subsequently oxidized by TamL, giving rise to the ketone of tirandamycin D (TirD), after which a unique exchange back to TamI enables successive epoxidation and hydroxylation to afford, respectively, the final products tirandamycin A (TirA) and tirandamycin B (TirB). Ligand-free, substrate- and product-bound crystal structures of bicovalently flavinylated TamL oxidase reveal a likely mechanism for the C10 oxidation of TirE.

  8. Study on the NO removal efficiency of the lignite pyrolysis coke catalyst by selective catalytic oxidation method

    PubMed Central

    Wen, Xin; Ma, Zhenhua; Zhang, Lei; Sha, Xiangling; He, Huibin; Zeng, Tianyou; Wang, Yusu; Chen, Jihao

    2017-01-01

    Selective catalytic oxidation (SCO) method is commonly used in wet denitration technology; NO after the catalytic oxidation can be removed with SO2 together by wet method. Among the SCO denitration catalysts, pyrolysis coke is favored by the advantages of low cost and high catalytic activity. In this paper, SCO method combined with pyrolysis coke catalyst was used to remove NO from flue gas. The effects of different SCO operating conditions and different pyrolysis coke catalyst made under different process conditions were studied. Besides, the specific surface area of the catalyst and functional groups were analyzed with surface area analyzer and Beohm titration. The results are: (1) The optimum operating conditions of SCO is as follows: the reaction temperature is 150°C and the oxygen content is 6%. (2) The optimum pyrolysis coke catalyst preparation processes are as follows: the pyrolysis final temperature is 750°C, and the heating rate is 44°C / min. (3) The characterization analysis can be obtained: In the denitration reaction, the basic functional groups and the phenolic hydroxyl groups of the catalyst play a major role while the specific surface area not. PMID:28793346

  9. COSP for Windows: Strategies for Rapid Analyses of Cyclic Oxidation Behavior

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Auping, Judith V.

    2002-01-01

    COSP is a publicly available computer program that models the cyclic oxidation weight gain and spallation process. Inputs to the model include the selection of an oxidation growth law and a spalling geometry, plus oxide phase, growth rate, spall constant, and cycle duration parameters. Output includes weight change, the amounts of retained and spalled oxide, the total oxygen and metal consumed, and the terminal rates of weight loss and metal consumption. The present version is Windows based and can accordingly be operated conveniently while other applications remain open for importing experimental weight change data, storing model output data, or plotting model curves. Point-and-click operating features include multiple drop-down menus for input parameters, data importing, and quick, on-screen plots showing one selection of the six output parameters for up to 10 models. A run summary text lists various characteristic parameters that are helpful in describing cyclic behavior, such as the maximum weight change, the number of cycles to reach the maximum weight gain or zero weight change, the ratio of these, and the final rate of weight loss. The program includes save and print options as well as a help file. Families of model curves readily show the sensitivity to various input parameters. The cyclic behaviors of nickel aluminide (NiAl) and a complex superalloy are shown to be properly fitted by model curves. However, caution is always advised regarding the uniqueness claimed for any specific set of input parameters,

  10. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making.

    PubMed

    Al-Shiekh Khalil, Wael; Shanableh, Abdullah; Rigby, Portia; Kokot, Serge

    2005-04-01

    The effectiveness of hydrothermal treatment for the destruction of the organic content of sludge waste was investigated. The sludge sampled in this study contained approximately 2% solids. The experimental program consisted of hydrothermal treatment experiments conducted in a batch reactor at temperatures between 100 and 250 degrees C, with the addition of an oxidant (hydrogen peroxide) in the range of 0-150% with reference to TCOD, and reaction times of up to 60 min. The results suggested that the availability of oxidant, reaction temperature and reaction time were the determining factors for COD removal. A significant fraction of the COD remaining after treatment consisted of the dissolved COD. The results confirmed that hydrothermal treatment proceeds through hydrolysis resulting in the production of dissolved organic products followed by COD removal through oxidation. Two MCDM chemometrics methods, PROMETHEE and GAIA, were applied to process the large data matrix so as to facilitate the selection of the most suitable hydrothermal conditions for sludge destruction. Two possible scenarios were produced from this analysis-one depended on the use of high temperatures and no oxidant, while the second offered a choice of compromise solutions at lower temperatures but with the use of at least some oxidant. Thus, for the final choice of operating conditions, the decision maker needs local knowledge of the costs and available infrastructure. In principle, such information could be added as further criteria to the data matrix and new rankings obtained.

  11. Demonstration of an N7 integrated fab process for metal oxide EUV photoresist

    NASA Astrophysics Data System (ADS)

    De Simone, Danilo; Mao, Ming; Kocsis, Michael; De Schepper, Peter; Lazzarino, Frederic; Vandenberghe, Geert; Stowers, Jason; Meyers, Stephen; Clark, Benjamin L.; Grenville, Andrew; Luong, Vinh; Yamashita, Fumiko; Parnell, Doni

    2016-03-01

    Inpria has developed a directly patternable metal oxide hard-mask as a robust, high-resolution photoresist for EUV lithography. In this paper we demonstrate the full integration of a baseline Inpria resist into an imec N7 BEOL block mask process module. We examine in detail both the lithography and etch patterning results. By leveraging the high differential etch resistance of metal oxide photoresists, we explore opportunities for process simplification and cost reduction. We review the imaging results from the imec N7 block mask patterns and its process windows as well as routes to maximize the process latitude, underlayer integration, etch transfer, cross sections, etch equipment integration from cross metal contamination standpoint and selective resist strip process. Finally, initial results from a higher sensitivity Inpria resist are also reported. A dose to size of 19 mJ/cm2 was achieved to print pillars as small as 21nm.

  12. Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping

    DOE PAGES

    Bruno, F. Y.; Grisolia, M. N.; Visani, C.; ...

    2015-02-17

    At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO 3 (LFO) and ferromagnetic La 0.7Sr 0.3MnO 3 (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show thatmore » the ferromagnetic domain structure of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects.« less

  13. Thermal Analysis on the Pyrolysis of Tetrabromobisphenol A and Electric Arc Furnace Dust Mixtures

    NASA Astrophysics Data System (ADS)

    Al-Harahsheh, Mohammad; Al-Otoom, Awni; Al-Jarrah, Muhannad; Altarawneh, Mohammednoor; Kingman, Sam

    2018-02-01

    The pyrolysis of Tetrabromobisphenol A (TBBPA) mixed with electric arc furnace dust (EAFD) was studied using thermogravimetric analysis (TGA) and theoretically analyzed using thermodynamic equilibrium calculations. Mixtures of both materials with varying TBBPA loads (1:1 and 1:3) were prepared and pyrolyzed in a nitrogen atmosphere under dynamic heating conditions at heating rates of 5 and 10 °C/min. The mixtures degraded through several steps, including decomposition of TBBPA yielding mainly HBr, bromination of metal oxides, followed by their evaporation in the sequence of CuBr3, ZnBr2, PbBr2, FeBr2, MnBr2, KBr, NaBr, CaBr2, and MgBr2, and finally reduction of the remaining metal oxides by the char formed from decomposition of TBBPA. Thermodynamic calculations suggest the possibility of selective bromination of zinc and lead followed by their evaporation, leaving iron in its oxide form, while the char formed may serve as a reduction agent for iron oxides into metallic iron. However, at higher TBBPA volumes, iron bromide forms, which can also be evaporated at a temperature higher than those of ZnBr2 and PbBr2. Results from this work provide practical insight into selective recovery of valuable metals from EAFD while at the same time recycling the hazardous bromine content in TBBPA.

  14. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments

    PubMed Central

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W.; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8–98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in terms of growth rate. Thus, the novel strategy allowed to enrich and isolate novel iron(III) reducers that were able to thrive by reducing crystalline ferric iron oxides. PMID:25999927

  15. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments.

    PubMed

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in terms of growth rate. Thus, the novel strategy allowed to enrich and isolate novel iron(III) reducers that were able to thrive by reducing crystalline ferric iron oxides.

  16. The role of astrocytic glycogen in supporting the energetics of neuronal activity

    PubMed Central

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2014-01-01

    Energy homeostasis in the brain is maintained by oxidative metabolism of glucose, primarily to fulfil the energy demand associated with ionic movements in neurons and astrocytes. In this contribution we review the experimental evidence that ground a specific role of glycogen metabolism in supporting the functional energetic needs of astrocytes during the removal of extracellular potassium. Based on theoretical considerations, we further discuss the hypothesis that the mobilization of glycogen in astrocytes serves the purpose to enhance the availability of glucose for neuronal glycolytic and oxidative metabolism at the onset of stimulation. Finally, we provide an evolutionary perspective for explaining the selection of glycogen as carbohydrate reserve in the energy-sensing machinery of cell metabolism. PMID:22614927

  17. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application

    NASA Astrophysics Data System (ADS)

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-01

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08338a

  18. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    DOE PAGES

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; ...

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acidmore » solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.« less

  19. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  20. DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine.

    PubMed

    Sharifi, Ensiyeh; Salimi, Abdollah; Shams, Esmaeil

    2012-08-01

    The modification of glassy carbon (GC) electrode with electrodeposited nickel oxide nanoparticles (NiOxNPs) and deoxyribonucleic acid (DNA) is utilized as a new efficient platform for entrapment of osmium (III) complex. Surface morphology and electrochemical properties of the prepared nanocomposite modified electrode (GC/DNA/NiOxNPs/Os(III)-complex) were investigated by FESEM, cyclic voltammetry and electrochemical impedance spectroscopy techniques. Cyclic voltammetric results indicated the excellent electrocatalytic activity of the resulting electrode toward oxidation of l-cysteine (CySH) at reduced overpotential (0.1 V vs. Ag/AgCl). Using chronoamperometry to CySH detection, the sensitivity and detection limit of the biosensor are obtained as 44 μA mM(-1) and 0.07 μM with a concentration range up to 1000 μM. The electrocatalytic activity of the modified electrode not only for oxidation of low molecular-mass biothiols derivatives such as, glutathione, l-cystine, l-methionine and electroactive biological species ( dopamine, uric acid, glucose) is negligible but also for very similar biothiol compound (homocysteine) no recognizable response is observed at the applied potential window. Furthermore, the simultaneous voltammetric determination of l-cysteine and homocysteine compounds without any separation or pretreatment process was reported for the first time in this work. Finally, the applicability of sensor for the analysis of CySH concentration in complex serum samples was successfully demonstrated. Highly selectivity, excellent electrocatalytic activity and stability, remarkable antifouling property toward thiols and their oxidation products, as well as the ability for simultaneous detection of l-cysteine and homocysteine are remarkably advantageous of the proposed DNA based biosensor. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: Distinct roles of superoxide anion and superoxide dismutases

    PubMed Central

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Pickett, Chillian; Sumin, Li; Jones, Jocelyn; Chen, Han; Webb, Brian; Choi, Jae; Zhou, You; Zimmerman, Matthew C.; Franco, Rodrigo

    2013-01-01

    The loss of dopaminergic neurons induced by the parkinsonian toxins paraquat, rotenone and 1-methyl-4-phenylpyridinium (MPP+) is associated with oxidative stress. However, controversial reports exist regarding the source/compartmentalization of reactive oxygen species (ROS) generation and its exact role in cell death. We aimed to determine in detail the role of superoxide anion (O2•−), oxidative stress and their subcellular compartmentalization in dopaminergic cell death induced by parkinsonian toxins. Oxidative stress and ROS formation was determined in the cytosol, intermembrane (IMS) and mitochondrial matrix compartments, using dihydroethidine derivatives, the redox sensor roGFP, as well as electron paramagnetic resonance spectroscopy. Paraquat induced an increase in ROS and oxidative stress in both the cytosol and mitochondrial matrix prior to cell death. MPP+ and rotenone primarily induced an increase in ROS and oxidative stress in the mitochondrial matrix. No oxidative stress was detected at the level of the IMS. In contrast to previous studies, overexpression of manganese superoxide dismutase (MnSOD) or copper/zinc SOD (CuZnSOD) had no effect on ROS steady state levels, lipid peroxidation, loss of mitochondrial membrane potential (ΔΨm) and dopaminergic cell death induced by MPP+ or rotenone. In contrast, paraquat-induced oxidative stress and cell death were selectively reduced by MnSOD overexpression, but not by CuZnSOD or manganese-porphyrins. However, MnSOD also failed to prevent ΔΨm loss. Finally, paraquat, but not MPP+ or rotenone, induced the transcriptional activation the redox-sensitive antioxidant response elements (ARE) and nuclear factor kappa-B (NF-κB). These results demonstrate a selective role of mitochondrial O2•− in dopaminergic cell death induced by paraquat, and show that toxicity induced by the complex I inhibitors rotenone and MPP+ does not depend directly on mitochondrial O2•− formation. PMID:23602909

  2. Towards a "free radical theory of graying": melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage.

    PubMed

    Arck, Petra Clara; Overall, Rupert; Spatz, Katharina; Liezman, Christiane; Handjiski, Bori; Klapp, Burghard F; Birch-Machin, Mark A; Peters, Eva Milena Johanne

    2006-07-01

    Oxidative stress is generated by a multitude of environmental and endogenous challenges such as radiation, inflammation, or psychoemotional stress. It also speeds the aging process. Graying is a prominent but little understood feature of aging. Intriguingly, the continuous melanin synthesis in the growing (anagen) hair follicle generates high oxidative stress. We therefore hypothesize that hair bulb melanocytes are especially susceptible to free radical-induced aging. To test this hypothesis, we subjected human scalp skin anagen hair follicles from graying individuals to macroscopic and immunohistomorphometric analysis and organ culture. We found evidence of melanocyte apoptosis and increased oxidative stress in the pigmentary unit of graying hair follicles. The "common" deletion, a marker mitochondrial DNA-deletion for accumulating oxidative stress damage, occurred most prominently in graying hair follicles. Cultured unpigmented hair follicles grew better than pigmented follicles of the same donors. Finally, cultured pigmented hair follicles exposed to exogenous oxidative stress (hydroquinone) showed increased melanocyte apoptosis in the hair bulb. We conclude that oxidative stress is high in hair follicle melanocytes and leads to their selective premature aging and apoptosis. The graying hair follicle, therefore, offers a unique model system to study oxidative stress and aging and to test antiaging therapeutics in their ability to slow down or even stop this process.

  3. METHOD OF MAKING FUEL BODIES

    DOEpatents

    Goeddel, W.V.; Simnad, M.T.

    1963-04-30

    This patent relates to a method of making a fuel compact having a matrix of carbon or graphite which carries the carbides of fissile material. A nuclear fuel material selected from the group including uranium and thorium carbides, silicides, and oxides is first mixed both with sufficient finely divided carbon to constitute a matrix in the final product and with a diffusional bonding material selected from the class consisting of zirconium, niobium, molybdenum, titanium, nickel, chromium, and silicon. The mixture is then heated at a temperature of 1500 to 1800 nif- C while maintaining it under a pressure of over about 2,000 pounds per square inch. Preferably, heating is accomplished by the electrical resistance of the compact itself. (AEC)

  4. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOEpatents

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  5. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Ni, Yonghong; Zhai, Muheng

    2018-01-01

    Transition metal and its oxide composite nanomaterials are attracting increasing research interest due to their superior properties and extensive applications in many fields. In this paper, Ni-NiO@C nanocomposites were successfully synthesized in one step via a simple solution-combustion route, employing NiCl2 as the Ni source, oxygen in the atmosphere as the oxygen source, and ethanol as the solvent. The final product was characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), (high resolution) transmission electron microscopy (TEM/HRTEM), and Raman spectra. N2 gas sorption-desorption experiments uncovered that the BET surface area of Ni-NiO@C nanocomposites reached 161.9 m2 g-1, far higher than 34.2 m2 g-1 of Ni-NiO. The electrochemical measurement showed that the as-produced Ni-NiO@C nanocomposites presented better catalytic activity for the electro-oxidation of methanol than Ni-NiO and NiO, which provides a new catalyst selection for the electro-oxidation of methanol.

  6. Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties.

    PubMed

    Ingole, S M; Navale, S T; Navale, Y H; Bandgar, D K; Stadler, F J; Mane, R S; Ramgir, N S; Gupta, S K; Aswal, D K; Patil, V B

    2017-05-01

    Nanostructured tin oxide (SnO 2 ) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology. The chemiresistive properties of SnO 2 films are studied towards different oxidizing and reducing gases where these films have demonstrated considerable selectivity towards oxidizing nitrogen dioxide (NO 2 ) gas with a maximum response of 403% to 100ppm @200°C, and fast response and recovery times of 4s and 210s, respectively, than other test gases. In addition, SnO 2 films are enabling to detect as low as 1ppm NO 2 gas concentration @200°C with 23% response enhancement. Chemiresistive performances of SnO 2 films are carried out in the range of 1-100ppm and reported. Finally, plausible adsorption and desorption reaction mechanism of NO 2 gas molecules with SnO 2 film surface has been thoroughly discussed by means of an impedance spectroscopy analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    PubMed Central

    Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell

    2010-01-01

    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672

  8. Enzymatic degradation and bioactivity evaluation of C-6 oxidized chitosan.

    PubMed

    Pierre, Guillaume; Salah, Rym; Gardarin, Christine; Traikia, Mounir; Petit, Emmanuel; Delort, Anne-Marie; Mameri, Nabil; Moulti-Mati, Farida; Michaud, Philippe

    2013-09-01

    C-6 oxidized chitosan was produced from chitosan by performing selective oxidation with NaOCl and NaBr using 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) as catalyst. Endocellulase, Celluclast 1.5 L, Glucanex(®), Macerozyme R-10, hyaluronidase, hyaluronate lyase, red scorpionfish chitinase, glucuronan lyase and a protein mix from Trichoderma reesei were used to degrade the C-6 oxidized chitosan. Glucanex(®), the crude extract from T. reesei IHEM 4122 and Macerozyme R-10 validated the enzymatic degradation through final hydrolysis yields of the derivative respectively close to 36.4, 20.3 and 12.9% (w/w). The best initial reaction velocity (2.41 U/mL) was observed for Glucanex(®). The antileishmanial activity of the derivative was evaluated against Leishmania infantum LIPA 137. The antibacterial activities against Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were also tested. Results showed an antileishmanial activity (IC50: 125 μg/mL) of the obtained derivatives against L. infantum LIPA 137. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Chemoselective ligation

    DOEpatents

    Saxon, Eliana [Albany, CA; Bertozzi, Carolyn Ruth [Berkeley, CA

    2011-12-13

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  10. Chemoselective ligation

    DOEpatents

    Saxon, Eliana; Bertozzi, Carolyn

    2006-10-17

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  11. Chemoselective ligation

    DOEpatents

    Saxon, Eliana [Albany, CA; Bertozzi, Carolyn R [Berkeley, CA

    2011-05-10

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  12. Chemoselective ligation

    DOEpatents

    Saxon, Eliana; Bertozzi, Carolyn Ruth

    2010-11-23

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  13. Chemoselective ligation

    DOEpatents

    Saxon, Eliana [Albany, CA; Bertozzi, Carolyn R [Berkeley, CA

    2011-04-12

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  14. Chemoselective ligation

    DOEpatents

    Saxon, Eliana; Bertozzi, Carolyn R.

    2010-02-23

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g. on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  15. Chemoselective ligation

    DOEpatents

    Saxon, Eliana [Albany, CA; Bertozzi, Carolyn [Berkeley, CA

    2003-05-27

    The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).

  16. A dual-plate ITO-ITO generator-collector microtrench sensor: surface activation, spatial separation and suppression of irreversible oxygen and ascorbate interference.

    PubMed

    Hasnat, Mohammad A; Gross, Andrew J; Dale, Sara E C; Barnes, Edward O; Compton, Richard G; Marken, Frank

    2014-02-07

    Generator-collector electrode systems are based on two independent working electrodes with overlapping diffusion fields where chemically reversible redox processes (oxidation and reduction) are coupled to give amplified current signals. A generator-collector trench electrode system prepared from two tin-doped indium oxide (ITO) electrodes placed vis-à-vis with a 22 μm inter-electrode gap is employed here as a sensor in aqueous media. The reversible 2-electron anthraquinone-2-sulfonate redox system is demonstrated to give well-defined collector responses even in the presence of oxygen due to the irreversible nature of the oxygen reduction. For the oxidation of dopamine on ITO, novel "Piranha-activation" effects are observed and chemically reversible generator-collector feedback conditions are achieved at pH 7, by selecting a more negative collector potential, again eliminating possible oxygen interference. Finally, dopamine oxidation in the presence of ascorbate is demonstrated with the irreversible oxidation of ascorbate at the "mouth" of the trench electrode and chemically reversible oxidation of dopamine in the trench "interior". This spatial separation of chemically reversible and irreversible processes within and outside the trench is discussed as a potential in situ microscale sensing and separation tool.

  17. CO 2 hydrogenation over oxide-supported PtCo catalysts: The role of the oxide support in determining the product selectivity

    DOE PAGES

    Kattel, Shyam; Yu, Weiting; Yang, Xiaofang; ...

    2016-05-09

    By simply changing the oxide support, the selectivity of a metal–oxide catalysts can be tuned. For the CO 2 hydrogenation over PtCo bimetallic catalysts supported on different reducible oxides (CeO 2, ZrO 2, and TiO 2), replacing a TiO 2 support by CeO 2 or ZrO 2 selectively strengthens the binding of C,O-bound and O-bound species at the PtCo–oxide interface, leading to a different product selectivity. Lastly, these results reveal mechanistic insights into how the catalytic performance of metal–oxide catalysts can be fine-tuned.

  18. Evaporative oxidation treatability test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatmentmore » Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.« less

  19. Reversible Conversion of Dominant Polarity in Ambipolar Polymer/Graphene Oxide Hybrids

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Sonar, Prashant; Ma, Xinlei; Chen, Jihua; Zheng, Zijian; Roy, V. A. L.

    2015-01-01

    The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. This hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits. PMID:25801827

  20. Biosensor based on ds-DNA decorated chitosan modified multiwall carbon nanotubes for voltammetric biodetection of herbicide amitrole.

    PubMed

    Ensafi, Ali A; Amini, Maryam; Rezaei, Behzad

    2013-09-01

    The interaction of amitrole and salmon sperm ds-DNA was studied using UV-vis and differential pulse voltammetry (DPV) at both bare and DNA-modified electrodes. Amitrole showed an oxidation peak at 0.445 V at a bare pencil graphite electrode (PGE). When ds-DNA was added into the amitrole solution, the peak current of amitrole decreased and the peak potential underwent a shift. UV-vis spectra showed that the absorption intensity of the ds-DNA at 260 nm decreased with increasing amitrole concentration, proving the interaction between amitrole and the ds-DNA. The results also showed that amitrole could interact with the ds-DNA molecules via the intercalative binding mode. Finally, a pretreated pencil graphite electrode (PGE) modified with multiwall carbon nanotubes (MWCNTs) and chitosan (CHIT) decorated with the ds-DNA were tested in order to determine amitrole content in solution. Electrochemical oxidation of amitrole bonded on DNA/MWCNTs-CHIT/PGE was used to obtain an analytical signal. A linear dependence was observed to exist between the peak current and 0.025-2.4 ng mL(-1) amitrole with a detection limit of 0.017 ng mL(-1). The sensor showed a good selectivity and precision for the determination of amitrole. Finally, applicability of the biosensor was evaluated by measuring the analyte in soil and water samples with good selectivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells

    NASA Astrophysics Data System (ADS)

    Aires, Antonio; Ocampo, Sandra M.; Simões, Bruno M.; Josefa Rodríguez, María; Cadenas, Jael F.; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B.; Carrascosa, José L.; Cortajarena, Aitziber L.

    2016-02-01

    Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.

  2. Surface modification of poly(dimethylsiloxane) for microfluidic assay applications

    NASA Astrophysics Data System (ADS)

    Séguin, Christine; McLachlan, Jessica M.; Norton, Peter R.; Lagugné-Labarthet, François

    2010-02-01

    The surface of a poly(dimethylsiloxane) (PDMS) film was imparted with patterned functionalities at the micron-scale level. Arrays of circles with diameters of 180 and 230 μm were functionalized using plasma oxidation coupled with aluminum deposition, followed by silanization with solutions of 3-aminopropyltrimethoxy silane (3-APTMS) and 3-mercaptopropyltrimethoxy silane (3-MPTMS), to obtain patterned amine and thiol functionalities, respectively. The modification of the samples was confirmed using X-ray photoelectron spectroscopy (XPS), gold nanoparticle adhesion coupled with optical microscopy, as well as by derivatization with fluorescent dyes. To further exploit the novel surface chemistry of the modified PDMS, samples with surface amine functionalities were used to develop a protein assay as well as an array capable of cellular capture and patterning. The modified substrate was shown to successfully selectively immobilize fluorescently labeled immunoglobulin G (IgG) by tethering Protein A to the surface, and, for the cellular arrays, C2C12 rat endothelial cells were captured. Finally, this novel method of patterning chemical functionalities onto PDMS has been incorporated into microfluidic channels. Finally, we demonstrate the in situ chemical modification of the protected PDMS oxidized surface within a microfluidic device. This emphasizes the potential of our method for applications involving micron-scale assays since the aluminum protective layer permits to functionalize the oxidized PDMS surface several weeks after plasma treatment simply after etching away the metallic thin film.

  3. Evolution of Near-Surface Internal and External Oxide Morphology During High-Temperature Selective Oxidation of Steels

    NASA Astrophysics Data System (ADS)

    Story, Mary E.; Webler, Bryan A.

    2018-05-01

    In this work we examine some observations made using high-temperature confocal scanning laser microscopy (HT-CSLM) during selective oxidation experiments. A plain carbon steel and advanced high-strength steel (AHSS) were selectively oxidized at high temperature (850-900°C) in either low oxygen or water vapor atmospheres. Surface evolution, including thermal grooving along grain boundaries and oxide growth, was viewed in situ during heating. Experiments investigated the influence of the microstructure and oxidizing atmosphere on selective oxidation behavior. Sequences of CSLM still frames collected during the experiment were processed with ImageJ to obtain histograms that showed a general darkening trend indicative of oxidation over time with all samples. Additional ex situ scanning electron microscopy and energy dispersive spectroscopy analysis supported in situ observations. Distinct oxidation behavior was observed for each case. Segregation, grain orientation, and extent of internal oxidation were all found to strongly influence surface evolution.

  4. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (Final Report, Sep 2008)

    EPA Science Inventory

    EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria final assessment. This report represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scien...

  5. A general strategy toward the rational synthesis of metal tungstate nanostructures using plasma electrolytic oxidation method

    NASA Astrophysics Data System (ADS)

    Jiang, Yanan; Liu, Baodan; Zhai, Zhaofeng; Liu, Xiaoyuan; Yang, Bing; Liu, Lusheng; Jiang, Xin

    2015-11-01

    A new method based on conventional plasma electrolytic oxidation (PEO) technology has been developed for the rational synthesis of metal tungstate nanostructures. Using this method, ZnWO4 and NiWO4 nanostructures with controllable morphologies (nanorods, nanosheets and microsheets) and superior crystallinity have been synthesized. It has been found that the morphology diversity of ZnWO4 nanostructures can be selectively tailored through tuning the electrolyte concentration and annealing temperatures, showing obvious advantages in comparison to traditional hydrothermal and sol-gel methods. Precise microscopy analyses on the cross section of the PEO coating and ZnWO4 nanostructures confirmed that the precursors initially precipitated in the PEO coating and its surface during plasma discharge process are responsible for the nucleation and subsequent growth of metal tungstate nanostructures by thermal annealing. The method developed in this work represents a general strategy toward the rational synthesis of metal oxide nanostructures and the formation mechanism of metal tungstate nanostructures fabricated by the PEO method is finally discussed.

  6. Enhanced Carbon Dioxide Electroreduction to Carbon Monoxide over Defect-Rich Plasma-Activated Silver Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander

    Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less

  7. Enhanced Carbon Dioxide Electroreduction to Carbon Monoxide over Defect-Rich Plasma-Activated Silver Catalysts

    DOE PAGES

    Mistry, Hemma; Choi, Yong-Wook; Bagger, Alexander; ...

    2017-07-14

    Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO 2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre-treatment of silver foil enhances the number of low-coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO 2 electroreduction to CO. At -0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre-oxidized silver foil. While transmission electron microscopy (TEM) and operando X-ray absorption spectroscopy showed that oxygen species can survive in the bulkmore » of the catalyst during the reaction, quasi in situ X-ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. Finally, DFT calculations reveal that the defect-rich surface of the plasma-oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO 2 electroreduction.« less

  8. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

    DOE PAGES

    Zugic, Branko; Wang, Lucun; Heine, Christian; ...

    2016-12-19

    Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changesmore » occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Finally, our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.« less

  9. Voltammetric determination of homocysteine using multiwall carbon nanotube paste electrode in the presence of chlorpromazine as a mediator.

    PubMed

    Gholami-Orimi, Fathali; Taleshi, Farshad; Biparva, Pourya; Karimi-Maleh, Hassan; Beitollahi, Hadi; Ebrahimi, Hamid R; Shamshiri, Mohamad; Bagheri, Hasan; Fouladgar, Masoud; Taherkhani, Ali

    2012-01-01

    We propose chlorpromazine (CHP) as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy) using multiwall carbon nanotube paste electrode (MWCNTPE). The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV) are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1-210.0 μM Hcy) with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples.

  10. Voltammetric Determination of Homocysteine Using Multiwall Carbon Nanotube Paste Electrode in the Presence of Chlorpromazine as a Mediator

    PubMed Central

    Gholami-Orimi, Fathali; Taleshi, Farshad; Biparva, Pourya; Karimi-Maleh, Hassan; Beitollahi, Hadi; Ebrahimi, Hamid R.; Shamshiri, Mohamad; Bagheri, Hasan; Fouladgar, Masoud; Taherkhani, Ali

    2012-01-01

    We propose chlorpromazine (CHP) as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy) using multiwall carbon nanotube paste electrode (MWCNTPE). The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV) are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1–210.0 μM Hcy) with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples. PMID:22675657

  11. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zugic, Branko; Wang, Lucun; Heine, Christian

    Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changesmore » occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Finally, our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.« less

  12. Flower-like and hollow sphere-like WO{sub 3} porous nanostructures: Selective synthesis and their photocatalysis property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jiarui, E-mail: jrhuang@mail.anhu.edu.cn; Xu, Xiaojuan; Gu, Cuiping, E-mail: cpgu2008@mail.anhu.edu.cn

    Graphical abstract: -- Abstract: Nanoflake-based flower-like and hollow microsphere-like hydrated tungsten oxide architectures were selectively synthesized by acidic precipitation of sodium tungstate solution at mild temperature. Several techniques, such as X-ray diffraction, scanning electron microscopy, thermogravimetric-differential thermalgravimetric analysis, transmission electron microscopy, and Brunauer–Emmett–Teller N{sub 2} adsorption–desorption analyses, were used to characterize the structure and morphology of the products. The experimental results show that the nanoflake-based flower-like and hollow sphere-like WO{sub 3}·H{sub 2}O architectures can be obtained by changing the concentration of sodium tungstate solution. The possible formation process based on the aggregation–recrystallization mechanism is proposed. The corresponding tungsten oxide three-dimensionalmore » architectures were obtained after calcination at 450 °C. Finally, the obtained WO{sub 3} three-dimensional architectures were used as photocatalyst in the experiments. Compared with WO{sub 3} microflowers, the as-prepared WO{sub 3} hollow microspheres exhibit superior photocatalytic property on photocatalytic decomposition of Rhodamine B due to their hollow porous hierarchical structures.« less

  13. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

    PubMed Central

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil–5 (ZSM-5), TiO2, and Al2O3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir–Hinshelwood or Eley–Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH3 catalyst are suggested. PMID:29600136

  14. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    PubMed

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  15. Effect of poly(ethylene oxide) homopolymer and two different poly(ethylene oxide-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers on morphological, optical, and mechanical properties of nanostructured unsaturated polyester.

    PubMed

    Builes, Daniel H; Hernández-Ortiz, Juan P; Corcuera, Ma Angeles; Mondragon, Iñaki; Tercjak, Agnieszka

    2014-01-22

    Novel nanostructured unsaturated polyester resin-based thermosets, modified with poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and two poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymers (BCP), were developed and analyzed. The effects of molecular weights, blocks ratio, and curing temperatures on the final morphological, optical, and mechanical properties were reported. The block influence on the BCP miscibility was studied through uncured and cured mixtures of unsaturated polyester (UP) resins with PEO and PPO homopolymers having molecular weights similar to molecular weights of the blocks of BCP. The final morphology of the nanostructured thermosetting systems, containing BCP or homopolymers, was investigated, and multiple mechanisms of nanostructuration were listed and explained. By considering the miscibility of each block before and after curing, it was determined that the formation of the nanostructured matrices followed a self-assembly mechanism or a polymerization-induced phase separation mechanism. The miscibility between PEO or PPO blocks with one of two phases of UP matrix was highlighted due to its importance in the final thermoset properties. Relationships between the final morphology and thermoset optical and mechanical properties were examined. The mechanisms and physics behind the morphologies lead toward the design of highly transparent, nanostructured, and toughened thermosetting UP systems.

  16. Selective oxidation of steroidal allylic alcohols using pyrazole and pyridinium chlorochoromate.

    PubMed

    Parish, E J; Chitrakorn, S; Lowery, S

    1984-07-01

    ABASTRACT: This paper presents a modified method for the selective oxidation of allylic alchols. Pyrazole, when used with pyridinium chlorochromate, is a mild and useful reagent system for the rapid and selective oxidation of steroidal allylic alcohols to the corresponding α, β-unsaturated ketones. The reaction of each substrate was carried out by adding the oxidant to a dry methylene chloride solution containing pyrazole and an allylic alchol. This report is the first on the use of pyrazole to augment selective oxidation by a chronium (VI) reagent.

  17. Selective Transformation of Various Nitrogen-Containing Exhaust Gases toward N2 over Zeolite Catalysts.

    PubMed

    Zhang, Runduo; Liu, Ning; Lei, Zhigang; Chen, Biaohua

    2016-03-23

    In this review we focus on the catalytic removal of a series of N-containing exhaust gases with various valences, including nitriles (HCN, CH3CN, and C2H3CN), ammonia (NH3), nitrous oxide (N2O), and nitric oxides (NO(x)), which can cause some serious environmental problems, such as acid rain, haze weather, global warming, and even death. The zeolite catalysts with high internal surface areas, uniform pore systems, considerable ion-exchange capabilities, and satisfactory thermal stabilities are herein addressed for the corresponding depollution processes. The sources and toxicities of these pollutants are introduced. The important physicochemical properties of zeolite catalysts, including shape selectivity, surface area, acidity, and redox ability, are described in detail. The catalytic combustion of nitriles and ammonia, the direct catalytic decomposition of N2O, and the selective catalytic reduction and direct catalytic decomposition of NO are systematically discussed, involving the catalytic behaviors as well as mechanism studies based on spectroscopic and kinetic approaches and molecular simulations. Finally, concluding remarks and perspectives are given. In the present work, emphasis is placed on the structure-performance relationship with an aim to design an ideal zeolite-based catalyst for the effective elimination of harmful N-containing compounds.

  18. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    PubMed

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  19. Studies on the Low-Temp Oxidation of Coal Containing Organic Sulfur and the Corresponding Model Compounds.

    PubMed

    Zhang, Lanjun; Li, Zenghua; Li, Jinhu; Zhou, Yinbo; Yang, Yongliang; Tang, Yibo

    2015-12-11

    This paper selects two typical compounds containing organic sulfur as model compounds. Then, by analyzing the chromatograms of gaseous low-temp oxidation products and GC/MS of the extractable matter of the oxidation residue, we summarizing the mechanism of low-temp sulfur model compound oxidation. The results show that between 30°C to 80°C, the interaction between diphenyl sulfide and oxygen is mainly one of physical adsorption. After 80°C, chemical adsorption and chemical reactions begin. The main reaction mechanism in the low-temp oxidation of the model compound diphenyl sulfide is diphenyl sulfide generates diphenyl sulfoxide, and then this sulfoxide is further oxidized to diphenyl sulphone. A small amount of free radicals is generated in the process. The model compound cysteine behaves differently from diphenyl sulfide. The main reaction low-temp oxidation mechanism involves the thiol being oxidized into a disulphide and finally evolving to sulfonic acid, along with SO₂ being released at 130°C and also a small amount of free radicals. We also conducted an experiment on coal from Xingcheng using X-ray photoelectron spectroscopy (XPS). The results show that the major forms of organic sulfur in the original coal sample are thiophene and sulfone. Therefore, it can be inferred that there is none or little mercaptan and thiophenol in the original coal. After low-temp oxidation, the form of organic sulfur changes. The sulfide sulfur is oxidized to the sulfoxide, and then the sulfoxide is further oxidized to a sulfone, and these steps can be easily carried out under experimental conditions. What's more, the results illustrate that oxidation promotes sulfur element enrichment on the surface of coal.

  20. Toxic Substances; Mesityl Oxide; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final test rule establishing testing requirements under section 4(a) of the Toxic Substances Control Act (TSCA) for manufacturers and processors of mesityl oxide (MO; CAS No. 141-97-7).

  1. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    NASA Astrophysics Data System (ADS)

    Ahmed, Maaz S.

    Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the alcohol solvent and the surface of the catalyst: (listed in order of strength) lone pair-surface (heterocyclic primary alcohols) > pi-surface (aryl primary alcohols) > van der Waals-surface (alkyl primary alcohols). These interactions were previously underappreciated in condensed phase heterogeneously catalyzed aerobic oxidations. Bi and Te serve as synergistic promoters that enhance both the rate and yield of the reactions relative to reactions employing Pd alone or Pd in combination with Bi or with Te as the sole promoter. We report X-ray absorption spectroscopic studies of the heterogenous catalyst. These methods show that the promoters undergo oxidation in preference to Pd, maintaining the Pd surface in the active metallic state and preventing inhibition by surface Pd-oxide formation. The data also suggest formation of a Pd-Te alloy phase that modifies the electronic properties of the Pd catalyst. Collectively, these results provide valuable insights into the synergistic benefits of multiple promoters in heterogeneous catalytic oxidation reactions.

  2. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2013-03-01

    Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00092c

  3. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    PubMed

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  4. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.

    Here, in this work, we present a newly constructed U xO y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. Finally, the global model is usedmore » to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.« less

  5. Transparent Conducting Oxides: Status and Opportunities in Basic Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coutts, T. J.; Perkins, J. D.; Ginley, D.S.

    1999-08-01

    In this paper, we begin by discussing the historical background of transparent conducting oxides and then make some general remarks about their typical properties. This is followed by a short discussion of the desired properties for future applications (particularly photovoltaic devices). These are ambitious objectives but they provide targets for future basic research and development. Although it may be possible to obtain these properties in the laboratory, it is vital to ensure that account is taken of industrial perceptions to the development of the next generation of materials. Hence, we spend some time discussing industrial criteria. Next, we discuss keymore » physical properties that determine the macroscopic physical properties that, in turn, affect the performance of devices. Finally, we select several key topics that ought to be included in future basic research programs.« less

  6. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    DOE PAGES

    Finko, Mikhail S.; Curreli, Davide; Weisz, David G.; ...

    2017-10-12

    Here, in this work, we present a newly constructed U xO y reaction mechanism that consists of 30 reaction channels (21 of which are reversible channels) for 11 uranium molecular species (including ions). Both the selection of reaction channels and calculation of corresponding rate coefficients is accomplished via a comprehensive literature review and application of basic reaction rate theory. The reaction mechanism is supplemented by a detailed description of oxygen plasma chemistry (19 species and 142 reaction channels) and is used to model an atmospheric laser ablated uranium plume via a 0D (global) model. Finally, the global model is usedmore » to analyze the evolution of key uranium molecular species predicted by the reaction mechanism, and the initial stage of formation of uranium oxide species.« less

  7. Reversible conversion of dominant polarity in ambipolar polymer/graphene oxide hybrids

    DOE PAGES

    Zhou, Ye; Han, Su -Ting; Sonar, Prashant; ...

    2015-03-24

    The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. Wemore » conclude that this hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits.« less

  8. Simultaneous voltammetry detection of dopamine and uric acid in human serum and urine with a poly(procaterol hydrochloride) modified glassy carbon electrode.

    PubMed

    Kong, Dexian; Zhuang, Qizhao; Han, Yejian; Xu, Lanping; Wang, Zeming; Jiang, Lili; Su, Jinwei; Lu, Chun-Hua; Chi, Yuwu

    2018-08-01

    In the present study, procaterol hydrochloride (ProH) was successfully electropolymerized onto a glass carbon electrode (GCE) with simply cyclic voltammetry scans to construct a poly(procaterol hydrochloride) (p-ProH) membrane modified electrode. Compared with the bare GCE, much higher oxidation peak current responses and better peak potentials separation could be obtained for the simultaneous oxidation of dopamine (DA) and uric acid (UA), owning to the excellent electrocatalytic ability of the p-ProH membrane. And it's based on that a square wave voltammetry (SWV) method was developed to selective and simultaneous measurement of DA and UA. Under the optimum conditions, the linear dependence of oxidation peak current on analyte concentrations were found to be 1.0-100 μmol/L and 2-100 μmol/L, giving detection limits of 0.3 μmol/L and 0.5 μmol/L for DA and UA, separately. The as prepared modified electrode shows simplicity in construction with the merits of good reproducibility, high stability, passable selectivity and nice sensitivity. Finally, the proposed p-ProH membrane modified electrode was successfully devoted to the detection of DA and UA in biological fluids such as human serum and urine with acceptable results. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Computational methods in the development of a knowledge-based system for the prediction of solid catalyst performance.

    PubMed

    Procelewska, Joanna; Galilea, Javier Llamas; Clerc, Frederic; Farrusseng, David; Schüth, Ferdi

    2007-01-01

    The objective of this work is the construction of a correlation between characteristics of heterogeneous catalysts, encoded in a descriptor vector, and their experimentally measured performances in the propene oxidation reaction. In this paper the key issue in the modeling process, namely the selection of adequate input variables, is explored. Several data-driven feature selection strategies were applied in order to obtain an estimate of the differences in variance and information content of various attributes, furthermore to compare their relative importance. Quantitative property activity relationship techniques using probabilistic neural networks have been used for the creation of various semi-empirical models. Finally, a robust classification model, assigning selected attributes of solid compounds as input to an appropriate performance class in the model reaction was obtained. It has been evident that the mathematical support for the primary attributes set proposed by chemists can be highly desirable.

  10. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    EPA Science Inventory

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  11. SELECTIVE OXIDATION OF ALCOHOLS OVER VANADIUM PHOSPHORUS OXIDE CATALYST USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various alcohols is studied in liquid phase under nitrogen atmosphere over vanadium phosphorus oxide catalyst in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method are found to be suitable for the selective oxidation of a variet...

  12. DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys

    NASA Astrophysics Data System (ADS)

    Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp

    2017-09-01

    In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.

  13. Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methanemore » oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.« less

  14. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1999-01-01

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  15. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    NASA Astrophysics Data System (ADS)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  16. Density functional theory molecular modeling and antimicrobial behaviour of selected 1,2,3,4,5,6,7,8-octahydroacridine-N(10)-oxides

    NASA Astrophysics Data System (ADS)

    Marinescu, Maria; Cinteza, Ludmila Otilia; Marton, George Iuliu; Marutescu, Luminita Gabriela; Chifiriuc, Mariana-Carmen; Constantinescu, Catalin

    2017-09-01

    A series of 9-substituted 1,2,3,4,5,6,7,8-octahydroacridine-N(10)-oxides is evaluated against 12 bacterial and fungal strains, for their microbicidal and anti-pathogenic features. The largest spectrum of the antibacterial activity is evidenced for the nitro- (2b) and hydroxy- (5b) N-oxides, followed by the amino-N-oxide (3b). Density functional theory (DFT) modeling of the molecular structure and frontier molecular orbitals, i.e. highest occupied/lowest unoccupied molecular orbital (HOMO/LUMO), is accomplished by using the GAMESS 2012 software at M11/ktzvp level of theory in order to find their structural and electronic parameters. We show that the planarity of the molecules and the presence of the electron withdrawing group are advantages for its antimicrobial activity. Finally, we briefly present and discuss results on the processing of such compounds into thin films and hybrid structures by laser-assisted techniques, i.e. matrix-assisted pulsed laser evaporation (MAPLE) or laser-induced forward transfer (LIFT), to provide simple and environmental friendly, state-of-the-art solutions for antimicrobial/medical coatings and devices.

  17. Exploring the effect of oxygen-containing functional groups on the water-holding capacity of lignite.

    PubMed

    Liu, Jie; Jiang, Xiangang; Cao, Yu; Zhang, Chen; Zhao, Guangyao; Zhao, Maoshuang; Feng, Li

    2018-05-07

    Graphene oxide with different degrees of oxidation was prepared and selected as a model compound of lignite to study quantitatively, using both experiment and theoretical calculation methods, the effect on water-holding capacity of oxygen-containing functional groups. The experimental results showed that graphite can be oxidized, and forms epoxy groups most easily, followed by hydroxyl and carboxyl groups. The prepared graphene oxide forms a membrane-state as a single layer structure, with an irregular surface. The water-holding capacity of lignite increased with the content of oxygen-containing functional groups. The influence on the configuration of water molecule clusters and binding energy of water molecules of different oxygen-containing functional groups was calculated by density functional theory. The calculation results indicated that the configuration of water molecule clusters was totally changed by oxygen-containing functional groups. The order of binding energy produced by oxygen-containing functional groups and water molecules was as follows: carboxyl > edge phenol hydroxyl >epoxy group. Finally, it can be concluded that the potential to form more hydrogen bonds is the key factor influencing the interaction energy between model compounds and water molecules.

  18. TEMPO functionalized C60 fullerene deposited on gold surface for catalytic oxidation of selected alcohols

    NASA Astrophysics Data System (ADS)

    Piotrowski, Piotr; Pawłowska, Joanna; Sadło, Jarosław Grzegorz; Bilewicz, Renata; Kaim, Andrzej

    2017-05-01

    C60TEMPO10 catalytic system linked to a microspherical gold support through a covalent S-Au bond was developed. The C60TEMPO10@Au composite catalyst had a particle size of 0.5-0.8 μm and was covered with the fullerenes derivative of 2.3 nm diameter bearing ten nitroxyl groups; the organic film showed up to 50 nm thickness. The catalytic composite allowed for the oxidation under mild conditions of various primary and secondary alcohols to the corresponding aldehyde and ketone analogues with efficiencies as high as 79-98%, thus giving values typical for homogeneous catalysis, while retaining at the same time all the advantages of heterogeneous catalysis, e.g., easy separation by filtration from the reaction mixture. The catalytic activity of the resulting system was studied by means of high pressure liquid chromatography. A redox mechanism was proposed for the process. In the catalytic cycle of the oxidation process, the TEMPO moiety was continuously regenerated in situ with an applied primary oxidant, for example, O2/Fe3+ system. The new intermediate composite components and the final catalyst were characterized by various spectroscopic methods and thermogravimetry.

  19. The Selective Epitaxy of Silicon at Low Temperatures.

    NASA Astrophysics Data System (ADS)

    Lou, Jen-Chung

    1991-01-01

    This dissertation has developed a process for the selective epitaxial growth (SEG) of silicon at low temperatures using a dichlorosilane-hydrogen mixture in a hot-wall low pressure chemical vapor deposition (LPCVD) reactor. Some basic issues concerning the quality of epilayers --substrate preparation, ex-situ and in-situ cleaning, and deposition cycle, have been studied. We find it necessary to use a plasma etch to open epitaxial windows for the SEG of Si. A cycled plasma etch, a thin sacrificial oxide growth, and an oxide etching step can completely remove plasma-etch-induced surface damage and contaminants, which result in high quality epilayers. A practical wafer cleaning step is developed for low temperature Si epitaxial growth. An ex-situ HF vapor treatment can completely remove chemical oxide from the silicon surface and retard the reoxidation of the silicon surface. An in-situ low-concentration DCS cycle can aid in decomposition of surface oxide during a 900 ^circC H_2 prebake step. An HF vapor treatment combined with a low-concentration of DCS cycle consistently achieves defect-free epilayers at 850^circC and lower temperatures. We also show that a BF_sp{2}{+ } or F^+ ion implantation is a potential ex-situ wafer cleaning process for SEG of Si at low temperatures. The mechanism for the formation of surface features on Si epilayers is also discussed. Based on O ^+ ion implantation, we showed that the oxygen incorporation in silicon epilayers suppresses the Si growth rate. Therefore, we attribute the formation of surface features to the local reduction of the Si growth rate due to the dissolution of oxide islands at the epi/substrate interface. Finally, with this developed process for the SEG of silicon, defect-free overgrown epilayers are also obtained. This achievement demonstrates the feasibility for the future silicon-on-oxide (SOI) manufacturing technology.

  20. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.

    PubMed

    Altenhöfer, Sebastian; Radermacher, Kim A; Kleikers, Pamela W M; Wingler, Kirstin; Schmidt, Harald H H W

    2015-08-10

    Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.

  1. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  2. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2001-01-01

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  3. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VIImore » of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.« less

  4. Charge localization and ordering in A2Mn8O16 hollandite group oxides: Impact of density functional theory approaches

    NASA Astrophysics Data System (ADS)

    Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.

    2017-12-01

    The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.

  5. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation

    PubMed Central

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R.

    2014-01-01

    Recently, “meltless” recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach. PMID:28788153

  6. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation.

    PubMed

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R

    2014-08-06

    Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.

  7. Fact Sheets: Final Air Toxics Rules for Ethylene Oxide Emissions from Commercial Sterilization and Fumigation Operations

    EPA Pesticide Factsheets

    This page contains November 1994 and November 1999 fact sheets with information regarding the Final Ethylene Oxide Emissions Standards for Sterilization Facilities. These documents contain answers to common questions for this NESHAP

  8. Two Catalysts for Selective Oxidation of Contaminant Gases

    NASA Technical Reports Server (NTRS)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to nitrogen at temperatures up to 400 C, without producing nitrogen oxides. This catalyst converts ammonia completely to nitrogen, even when the concentration of ammonia is very low. No other catalyst is known to oxidize ammonia selectively at such a high temperature and low concentration. Both the metal oxide and the support contribute to the activity and selectivity of this catalyst.

  9. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactormore » integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.« less

  10. The Effect of Oxidation and Charge/Discharge rates on Li Plating in All-Solid-State Batteries

    NASA Astrophysics Data System (ADS)

    Yulaev, Alexander; Oleshko, Vladimir; Talin, A. Alec; Leite, Marina S.; Kolmakov, Andrei

    All-solid-state Li-ion batteries (SSLIBs) is currently an extensive area of research due to their promising specific power and energy density properties. Moreover, SSLIBs significantly mitigate the safety risks of the thermal runaway that may occur in liquid electrolyte batteries. We fabricated a model SSLIB, which consists of LiCoO2 cathode layer, LiPON as an electrolyte, and a model ultra-thin carbon anode. Using in operando scanning electron microscopy in conjunction with electrochemical measurements, we found that depending on ambient oxidizing conditions and charging rate, the morphology of plated lithium alternates between quasi-1D and 3D microstructures. In addition, we were able to use an electron beam as a virtual nano-electrode to selectively control the nucleation rate and Li growth structure during the SSLIB charging with high spatial resolution. Finally, we determined the conditions when lithium may be oxidized even during battery cycling under UHV conditions, leading to significant capacity losses. We foresee that our work will provide deeper insights into a safe SSLIB performance under real world operating conditions.

  11. Effect of preparation procedures on catalytic activity and selectivity of copper-based mixed oxides in selective catalytic oxidation of ammonia into nitrogen and water vapour

    NASA Astrophysics Data System (ADS)

    Jabłońska, Magdalena; Nocuń, Marek; Gołąbek, Kinga; Palkovits, Regina

    2017-11-01

    The selective oxidation of ammonia into nitrogen and water vapour (NH3-SCO) was studied over Cu-Mg(Zn)-Al-(Zr) mixed metal oxides, obtained by coprecipitation and their subsequent calcination. The effect of acid-base properties of Cu-Mg-Al-Ox on catalytic activity was investigated by changing the Mg/Al molar ratio. Other Cu-containing oxides were prepared by rehydration of calcined Mg-Al hydrotalcite-like compounds or thermal decomposition of metal nitrate precursors. XRD, BET, NH3-TPD, H2-TPR, XPS, FTIR with adsorption of pyridine and CO as well as TEM techniques were used for catalysts characterization. The results of catalytic tests revealed a crucial role of easily reducible highly dispersed copper oxide species to obtain enhanced activity and N2 selectivity in NH3-SCO. The selective catalytic reduction of NO by NH3 (NH3-SCR) and in situ DRIFT of NH3 sorption indicated that NH3-SCO proceeds according to the internal selective catalytic reduction mechanism (i-SCR).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Rong; Hurlburt, Tyler J.; Sabyrov, Kairat

    Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sumfrequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. Itmore » was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and h eterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Finally, unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.« less

  13. 2,4-dinitrophenylhydrazine carbonyl assay in metal-catalysed protein glycoxidation.

    PubMed

    Stefek, M; Trnkova, Z; Krizanova, L

    1999-01-01

    Using an experimental in vitro glycation model, long-term incubations of bovine serum albumin with glucose (fructose) resulted in a significant increase in protein content of 2,4-dinitrophenylhydrazine (DNPH)-reactive carbonyl groups, which could be strongly inhibited by anaerobiosis and metal chelation. The pattern of yields of the protein-bound DNPH was not in accordance with that of the sugar-derived carbonyls determined as the ketoamine Amadori product. In spite of the fact that the contribution of the final advanced glycation end-products to the total DNPH-reactivity of glycation-altered protein remains unclear, the present results stress the need of oxidative steps in formation of most of the DNPH-reactive carbonyl compounds generated by glycation. The results provide evidence that, in protein glycoxidation, the DNPH assay is selective enough to discriminate between protein-bound carbonyls produced by metal-catalysed oxidations and those formed in the early glycation steps.

  14. Retrieval of the Nitrous Oxide Profiles using the AIRS Data in China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Ma, P.; Tao, J.; Li, X.; Zhang, Y.; Wang, Z.; Li, S.; Xiong, X.

    2014-12-01

    As an important greenhouse gas and ozone-depleting substance, the 100-year global warming potential of Nitrous Oxide (N2O) is almost 300 times higher than that of carbon dioxide. However, there are still large uncertainties about the quantitative N2O emission and its feedback to climate change due to the coarse ground-based network. This approach attempts to retrieve the N2O profiles from the Atmospheric InfraRed Sounder (AIRS) data. First, the sensitivity of atmospheric temperature and humidity profiles and surface parameters between two spectral absorption bands were simulated by using the radiative transfer model. Second, the eigenvector regression algorithm is used to construct a priori state. Third, an optimal estimate method was developed based on the band selection of N2O. Finally, we compared our retrieved AIRS profiles with HIPPO data, and analyzed the seasonal and annual N2O distribution in China from 2004 to 2013.

  15. High-performance liquid chromatography/electrospray mass spectrometry for the analysis of modified bases in DNA: 7-(2-hydroxyethyl)guanine, the major ethylene oxide-DNA adduct.

    PubMed

    Leclercq, L; Laurent, C; De Pauw, E

    1997-05-15

    A method was developed for the analysis of 7-(2-hydroxyethyl)guanine (7HEG), the major DNA adduct formed after exposure to ethylene oxide (EO). The method is based on DNA neutral thermal hydrolysis, adduct micro-concentration, and final characterization and quantification by HPLC coupled to single-ion monitoring electrospray mass spectrometry (HPLC/SIR-ESMS). The method was found to be selective, sensitive, and easy to handle with no need for enzymatic digestion or previous sample derivatization. Detection limit was found to be close to 1 fmol of adduct injected (10(-10) M), thus allowing the detection of approximately three modified bases on 10(8) intact nucleotides in blood sample analysis. Quantification results are shown for 7HEG after calf thymus DNA and blood exposure to various doses of EO, in both cases obtaining clear dose-response relationships.

  16. Selective Emitters for High Efficiency TPV Conversion: Materials Preparation and Characterisation

    NASA Astrophysics Data System (ADS)

    Diso, D.; Licciulli, A.; Bianco, A.; Leo, G.; Torsello, G.; Tundo, S.; De Risi, A.; Mazzer, M.

    2003-01-01

    Optimising the spectral emissivity of the IR radiation source in a TPV generator is one of the crucial steps towards high efficiency TPV conversion. In this paper we present different approaches to the preparation of selective emitters to be coupled to high efficiency photovoltaic cells. The emitters are designed to work at a temperature of about 1500K and they have been prepared to be used either as external coatings for the burner or as a structural material for the burner itself. Composite ceramics containing rare earth cations, prepared by slip-casting, with various concentration of rare earths were prepared by Slip Casting and Slurry Coating. Rare earth oxides have been incorporated into different oxide matrices, namely Silica, Alumina, Zirconia and their combination. The final aim was to find the material that exhibits the best performance in terms of both high selective power emission, good efficiency along with acceptable thermo-structural properties (high temperature thermal shock resistance, good strength, no creep). The power density emitted by samples as function of the temperature has been tested in the range 1000nm-5000nm. The high temperature emission measurements and the structural tests indicate that a good compromise between the functional and the thermo-structural properties may be reached. The results of the tests on the emitter coatings carried out in a TPV generator at the operating conditions are also presented in this paper.

  17. Effect of processing conditions on microstructural features in Mn–Si sintered steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oro, Raquel, E-mail: raqueld@chalmers.se; Hryha, Eduard, E-mail: hryha@chalmers.se; Campos, Mónica, E-mail: campos@ing.uc3m.es

    2014-09-15

    Sintering of steels containing oxidation sensitive elements is possible if such elements are alloyed with others which present lower affinity for oxygen. In this work, a master alloy powder containing Fe–Mn–Si–C, specifically designed to create a liquid phase during sintering, has been used for such purpose. The effect of processing conditions such as sintering temperature and atmosphere was studied with the aim of describing the microstructural evolution as well as the morphology and distribution of oxides in the sintered material, evaluating the potential detrimental effect of such oxides on mechanical properties. Chemical analyses, metallography and fractography studies combined with X-raymore » photoelectron spectroscopy analyses on the fracture surfaces were used to reveal the main mechanism of fracture and their correlation with the chemical composition of the different fracture surfaces. The results indicate that the main mechanism of failure in these steels is brittle fracture in the surrounding of the original master alloy particles due to degradation of grain boundaries by the presence of oxide inclusions. Mn–Si oxide inclusions were observed on intergranular decohesive facets. The use of reducing atmospheres and high sintering temperatures reduces the amount and size of such oxide inclusions. Besides, high heating and cooling rates reduce significantly the final oxygen content in the sintered material. A model for microstructure development and oxide evolution during different stages of sintering is proposed, considering the fact that when the master alloy melts, the liquid formed can dissolve some of the oxides as well as the surface of the surrounding iron base particles. - Highlights: • Oxide distribution in steels containing oxidation-sensitive elements • Mn, Si introduced in a master alloy powder, mixed with a base iron powder • Selective oxidation of Mn and Si on iron grain boundaries • Decohesive fracture caused by degradation of grain boundaries by oxide inclusions • Reducing agents efficient at low temperatures critical for avoiding oxide inclusions.« less

  18. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  19. Three-dimensional quantitative structure-activity relationship study on antioxidant capacity of curcumin analogues

    NASA Astrophysics Data System (ADS)

    Chen, Bohong; Zhu, Zhibo; Chen, Min; Dong, Wenqi; Li, Zhen

    2014-03-01

    A comparative molecular similarity indices analysis (CoMSIA) was performed on a set of 27 curcumin-like diarylpentanoid analogues with the radical scavenging activities. A significant cross-validated correlation coefficient Q2 (0.784), SEP (0.042) for CoMSIA were obtained, indicating the statistical significance of the correlation. Further we adopt a rational approach toward the selection of substituents at various positions in our scaffold,and finally find the favored and disfavoured regions for the enhanced antioxidative activity. The results have been used as a guide to design compounds that, potentially, have better activity against oxidative damage.

  20. Equilibrating metal-oxide cluster ensembles for oxidation reactions using oxygen in water

    Treesearch

    Ira A. Weinstock; Elena M. G. Barbuzzi; Michael W. Wemple; Jennifer J. Cowan; Richard S. Reiner; Dan M. Sonnen; Robert A. Heintz; James S. Bond; Craig L. Hill

    2001-01-01

    Although many enzymes can readily and selectively use oxygen in water--the most familiar and attractive of all oxidants and solvents, respectively–-the design of synthetic catalysts for selective water-based oxidation processes utilizing molecular oxygen remains a daunting task. Particularly problematic is the fact that oxidation of substrates by O2 involves radical...

  1. Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion.

    PubMed

    Xu, Boran; Hartigan, Elizabeth M; Feula, Giancarlo; Huang, Zheng; Lumb, Jean-Philip; Arndtsen, Bruce A

    2016-12-19

    We describe the use of simple copper-salt catalysts in the selective aerobic oxidation of amines to nitriles or imines. These catalysts are marked by their exceptional efficiency, operate at ambient temperature and pressure, and allow the oxidation of amines without expensive ligands or additives. This study highlights the significant role counterions can play in controlling selectivity in catalytic aerobic oxidations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    PubMed Central

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  3. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-10-12

    An article of manufacture is described including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superconductor. 5 figures.

  4. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOEpatents

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  5. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (Final Report, Feb 2013)

    EPA Science Inventory

    EPA announced the availability of the final report, Integrated Science Assessment of Ozone and Related Photochemical Oxidants. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases f...

  6. Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices.

    PubMed

    Acero, Juan L; Benitez, F Javier; Real, Francisco J; Roldan, Gloria

    2010-07-01

    Apparent rate constants for the reactions of four selected pharmaceutical compounds (metoprolol, naproxen, amoxicillin, and phenacetin) with chlorine in ultra-pure (UP) water were determined as a function of the pH. It was found that amoxicillin (in the whole pH range 3-12), and naproxen (in the low pH range 2-4) presented high reaction rates, while naproxen (in the pH range 5-9), and phenacetin and metoprolol (in the pH range 2.5-12 for phenacetin, and 3-10 for metoprolol) followed intermediate and slow reaction rates. A mechanism is proposed for the chlorination reaction, which allowed the evaluation of the intrinsic rate constants for the elementary reactions of the ionized and un-ionized species of each selected pharmaceutical with chlorine. An excellent agreement is obtained between experimental and calculated rate constants by this mechanism.The elimination of these substances in several waters (a groundwater, a surface water from a public reservoir, and two effluents from municipal wastewater treatment plants) was also investigated at neutral pH. The efficiency of the chlorination process with respect to the pharmaceuticals elimination and the formation THMs was also established. It is generally observed that the increasing presence of organic and inorganic matter in the water matrices demand more oxidant agent (chlorine), and therefore, less chlorine is available for the oxidation of these compounds. Finally, half-life times and oxidant exposures (CT) required for the removal of 99% of the four pharmaceuticals are also evaluated. These parameters are useful for the establishment of safety chlorine doses in oxidation or disinfection stages of pharmaceuticals in treatment plants.

  7. Manganese-catalyzed selective oxidation of aliphatic C-H groups and secondary alcohols to ketones with hydrogen peroxide.

    PubMed

    Dong, Jia Jia; Unjaroen, Duenpen; Mecozzi, Francesco; Harvey, Emma C; Saisaha, Pattama; Pijper, Dirk; de Boer, Johannes W; Alsters, Paul; Feringa, Ben L; Browne, Wesley R

    2013-09-01

    An efficient and simple method for selective oxidation of secondary alcohols and oxidation of alkanes to ketones is reported. An in situ prepared catalyst is employed based on manganese(II) salts, pyridine-2-carboxylic acid, and butanedione, which provides good-to-excellent conversions and yields with high turnover numbers (up to 10 000) with H2 O2 as oxidant at ambient temperatures. In substrates bearing multiple alcohol groups, secondary alcohols are converted to ketones selectively and, in general, benzyl C-H oxidation proceeds in preference to aliphatic C-H oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOEpatents

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  9. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOEpatents

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  10. The Effects of Non-selective Dopamine Receptor Activation by Apomorphine in the Mouse Hippocampus.

    PubMed

    Arroyo-García, Luis Enrique; Vázquez-Roque, Rubén Antonio; Díaz, Alfonso; Treviño, Samuel; De La Cruz, Fidel; Flores, Gonzalo; Rodríguez-Moreno, Antonio

    2018-03-26

    Apomorphine is a dopamine receptor agonist that activates D 1 -D 5 dopamine receptors and that is used to treat Parkinson's disease (PD). However, the effect of apomorphine on non-motor activity has been poorly studied, and likewise, the effects of dopaminergic activation in brain areas that do not fulfill motor functions are unclear. The aim of this study was to determine how dopamine receptor activation affects behavior, as well as plasticity, morphology, and oxidative stress in the hippocampus. Adult mice were chronically administered apomorphine (1 mg/kg for 15 days), and the effects on memory and learning, synaptic plasticity, dendritic length, inflammatory responses, and oxidative stress were evaluated. Apomorphine impaired learning and long-term memory in mice, as evaluated in the Morris water maze test. In addition, electrophysiological recording of field excitatory postsynaptic potentials (fEPSP) indicated that the long-term potentiation (LTP) of synaptic transmission in the CA1 region of the hippocampus was fully impaired by apomorphine. In addition, a Sholl analysis of Golgi-Cox stained neurons showed that apomorphine reduced the total length of dendrites in the CA1 region of the hippocampus. Finally, there were more reactive astrocytes and oxidative stress biomarkers in mice administered apomorphine, as measured by GFAP immunohistochemistry and markers of redox balance, respectively. Hence, the non-selective activation of dopaminergic receptors in the hippocampus by apomorphine triggers deficiencies in learning and memory, it prevents LTP, reduces dendritic length, and provokes neuronal damage.

  11. Systems-level computational modeling demonstrates fuel selection switching in high capacity running and low capacity running rats

    PubMed Central

    Qi, Nathan R.

    2018-01-01

    High capacity and low capacity running rats, HCR and LCR respectively, have been bred to represent two extremes of running endurance and have recently demonstrated disparities in fuel usage during transient aerobic exercise. HCR rats can maintain fatty acid (FA) utilization throughout the course of transient aerobic exercise whereas LCR rats rely predominantly on glucose utilization. We hypothesized that the difference between HCR and LCR fuel utilization could be explained by a difference in mitochondrial density. To test this hypothesis and to investigate mechanisms of fuel selection, we used a constraint-based kinetic analysis of whole-body metabolism to analyze transient exercise data from these rats. Our model analysis used a thermodynamically constrained kinetic framework that accounts for glycolysis, the TCA cycle, and mitochondrial FA transport and oxidation. The model can effectively match the observed relative rates of oxidation of glucose versus FA, as a function of ATP demand. In searching for the minimal differences required to explain metabolic function in HCR versus LCR rats, it was determined that the whole-body metabolic phenotype of LCR, compared to the HCR, could be explained by a ~50% reduction in total mitochondrial activity with an additional 5-fold reduction in mitochondrial FA transport activity. Finally, we postulate that over sustained periods of exercise that LCR can partly overcome the initial deficit in FA catabolic activity by upregulating FA transport and/or oxidation processes. PMID:29474500

  12. Selective Aerobic Oxidation of 5-(Hydroxymethyl)furfural to 5-Formyl-2-furancarboxylic Acid in Water.

    PubMed

    Ventura, Maria; Aresta, Michele; Dibenedetto, Angela

    2016-05-23

    A simple, cheap, and selective catalyst based on copper/cerium oxides is described for the oxidation of 5-(hydroxymethyl)furfural (5-HMF) in water. An almost quantitative conversion (99 %) with excellent (90 %) selectivity towards the formation of 5-formyl-2-furancarboxylic acid, a platform molecule for other high value chemicals, is observed. The catalyst does not require any pretreatment or additives, such as bases, to obtain high yield and selectivity in water as solvent and using oxygen as oxidant. When a physical mixture of the oxides is used, low conversion and selectivity are observed. Air can be used instead of oxygen, but a lower conversion rate is observed if the same overall pressure is used, and the selectivity remains high. The catalyst can be recovered almost quantitatively and reused. Deactivation of the catalyst, observed in repeated runs, is due to the deposition of humins on its surface. Upon calcination the catalyst almost completely recovers its activity and selectivity, proving that the catalyst is robust. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues

    PubMed Central

    van Lith, R.; Gregory, E.K.; Yang, J.; Kibbe, M.R.; Ameer, G.A.

    2014-01-01

    Oxidative stress plays an important role in the limited biological compatibility of many biomaterials due to inflammation, as well as in various pathologies including atherosclerosis and restenosis as a result of vascular interventions. Engineering antioxidant properties into a material is therefore a potential avenue to improve the biocompatibility of materials, as well as to locally attenuate oxidative stress-related pathologies. Moreover, biodegradable polymers that have antioxidant properties built into their backbone structure have high relative antioxidant content and may provide prolonged, continuous attenuation of oxidative stress while the polymer or its degradation products are present. In this report, we describe the synthesis of poly(1,8-octanediol-co-citrate-co-ascorbate) (POCA), a citric-acid based biodegradable elastomer with native, intrinsic antioxidant properties. The in vitro antioxidant activity of POCA as well as its effects on vascular cells in vitro and in vivo were studied. Antioxidant properties investigated included scavenging of free radicals, iron chelation and the inhibition of lipid peroxidation. POCA reduced reactive oxygen species generation in cells after an oxidative challenge and protected cells from oxidative stress-induced cell death. Importantly, POCA antioxidant properties remained present upon degradation. Vascular cells cultured on POCA showed high viability, and POCA selectively inhibited smooth muscle cell proliferation, while supporting endothelial cell proliferation. Finally, preliminary data on POCA-coated ePTFE grafts showed reduced intimal hyperplasia when compared to standard ePTFE grafts. This biodegradable, intrinsically antioxidant polymer may be useful for tissue engineering application where oxidative stress is a concern. PMID:24976244

  14. Integrated Science Assessment (ISA) for Oxides of Nitrogen and Sulfur - Ecological Criteria (Final Report, Dec 2008)

    EPA Science Inventory

    EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Oxides of Nitrogen and Sulfur - Ecological Criteria. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the ...

  15. Air Quality Criteria for Ozone and Related Photochemical Oxidants (Final Report, 2006)

    EPA Science Inventory

    In February 2006, EPA released the final document, Air Quality Criteria for Ozone and Other Photochemical Oxidants. Tropospheric or surface-level ozone (O3) is one of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S...

  16. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed tomore » mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.« less

  17. Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Meng; Nakayama, Miki; Liu, Ping

    The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less

  18. Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports

    DOE PAGES

    Xue, Meng; Nakayama, Miki; Liu, Ping; ...

    2017-09-13

    The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less

  19. Study of the continuous corrosion in an oxidation environment derived from the theoretical combustion products in a refinery. Case study: Ferritic steel ASTM A335 P91

    NASA Astrophysics Data System (ADS)

    Alviz Meza, A.; Kafarov, V.; Y Peña Ballesteros, D.

    2017-12-01

    Corrosion studies are key element that ensure the correct functioning of equipment in the industrial sector. The oxidation phenomena were evaluated, taking as a case study steel ASTM A335 P91 (P91), a steel of typical use in equipment that work at high temperatures. Five (5) exposure times were selected for the experimental development: 1, 20, 50, 100 and 200h; as well as four (4) analysis temperatures: 450, 550, 650 and 750°C. Through the metallographic analysis was possible to evidence the presence of multiple carbide precipitates and a ferritic structure, after all the temperatures tested. On the other hand, the analysis of hardness and microhardness showed an increase for all the evaluated temperatures. These increases were mainly related to the precipitation of carbides in the coupons of P91. Regarding to the chemical analysis, it was possible to conclude that after 200h of experimentation in each temperature, a layer of duplex oxide, composed mainly of hematite, magnetite and spinel iron-chromium, was formed in the O2/H2O atmosphere. Finally, the kinetic study demonstrated that the oxide layer formed on each coupon of P91 was of protective character.

  20. Floating gate memory with charge storage dots array formed by Dps protein modified with site-specific binding peptides

    NASA Astrophysics Data System (ADS)

    Kamitake, Hiroki; Uenuma, Mutsunori; Okamoto, Naofumi; Horita, Masahiro; Ishikawa, Yasuaki; Yamashita, Ichro; Uraoka, Yukiharu

    2015-05-01

    We report a nanodot (ND) floating gate memory (NFGM) with a high-density ND array formed by a biological nano process. We utilized two kinds of cage-shaped proteins displaying SiO2 binding peptide (minTBP-1) on their outer surfaces: ferritin and Dps, which accommodate cobalt oxide NDs in their cavities. The diameters of the cobalt NDs were regulated by the cavity sizes of the proteins. Because minTBP-1 is strongly adsorbed on the SiO2 surface, high-density cobalt oxide ND arrays were obtained by a simple spin coating process. The densities of cobalt oxide ND arrays based on ferritin and Dps were 6.8 × 1011 dots cm-2 and 1.2 × 1012 dots cm-2, respectively. After selective protein elimination and embedding in a metal-oxide-semiconductor (MOS) capacitor, the charge capacities of both ND arrays were evaluated by measuring their C-V characteristics. The MOS capacitor embedded with the Dps ND array showed a wider memory window than the device embedded with the ferritin ND array. Finally, we fabricated an NFGM with a high-density ND array based on Dps, and confirmed its competent writing/erasing characteristics and long retention time.

  1. Controlled deposition of size-selected MnO nanoparticle thin films for water splitting applications: reduction of onset potential with particle size

    NASA Astrophysics Data System (ADS)

    Khojasteh, Malak; Haghighat, Shima; Dawlaty, Jahan M.; Kresin, Vitaly V.

    2018-05-01

    Emulating water oxidation catalyzed by the oxomanganese clusters in the photosynthetic apparatus of plants has been a long-standing scientific challenge. The use of manganese oxide films has been explored, but while they may be catalytically active on the surface, their poor conductivity hinders their overall performance. We have approached this problem by using manganese oxide nanoparticles with sizes of 4, 6 and 8 nm, produced in a sputter-gas-aggregation source and soft-landed onto conducting electrodes. The mass loading of these catalytic particles was kept constant and corresponded to 45%–80% of a monolayer coverage. Measurements of the water oxidation threshold revealed that the onset potential decreases significantly with decreasing particle size. The final stoichiometry of the catalytically active nanoparticles, after exposure to air, was identified as predominantly MnO. The ability of such a sub-monolayer film to lower the reaction threshold implies that the key role is played by intrinsic size effects, i.e., by changes in the electronic properties and surface fields of the nanoparticles with decreasing size. We anticipate that this work will serve to bridge the knowledge gap between bulk thick film electrocatalysts and natural photosynthetic molecular-cluster complexes.

  2. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  3. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.

    PubMed

    Lee, Yunho; von Gunten, Urs

    2012-12-01

    Various oxidants such as chlorine, chlorine dioxide, ferrate(VI), ozone, and hydroxyl radicals can be applied for eliminating organic micropollutant by oxidative transformation during water treatment in systems such as drinking water, wastewater, and water reuse. Over the last decades, many second-order rate constants (k) have been determined for the reaction of these oxidants with model compounds and micropollutants. Good correlations (quantitative structure-activity relationships or QSARs) are often found between the k-values for an oxidation reaction of closely related compounds (i.e. having a common organic functional group) and substituent descriptor variables such as Hammett or Taft sigma constants. In this study, we developed QSARs for the oxidation of organic and some inorganic compounds and organic micropollutants transformation during oxidative water treatment. A number of 18 QSARs were developed based on overall 412 k-values for the reaction of chlorine, chlorine dioxide, ferrate, and ozone with organic compounds containing electron-rich moieties such as phenols, anilines, olefins, and amines. On average, 303 out of 412 (74%) k-values were predicted by these QSARs within a factor of 1/3-3 compared to the measured values. For HO(·) reactions, some principles and estimation methods of k-values (e.g. the Group Contribution Method) are discussed. The developed QSARs and the Group Contribution Method could be used to predict the k-values for various emerging organic micropollutants. As a demonstration, 39 out of 45 (87%) predicted k-values were found within a factor 1/3-3 compared to the measured values for the selected emerging micropollutants. Finally, it is discussed how the uncertainty in the predicted k-values using the QSARs affects the accuracy of prediction for micropollutant elimination during oxidative water treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    PubMed Central

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  5. Metal oxide nanostructures and their gas sensing properties: a review.

    PubMed

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.

  6. Selective production of decanoic acid from iterative reversal of β-oxidation pathway.

    PubMed

    Kim, Seohyoung; Gonzalez, Ramon

    2018-05-01

    Decanoic acid is a valuable compound used as precursor for industrial chemicals, pharmaceuticals, and biofuels. Despite efforts to produce it from renewables, only limited achievements have been reported. Here, we report an engineered cell factory able to produce decanoic acid as a major product from glycerol, and abundant and renewable feedstock. We exploit the overlapping chain-length specificity of β-oxidation reversal (r-BOX) and thioesterase enzymes to selectively generate decanoic acid. This was achieved by selecting r-BOX enzymes that support the synthesis of acyl-CoA of up to 10 carbons (thiolase BktB and enoyl-CoA reductase EgTER) and a thioesterase that exhibited high activity toward decanoyl-CoA and longer-chain acyl-CoAs (FadM). Combined chromosomal and episomal expression of r-BOX core enzymes such as enoyl-CoA reductase and thiolase (in the presence of E. coli thioesterase FadM) increased titer and yield of decanoic acid, respectively. The carbon flux toward decanoic acid was substantially increased by the use of an organic overlay, which decreased its intracellular accumulation and presumably increased its concentration gradient across cell membrane, suggesting that decanoic acid transport to the extracellular medium might be a major bottleneck. When cultivated in the presence of a n-dodecane overlay, the final engineered strain produced 2.1 g/L of decanoic acid with a yield of 0.1 g/g glycerol. Collectively, our data suggests that r-BOX can be used as a platform to selectively produce decanoic acid and its derivatives at high yield, titer and productivity. © 2018 Wiley Periodicals, Inc.

  7. Scalable Production Method for Graphene Oxide Water Vapor Separation Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Shin, Yongsoon; Liu, Wei

    ABSTRACT Membranes for selective water vapor separation were assembled from graphene oxide suspension using techniques compatible with high volume industrial production. The large-diameter graphene oxide flake suspensions were synthesized from graphite materials via relatively efficient chemical oxidation steps with attention paid to maintaining flake size and achieving high graphene oxide concentrations. Graphene oxide membranes produced using scalable casting methods exhibited water vapor flux and water/nitrogen selectivity performance meeting or exceeding that of membranes produced using vacuum-assisted laboratory techniques. (PNNL-SA-117497)

  8. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, C.Y.

    1993-09-21

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  9. Biochemical and Structural Basis for Controlling Chemical Modularity in Fungal Polyketide Biosynthesis

    DOE PAGES

    Winter, Jaclyn M.; Cascio, Duilio; Dietrich, David; ...

    2015-07-14

    Modular collaboration between iterative fungal polyketide synthases (IPKSs) is an important mechanism for generating structural diversity of polyketide natural products. Inter-PKS communication and substrate channeling are controlled in large by the starter unit acyl carrier protein transacylase (SAT) domain found in the accepting IPKS module. Here in this study, we reconstituted the modular biosynthesis of the benzaldehyde core of the chaetoviridin and chaetomugilin azaphilone natural products using the IPKSs CazF and CazM. Our studies revealed a critical role of CazM’s SAT domain in selectively transferring a highly reduced triketide product from CazF. In contrast, a more oxidized triketide that ismore » also produced by CazF and required in later stages of biosynthesis of the final product is not recognized by the SAT domain. The structural basis for the acyl unit selectivity was uncovered by the first X-ray structure of a fungal SAT domain, highlighted by a covalent hexanoyl thioester intermediate in the SAT active site. Finally, the crystal structure of SAT domain will enable protein engineering efforts aimed at mixing and matching different IPKS modules for the biosynthesis of new compounds.« less

  10. Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems.

    PubMed

    Pacchioni, Gianfranco; Freund, Hans-Joachim

    2018-04-26

    Model systems are very important to identify the working principles of real catalysts, and to develop concepts that can be used in the design of new catalytic materials. In this review we report examples of the use of model systems to better understand and control the occurrence of charge transfer at the interface between supported metal nanoparticles and oxide surfaces. In the first part of this article we concentrate on the nature of the support, and on the basic difference in metal/oxide bonding going from a wide-gap non-reducible oxide material to reducible oxide semiconductors. The roles of oxide nanostructuring, bulk and surface defectiveness, and doping with hetero-atoms are also addressed, as they are all aspects that severely affect the metal/oxide interaction. Particular attention is given to the experimental measures of the occurrence of charge transfer at the metal/oxide interface. In this respect, systems based on oxide ultrathin films are particularly important as they allow the use of scanning probe spectroscopies which, often in combination with other measurements and with first principles theoretical simulations, allow full characterization of small supported nanoparticles and their charge state. In a few selected cases, a precise count of the electrons transferred between the oxide and the supported nanoparticle has been possible. Charge transfer can occur through thin, two-dimensional oxide layers also thanks to their structural flexibility. The flow of charge through the oxide film and the formation of charged adsorbates are accompanied in fact by a substantial polaronic relaxation of the film surface which can be rationalized based on electrostatic arguments. In the final part of this review the relationships between model systems and real catalysts are addressed by discussing some examples of how lessons learned from model systems have helped in rationalizing the behavior of real catalysts under working conditions.

  11. The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review.

    PubMed

    Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles

    2015-01-01

    The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale.

  12. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K2FeO4

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-yang; Xu, Xue-cheng

    2015-08-01

    Chemical oxidation is still the major approach to the covalent functionalization of carbon nanotubes (CNTs). Theoretically, the defects on CNTs are more reactive than skeletal hexagons and should be preferentially oxidized, but conventional oxidation methods, e.g., HNO3/H2SO4 treatment, have poor reaction selectivity and inevitably consume the Cdbnd C bonds in the hexagonal lattices, leading to structural damage, π-electrons loss and weight decrease. In this work, we realized the nondestructive covalent functionalization of CNTs by selective oxidation of the defects. In our method, potassium ferrate K2FeVIO4 was employed as an oxidant for CNTs in H2SO4 medium. The CNT samples, before and after K2FeO4/H2SO4 treatment, were characterized with colloid dispersibility, IR, Raman spectroscopy, FESEM and XPS. The results indicated that (i) CNTs could be effectively oxidized by Fe (VI) under mild condition (60 °C, 3 h), and hydrophilic CNTs with abundant surface sbnd COOH groups were produced; and (ii) Fe (VI) oxidation of CNTs followed a defect-specific oxidation process, that is, only the sp3-hybridized carbon atoms on CNT surface were oxidized while the Cdbnd C bonds remained unaffected. This selective/nondestructive oxidation afforded oxidized CNTs in yields of above 100 wt%. This paper shows that K2FeO4/H2SO4 is an effective, nondestructive and green oxidation system for oxidative functionalization of CNTs and probably other carbon materials as well.

  13. Selective Sensitization of Zinc Finger Protein Oxidation by Reactive Oxygen Species through Arsenic Binding*

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Sun, Xi; Liu, Ke J.; Hudson, Laurie G.

    2015-01-01

    Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation. PMID:26063799

  14. Selective oxidation of rhodinol to citral using H{sub 2}O{sub 2}-platinum black system under microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, D. J. W.; Latip, J.; Hasbullah, S. A.

    2014-09-03

    The oxidation method utilising H{sub 2}O{sub 2}-Pt black system was successfully adapted in the oxidation of rhodinol which is a mixture form of geraniol and citronellol. This green oxidation found to be selectively converted geraniol to citral using conventional method. The implementation of microwave irradiation (175 Watt, 90°C, 30 mins) and a higher molar of H{sub 2}O{sub 2} further improved the conversion rate (72.6%) and selectivity (81%) as compared to the conventional method.

  15. Selective oxidation of rhodinol to citral using H2O2-platinum black system under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Chong, D. J. W.; Latip, J.; Hasbullah, S. A.; Sastrohamidjojo, H.

    2014-09-01

    The oxidation method utilising H2O2-Pt black system was successfully adapted in the oxidation of rhodinol which is a mixture form of geraniol and citronellol. This green oxidation found to be selectively converted geraniol to citral using conventional method. The implementation of microwave irradiation (175 Watt, 90°C, 30 mins) and a higher molar of H2O2 further improved the conversion rate (72.6%) and selectivity (81%) as compared to the conventional method.

  16. Selective C(sp3)−H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow

    PubMed Central

    Laudadio, Gabriele; Govaerts, Sebastian; Wang, Ying; Ravelli, Davide; Koolman, Hannes F.; Fagnoni, Maurizio; Djuric, Stevan W.

    2018-01-01

    Abstract A mild and selective C(sp3)−H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both activated and unactivated C−H bonds (30 examples). The ability to selectively oxidize natural scaffolds, such as (−)‐ambroxide, pregnenolone acetate, (+)‐sclareolide, and artemisinin, exemplifies the utility of this new method. PMID:29451725

  17. Past research and fabrication conducted at SCK•CEN on ferritic ODS alloys used as cladding for FBR's fuel pins

    NASA Astrophysics Data System (ADS)

    De Bremaecker, Anne

    2012-09-01

    In the 1960s in the frame of the sodium-cooled fast breeders, SCK•CEN decided to develop claddings made with ferritic stainless materials because of their specific properties, namely a higher thermal conductivity, a lower thermal expansion, a lower tendency to He-embrittlement, and a lower swelling than the austenitic stainless steels. To enhance their lower creep resistance at 650-700 °C arose the idea to strengthen the microstructure by oxide dispersions. This was the starting point of an ambitious programme where both the matrix and the dispersions were optimized. A purely ferritic 13 wt% Cr matrix was selected and its mechanical strength was improved through addition of ferritizing elements. Results of tensile and stress-rupture tests showed that Ti and Mo were the most beneficial elements, partly because of the chi-phase precipitation. In 1973 the optimized matrix composition was Fe-13Cr-3.5Ti-2Mo. To reach creep properties similar to those of AISI 316, different dispersions and methods were tested: internal oxidation (that was not conclusive), and the direct mixing of metallic and oxide powders (Al2O3, MgO, ZrO2, TiO2, ZrSiO4) followed by pressing, sintering, and extrusion. The compression and extrusion parameters were determined: extrusion as hollow at 1050 °C, solution annealing at 1050 °C/15 min, cleaning, cold drawing to the final dimensions with intermediate annealings at 1050 °C, final annealing at 1050 °C, straightening and final aging at 800 °C. The choice of titania and yttria powders and their concentrations were finalized on the basis of their out-of-pile and in-pile creep and tensile strength. As soon as a resistance butt welding machine was developed and installed in a glove-box, fuel segments with PuO2 were loaded in the Belgian MTR BR2. The fabrication parameters were continuously optimized: milling and beating, lubrication, cold drawing (partial and final reduction rates, temperature, duration, atmosphere and furnace). Specific non-destructive tests (ultrasonic and eddy currents) were also developed. In-pile creep in argon and in liquid sodium was deeply studied on pressurized segments irradiated up to 75 dpaNRT. Finally two fuel assemblies cladded with such ODS alloys were irradiated in Phenix to the max dose of 90 dpa. Creep deformation and swelling were limited but the irradiation-induced embrittlement became acute. The programme was stopped shortly after the Chernobyl disaster, before the embrittlement problem was solved.

  18. Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1995-01-01

    A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.

  19. Selective CO Production by Photoelectrochemical Methane Oxidation on TiO2.

    PubMed

    Li, Wei; He, Da; Hu, Guoxiang; Li, Xiang; Banerjee, Gourab; Li, Jingyi; Lee, Shin Hee; Dong, Qi; Gao, Tianyue; Brudvig, Gary W; Waegele, Matthias M; Jiang, De-En; Wang, Dunwei

    2018-05-23

    The inertness of the C-H bond in CH 4 poses significant challenges to selective CH 4 oxidation, which often proceeds all the way to CO 2 once activated. Selective oxidation of CH 4 to high-value industrial chemicals such as CO or CH 3 OH remains a challenge. Presently, the main methods to activate CH 4 oxidation include thermochemical, electrochemical, and photocatalytic reactions. Of them, photocatalytic reactions hold great promise for practical applications but have been poorly studied. Existing demonstrations of photocatalytic CH 4 oxidation exhibit limited control over the product selectivity, with CO 2 as the most common product. The yield of CO or other hydrocarbons is too low to be of any practical value. In this work, we show that highly selective production of CO by CH 4 oxidation can be achieved by a photoelectrochemical (PEC) approach. Under our experimental conditions, the highest yield for CO production was 81.9%. The substrate we used was TiO 2 grown by atomic layer deposition (ALD), which features high concentrations of Ti 3+ species. The selectivity toward CO was found to be highly sensitive to the substrate types, with significantly lower yield on P25 or commercial anatase TiO 2 substrates. Moreover, our results revealed that the selectivity toward CO also depends on the applied potentials. Based on the experimental results, we proposed a reaction mechanism that involves synergistic effects by adjacent Ti sites on TiO 2 . Spectroscopic characterization and computational studies provide critical evidence to support the mechanism. Furthermore, the synergistic effect was found to parallel heterogeneous CO 2 reduction mechanisms. Our results not only present a new route to selective CH 4 oxidation, but also highlight the importance of mechanistic understandings in advancing heterogeneous catalysis.

  20. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde.

    PubMed

    Han, Hongling; Ding, Guodong; Wu, Tianbin; Yang, Dexin; Jiang, Tao; Han, Buxing

    2015-07-13

    A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB) was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP) as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  1. A Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols

    PubMed Central

    Hoover, Jessica M.; Stahl, Shannon S.

    2011-01-01

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488

  2. Highly Efficient Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Gold Supported on Zinc Oxide Materials

    DOE PAGES

    Chen, Hangning; Cullen, David A.; Larese, J. Z.

    2015-11-30

    We used Au/ZnO catalysts for liquid-phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol and compared with Au/Fe 2O 3 catalysts. To investigate the influence of the support on the hydrogenation activity and selectivity, three different Au/ZnO catalysts were synthesized, including Au/rod-tetrapod ZnO, Au/porous ZnO, and Au/ZnO-CP prepared using a coprecipitation method. Moreover, the influence of calcination temperature was also systematically investigated in this study. The characterization of Au/ZnO catalysts was performed using ICP, N 2 adsorption/desorption isotherms, X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy. Among all the supported Au catalysts prepared in this study, Au/ZnO-CP exhibits bothmore » the highest hydrogenation activity and selectivity. Using a 1.5% Au/ZnO-CP catalyst, 100% selectivity could be achieved with 94.9% conversion. Finally, we find that the Au particle (size and shape), the ZnO support (size and surface texture) and the interaction between Au and ZnO are three important parameters for achieving a highly efficient Au/ZnO catalyst.« less

  3. Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane.

    PubMed

    An, Kwangjin; Alayoglu, Selim; Musselwhite, Nathan; Na, Kyungsu; Somorjai, Gabor A

    2014-05-14

    Selective isomerization toward branched hydrocarbons is an important catalytic process in oil refining to obtain high-octane gasoline with minimal content of aromatic compounds. Colloidal Pt nanoparticles with controlled sizes of 1.7, 2.7, and 5.5 nm were deposited onto ordered macroporous oxides of SiO2, Al2O3, TiO2, Nb2O5, Ta2O5, and ZrO2 to investigate Pt size- and support-dependent catalytic selectivity in n-hexane isomerization. Among the macroporous oxides, Nb2O5 and Ta2O5 exhibited the highest product selectivity, yielding predominantly branched C6 isomers, including 2- or 3-methylpentane, as desired products of n-hexane isomerization (140 Torr n-hexane and 620 Torr H2 at 360 °C). In situ characterizations including X-ray diffraction and ambient-pressure X-ray photoelectron spectroscopy showed that the crystal structures of the oxides in Pt/oxide catalysts were not changed during the reaction and oxidation states of Nb2O5 were maintained under both H2 and O2 conditions. Fourier transform infrared spectra of pyridine adsorbed on the oxides showed that Lewis sites were the dominant acidic site of the oxides. Macroporous Nb2O5 and Ta2O5 were identified to play key roles in the selective isomerization by charge transfer at Pt-oxide interfaces. The selectivity was revealed to be Pt size-dependent, with improved isomer production as Pt sizes increased from 1.7 to 5.5 nm. When 5.5 nm Pt nanoparticles were supported on Nb2O5 or Ta2O5, the selectivity toward branched C6 isomers was further increased, reaching ca. 97% with a minimum content of benzene, due to the combined effects of the Pt size and the strong metal-support interaction.

  4. Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.

    PubMed

    Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark

    2015-03-21

    Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.

  5. Environmental Effects in Niobium Base Alloys and Other Selected Intermetallic Compounds

    DTIC Science & Technology

    1991-04-30

    formation of this surface layer requires that the oxide be more stable than the lowest oxide of the base metal. Figure 2 indicates the free energies of...such requirements for temperatures beyond 10500C are aluminum and silicon. Both of these elements form oxides with large, negative free energies of...Nb-Si, and Ta-Si systems. In attempting to develop alloys in which aluminum or silicon is selectively oxidized, the standard free energies of oxides

  6. Effects of dew point on selective oxidation of TRIP steels containing Si, Mn, and B

    NASA Astrophysics Data System (ADS)

    Lee, Suk-Kyu; Kim, Jong-Sang; Choi, Jin-Won; Kang, Namhyun; Cho, Kyung-Mox

    2011-04-01

    The selective oxidation of Si, Mn, and B on TRIP steel surfaces is a widely known phenomenon that occurs during heat treatment. However, the relationship between oxide formation and the annealing factors is not completely understood. This study examines the effect of the annealing conditions (dew point and annealing temperature) on oxide formation. A low dew point of -40 °C leads to the formation of Si-based oxides on the surface. A high dew point of -20 °C changes the oxide type to Mn-based oxides because the formation of Si oxides on the surface is suppressed by internal oxidation. Mn-based oxides exhibit superior wettability due to aluminothermic reduction during galvanizing.

  7. The Reactivity and Structure of Size Selected VxO y Clusters on a TiO2 (110)-(1 X 1) Surface of Variable Oxidation State

    NASA Astrophysics Data System (ADS)

    Neilson, Hunter L.

    The Reactivity and Structure of Size Selected VxOy Clusters on a TiO2 (110) Surface of Variable Oxidation State by Hunter L Neilson The selective oxidative dehydrogenation of methanol by vanadium oxide/TiO2 model systems has received a great deal of interest in the surface science community. Previous studies using temperature programmed desorption and reaction (TPD/R) to probe the oxidation of methanol to formaldehyde by vanadia/TiO2 model catalysts have shown that the activity of these systems vary considerably based on the way in which the model system is prepared with formaldehyde desorption temperatures observed anywhere from room temperature to 660 K. The principle reason for this variation is that the preparation of sub-monolayer films of vanadia on TiO2 produces clusters with a multitude of VxOy structures and a mixture of vanadium oxidation states. As a result the stoichiometry of the active vanadium oxide catalyst as well as the oxidation state of vanadium in the active catalyst remain unknown. To better understand this system, our group has probed the reactivity and structure of size-selected Vx, VOy and VxOy clusters on a reduced TiO2 (110) support in ultra-high vacuum (UHV) via TPD/R and scanning tunneling microscopy (STM). Ex situ preparation of these clusters in the gas phase prior to deposition has allowed us to systematically vary the stoichiometry of the vanadia clusters; a layer of control not available via the usual routes to vanadium oxide. The most active catalysts are shown to have (VO3)n stoichiometry in agreement with the theoretical models of the Metiu group. We have shown that both the activity and selectivity of V2O6 and V3O9 cluster catalysts depend sensitively on the oxidation state of the TiO2 (110) support. For example, V2O6 on a reduced surface is selective for the oxidation of methanol to formaldehyde while the selectivity shifts to favor methyl formate as the surface becomes increasingly oxidized. STM studies show that the structure of size-selected V2O6 clusters, upon adsorption to the surface, varies considerably with the oxidation state of the support, in good agreement with our reactivity studies. V 3O9 was shown to catalyze the oxidation of methanol to both formaldehyde and methyl formate on a reduced surface while STM suggests that, unlike V2O6, these clusters are prone to decomposition upon adsorption to the surface. Furthermore, TPD/R of size selected V 2O5 and V2O7 on TiO2 suggests that altering the stoichiometry of the (VO3)n clusters by a single oxygen atom significantly inhibits the activity of these catalysts.

  8. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier

    DOE PAGES

    Zhang, Zihao; Yang, Qiwei; Chen, Hao; ...

    2017-10-13

    In this paper, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transformmore » spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. Finally, the formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.« less

  9. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zihao; Yang, Qiwei; Chen, Hao

    In this paper, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transformmore » spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. Finally, the formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.« less

  10. Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria (Final Report, 2016)

    EPA Science Inventory

    This final report provides the U.S. EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of gaseous oxides of nitrogen. It provides a critical part of the scientific foundation for the U.S. EPA’s decision regarding the adequacy of the c...

  11. Supramolecular Recognition Allows Remote, Site-Selective C-H Oxidation of Methylenic Sites in Linear Amines.

    PubMed

    Olivo, Giorgio; Farinelli, Giulio; Barbieri, Alessia; Lanzalunga, Osvaldo; Di Stefano, Stefano; Costas, Miquel

    2017-12-18

    Site-selective C-H functionalization of aliphatic alkyl chains is a longstanding challenge in oxidation catalysis, given the comparable relative reactivity of the different methylenes. A supramolecular, bioinspired approach is described to address this challenge. A Mn complex able to catalyze C(sp 3 )-H hydroxylation with H 2 O 2 is equipped with 18-benzocrown-6 ether receptors that bind ammonium substrates via hydrogen bonding. Reversible pre-association of protonated primary aliphatic amines with the crown ether selectively exposes remote positions (C8 and C9) to the oxidizing unit, resulting in a site-selective oxidation. Remarkably, such control of selectivity retains its efficiency for a whole series of linear amines, overriding the intrinsic reactivity of C-H bonds, no matter the chain length. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fabrication of disposable topographic silicon oxide from sawtoothed patterns: control of arrays of gold nanoparticles.

    PubMed

    Cho, Heesook; Yoo, Hana; Park, Soojin

    2010-05-18

    Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.

  13. Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis.

    PubMed

    Morris, E Matthew; Meers, Grace M E; Koch, Lauren G; Britton, Steven L; Fletcher, Justin A; Fu, Xiaorong; Shankar, Kartik; Burgess, Shawn C; Ibdah, Jamal A; Rector, R Scott; Thyfault, John P

    2016-10-01

    Rats selectively bred for high capacity running (HCR) or low capacity running (LCR) display divergence for intrinsic aerobic capacity and hepatic mitochondrial oxidative capacity, both factors associated with susceptibility for nonalcoholic fatty liver disease. Here, we tested if HCR and LCR rats display differences in susceptibility for hepatic steatosis after 16 wk of high-fat diets (HFD) with either 45% or 60% of kcals from fat. HCR rats were protected against HFD-induced hepatic steatosis, whereas only the 60% HFD induced steatosis in LCR rats, as marked by a doubling of liver triglycerides. Hepatic complete fatty acid oxidation (FAO) and mitochondrial respiratory capacity were all lower in LCR compared with HCR rats. LCR rats also displayed lower hepatic complete and incomplete FAO in the presence of etomoxir, suggesting a reduced role for noncarnitine palmitoyltransferase-1-mediated lipid catabolism in LCR versus HCR rats. Hepatic complete FAO and mitochondrial respiration were largely unaffected by either chronic HFD; however, 60% HFD feeding markedly reduced 2-pyruvate oxidation, a marker of tricarboxylic acid (TCA) cycle flux, and mitochondrial complete FAO only in LCR rats. LCR rats displayed lower levels of hepatic long-chain acylcarnitines than HCR rats but maintained similar levels of hepatic acetyl-carnitine levels, further supporting lower rates of β-oxidation, and TCA cycle flux in LCR than HCR rats. Finally, only LCR rats displayed early reductions in TCA cycle genes after the acute initiation of a HFD. In conclusion, intrinsically high aerobic capacity confers protection against HFD-induced hepatic steatosis through elevated hepatic mitochondrial oxidative capacity.

  14. Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis

    PubMed Central

    Morris, E. Matthew; Meers, Grace M. E.; Koch, Lauren G.; Britton, Steven L.; Fletcher, Justin A.; Fu, Xiaorong; Shankar, Kartik; Burgess, Shawn C.; Ibdah, Jamal A.; Rector, R. Scott

    2016-01-01

    Rats selectively bred for high capacity running (HCR) or low capacity running (LCR) display divergence for intrinsic aerobic capacity and hepatic mitochondrial oxidative capacity, both factors associated with susceptibility for nonalcoholic fatty liver disease. Here, we tested if HCR and LCR rats display differences in susceptibility for hepatic steatosis after 16 wk of high-fat diets (HFD) with either 45% or 60% of kcals from fat. HCR rats were protected against HFD-induced hepatic steatosis, whereas only the 60% HFD induced steatosis in LCR rats, as marked by a doubling of liver triglycerides. Hepatic complete fatty acid oxidation (FAO) and mitochondrial respiratory capacity were all lower in LCR compared with HCR rats. LCR rats also displayed lower hepatic complete and incomplete FAO in the presence of etomoxir, suggesting a reduced role for noncarnitine palmitoyltransferase-1-mediated lipid catabolism in LCR versus HCR rats. Hepatic complete FAO and mitochondrial respiration were largely unaffected by either chronic HFD; however, 60% HFD feeding markedly reduced 2-pyruvate oxidation, a marker of tricarboxylic acid (TCA) cycle flux, and mitochondrial complete FAO only in LCR rats. LCR rats displayed lower levels of hepatic long-chain acylcarnitines than HCR rats but maintained similar levels of hepatic acetyl-carnitine levels, further supporting lower rates of β-oxidation, and TCA cycle flux in LCR than HCR rats. Finally, only LCR rats displayed early reductions in TCA cycle genes after the acute initiation of a HFD. In conclusion, intrinsically high aerobic capacity confers protection against HFD-induced hepatic steatosis through elevated hepatic mitochondrial oxidative capacity. PMID:27600823

  15. Temperature stability of Al(x)Ga(1-x)As (x = 0-1) thermal oxide masks for selective-area epitaxy

    NASA Technical Reports Server (NTRS)

    Jones, Stephen H.; Lau, Kei May; Pouch, John J.

    1988-01-01

    The use of thermal oxides of Al(x)Ga(1-x)As (x = 0-1) as masking materials for selective-area epitaxy by a organometallic chemical-vapor deposition has been investigated. It was found that the thermal oxide of GaAs is only applicable for low growth temperatures (less than or equal to 600 C), and the addition of aluminum significantly improves the thermal stability of the oxide. The oxide of Al(0.4)Ga(0.6)As is suitable for high-temperature deposition, but there are criteria for the thickness and oxidation temperature. Thin layers of AlAs oxidized at 475 C are excellent masks and allow precise thickness control. Promising results of selective-area deposition using these aluminum oxide masks have been obtained. High-quality single crystal grew in mask openings uniformly surrounded by dense and fine-grain polycrystalline deposits, producing a planar duplication of the original pattern.

  16. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application.

    PubMed

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-21

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S([double bond, length as m-dash]O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.

  17. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications.

    PubMed

    Kwon, Jinhyeong; Cho, Hyunmin; Eom, Hyeonjin; Lee, Habeom; Suh, Young Duk; Moon, Hyunjin; Shin, Jaeho; Hong, Sukjoon; Ko, Seung Hwan

    2016-05-11

    Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.

  18. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    PubMed

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  19. Selective C(sp3 )-H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow.

    PubMed

    Laudadio, Gabriele; Govaerts, Sebastian; Wang, Ying; Ravelli, Davide; Koolman, Hannes F; Fagnoni, Maurizio; Djuric, Stevan W; Noël, Timothy

    2018-04-03

    A mild and selective C(sp 3 )-H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both activated and unactivated C-H bonds (30 examples). The ability to selectively oxidize natural scaffolds, such as (-)-ambroxide, pregnenolone acetate, (+)-sclareolide, and artemisinin, exemplifies the utility of this new method. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. A chlorhexidine-loaded biodegradable cellulosic device for periodontal pockets treatment.

    PubMed

    Tabary, Nicolas; Chai, Feng; Blanchemain, Nicolas; Neut, Christel; Pauchet, Lucile; Bertini, Sabrina; Delcourt-Debruyne, Elisabeth; Hildebrand, Hartmut Frederic; Martel, Bernard

    2014-01-01

    Absorbent points widely used in endodontic therapy were transformed into bioresorbable chlorhexidine delivery systems for the treatment of the periodontal pocket by preventing its recolonization by the subgingival microflora. These paper points (PPs) were first oxidized to promote their resorption, then grafted with β-cyclodextrin (CD) or maltodextrin (MD) in order to achieve sustained delivery of chlorhexidine. We investigated the oxidation step parameters through the time of reaction and the nitric and phosphoric acid ratios in the oxidizing mixture, and then the dextrin grafting step parameters through the time and temperature of reaction. A first selection of the appropriate functionalization parameters was undertaken in relation to the degradation profile kinetics of the oxidized (PPO) and oxidized-grafted samples (PPO-CD and PPO-MD). Samples were then loaded with chlorhexidine digluconate (digCHX), a widely used antiseptic agent in periodontal therapy. The release kinetics of digCHX from PPO-CD and PPO-MD samples were compared to PP, PPO and to PerioChip(®) (a commercial digCHX containing gelatine chip) in phosphate buffered saline (pH 7.4) by ultraviolet spectrophotometry. The cytocompatibility of the oxidized-grafted PP was demonstrated by cell proliferation assays. Finally, the disc diffusion test from digCHX loaded PPO-MD samples immersed in human plasma was developed on pre-inoculated agar plates with four common periodontal pathogenic strains: Fusobacterium nucleatum, Prevotella melaninogenica, Aggregatibacter actinomycetem comitans and Porphyromonas gingivalis. To conclude, the optimized oxidized-dextrin-grafted PPs responded to our initial specifications in terms of resorption and digCHX release rates and therefore could be adopted as a reliable complementary periodontal therapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms.

    PubMed

    Li, Yang; Li, Lei; Chen, Zi-Xi; Zhang, Jie; Gong, Li; Wang, Yi-Xuan; Zhao, Han-Qing; Mu, Yang

    2018-02-01

    Advanced oxidation processes offer effective solutions in treating wastewater from various industries. This study is the first time to investigate the potential of carbonate-activated hydrogen peroxide (CAP) oxidation process for the removal of organic pollutant from highly alkaline wastewaters. Azo dye acid orange 7 (AO7) was selected as a model pollutant. The influences of various parameters on AO7 decolorization by the CAP oxidation were evaluated. Furthermore, the active species involved in AO7 degradation were explored using scavenger experiments and electron spin resonance analysis. Additionally, AO7 degradation products by the CAP oxidation were identified to elucidate possible transformation pathways. Results showed that the CAP oxidation had better AO7 decolorization performance compared to bicarbonate-activated hydrogen peroxide method. The AO7 decolorization efficiency augmented from 3.70 ± 0.76% to 54.27 ± 2.65% when carbonate concentration was increased from 0 to 50 mM at pH 13.0, and then changed slightly with further increasing carbonate concentration to 70 mM. It increased almost linearly from 5.95 ± 0.32% to 94.03 ± 0.39% as H 2 O 2 concentration was increased from 5 to 50 mM. Moreover, trace amount of Co(II) could facilitate AO7 decolorization by the CAP reaction. Superoxide and carbonate radicals might be the main reactive oxygen species involved in the CAP process. Finally, a possible degradation pathway of AO7 by the CAP oxidation was proposed based on the identified products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide)

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene; Koelbl, Mary E. (Technical Monitor)

    2002-01-01

    This paper discusses a study of two alternate oxidizers, liquid oxygen and hydrogen peroxide, for use in a rocket based combined cycle (RBCC) demonstrator vehicle. The flight vehicle is baselined as an airlaunched self-powered Mach 0.7 to 7 demonstration of an RBCC engine through all or its air breathing propulsion modes. Selection of an alternate oxidizer has the potential to lower overall vehicle size, system complexity/ cost and ultimately the total program risk. This trade study examined the oxidizer selection effects upon the overall vehicle performance, safety and operations. After consideration of all the technical and programmatic details available at this time, 90% hydrogen peroxide was selected over liquid oxygen for use in this program.

  3. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics.

    PubMed

    Wang, Vincent C-C; Maji, Suman; Chen, Peter P-Y; Lee, Hung Kay; Yu, Steve S-F; Chan, Sunney I

    2017-07-12

    Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O 2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.

  4. Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion.

    PubMed

    Dutta, Soumen; Ray, Chaiti; Sarkar, Sougata; Pradhan, Mukul; Negishi, Yuichi; Pal, Tarasankar

    2013-09-11

    Herein, a simple wet-chemical pathway has been demonstrated for the synthesis of silver nanoparticle conjugated reduced graphene oxide nanosheets where dimethylformamide (DMF) is judiciously employed as an efficient reducing agent. Altogether, DMF reduces both silver nitrate (AgNO3) and graphene oxide (GO) in the reaction mixture. Additionally, the presence of polyvinylpyrolidone (PVP) assists the nanophasic growth and homogeneous distribution of the plasmonic nanoparticle Ag(0). Reduction of graphene oxide and the presence of aggregated Ag NPs on reduced graphene oxide (rGO) nanosheets are confirmed from various spectroscopic techniques. Finally, the composite material has been exploited as an intriguing platform for surface enhanced Raman scattering (SERS) based selective detection of uranyl (UO2(2+)) ion. The limit of detection has been achieved to be as low as 10 nM. Here the normal Raman spectral (NRS) band of uranyl acetate (UAc) at 838 cm(-1) shifts to 714 and 730 cm(-1) as SERS bands for pH 5.0 and 12.0, respectively. This distinguished Raman shift of the symmetric stretching mode for UO2(2+) ion is indicative of pronounced charge transfer (CT) effect. This CT effect even supports the higher sensitivity of the protocol toward UO2(2+) over other tested oxo-ions. It is anticipated that rGO nanosheets furnish a convenient compartment to favor the interaction between Ag NPs and UO2(2+) ion through proximity induced adsorption even at low concentration.

  5. The Nitric Acid Oxidation of Selected Alcohols and Ketones.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1985-01-01

    Shows that nitric acid can be used as a rapid, versatile, and economical oxidant for selected organic substances. The experiments (with background information, procedures, and results provided) require one three-hour laboratory period but could serve as open-ended projects since substrates not described could be oxidized. (JN)

  6. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature andmore » electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and discharge temperatures between 1200 C and 600 C, which provides a constant output temperature of 900 C. The charge and discharge time are 8 hours each respectively. This design was integrated into a process flowsheet of a CSP plant and the system's economics were determined using AspenPlus and NREL's Solar Advisory Model. Storage cost is very sensitive to materials cost and was calculated to be based around $40/kWh for cobalt based mixed oxide. It can potentially decrease to $10/kWh based on reduced materials cost on a bulk scale. The corresponding calculated LCOE was between $0.22 and 0.30/kW-h. The high LCOE is a result of the high charging temperature required in this first design and the cost of cobalt oxide. It is expected that a moving bed reactor using manganese oxide will significantly improve the economics of the proposed concept.« less

  7. Warburg and Crabtree Effects in Premalignant Barrett's Esophagus Cell Lines with Active Mitochondria

    PubMed Central

    Suchorolski, Martin T.; Paulson, Thomas G.; Sanchez, Carissa A.; Hockenbery, David; Reid, Brian J.

    2013-01-01

    Background Increased glycolysis is a hallmark of cancer metabolism, yet relatively little is known about this phenotype at premalignant stages of progression. Periodic ischemia occurs in the premalignant condition Barrett's esophagus (BE) due to tissue damage from chronic acid-bile reflux and may select for early adaptations to hypoxia, including upregulation of glycolysis. Methodology/Principal Findings We compared rates of glycolysis and oxidative phosphorylation in four cell lines derived from patients with BE (CP-A, CP-B, CP-C and CP-D) in response to metabolic inhibitors and changes in glucose concentration. We report that cell lines derived from patients with more advanced genetically unstable BE have up to two-fold higher glycolysis compared to a cell line derived from a patient with early genetically stable BE; however, all cell lines preserve active mitochondria. In response to the glycolytic inhibitor 2-deoxyglucose, the most glycolytic cell lines (CP-C and CP-D) had the greatest suppression of extra-cellular acidification, but were able to compensate with upregulation of oxidative phosphorylation. In addition, these cell lines showed the lowest compensatory increases in glycolysis in response to mitochondrial uncoupling by 2,4-dinitrophenol. Finally, these cell lines also upregulated their oxidative phosphorylation in response to glucose via the Crabtree effect, and demonstrate a greater range of modulation of oxygen consumption. Conclusions/Significance Our findings suggest that cells from premalignant Barrett's esophagus tissue may adapt to an ever-changing selective microenvironment through changes in energy metabolic pathways typically associated with cancer cells. PMID:23460817

  8. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOEpatents

    Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  9. Method for selective catalytic reduction of nitrogen oxides

    DOEpatents

    Mowery-Evans, Deborah L [Broomfield, CO; Gardner, Timothy J [Albuquerque, NM; McLaughlin, Linda I [Albuquerque, NM

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  10. Gas sensing at the nanoscale: engineering SWCNT-ITO nano-heterojunctions for the selective detection of NH3 and NO2 target molecules

    NASA Astrophysics Data System (ADS)

    Rigoni, F.; Drera, G.; Pagliara, S.; Perghem, E.; Pintossi, C.; Goldoni, A.; Sangaletti, L.

    2017-01-01

    The gas response of single-wall carbon nanotubes (SWCNT) functionalized with indium tin oxide (ITO) nanoparticles (NP) has been studied at room temperature and an enhanced sensitivity to ammonia and nitrogen dioxide is demonstrated. The higher sensitivity in the functionalized sample is related to the creation of nano-heterojunctions at the interface between SWCNT bundles and ITO NP. Furthermore, the different response of the two devices upon NO2 exposure provides a way to enhance also the selectivity. This behavior is rationalized by considering a gas sensing mechanism based on the build-up of space-charge layers at the junctions. Finally, full recovery of the signal after exposure to NO2 is achieved by UV irradiation for the functionalized sample, where the ITO NP can play a role to hinder the poisoning effects on SWCNT due to NO2 chemisorption.

  11. Gas sensing at the nanoscale: engineering SWCNT-ITO nano-heterojunctions for the selective detection of NH3 and NO2 target molecules.

    PubMed

    Rigoni, F; Drera, G; Pagliara, S; Perghem, E; Pintossi, C; Goldoni, A; Sangaletti, L

    2017-01-20

    The gas response of single-wall carbon nanotubes (SWCNT) functionalized with indium tin oxide (ITO) nanoparticles (NP) has been studied at room temperature and an enhanced sensitivity to ammonia and nitrogen dioxide is demonstrated. The higher sensitivity in the functionalized sample is related to the creation of nano-heterojunctions at the interface between SWCNT bundles and ITO NP. Furthermore, the different response of the two devices upon NO 2 exposure provides a way to enhance also the selectivity. This behavior is rationalized by considering a gas sensing mechanism based on the build-up of space-charge layers at the junctions. Finally, full recovery of the signal after exposure to NO 2 is achieved by UV irradiation for the functionalized sample, where the ITO NP can play a role to hinder the poisoning effects on SWCNT due to NO 2 chemisorption.

  12. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Complete, Programmable Decoding of Oxidized 5-Methylcytosine Nucleobases in DNA by Chemoselective Blockage of Universal Transcription-Activator-Like Effector Repeats.

    PubMed

    Gieß, Mario; Witte, Anna; Jasper, Julia; Koch, Oliver; Summerer, Daniel

    2018-05-09

    5-Methylcytosine (5mC) and its oxidized derivatives are regulatory elements of mammalian genomes involved in development and disease. These nucleobases do not selectively modulate Watson-Crick pairing, preventing their programmable targeting and analysis by traditional hybridization probes. Transcription-activator-like effectors (TALEs) can be engineered for use as programmable probes with epigenetic nucleobase selectivity. However, only partial selectivities for oxidized 5mC have been achieved so far, preventing unambiguous target binding. We overcome this limitation by destroying and re-inducing nucleobase selectivity in TALEs via protein engineering and chemoselective nucleobase blocking. We engineer cavities in TALE repeats and identify a cavity that accommodates all eight human DNA nucleobases. We then introduce substituents with varying size, flexibility, and branching degree at each oxidized 5mC. Depending on the nucleobase, substituents with distinct properties effectively block TALE-binding and induce full nucleobase selectivity in the universal repeat. Successful transfer to affinity enrichment in a human genome background indicates that this approach enables the fully selective detection of each oxidized 5mC in complex DNA by programmable probes.

  14. Age-specific oxidative status and the expression of pre- and postcopulatory sexually selected traits in male red junglefowl, Gallus gallus

    PubMed Central

    Noguera, Jose C; Dean, Rebecca; Isaksson, Caroline; Velando, Alberto; Pizzari, Tommaso

    2012-01-01

    Oxidative stress is emerging as a key factor underpinning life history and the expression of sexually selected traits. Resolving the role of oxidative stress in life history and sexual selection requires a pluralistic approach, which investigates how age affects the relationship between oxidative status (i.e., antioxidants and oxidative damage) and the multiple traits contributing to variation in reproductive success. Here, we investigate the relationship between oxidative status and the expression of multiple sexually selected traits in two-age classes of male red junglefowl, Gallus gallus, a species which displays marked male reproductive senescence. We found that, irrespective of male age, both male social status and comb size were strongly associated with plasma oxidative status, and there was a nonsignificant tendency for sperm motility to be associated with seminal oxidative status. Importantly, however, patterns of plasma and seminal antioxidant levels differed markedly in young and old males. While seminal antioxidants increased with plasma antioxidants in young males, the level of seminal antioxidants remained low and was independent of plasma levels in old males. In addition, old males also accumulated more oxidative damage in their sperm DNA. These results suggest that antioxidant allocation across different reproductive traits and somatic maintenance might change drastically as males age, leading to age-specific patterns of antioxidant investment. PMID:23139875

  15. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    PubMed

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  16. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    NASA Astrophysics Data System (ADS)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus nanoparticles as substrates was done. The general result was that ceria nanoparticles showed better electrocatalytic behavior towards the oxidation of methanol in alkaline medium. Finally, as an outreach activity, an educational module to reinforce the electrochemical concepts in the General Chemistry Laboratory course at UPR-RP was developed. The module was based on Volta's Experiment and an improvement on students learning was detected when comparing this activity with the normal Daniel's cell experience that is used in most Universities at the undergraduate level. In summary, the findings of this thesis conclude that ceria is a compound that may enhance platinum catalytic activity by CO oxidation, promoting the oxidation of alcohols in acidic and alkaline medium. Moreover, catalysis depends on the morphology of the ceria that is used as the catalysts support.

  17. Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation

    NASA Astrophysics Data System (ADS)

    Hill, Christopher K.; Hartwig, John F.

    2017-12-01

    Polyoxygenated hydrocarbons that bear one or more hydroxyl groups comprise a large set of natural and synthetic compounds, often with potent biological activity. In synthetic chemistry, alcohols are important precursors to carbonyl groups, which then can be converted into a wide range of oxygen- or nitrogen-based functionality. Therefore, the selective conversion of a single hydroxyl group in natural products into a ketone would enable the selective introduction of unnatural functionality. However, the methods known to convert a simple alcohol, or even an alcohol in a molecule that contains multiple protected functional groups, are not suitable for selective reactions of complex polyol structures. We present a new ruthenium catalyst with a unique efficacy for the selective oxidation of a single hydroxyl group among many in unprotected polyol natural products. This oxidation enables the introduction of nitrogen-based functional groups into such structures that lack nitrogen atoms and enables a selective alcohol epimerization by stepwise or reversible oxidation and reduction.

  18. Instrumentation for Epitaxial Growth of Complex Oxides

    DTIC Science & Technology

    2015-12-17

    synthesis of complex oxide heterostructures. A RF oxygen plasma source was acquired to increase the oxidizing ability of the growth environment, an...improvement that will prove critical in stabilizing materials with high oxidization states. The plasma source and accompanying electronics were purchased...2014 14-Aug-2015 Approved for Public Release; Distribution Unlimited Final Report: Instrumentation for Epitaxial Growth of Complex Oxides The views

  19. Antioxidant properties of selected Oriental non-culinary/nutraceutical herb extracts as evaluated in raw and cooked meat.

    PubMed

    Han, J; Rhee, K S

    2005-05-01

    Ethanol extracts of white peony (WP), red peony (RP), sappanwood (SW), Moutan peony (MP), rehmania (RE) or angelica (AN) were individually added to ground goat meat at 0.5-2.0% (g dry extract/100 g final meat sample), and raw and cooked samples were aerobically refrigerated for 0, 3 or 6 days. These extracts and rosemary extract (RO) were also individually added to salted or unsalted ground beef at 0.01-0.25% and refrigerated as raw or cooked patties. WP, RP, RE, SW and MP markedly reduced (P<0.05) lipid oxidation in cooked-stored goat meat. With 0.25% of WP, RP, SW, MP or RO in beef, lipid oxidation during storage was minimal in raw and cooked patties (plain or salted); raw patty redness values at day 6 were higher (P<0.05) for SW, WP, RP or MP than RO treatment or the control. At 0.01%, SW was more antioxidative (P<0.05) than the other extracts.

  20. Molecular catalysis science: Perspective on unifying the fields of catalysis

    DOE PAGES

    Ye, Rong; Hurlburt, Tyler J.; Sabyrov, Kairat; ...

    2016-04-25

    Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sumfrequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. Itmore » was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and h eterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Finally, unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.« less

  1. Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review

    PubMed Central

    Theerthagiri, Jayaraman; Durai, Govindarajan; Rana, Abu ul Hassan Sarwar; Sangeetha, Kirubanandam; Kuppusami, Parasuraman; Kim, Hyun-Seok

    2018-01-01

    Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed. PMID:29671823

  2. Synthesis and in vitro evaluation of bone-seeking superparamagnetic iron oxide nanoparticles as contrast agents for imaging bone metabolic activity.

    PubMed

    Panahifar, Arash; Mahmoudi, Morteza; Doschak, Michael R

    2013-06-12

    In this article, we report the synthesis and in vitro evaluation of a new class of nonionizing bone-targeting contrast agents based on bisphosphonate-conjugated superparamagnetic iron oxide nanoparticles (SPIONs), for use in imaging of bone turnover with magnetic resonance imaging (MRI). Similar to bone-targeting (99m)Technetium medronate, our novel contrast agent uses bisphosphonates to impart bone-seeking properties, but replaces the former radioisotope with nonionizing SPIONs which enables their subsequent detection using MRI. Our reported method is relatively simple, quick and cost-effective and results in BP-SPIONs with a final nanoparticle size of 17 nm under electron microscopy technique (i.e., TEM). In-vitro binding studies of our novel bone tracer have shown selective binding affinity (around 65%) for hydroxyapatite, the principal mineral of bone. Bone-targeting SPIONs offer the potential for use as nonionizing MRI contrast agents capable of imaging dynamic bone turnover, for use in the diagnosis and monitoring of metabolic bone diseases and related bone pathology.

  3. Vibrational characterisation of a crystallised oligoaniline: a model compound of polyaniline

    NASA Astrophysics Data System (ADS)

    Quillard, Sophie; Corraze, Benoı̂t; Boyer, Marie Isabelle; Fayad, Elias; Louarn, Guy; Froyer, Gérard

    2001-09-01

    We present a detailed study on the vibrational properties of N,N‧-diphenyl-1,4-phenylenediamine in different crystalline forms. A new triclinic form of the molecule has been obtained through appropriate recrystallization procedure. This polymorphism of the crystalline state was associated to different vibrational features. These results are discussed with regards to the possible conformations of the molecule. In order to complete the study, thin solid films of these materials were also elaborated by vacuum sublimation of the molecule, upon selected conditions of rate, deposition and thickness. Spectroscopic measurements of these layers are showed and compared to those obtained on the crystalline solid forms. We performed convenient oxidation processes of this neutral N,N‧-diphenyl-1,4-phenylenediamine (powder and thin solid film) leading to the formation of the correspondent radical cation species. A comparison with radical cation generated in solution by electrochemical oxidative method is done. Vibrational characterisations of this doped oligomer were achieved in each case and finally, the observed differences are discussed in terms of conformation.

  4. New method for monitoring nitric oxide in vivo using microdialysis sampling and chemiluminescence reaction

    NASA Astrophysics Data System (ADS)

    Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong

    2001-09-01

    A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.

  5. Improving biodegradability of soil washing effluents using anodic oxidation.

    PubMed

    Carboneras, María Belén; Cañizares, Pablo; Rodrigo, Manuel Andrés; Villaseñor, José; Fernandez-Morales, Francisco Jesus

    2018-03-01

    In this work, a combination of electrochemical and biological technologies is proposed to remove clopyralid from Soil Washing Effluents (SWE). Firstly, soil washing was carried out to extract clopyralid from soil. After that, four different anodes-Ir-MMO, Ru-MMO, pSi-BDD and Carbon Felt (CF)-were evaluated in order to increase the biodegradability of the SWE. CF was selected because was the only one able to transform the pesticide to a more biodegradable compounds without completely mineralizing it. Finally, biological oxidation tests were performed to determine the aerobic biodegradability of the SWE generated. From the obtained results, it was observed that at the beginning of the electrolysis the toxicity slightly increased and the biodegradability decreases. However, for electric current charges over 2.5 A·h dm -3 the toxicity drastically decreased, showing an EC 50 of 143 mg L -1 , and the BOD 5 /COD ratio increased from 0.02 to 0.23. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A novel detection approach based on chromophore-decolorizing with free radical and application to photometric determination of copper with acid chrome dark blue.

    PubMed

    Gao, Hong-Wen; Chen, Fang-Fang; Chen, Ling; Zeng, Teng; Pan, Lu-Ting; Li, Jian-Hua; Luo, Hua-Fei

    2007-03-21

    A novel detection approach named chromophore-decolorizing with free radicals is developed for determination of trace heavy metal. The hydroxyl radicals (HO) generated from Fe(III) and hydrogen peroxide will oxidize the free chromophore into almost colorless products. The copper-acid chrome dark blue (ACDB) complexation was investigated at pH 5.07. In the presence of Fe(III) and hydrogen peroxide, the excess ACDB was decolorized in the Cu-ACDB reaction solution, and the final solution contained only one color compound, the Cu-ACDB complex. After oxidation of free hydroxyl radicals, the complexation becomes sensitive and selective and it has been used for the quantitation of trace amounts of Cu(II) dissolved in natural water. Beer's law is obeyed in the range from 0 to 0.500 microg mL(-1) Cu(II) and the limit of detection is only 6 microg L(-1) Cu(II). Besides, the Cu-ACDB complex formed was characterized.

  7. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer.

    PubMed

    Schumann, T; Gotschke, T; Limbach, F; Stoica, T; Calarco, R

    2011-03-04

    GaN nanowires (NWs) were grown selectively in holes of a patterned silicon oxide mask, by rf-plasma-assisted molecular beam epitaxy (PAMBE), without any metal catalyst. The oxide was deposited on a thin AlN buffer layer previously grown on a Si(111) substrate. Regular arrays of holes in the oxide layer were obtained using standard e-beam lithography. The selectivity of growth has been studied varying the substrate temperature, gallium beam equivalent pressure and patterning layout. Adjusting the growth parameters, GaN NWs can be selectively grown in the holes of the patterned oxide with complete suppression of the parasitic growth in between the holes. The occupation probability of a hole with a single or multiple NWs depends strongly on its diameter. The selectively grown GaN NWs have one common crystallographic orientation with respect to the Si(111) substrate via the AlN buffer layer, as proven by x-ray diffraction (XRD) measurements. Based on the experimental data, we present a schematic model of the GaN NW formation in which a GaN pedestal is initially grown in the hole.

  8. LIQUID PHASE SELECTIVE OXIDATION OF ETHYLBENZENE OVER ACTIVATED AL2O3 SUPPORTED V2O5 CATALYST

    EPA Science Inventory

    Acetophenone, a very useful industrial chemical for fragrance and flavoring agent and a solvent for plastics and resins, is usually produced as a byproduct of phenol production from cumeme. Aluminia supported vandium oxide catalyst is now explored for the selective oxidation of e...

  9. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGES

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H 2O 2 and the 4e– oxidation to O 2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO 2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H 2O 2 evolution selectively.« less

  10. Tuning Selectivity of CO 2 Hydrogenation Reactions at the Metal/Oxide Interface

    DOE PAGES

    Kattel, Shyam; Liu, Ping; Chen, Jingguang G.

    2017-06-26

    The chemical transformation of CO 2 not only mitigates the anthropogenic CO 2 emission into the Earth’s atmosphere but also produces carbon compounds that can be used as precursors for the production of chemicals and fuels. The activation and conversion of CO 2 can be achieved on multifunctional catalytic sites available at the metal/oxide interface by taking advantage of the synergy between the metal nanoparticles and oxide support. In this paper, we look at the recent progress in mechanistic studies of CO 2 hydrogenation to C1 (CO, CH 3OH, and CH 4) compounds on metal/oxide catalysts. On this basis, wemore » are able to provide a better understanding of the complex reaction network, grasp the capability of manipulating structure and combination of metal and oxide at the interface in tuning selectivity, and identify the key descriptors to control the activity and, in particular, the selectivity of catalysts. In conclusion, we also discuss challenges and future research opportunities for tuning the selective conversion of CO 2 on metal/oxide catalysts.« less

  11. Nebivolol prevents vascular oxidative stress and hypertension in rats chronically treated with ethanol.

    PubMed

    do Vale, Gabriel T; Simplicio, Janaina A; Gonzaga, Natália A; Yokota, Rodrigo; Ribeiro, Amanda A; Casarini, Dulce E; de Martinis, Bruno S; Tirapelli, Carlos R

    2018-04-30

    Chronic ethanol consumption is associated with hypertension and atherosclerosis. Vascular oxidative stress is described as an important mechanism whereby ethanol predisposes to atherosclerosis. We hypothesized that nebivolol would prevent ethanol-induced hypertension and vascular oxidative stress. Male Wistar rats were treated with ethanol 20% (vol./vol.) or nebivolol (10 mg/kg/day, p. o., gavage), a selective β 1 -adrenergic receptor antagonist. Ethanol-induced increase in blood pressure and in the circulating levels of adrenaline and noradrenaline was prevented by nebivolol. Similarly, nebivolol prevented ethanol-induced increase in plasma levels of renin, angiotensin I and II. Chronic ethanol consumption increased the aortic levels of superoxide anion (O 2 - ), thiobarbituric acid reactive species (TBARS) as well as the expression of Nox1 and nitrotyrosine immunostaining in the rat aorta. Treatment with nebivolol prevented these responses. The decrease in aortic levels of nitrate/nitrite (NOx) induced by ethanol was prevented by the treatment with nebivolol. Finally, nebivolol attenuated ethanol-induced increase in phenylephrine- and noradrenaline-induced contraction of endothelium-intact and endothelium-denuded aortic rings. The novelty of our study is that nebivolol prevented ethanol-induced hypertension and vascular oxidative stress. Additionally, we showed that the sympathetic nervous system (SNS) and the renin-angiotensin system (RAS) are important endogenous mediators of the cardiovascular effects of ethanol. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Synthesis of transparent conducting oxide coatings

    DOEpatents

    Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

    2010-05-04

    A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

  13. The effect of aluminum additions on the oxidation resistance of U 3Si 2

    DOE PAGES

    Wood, E. Sooby; White, J. T.; Nelson, A. T.

    2017-04-01

    The effect of aluminum additions to U 3Si 2 is investigated in this paper as a means to improve the oxidation resistance of this nuclear fuel form. Four U-Si-Al compositions have been synthesized and characterized using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction. The onsets of breakaway oxidation are identified in air thermal ramp tests using thermogravimetric analysis. The final oxidation products following 1000° C air exposure are identified using x-ray diffraction and compared to those of UO 2 and U metal oxidized in the same manner. Finally, thermogravimetric data acquired in this study indicates that increasing amountsmore » of Al in U 3Si 2 further delays the onset of breakaway oxidation, providing enhanced oxidation resistance in air. Al 2O 3 formation on U 3Al 2Si 3 is observed following a heat treatment performed at 500° C in air, demonstrating the potential of Al additions to improve the oxidation resistance of U 3Si 2.« less

  14. The effect of aluminum additions on the oxidation resistance of U 3Si 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, E. Sooby; White, J. T.; Nelson, A. T.

    The effect of aluminum additions to U 3Si 2 is investigated in this paper as a means to improve the oxidation resistance of this nuclear fuel form. Four U-Si-Al compositions have been synthesized and characterized using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction. The onsets of breakaway oxidation are identified in air thermal ramp tests using thermogravimetric analysis. The final oxidation products following 1000° C air exposure are identified using x-ray diffraction and compared to those of UO 2 and U metal oxidized in the same manner. Finally, thermogravimetric data acquired in this study indicates that increasing amountsmore » of Al in U 3Si 2 further delays the onset of breakaway oxidation, providing enhanced oxidation resistance in air. Al 2O 3 formation on U 3Al 2Si 3 is observed following a heat treatment performed at 500° C in air, demonstrating the potential of Al additions to improve the oxidation resistance of U 3Si 2.« less

  15. GAS PHASE SELECTIVE PHOTOXIDATION OF ALCOHOLS USING LIGHT-ACTIVATED TITANIUM DIOXIDE AND MOLECULAR OXYGEN

    EPA Science Inventory

    Gas Phase Selective Oxidation of Alcohols Using Light-Activated Titanium Dioxide and Molecular Oxygen

    Gas phase selective oxidations of various primary and secondary alcohols are studied in an indigenously built stainless steel up-flow photochemical reactor using ultravi...

  16. Acetogenic microbial degradation of vinyl chloride

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Under methanogenic conditions, microbial degradation of [1,2-14C]vinyl chloride (VC) resulted in significant (14 ?? 3% maximum recovery) but transient recovery of radioactivity as 14C-acetate. Subsequently, 14C- acetate was degraded to 14CH4 and 14CO2 (18 ?? 2% and 54 ?? 3% final recoveries, respectively). In contrast, under 2-bromoethanesulfonic acid (BES) amended conditions, 14C-acetate recovery remained high (27 ?? 1% maximum recovery) throughout the study, no 14CH4 was produced, and the final recovery of 14CO2 was only 35 ?? 4%. These results demonstrate that oxidative acetogenesis may be an important mechanism for anaerobic VC biodegradation. Moreover, these results (1) demonstrate that microbial degradation of VC to CH4 and CO2 may involve oxidative acetogenesis followed by acetotrophic methanogenesis and (2) suggest that oxidative acetogenesis may be the initial step in the net oxidation of VC to CO2 reported previously under Fe(III)-reducing, SO4-reducing, and humic acids- reducing conditions.Under methanogenic conditions, microbial degradation of [1,2-14C]vinyl chloride (VC) resulted in significant (14 ?? 3% maximum recovery) but transient recovery of radioactivity as 14C-acetate. Subsequently, 14C-acetate was degraded to 14CH4 and 14CO2 (18 ?? 2% and 54 ?? 3% final recoveries respectively). In contrast, under 2-bromoethanesulfonic acid (BES) amended conditions, 14C-acetate recovery remained high (27 ?? 1% maximum recovery) throughout the study, no 14CH4 was produced, and the final recovery of 14CO2 was only 35 ?? 4%. These results demonstrate that oxidative acetogenesis may be an important mechanism for anaerobic VC biodegradation. Moreover, these results (1) demonstrate that microbial degradation of VC to CH4 and CO2 may involve oxidative acetogenesis followed by acetotrophic methanogenesis and (2) suggest that oxidative acetogenesis may be the initial step in the net oxidation of VC to CO2 reported previously under Fe(III)-reducing, SO4-reducing, and humic acids-reducing conditions.

  17. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  18. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells

    PubMed Central

    Lagadinou, Eleni D.; Sach, Alexander; Callahan, Kevin; Rossi, Randall M.; Neering, Sarah J.; Minhajuddin, Mohammad; Ashton, John M.; Pei, Shanshan; Grose, Valerie; O’Dwyer, Kristen M.; Liesveld, Jane L.; Brookes, Paul S.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    Summary Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally-defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly over-express BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation. PMID:23333149

  19. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2007-01-01

    A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.

  20. Low conductivity and sintering-resistant thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)

    2006-01-01

    A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.

  1. Properties and biomedical applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Regmi, Rajesh Kumar

    Magnetic nanoparticles have a number of unique properties, making them promising agents for applications in medicine including magnetically targeted drug delivery, magnetic hyperthermia, magnetic resonance imaging, and radiation therapy. They are biocompatible and can also be coated with biocompatible surfactants, which may be further functionalized with optically and therapeutically active molecules. These nanoparticles can be manipulated with non-invasive external magnetic field to produce heat, target specific site, and monitor their distribution in vivo. Within this framework, we have investigated a number of biomedical applications of these nanoparticles. We synthesized a thermosensitive microgel with iron oxide adsorbed on its surface. An alternating magnetic field applied to these nanocomposites heated the system and triggered the release of an anticancer drug mitoxantrone. We also parameterized the chain length dependence of drug release from dextran coated iron oxide nanoparticles, finding that both the release rate and equilibrium release fraction depend on the molecular mass of the surfactant. Finally, we also localized dextran coated iron oxide nanoparticles labeled with tat peptide to the cell nucleus, which permits this system to be used for a variety of biomedical applications. Beyond investigating magnetic nanoparticles for biomedical applications, we also studied their magnetohydrodynamic and dielectric properties in solution. Magnetohydrodynamic properties of ferrofluid can be controlled by appropriate selection of surfactant and deielctric measurement showed magnetodielectric coupling in this system. We also established that some complex low temperature spin structures are suppressed in Mn3O4 nanoparticles, which has important implications for nanomagnetic devices. Furthermore, we explored exchange bias effects in Ni-NiO core-shell nanoparticles. Finally, we also performed extensive magnetic studies in nickel metalhydride (NiMH) batteries to determine the size of Ni clusters, which plays important role on catalyzing the electrochemical reaction and powering Ni-MH batteries.

  2. Ionic Liquids in Selective Oxidation: Catalysts and Solvents.

    PubMed

    Dai, Chengna; Zhang, Jie; Huang, Chongpin; Lei, Zhigang

    2017-05-24

    Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as "biphasic catalyst" or "immobilized catalyst" by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stability, capacity for extraction of polar substrates and reaction products) with the extended surface of the supports. This review highlights the most recent outcomes on ILs in several important typical oxidation reactions. The contents are arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, oxidation of alkanes, and oxidation of other compounds step by step involving ILs as solvents, catalysts, reagents, or their combinations.

  3. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    PubMed

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl 3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  4. Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation.

    PubMed

    Petitdemange, Rosine; Garanger, Elisabeth; Bataille, Laure; Dieryck, Wilfrid; Bathany, Katell; Garbay, Bertrand; Deming, Timothy J; Lecommandoux, Sébastien

    2017-02-13

    We have designed and prepared a recombinant elastin-like polypeptide (ELP) containing precisely positioned methionine residues, and performed the selective and complete oxidation of its methionine thioether groups to both sulfoxide and sulfone derivatives. Since these oxidation reactions substantially increase methionine residue polarity, they were found to be a useful means to precisely adjust the temperature responsive behavior of ELPs in aqueous solutions. In particular, lower critical solution temperatures were found to be elevated in oxidized sample solutions, but were not eliminated. These transition temperatures were found to be further tunable by the use of solvents containing different Hofmeister salts. Overall, the ability to selectively and fully oxidize methionine residues in ELPs proved to be a convenient postmodification strategy for tuning their transition temperatures in aqueous media.

  5. FUSED REACTOR FUELS

    DOEpatents

    Mayer, S.W.

    1962-11-13

    This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)

  6. Selective oxidation of benzyl alcohols to benzoic acid catalyzed by eco-friendly cobalt thioporphyrazine catalyst supported on silica-coated magnetic nanospheres.

    PubMed

    Li, Huan; Cao, Lan; Yang, Changjun; Zhang, Zhehui; Zhang, Bingguang; Deng, Kejian

    2017-10-01

    A novel magnetically recoverable thioporphyrazine catalyst (CoPz(S-Bu) 8 /SiO 2 @Fe 3 O 4 ) was prepared by immobilization of the cobalt octkis(butylthio) porphyrazine complex (CoPz(S-Bu) 8 ) on silica-coated magnetic nanospheres (SiO 2 @Fe 3 O 4 ). The composite CoPz(S-Bu) 8 /SiO 2 @Fe 3 O 4 appeared to be an active catalyst in the oxidation of benzyl alcohol in aqueous solution using hydrogen peroxide (H 2 O 2 ) as oxidant under Xe-lamp irradiation, with 36.4% conversion of benzyl alcohol, about 99% selectivity for benzoic acid and turnover number (TON) of 61.7 at ambient temperature. The biomimetic catalyst CoPz(S-Bu) 8 was supported on the magnetic carrier SiO 2 @Fe 3 O 4 so as to suspend it in aqueous solution to react with substrates, utilizing its lipophilicity. Meanwhile the CoPz(S-Bu) 8 can use its unique advantages to control the selectivity of photocatalytic oxidation without the substrate being subjected to deep oxidation. The influence of various reaction parameters on the conversion rate of benzyl alcohol and selectivity of benzoic acid was investigated in detail. Moreover, photocatalytic oxidation of substituted benzyl alcohols was obtained with high conversion and excellent selectivity, specifically conversion close to 70%, selectivity close to 100% and TON of 113.6 for para-position electron-donating groups. The selectivity and eco-friendliness of the biomimetic photocatalyst give it great potential for practical applications. Copyright © 2017. Published by Elsevier B.V.

  7. Selective oxidation of aliphatic C-H bonds in alkylphenols by a chemomimetic biocatalytic system.

    PubMed

    Du, Lei; Dong, Sheng; Zhang, Xingwang; Jiang, Chengying; Chen, Jingfei; Yao, Lishan; Wang, Xiao; Wan, Xiaobo; Liu, Xi; Wang, Xinquan; Huang, Shaohua; Cui, Qiu; Feng, Yingang; Liu, Shuang-Jiang; Li, Shengying

    2017-06-27

    Selective oxidation of aliphatic C-H bonds in alkylphenols serves significant roles not only in generation of functionalized intermediates that can be used to synthesize diverse downstream chemical products, but also in biological degradation of these environmentally hazardous compounds. Chemo-, regio-, and stereoselectivity; controllability; and environmental impact represent the major challenges for chemical oxidation of alkylphenols. Here, we report the development of a unique chemomimetic biocatalytic system originated from the Gram-positive bacterium Corynebacterium glutamicum The system consisting of CreHI (for installation of a phosphate directing/anchoring group), CreJEF/CreG/CreC (for oxidation of alkylphenols), and CreD (for directing/anchoring group offloading) is able to selectively oxidize the aliphatic C-H bonds of p - and m -alkylated phenols in a controllable manner. Moreover, the crystal structures of the central P450 biocatalyst CreJ in complex with two representative substrates provide significant structural insights into its substrate flexibility and reaction selectivity.

  8. Selective oxidation of aliphatic C–H bonds in alkylphenols by a chemomimetic biocatalytic system

    PubMed Central

    Du, Lei; Dong, Sheng; Zhang, Xingwang; Jiang, Chengying; Chen, Jingfei; Yao, Lishan; Wang, Xiao; Wan, Xiaobo; Liu, Xi; Wang, Xinquan; Huang, Shaohua; Cui, Qiu; Liu, Shuang-Jiang; Li, Shengying

    2017-01-01

    Selective oxidation of aliphatic C–H bonds in alkylphenols serves significant roles not only in generation of functionalized intermediates that can be used to synthesize diverse downstream chemical products, but also in biological degradation of these environmentally hazardous compounds. Chemo-, regio-, and stereoselectivity; controllability; and environmental impact represent the major challenges for chemical oxidation of alkylphenols. Here, we report the development of a unique chemomimetic biocatalytic system originated from the Gram-positive bacterium Corynebacterium glutamicum. The system consisting of CreHI (for installation of a phosphate directing/anchoring group), CreJEF/CreG/CreC (for oxidation of alkylphenols), and CreD (for directing/anchoring group offloading) is able to selectively oxidize the aliphatic C–H bonds of p- and m-alkylated phenols in a controllable manner. Moreover, the crystal structures of the central P450 biocatalyst CreJ in complex with two representative substrates provide significant structural insights into its substrate flexibility and reaction selectivity. PMID:28607077

  9. SN-EXCHANGED HYDROTALCITES AS CATALYSTS FOR CLEAN AND SELECTIVE BAEYER-VILLIGER OXIDATION OF KETONES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    A Sn-doped hydrotalcite (Sn/HT) catalyst prepared by ion-exchange is found to be an active and selective catalyst for the liquid phase Baeyer-Villiger (BV) oxidation of cyclic ketones in acetonitrile using hydrogen peroxide (H2O2) as oxidant. Different reaction perameters such as...

  10. Tritium monitor with improved gamma-ray discrimination

    DOEpatents

    Cox, S.A.; Bennett, E.F.; Yule, T.J.

    1982-10-21

    Apparatus and method are presented for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  11. Tritium monitor with improved gamma-ray discrimination

    DOEpatents

    Cox, Samson A.; Bennett, Edgar F.; Yule, Thomas J.

    1985-01-01

    Apparatus and method for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  12. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shi-Yu, E-mail: buaasyliu@gmail.com; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong; Liu, Shiyang

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustainedmore » complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.« less

  13. Evaluation of transition metal oxide as carrier-selective contacts for silicon heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, L.; Boccard, Matthieu; Holman, Zachary

    2015-04-06

    "Reducing light absorption in the non-active solar cell layers, while enabling the extraction of the photogenerated minority carriers at quasi-Fermi levels are two key factors to improve current generation and voltage, and therefore efficiency of silicon heterojunction solar devices. To address these two critical aspects, transition metal oxide materials have been proposed as alternative to the n- and p-type amorphous silicon used as electron and hole selective contacts, respectively. Indeed, transition metal oxides such as molybdenum oxide, titanium oxide, nickel oxide or tungsten oxide combine a wide band gap typically over 3 eV with a band structure and theoretical bandmore » alignment with silicon that results in high transparency to the solar spectrum and in selectivity for the transport of only one carrier type. Improving carrier extraction or injection using transition metal oxide has been a topic of investigation in the field of organic solar cells and organic LEDs; from these pioneering works a lot of knowledge has been gained on materials properties, ways to control these during synthesis and deposition, and their impact on device performance. Recently, the transfer of some of this knowledge to silicon solar cells and the successful application of some metal oxide to contact heterojunction devices have gained much attention. In this contribution, we investigate the suitability of various transition metal oxide films (molybdenum oxide, titanium oxide, and tungsten oxide) deposited either by thermal evaporation or sputtering as transparent hole or electron selective transport layer for silicon solar cells. In addition to systematically characterize their optical and structural properties, we use photoemission spectroscopy to relate compound stoichiometry to band structure and characterize band alignment to silicon. The direct silicon/metal oxide interface is further analyzed by quasi-steady state photoconductance decay method to assess the quality of surface passivation. In complement, we construct full device structures incorporating in some cases surface passivation schemes, with measured initial conversion efficiency over 15% and evaluate the carrier transport properties using temperature-dependent current-voltage and capacitance-voltage measurements. With this detailed characterization study, we aim at providing the framework to assess the potential of a material as a carrier selective contact and the understanding of how each of the aforementioned parameters on the metal oxide films influence the full solar cell operating performances.« less

  14. Method for carbon dioxide splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.

    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0

  15. Carrier-selective interlayer materials for silicon solar cell contacts

    NASA Astrophysics Data System (ADS)

    Xue, Muyu; Islam, Raisul; Chen, Yusi; Chen, Junyan; Lu, Ching-Ying; Mitchell Pleus, A.; Tae, Christian; Xu, Ke; Liu, Yi; Kamins, Theodore I.; Saraswat, Krishna C.; Harris, James S.

    2018-04-01

    This work presents titanium oxide (TiOx) and nickel oxide (NiOx) as promising carrier-selective interlayer materials for metal-interlayer-semiconductor contacts for silicon solar cells. The electron-conducting, hole-blocking behavior of TiOx and the opposite carrier-selective behavior of NiOx are investigated using the transmission-line-method. The Fermi level depinning effect and the tunneling resistance are demonstrated to be dependent on the interlayer oxide thickness and annealing temperature. NiOx is furthermore experimentally demonstrated to be capable of improving the effective minority carrier lifetime by quasi-steady-state photoconductance method. Our study demonstrates that TiOx and NiOx can be effective carrier-selective materials for Si solar cells and provides a framework for characterizing carrier-selective contacts.

  16. Fischer–Tropsch Synthesis at a Low Pressure on Subnanometer Cobalt Oxide Clusters: The Effect of Cluster Size and Support on Activity and Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sungsik; Lee, Byeongdu; Seifert, Sönke

    2015-05-21

    In this study, the catalytic activity and changes in the oxidation state during the Fischer Tropsch (FT) reaction was investigated on subnanometer size-selected cobalt clusters deposited on oxide (Al2O3, MgO) and carbon-based (ultrananocrystalline diamond UNCD) supports by temperature programmed reaction (TPRx) combined with in-situ grazing-incidence X-ray absorption characterization (GIXAS). The activity and selectivity of ultrasmall cobalt clusters exhibits a very strong dependence on cluster size and support. The evolution of the oxidation state of metal cluster during the reaction reveals that metal-support interaction plays a key role in the reaction.

  17. Observations and modeling of bromine induced mercury oxidation in the tropical free troposphere during TORERO

    NASA Astrophysics Data System (ADS)

    Coburn, Sean; Wang, Siyuan; terSchure, Arnout; Evans, Matt; Volkamer, Rainer

    2013-04-01

    The Tropical Ocean tRoposphere Exchange experiment TORERO (Jan/Feb 2012) probed air-sea exchange of very short lived halogens and organic carbon species over the full tropospheric air column above the eastern tropical Pacific Ocean. It is well known that halogens influence the oxidative capacity in the marine boundary layer, but their distribution and abundance is less clear in the tropical free troposphere, where most of tropospheric ozone mass resides, and about 80% of the global methane destruction occurs. The oxidation of elemental mercury (GEM) by halogens (i.e., bromine) further forms gaseous oxidized mercury (GOM), and this oxidation is accelerated at the low temperatures in the free troposphere compared to the boundary layer. Free tropospheric halogen radical abundances are thus of particular importance to understand the entry pathways for GOM deposition from the free troposphere to ecosystem, and the subsequent bio-accumulation of this neurotoxin. This presentation summarizes new observational evidence for halogen vertical distributions over the full tropospheric air column, and their abundance in the tropical troposphere, at mid-latitudes in the Northern and Southern hemisphere. BrO and IO were measured simultaneously by the CU Airborne MAX-DOAS instrument, and organic halogen precursors were measured by online GC-MS (TOGA) during 22 research flights aboard the NSF/NCAR GV aircraft. We employ atmospheric box modeling constrained by observations of gas-phase hydrocarbons, aerosols, photolysis frequencies, and meterological parameters measured aboard the plane to test the observed BrO and IO abundances, and evaluate the rate of GEM oxidation in light of recent updates about the stability of the Hg-Br adduct, and it's fate (Goodsite et al., 2012; Dibble et al., 2012). Finally, we compare our measurements with output from the GEOS-Chem model for selected case studies.

  18. 76 FR 17611 - Propylene Oxide; Proposed Pesticide Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ...: This document proposes to amend the propylene oxide tolerance on ``nut, tree, group 14'' to ``nutmeat... ``nut, tree, group 14'' to read ``nutmeat, processed, except peanuts.'' A final rule published in the... the propylene oxide tolerance by replacing ``nutmeat, processed, except peanuts'' with ``nut, tree...

  19. Air Quality Criteria for Oxides of Nitrogen (Final Report, 1993)

    EPA Science Inventory

    This criteria document focuses on a review and assessment of the effects on human health and welfare of the nitrogen oxides, nitric oxide (NO) and nitrogen dioxide (NO2), and the related compounds, nitrites, nitrates, nitrogenous acids, and nitrosamines. Although the emphasis is ...

  20. Magnetic iron oxides in the cementation technology of the boron-containing radioactive waste

    NASA Astrophysics Data System (ADS)

    Fedotov, M. A.; Gorbunova, O. A.; Fedorova, O. V.; Folmanis, G. E.; Kovalenko, L. V.

    2015-04-01

    Two ways of synthesis of non-detachable dispersed particles of magnetic materials useful for the boron-containing waste cementation process regulation were developed. Powder XRD showed that the method of carbothermic recovery of nanoscale iron hydroxide allows obtaining a mixture of iron oxides with content of the magnetic phase up to 70%. Method of low-temperature hydrogen reduction of the raw materials allows obtaining various compositions of a-iron and iron oxides with the possibility to change the size of the final particles in a wide range. The possibility of using composites of magnetic iron oxides and metal oxide compositions instead of ferromagnetic rods with VEP of boron-containing liquid radioactive waste in the fluidized field was studied. It was shown that the use of fine and nano particles of the iron oxides in the pre-treatment of the boron-containing LRW increases the strength of the final compounds and accelerates the cement setting compounds from 13 to 5-9 days.

  1. Thermally ruggedized ITO transparent electrode films for high power optoelectronics

    DOE PAGES

    Yoo, Jae-Hyuck; Matthews, Manyalibo; Ramsey, Phil; ...

    2017-10-06

    Here, we present two strategies to minimize laser damage in transparent conductive films. The first consists of improving heat dissipation by selection of substrates with high thermal diffusivity or by addition of capping layer heatsinks. The second is reduction of bulk energy absorption by lowering free carrier density and increasing mobility, while maintaining film conductance with thicker films. Multi-pulse laser damage tests were performed on tin-doped indium oxide (ITO) films configured to improve optical lifetime damage performance. Conditions where improvements were not observed are also described. Finally, when bulk heating is not the dominant damage process, discrete defect-induced damage limitsmore » damage behavior.« less

  2. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, Randy B.

    1992-01-01

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).

  3. High modulus invert analog glass compositions containing beryllia

    NASA Technical Reports Server (NTRS)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi and a specific modulus of at least 110 million inches consisting essentially of, in mols, 10-45% SiO2, 2-15% Li2O, 3-34% BeO, 12-36% of at least one bivalent oxide selected from the group consisting of CaO, ZnO, MgO and CuO, 10-39% of at least one trivalent oxide selected from the group consisting of Al2O3, B2O3, La2O3, Y2O3 and the mixed rare earth oxides, the total number of said bivalent and trivalent oxides being at least three, and up to 10% of a tetravalent oxide selected from the group consisting of ZrO2, TiO2 and CeO2.

  4. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    PubMed

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).

  5. Central leptin regulates heart lipid content by selectively increasing PPAR β/δ expression.

    PubMed

    Mora, Cristina; Pintado, Cristina; Rubio, Blanca; Mazuecos, Lorena; López, Virginia; Fernández, Alejandro; Salamanca, Aurora; Bárcena, Brenda; Fernández-Agulló, Teresa; Arribas, Carmen; Gallardo, Nilda; Andrés, Antonio

    2018-01-01

    The role of central leptin in regulating the heart from lipid accumulation in lean leptin-sensitive animals has not been fully elucidated. Herein, we investigated the effects of central leptin infusion on the expression of genes involved in cardiac metabolism and its role in the control of myocardial triacylglyceride (TAG) accumulation in adult Wistar rats. Intracerebroventricular (icv) leptin infusion (0.2 µg/day) for 7 days markedly decreased TAG levels in cardiac tissue. Remarkably, the cardiac anti-steatotic effects of central leptin were associated with the selective upregulation of gene and protein expression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ, encoded by Pparb/d ) and their target genes, adipose triglyceride lipase (encoded by Pnpla2 , herefater referred to as Atgl ), hormone sensitive lipase (encoded by Lipe , herefater referred to as Hsl ), pyruvate dehydrogenase kinase 4 ( Pdk4 ) and acyl CoA oxidase 1 ( Acox1 ), involved in myocardial intracellular lipolysis and mitochondrial/peroxisomal fatty acid utilization. Besides, central leptin decreased the expression of stearoyl-CoA deaturase 1 ( Scd1 ) and diacylglycerol acyltransferase 1 ( Dgat1 ) involved in TAG synthesis and increased the CPT-1 independent palmitate oxidation, as an index of peroxisomal β-oxidation. Finally, the pharmacological inhibition of PPARβ/δ decreased the effects on gene expression and cardiac TAG content induced by leptin. These results indicate that leptin, acting at central level, regulates selectively the cardiac expression of PPARβ/δ, contributing in this way to regulate the cardiac TAG accumulation in rats, independently of its effects on body weight. © 2018 Society for Endocrinology.

  6. The Effect of Luting Cement and Titanium Base on the Final Color of Zirconium Oxide Core Material.

    PubMed

    Capa, Nuray; Tuncel, Ilkin; Tak, Onjen; Usumez, Aslihan

    2017-02-01

    To evaluate the effects of different types of luting cements and different colors of zirconium cores on the final color of the restoration that simulates implant-supported fixed partial dentures (FPDs) by using a titanium base on the bottom. One hundred and twenty zirconium oxide core plates (Zr-Zahn; 10 mm in width, 5 mm in length, 0.5 mm in height) were prepared in different shades (n = 20; noncolored, A2, A3, B1, C2, D2). The specimens were subdivided into two subgroups for the two types of luting cements (n = 10). The initial color measurements were made on zirconium oxide core plates using a spectrometer. To create the cement thicknesses, stretch strips with holes in the middle (5 mm in diameter, 70 μm in height) were used. The second measurement was done on the zirconium oxide core plates after the application of the resin cement (U-200, A2 Shade) or polycarboxylate cement (Lumicon). The final measurement was done after placing the titanium discs (5 mm in diameter, 3 mm in height) in the bottom. The data were analyzed with two-way ANOVA and Tukey's honestly significant differences (HSD) tests (α = 0.05). The ∆E* ab value was higher in the resin cement-applied group than in the polycarboxylate cement-applied group (p < 0.001). The highest ∆E* ab value was recorded for the zirconium oxide core-resin cement-titanium base, and the lowest was recorded for the polycarboxylate cement-zirconium oxide core (p < 0.001). The luting cement, the presence of titanium, and the color of zirconium are all important factors that determine the final shade of zirconia cores in implant-supported FPDs. © 2015 by the American College of Prosthodontists.

  7. Selective Functionalization of Arbitrary Nanowires

    DTIC Science & Technology

    2006-11-02

    3-mercaptopropyl)- trimethoxysilane (MPTMS). The wires were grown electrochemically in anodic aluminum oxide ( AAO ) templates. Selective deposition...In the past, templates composed of polycarbonate track-etched membranes or anodic aluminum oxide materials have been used for the construction of...modifier MPTMS was used to function- alize the AAO template because it can form covalent bonds with silanes and metal oxide surfaces21 and because of

  8. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2012-06-01

    Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.

  9. Selective degradation of thymidine and thymine deoxynucleotides

    PubMed Central

    Burton, K.; Riley, W. T.

    1966-01-01

    1. Osmium tetroxide in dilute ammonia oxidizes various pyrimidine nucleosides at different rates. Thymidine is oxidized about 45 times as fast as deoxycytidine. The phosphate groups may be eliminated from oxidized thymine nucleotides by successive treatments with alkali and then with diphenylamine in aqueous formic acid. The reactions can be applied to the selective degradation of thymidine in oligodeoxynucleotides. PMID:5938667

  10. Wear of Selected Oxide Ceramics and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Sayir, A.; Farmer, S. C.

    2005-01-01

    The use of oxide ceramics and coatings for moving mechanical components operating in high-temperature, oxidizing environments creates a need to define the tribological performance and durability of these materials. Results of research focusing on the wear behavior and properties of Al2O3/ZrO2 (Y2O3) eutectics and coatings under dry sliding conditions are discussed. The importance of microstructure and composition on wear properties of directionally solidified oxide eutectics is illustrated. Wear data of selected oxide-, nitride-, and carbide-based ceramics and coatings are given for temperatures up to 973K in air.

  11. Materials and methods for the separation of oxygen from air

    DOEpatents

    MacKay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2003-07-15

    Metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes having the formula: O.sub.5+z where: x and x' are greater than 0; y and y' are greater than 0; x+x' is equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides, Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof and B" is Co or Mg, with the exception that when B" is Mg, A' and A" are not Mg. The metal oxides are useful for preparation of dense membranes which may be formed from dense thin films of the mixed metal oxide on a porous metal oxide element. The invention also provides methods and catalytic reactors for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula.

  12. Pumpable/injectable phosphate-bonded ceramics

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young

    2001-01-01

    A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.

  13. System for trapping and storing gases for subsequent chemical reduction to solids

    DOEpatents

    Vogel, John S [San Jose, CA; Ognibene, Ted J [Oakland, CA; Bench, Graham S [Livermore, CA; Peaslee, Graham F [Holland, MI

    2009-11-03

    A system for quantitatively reducing oxide gases. A pre-selected amount of zinc is provided in a vial. A tube is provided in the vial. The zinc and the tube are separated. A pre-selected amount of a catalyst is provided in the tube. Oxide gases are injected into the vial. The vial, tube, zinc, catalyst, and the oxide gases are cryogenically cooled. At least a portion of the vial, tube, zinc, catalyst, and oxide gases are heated.

  14. Discovery of N-{3-[(ethanimidoylamino)methyl]benzyl}-l-prolinamide dihydrochloride: A new potent and selective inhibitor of the inducible nitric oxide synthase as a promising agent for the therapy of malignant glioma.

    PubMed

    Maccallini, Cristina; Di Matteo, Mauro; Gallorini, Marialucia; Montagnani, Monica; Graziani, Valentina; Ammazzalorso, Alessandra; Amoia, Pasquale; De Filippis, Barbara; Di Silvestre, Sara; Fantacuzzi, Marialuigia; Giampietro, Letizia; Potenza, Maria A; Re, Nazzareno; Pandolfi, Assunta; Cataldi, Amelia; Amoroso, Rosa

    2018-05-25

    In mammalian cells, aberrant iNOS induction may have detrimental consequences, and seems to be involved in the proliferation and progression of different tumors, such as malignant gliomas. Therefore, selective inhibition of iNOS could represent a feasible therapeutic strategy to treat these conditions. In this context, we have previously disclosed new acetamidines able to inhibit iNOS with a very high selectivity profile over eNOS or nNOS. Here we report the synthesis of a new series of compounds structurally related to the leading scaffold of N-[(3-aminomethyl)benzyl] acetamidine (1400 W), together with their in vitro activity and selectivity. Compound 39 emerged as the most promising molecule of this series, and it was ex vivo evaluated on isolated and perfused resistance arteries, confirming a high selectivity toward iNOS inhibition. Moreover, C6 rat glioma cell lines biological response to 39 was investigated, and preliminary MTT assay showed a significant decrease in cell metabolic activity of C6 rat glioma cells. Finally, results of a docking study shed light on the binding mode of 39 into NOS catalytic site. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Selective Oxidation of Alcohols Using Photoactive VO@g??C3N4

    EPA Pesticide Factsheets

    A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated activity of the catalyst could be attributed to photoactive graphitic carbon nitrides surface.This dataset is associated with the following publication:Verma, S., R.B. Nasir Baig, M. Nadagouda , and R. Varma. Selective oxidation of alcohols using photoactive VO@g-C3N4.. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 4(3): 1094-1098, (2015).

  16. Toward Hypoxia-Selective DNA-Alkylating Agents Built by Grafting Nitrogen Mustards onto the Bioreductively Activated, Hypoxia-Selective DNA-Oxidizing Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine)

    PubMed Central

    2015-01-01

    Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a heterocyclic di-N-oxide that undergoes enzymatic deoxygenation selectively in the oxygen-poor (hypoxic) cells found in solid tumors to generate a mono-N-oxide metabolite. This work explored the idea that the electronic changes resulting from the metabolic deoxygenation of tirapazamine analogues might be exploited to activate a DNA-alkylating species selectively in hypoxic tissue. Toward this end, tirapazamine analogues bearing nitrogen mustard units were prepared. In the case of the tirapazamine analogue 18a bearing a nitrogen mustard unit at the 6-position, it was found that removal of the 4-oxide from the parent di-N-oxide to generate the mono-N-oxide analogue 17a did indeed cause a substantial increase in reactivity of the mustard unit, as measured by hydrolysis rates and DNA-alkylation yields. Hammett sigma values were measured to quantitatively assess the magnitude of the electronic changes induced by metabolic deoxygenation of the 3-amino-1,2,4-benzotriazine 1,4-dioxide heterocycle. The results provide evidence that the 1,2,4-benzotiazine 1,4-dioxide unit can serve as an oxygen-sensing prodrug platform for the selective unmasking of bioactive agents in hypoxic cells. PMID:25029663

  17. Toward hypoxia-selective DNA-alkylating agents built by grafting nitrogen mustards onto the bioreductively activated, hypoxia-selective DNA-oxidizing agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).

    PubMed

    Johnson, Kevin M; Parsons, Zachary D; Barnes, Charles L; Gates, Kent S

    2014-08-15

    Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a heterocyclic di-N-oxide that undergoes enzymatic deoxygenation selectively in the oxygen-poor (hypoxic) cells found in solid tumors to generate a mono-N-oxide metabolite. This work explored the idea that the electronic changes resulting from the metabolic deoxygenation of tirapazamine analogues might be exploited to activate a DNA-alkylating species selectively in hypoxic tissue. Toward this end, tirapazamine analogues bearing nitrogen mustard units were prepared. In the case of the tirapazamine analogue 18a bearing a nitrogen mustard unit at the 6-position, it was found that removal of the 4-oxide from the parent di-N-oxide to generate the mono-N-oxide analogue 17a did indeed cause a substantial increase in reactivity of the mustard unit, as measured by hydrolysis rates and DNA-alkylation yields. Hammett sigma values were measured to quantitatively assess the magnitude of the electronic changes induced by metabolic deoxygenation of the 3-amino-1,2,4-benzotriazine 1,4-dioxide heterocycle. The results provide evidence that the 1,2,4-benzotiazine 1,4-dioxide unit can serve as an oxygen-sensing prodrug platform for the selective unmasking of bioactive agents in hypoxic cells.

  18. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn{sub 2}S{sub 4} microspheres under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhixin, E-mail: czx@fzu.edu.cn; Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002; Xu, Jingjing

    Hexagonal ZnIn{sub 2}S{sub 4} samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn{sub 2}S{sub 4} microspheres. The visible light photocatalytic activities of the ZnIn{sub 2}S{sub 4} have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn{sub 2}S{sub 4}more » prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn{sub 2}S{sub 4} prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn{sub 2}S{sub 4} is proposed and discussed. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn{sub 2}S{sub 4} for selective oxidation of benzyl alcohol. • ZnIn{sub 2}S{sub 4} shows high photocatalytic activity for selective oxidation of benzyl alcohol.« less

  19. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  20. Partial oxidation of alkanes by dioxiranes formed in situ at low temperature.

    PubMed

    Yacob, Sara; Caulfield, Michael J; Barckholtz, Timothy A

    2018-01-13

    Partial oxidation catalysts capable of efficiently operating at low temperatures may limit the over-oxidation of alkane substrates and thereby improve selectivity. This work focuses on examining alkane oxidation using completely metal-free organocatalysts, dioxiranes. The dioxiranes employed here are synthesized by oxidation of a ketone using a terminal oxidant, such as hydrogen peroxide. Our work generates the dioxirane in situ , so that the process can be catalytic with respect to the ketone. To date, we have demonstrated selective partial oxidation of adamantane using ketone catalysts resulting in yields upwards of 60% towards 1-adamantanol with greater than 99% selectivity. Furthermore, we have demonstrated that changing the electrophilic character of the ketone R groups to contain more electron-donating ligands facilitates the dioxirane ring formation and improves overall oxidation yields. Isotopic labelling studies using H 2 18 O 2 show the preferential incorporation of an 18 O label into the parent ketone, providing evidence for a dioxirane intermediate formed in situ The isotopic labelling studies, along with solvent effect studies, suggest the formation of peracetic acid as a reactive intermediate.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'. © 2017 The Author(s).

  1. A survey of analytical methods employed for monitoring of Advanced Oxidation/Reduction Processes for decomposition of selected perfluorinated environmental pollutants.

    PubMed

    Trojanowicz, Marek; Bobrowski, Krzysztof; Szostek, Bogdan; Bojanowska-Czajka, Anna; Szreder, Tomasz; Bartoszewicz, Iwona; Kulisa, Krzysztof

    2018-01-15

    The monitoring of Advanced Oxidation/Reduction Processes (AO/RPs) for the evaluation of the yield and mechanisms of decomposition of perfluorinated compounds (PFCs) is often a more difficult task than their determination in the environmental, biological or food samples with complex matrices. This is mostly due to the formation of hundreds, or even thousands, of both intermediate and final products. The considered AO/RPs, involving free radical reactions, include photolytic and photocatalytic processes, Fenton reactions, sonolysis, ozonation, application of ionizing radiation and several wet oxidation processes. The main attention is paid to the most commonly occurring PFCs in the environment, namely PFOA and PFOS. The most powerful and widely exploited method for this purpose is without a doubt LC/MS/MS, which allows the identification and trace quantitation of all species with detectability and resolution power depending on the particular instrumental configurations. The GC/MS is often employed for the monitoring of volatile fluorocarbons, confirming the formation of radicals in the processes of C‒C and C‒S bonds cleavage. For the direct monitoring of radicals participating in the reactions of PFCs decomposition, the molecular spectrophotometry is employed, especially electron paramagnetic resonance (EPR). The UV/Vis spectrophotometry as a detection method is of special importance in the evaluation of kinetics of radical reactions with the use of pulse radiolysis methods. The most commonly employed for the determination of the yield of mineralization of PFCs is ion-chromatography, but there is also potentiometry with ion-selective electrode and the measurements of general parameters such as Total Organic Carbon and Total Organic Fluoride. The presented review is based on about 100 original papers published in both analytical and environmental journals. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Elucidating nitric oxide synthase domain interactions by molecular dynamics.

    PubMed

    Hollingsworth, Scott A; Holden, Jeffrey K; Li, Huiying; Poulos, Thomas L

    2016-02-01

    Nitric oxide synthase (NOS) is a multidomain enzyme that catalyzes the production of nitric oxide (NO) by oxidizing L-Arg to NO and L-citrulline. NO production requires multiple interdomain electron transfer steps between the flavin mononucleotide (FMN) and heme domain. Specifically, NADPH-derived electrons are transferred to the heme-containing oxygenase domain via the flavin adenine dinucleotide (FAD) and FMN containing reductase domains. While crystal structures are available for both the reductase and oxygenase domains of NOS, to date there is no atomic level structural information on domain interactions required for the final FMN-to-heme electron transfer step. Here, we evaluate a model of this final electron transfer step for the heme-FMN-calmodulin NOS complex based on the recent biophysical studies using a 105-ns molecular dynamics trajectory. The resulting equilibrated complex structure is very stable and provides a detailed prediction of interdomain contacts required for stabilizing the NOS output state. The resulting equilibrated complex model agrees well with previous experimental work and provides a detailed working model of the final NOS electron transfer step required for NO biosynthesis. © 2015 The Protein Society.

  3. Aerobic and Electrochemical Oxidations with N-Oxyl Reagents

    NASA Astrophysics Data System (ADS)

    Miles, Kelsey C.

    Selective oxidation of organic compounds represents a significant challenge for chemical transformations. Oxidation methods that utilize nitroxyl catalysts have become increasingly attractive and include Cu/nitroxyl and nitroxyl/NO x co-catalyst systems. Electrochemical activation of nitroxyls is also well known and offers an appealing alternative to the use of chemical co-oxidants. However, academic and industrial organic synthetic communities have not widely adopted electrochemical methods. Nitroxyl catalysts facilitate effective and selective oxidation of alcohols and aldehydes to ketones and carboxylic acids. Selective benzylic, allylic, and alpha-heteroatom C-H abstraction can also be achieved with nitroxyls and provides access to oxygenated products when used in combination with molecular oxygen as a radical trap. This thesis reports various chemical and electrochemical oxidation methods that were developed using nitroxyl mediators. Chapter 1 provides a short review on practical aerobic alcohol oxidation with Cu/nitroxyl and nitroxyl/NO x systems and emphasizes the utility of bicyclic nitroxyls as co-catalysts. In Chapter 2, the combination of these bicyclic nitroxyls with NOx is explored for development of a mild oxidation of alpha-chiral aryl aldehydes and showcases a sequential asymmetric hydroformylation/oxidation method. Chapter 3 reports the synthesis and characterization of two novel Cu/bicyclic nitroxyl complexes and the electronic structure analysis of these complexes. Chapter 4 highlights the electrochemical activation of various nitroxyls and reports an in-depth study on electrochemical alcohol oxidation and compares the reactivity of nitroxyls under electrochemical or chemical activation. N-oxyls can also participate in selective C-H abstraction, and Chapter 5 reports the chemical and electrochemical activation of N-oxyls for radical-mediated C-H oxygenation of (hetero)arylmethanes. For these electrochemical transformations, the development of user-friendly methods and analysis techniques is emphasized.

  4. The influence of pulsed electric fields and microwave pretreatments on some selected physicochemical properties of oil extracted from black cumin seed.

    PubMed

    Bakhshabadi, Hamid; Mirzaei, HabibOllah; Ghodsvali, Alireza; Jafari, Seid Mahdi; Ziaiifar, Aman Mohammad

    2018-01-01

    Application of novel technologies such as microwave and pulsed electric fields (PEF) might increase the speed and efficiency of oil extraction. In the present research, PEF (3.25 kV/cm electric field intensity and 30 pulse number) and microwave (540 W for 180 s) pretreatments were used to study the process of oil extraction from black cumin ( Nigella sativa ) seeds. After applying the selected pretreatments, the oil of seeds was extracted with the use of a screw press and the extraction efficiency, refractive index, oil density, color index, oxidative stability, and chemical components of oil and protein of meal were evaluated. The achieved results expressed that PEF and microwave pretreatments increased the oil extraction efficiency and its oxidative stability. Different pretreatments didn't have any significant influence on the refractive index of black cumin seed oil ( p >.05). When microwave and PEF were used, the oil density showed an enhancement as the following: 1.51% and 0.96%, respectively in comparison with the samples with no pretreatments. Evaluation of the extracted oils, using GC/MS analysis indicated that thymoquinone was the dominant phenolic component in the black cumin oil. Finally, the SEM analysis revealed that microwave and PEF can be useful in the extraction of oil from black cumin seeds since these treatments damaged cell walls and facilitated the oil extraction process.

  5. Microfabrication of plastic-PDMS microfluidic devices using polyimide release layer and selective adhesive bonding

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Lu, Ming; ...

    2017-03-15

    In this study, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide filmmore » coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. Finally, this proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.« less

  6. In vitro antioxidation activity and genoprotective effect of selected Chinese medicinal herbs.

    PubMed

    Szeto, Yim Tong; Wong, Shirley Ching Yee; Wong, Julia Wai Ming; Kalle, Wouter; Pak, Sok Cheon

    2011-01-01

    Some traditional Chinese medicinal seeds and fruits are well known for their antioxidant properties. This research aims to investigate whether Fructus Lycii, Fructus Schisandrae Chinensis, Fructus Ligustri Lucidi and Semen Cuscutae protect DNA from oxidant challenge by hydrogen peroxide (H(2)O(2)). The standard comet assay was used to assess the genoprotective effect of these medicinal herbs. Blood was taken from three healthy adults, aged from 36 to 42. Lymphocytes were isolated and treated with different concentrations of aqueous herbal extracts, while controls were treated with phosphate buffered saline. The lymphocytes were stressed with 50 μM H(2)O(2). Treated cells were embedded in agarose and layered on slides. These sandwiched lymphocytes were lysed and afterwards subjected to an electric field in an alkaline environment. Damaged DNA was pulled out from the nucleus towards the positive electrode as a comet tail; its density was related to the degree of DNA damage. Finally, the slides were stained with fluorescence dye and tails were visually scored for 100 cells. The experiment was repeated three times and DNA damage in treated cells was compared to the controls. There was no statistical difference in DNA damage among the herb treated cells and untreated cells in the comet assay. Our data demonstrated that the selected medicinal herbs did not show in vitro DNA protection in the comet assay against oxidant challenge.

  7. Microfabrication of plastic-PDMS microfluidic devices using polyimide release layer and selective adhesive bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuyu; Yu, Shifeng; Lu, Ming

    In this study, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide filmmore » coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. Finally, this proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.« less

  8. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2015-03-01

    In the first of a two part publication, the effect of fuel utilization (Uf) on carbon deposition rates in solid oxide fuel cell nickel-based anodes was studied. Representative 5-component CH4 reformate compositions (CH4, H2, CO, H2O, & CO2) were selected graphically by plotting the solutions to a system of mass-balance constraint equations. The centroid of the solution space was chosen to represent a typical anode gas mixture for each nominal Uf value. Selected 5-component and 3-component gas mixtures were then delivered to anode-supported cells for 10 h, followed by determination of the resulting deposited carbon mass. The empirical carbon deposition thresholds were affected by atomic carbon (C), hydrogen (H), and oxygen (O) fractions of the delivered gas mixtures and temperature. It was also found that CH4-rich gas mixtures caused irreversible damage, whereas atomically equivalent CO-rich compositions did not. The coking threshold predicted by thermodynamic equilibrium calculations employing graphite for the solid carbon phase agreed well with empirical thresholds at 700 °C (Uf ≈ 32%); however, at 600 °C, poor agreement was observed with the empirical threshold of ∼36%. Finally, cell operating temperatures correlated well with the difference in enthalpy between the supplied anode gas mixtures and their resulting thermodynamic equilibrium gas mixtures.

  9. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, R.B.

    1992-01-14

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation). 23 figs.

  10. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.

    PubMed

    Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran

    2015-06-28

    We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method.

  11. Limits and dynamics of methane oxidation in landfill cover soils

    USDA-ARS?s Scientific Manuscript database

    In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a signi...

  12. Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases.

    PubMed

    Boehlein, Susan K; Shaw, Janine R; Hwang, Seon K; Stewart, Jon D; Curtis Hannah, L

    2013-07-15

    ADP-Glc pyrophosphorylase (AGPase), a rate-limiting enzyme in starch biosynthesis, is controlled by thermostability and allosteric regulation. Previous studies suggested that redox affects turnover number and heat stability of AGPases. Here, we investigated how allostery and redox state affect kinetic mechanisms of the reduced, heat labile and the oxidized, heat stable potato tuber enzymes; the heat labile maize endosperm enzyme and a chimeric maize/potato heat stable enzyme that lacks the cysteine responsible for redox changes. With 3-PGA, all AGPases followed a Theorell-Chance Bi Bi mechanism with ATP binding first and ADP-Glc releasing last. 3-PGA increases the binding affinity for both substrates with little effect on velocity for the maize and MP isoforms. By contrast, 3-PGA increases the velocity and the affinity for G-1-P for the potato enzymes. Redox state does not affect kcat of the two potato isoforms. Without 3-PGA the oxidized potato enzyme exhibits a rapid equilibrium random Bi Bi mechanism with a dead end ternary complex. This fundamental change from rapid, ordered binding with little buildup of intermediates to a mechanism featuring relatively slow, random binding is unique to the oxidized potato tuber enzyme. Finally, ADP-Glc the physiologically relevant product of this enzyme has complex, isoform-specific effects on catalysis. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Raman, SEM-EDS and XRPD investigations on pre-Columbian Central America "estucado" pottery

    NASA Astrophysics Data System (ADS)

    Casanova Municchia, Annalaura; Micheli, Mario; Ricci, Maria Antonietta; Toledo, Michelle; Bellatreccia, Fabio; Lo Mastro, Sergio; Sodo, Armida

    2016-03-01

    Seventeen different colored fragments from six selected pre-Columbian estucado ceramics from El Salvador have been investigated by Raman spectroscopy, scanning electron microscope coupled to an energy dispersive spectrometer (SEM/EDS) and X-ray powder diffraction (XRPD). The peculiarity of this kind of ceramics consist of the unusual presence of a white engobe, traditionally termed stucco, between the ceramic body and the decoration elements, hence the name estucado ceramics. The aim of this work was to study the unusual manufacturing technique and to identify the chemical composition of the engobe and of the pigment palette. The results showed that the stucco layer is made of clay (kaolinite) with traces of titanium oxide (anatase). Remarkably, this is the same composition of the white pigments used for the decoration layer, thus excluding an early use of natural titanium oxide as a white pigment in the estucado productions as suggested in previous investigations. Moreover, the presence of kaolinite and anatase both in the stucco and in the decoration layer suggests a cold-working or low temperature technique. The red, yellow and green decorations were realized by the use of natural ochre, while in all the blue and gray decorations Maya blue pigment was identified. Finally, an amorphous carbon pigment of vegetal origin and manganese oxide were used to obtain black pigments.

  14. An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine

    PubMed Central

    Zhang, Yang; Zhang, Meiqin; Wei, Qianhui; Gao, Yongjie; Guo, Lijuan; Al-Ghanim, Khalid A.; Mahboob, Shahid; Zhang, Xueji

    2016-01-01

    A simple electrochemical sensor has been developed for highly sensitive detection of octopamine and tyramine by electrodepositing reduced graphene oxide (ERGO) nanosheets onto the surface of a glassy carbon electrode (GCE). The electrocatalytic oxidation of octopamine and tyramine is individually investigated at the surface of the ERGO modified glassy carbon electrode (ERGO/GCE) by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several essential factors including the deposition cycle of reduced graphene oxide nanosheets and the pH of the running buffer were investigated in order to determine the optimum conditions. Furthermore, the sensor was applied to the quantification of octopamine and tyramine by DPV in the concentration ranges from 0.5 to 40 μM and 0.1 to 25 μM, respectively. In addition, the limits of detection of octopamine and tyramine were calculated to be 0.1 μM and 0.03 μM (S/N = 3), respectively. The sensor showed good reproducibility, selectivity and stability. Finally, the sensor successfully detected octopamine and tyramine in commercially available beer with satisfactory recovery ranges which were 98.5%–104.7% and 102.2%–103.1%, respectively. These results indicate the ERGO/GCE based sensor is suitable for the detection of octopamine and tyramine. PMID:27089341

  15. Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides.

    PubMed

    Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun

    2017-11-29

    Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.

  16. Surface Raman Spectroscopy for Evaluation of Conformal Wafer Level Union Architectures

    DTIC Science & Technology

    1990-05-01

    require that it be returned. Final Report for Expert Science-Task-A-9-1911 Order #18 by J. Chaiken One goal was to produce ultrafine particles which could...that we have synthesized thin films of nonstoichiometric tungsten oxides by a unique photochemical/physical mechanism involving ultrafine particles /clusters...appropriate data base is underway. In this Final Report we first present a section dealing with the fabrication of the metal-metal oxide ultrafine

  17. Agarose template for the fabrication of macroporous metal oxide structures.

    PubMed

    Zhou, Jingfang; Zhou, Meifang; Caruso, Rachel A

    2006-03-28

    Agarose gels have been applied as templates for the formation of macroporous metal oxide structures. The preparation of the agarose template is extremely simple, and with variation of the agarose content, control over morphology is demonstrated: The average pore size decreases from 180 to 55 nm and the surface area increases from 238 to 271 m2 g(-1) with increasing agarose content in the gel. The gelling temperature was also found to influence the final template morphology. Conducting sol-gel chemistry within the template structure followed by removal of the template by heating to 450 degrees C gives porous inorganic oxides. The technique has been demonstrated for the oxides of titanium, zirconium, niobium, and tin. The final morphology of the metal oxide is homogeneous and results from a coating of the agarose structure. The pore diameter decreased and the specific surface area of the titanium dioxide materials increased from 28 to 66 m2 g(-1) as the agarose content in the template is increased from 0.5 to 5.0 wt%. The overall pore size and surface area are lower than the original gel due to shrinkage occurring with the sol-gel process, as well as crystallization and a loss of microporosity in the final material.

  18. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines.

    PubMed

    Lin, Jian-Ping; Zhang, Feng-Hua; Long, Ya-Qiu

    2014-06-06

    A fast and simple divergent synthesis of multisubstituted quinazolines and benzimidazoles was developed from readily available amidines, via iodine(III)-promoted oxidative C(sp(3))-C(sp(2)) and C(sp(2))-N bond formation in nonpolar and polar solvents, respectively. Further selective synthesis of quinazolines in polar solvent was realized by TEMPO-catalyzed sp(3)C-H/sp(2)C-H direct coupling of the amidine with K2S2O8 as the oxidant. No metal, base, or other additives were needed.

  19. Impact of soil properties on selected pharmaceuticals adsorption in soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also related to absorption coefficients of Carbamazepin (R=0.67 and 0.68). Positive correlation was found between Trimetoprim absorption coefficients and Atenolol, Metoprolol or Carbamazepin absorption coefficients. The negative relationship was found between absorption coefficients of Sulfomethoxazol and Clarithromycin (R=-0.80). Sulfamethoxazol absorption coefficient was negatively related to pH_H2O, pH_KCL or sorption complex saturation and positively to the hydrolytic acidity or exchangeable acidity. Trimetoprim absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation or silt content and negatively to particle density or sand content. Clarithromycin absorption coefficient was positively related to pH_H2O, pH_KCL, CaCO3 content, basic cation saturation or sorption complex saturation and negatively to hydrolytic acidity or exchangeable acidity. Atenolol and Metoprolol absorption coefficients were positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation, salinity, clay content or silt content, and negatively to the particle density or sand content. Finally Carbamazepin absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity or basic cation saturation, and negatively to the particle density or sand content. Evaluated pedotransfer rules for different pharmaceuticals included different sets of soil properties. Absorption coefficients could be predicted from: the hydrolytic acidity (Sulfamethoxazol), the oxidable organic carbon content (Trimetoprim and Carbamazepin), the oxidable organic carbon content, hydrolytic acidity and cation exchange capacity (Clarithromycin), the basic cation saturation (Atenolol and Metoprolol). Acknowledgement: Authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S).

  20. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

    DOE PAGES

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; ...

    2016-04-05

    Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance.more » Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Lastly, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.« less

  1. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design

    NASA Astrophysics Data System (ADS)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-04-01

    Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.

  2. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design.

    PubMed

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-04-05

    Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.

  3. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

    PubMed Central

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-01-01

    Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides. PMID:27046216

  4. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina

    2014-07-01

    Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI. Electronic supplementary information (ESI) available: A detailed description of the synthesis of the ligands as well as the preparation and functionalization of the iron oxide nanoparticles including their physico-chemical characterization are presented. Further, details of the cell experiments and the SPR experiments are given. Two representative movies are provided showing leukocyte rolling on the ligand coated surface of the flow chamber. See DOI: 10.1039/c3nr04793h

  5. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    PubMed

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The cyclic oxidation resistance at 1200 C of beta-NiAl, FeAl, and CoAl alloys with selected third element additions

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Titran, R. H.

    1992-01-01

    The intermetallic compounds Beta-NiAl, FeAl, and CoAl were tested in cyclic oxidation with selected third element alloy additions. Tests in static air for 200 1-hr cycles at 1200 C indicated by specific weight change/time data and x-ray diffraction analysis that the 5 at percent alloy additions did not significantly improve the oxidation resistance over the alumina forming baseline alloys without the additions. Many of the alloy additions were actually deleterious. Ta and Nb were the only alloy additions that actually altered the nature of the oxide(s) formed and still maintained the oxidation resistance of the protective alumina scale.

  7. Contact Selectivity Engineering in a 2 μm Thick Ultrathin c-Si Solar Cell Using Transition-Metal Oxides Achieving an Efficiency of 10.8.

    PubMed

    Xue, Muyu; Islam, Raisul; Meng, Andrew C; Lyu, Zheng; Lu, Ching-Ying; Tae, Christian; Braun, Michael R; Zang, Kai; McIntyre, Paul C; Kamins, Theodore I; Saraswat, Krishna C; Harris, James S

    2017-12-06

    In this paper, the integration of metal oxides as carrier-selective contacts for ultrathin crystalline silicon (c-Si) solar cells is demonstrated which results in an ∼13% relative improvement in efficiency. The improvement in efficiency originates from the suppression of the contact recombination current due to the band offset asymmetry of these oxides with Si. First, an ultrathin c-Si solar cell having a total thickness of 2 μm is shown to have >10% efficiency without any light-trapping scheme. This is achieved by the integration of nickel oxide (NiO x ) as a hole-selective contact interlayer material, which has a low valence band offset and high conduction band offset with Si. Second, we show a champion cell efficiency of 10.8% with the additional integration of titanium oxide (TiO x ), a well-known material for an electron-selective contact interlayer. Key parameters including V oc and J sc also show different degrees of enhancement if single (NiO x only) or double (both NiO x and TiO x ) carrier-selective contacts are integrated. The fabrication process for TiO x and NiO x layer integration is scalable and shows good compatibility with the device.

  8. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst.

    PubMed

    Liu, Jiangyong; Wang, Zihao; Jian, Panming; Jian, Ruiqi

    2018-05-01

    A tailor-made catalyst with cobalt oxide particles encapsulated into ZSM-5 zeolites (Co 3 O 4 @HZSM-5) was prepared via a hydrothermal method with the conventional impregnated Co 3 O 4 /SiO 2 catalyst as the precursor and Si source. Various characterization results show that the Co 3 O 4 @HZSM-5 catalyst has well-organized structure with Co 3 O 4 particles compatibly encapsulated in the zeolite crystals. The Co 3 O 4 @HZSM-5 catalyst was employed as an efficient catalyst for the selective oxidation of styrene to benzaldehyde with hydrogen peroxide as a green and economic oxidant. The effect of various reaction conditions including reaction time, reaction temperature, different kinds of solvents, styrene/H 2 O 2 molar ratio and catalyst dosage on the catalytic performance were systematically investigated. Under the optimized reaction condition, the yield of benzaldehyde can achieve 78.9% with 96.8% styrene conversion and 81.5% benzaldehyde selectivity. Such an excellent catalytic performance can be attributed to the synergistic effect between the confined reaction environment and the proper acidic property. In addition, the reaction mechanism with Co 3 O 4 @HZSM-5 as the catalyst for the selective oxidation of styrene to benzaldehyde was reasonably proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Federal Register notice: Propylene Oxide; Testing Requirements

    EPA Pesticide Factsheets

    This final rule promulgated under section 4(a) of the Toxic Substances Control Act (TSCA) requires manufacturers and processors of propylene oxide (CAS No. 75-58-9) to test this chemical for developmental toxicity.

  10. Apparatus and method for stabilization or oxidation of polymeric materials

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2010-01-19

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere at a selected temperature; a means for supporting the polymeric material within the chamber; and, a source of ozone-containing gas, which decomposes at the selected temperature yielding at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at the selected temperature. The ozone may be generated by a plasma discharge or by various chemical processes. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments as well as to make flame-retardant fabrics.

  11. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Vidal, J. C.; Fernandez, A. G.; Tirawat, R.

    Advanced components in next-generation concentrating solar power (CSP) applications will require advanced heat-transfer fluids and thermal-storage materials that work from about 550 °C to at least 720 °C, for integration with advanced power-conversion systems. To reach the cost target, less-expensive salts such as molten chlorides have been identified as high-temperature fluid candidates. High-strength alloys need to be identified and their mechanical and chemical degradation must be minimized to be used in CSP applications. Approaches for corrosion mitigation need to be investigated and optimized to drive down corrosion rates to acceptable levels—in the order of tens of micrometers per year—for achievingmore » a long system lifetime of at least 30 years. Surface passivation is a good corrosion mitigation approach because the alloy could then be exposed to both the liquid and the vapor phases of the salt mixture. In this investigation, we pre-oxidized the alumina-forming alloys Inconel 702, Haynes 224, and Kanthal APMT at different temperatures, dwelling times, and atmospheres to produce the passivation by forming protective oxides at the surface. The pretreated alloys were later corroded in molten MgCl2 – 64.41 wt% KCl at 700 °C in a flowing Ar atmosphere. We performed electrochemical techniques such as open-circuit potential followed by a potentiodynamic polarization sweep and conventional long-term weight-change tests to down-select the best-performing alloy and pre-oxidation conditions. The best corrosion results were obtained for In702 pre-oxidized in zero air at 1050 °C for 4 h. Finally, metallographic characterization of the pre-oxidized alloys and of the corroded surfaces showed that the formation of dense and uniform alumina scale during the pre-oxidation appears to protect the alloy from attack by molten chloride.« less

  12. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests

    DOE PAGES

    Gomez-Vidal, J. C.; Fernandez, A. G.; Tirawat, R.; ...

    2017-02-24

    Advanced components in next-generation concentrating solar power (CSP) applications will require advanced heat-transfer fluids and thermal-storage materials that work from about 550 °C to at least 720 °C, for integration with advanced power-conversion systems. To reach the cost target, less-expensive salts such as molten chlorides have been identified as high-temperature fluid candidates. High-strength alloys need to be identified and their mechanical and chemical degradation must be minimized to be used in CSP applications. Approaches for corrosion mitigation need to be investigated and optimized to drive down corrosion rates to acceptable levels—in the order of tens of micrometers per year—for achievingmore » a long system lifetime of at least 30 years. Surface passivation is a good corrosion mitigation approach because the alloy could then be exposed to both the liquid and the vapor phases of the salt mixture. In this investigation, we pre-oxidized the alumina-forming alloys Inconel 702, Haynes 224, and Kanthal APMT at different temperatures, dwelling times, and atmospheres to produce the passivation by forming protective oxides at the surface. The pretreated alloys were later corroded in molten MgCl2 – 64.41 wt% KCl at 700 °C in a flowing Ar atmosphere. We performed electrochemical techniques such as open-circuit potential followed by a potentiodynamic polarization sweep and conventional long-term weight-change tests to down-select the best-performing alloy and pre-oxidation conditions. The best corrosion results were obtained for In702 pre-oxidized in zero air at 1050 °C for 4 h. Finally, metallographic characterization of the pre-oxidized alloys and of the corroded surfaces showed that the formation of dense and uniform alumina scale during the pre-oxidation appears to protect the alloy from attack by molten chloride.« less

  13. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  14. Selectivity of protein oxidative damage during aging in Drosophila melanogaster.

    PubMed Central

    Das, N; Levine, R L; Orr, W C; Sohal, R S

    2001-01-01

    The purpose of the present study was to determine whether oxidation of various proteins during the aging process occurs selectively or randomly, and whether the same proteins are damaged in different species. Protein oxidative damage to the proteins, present in the matrix of mitochondria in the flight muscles of Drosophila melanogaster and manifested as carbonyl modifications, was detected immunochemically with anti-dinitrophenyl-group antibodies. Aconitase was found to be the only protein in the mitochondrial matrix that exhibited an age-associated increase in carbonylation. The accrual of oxidative damage was accompanied by an approx. 50% loss in aconitase activity. An increase in ambient temperature, which elevates the rate of metabolism and shortens the life span of flies, caused an elevation in the amount of aconitase carbonylation and an accelerated loss in its activity. Exposure to 100% ambient oxygen showed that aconitase was highly susceptible to undergo oxidative damage and loss of activity under oxidative stress. Administration of fluoroacetate, a competitive inhibitor of aconitase activity, resulted in a dose-dependent decrease in the life span of the flies. Results of the present study demonstrate that protein oxidative damage during aging is a selective phenomenon, and might constitute a mechanism by which oxidative stress causes age-associated losses in specific biochemical functions. PMID:11696009

  15. Selection criteria for oxidation method in total organic carbon measurement.

    PubMed

    Yoon, GeunSeok; Park, Sang-Min; Yang, Heuiwon; Tsang, Daniel C W; Alessi, Daniel S; Baek, Kitae

    2018-05-01

    During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO 2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    NASA Astrophysics Data System (ADS)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  17. Pd/Cu-Oxide Nanoconjugate at Zeolite-Y Crystallite Crafting the Mesoporous Channels for Selective Oxidation of Benzyl-Alcohols.

    PubMed

    Sharma, Mukesh; Das, Biraj; Sharma, Mitu; Deka, Biplab K; Park, Young-Bin; Bhargava, Suresh K; Bania, Kusum K

    2017-10-11

    Solid-state grinding of palladium and copper salts allowed the growth of palladium/copper oxide interface at the zeolite-Y surface. The hybrid nanostructured material was used as reusable heterogeneous catalyst for selective oxidation of various benzyl alcohols. The large surface area provided by the zeolite-Y matrix highly influenced the catalytic activity, as well as the recyclability of the synthesized catalyst. Impregnation of PdO-CuO nanoparticles on zeolite crystallite leads to the generation of mesoporous channel that probably prevented the leaching of the metal-oxide nanoparticles and endorsed high mass transfer. Formation of mesoporous channel at the external surface of zeolite-Y was evident from transmission electron microscopy and surface area analysis. PdO-CuO nanoparticles were found to be within the range of 2-5 nm. The surface area of PdO-CuO-Y catalyst was found to be much lower than parent zeolite-Y. The decrease in surface area as well as the presence of hysteresis loop in the N 2 -adsoprtion isotherm further suggested successful encapsulation of PdO-CuO nanoparticles via the mesoporous channel formation. The high positive shifting in binding energy in both Pd and Cu was attributed to the influence of zeolite-Y framework on lattice contraction of metal oxides via confinement effect. PdO-CuO-Y catalyst was found to oxidize benzyl alcohol with 99% selectivity. On subjecting to microwave irradiation the same oxidation reaction was found to occur at ambient condition giving same conversion and selectivity.

  18. Promotional Effects of In on Non-Oxidative Methane Transformation Over Mo-ZSM-5

    DOE PAGES

    Zhang, Yang; Kidder, Michelle; Ruther, Rose E.; ...

    2016-08-16

    In this paper, we present a new class of catalysts, InMo-ZSM- 5, which can be prepared by indium impregnation of Mo-ZSM- 5. The incorporation of indium dramatically decreases coke formation during methane dehydroaromatization. The benzene and C 2 hydrocarbons selectivity among total hydrocarbons over InMo-ZSM- 5 remains comparable to that of Mo-ZSM- 5 despite reduced methane conversion due to decreased coke formation. We found 1 wt% indium to be optimal loading for reducing coke selectivity to half that of Mo-ZSM- 5. Characterization methods were not helpful in discerning the interaction of In with Mo but experiments with bimetallic 1In2Mo-ZSM- 5more » and mechanical mixture 1In+2Mo-ZSM- 5 suggest that In and Mo need to be in close proximity to suppress coke formation. Finally, this is supported by temperature programmed reduction experiments which show that In incorporation leads to lower Mo reduction temperature in In2Mo-ZMS- 5.« less

  19. Simultaneous metabolism of chloro- and methyl-aromatic compounds by selected bacterial strains. Final report, 20 August 1991-19 August 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Focht, D.D.

    Microorganisms are frequently able to degrade anthropogenic materials using pathways that evolved for the assimilation of related naturally-occurring compounds. Complications can arise, however, during the metabolism of mixtures when incompatible intermediates are formed from different components. The breakdown of chloro- and methyl-aromatics, for example, produces catechols which are oxidized differently: chlorocatechols are normally cleaved by ortho fission and methylcatechols by meta fission. If both systems act simultaneously, suicide substrates or dead-end metabolites are usually formed. Nevertheless, bacteria differ in their, ability to cope with such mixtures. A unique bacterium, Pseudomonas cepacia MB2 was isolated by selective enrichment on 2-methylbenzoate, yetmore » was also able to fortuitously utilize 3-chloro-2-methylbenzoate as a sole carbon source. This strain is unique in its ability to utilize an aromatic acid containing both a methyl and chloro substituent via the metafission pathway without the production of suicidal products.« less

  20. Superfund record of decision (EPA Region 5): Feed Materials Production Center, (USDOE), Operable Unit 4, Fernald, Hamilton County, OH, December 7, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This decision document presents the selected remedial action for Operable Unit 4 of the Fernald Site in Fernald, Ohio. The materials within Operable Unit 4 exhibit a wide range of properties. Most notable would be the elevated direct radiation associated with the K-65 residues versus the much lower direct radiation associated with cold metal oxides in Silo 3. Even more significant would be the much lower levels of contamination associated with the soils and building materials, like concrete, within the Operable Unit 4 Study Area. On the basis of the evaluation of final alternatives, the selected remedy addressing Operable Unitmore » 4 at the FEMP is a combination of Alternatives 3A.1/Vit - Removal, Vitrification, and Off-site Disposal - Nevada Test Site (NTS); 3B.1/Vit - Removal, Vitrification, and Off-site Disposal - NTS; and 2C - Demolition, Removal and On-Property Disposal.« less

  1. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H{sub 2}O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xinbo; Wang, Danjun; College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000

    2014-09-15

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalystmore » is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.« less

  2. Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo

    DOE PAGES

    Krogel, Jaron T.; Reboredo, Fernando A.

    2018-01-25

    Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this paper, we explore alternatives to reduce the memory usage of splined orbitalsmore » without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. Finally, for production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.« less

  3. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt.

    PubMed

    Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu

    2017-01-07

    In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained.

  4. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt

    PubMed Central

    Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu

    2017-01-01

    In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained. PMID:28772406

  5. Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogel, Jaron T.; Reboredo, Fernando A.

    Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this paper, we explore alternatives to reduce the memory usage of splined orbitalsmore » without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. Finally, for production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.« less

  6. Initial Assessment of Environmental Barrier Coatings for the Prometheus Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Frederick

    2005-12-15

    Depending upon final design and materials selections, a variety of engineering solutions may need to be considered to avoid chemical degradation of components in a notional space nuclear power plant (SNPP). Coatings are one engineered approach that was considered. A comprehensive review of protective coating technology for various space-reactor structural materials is presented, including refractory metal alloys [molybdenum (Mo), tungsten (W), rhenium (Re), tantalum (Ta), and niobium (Nb)], nickel (Ni)-base superalloys, and silicon carbide (Sic). A summary description of some common deposition techniques is included. A literature survey identified coatings based on silicides or iridium/rhenium as the primary methods formore » environmental protection of refractory metal alloys. Modified aluminide coatings have been identified for superalloys and multilayer ceramic coatings for protection of Sic. All reviewed research focused on protecting structural materials from extreme temperatures in highly oxidizing conditions. Thermodynamic analyses indicate that some of these coatings may not be protective in the high-temperature, impure-He environment expected in a Prometheus reactor system. Further research is proposed to determine extensibility of these coating materials to less-oxidizing or neutral environments.« less

  7. Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems

    DOE PAGES

    Martinez, Ulises; Dumont, Joseph H.; Holby, Edward F.; ...

    2016-03-18

    Graphitic materials are very essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction. We demonstrate that removal of intercalated water using simple solvent treatments causes significant structural reorganization, substantially affecting the oxygen reduction reaction (ORR) activity and stability of nitrogen-doped graphitic systems. Amid contrasting reports describing the ORR activity of GN-based catalysts in alkaline electrolytes, we demonstratemore » superior activity in an acidic electrolyte with an onset potential of ~0.9 V, a half-wave potential (E ½) of 0.71 V, and a selectivity for four-electron reduction of >95%. Finally and further, durability testing showed E ½ retention >95% in N 2- and O 2-saturated solutions after 2000 cycles, demonstrating the highest ORR activity and stability reported to date for GN-based electrocatalysts in acidic media.« less

  8. Oxygen sensitive, refractory oxide composition

    DOEpatents

    Holcombe, Jr., Cressie E.; Smith, Douglas D.

    1976-01-01

    Oxide compositions containing niobium pentoxide and an oxide selected from the group consisting of hafnia, titania, and zirconia have electrical conductivity characteristics which vary greatly depending on the oxygen content.

  9. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells.

    PubMed

    Radziun, E; Dudkiewicz Wilczyńska, J; Książek, I; Nowak, K; Anuszewska, E L; Kunicki, A; Olszyna, A; Ząbkowski, T

    2011-12-01

    The rapid development of nanotechnology raises both enthusiasm and anxiety among researchers, which is related to the safety use of the manufactured materials. Thus, the aim of this study was to investigate the effect of aluminium oxide nanoparticles on the viability of selected mammalian cells in vitro. The aluminium oxide nanoparticles were characterised using SEM and BET analyses. Based on Zeta (ζ) potential measurements and particle size distribution, the tested suspensions of aluminium oxide nanoparticles in water and nutrient solutions with or without FBS were classified as unstable. Cell viability, the degree of apoptosis induction and nanoparticles internalization into the cells were assessed after 24 h of cell exposure to Al2O3 nanoparticles. Our results confirm the ability of aluminium oxide nanoparticles to penetrate through the membranes of L929 and BJ cells. Despite this, there was no significant increase in apoptosis or decrease in cell viability observed, suggesting that aluminium oxide nanoparticles in the tested range of concentrations has no cytotoxic effects on the selected mammalian cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans

    PubMed Central

    Harahuc, Lesia; Lizama, Hector M.; Suzuki, Isamu

    2000-01-01

    The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn. PMID:10698768

  11. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; ...

    2016-10-11

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O 2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H 2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O 2 oxidation forms a nearly stoichiometric Al 2O 3 structure that provides improved protection tomore » the metallic substrate by barring the outward diffusion of metals. By contrast, the H 2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less

  12. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O 2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H 2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O 2 oxidation forms a nearly stoichiometric Al 2O 3 structure that provides improved protection tomore » the metallic substrate by barring the outward diffusion of metals. By contrast, the H 2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less

  13. Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview

    PubMed Central

    Woo, Hyung-Sik; Na, Chan Woong; Lee, Jong-Heun

    2016-01-01

    Strategies for the enhancement of gas sensing properties, and specifically the improvement of gas selectivity of metal oxide semiconductor nanowire (NW) networks grown by chemical vapor deposition and thermal evaporation, are reviewed. Highly crystalline NWs grown by vapor-phase routes have various advantages, and thus have been applied in the field of gas sensors over the years. In particular, n-type NWs such as SnO2, ZnO, and In2O3 are widely studied because of their simple synthetic preparation and high gas response. However, due to their usually high responses to C2H5OH and NO2, the selective detection of other harmful and toxic gases using oxide NWs remains a challenging issue. Various strategies—such as doping/loading of noble metals, decorating/doping of catalytic metal oxides, and the formation of core–shell structures—have been explored to enhance gas selectivity and sensitivity, and are discussed herein. Additional methods such as the transformation of n-type into p-type NWs and the formation of catalyst-doped hierarchical structures by branch growth have also proven to be promising for the enhancement of gas selectivity. Accordingly, the physicochemical modification of oxide NWs via various methods provides new strategies to achieve the selective detection of a specific gas, and after further investigations, this approach could pave a new way in the field of NW-based semiconductor-type gas sensors. PMID:27657076

  14. Development of an azanoradamantane-type nitroxyl radical catalyst for class-selective oxidation of alcohols.

    PubMed

    Doi, Ryusuke; Shibuya, Masatoshi; Murayama, Tsukasa; Yamamoto, Yoshihiko; Iwabuchi, Yoshiharu

    2015-01-02

    The development of 1,5-dimethyl-9-azanoradamantane N-oxyl (DMN-AZADO; 1,5-dimethyl-Nor-AZADO, 2) as an efficient catalyst for the selective oxidation of primary alcohols in the presence of secondary alcohols is described. The compact and rigid structure of the azanoradamantane nucleus confers potent catalytic ability to DMN-AZADO (2). A variety of hindered primary alcohols such as neopentyl primary alcohols were efficiently oxidized by DMN-AZADO (2) to the corresponding aldehydes, whereas secondary alcohols remained intact. DMN-AZADO (2) also has high catalytic efficiency for one-pot oxidation from primary alcohols to the corresponding carboxylic acids in the presence of secondary alcohols and for oxidative lactonization from diols.

  15. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation

    PubMed Central

    2011-01-01

    Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075

  16. Surface Chemistry of Nano-Structured Mixed Metal Oxide Films

    DTIC Science & Technology

    2012-12-11

    surface chemical and catalytic properties of the films, and finally (iv) we also investigated some of these materials as electrodes for the photo-oxidation of water and as anode materials for lithium ion batteries .

  17. 49 CFR 268.21 - Down-selection of one or more Maglev projects for further study and selection of one project for...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... further study and selection of one project for final design, engineering, and construction funding. 268.21... and selection of one project for final design, engineering, and construction funding. (a) Upon... analyses necessary prior to initiation of construction. Final design and engineering work will also be...

  18. 49 CFR 268.21 - Down-selection of one or more Maglev projects for further study and selection of one project for...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... further study and selection of one project for final design, engineering, and construction funding. 268.21... and selection of one project for final design, engineering, and construction funding. (a) Upon... analyses necessary prior to initiation of construction. Final design and engineering work will also be...

  19. 49 CFR 268.21 - Down-selection of one or more Maglev projects for further study and selection of one project for...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... further study and selection of one project for final design, engineering, and construction funding. 268.21... and selection of one project for final design, engineering, and construction funding. (a) Upon... analyses necessary prior to initiation of construction. Final design and engineering work will also be...

  20. 49 CFR 268.21 - Down-selection of one or more Maglev projects for further study and selection of one project for...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... further study and selection of one project for final design, engineering, and construction funding. 268.21... and selection of one project for final design, engineering, and construction funding. (a) Upon... analyses necessary prior to initiation of construction. Final design and engineering work will also be...

  1. 49 CFR 268.21 - Down-selection of one or more Maglev projects for further study and selection of one project for...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... further study and selection of one project for final design, engineering, and construction funding. 268.21... and selection of one project for final design, engineering, and construction funding. (a) Upon... analyses necessary prior to initiation of construction. Final design and engineering work will also be...

  2. Selective oxidation of alcohols using photoactive VO@g-C3N4.

    EPA Science Inventory

    A photoactive VO@g-C3N4 catalyst has been developed for the selective oxidation of alcohols to the corresponding aldehydes and ketones. The visible light mediated activity of the catalyst could be attributed to photoactive graphitic carbon nitrides surface.

  3. Photo-induced oxidant-free oxidative C-H/N-H cross-coupling between arenes and azoles

    NASA Astrophysics Data System (ADS)

    Niu, Linbin; Yi, Hong; Wang, Shengchun; Liu, Tianyi; Liu, Jiamei; Lei, Aiwen

    2017-02-01

    Direct cross-coupling between simple arenes and heterocyclic amines under mild conditions is undoubtedly important for C-N bonds construction. Selective C(sp2)-H amination is more valuable. Herein we show a selective C(sp2)-H amination of arenes (alkyl-substituted benzenes, biphenyl and anisole derivatives) accompanied by hydrogen evolution by using heterocyclic azoles as nitrogen sources. The reaction is selective for C(sp2)-H bonds, providing a mild route to N-arylazoles. The KIE (kinetic isotope effect) experiment reveals the cleavage of C-H bond is not involved in the rate-determining step. Kinetic studies indicate the first-order behaviour with respect to the arene component. It is interesting that this system works without the need for any sacrificial oxidant and is highly selective for C(sp2)-H activation, whereas C(sp3)-H bonds are unaffected. This study may have significant implications for the functionalization of methylarenes which are sensitive to oxidative conditions.

  4. Selective oxidation of dual phase steel after annealing at different dew points

    NASA Astrophysics Data System (ADS)

    Lins, Vanessa de Freitas Cunha; Madeira, Laureanny; Vilela, Jose Mario Carneiro; Andrade, Margareth Spangler; Buono, Vicente Tadeu Lopes; Guimarães, Juliana Porto; Alvarenga, Evandro de Azevedo

    2011-04-01

    Hot galvanized steels have been extensively used in the automotive industry. Selective oxidation on the steel surface affects the wettability of zinc on steel and the grain orientation of inhibition layer (Fe-Al-Zn alloy) and reduces the iron diffusion to the zinc layer. The aim of this work is to identify and quantify selective oxidation on the surface of a dual phase steel, and an experimental steel with a lower content of manganese, annealed at different dew points. The techniques employed were atomic force microscopy, X-ray photoelectron spectroscopy, and glow discharge optical emission spectroscopy. External selective oxidation was observed for phosphorus on steel surface annealed at 0 °C dp, and for manganese, silicon, and aluminum at a lower dew point. The concentration of manganese was higher on the dual phase steel surface than on the surface of the experimental steel. The concentration of molybdenum on the surface of both steels increased as the depth increased.

  5. Spin-on metal oxide materials with high etch selectivity and wet strippability

    NASA Astrophysics Data System (ADS)

    Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Hong, SungEun; Her, YoungJun

    2016-03-01

    Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.

  6. Air treatment project: Final summary report and bibliography. Technical memorandum, 1 October 1993--30 September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J.M.

    This summary report describes the results of more than two years of research conducted with funding provided by SERDP, the Marine Corps Logistic Bases (MCLB) and the Navy Department`s LINC (Repair Technology) Program. The research focused on the destruction of VOCs in paint booth exhaust using hybrid air pollution control technologies. The hybrid system selected included three principle modules: UV photochemical destruction; counter-flow packed bed scrubbing using activated oxygen; and granular activation of carbon adsorption with subsequent oxidative regeneration of the carbon. The stated goals of the research included enhanced understanding of this set of technologies to support design ofmore » smaller, more affordable treatment system for both DoD and commercial application.« less

  7. Experimental and thermodynamic study of Co-Fe and Mn-Fe based mixed metal oxides for thermochemical energy storage application

    NASA Astrophysics Data System (ADS)

    André, Laurie; Abanades, Stéphane; Cassayre, Laurent

    2017-06-01

    Metal oxides are potential materials for thermochemical heat storage, and among them, cobalt oxide and manganese oxide are attracting attention. Furthermore, studies on mixed oxides are ongoing, as the synthesis of mixed oxides could be a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering, selected for thermochemical heat storage application. The addition of iron oxide is under investigation and the obtained results are presented. This work proposes a comparison of thermodynamic modelling with experimental data in order to identify the impact of iron oxide addition to cobalt oxide and manganese oxide. Fe addition decreased the redox activity and energy storage capacity of Co3O4, whereas the cycling stability of Mn2O3 was significantly improved with added Fe amounts above 20 mol% while the energy storage capacity was unchanged. The thermodynamic modelling method to predict the behavior of the Mn-Fe-O and Co-Fe-O systems was validated, and the possibility to identify other mixed oxides becomes conceivable, by enabling the selection of transition metals additives for metal oxides destined for thermochemical energy storage applications.

  8. Selective aerobic alcohol oxidation method for conversion of lignin into simple aromatic compounds

    DOEpatents

    Stahl, Shannon S; Rahimi, Alireza

    2015-03-03

    Described is a method to oxidize lignin or lignin sub-units. The method includes oxidation of secondary benzylic alcohol in the lignin or lignin sub-unit to a corresponding ketone in the presence of unprotected primarily aliphatic alcohol in the lignin or lignin sub-unit. The optimal catalyst system consists of HNO.sub.3 in combination with another Bronsted acid, in the absence of a metal-containing catalyst, thereby yielding a selectively oxidized lignin or lignin sub-unit. The method may be carried out in the presence or absence of additional reagents including TEMPO and TEMPO derivatives.

  9. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variationsmore » among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  10. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.

    We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  11. A DFT study on the enthalpies of thermite reactions and enthalpies of formation of metal composite oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ying; Wang, Meng-jie; Chang, Chun-ran; Xu, Kang-zhen; Ma, Hai-xia; Zhao, Feng-qi

    2018-05-01

    The standard thermite reaction enthalpies (ΔrHmθ) for seven metal oxides were theoretically analyzed using density functional theory (DFT) under five different functional levels, and the results were compared with experimental values. Through the comparison of the linear fitting constants, mean error and root mean square error, the Perdew-Wang functional within the framework of local density approximation (LDA-PWC) and Perdew-Burke-Ernzerhof exchange-correlation functional within the framework of generalized gradient approximation (GGA-PBE) were selected to further calculate the thermite reaction enthalpies for metal composite oxides (MCOs). According to the Kirchhoff formula, the standard molar reaction enthalpies for these MCOs were obtained and their standard molar enthalpies of formation (ΔfHmθ) were finally calculated. The results indicated that GGA-PBE is the most suitable one out of the total five methods to calculate these oxides. Tungstate crystals present the maximum deviation of the enthalpies of thermite reactions for MCOs and these of their physical metal oxide mixtures, but ferrite crystals are the minimum. The correlation coefficients are all above 0.95, meaning linear fitting results are very precise. And the molar enthalpies of formation for NiMoO4, CuMoO4, PbZrO3 (Pm/3m), PbZrO3 (PBA2), PbZrO3 (PBam), MgZrO3, CdZrO3, MnZrO3, CuWO4 and Fe2WO6 were first obtained as -1078.75, -1058.45, -1343.87, -1266.54, -1342.29, -1333.03, -1210.43, -1388.05, -1131.07 and - 1860.11 kJ·mol-1, respectively.

  12. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE PAGES

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; ...

    2016-05-18

    We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  13. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    NASA Astrophysics Data System (ADS)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.

    2016-05-01

    Nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. We find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. The resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.

  14. DNA Oxidation Profiles of Copper Phenanthrene Chemical Nucleases

    NASA Astrophysics Data System (ADS)

    Molphy, Zara; Slator, Creina; Chatgilialoglu, Chryssostomos; Kellett, Andrew

    2015-04-01

    The deleterious effects of metal-catalyzed reactive oxygen species (ROS) in biological systems can be seen in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing, and neurodegenerative disorder. On the other hand however, targeted ROS production in the vicinity of nucleic acids - as demonstrated by metal-activated bleomycin - has paved the way for ROS-active chemotherapeutic drug development. Herein we report mechanistic investigations into the oxidative nuclease activity and redox properties of copper(II) developmental therapeutics [Cu(DPQ)(phen)]2+ (Cu-DPQ-Phen), [Cu(DPPZ)(phen)]2+ (Cu-DPPZ-Phen), and [{Cu(phen)2}2(μ-terph)](terph) (Cu-Terph), with results being compared directly to Sigman’s reagent [Cu(phen)2]2+ throughout (phen = 1,10-phenanthroline; DPQ = dipyridoquinoxaline; DPPZ = dipyridophenazine). Oxidative DNA damage was identified at the minor groove through use of surface bound recognition elements of methyl green, netropsin, and [Co(NH3)6]Cl3 that functioned to control complex accessibility at selected regions. ROS-specific scavengers and stabilisers were employed to identify the cleavage process, the results of which infer hydrogen peroxide produced metal-hydroxo or free hydroxyl radicals (•OH) as the predominant species. The extent of DNA damage owing to these radicals was then quantified through 8-oxo-2'-deoxyguanosine (8-oxo-dG) lesion detection under ELISA protocol with the overall trend following Cu-DPQ-Phen > Cu-Terph > Cu-Phen > Cu-DPPZ. Finally, the effects of oxidative damage on DNA replication processes were investigated using the polymerase chain reaction (PCR) where amplification of 120 base pair DNA sequences of varying base content were inhibited - particularly along A-T rich chains - through oxidative damage of the template strands.

  15. Simultaneous determination of tyramine and tryptamine and their precursor amino acids by micellar liquid chromatography and pulsed amperometric detection in wines.

    PubMed

    Gil-Agustí, M; Carda-Broch, S; Monferrer-Pons, Ll; Esteve-Romero, J

    2007-07-13

    Two biogenic amines, tryptamine and tyramine, and their precursors, tryptophan and tyrosine, were determined by a liquid chromatographic procedure. A hybrid micellar mobile phase of sodium dodecyl sulphate (SDS) and 1-propanol, a C18 column and electrochemical detection were used. A pH study in the range of 3-9 was performed and pH 3 was finally selected in accordance with resolution and analysis time. Oxidation potential was also checked in the range 0.6-0.9V: the maximum area obtained in all those potentials was at 0.8V, which was selected to carry out the analysis using a sequence of pulsed amperometric detection waveform. The four compounds were resolved using a mobile phase of 0.15M SDS-5% 1-propanol with an analysis time of 16 min. Repeatabilities and intermediate precision were evaluated at three different concentrations for each compound with RSD values lower than 2.6 and 4.8%, respectively. Limits of detection and quantification were also obtained within the 10-40 and 33-135 ng/ml ranges, respectively. Finally, the applicability of the procedure was tested in several types of wine and no matrix effect was observed. The possibility of direct sample introduction simplifies and greatly expedites the treatments with reduced cost, improving the accuracy of the procedures.

  16. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons.

    PubMed

    Shlosberg, Dan; Buskila, Yossi; Abu-Ghanem, Yasmin; Amitai, Yael

    2012-01-01

    Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO) fluorescent indicator diaminofluorescein-2 diacetate (DAF-2DA). However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity. Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4× objective. Histochemistry for NADPH-diaphorase (NADPH-d), a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during, and after illumination confirmed the selective damage to non-fast-spiking (FS) interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs) was significantly reduced at distances of 300-400 μm from the stimulation, but not when inhibition was non-selectively weakened with the GABA(A) blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  18. Repeated nitrous oxide exposure in rats causes a thermoregulatory sign-reversal with concurrent activation of opposing thermoregulatory effectors

    PubMed Central

    Ramsay, Douglas S; Woods, Stephen C; Kaiyala, Karl J

    2014-01-01

    Initial administration of 60% nitrous oxide (N2O) to rats at an ambient temperature of 21°C decreases core temperature (Tc), primarily via increased heat loss (HL). Over repeated N2O administrations, rats first develop tolerance to this hypothermia and subsequently exhibit hyperthermia (a sign-reversal) due primarily to progressive increases in heat production (HP). When rats initially receive 60% N2O in a thermal gradient, they become hypothermic while selecting cooler ambient temperatures that facilitate HL. This study investigated whether rats repeatedly administered 60% N2O in a thermal gradient would use the gradient to behaviorally facilitate, or oppose, the development of chronic tolerance and a hyperthermic sign-reversal. Male Long-Evans rats (N = 16) received twelve 3-h administrations of 60% N2O in a gas-tight, live-in thermal gradient. Hypothermia (Sessions 1–3), complete chronic tolerance (Sessions 4–6), and a subsequent transient hyperthermic sign-reversal (Sessions 7–12) sequentially developed. Despite the progressive recovery and eventual hyperthermic sign-reversal of Tc, rats consistently selected cooler ambient temperatures during all N2O administrations. A final 60% N2O administration in a total calorimeter indicated that the hyperthermic sign-reversal resulted primarily from increased HP. Thus, rats did not facilitate chronic tolerance development by moving to warmer locations in the gradient, and instead selected cooler ambient temperatures while simultaneously increasing autonomic HP. The inefficient concurrent activation of opposing effectors and the development of a sign-reversal are incompatible with homeostatic models of drug-adaptation and may be better interpreted using a model of drug-induced allostasis. PMID:25938127

  19. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) Is Selectively Toxic to Primary Dopaminergic Neurons In Vitro

    PubMed Central

    Griggs, Amy M.; Agim, Zeynep S.; Mishra, Vartika R.; Tambe, Mitali A.; Director-Myska, Alison E.; Turteltaub, Kenneth W.; McCabe, George P.; Rochet, Jean-Christophe; Cannon, Jason R.

    2014-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease. Much data has linked the etiology of PD to a variety of environmental factors. The majority of cases are thought to arise from a combination of genetic susceptibility and environmental factors. Chronic exposures to dietary factors, including meat, have been identified as potential risk factors. Although heterocyclic amines that are produced during high-temperature meat cooking are known to be carcinogenic, their effect on the nervous system has yet to be studied in depth. In this study, we investigated neurotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a highly abundant heterocyclic amine in cooked meat, in vitro. We tested toxicity of PhIP and the two major phase I metabolites, N-OH-PhIP and 4′-OH-PhIP, using primary mesencephalic cultures from rat embryos. This culture system contains both dopaminergic and nondopaminergic neurons, which allows specificity of neurotoxicity to be readily examined. We find that exposure to PhIP or N-OH-PhIP is selectively toxic to dopaminergic neurons in primary cultures, resulting in a decreased percentage of dopaminergic neurons. Neurite length is decreased in surviving dopaminergic neurons. Exposure to 4′-OH-PhIP did not produce significant neurotoxicity. PhIP treatment also increased formation of oxidative damage markers, 4-hydroxy-2-nonenal (HNE) and 3-nitrotyrosine in dopaminergic neurons. Pretreatment with N-acetylcysteine was protective. Finally, treatment with blueberry extract, a dietary factor with known antioxidant and other protective mechanisms, prevented PhIP-induced toxicity. Collectively, our study suggests, for the first time, that PhIP is selectively toxic to dopaminergic neurons likely through inducing oxidative stress. PMID:24718704

  20. Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection.

    PubMed

    Gullo, Maria; Giudici, Paolo

    2008-06-30

    This review focuses on acetic acid bacteria in traditional balsamic vinegar process. Although several studies are available on acetic acid bacteria ecology, metabolism and nutritional requirements, their activity as well as their technological traits in homemade vinegars as traditional balsamic vinegar is not well known. The basic technology to oxidise cooked grape must to produce traditional balsamic vinegar is performed by the so called "seed-vinegar" that is a microbiologically undefined starter culture obtained from spontaneous acetification of previous raw material. Selected starter cultures are the main technological improvement in order to innovate traditional balsamic vinegar production but until now they are rarely applied. To develop acetic acid bacteria starter cultures, selection criteria have to take in account composition of raw material, acetic acid bacteria metabolic activities, applied technology and desired characteristics of the final product. For traditional balsamic vinegar, significative phenotypical traits of acetic acid bacteria have been highlighted. Basic traits are: ethanol preferred and efficient oxidation, fast rate of acetic acid production, tolerance to high concentration of acetic acid, no overoxidation and low pH resistance. Specific traits are tolerance to high sugar concentration and to a wide temperature range. Gluconacetobacter europaeus and Acetobacter malorum strains can be evaluated to develop selected starter cultures since they show one or more suitable characters.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kattel, Shyam; Liu, Ping; Chen, Jingguang G.

    The chemical transformation of CO 2 not only mitigates the anthropogenic CO 2 emission into the Earth’s atmosphere but also produces carbon compounds that can be used as precursors for the production of chemicals and fuels. The activation and conversion of CO 2 can be achieved on multifunctional catalytic sites available at the metal/oxide interface by taking advantage of the synergy between the metal nanoparticles and oxide support. In this paper, we look at the recent progress in mechanistic studies of CO 2 hydrogenation to C1 (CO, CH 3OH, and CH 4) compounds on metal/oxide catalysts. On this basis, wemore » are able to provide a better understanding of the complex reaction network, grasp the capability of manipulating structure and combination of metal and oxide at the interface in tuning selectivity, and identify the key descriptors to control the activity and, in particular, the selectivity of catalysts. In conclusion, we also discuss challenges and future research opportunities for tuning the selective conversion of CO 2 on metal/oxide catalysts.« less

  2. A three-dimensional interpenetrating electrode of reduced graphene oxide for selective detection of dopamine.

    PubMed

    Yu, Xiaowen; Sheng, Kaixuan; Shi, Gaoquan

    2014-09-21

    Electrochemical detection of dopamine plays an important role in medical diagnosis. In this paper, we report a three-dimensional (3D) interpenetrating graphene electrode fabricated by electrochemical reduction of graphene oxide for selective detection of dopamine. This electrochemically reduced graphene oxide (ErGO) electrode was used directly without further functionalization or blending with other functional materials. This electrode can efficiently lower the oxidation potential of ascorbic acid; thus, it is able to selectively detect dopamine in the presence of ascorbic acid and uric acid. The ErGO-based biosensor exhibited a linear response towards dopamine in the concentration range of 0.1-10 μM with a low detection limit of 0.1 μM. Furthermore, this electrode has good reproducibility and environmental stability, and can be used to analyse real samples.

  3. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    NASA Astrophysics Data System (ADS)

    Kumar, Ramesh; Kaur, Amarjeet

    2016-05-01

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm-1 respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp2 hybridisation of carbon atoms at 1560 cm-1. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  4. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts.

    PubMed

    Witzke, M E; Dietrich, P J; Ibrahim, M Y S; Al-Bardan, K; Triezenberg, M D; Flaherty, D W

    2017-01-03

    Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C-C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cu δ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu 0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2-35 nm) and catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.

  5. Coated conductors

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Stan, Liliana; Usov, Igor O.; Wang, Haiyan

    2010-06-15

    Articles are provided including a base substrate having a layer of an IBAD oriented material thereon, and, a layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates upon the layer of an IBAD oriented material. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of barium-containing material selected from the group consisting of barium zirconate, barium hafnate, barium titanate, barium strontium titanate, barium dysprosium zirconate, barium neodymium zirconate and barium samarium zirconate, or a cubic metal oxide material selected from the group consisting of rare earth zirconates and rare earth hafnates.

  6. Polydopamine-Coated TiO2 Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light.

    PubMed

    Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik

    2016-05-01

    TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.

  7. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, Manoj V.; Bierl, Thomas W.

    1998-01-01

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

  8. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-07-27

    Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  9. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  10. Cu(1+) in HKUST-1: selective gas adsorption in the presence of water.

    PubMed

    Nijem, Nour; Bluhm, Hendrik; Ng, May L; Kunz, Martin; Leone, Stephen R; Gilles, Mary K

    2014-09-11

    Spectroscopic evidence for an enhanced binding of Nitric Oxide (NO) to metal centers with lower oxidation states (open Cu(1+) sites) in Cu3(btc)2 (HKUST-1) is presented. The Cu(1+) sites created by thermal treatment or X-ray exposure exhibit a preferential adsorption of NO compared to H2O. This phenomenon demonstrates the potential use of MOFs with lower oxidation state metal centers for selective gas separation.

  11. Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lum, Yanwei; Yue, Binbin; Lobaccaro, Peter

    Here, copper electrodes, prepared by reduction of oxidized metallic copper, have been reported to exhibit higher activity for the electrochemical reduction of CO 2 and better selectivity toward C 2 and C 3 (C 2+) products than metallic copper that has not been preoxidized. We report here an investigation of the effects of four different preparations of oxide-derived electrocatalysts on their activity and selectivity for CO 2 reduction, with particular attention given to the selectivity to C 2+ products. All catalysts were tested for CO 2 reduction in 0.1 M KHCO 3 and 0.1 M CsHCO 3 at applied voltagesmore » in the range from –0.7 to –1.0 V vs RHE. The best performing oxide-derived catalysts show up to ~70% selectivity to C 2+ products and only ~3% selectivity to C 1 products at –1.0 V vs RHE when CsHCO 3 is used as the electrolyte. In contrast, the selectivity to C 2+ products decreases to ~56% for the same catalysts tested in KHCO 3. By studying all catalysts under identical conditions, the key factors affecting product selectivity could be discerned. These efforts reveal that the surface area of the oxide-derived layer is a critical parameter affecting selectivity. A high selectivity to C 2+ products is attained at an overpotential of –1 V vs RHE by operating at a current density sufficiently high to achieve a moderately high pH near the catalyst surface but not so high as to cause a significant reduction in the local concentration of CO 2. On the basis of recent theoretical studies, a high pH suppresses the formation of C 1 relative to C 2+ products. At the same time, however, a high local CO 2 concentration is necessary for the formation of C 2+ products.« less

  12. Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction

    DOE PAGES

    Lum, Yanwei; Yue, Binbin; Lobaccaro, Peter; ...

    2017-07-06

    Here, copper electrodes, prepared by reduction of oxidized metallic copper, have been reported to exhibit higher activity for the electrochemical reduction of CO 2 and better selectivity toward C 2 and C 3 (C 2+) products than metallic copper that has not been preoxidized. We report here an investigation of the effects of four different preparations of oxide-derived electrocatalysts on their activity and selectivity for CO 2 reduction, with particular attention given to the selectivity to C 2+ products. All catalysts were tested for CO 2 reduction in 0.1 M KHCO 3 and 0.1 M CsHCO 3 at applied voltagesmore » in the range from –0.7 to –1.0 V vs RHE. The best performing oxide-derived catalysts show up to ~70% selectivity to C 2+ products and only ~3% selectivity to C 1 products at –1.0 V vs RHE when CsHCO 3 is used as the electrolyte. In contrast, the selectivity to C 2+ products decreases to ~56% for the same catalysts tested in KHCO 3. By studying all catalysts under identical conditions, the key factors affecting product selectivity could be discerned. These efforts reveal that the surface area of the oxide-derived layer is a critical parameter affecting selectivity. A high selectivity to C 2+ products is attained at an overpotential of –1 V vs RHE by operating at a current density sufficiently high to achieve a moderately high pH near the catalyst surface but not so high as to cause a significant reduction in the local concentration of CO 2. On the basis of recent theoretical studies, a high pH suppresses the formation of C 1 relative to C 2+ products. At the same time, however, a high local CO 2 concentration is necessary for the formation of C 2+ products.« less

  13. Oxidation corrosion resistant superalloys and coatings

    NASA Technical Reports Server (NTRS)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1978-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  14. Oxidation corrosion resistant superalloys and coatings

    NASA Technical Reports Server (NTRS)

    Jackson, Melvin R. (Inventor); Rairden, III, John R. (Inventor)

    1980-01-01

    An article of manufacture having improved high temperature oxidation and corrosion resistance comprising: (a) a superalloy substrate containing a carbide reinforcing phase, and (b) a coating consisting of chromium, aluminum, carbon, at least one element selected from iron, cobalt or nickel, and optionally an element selected from yttrium or the rare earth elements.

  15. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    EPA Science Inventory

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  16. HYDROCARBON OXIDATION OVER VANADIUM PHOSPHORUS OXIDE CATALYST USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Selective oxidation of hydrocarbons is one of the very important and challenging areas in industrial chemistry due to the wide ranging utility of the resulting oxygenates in fine chemical synthesis. Most of the existing processes for their oxidations employ toxic and often stoich...

  17. Chemically-modified graphenes for oxidation of DNA bases: analytical parameters.

    PubMed

    Goh, Madeline Shuhua; Bonanni, Alessandra; Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin

    2011-11-21

    We studied the electroanalytical performances of chemically-modified graphenes (CMGs) containing different defect densities and amounts of oxygen-containing groups, namely graphite oxide (GPO), graphene oxide (GO), thermally reduced graphene oxide (TR-GO) and electrochemically reduced graphene oxide (ER-GO) by comparing the sensitivity, selectivity, linearity and repeatability towards the oxidation of DNA bases. We have observed that for differential pulse voltammetric (DPV) detection of adenine and cytosine, all CMGs showed enhanced sensitivity to oxidation, while for guanine and thymine, ER-GO and TR-GO exhibited much improved sensitivity over bare glassy carbon (GC) as well as over GPO and GO. There is also significant selectivity enhancement when using GPO for adenine and TR-GO for thymine. Our results have uncovered that the differences in surface functionalities, structure and defects of various CMGs largely influence their electrochemical behaviour in detecting the oxidation of DNA bases. The findings in this report will provide a useful guide for the future development of label-free electrochemical devices for DNA analysis.

  18. The new IR and THz FEL facility at the Fritz Haber Institute in Berlin

    NASA Astrophysics Data System (ADS)

    Schöllkopf, Wieland; Gewinner, Sandy; Junkes, Heinz; Paarmann, Alexander; von Helden, Gert; Bluem, Hans P.; Todd, Alan M. M.

    2015-05-01

    A mid-infrared oscillator FEL has been commissioned at the Fritz Haber Institute. The accelerator consists of a thermionic gridded gun, a subharmonic buncher, and two S-band standing-wave copper structures. It provides a final electron energy adjustable from 15 to 50 MeV, low longitudinal (< 50 keV ps) and transverse emittance (< 20 πmm mrad), at more than 200 pC bunch charge with a micro-pulse repetition rate of 1 GHz and a macro-pulse length of up to 15 µs. Pulsed radiation with up to 100 mJ macro-pulse energy at about 0.5% FWHM bandwidth is routinely produced in the wavelength range from 4 to 48 µm. A characterization of the FEL performance in terms of pulse energy, bandwidth, and micro-pulse shape of the IR radiation is given. In addition, selected user results are presented. These include, for instance, spectroscopy of bio-molecules (peptides and small proteins) either conformer selected by ion mobility spectrometry or embedded in superfluid helium nano-droplets at 0.4 K, as well as vibrational spectroscopy of mass-selected metal-oxide clusters and protonated water clusters in the gas phase.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Personick, Michelle L.; Montemore, Matthew M.; Kaxiras, Efthimios

    Decreasing energy consumption in the production of platform chemicals is necessary to improve the sustainability of the chemical industry, which is the largest consumer of delivered energy. The majority of industrial chemical transformations rely on catalysts, and therefore designing new materials that catalyse the production of important chemicals via more selective and energy-efficient processes is a promising pathway to reducing energy use by the chemical industry. Efficiently designing new catalysts benefits from an integrated approach involving fundamental experimental studies and theoretical modelling in addition to evaluation of materials under working catalytic conditions. In this paper, we outline this approach inmore » the context of a particular catalyst—nanoporous gold (npAu)—which is an unsupported, dilute AgAu alloy catalyst that is highly active for the selective oxidative transformation of alcohols. Fundamental surface science studies on Au single crystals and AgAu thin-film alloys in combination with theoretical modelling were used to identify the principles which define the reactivity of npAu and subsequently enabled prediction of new reactive pathways on this material. Specifically, weak van der Waals interactions are key to the selectivity of Au materials, including npAu. Finally, we also briefly describe other systems in which this integrated approach was applied.« less

  20. Design and simulation of different multilayer solar selective coatings for solar thermal applications

    NASA Astrophysics Data System (ADS)

    El-Mahallawy, Nahed; Atia, Mostafa R. A.; Khaled, Amany; Shoeib, Madiha

    2018-04-01

    Research has adopted lately the improvement of solar collectors’ efficiency and durability by coating its surface with special selective coatings. The selectivity of any coat is governed by the ratio between the absorptivity of this coat in the UV range to its emissivity in the IR range (named selectivity). There emerged a need of using simulation software to estimate the effect of different elements and compounds on the optical properties before getting into experimental analysis. Several research has discussed the stability and durability of the coats under high temperature conditions since it was proved that the coat efficiency increases at high temperature; i.e. being more selective. This research has approached the simulation of different metal(M) / metal oxide (MOx) based tandems in order to obtain promising selective properties that can be taken into further experimental investigation. Five metals and six metal oxides were chosen based on previous literature to be simulated using OpenFilters open source software and results were analyzed. Oxides of tungsten, copper and silicon have shown superior selective results through different layering techniques than others.

  1. Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids.

    PubMed

    Castro, María Julia; Richmond, Victoria; Faraoni, María Belén; Murray, Ana Paula

    2018-05-17

    A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones's oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeol (3). All the derivatives showed a selective inhibition of butyrylcholinesterase over acetylcholinesterase (BChE vs. AChE). A kinetic study proved that compounds 2 and 9, the more potent inhibitors of the series, act as competitive inhibitors. Molecular modeling was used to understand their interaction with BChE, the role of carbonyl at C-16 and the selectivity towards this enzyme over AChE. These results indicate that oxidation at C-16 of the lupane skeleton is a key transformation in order to improve the cholinesterase inhibition of these compounds. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ...- rolled steel products either plated or coated with tin, lead, chromium, chromium oxides, both tin and lead (``terne plate''), or both chromium and chromium oxides (``tin-free steel''), whether or not...

  3. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (Final)

    EPA Science Inventory

    The SOx ISA reviews information on atmospheric science, exposure, dosimetry, mode of action, and health effects related to sulfur oxides and sulfur dioxide (SO2), including evidence from controlled human exposure, epidemiologic, and toxicological studies.

  4. Determination of atropine sulfate using a novel sensitive DNA-biosensor based on its interaction on a modified pencil graphite electrode.

    PubMed

    Ensafi, Ali A; Nasr-Esfahani, Parisa; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2015-01-01

    A novel, selective, rapid and simple electrochemical method is developed for the determination of atropine sulfate. UV-Vis and differential pulse voltammetry are used to study the interaction of atropine sulfate with salmon sperm ds-DNA on the surface of salmon sperm ds-DNA modified-pencil graphite electrode (PGE). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes (MWCNTs), titanium dioxide nanoparticles (TiO2NPs), and poly-dialyldimethylammonium chloride (PDDA) decorated with ds-DNA is tested for the determination of atropine sulfate. The electrochemical oxidation peak current of adenine and guanine bonded on the surface of ds-DNA/PDDA-TiO2NPs-MWCNTs/PGE is used to obtain the analytical signal. Decreases in the intensities of guanine and adenine oxidation signals after their interaction with atropine sulfate are used as indicator signals for the sensitive determination of atropine sulfate. Using ds-DNA/PDDA-TiO2NPs-MWCNTs/PGE and based on the guanine signal, linear calibration curves were obtained in the range of 0.6 to 30.0 μmol L(-1) and 30.0 to 600.0 μmol L(-1) atropine sulfate with low detection limits of 30.0 nmol L(-1). The biosensor shows a good selectivity for the determination of atropine sulfate. Finally, the applicability of the biosensor is evaluated by measuring atropine sulfate in real samples with good accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A candidate anti-HIV reservoir compound, auranofin, exerts a selective ‘anti-memory' effect by exploiting the baseline oxidative status of lymphocytes

    PubMed Central

    Chirullo, B; Sgarbanti, R; Limongi, D; Shytaj, I L; Alvarez, D; Das, B; Boe, A; DaFonseca, S; Chomont, N; Liotta, L; III Petricoin, E; Norelli, S; Pelosi, E; Garaci, E; Savarino, A; Palamara, A T

    2013-01-01

    Central memory (TCM) and transitional memory (TTM) CD4+ T cells are known to be the major cellular reservoirs for HIV, as these cells can harbor a transcriptionally silent form of viral DNA that is not targeted by either the immune system or current antiretroviral drug regimens. In the present study, we explored the molecular bases of the anti-HIV reservoir effects of auranofin (AF), a pro-oxidant gold-based drug and a candidate compound for a cure of AIDS. We here show that TCM and TTM lymphocytes have lower baseline antioxidant defenses as compared with their naive counterpart. These differences are mirrored by the effects exerted by AF on T-lymphocytes: AF was able to exert a pro-differentiating and pro-apoptotic effect, which was more pronounced in the memory subsets. AF induced an early activation of the p38 mitogen-activated protein kinase (p38 MAPK) followed by mitochondrial depolarization and a final burst in intracellular peroxides. The pro-differentiating effect was characterized by a downregulation of the CD27 marker expression. Interestingly, AF-induced apoptosis was inhibited by pyruvate, a well-known peroxide scavenger, but pyruvate did not inhibit the pro-differentiating effect of AF, indicating that the pro-apoptotic and pro-differentiating effects involve different pathways. In conclusion, our results demonstrate that AF selectively targets the TCM/TTM lymphocyte subsets, which encompass the HIV reservoir, by affecting redox-sensitive cell death pathways. PMID:24309931

  6. Environmental green chemistry as defined by photocatalysis.

    PubMed

    Herrmann, J-M; Duchamp, C; Karkmaz, M; Hoai, Bui Thu; Lachheb, H; Puzenat, E; Guillard, C

    2007-07-31

    Photocatalysis is efficient in several fields. Firstly, in selective mild oxidation: oxidation of gas and liquid hydrocarbons (alkanes, alkenes, cyclo-alkanes, aromatics) into aldehydes and ketons. Primary and secondary alcohols are also oxidized into their corresponding aldehydes or ketones. The high selectivity was ascribed to a photoactive neutral, atomic oxygen species. Once platinized (only 0.5wt.% Pt) titania may catalyze reactions involving hydrogen (deuterium-alkane isotopic exchange and alcohol dehydrogenation). For fine chemicals, high initial selectivities enable titania to address most of the twelve principles of "green chemistry", such as the synthesis of 4-tert-butyl-benzaldehyde, an important intermediate in perfume industry by direct selective oxidation of 4-tert-butyl-toluene with air. A new field recently appeared: thio-photocatalysis. Oxygen was replaced by sulfur, using H(2)S as a convenient and reactive source. For instance, the conversion of propene in 1-propanthiol was successfully obtained. The reaction was performed using either CdS or TiO(2). The latter was much more active than CdS. In environmental photocatalysis, titania becomes a total oxidation catalyst once in presence of water because of the photogeneration of OH radicals by neutralization of OH(-) surface groups by positive holes. Many toxic inorganic ions are oxidized in their harmless upper oxidized state. The total degradation of organic pollutants (pesticides, herbicides, insecticides, fungicides, dyes, etc. ...) is the main field of water photocatalytic decontamination. The UVA solar spectrum can de advantageously used as demonstrated by many campaigns performed in the solar pilot plant at the "Plataforma Solar de Almeria" (Spain).

  7. Redox-switchable copper(I) metallogel: a metal-organic material for selective and naked-eye sensing of picric acid.

    PubMed

    Sarkar, Sougata; Dutta, Soumen; Chakrabarti, Susmita; Bairi, Partha; Pal, Tarasankar

    2014-05-14

    Thiourea (TU), a commercially available laboratory chemical, has been discovered to introduce metallogelation when reacted with copper(II) chloride in aqueous medium. The chemistry involves the reduction of Cu(II) to Cu(I) with concomitant oxidation of thiourea to dithiobisformamidinium dichloride. The gel formation is triggered through metal-ligand complexation, i.e., Cu(I)-TU coordination and extensive hydrogen bonding interactions involving thiourea, the disulfide product, water, and chloride ions. Entangled network morphology of the gel selectively develops in water, maybe for its superior hydrogen-bonding ability, as accounted from Kamlet-Taft solvent parameters. Complete and systematic chemical analyses demonstrate the importance of both Cu(I) and chloride ions as the key ingredients in the metal-organic coordination gel framework. The gel is highly fluorescent. Again, exclusive presence of Cu(I) metal centers in the gel structure makes the gel redox-responsive and therefore it shows reversible gel-sol phase transition. However, the reversibility does not cause any morphological change in the gel phase. The gel practically exhibits its multiresponsive nature and therefore the influences of different probable interfering parameters (pH, selective metal ions and anions, selective complexing agents, etc.) have been studied mechanistically and the results might be promising for different applications. Finally, the gel material shows a highly selective visual response to a commonly used nitroexplosive, picric acid among a set of 19 congeners and the preferred selectivity has been mechanistically interpreted with density functional theory-based calculations.

  8. Characterization and corrosion behavior of F6NM stainless steel treated in high temperature water

    NASA Astrophysics Data System (ADS)

    Li, Zheng-yang; Cai, Zhen-bing; Yang, Wen-jin; Shen, Xiao-yao; Xue, Guo-hong; Zhu, Min-hao

    2018-03-01

    F6NM martensitic stainless steel was exposed to 350 °C water condition for 500, 1500, and 2500 h to simulate pressurized water reactor (PWR) condition. The characterization and corrosion behavior of the oxide film were investigated. Results indicate that the exposed steel surface formed a double-layer oxide film. The outer oxide film is Fe-rich and contains two type oxide particles. However, the inner oxide film is Cr-rich, and two oxide films, whose thicknesses increase with increasing exposure time. The oxide film reduces the corrosion behavior because the outer oxide film has many crack and pores. Finally, the mechanism and factors affecting the formation of the oxide film were investigated.

  9. Molecular water oxidation catalyst

    DOEpatents

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  10. Enabling Catalytic Strategies for Biomass Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waymouth, Robert

    This research program employed a mix of fundamental investigations of catalytic reactivity with targeted approaches for the catalytic synthesis of monomers and renewable polymers. We investigated the mechanisms of selective aerobic oxidation of polyols and carbohydrates with Pd catalysts with a special focus on the role of hydrogen peroxide and peroxy intermediates in an effort to increase catalyst lifetime. We also extended our studies on the selective oxidation of sugars to ketoses and the oxidative lactonization of 1,5-diols to generate new families of lactone monomers.

  11. BN Bonded BN fiber article and method of manufacture

    DOEpatents

    Hamilton, Robert S.

    1981-08-18

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.

  12. Mixed oxide nanoparticles and method of making

    DOEpatents

    Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  13. In situ self cross-linking of polyvinyl alcohol battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1979-01-01

    A battery separator was produced from a polyvinyl alcohol sheet structure which was subjected to an in situ, self crosslinking process by selective oxidation of the 1,2 diol units present in the polyvinyl alcohol sheet structure. The 1,2 diol units were cleaved to form aldehyde end groups which subsequently crosslink through acetalization of the 1,3 diol units of the polyvinyl alcohol. Selective oxidation was achieved using a solution of a suitable oxidizing agent such as periodic acid or lead tetraacetate.

  14. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, M.V.; Bierl, T.W.

    1998-03-03

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

  15. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk MgO catalysts for decomposition of sulfones showed that these catalysts are effective in decomposing oxidized sulfur compounds such as dibenzothiophene sulfone and 3-methyl benzothiophene sulfone to biphenyl and isopropyl benzene respectively and SO2. Study of catalyst structure-activity relationship revealed that in the range of 40--140 nm of MgO, crystallite size plays a critical role on activity of the catalyst for sulfone decomposition. In testing other alkali oxides, it was demonstrated that CaO was effective as a reagent in decomposing oxidized sulfur compounds in a crude oil at a much lower temperature than used for MgO based catalyst. Preliminary data on potential regeneration scheme of spent CaO is also discussed.

  16. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  17. In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing.

    PubMed

    Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya

    2017-01-25

    A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.

  18. Rapid Selective Circumneutral Degradation of Phenolic Pollutants Using Peroxymonosulfate-Iodide Metal-Free Oxidation: Role of Iodine Atoms.

    PubMed

    Feng, Yong; Lee, Po-Heng; Wu, Deli; Shih, Kaimin

    2017-02-21

    The development of environmentally friendly, oxidation-selective advanced oxidation processes (AOPs) for water decontamination is important for resource recovery, carbon dioxide abatement, and cost savings. In this study, we developed an innovative AOP using a combination of peroxymonosulfate (PMS) and iodide ions (I - ) for the selective removal of phenolic pollutants from aqueous solutions. The results showed that nearly 100% degradation of phenol, bisphenol A, and hydroquinone was achieved after reaction for 4 min in the presence of 65 μM PMS and 50 μM I - . PMS-I - oxidation had a wide effective pH range, with the best performance achieved under circumneutral conditions. The ratio between [PMS] and [I - ] influenced the degradation, and the optimal ratio was approximately 1.00 for the degradation of the phenols. Neither sulfate nor hydroxyl radicals were found to be the active species in PMS-I - oxidation. Instead, we found evidence that iodide atoms were the dominant oxidants. In addition, both Cl - and Br - also promoted the degradation of phenol in PMS solution. The results of this work may promote the application of reactive halogen species in water treatment.

  19. Acidity-controlled selective oxidation of alpha-pinene, isolated from Indonesian pine's turpentine oils (pinus merkusii)

    NASA Astrophysics Data System (ADS)

    Masruri; Farid Rahman, Mohamad; Nurkam Ramadhan, Bagus

    2016-02-01

    Alpha-pinene was isolated in high purity from turpentine oil harvested from Pinus merkusii plantation. The recent investigation on selective oxidation of alpha-pinene using potassium permanganate was undertaken under acidic conditions. The result taught the selective oxidation of alpha-pinene in acidic using potassium permanganate lead to the formation of 2-(3-acetyl-2,2-dimethylcyclobutyl)acetaldehyde or pinon aldehyde. The study method applied reaction in various different buffer conditions i.e. pH 3, 4, 5, and 6, respectively, and each reaction product was monitored using TLC every hour. Product determination was undertaken on spectrometry basis such as infrared, ultra violet-visible, gas chromatography- and liquid chromatography-mass spectrometry.

  20. Selective Targeting of the Cysteine Proteome by Thioredoxin and Glutathione Redox Systems

    PubMed Central

    Go, Young-Mi; Roede, James R.; Walker, Douglas I.; Duong, Duc M.; Seyfried, Nicholas T.; Orr, Michael; Liang, Yongliang; Pennell, Kurt D.; Jones, Dean P.

    2013-01-01

    Thioredoxin (Trx) and GSH are the major thiol antioxidants protecting cells from oxidative stress-induced cytotoxicity. Redox states of Trx and GSH have been used as indicators of oxidative stress. Accumulating studies suggest that Trx and GSH redox systems regulate cell signaling and metabolic pathways differently and independently during diverse stressful conditions. In the current study, we used a mass spectrometry-based redox proteomics approach to test responses of the cysteine (Cys) proteome to selective disruption of the Trx- and GSH-dependent systems. Auranofin (ARF) was used to inhibit Trx reductase without detectable oxidation of the GSH/GSSG couple, and buthionine sulfoximine (BSO) was used to deplete GSH without detectable oxidation of Trx1. Results for 606 Cys-containing peptides (peptidyl Cys) showed that 36% were oxidized more than 1.3-fold by ARF, whereas BSO-induced oxidation of peptidyl Cys was only 10%. Mean fold oxidation of these peptides was also higher by ARF than BSO treatment. Analysis of potential functional pathways showed that ARF oxidized peptides associated with glycolysis, cytoskeleton remodeling, translation and cell adhesion. Of 60 peptidyl Cys oxidized due to depletion of GSH, 41 were also oxidized by ARF and included proteins of translation and cell adhesion but not glycolysis or cytoskeletal remodeling. Studies to test functional correlates showed that pyruvate kinase activity and lactate levels were decreased with ARF but not BSO, confirming the effects on glycolysis-associated proteins are sensitive to oxidation by ARF. These data show that the Trx system regulates a broader range of proteins than the GSH system, support distinct function of Trx and GSH in cellular redox control, and show for the first time in mammalian cells selective targeting peptidyl Cys and biological pathways due to deficient function of the Trx system. PMID:23946468

  1. Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry.

    PubMed

    Mahmoodani, Fatemeh; Perera, Conrad O; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong

    2018-03-19

    In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MS n ) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. Graphical Abstract ᅟ.

  2. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment.

    PubMed

    Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, C R; Lechleiter, J D; Herman, B

    2016-02-15

    Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro -cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2 -/- mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2 -/- cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2 -/- primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis.

  3. Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mahmoodani, Fatemeh; Perera, Conrad O.; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong

    2018-03-01

    In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MSn) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. [Figure not available: see fulltext.

  4. Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities.

    PubMed

    Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi-Zhang

    2018-02-01

    Ever-increasing fossil-fuel combustion along with massive CO 2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO 2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO 2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO 2 conversion with an oxidative half reaction, e.g., H 2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO 2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO 2 reduction and H 2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO 2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO 2 -reduction cocatalysts for semiconductor-based photocatalytic CO 2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reduction of renal mass is lethal in mice lacking vimentin. Role of endothelin-nitric oxide imbalance.

    PubMed Central

    Terzi, F; Henrion, D; Colucci-Guyon, E; Federici, P; Babinet, C; Levy, B I; Briand, P; Friedlander, G

    1997-01-01

    Modulation of vascular tone by chemical and mechanical stimuli is a crucial adaptive phenomenon which involves cytoskeleton elements. Disruption, by homologous recombination, of the gene encoding vimentin, a class III intermediate filament protein mainly expressed in vascular cells, was reported to result in apparently normal phenotype under physiological conditions. In this study, we evaluated whether the lack of vimentin affects vascular adaptation to pathological situations, such as reduction of renal mass, a pathological condition which usually results in immediate and sustained vasodilation of the renal vascular bed. Ablation of 3/4 of renal mass was constantly lethal within 72 h in mice lacking vimentin (Vim-/-), whereas no lethality was observed in wild-type littermates. Death in Vim-/- mice resulted from end-stage renal failure. Kidneys from Vim-/- mice synthesized more endothelin, but less nitric oxide (NO), than kidneys from normal animals. In vitro, renal resistance arteries from Vim-/- mice were selectively more sensitive to endothelin, less responsive to NO-dependent vasodilators, and exhibited an impaired flow (shear stress)- induced vasodilation, which is NO dependent, as compared with those from normal littermates. Finally, in vivo administration of bosentan, an endothelin receptor antagonist, totally prevented lethality in Vim-/- mice. These results suggest that vimentin plays a key role in the modulation of vascular tone, possibly via the tuning of endothelin-nitric oxide balance. PMID:9294120

  6. Final Rule for Emission Standards for Locomotives and Locomotive Engines

    EPA Pesticide Factsheets

    In 1998, EPA promulgated final exhaust emission standards for oxides of nitrogen (NOx), hydrocarbons (HC), carbon monoxide (CO), particulate matter (PM) and smoke for newly manufactured and remanufactured locomotives and locomotive engines.

  7. Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation

    NASA Astrophysics Data System (ADS)

    Lichtor, Phillip A.; Miller, Scott J.

    2012-12-01

    Selectivity in the catalytic functionalization of complex molecules is a major challenge in chemical synthesis. The problem is magnified when there are several possible stereochemical outcomes and when similar functional groups occur repeatedly within the same molecule. Selective polyene oxidation provides an archetypical example of this challenge. Historically, enzymatic catalysis has provided the only precedents. Although non-enzymatic catalysts that meet some of these challenges became known, a comprehensive solution has remained elusive. Here, we describe low molecular weight peptide-based catalysts, discovered through a combinatorial synthesis and screening protocol, that exhibit site- and enantioselective oxidation of certain positions of various isoprenols. This diversity-based approach, which exhibits features reminiscent of the directed evolution of enzymes, delivers catalysts that compare favourably to the state-of-the-art for the asymmetric oxidation of these compounds. Moreover, the approach culminated in catalysts that exhibit alternative-site selectivity in comparison to oxidation catalysts previously described.

  8. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    PubMed

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  9. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    PubMed Central

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  10. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ramesh, E-mail: rameshphysicsdu@gmail.com; Kaur, Amarjeet, E-mail: amarkaur@physics.du.ac.in

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm{sup −1} respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp{sup 2} hybridisation of carbon atoms at 1560 cm{sup −1}. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such asmore » methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.« less

  11. Band gap tuning in transition metal oxides by site-specific substitution

    DOEpatents

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  12. Indigenous Starter Cultures to Improve Quality of Artisanal Dry Fermented Sausages from Chaco (Argentina).

    PubMed

    Palavecino Prpich, Noelia Z; Castro, Marcela P; Cayré, María E; Garro, Oscar A; Vignolo, Graciela M

    2015-01-01

    Lactic acid bacteria (LAB) and coagulase negative cocci (CNC) were isolated from artisanal dry sausages sampled from the northeastern region of Chaco, Argentina. In order to evaluate their performance in situ and considering technological features of the isolated strains, two mixed selected autochthonous starter cultures (SAS) were designed: (i) SAS-1 (Lactobacillus sakei 487 + Staphylococcus vitulinus C2) and (ii) SAS-2 (L. sakei 442 + S. xylosus C8). Cultures were introduced into dry sausage manufacturing process at a local small-scale facility. Microbiological and physicochemical parameters were monitored throughout fermentation and ripening periods, while sensory attributes of the final products were evaluated by a trained panel. Lactic acid bacteria revealed their ability to colonize and adapt properly to the meat matrix, inhibiting the growth of spontaneous microflora and enhancing safety and hygienic profile of the products. Both SAS showed a beneficial effect on lipid oxidation and texture of the final products. Staphylococcus vitulinus C2, from SAS-1, promoted a better redness of the final product. Sensory profile revealed that SAS addition preserved typical sensory attributes. Introduction of these cultures could provide an additional tool to standardize manufacturing processes aiming to enhance safety and quality while keeping typical sensory attributes of regional dry fermented sausages.

  13. Analogues of 2-aminopyridine-based selective inhibitors of neuronal nitric oxide synthase with increased bioavailability

    PubMed Central

    Lawton, Graham R.; Ranaivo, Hantamalala Ralay; Chico, Laura K.; Ji, Haitao; Xue, Fengtian; Martásek, Pavel; Roman, Linda J.; Watterson, D. Martin; Silverman, Richard B.

    2009-01-01

    Overproduction of nitric oxide by neuronal nitric oxide synthase (nNOS) has been linked to several neurodegenerative diseases. We have recently designed potent and isoform selective inhibitors of nNOS, but the lead compound contains several basic functional groups. A large number of charges and hydrogen bond donors can impede the ability of molecules to cross the blood brain barrier and thereby limit the effectiveness of potential neurological therapeutics. Replacement of secondary amines in our lead compound with neutral ether and amide groups was made to increase bioavailability and to determine if the potency and selectivity of the inhibitor would be impacted. An ether analogue has been identified that retains a similar potency and selectivity to that of the lead compound, and shows increased ability to penetrate the blood brain barrier. PMID:19268602

  14. Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzke, M. E.; Dietrich, P. J.; Ibrahim, M. Y. S.

    2016-12-12

    Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C–C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cuδ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2–35 nm) andmore » catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.« less

  15. Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes

    DOE PAGES

    Kraemer, Shannon K.; Rondinone, Adam Justin; Tsai, Yu-Tung; ...

    2015-11-02

    Support plays a complex role in catalysis by supported metal oxides and the exact support effect still remains elusive. One of the approaches to gain fundamental insights into the support effect is to utilize model support systems. In this study, we employed for the first time titania nanoshapes as the model supports and investigated how the variation of surface structure of the support (titania, TiO 2) impacts the catalysis of supported oxide (vanadia, VO x). TiO 2 truncated rhombi, spheres and rods were synthesized via hydrothermal method and characterized with XRD and TEM. These TiO 2 nanoshapes represent different mixturesmore » of surface facets including [1 0 1], [0 1 0] and [0 0 1] and were used to support vanadia. The structure of supported VO x species was characterized in detail with in situ Raman spectroscopy as a function of loading on the three TiO 2 nanoshapes. Oxidative dehydrogenation (ODH) of isobutane to isobutene was used as a model reaction to test how the support shape influences the activity, selectivity and activation energy of the surface VO x species. It was shown that the shape of TiO 2 support does not pose evident effect on either the structure of surface VO x species or the catalytic performance of surface VO x species in isobutane ODH reaction. Finally, this insignificant support shape effect was ascribed to the small difference in the surface oxygen vacancy formation energy among the different TiO 2 surfaces and the multi-faceting nature of the TiO 2 nanoshapes.« less

  16. Evaluation of the Carcinogenicity of Ethylene Oxide (2006 External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of ethylene oxide (cancer) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  17. 14 CFR 1214.1105 - Final ranking.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Recruitment and Selection Program § 1214.1105 Final ranking. Final rankings will be based on a combination of the selection board's initial evaluations and the results of the interview process. Veteran's...

  18. SELECTIVE OXIDATION OF ALCOHOLS BY MOLECULAR OXYGEN OVER A PD/MGO CATALYST IN THE ABSENCE OF ANY ADDITIVES

    EPA Science Inventory

    Selective oxidation of alcohols to the corresponding carbonyl products using molecular oxygen is achieved over a simple and easily recyclable 1% Pd/MgO impregnated heterogeneous catalyst in the presence of trifluorotoluene. A variety of activated and non-activated alcohols are ef...

  19. SELECTIVE OXIDATION OF ALCOHOLS IN GAS PHASE USING LIGHT-ACTIVATED TITANIUM DIOXIDE

    EPA Science Inventory

    Selective oxidations of various primary and secondary alcohols were studied in a gas phase photochemical reactor using immobilized TiO2 catalyst. An annular photoreactor was used at 463K with an average contact time of 32sec. The system was found to be specifically suited for the...

  20. High-quantum efficiency, long-lived luminescing refractory oxides

    DOEpatents

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  1. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn2S4 microspheres under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan

    2013-09-01

    Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.

  2. Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Rodríguez-Reyes, Juan Carlos F.; Friend, Cynthia M.; Madix, Robert J.

    2012-08-01

    Benzyl alcohol has received substantial attention as a probe molecule to test the selectivity and efficiency of novel metallic gold catalysts. Herein, the mechanisms of benzyl alcohol oxidation on a gold surface covered with atomic oxygen are elucidated; the results show direct correspondence to the reaction on gold-based catalysts. The selective, partial oxidation of benzyl alcohol to benzaldehyde is achieved with low oxygen surface concentrations and takes place through dehydrogenation of the alcohol to form benzaldehyde via a benzyloxy (C6H5-CH2O) intermediate. While in this case atomic oxygen plays solely a dehydrogenating role, at higher concentrations it leads to the formation of intermediates from benzaldehyde, producing benzoic acid and CO2. Facile ester (benzyl benzoate) formation also occurs at low oxygen concentrations, which indicates that benzoic acid is not a precursor of further oxidation of the ester; instead, the ester is produced by the coupling of adsorbed benzyloxy and benzaldehyde. Key to the high selectivity seen at low oxygen concentrations is the fact that the production of the aldehyde (and esters) is kinetically favored over the production of benzoic acid.

  3. Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition.

    PubMed

    Hutchings, Graham J; Kiely, Christopher J

    2013-08-20

    The discovery that supported gold nanoparticles are exceptionally effective catalysts for redox reactions has led to an explosion of interest in gold nanoparticles. In addition, incorporating a second metal as an alloy with gold can enhance the catalyst performance even more. The addition of small amounts of gold to palladium, in particular, and vice versa significantly enhances the activity of supported gold-palladium nanoparticles as redox catalysts through what researchers believe is an electronic effect. In this Account, we describe and discuss methodologies for the synthesis of supported gold-palladium nanoparticles and their use as heterogeneous catalysts. In general, three key challenges need to be addressed in the synthesis of bimetallic nanoparticles: (i) control of the particle morphology, (ii) control of the particle size distribution, and (iii) control of the nanoparticle composition. We describe three methodologies to address these challenges. First, we discuss the relatively simple method of coimpregnation. Impregnation allows control of particle morphology during alloy formation but does not control the particle compositions or the particle size distribution. Even so, we contend that this method is the best preparation method in the catalyst discovery phase of any project, since it permits the investigation of many different catalyst structures in one experiment, which may aid the identification of new catalysts. A second approach, sol-immobilization, allows enhanced control of the particle size distribution and the particle morphology, but control of the composition of individual nanoparticles is not possible. Finally, a modified impregnation method can allow the control of all three of these crucial parameters. We discuss the effect of the different methodologies on three redox reactions: benzyl alcohol oxidation, toluene oxidation, and the direct synthesis of hydrogen peroxide. We show that the coimpregnation method provides the best reaction selectivity for benzyl alcohol oxidation and the direct synthesis of hydrogen peroxide. However, because of the reaction mechanism, the sol-immobilzation method gives very active and selective catalysts for toluene oxidation. We discuss the possible nature of the preferred active structures of the supported nanoparticles for these reactions. This paper is based on the IACS Heinz Heinemann Award Lecture entitled "Catalysis using gold nanoparticles" which was given in Munich in July 2012.

  4. A modified milling system, using a bimodal distribution of highly resistant ceramics. Part 1. A natural hydroxyapatite study.

    PubMed

    Harabi, Abdelhamid; Harabi, Esma

    2015-06-01

    A careful combination of the main parameters controlling natural hydroxyapatite (NHA: Ca10(PO4)6(OH)2) production such as milling techniques, sintering temperature and holding time may lead to an interesting NHA based bio-ceramics without any foreign oxide additions. In this way, an original wet milling setup has been proposed to obtain sub-micron sized NHA powders. In order to avoid any possible NHA decomposition, a precise Ca/P ratio of NHA derived from animals was selected accordingly. Also, an alternative direct visual approach of the bone age classification was also proposed. A relative density of about 95% was obtained for powders sintered at 1300°C for 2h. The best Vickers micro-hardness and 3 point bending strength values for these sintered samples, using this proposed milling system and without any additions, were 4.7±0.3GPa and 37MPa, respectively. Finally, a complete correlation between the powder microstructure and the final product properties has been established. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Development of a miniature solid propellant rocket motor for use in plume simulation studies

    NASA Technical Reports Server (NTRS)

    Baran, W. J.

    1974-01-01

    A miniature solid propellant rocket motor has been developed to be used in a program to determine those parameters which must be duplicated in a cold gas flow to produce aerodynamic effects on an experimental model similar to those produced by hot, particle-laden exhaust plumes. Phenomena encountered during the testing of the miniature solid propellant motors included erosive propellant burning caused by high flow velocities parallel to the propellant surface, regressive propellant burning as a result of exposed propellant edges, the deposition of aluminum oxide on the nozzle surfaces sufficient to cause aerodynamic nozzle throat geometry changes, and thermal erosion of the nozzle throat at high chamber pressures. A series of tests was conducted to establish the stability of the rocket chamber pressure and the repeatibility of test conditions. Data are presented which define the tests selected to represent the final test matrix. Qualitative observations are also presented concerning the phenomena experienced based on the results of a large number or rocket tests not directly applicable to the final test matrix.

  6. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    PubMed

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully understanding the activity of gold are considered.

  7. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) mouse to compensate a defective fatty acid β-oxidation.

    PubMed

    Tucci, Sara; Herebian, Diran; Sturm, Marga; Seibt, Annette; Spiekerkoetter, Ute

    2012-01-01

    Very long-chain acyl-CoA dehydrogenase (VLCAD)-deficiency is the most common long-chain fatty acid oxidation disorder presenting with heterogeneous phenotypes. Similar to many patients with VLCADD, VLCAD-deficient mice (VLCAD(-/-)) remain asymptomatic over a long period of time. In order to identify the involved compensatory mechanisms, wild-type and VLCAD(-/-) mice were fed one year either with a normal diet or with a diet in which medium-chain triglycerides (MCT) replaced long-chain triglycerides, as approved intervention in VLCADD. The expression of the mitochondrial long-chain acyl-CoA dehydrogenase (LCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) was quantified at mRNA and protein level in heart, liver and skeletal muscle. The oxidation capacity of the different tissues was measured by LC-MS/MS using acyl-CoA substrates with a chain length of 8 to 20 carbons. Moreover, in white skeletal muscle the role of glycolysis and concomitant muscle fibre adaptation was investigated. In one year old VLCAD(-/-) mice MCAD and LCAD play an important role in order to compensate deficiency of VLCAD especially in the heart and in the liver. However, the white gastrocnemius muscle develops alternative compensatory mechanism based on a different substrate selection and increased glucose oxidation. Finally, the application of an MCT diet over one year has no effects on LCAD or MCAD expression. MCT results in the VLCAD(-/-) mice only in a very modest improvement of medium-chain acyl-CoA oxidation capacity restricted to cardiac tissue. In conclusion, VLCAD(-/-) mice develop tissue-specific strategies to compensate deficiency of VLCAD either by induction of other mitochondrial acyl-CoA dehydrogenases or by enhancement of glucose oxidation. In the muscle, there is evidence of a muscle fibre type adaptation with a predominance of glycolytic muscle fibres. Dietary modification as represented by an MCT-diet does not improve these strategies long-term.

  8. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  9. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires.

    PubMed

    Londoño-Calderón, César Leandro; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-16

    A straightforward method for the synthesis of CoFe 2.7 /CoFe 2 O 4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe 2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe 2 O 4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe 2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  10. Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels.

    PubMed

    Mindthoff, Sabrina; Grunau, Silke; Steinfort, Laura L; Girzalsky, Wolfgang; Hiltunen, J Kalervo; Erdmann, Ralf; Antonenkov, Vasily D

    2016-02-01

    More than 30 proteins (Pex proteins) are known to participate in the biogenesis of peroxisomes-ubiquitous oxidative organelles involved in lipid and ROS metabolism. The Pex11 family of homologous proteins is responsible for division and proliferation of peroxisomes. We show that yeast Pex11 is a pore-forming protein sharing sequence similarity with TRPM cation-selective channels. The Pex11 channel with a conductance of Λ=4.1 nS in 1.0M KCl is moderately cation-selective (PK(+)/PCl(-)=1.85) and resistant to voltage-dependent closing. The estimated size of the channel's pore (r~0.6 nm) supports the notion that Pex11 conducts solutes with molecular mass below 300-400 Da. We localized the channel's selectivity determining sequence. Overexpression of Pex11 resulted in acceleration of fatty acids β-oxidation in intact cells but not in the corresponding lysates. The β-oxidation was affected in cells by expression of the Pex11 protein carrying point mutations in the selectivity determining sequence. These data suggest that the Pex11-dependent transmembrane traffic of metabolites may be a rate-limiting step in the β-oxidation of fatty acids. This conclusion was corroborated by analysis of the rate of β-oxidation in yeast strains expressing Pex11 with mutations mimicking constitutively phosphorylated (S165D, S167D) or unphosphorylated (S165A, S167A) protein. The results suggest that phosphorylation of Pex11 is a mechanism that can control the peroxisomal β-oxidation rate. Our results disclose an unexpected function of Pex11 as a non-selective channel responsible for transfer of metabolites across peroxisomal membrane. The data indicate that peroxins may be involved in peroxisomal metabolic processes in addition to their role in peroxisome biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Novel techniques for the synthesis of three-way catalytic converter support materials

    NASA Astrophysics Data System (ADS)

    Anyaba, Prince Nwabueze

    Current automobiles use catalytic converters, consisting of noble metals on an oxide support, to convert noxious engine exhaust pollutants into less harmful species. The development of mesoporous oxide supports with optimal pore geometries could enable these devises to decrease in size and weight and significantly reduce the metal loadings required to achieve optimal performance. Thus, in this work, I investigated a wide range of techniques for the synthesis of mesoporous oxides to determine if they could be adapted to ceria-zirconia-yttria mixed oxide (CZY) systems, which are the industry standard for the optimal oxide support for catalytic converter applications. Additionally, I compared and critically evaluated the catalytic performance of the CZY mixed oxides, which were synthesized from the various templating techniques. The catalytic performance test was broken up into two: catalyst activity test which was determined based on the light-off temperatures at which 50% conversion of the reacting species have been converted; and resistance to surface area loss under accelerated aging at heating rate of 20°C/min form 700 to 1000°C, with the final temperature being held fixed for 4 h. To date, the most cost effective methods for preparing mesoporous materials are via techniques that employ templates or structure directing agents. These templates can be divided into two groups: endo-templates (i.e., soft templates, such as surfactants, dendrimers, and block copolymers) and exo-templates (i.e., hard templates, such as porous carbons and resins). The soft templating techniques generally involve both sol-gel and templating methods, while the hard templates required no sol-gel chemistry to achieve the desired templating effect. The precursors for ceria, zirconia, and yttria used were cerium (III) nitrate hexahydrate, zirconyl nitrate, and yttrium nitrate hexahydrate, respectively. The mesoporous CZY materials that were synthesized had surface area values that were between 40 and 120 m2/g and pore diameters that range from 2.2 to 9.0 nm after calcination in air from ambient temperature to 600°C at heating rates varied from 1 to 20°C/min, with the final temperature being maintained for 4 h. The novel CZY oxides that were prepared from the different templating techniques were characterized using nitrogen physisorption to determine the Brunauer--Emmett--Teller (BET) surface area and the Barrett--Joyner--Halenda (BJH) pore size distribution. Samples that showed some promise were further examined by transmission electron microscopy (TEM) to study the morphology of the structure; scanning electron microscopy (SEM) to study the bulk surface structure; thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to determine physical and chemical changes occurring during calcination; elemental analysis to determine composition; powder X-ray diffraction (PXD) to determine the existence of crystalline structure; and small angle X-ray diffraction (SAXD) to determine the occurrence of mesoscale ordering of repeating units. Finally, selected samples underwent catalytic testing under simulated exhaust conditions. The results of the tests showed that CZY materials synthesized using sol-gel methods with the Pluronic P123 soft template were the most active (i.e., had the lowest light off temperature), while CZY material with least loss of surface area after accelerated aging from 700 to 1000°C was the polymeric resin templated CZY materials.

  12. Quasi physisorptive two dimensional tungsten oxide nanosheets with extraordinary sensitivity and selectivity to NO2.

    PubMed

    Khan, Hareem; Zavabeti, Ali; Wang, Yichao; Harrison, Christopher J; Carey, Benjamin J; Mohiuddin, Md; Chrimes, Adam F; De Castro, Isabela Alves; Zhang, Bao Yue; Sabri, Ylias M; Bhargava, Suresh K; Ou, Jian Zhen; Daeneke, Torben; Russo, Salvy P; Li, Yongxiang; Kalantar-Zadeh, Kourosh

    2017-12-14

    Attributing to their distinct thickness and surface dependent physicochemical properties, two dimensional (2D) nanostructures have become an area of increasing interest for interfacial interactions. Effectively, properties such as high surface-to-volume ratio, modulated surface activities and increased control of oxygen vacancies make these types of materials particularly suitable for gas-sensing applications. This work reports a facile wet-chemical synthesis of 2D tungsten oxide nanosheets by sonication of tungsten particles in an acidic environment and thermal annealing thereafter. The resultant product of large nanosheets with intrinsic substoichiometric properties is shown to be highly sensitive and selective to nitrogen dioxide (NO 2 ) gas, which is a major pollutant. The strong synergy between polar NO 2 molecules and tungsten oxide surface and also abundance of active surface sites on the nanosheets for molecule interactions contribute to the exceptionally sensitive and selective response. An extraordinary response factor of ∼30 is demonstrated to ultralow 40 parts per billion (ppb) NO 2 at a relatively low operating temperature of 150 °C, within the physisorption temperature band for tungsten oxide. Selectivity to NO 2 is demonstrated and the theory behind it is discussed. The structural, morphological and compositional characteristics of the synthesised and annealed materials are extensively characterised and electronic band structures are proposed. The demonstrated 2D tungsten oxide based sensing device holds the greatest promise for producing future commercial low-cost, sensitive and selective NO 2 gas sensors.

  13. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gregory R.; Bell, Alexis T.

    2016-06-17

    Metal oxides of Ce, Gd, La, Mn, and Zr were investigated as promoters for improving the activity and selectivity of Co-based FTS catalysts. The extent to which these promoters decrease the selectivity toward CH 4 and increase the selectivity toward C 5+ hydrocarbons was found to depend on both the loading and the composition of the oxide promoter. Elemental mapping by STEM–EDS revealed that the propensity for a given metal oxide to associate with Co affects the sensitivity of the product distribution to changes in promoter loading. For all promoters, a sufficiently high loading resulted in the product distributions becomingmore » insensitive to further increases in promoter loading, very likely due to the formation of a half monolayer of promoter oxide over the Co surface. Simulations suggest that the fraction of Co active sites that are adjacent to the promoter moieties approaches unity at this degree of coverage. The oxidation state of the promoter metal cation under reaction conditions, determined by in situ XANES measurements, was used to calculate relative Lewis acidity of the promoter metal cation. A strong positive correlation was found between the C 5+ product selectivity and the Lewis acidity of the promoter metal cations, suggesting that the promotional effects are a consequence of Lewis acid–base interactions between the reaction intermediates and the promoter metal cations. Rate data obtained at different pressures were used to estimate the apparent rate coefficient and the CO adsorption constant appearing in the Langmuir–Hinshelwood expression that describes the CO consumption kinetics for both unpromoted and the metal oxide-promoted catalysts. Both parameters exhibited positive correlations with the promoter Lewis acidity. In conclusion, these results are consistent with the hypothesis that the metal cations of the promoter act as Lewis acids that interact with the O atom of adsorbed CO to facilitate CO adsorption and dissociation.« less

  14. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts

    DOE PAGES

    Johnson, Gregory R.; Bell, Alexis T.

    2016-03-31

    Metal oxides of Ce, Gd, La, Mn, and Zr were investigated as promoters for improving the activity and selectivity of Co-based FTS catalysts. The extent to which these promoters decrease the selectivity toward CH 4 and increase the selectivity toward C 5+ hydrocarbons was found to depend on both the loading and the composition of the oxide promoter. Elemental mapping by STEM-EDS revealed that the propensity for a given metal oxide to associate with Co affects the sensitivity of the product distribution to changes in promoter loading. For all promoters, a sufficiently high loading resulted in the product distributions becomingmore » insensitive to further increases in promoter loading, very likely due to the formation of a half monolayer of promoter oxide over the Co surface. Simulations suggest that the fraction of Co active sites that are adjacent to the promoter moieties approaches unity at this degree of coverage. The oxidation state of the promoter metal cation under reaction conditions, determined by in situ XANES measurements, was used to calculate relative Lewis acidity of the promoter metal cation. We found a strong positive correlation between the C 5+ product selectivity and the Lewis acidity of the promoter metal cations, suggesting that the promotional effects are a consequence of Lewis acid-base interactions between the reaction intermediates and the promoter metal cations. Rate data obtained at different pressures were used to estimate the apparent rate coefficient and the CO adsorption constant appearing in the Langmuir-Hinshelwood expression that describes the CO consumption kinetics for both unpromoted and the metal oxide-promoted catalysts. Both parameters exhibited positive correlations with the promoter Lewis acidity. Our results are consistent with the hypothesis that the metal cations of the promoter act as Lewis acids that interact with the O atom of adsorbed CO to facilitate CO adsorption and dissociation.« less

  15. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Nayak, Arpan Kumar; Ghosh, Ruma; Santra, Sumita; Guha, Prasanta Kumar; Pradhan, Debabrata

    2015-07-01

    It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection.It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02571k

  16. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-03-01

    Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al2O3 supported copper and gold nanoparticles. Li2O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of catalyst and oxidant amounts was investigated, with the apparent rate constant, kapp being proportional to the amount of nano catalyst and oxygen present in the system.

  17. Imaging of Myocardial Fatty Acid Oxidation

    PubMed Central

    Mather, Kieren J; DeGrado, Tim

    2016-01-01

    Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide noninvasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. PMID:26923433

  18. Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst

    PubMed Central

    Wang, Liang; Wang, Guoxiong; Zhang, Jian; Bian, Chaoqun; Meng, Xiangju; Xiao, Feng-Shou

    2017-01-01

    The synthesis of organic nitriles without using toxic cyanides is in great demand but challenging to make. Here we report an environmentally benign and cost-efficient synthesis of nitriles from the direct oxidative cyanation of primary carbon-hydrogen bonds with easily available molecular oxygen and urea. The key to this success is to design and synthesize manganese oxide catalysts fixed inside zeolite crystals, forming a manganese oxide catalyst with zeolite sheath (MnOx@S-1), which exhibits high selectivity for producing nitriles by efficiently facilitating the oxidative cyanation reaction and hindering the side hydration reaction. The work delineates a sustainable strategy for synthesizing nitriles while avoiding conventional toxic cyanide, which might open a new avenue for selective transformation of carbon-hydrogen bonds. PMID:28504259

  19. Synthesis, characterization and application of a nano-manganese-catalyst as an efficient solid catalyst for solvent free selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol

    NASA Astrophysics Data System (ADS)

    Habibi, Davood; Faraji, Ali Reza

    2013-07-01

    The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.

  20. Denitrification of combustion gases. [Patent application

    DOEpatents

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H 2O 2 and the 4e– oxidation to O 2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO 2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H 2O 2 evolution selectively.« less

  2. Rate and Selectivity Control in Thioether and Alkene Oxidation with H 2 O 2 over Phosphonate-Modified Niobium(V)-Silica Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornburg, Nicholas E.; Notestein, Justin M.

    Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions.more » Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.« less

  3. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe,Cu) oxides

    NASA Astrophysics Data System (ADS)

    Hu, Yanan; Liu, Jiangping; Cheng, Jinhuan; Wang, Langlang; Tao, Lei; Wang, Qi; Wang, Xueqian; Ning, Ping

    2018-01-01

    In this work, a series of metal oxides (Fe,Cu) modified HZSM-5 catalysts were synthesized by incipient-wetness impregnation method and then characterized by XRD, N2 adsorption-desorption, H2-TPR, NH3-TPD, UV-vis, FT-IR and XPS measurements. The catalytic hydrolysis and oxidation behaviors toward HCN were investigated. The results indicated that the Fe-Cu/HZSM-5 catalysts exhibited more excellent performence on coupling catalytic hydrolysis and oxidation of HCN than HZSM-5, Fe/HZSM-5, Cu/HZSM-5, and both nearly 100% HCN conversion and 80% N2 selectivity were obtained at about 250 °C. The improved catalytic performance could be ascribed to the creation of highly dispersed iron and copper composites on the surface of the HZSM-5 support, the excellent redox and regulated acid properties of the active ingredients. Moreover, the highly N2 selectivity could be attributed to the good interaction between the Fe and Cu nanocomposites which was facilitated to the NH3-SCR (selective catalytic reduction of NO by NH3) reaction.

  4. Nitric oxide: a physiologic messenger.

    PubMed

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  5. Material characteristics and equivalent circuit models of stacked graphene oxide for capacitive humidity sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kook In; Lee, In Gyu; Hwang, Wan Sik, E-mail: mhshin@kau.ac.kr, E-mail: whwang@kau.ac.kr

    The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.

  6. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). Themore » spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.« less

  7. Formation of a Ge-rich Si1-x Ge x (x > 0.9) fin epitaxial layer condensed by dry oxidation

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Ko, Dae-Hong

    2017-11-01

    We have selectively grown an epitaxial Si0.35Ge0.65 fin layer in a 65 nm oxide trench pattern array and formed a Ge-rich Si1-x Ge x (x > 0.9) fin layer with condensed Ge using dry oxidation. During oxidation of the SiGe fin structure, we found that the compressive strain of the condensed SiGe layer was increased by about 1.3% while Ge was efficiently condensed due to a two-dimensional oxidation reaction. In this paper, we discussed in detail the diffusion during the two-dimensional condensation reaction as well as the asymmetric biaxial strain of the SiGe fin before and after oxidation using a reciprocal space mapping measurement. The application of dry oxidation on selectively grown SiGe fin layer can be an effective method for increasing hole mobility of SiGe fin with increased Ge content and self-induced compressive strain.

  8. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  9. Oxidative stress and protein aggregation during biological aging.

    PubMed

    Squier, T C

    2001-09-01

    Biological aging is a fundamental process that represents the major risk factor with respect to the development of cancer, neurodegenerative, and cardiovascular diseases in vertebrates. It is, therefore, evident that the molecular mechanisms of aging are fundamental to understand many disease processes. In this regard, the oxidation and nitration of intracellular proteins and the formation of protein aggregates have been suggested to underlie the loss of cellular function and the reduced ability of senescent animals to withstand physiological stresses. Since oxidatively modified proteins are thermodynamically unstable and assume partially unfolded tertiary structures that readily form aggregates, it is likely that oxidized proteins are intermediates in the formation of amyloid fibrils. It is, therefore, of interest to identify oxidatively sensitive protein targets that may play a protective role through their ability to down-regulate energy metabolism and the consequent generation of reactive oxygen species (ROS). In this respect, the maintenance of cellular calcium gradients represents a major energetic expense, which links alterations in intracellular calcium levels to ATP utilization and the associated generation of ROS through respiratory control mechanisms. The selective oxidation or nitration of the calcium regulatory proteins calmodulin and Ca-ATPase that occurs in vivo during aging and under conditions of oxidative stress may represent an adaptive response to oxidative stress that functions to down-regulate energy metabolism and the associated generation of ROS. Since these calcium regulatory proteins are also preferentially oxidized or nitrated under in vitro conditions, these results suggest an enhanced sensitivity of these critical calcium regulatory proteins, which modulate signal transduction processes and intracellular energy metabolism, to conditions of oxidative stress. Thus, the selective oxidation of critical signal transduction proteins probably represents a regulatory mechanism that functions to minimize the generation of ROS through respiratory control mechanisms. The reduction of the rate of ROS generation, in turn, will promote cellular survival under conditions of oxidative stress, when reactive oxygen and nitrogen species overwhelm cellular antioxidant defense systems, by minimizing the non-selective oxidation of a range of biomolecules. Since protein aggregation occurs if protein repair and degradative systems are unable to act upon oxidized proteins and restore cellular function, the reduction of the oxidative load on the cell by the down-regulation of the electron transport chain functions to minimize protein aggregation. Thus, ROS function as signaling molecules that fine-tune cellular metabolism through the selective oxidation or nitration of calcium regulatory proteins in order to minimize wide-spread oxidative damage and protein aggregation. Oxidative damage to cellular proteins, the loss of calcium homeostasis and protein aggregation contribute to the formation of amyloid deposits that accumulate during biological aging. Critical to understand the relationship between these processes and biological aging is the identification of oxidatively sensitive proteins that modulate energy utilization and the associated generation of ROS. In this latter respect, oxidative modifications to the calcium regulatory proteins calmodulin (CaM) and the sarco/endoplasmic reticulum Ca-ATPase (SERCA) function to down-regulate ATP utilization and the associated generation of ROS associated with replenishing intracellular ATP through oxidative phosphorylation. Reductions in the rate of ROS generation, in turn, will minimize protein oxidation and facilitate intracellular repair and degradative systems that function to eliminate damaged and partially unfolded proteins. Since the rates of protein repair or degradation compete with the rate of protein aggregation, the modulation of intracellular calcium concentrations and energy metabolism through the selective oxidation or nitration of critical signal transduction proteins (i.e. CaM or SERCA) is thought to maintain cellular function by minimizing protein aggregation and amyloid formation. Age-dependent increases in the rate of ROS generation or declines in cellular repair or degradation mechanisms will increase the oxidative load on the cell, resulting in corresponding increases in the concentrations of oxidized proteins and the associated formation of amyloid.

  10. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase

    PubMed Central

    Garcin, Elsa D.; Arvai, Andrew S.; Rosenfeld, Robin J.; Kroeger, Matt D.; Crane, Brian R.; Andersson, Gunilla; Andrews, Glen; Hamley, Peter J.; Mallinder, Philip R.; Nicholls, David J.; St-Gallay, Stephen A.; Tinker, Alan C.; Gensmantel, Nigel P.; Mete, Antonio; Cheshire, David R.; Connolly, Stephen; Stuehr, Dennis J.; Åberg, Anders; Wallace, Alan V.; Tainer, John A.; Getzoff, Elizabeth D.

    2008-01-01

    Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low levels, and a defensive cytotoxin at higher levels. The high active-site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock, and cancer. Our structural and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a novel specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents towards remote specificity pockets, accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active-site conservation. PMID:18849972

  11. Air Quality Criteria for Oxides of Nitrogen (Final Report, 1982)

    EPA Science Inventory

    This document is an evaluation and assessment of scientific information relative to determining the health and welfare effects associated with exposure to various concentrations of nitrogen oxides in ambient air. The document is not intended as a complete, detailed literature rev...

  12. May 6, 2005, Transportation Conformity Rule That Addresses PM2.5 Precursors

    EPA Pesticide Factsheets

    This final rule, published by EPA on May 6, 2005, adds the following transportation-related PM2.5 precursors to the transportation conformity regulations: nitrogen oxides (NOx), volatile organic compounds (VOCs), sulfur oxides (SOx), and ammonia (NH3).

  13. 75 FR 6314 - Inert Ingredients; Extension of Effective Date of Revocation of Certain Tolerance Exemptions with...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ...-tetramethylbutyl)phenol with a range of 1-14 or 30-70 moles of ethylene oxide: if a blend of products is used, the average range number of moles of ethylene oxide reacted to produce any product that is a component of the... ethylene oxide. IV. Statutory and Executive Order Reviews This final rule establishes tolerances under...

  14. Fundamental studies of stress distributions and stress relaxation in oxide scales on high temperature alloys. [Final progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shores, D.A.; Stout, J.H.; Gerberich, W.W.

    1993-06-01

    This report summarizes a three-year study of stresses arising in the oxide scale and underlying metal during high temperature oxidation and of scale cracking. In-situ XRD was developed to measure strains during oxidation over 1000{degrees}C on pure metals. Acoustic emission was used to observe scale fracture during isothermal oxidation and cooling, and statistical analysis was used to infer mechanical aspects of cracking. A microscratch technique was used to measure the fracture toughness of scale/metal interface. A theoretical model was evaluated for the development and relaxation of stresses in scale and metal substrate during oxidation.

  15. Active control of methanol carbonylation selectivity over Au/carbon anode by electrochemical potential.

    PubMed

    Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi

    2005-05-12

    Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (<+1.2 V (Ag/AgCl)). On the other hand, Au(3+) is the active spices for the selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).

  16. Supplementing cognitive aging: a selective review of the effects of ginkgo biloba and a number of everyday nutritional substances.

    PubMed

    Brown, Louise A; Riby, Leigh M; Reay, Jonathon L

    2010-01-01

    This review concerns a number of substances that have been receiving much attention, particularly in the media, for their potential to protect against age-related cognitive decline, and a focus is placed upon recent findings. Omega-3 fatty acids appear to play important roles in preserving neuronal structure and function and minimizing cognitive decline, whereas the antioxidant vitamins C and E appear to be particularly beneficial for combating age-related oxidative stress when administered in combination. Fruit and vegetable polyphenols also offer great potential, although most research thus far has involved rodents. Finally, there is mixed evidence regarding the cognitive enhancing properties of Ginkgo biloba, and the B vitamins folate and cobalamin, with all of these requiring further investigation.

  17. Probing the formation of silicon nano-crystals (Si-ncs) using variable energy positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Knights, A. P.; Bradley, J. D. B.; Hulko, O.; Stevanovic, D. V.; Edwards, C. J.; Kallis, A.; Coleman, P. G.; Crowe, I. F.; Halsall, M. P.; Gwilliam, R. M.

    2011-01-01

    We describe preliminary results from studies of the formation of silicon nano-crystals (Si-ncs) embedded in stoichiometric, thermally grown SiO2 using Variable Energy Positron Annihilation Spectroscopy (VEPAS). We show that the VEPAS technique is able to monitor the introduction of structural damage. In SiO2 through the high dose Si+ ion implantation required to introduce excess silicon as a precursor to Si-nc formation. VEPAS is also able to characterize the rate of the removal of this damage with high temperature annealing, showing strong correlation with photoluminescence. Finally, VEPAS is shown to be able to selectively probe the interface between Si-ncs and the host oxide. Introduction of hydrogen at these interfaces suppresses the trapping of positrons at the interfaces.

  18. Ozone and haze pollution effects on the contemporary land carbon cycle

    NASA Astrophysics Data System (ADS)

    Unger, N.

    2016-12-01

    Atmospheric pollutants have both beneficial and detrimental effects on carbon uptake by land ecosystems. Surface ozone damages leaf photosynthesis by oxidizing plant cells, while aerosols promote carbon uptake by increasing diffuse radiation and exert additional influences through concomitant perturbations to meteorology and hydrology. Here, I present new results from three assessment studies that employ Earth system modeling and multiple measurement datasets. First, we quantify the separate and combined effects of anthropogenic ozone and aerosol pollution on the global land carbon uptake. Second, we evaluate benefits to land ecosystem health from selective emission reductions in specific pollution sources and sectors. Finally, I show that the long-term climatic effects of mid-latitude air pollution boosts plant productivity in the Amazon by 10% on the annual average today.

  19. Direct printing of microstructures by femtosecond laser excitation of nanocrystals in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shou, Wan; Pan, Heng, E-mail: hp5c7@mst.edu

    2016-05-23

    We report direct printing of micro/sub-micron structures by femtosecond laser excitation of semiconductor nanocrystals (NCs) in solution. Laser excitation with moderate intensity (10{sup 11}–10{sup 12} W/cm{sup 2}) induces 2D and 3D deposition of CdTe nanocrystals in aqueous solution, which can be applied for direct printing of microstructures. It is believed that laser irradiation induces charge formation on nanocrystals leading to deposition. Furthermore, it is demonstrated that the charged nanocrystals can respond to external electrical bias, enabling a printing approach based on selective laser induced electrophoretic deposition. Finally, energy dispersive X-ray analysis of deposited structures shows oxidation occurs and deposited structure mainlymore » consists of Cd{sub x}O.« less

  20. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.

    PubMed

    So, Man-Ho; Liu, Yungen; Ho, Chi-Ming; Che, Chi-Ming

    2009-10-05

    Selective oxidation of amines using oxygen as terminal oxidant is an important area in green chemistry. In this work, we describe the use of graphite-supported gold nanoparticles (AuNPs/C) to catalyze aerobic oxidation of cyclic and acyclic benzylic amines to the corresponding imines with moderate-to-excellent substrate conversions (43-100%) and product yields (66-99%) (19 examples). Oxidation of N-substituted 1,2,3,4-tetrahydroisoquinolines in the presence of aqueous NaHCO3 solution gave the corresponding amides in good yields (83-93%) with high selectivity (up to amide/enamide=93:4) (6 examples). The same protocol can be applied to the synthesis of benzimidazoles from the reaction of o-phenylenediamines with benzaldehydes under aerobic conditions (8 examples). By simple centrifugation, AuNPs/C can be recovered and reused for ten consecutive runs for the oxidation of dibenzylamine to N-benzylidene(phenyl)methanamine without significant loss of catalytic activity and selectivity. This protocol "AuNPs/C+O2" can be scaled to the gram scale, and 8.9 g (84 % isolated yield) of 3,4-dihydroisoquinoline can be obtained from the oxidation of 10 g 1,2,3,4-tetrahydroisoquinoline in a one-pot reaction. Based on the results of kinetic studies, radical traps experiment, and Hammett plot, a mechanism involving the hydrogen-transfer reaction from amine to metal and oxidation of M-H is proposed.

  1. Catalytic evaluation on liquid phase oxidation of vanillyl alcohol using air and H2O2 over mesoporous Cu-Ti composite oxide

    NASA Astrophysics Data System (ADS)

    Saha, Subrata; Hamid, Sharifah Bee Abd; Ali, Tammar Hussein

    2017-02-01

    A mesoporous, highly crystalline Cu-Ti composite oxide catalyst was prepared via facile, simple and modified solution method varying Cu and Ti ratio for selective liquid phase oxidation of vanillyl alcohol. Various spectroscopic procedures were employed to systematically characterize the catalyst structural and physicochemical properties. The defect chemistry of the catalyst was confirmed from the presence of surface defects revealed through HRTEM imagery between the TiO2 (101) and Cu3TiO4 (012) planes, complemented by the XRD profiling. Further, presence of oxygen vacancy evidenced by O 1s XPS spectra were observed on the catalyst surface. Moreover, the stoichiometry of Cu and Ti in the catalyst synthesis protocol was notably found to be the vital determinant to alter the redox properties of Cu-Ti composite oxide catalyst supported by H2-TPR. O2-TPD analysis. Moreover, a rational investigation was done using different oxidants such as air and H2O2 with variables reaction conditions. The catalyst was active for liquid phase oxidation of vanillyl alcohol to vanillin with performance of 66% conversion and 71% selectivity using H2O2 in base free condition. And also, catalytic activity was significantly improved by 94% conversion with 86% selectivity to vanillin in liquid phase aerobic oxidation at the optimum reaction conditions. To expand the superiority of the catalyst, three times reusability study was also examined with appreciable catalytic activity.

  2. Mitigation of PAH and nitro-PAH emissions from nonroad diesel engines.

    PubMed

    Liu, Z Gerald; Wall, John C; Ottinger, Nathan A; McGuffin, Dana

    2015-03-17

    More stringent emission requirements for nonroad diesel engines introduced with U.S. Tier 4 Final and Euro Stage IV and V regulations have spurred the development of exhaust aftertreatment technologies. In this study, several aftertreatment configurations consisting of diesel oxidation catalysts (DOC), diesel particulate filters (DPF), Cu zeolite-, and vanadium-based selective catalytic reduction (SCR) catalysts, and ammonia oxidation (AMOX) catalysts are evaluated using both Nonroad Transient (NRTC) and Steady (8-mode NRSC) Cycles in order to understand both component and system-level effects of diesel aftertreatment on emissions of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nitro-PAH). Emissions are reported for four configurations including engine-out, DOC+CuZ-SCR+AMOX, V-SCR+AMOX, and DOC+DPF+CuZ-SCR+AMOX. Mechanisms responsible for the reduction, and, in some cases, the formation of PAH and nitro-PAH compounds are discussed in detail, and suggestions are provided to minimize the formation of nitro-PAH compounds through aftertreatment design optimizations. Potency equivalency factors (PEFs) developed by the California Environmental Protection Agency are then applied to determine the impact of aftertreatment on PAH-derived exhaust toxicity. Finally, a comprehensive set of exhaust emissions including criteria pollutants, NO2, total hydrocarbons (THC), n-alkanes, branched alkanes, saturated cycloalkanes, aromatics, aldehydes, hopanes and steranes, and metals is provided, and the overall efficacy of the aftertreatment configurations is described. This detailed summary of emissions from a current nonroad diesel engine equipped with advanced aftertreatment can be used to more accurately model the impact of anthropogenic emissions on the atmosphere.

  3. Metabolic fuels: regulating fluxes to select mix.

    PubMed

    Weber, Jean-Michel

    2011-01-15

    Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.

  4. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    PubMed

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  5. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials.

    PubMed

    Bloom, Steven; Liu, Chun; Kölmel, Dominik K; Qiao, Jennifer X; Zhang, Yong; Poss, Michael A; Ewing, William R; MacMillan, David W C

    2018-02-01

    The advent of antibody-drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.

  6. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials

    NASA Astrophysics Data System (ADS)

    Bloom, Steven; Liu, Chun; Kölmel, Dominik K.; Qiao, Jennifer X.; Zhang, Yong; Poss, Michael A.; Ewing, William R.; MacMillan, David W. C.

    2018-02-01

    The advent of antibody-drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.

  7. Photocatalytic organic transformation by layered double hydroxides: highly efficient and selective oxidation of primary aromatic amines to their imines under ambient aerobic conditions.

    PubMed

    Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho

    2014-06-25

    We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation.

  8. Fluorination process using catalyst

    DOEpatents

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  9. Fluorination process using catalysts

    DOEpatents

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  10. METHOD OF MAINTAINING PLUTONIUM IN A HIGHER STATE OF OXIDATION DURING PROCESSING

    DOEpatents

    Thompson, S.G.; Miller, D.R.

    1959-06-30

    This patent deals with the oxidation of tetravalent plutonium contained in an aqueous acid solution together with fission products to the hexavalent state, prior to selective fission product precipitation, by adding to the solution bismuthate or ceric ions as the oxidant and a water-soluble dichromate as a holding oxidant. Both oxidant and holding oxidant are preferably added in greater than stoichiometric quantities with regard to the plutonium present.

  11. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  12. Method for preparing high temperature superconductor

    DOEpatents

    Balachandran, Uthamalingam; Chudzik, Michael P.

    2002-01-01

    A method of depositing a biaxially textured metal oxide on a substrate defining a plane in which metal oxide atoms are vaporized from a source to form a plume of metal oxide atoms. Atoms in the plume disposed at a selected angle in a predetermined range of angles to the plane of the substrate are allowed to contact the substrate while preventing atoms outside a selected angle from reaching the substrate. The preferred range of angles is 40.degree.-70.degree. and the preferred angle is 60.degree..+-.5.degree.. A moving substrate is disclosed.

  13. Application of graphene oxide in water treatment

    NASA Astrophysics Data System (ADS)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  14. The effect of ubiquinone and combined antioxidant therapy on oxidative stress markers in non-proliferative diabetic retinopathy: A phase IIa, randomized, double-blind, and placebo-controlled study.

    PubMed

    Rodríguez-Carrizalez, Adolfo Daniel; Castellanos-González, José Alberto; Martínez-Romero, Esaú César; Miller-Arrevillaga, Guillermo; Pacheco-Moisés, Fermín Paul; Román-Pintos, Luis Miguel; Miranda-Díaz, Alejandra Guillermina

    2016-07-01

    Objective To evaluate the effect of ubiquinone (Coenzyme Q10) and combined antioxidant therapy (CAT) on oxidative stress markers in non-proliferative diabetic retinopathy (NPDR) under clinical management. Study design In a randomized, double-blind, phase IIa, placebo-controlled, clinical trial, three study groups were formed and administered medications as follows: Group 1, Coenzyme Q10; Group 2, CAT; and Group 3, placebo. Methods Serum levels of the products of lipid peroxidation (LPO) and nitrites/nitrates, as markers of oxidative/nitrosative stress, were measured. As antioxidants, the total antioxidant capacity (TAC), catalase activity, and glutathione peroxidase (GPx) activity were measured. Results Baseline serum levels of LPO and nitrites/nitrates were significantly elevated in the three groups vs. healthy group (P < 0.0001), while final levels in the Coenzyme Q10 and CAT groups were decreased vs. normal levels (P < 0.0001). The baseline TAC was consumed in the three groups (P < 0.0001), while final results in the Coenzyme Q10 and CAT groups improved (P < 0.0001). Baseline catalase activity was increased in all groups vs. normal values (P < 0.001), while final levels in the Coenzyme Q10 (P < 0.001) and CAT groups (P < 0.0001) were decreased. GPx behaved similarly to catalase and improved in the final results (P < 0.0001). Discussion Adjunctive antioxidant treatment for 6 months was effective and safe for improving the oxidative stress in NPDR.

  15. URANIUM SEPARATION PROCESS

    DOEpatents

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

  16. Understanding Micro-Oxygenation Techniques and the Oxidation of Grape/Wine Polyphenolics: Final Report

    USDA-ARS?s Scientific Manuscript database

    Catechin (monomer), purified grape skin proanthocyanidin (polymer), and purified grape seed proanthocyanidin (polymer) underwent monitored accelerated oxidation under continuous oxygenation and UV light, at a constant 20 °C. Compounds were dissolved in model wine solutions with (and without) catecho...

  17. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release.

    PubMed

    Guibelin, E

    2004-01-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO2, CH4, N2O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best ways to minimize greenhouse effect gases emission.

  18. 78 FR 54588 - Final Priorities, Requirements, Definitions, and Selection Criteria: Race to the Top-District...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ..., and the following three paragraphs: These final priorities, requirements, definitions, and selection... Priorities, Requirements, Definitions, and Selection Criteria: Race to the Top--District Program; Correction..., requirements, definitions, and selection criteria; correction. SUMMARY: The Secretary of Education is...

  19. Recovery of protactinium from molten fluoride nuclear fuel compositions

    DOEpatents

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  20. Chemoselective Aliphatic C–H Bond Oxidation Enabled by Polarity Reversal

    PubMed Central

    2017-01-01

    Methods for selective oxidation of aliphatic C–H bonds are called on to revolutionize organic synthesis by providing novel and more efficient paths. Realization of this goal requires the discovery of mechanisms that can alter in a predictable manner the innate reactivity of these bonds. Ideally, these mechanisms need to make oxidation of aliphatic C–H bonds, which are recognized as relatively inert, compatible with the presence of electron rich functional groups that are highly susceptible to oxidation. Furthermore, predictable modification of the relative reactivity of different C–H bonds within a molecule would enable rapid diversification of the resulting oxidation products. Herein we show that by engaging in hydrogen bonding, fluorinated alcohols exert a polarity reversal on electron rich functional groups, directing iron and manganese catalyzed oxidation toward a priori stronger and unactivated C–H bonds. As a result, selective hydroxylation of methylenic sites in hydrocarbons and remote aliphatic C–H oxidation of otherwise sensitive alcohol, ether, amide, and amine substrates is achieved employing aqueous hydrogen peroxide as oxidant. Oxidations occur in a predictable manner, with outstanding levels of product chemoselectivity, preserving the first-formed hydroxylation product, thus representing an extremely valuable tool for synthetic planning and development. PMID:29296677

  1. Chemoselective Aliphatic C-H Bond Oxidation Enabled by Polarity Reversal.

    PubMed

    Dantignana, Valeria; Milan, Michela; Cussó, Olaf; Company, Anna; Bietti, Massimo; Costas, Miquel

    2017-12-27

    Methods for selective oxidation of aliphatic C-H bonds are called on to revolutionize organic synthesis by providing novel and more efficient paths. Realization of this goal requires the discovery of mechanisms that can alter in a predictable manner the innate reactivity of these bonds. Ideally, these mechanisms need to make oxidation of aliphatic C-H bonds, which are recognized as relatively inert, compatible with the presence of electron rich functional groups that are highly susceptible to oxidation. Furthermore, predictable modification of the relative reactivity of different C-H bonds within a molecule would enable rapid diversification of the resulting oxidation products. Herein we show that by engaging in hydrogen bonding, fluorinated alcohols exert a polarity reversal on electron rich functional groups, directing iron and manganese catalyzed oxidation toward a priori stronger and unactivated C-H bonds. As a result, selective hydroxylation of methylenic sites in hydrocarbons and remote aliphatic C-H oxidation of otherwise sensitive alcohol, ether, amide, and amine substrates is achieved employing aqueous hydrogen peroxide as oxidant. Oxidations occur in a predictable manner, with outstanding levels of product chemoselectivity, preserving the first-formed hydroxylation product, thus representing an extremely valuable tool for synthetic planning and development.

  2. Potential of hybrid functionalized meso-porous materials for the separation and immobilization of radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luca, V.

    2013-07-01

    Functionalized meso-porous materials are a class of hybrid organic-inorganic material in which a meso-porous metal oxide framework is functionalized with multifunctional organic molecules. These molecules may contain one or more anchor groups that form strong bonds to the pore surfaces of the metal oxide framework and free functional groups that can impart and or modify the functionality of the material such as for binding metal ions in solution. Such materials have been extensively studied over the past decade and are of particular interest in absorption applications because of the tremendous versatility in choosing the composition and architecture of the metalmore » oxide framework and the nature of the functional organic molecule as well as the efficient mass transfer that can occur through a well-designed hierarchically porous network. A sorbent for nuclear applications would have to be highly selective for particular radio nuclides, it would need to be hydrolytically and radiolytically stable, and it would have to possess reasonable capacity and fast kinetics. The sorbent would also have to be available in a form suitable for use in a column. Finally, it would also be desirable if once saturated with radio nuclides, the sorbent could be recycled or converted directly into a ceramic or glass waste form suitable for direct repository disposal or even converted directly into a material that could be used as a transmutation target. Such a cradle-to- grave strategy could have many benefits in so far as process efficiency and the generation of secondary wastes are concerned.This paper will provide an overview of work done on all of the above mentioned aspects of the development of functionalized meso-porous adsorbent materials for the selective separation of lanthanides and actinides and discuss the prospects for future implementation of a cradle-to-grave strategy with such materials. (author)« less

  3. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Rashda; Efferth, Thomas; Kuhmann, Christine

    2012-03-15

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol wasmore » the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy options in NER-deficient tumors.« less

  4. Nitroxyl-mediated oxidation of lignin and polycarboxylated products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, Shannon S.; Rafiee, Mohammad

    Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on .beta.-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric .beta.-hydroxy acid. The polymeric .beta.-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The .beta.-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers ormore » oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.« less

  5. Effect of TMP variables upon structure and properties in ODS alloy HDA 8077 sheet. [ThermoMechanical Processing of Oxide Dispersion Strengthened nickel alloy

    NASA Technical Reports Server (NTRS)

    Rothman, M. F.; Tawancy, H. M.

    1980-01-01

    The effects of oxide content level and variations in thermomechanical processing upon the final structure and properties of HDA 8077 sheet have been systematically examined. It was found that creep strength and formability are substantially influenced by both oxide content and TMP schedule. Variations in creep properties obtained appear to correlate with observed microstructures.

  6. Composite catalysts supported on modified carbon substrates and methods of making the same

    DOEpatents

    Popov, Branko N [Columbia, SC; Subramanian, Nalini [Kennesaw, GA; Colon-Mercado, Hector R [Columbia, SC

    2009-11-17

    A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500.degree. C.

  7. Ceramification: A plutonium immobilization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rask, W.C.; Phillips, A.G.

    1996-05-01

    This paper describes a low temperature technique for stabilizing and immobilizing actinide compounds using a combination process/storage vessel of stainless steel, in which measured amounts of actinide nitrate solutions and actinide oxides (and/or residues) are systematically treated to yield a solid article. The chemical ceramic process is based on a coating technology that produces rare earth oxide coatings for defense applications involving plutonium. The final product of this application is a solid, coherent actinide oxide with process-generated encapsulation that has long-term environmental stability. Actinide compounds can be stabilized as pure materials for ease of re-use or as intimate mixtures withmore » additives such as rare earth oxides to increase their degree of proliferation resistance. Starting materials for the process can include nitrate solutions, powders, aggregates, sludges, incinerator ashes, and others. Agents such as cerium oxide or zirconium oxide may be added as powders or precursors to enhance the properties of the resulting solid product. Additives may be included to produce a final product suitable for use in nuclear fuel pellet production. The process is simple and reduces the time and expense for stabilizing plutonium compounds. It requires a very low equipment expenditure and can be readily implemented into existing gloveboxes. The process is easily conducted with less associated risk than proposed alternative technologies.« less

  8. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    PubMed

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  9. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    PubMed

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  10. Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition

    NASA Astrophysics Data System (ADS)

    Spadaro, M. C.; Luches, P.; Benedetti, F.; Valeri, S.; Turchini, S.; Bertoni, G.; Ferretti, A. M.; Capetti, E.; Ponti, A.; D'Addato, S.

    2017-02-01

    Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiOx and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L2,3 absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.

  11. New Federal Air Quality Standards.

    ERIC Educational Resources Information Center

    Stopinski, O. W.

    The report discusses the current procedures for establishing air quality standards, the bases for standards, and, finally, proposed and final National Primary and Secondary Ambient Air Quality Standards for sulfur dioxide, particulate matter, carbon monoxide, nonmethane hydrocarbons, photochemical oxidants, and nitrogen dioxide. (Author/RH)

  12. Fact Sheets: Proposed and Final Air Toxics Standards for Hospital Sterilizers

    EPA Pesticide Factsheets

    This page contains an October 2006 and December 2007 fact sheet with information regarding the proposed and final National Emissions Standards for Hospital Ethylene Oxide Sterilizers. This document provides a summary of the information for this NESHAP.

  13. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential.

    PubMed

    Martinet, Wim; De Meyer, Guido R Y

    2009-02-13

    Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. A growing body of evidence suggests that autophagy is stimulated in advanced atherosclerotic plaques by oxidized lipids, inflammation, and metabolic stress conditions. However, despite the increasing interest in autophagy in various pathophysiological situations such as neurodegeneration, cancer, and cardiac myopathies, the process remains an underestimated and overlooked phenomenon in atherosclerosis. As a consequence, its role in plaque formation and stability is poorly understood. Most likely, autophagy safeguards plaque cells against cellular distress, in particular oxidative injury, by degrading damaged intracellular material. In this way, autophagy is antiapoptotic and contributes to cellular recovery in an adverse environment. An interesting observation is that basal autophagy can be intensified by specific drugs. Excessively stimulated autophagic activity is capable of destroying major proportions of the cytosol, leading finally to type II programmed cell death that lacks several hallmarks of apoptosis or necrosis. Because atherosclerosis is an inflammatory disorder of the arterial intima, pharmacological approaches could be developed to stabilize vulnerable, rupture-prone lesions through selective induction of macrophage autophagic death.

  14. Evaluation and ranking of candidate ceramic wafer engine seal materials

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1991-01-01

    Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN-251) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.

  15. MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner

    NASA Technical Reports Server (NTRS)

    Bose, S.; Sheffler, K. D.

    1988-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

  16. Antimicrobial graphene family materials: Progress, advances, hopes and fears.

    PubMed

    Lukowiak, Anna; Kedziora, Anna; Strek, Wieslaw

    2016-10-01

    Graphene-based materials have become very popular bionanotechnological instruments in the last few years. Since 2010, the graphene family materials have been recognized as worthy of attention due to its antimicrobial properties. Functionalization of graphene (or rather graphene oxide) surface creates the possibilities to obtain efficient antimicrobial agents. In this review, progress and advances in this field in the last few years are described and discussed. Special attention is devoted to materials based on graphene oxide in which specifically selected components significantly modify biological activity of this carbon structure. Short introduction concerns the physicochemical properties of the graphene family materials. In the section on antimicrobial properties, proposed mechanisms of activity against microorganisms are given showing enhanced action of nanocomposites also under light irradiation (photoinduced activity). Another important feature, i.e. toxicity against eukaryotic cells, is presented with up-to-date data. Taking into account all the information on the properties of the described materials and usefulness of the graphene family as antimicrobial agents, hopes and fears concerning their application are discussed. Finally, some examples of promising usage in medicine and other fields, e.g. in phytobiology and water remediation, are shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Graphene oxide: an adsorbent for the extraction and quantification of aflatoxins in peanuts by high-performance liquid chromatography.

    PubMed

    Yu, Li; Li, Peiwu; Zhang, Qi; Zhang, Wen; Ding, Xiaoxia; Wang, Xiupin

    2013-11-29

    In this paper, graphene oxide (GO) was synthesized and specifically selected by centrifugation to extract four aflatoxins (B1, B2, G1, and G2) as an effective adsorbent. Then, the amount of aflatoxins was quantitatively measured by high-performance liquid chromatography (HPLC). The GO was characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), and ultraviolet (UV) spectrophotometer. Several parameters that could affect the extraction efficiency, including the GO amount, methanol concentration in the extraction solvent, spiked amount, extraction time, and elution cycle, were also investigated and optimized in this work. Under optimal conditions, good linear relationships were achieved with the correlation coefficient (r) ranging from 0.99217 to 0.99995. The detection limit of this method for the four aflatoxins ranged from 0.08 to 0.65ng/g. Finally, the proposed method has been successfully applied to determine aflatoxins in peanut samples. The results show that the recoveries of the four aflatoxins range from 85.1% to 100.8% with the relative standard deviations between 2.1% and 7.9%. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. QSPR prediction of the hydroxyl radical rate constant of water contaminants.

    PubMed

    Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun

    2016-07-01

    In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Air-stable electrical conduction in oxidized poly[2-methoxy-5-(2-ethylhexyloxy)-p-phenylene vinylene] thin films

    NASA Astrophysics Data System (ADS)

    Hossein-Babaei, F.; Shabani, P.; Azadinia, M.

    2013-11-01

    Oxidation-caused electroluminescence and electrical conduction deteriorations in poly[2-methoxy-5-(2-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) have prevented the material from being used in applications requiring air exposure. Here, we report air-stable electrical conduction in oxidized MEH-PPV layers produced by room temperature annealing of MEH-PPV thin films in air. Oxidized layers exhibit lower, but stable, conductivities. As the process is irreversible, the final conductivity is retained in vacuum, inert gas, hydrogen, and oxygen. The oxidation rates recorded at different conditions for layers of varied thickness and electrode configuration are described by a surface oxidation model. Potentials of the oxidized MEH-PPV layers in sensor technology are demonstrated.

  20. Development of YBCO Superconductor for Electric Systems: Cooperative Research and Development Final Report, CRADA Number CRD-04-150

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, R.

    2013-03-01

    The proposed project will be collaborative in exploration of high temperature superconductor oxide films between SuperPower, Inc. and the National Renewable Energy Laboratory. This CRADA will attempt to develop YBCO based high temperature oxide technology.

Top