Science.gov

Sample records for selective oxidation reactions

  1. Influence of composition of reaction mixture on selectivity in oxidation of aromatic compounds on oxide catalysts

    SciTech Connect

    Belokopytov, Yu.V.; Pyatnitskii, Yu.I.; Tatarinova, T.A.; Strashnenko, A.V.

    1985-07-01

    A general outline is given of a kinetic model of oxidation of a hydrocarbon under the conditions of coexistence on the catalyst surface of sections of different oxidation levels. An analytical dependence has been obtained of the selectivity of the process and conversion on the composition of the reaction mixture. A qualitative agreement has been established between the theoretical and experimental dependences of selectivity and conversion on the ratio of the benzene and oxygen concentrations in the reaction mixture.

  2. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  3. Homogeneous and heterogeneous reactions of anthracene with selected atmospheric oxidants.

    PubMed

    Zhang, Yang; Shu, Jinian; Zhang, Yuanxun; Yang, Bo

    2013-09-01

    The reactions of gas-phase anthracene and suspended anthracene particles with O3 and O3-NO were conducted in a 200-L reaction chamber, respectively. The secondary organic aerosol (SOA) formations from gas-phase reactions of anthracene with O3 and O3-NO were observed. Meanwhile, the size distributions and mass concentrations of SOA were monitored with a scanning mobility particle sizer (SMPS) during the formation processes. The rapid exponential growths of SOA reveal that the atmospheric lifetimes of gas-phase anthracene towards O3 and O3-NO are less than 20.5 and 4.34 hr, respectively. The particulate oxidation products from homogeneous and heterogeneous reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). Gas chromatograph/mass spectrometer (GC/MS) analyses of oxidation products of anthracene were carried out for assigning the time-of-flight (TOF) mass spectra of products from homogeneous and heterogeneous reactions. Anthrone, anthraquinone, 9,10-dihydroxyanthracene, and 1,9,10-trihydroxyanthracene were the ozonation products of anthracene, while anthrone, anthraquinone, 9-nitroanthracene, and 1,8-dihydroxyanthraquinone were the main products of anthracene with O3-NO.

  4. Reaction-driven surface restructuring and selectivity control in allylic alcohol catalytic aerobic oxidation over Pd.

    PubMed

    Lee, Adam F; Ellis, Christine V; Naughton, James N; Newton, Mark A; Parlett, Christopher M A; Wilson, Karen

    2011-04-20

    Synchronous, time-resolved DRIFTS/MS/XAS cycling studies of the vapor-phase selective aerobic oxidation of crotyl alcohol over nanoparticulate Pd have revealed surface oxide as the desired catalytically active phase, with dynamic, reaction-induced Pd redox processes controlling selective versus combustion pathways.

  5. Microelectrode arrays: a general strategy for using oxidation reactions to site selectively modify electrode surfaces.

    PubMed

    Nguyen, Bichlien H; Kesselring, David; Tesfu, Eden; Moeller, Kevin D

    2014-03-04

    Oxidation reactions are powerful tools for synthesis because they allow for the functionalization of molecules. Here, we present a general method for conducting these reactions on a microelectrode array in a site-selective fashion. The reactions are run as a competition between generation of a chemical oxidant at the electrodes in the array and reduction of the oxidant by a "confining agent" in the solution above the array. The "confining agent" does not need to be more reactive than the substrate fixed to the surface of the array. In many cases, the same substrate placed on the surface of the array can also be used in solution as the confining agent.

  6. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2013-03-01

    Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize

  7. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    SciTech Connect

    Bartling, Stephan Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina

    2015-09-21

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology.

  8. Implications of sterically constrained n-butane oxidation reactions on the reaction mechanism and selectivity to 1-butanol

    NASA Astrophysics Data System (ADS)

    Dix, Sean T.; Gómez-Gualdrón, Diego A.; Getman, Rachel B.

    2016-11-01

    Density functional theory (DFT) is used to analyze the reaction network in n-butane oxidation to 1-butanol over a Ag/Pd alloy catalyst under steric constraints, and the implications on the ability to produce 1-butanol selectively using MOF-encapsulated catalysts are discussed. MOFs are porous crystalline solids comprised of metal nodes linked by organic molecules. Recently, they have been successfully grown around metal nanoparticle catalysts. The resulting porous networks have been shown to promote regioselective chemistry, i.e., hydrogenation of trans-1,3-hexadiene to 3-hexene, presumably by forcing the linear alkene to stand "upright" on the catalyst surface and allowing only the terminal C-H bonds to be activated. In this work, we extend this concept to alkane oxidation. Our goal is to determine if a MOF-encapsulated catalyst could be used to selectively produce 1-butanol. Reaction energies and activation barriers are presented for more than 40 reactions in the pathway for n-butane oxidation. We find that C-H bond activation proceeds through an oxygen-assisted pathway and that butanal and 1-butanol are some of the possible products.

  9. Reactions of Propylene Oxide on Supported Silver Catalysts: Insights into Pathways Limiting Epoxidation Selectivity

    SciTech Connect

    Kulkarni, Apoorva; Bedolla-Pantoja, Marco; Singh, Suyash; Lobo, Raul F.; Mavrikakis, Manos; Barteau, Mark A.

    2012-02-04

    The reactions of propylene oxide (PO) on silver catalysts were studied to understand the network of parallel and sequential reactions that may limit the selectivity of propylene epoxidation by these catalysts. The products of the anaerobic reaction of PO on Ag/a-Al2O3 were propanal, acetone and allyl alcohol for PO conversions below 2–3%. As the conversion of PO was increased either by increasing the temperature or the contact time, acrolein was formed at the expense of propanal, indicating that acrolein is a secondary reaction product in PO decomposition. With addition of oxygen to the feedstream the conversion of PO increased moderately. In contrast to the experiments in absence of oxygen, CO2 was a significant product while the selectivity to propanal decreased as soon as oxygen was introduced in the system. Allyl alcohol disappeared completely from the product stream in the presence of oxygen, reacting to form acrolein and CO2. The product distribution may be explained by a network of reactions involving two types of oxametallacycles formed by ring opening of PO: one with the oxygen bonded to C1 (OMC1, linear) and the other with oxygen bonded to C2 (OMC2, branched). OMC1 reacts to form PO, propanal, and allyl alcohol.

  10. Design of heterogeneous photocatalysts based on metal oxides to control the selectivity of chemical reactions.

    PubMed

    Maldotti, Andrea; Molinari, Alessandra

    2011-01-01

    Photocatalysis is particularly relevant in order to realize chemical transformations of interest in synthesis and, at the same time, to move towards a "sustainable chemistry" with a minimal environmental impact. Heterogeneous systems with well-defined textural characteristics represent a suitable means to tailor the selectivity of photocatalytic processes. Here, we summarize and classify the significant features of photocatalysts consisting of photoactive metal oxides dispersed on high-surface-area solid supports, or constrained inside their porous network. These systems are based on the use of titanium dioxide, highly dispersed oxides of titanium, chromium, vanadium, and polyoxotungstates. They share similar primary photoprocesses: light absorption induces a charge separation process with formation of positive holes able to oxidize organic substrates. A great number of the papers discussed here concern oxidation reactions carried out in the presence of O₂ for inducing partial oxidation of alcohols and monooxygenation of hydrocarbons. We also devote some attention to photocatalysis in the absence of O₂. In these conditions, the photogenerated charge separation offers the possibility to induce the formation of C-C and C-N bonds. We emphasize that the optimal tailoring of photoactive materials for synthetic purposes can be achieved by combining recent advances in the preparation of nanostructured materials with mechanistic knowledge derived from surface science and molecular level investigations.

  11. Kinetic and Product Studies of the Reaction Between Oxidized Mercury Species and Selected Thiols

    NASA Astrophysics Data System (ADS)

    Si, L.; Ariya, P.

    2008-12-01

    Mercury is a global pollutant with severe potential toxicity. The reduction of oxidized mercury species (Hg(II)) to elemental mercury (Hg(0)) affects the global distribution of mercury and competes for methylation processes of mercury in aquatic environment. This study focused on the reduction of Hg(II) by several selected thiols using a suite of complementary mass spectrometry and cold vapor fluorescence spectroscopy (CVAFS). Previous studies showed that irradiation of benzene solution of six mercury dimercaptides (benzyl, n-propyl, isopropyl, cyclopentyl, t-butyl and phenyl sulfide) at part-per-million level by a mercury arc lamp under a nitrogen atmosphere caused the formation of Hg(0) to occur. The reaction kinetics was studied using CVAFS, and the products of the reaction were analyzed using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass spectrometry (MALDI-TOF-MS) and Gas Chromatography-Mass spectrometry (GC-MS). The kinetic data were obtained for 1-butanethiol, and 1-pentanethiol, 1-hexanethiol at environmental relevant conditions. The effects of light, pH, dissolved oxygen and chloride ion on reaction rates were also investigated. We will present our results and discuss their potential environmental implications on mercury cycling.

  12. Reduced graphene oxide: firm support for catalytically active palladium nanoparticles and game changer in selective hydrogenation reactions.

    PubMed

    Cano, Manuela; Benito, Ana M; Urriolabeitia, Esteban P; Arenal, Raul; Maser, Wolfgang K

    2013-11-07

    Simultaneous decomposition and reduction of a Pd(2+) complex in the presence of graphene oxide (GO) lead to the formation of Pd(0)-nanoparticles (Pd-NPs) with average sizes of 4 nm firmly anchored on reduced graphene oxide (RGO) sheets. The Pd-NP/RGO hybrids exhibited remarkable catalytic activity and selectivity in mild hydrogenation reactions where the acidic properties of RGO play an active role and may act as an important game-changer.

  13. Oxidation and inactivation of SERCA by selective reaction of cysteine residues with amino acid peroxides.

    PubMed

    Dremina, Elena S; Sharov, Victor S; Davies, Michael J; Schöneich, Christian

    2007-10-01

    The oxidative modification of proteins plays an important role in a wide range of pathological processes and aging. Proteins are modified by numerous biologic oxidants including hydrogen peroxide, peroxynitrite, singlet oxygen, and oxygen- and nitrogen-centered radicals. More recently, an additional class of physiologically important oxidants has been identified, peptide and protein peroxides. The latter react quite rapidly and selectively with protein cysteine residues. The sarco/endoplasmic reticulum Ca-ATPase (SERCA) is reversibly regulated through NO-dependent S-glutathiolation of specific cysteine residues. The irreversible oxidation of these cysteine residues could, therefore, impair NO-dependent muscle relaxation. Here, we show that specific protein-derived (amino acid) peroxides react selectively with a subset of the 22 reduced cysteine residues of SERCA1, including a peptide-containing Cys674 and Cys675, where Cys674 (in SERCA2) represents one of the targets for NO-dependent S-glutathiolation. Out of 11 tested amino acid, peptide, and protein peroxides, those derived from free tryptophan and free tyrosine showed the highest reactivity towards SERCA, while no oxidation under similar experimental conditions was detected through hydrogen peroxide. Among the peroxides from tryptophan, those of free tryptophan showed a significantly higher reactivity as compared to those from N- and C-terminally blocked tryptophan. Quantitative HPLC-MS/MS analysis demonstrated that the highest reactivity of the tryptophan-derived peroxides was observed for Cys774 and Cys938, cysteine residues, which are embedded within the transmembrane domains of SERCA1. This unusual reactivity of transmembrane domains cannot be solely rationalized by the hydrophobicity of the oxidant, as the peroxide from dl-tryptophan shows considerable higher reactivity as compared to the one derived from N-acetyl-tryptophan methyl ester. Our data demonstrate a potential role of peptide- and protein

  14. Bismuth as a modifier of Au Pd catalyst: Enhancing selectivity in alcohol oxidation by suppressing parallel reaction

    SciTech Connect

    Villa, Alberto; Wang, Di; Veith, Gabriel M; Prati, Laura

    2012-01-01

    Bi has been widely employed as a modifier for Pd and Pt based catalyst mainly in order to improve selectivity. We found that when Bi was added to the bimetallic system AuPd, the effect on activity in alcohol oxidation mainly depends on the amount of Bi regardless its position, being negligible when Bi was 0.1 wt% and detectably negative when the amount was increased to 3 wt%. However, the selectivity of the reactions notably varied only when Bi was deposited on the surface of metal nanoparticles suppressing parallel reaction in both benzyl alcohol and glycerol oxidation. After a careful characterization of all the catalysts and additional catalytic tests, we concluded that the Bi influence on the activity of the catalysts could be ascribed to electronic effect whereas the one on selectivity mainly to a geometric modification. Moreover, the Bi-modified AuPd/AC catalyst showed possible application in the production of tartronic acid, a useful intermediate, from glycerol.

  15. Optimization of reaction conditions in selective oxidation of styrene over fine crystallite spinel-type CaFe{sub 2}O{sub 4} complex oxide catalyst

    SciTech Connect

    Pardeshi, Satish K.; Pawar, Ravindra Y.

    2010-05-15

    The CaFe{sub 2}O{sub 4} spinel-type catalyst was synthesized by citrate gel method and well characterized by thermogravimetric analysis, atomic absorption spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy. The crystallization temperature of the spinel particle prepared by citrate gel method was 600 {sup o}C which was lower than that of ferrite prepared by other methods. CaFe{sub 2}O{sub 4} catalysts prepared by citrate gel method show better activity for styrene oxidation in the presence of dilute H{sub 2}O{sub 2} (30%) as an oxidizing agent. In this reaction the oxidative cleavage of carbon-carbon double bond of styrene takes place selectively with 38 {+-} 2 mol% conversion. The major product of the reaction is benzaldehyde up to 91 {+-} 2 mol% and minor product phenyl acetaldehyde up to 9 {+-} 2 mol%, respectively. The products obtained in the styrene oxidation reaction were analyzed by gas chromatography and mass spectroscopy. The influence of the catalyst, reaction time, temperature, amount of catalyst, styrene/H{sub 2}O{sub 2} molar ratio and solvents on the conversion and product distribution were studied.

  16. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    PubMed Central

    Pai Kotebagilu, Namratha; Reddy Palvai, Vanitha; Urooj, Asna

    2015-01-01

    Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol) of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%), methanol extract of Andrographis paniculata (72.15%), and methanol extract of Canthium parviflorum (49.55%) in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r = 0.816) and low-density lipoprotein (r = 0.948) and Costus speciosus in brain (r = 0.977, polyphenols, and r = 0.949, flavonoids) correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates. PMID:26933511

  17. Molecular Recognition in Mn-Catalyzed C-H Oxidation. Reaction Mechanism and Origin of Selectivity from a DFT Perspective

    PubMed Central

    Balcells, David; Moles, Pamela; Blakemore, James; Raynaud, Christophe; Brudvig, Gary W.; Crabtree, Robert H.

    2010-01-01

    Experimental studies have shown that the C-H oxidation of ibuprofen and methylcyclohexane acetic acid can be carried out with high selectivies using [(terpy’)Mn(OH2)(μ-O)2Mn(OH2)(terpy’)]3+ as catalyst, where terpy’ is a terpyridine ligand functionalized with a phenylene linker and a Kemp’s triacid serving to recognize the reactant via H-bonding. Experiments, described here, suggest that the sulfate counter anion, present in stochiometric amounts, coordinates to manganese in place of water. DFT calculations have been carried out using [(terpy’)Mn(O)(μ-O)2Mn(SO4)(terpy’)]+ as model catalyst, to analyze the origin of selectivity and its relation to molecular recognition, as well as the mechanism of catalyst inhibition by tert-butyl benzoic acid. The calculations show that a number of spin states, all having radical oxygen character, are energetically accessible. All these spin states promote C-H oxidation via a rebound mechanism. The catalyst recognizes the substrate by a double H bond. This interaction orients the substrate inducing highly selective C-H oxidation. The double hydrogen bond stabilizes the reactant, the transition state and the product to the same extent. Consequently, the reaction occurs at lower energy than without molecular recognition. The association of the catalyst with tert-butyl benzoic acid is shown to shield the access of unbound substrate to the reactive oxo site, hence preventing non-selective hydroxylation. It is shown that the two recognition sites of the catalyst can be used in a cooperative manner to control the access to the reactive centre. PMID:19623399

  18. Controlled Molybdenum Disulfide Assembly inside Carbon Nanofiber by Boudouard Reaction Inspired Selective Carbon Oxidation.

    PubMed

    Nam, Dae-Hyun; Kang, Ho-Young; Jo, Jun-Hyun; Kim, Byung Kyu; Na, Sekwon; Sim, Uk; Ahn, In-Kyoung; Yi, Kyung-Woo; Nam, Ki Tae; Joo, Young-Chang

    2017-03-01

    Vertical stacking and lateral growth of molybdenum disulfide (MoS2 ) are controlled with remarkable precision, and MoS2 nanotubes are directly converted from nanofibers. Predictive synthesis is enabled by identifying the specific thermodynamic region where the Boudouard reaction becomes favored. It reveals how the chemical potential of each species in the MoSCO system can predict phase behaviors.

  19. Size-selective photocatalytic reactions by titanium(IV) oxide coated with a hollow silica shell in aqueous solutions.

    PubMed

    Ikeda, Shigeru; Kobayashi, Hideyuki; Ikoma, Yoshimitsu; Harada, Takashi; Torimoto, Tsukasa; Ohtani, Bunsho; Matsumura, Michio

    2007-12-28

    A novel core-shell composite photocatalyst, commercially available titanium(IV) oxide (TiO(2)) particles directly incorporated into a hollow amorphous silica shell, was fabricated by successive coating of TiO(2) with a carbon layer and a silica layer followed by heat treatment to remove the carbon layer. The composite induced efficient photocatalytic reactions when relatively small substrates were used, such as methanol dehydration and decomposition of acetic acid, without any reduction in the intrinsic activity of original TiO(2), but did not exhibit efficient photocatalytic activity for decomposition of large substrates, methylene blue and polyvinyl alcohol. The unique size-selective properties of the composites are due to their structural characteristics, i.e., the presence of a pore system and a void space in the silica shell and between the shell and medial TiO(2) particles, respectively. The loading of alkylsilyl groups on the surface of the composite led to highly photostable floatability: the floated sample also induced efficient photocatalytic reaction for decomposition of acetic acid while retaining floatation at the gas/water interface.

  20. Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions

    PubMed Central

    Kagan, Valerian E.; Wipf, Peter; Stoyanovsky, Detcho; Greenberger, Joel S.; Borisenko, Grigory; Belikova, Natalia A.; Yanamala, Naveena; Samhan Arias, Alejandro K.; Tungekar, Muhammad A.; Jiang, Jianfei; Tyurina, Yulia Y.; Ji, Jing; Klein-Seetharaman, Judith; Pitt, Bruce R.; Shvedova, Anna A; Bayır, Hülya

    2009-01-01

    Effective regulation of highly compartmentalized production of reactive oxygen species and peroxidation reactions in mitochondria requires targeting of small molecule antioxidants and antioxidant enzymes into the organelles. This review describes recently developed approaches to mitochondrial targeting of small biologically active molecules based on: (i) preferential accumulation in mitochondria because of their hydrophobicity and positive charge (hydrophobic cations), (ii) binding with high affinity to an intra-mitochondrial constituent, and (iii) metabolic conversions by specific mitochondrial enzymes to reveal an active entity. In addition, targeted delivery of antioxidant enzymes via expression of leader-sequences directing the proteins into mitochondria is considered. Examples of successful antioxidant and anti-apoptotic protection based on the ability of targeted cargoes to inhibit cytochrome c-catalyzed peroxidation of a mitochondria-specific phospholipid cardiolipin, in vitro and in vivo are presented. Particular emphasis is placed on the employment of triphenylphosphonium- and hemi-gramicidin S-moieties as two effective vehicles for mitochondrial delivery of antioxidants. PMID:19716396

  1. Sandmeyer reaction repurposed for the site-selective, non-oxidizing radioiodination of fully-deprotected peptides: studies on the endogenous opioid peptide α-neoendorphin.

    PubMed

    Pickett, Julie E; Nagakura, Kunihiko; Pasternak, Anna R; Grinnell, Steven G; Majumdar, Susruta; Lewis, Jason S; Pasternak, Gavril W

    2013-08-01

    Standard radioiodination methods lack site-selectivity and either mask charges (Bolton-Hunter) or involve oxidative reaction conditions (chloramine-T). Opioid peptides are very sensitive to certain structural modifications, making these labeling methods untenable. In our model opioid peptide, α-neoendorphin, we replaced a tyrosyl hydroxyl with an iodine, and in cell lines stably expressing mu, delta, or kappa opioid receptors, we saw no negative effects on binding. We then optimized a repurposed Sandmeyer reaction using copper(I) catalysts with non-redoxing/non-nucleophilic ligands, bringing the radiochemical yield up to around 30%, and site-selectively incorporated radioactive iodine into this position under non-oxidizing reaction conditions, which should be broadly compatible with most peptides. The (125)I- and (131)I-labeled versions of the compound bound with high affinity to opioid receptors in mouse brain homogenates, thus demonstrating the general utility of the labeling strategy and of the peptide for exploring opioid binding sites.

  2. Selective Gas-Phase Ion/Ion Reactions: Enabling Disulfide Mapping via Oxidation and Cleavage of Disulfide Bonds in Intermolecularly-Linked Polypeptide Ions.

    PubMed

    Pilo, Alice L; McLuckey, Scott A

    2016-09-20

    The selective gas-phase oxidation of disulfide bonds to their thiosulfinate form using ion/ion reactions and subsequent cleavage is demonstrated here. Oxidizing reagent anions are observed to attach to all polypeptides, regardless of amino acid composition. Direct proton transfer yielding a charge-reduced peptide is also frequently observed. Activation of the ion/ion complex between an oxidizing reagent anion and a disulfide-containing peptide cation results in oxygen transfer from the reagent anion to the peptide cation to form the [M+H+O](+) species. This thiosulfinate derivative can undergo one of several rearrangements that result in cleavage of the disulfide bond. Species containing an intermolecular disulfide bond undergo separation of the two chains upon activation. Further activation can be used to generate more sequence information from each chain. These oxidation ion/ion reactions have been used to illustrate the identification of S-glutathionylated and S-cysteinylated peptides, in which low molecular weight thiols are attached to cysteine residues in peptides via disulfide bonds. The oxidation chemistry effectively labels peptide ions with readily oxidized groups, such as disulfide bonds. This enables a screening approach for the identification of disulfide-linked peptides in a disulfide mapping application involving enzymatic digestion. The mixtures of ions generated by tryptic and peptic digestions of lysozyme and insulin, respectively, without prior separation or isolation were subjected both to oxidation and proton transfer ion/ion chemistry to illustrate the identification of peptides in the mixtures with readily oxidized groups.

  3. New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies.

    PubMed

    Li, Hao; Qin, Feng; Yang, Zhiping; Cui, Ximin; Wang, Jianfang; Zhang, Lizhi

    2017-03-08

    Selective organic transformation under mild conditions constitutes a challenge in green chemistry, especially for alcohol oxidation, which typically requires environmentally unfriendly oxidants. Here, we report a new plasmonic catalyst of Au supported on BiOCl containing oxygen vacancies. It photocatalyzes selective benzyl alcohol oxidation with O2 under visible light through synergistic action of plasmonic hot electrons and holes. Oxygen vacancies on BiOCl facilitate the trapping and transfer of plasmonic hot electrons to adsorbed O2, producing •O2(-) radicals, while plasmonic hot holes remaining on the Au surface mildly oxidize benzyl alcohol to corresponding carbon-centered radicals. The hypothesized concerted ring addition between these two radical species on the BiOCl surface highly favors the production of benzaldehyde along with an unexpected oxygen atom transfer from O2 to the product. The results and understanding acquired in this study, based on the full utilization of hot charge carriers in a plasmonic metal deposited on a rationally designed support, will contribute to the development of more active and/or selective plasmonic catalysts for a wide variety of organic transformations.

  4. A study on the reaction characteristics of vanadium-impregnated natural manganese oxide in ammonia selective catalytic reduction.

    PubMed

    Kim, Sung Su; Lee, Sang Moon; Park, Kwang Hee; Kwon, Dong Wook; Hong, Sung Chang

    2011-05-01

    This study investigated the effect of adding vanadium (V) to natural manganese oxide (NMO) in ammonia (NH3) selective catalytic reduction (SCR). The addition of V to NMO decreased the catalytic activity at low temperatures by blocking the active site. However, the enhancement of catalytic activity was achieved by controlling NH3 oxidation at high temperatures. From the NH3 temperature programmed desorption and oxygen on/off test, it was confirmed that the amount of Lewis acid site and active lattice oxygen of the catalyst affects the catalytic performance at low temperature.

  5. Effect of Slow Aging Reactions on Optical Properties of Secondary Organic Aerosol Prepared by Oxidation of Selected Monoterpenes

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S. A.; Bones, D. L.; Henricksen, D. K.; Mang, S. A.; Bateman, A. P.; Pan, X.; Nguyen, T. B.; Gonsior, M.; Cooper, W.; Laskin, J.; Laskin, A.

    2009-05-01

    Organic particulate matter (PM) has a major impact on atmospheric chemistry, climate, and human health. Secondary organic aerosol (SOA) accounts for a rather significant fraction of organic PM; this includes SOA produced by oxidation of biogenically emitted monoterpenes. Once such SOA is formed, it is believed to undergo slow aging processes, which may have large effects on the physical and chemical properties of the particles. This presentation focuses on the effect of slow chemical aging on optical properties of SOA formed from the ozone-induced oxidation of limonene, myrcene, and other selected monoterpenes. Several complementary techniques including high resolution electrospray ionization mass spectrometry, FTIR spectroscopy, UV/vis spectroscopy, NMR spectroscopy, 3D-fluorescence spectroscopy, and photodissociation spectroscopy are used to probe the aging-induced changes in physical properties and chemical composition of laboratory generated SOA. Limonene SOA appears to undergo a dramatic change in its absorption spectrum on a time scale of hours; it develops strong visible bands in the 400-500 nm region, and becomes fluorescent. This transformation is catalyzed by ammonium sulfate and certain amino acids. This rather unusual aging process can potentially contribute to the formation of brown carbon in biogenic SOA.

  6. Pi-face-selective Diels-Alder reactions of 3,4-di-tert-butylthiophene 1-oxide and 1-imide and formation of 1,2-thiazetidines.

    PubMed

    Otani, Takashi; Takayama, Jun; Sugihara, Yoshiaki; Ishii, Akihiko; Nakayama, Juzo

    2003-07-09

    3,4-Di-tert-butylthiophene 1-oxide (1a) reacted with a series of electron-deficient alkenic dienophiles at its syn-pi-face relating to the S=O bond to give [4+2] adducts in excellent yields. The 1-oxide 1a also reacted even with angle-strained dienophiles acenaphthylene and norbornene at its syn-pi-face to afford [4+2] adducts; in the latter case, norbornene reacted exclusively at its exo-pi-face. The oxide 1a reacted with dimethyl acetylenedicarboxylate to produce dimethyl 4,5-di-tert-butylphthalate in high yield with spontaneous extrusion of SO from the initial adduct even at room temperature. Similarly, 3,4-di-tert-butylthiophene 1-(p-toluenesulfonyl)imide (3a) reacted with alkenic dienophiles at its syn-pi-face relating to the S=N bond to give [4+2] adducts in good yields. The reaction of 3a with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) afforded a 1,2-thiazetidine 12a, the first example of S-unoxidized 1,2-thiazetidine, in good yield, through rearrangement of the initial [4+2] adduct. The molecular structure of 12a is discussed on the basis of the X-ray crystallographic analysis. Comparison of the foregoing reactions leads to the conclusion that the 1-oxide 1a is more reactive as a diene than the 1-imide 3a, which is more reactive than 3,4-di-tert-butylthiophene 1,1-dioxide. The origin of the syn-pi-face selectivities of 1a and 3a in Diels-Alder reactions is discussed in terms of the orbital mixing rule and steric effect and also based on B3LYP/6-31G(d) calculations.

  7. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  8. Surface structure of crystalline and amorphous chromia catalysts for the selective catalytic reduction of nitric oxide. 1. Characterization by temperature-programmed reaction and desorption

    SciTech Connect

    Curry-Hyde, H.E.; Musch, H.; Baiker, A. ); Schraml-Marth, M.; Wokaun, A. )

    1992-02-01

    Amorphous and crystalline chromia catalysts used for the selective catalytic reduction (SCR) of NO by NH{sub 3} have been characterized using temperature-programmed reaction and desorption of preadsorbed NO and NH{sub 3}. The acidity of the Lewis acid sites and the associated labile oxygen species are investigated using NH{sub 3} as a probe molecule. The degree of coordinative unsaturation of these sites is inferred from the reactions of NO. The effects of reduction, oxidation, and SCR treatment on the state of the Lewis acid sites and the labile oxygen are discussed. Lewis acid sites on crystalline chromia are more acidic than those on amorphous chromia. Different labile oxygen species are discernible based on their oxidizing strengths and the products formed. All labile oxygen is readily removed by reduction; SCR treatment leads to the partial removal of labile oxygen from both morphologies of chromia. The degree of lability of the different oxygen species is related to the morphology of the chromia. The proportions of one- and twofold coordinatively unsaturated sites (1 and 2 c.u.s.) depends strongly on the morphology of the chromia and its pretreatment. Both types of sites show distinct differences in the acidity dependent on the morphology of the chromia. The most significant difference between the two morphologies is seen after SCR treatment. Crystalline chromia shows a very high density of 1 c.u.s. compared to amorphous chromia. These sites are generated from 2 c.u.s. by abstraction of oxygen from NO. Implications of these results on the SCR reaction are discussed.

  9. Rates and temperature dependences of the reaction of OH with isoprene, its oxidation products, and selected terpenes

    SciTech Connect

    Kleindienst, T.E.; Harris, G.W.; Pitts, J.N. Jr.

    1982-12-01

    Absolute rate constants determined by using the flash photolysis-resonance fluorescence technique are reported for the reactions of hydroxyl radicals with isoprene, ..cap alpha.., and ..beta..-pinene, methyl vinyl ketone, and methacrolein in the temperature range 297-424 K, and with methylglyoxal at 297 K. These results contribute to a more quantitative understanding of the tropospheric fate of gas-phase biomass-related organics and serve as input to models of the chemistry of the natural troposphere.

  10. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  11. Physicochemical properties of selectively oxidized 1-monolaurin from 2,2,6,6-tetramethyl-1-piperidinyl oxoammonium ion/sodium hypochlorite-mediated reaction.

    PubMed

    Ahn, Seon Min; Lee, Hyong Joo; Kim, Sang Woo; Lee, Jaehwan; Chang, Pahn-Shick

    2009-04-08

    The primary alcohol group of 1-monolaurin (1-ML) was selectively oxidized using 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion/sodium hypochlorite (NaOCl) without NaBr at two different conditions. The selective oxidation occurred more efficiently at 35 degrees C and 32.2 mmol of NaOCl than at 25 degrees C and 18.7 mmol of NaOCl. Regioselective oxidation of the primary alcohol without oxidation of a secondary alcohol was confirmed by a chemical shift at 175 ppm and no resonance between 198 and 205 ppm in (13)C NMR and the presence of a peak at 1560-1570 cm(-1) in IR spectra. The water solubility of oxidized 1-monolaurin (OML) was remarkably increased by 33.2 times as compared to that of 1-ML. Creaming velocities resulting from fat flocculation in a 0.2% level of OML and 1-ML were 0.16 and 1.13 mm/h, respectively, implying that OML showed higher efficiency and emulsion stability in preventing fat flocculation than 1-ML due to the selective oxidation of primary alcohol.

  12. Mild pyrolysis of selectively oxidized coals

    SciTech Connect

    Hippo, E.J.

    1991-01-01

    The primary objective of this study is to investigate the removal organic sulfur from selectively oxidized Illinois coals using mild thermal/chemical processes. Work completed this quarter includes the investigation of the mild pyrolysis of unoxidized coals plus a selection of selectively oxidized coals. In addition the effect of particle size and extent of oxidation on pyrolysis was investigated. Some preliminary data concerning pyrolysis under vacuum and ambient pressure was also obtained. Work completed this quarter supports the following conclusions: (1) Desulfurization of unoxidized coals increases with increasing pyrolysis temperature and correlates with the loss of volatile matter. (2) Particle size did not influence the extent of desulfurization significantly. (3) Removing pyrite prior to pyrolysis helps to achieve a lower sulfur product beyond that expected from the removal of pyrite alone. (4) The extent of selective oxidation in teh pretreatment step did not effect the level of desulfurization obtained by pyrolysis alone. However this factor was important in the desulfurization obtained with supercritical methanol (SCM)/base. (5) Up to 84% of the sulfur has been removed from the IBC 101 coal by combining selective oxidation and SCM/base reactions. (6) Evidence for regressive reactions between volatilized sulfur compounds and partially desulfurized products was obtained by studying how changes in pyrolysis pressure effected the product sulfur content.

  13. The nitric oxide producing reactions of hydroxyurea.

    PubMed

    King, S Bruce

    2003-03-01

    Hydroxyurea is used to treat a variety of cancers and sickle cell disease. Despite this widespread use, a complete mechanistic understanding of the beneficial actions of this compound remains to be understood. Hydroxyurea inhibits ribonucleotide reductase and increases the levels of fetal hemoglobin, which explains a portion of the effects of this drug. Administration of hydroxyurea to patients results in a significant increase in levels of iron nitrosyl hemoglobin, nitrite and nitrate suggesting the in vivo metabolism of hydroxyurea to nitric oxide. Formation of nitric oxide from hydroxyurea may explain a portion of the observed effects of hydroxyurea treatment. At the present, the mechanism or mechanisms of nitric oxide release, the identity of the in vivo oxidant and the site of metabolism remain to be identified. Chemical oxidation of hydroxyurea produces nitric oxide and nitroxyl, the one-electron reduced form of nitric oxide. These oxidative pathways generally proceed through the nitroxide radical (2) or C-nitrosoformamide (3). Biological oxidants, including both iron and copper containing enzymes and proteins, also convert hydroxyurea to nitric oxide or its decomposition products in vitro and these reactions also occur through these intermediates. A number of other reactions of hydroxyurea including the reaction with ribonucleotide reductase and irradiation demonstrate the potential to release nitric oxide and should be further investigated. Gaining an understanding of the metabolism of hydroxyurea to nitric oxide will provide valuable information towards the treatment of these disorders and may lead to the development of better therapeutic agents.

  14. Reactions of nitrogen oxides with polymers

    NASA Astrophysics Data System (ADS)

    Pariiskii, Georgii B.; Gaponova, I. S.; Davydov, Evgenii Ya

    2000-11-01

    The mechanisms of the reactions of nitrogen oxides and different classes of solid polymers are considered. Particular emphasis is given to the analysis of the mechanisms of the formation of stable nitroxyl radicals. Double bonds and amide groups of macromolecules, as well as hydroperoxides and peroxide macroradicals are shown to be involved in the reactions with nitrogen oxides. The application of nitrogen oxides for the preparation of spin-labelled polymers and the use of the ESR imaging technique (ESR tomography) for the investigation of the structure of the reaction front during nitration of solid polymers are considered. The bibliography includes 111 references.

  15. Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6.

    PubMed

    Kozikowski, Alan P; Tapadar, Subhasish; Luchini, Doris N; Kim, Ki Hwan; Billadeau, Daniel D

    2008-08-14

    A series of hydroxamate based HDAC inhibitors containing a phenylisoxazole as the CAP group has been synthesized using nitrile oxide cycloaddition chemistry. An HDAC6 selective inhibitor having a potency of approximately 2 picomolar was identified. Some of the compounds were examined for their ability to block pancreatic cancer cell growth and found to be about 10-fold more potent than SAHA. This research provides valuable, new molecular probes for use in exploring HDAC biology.

  16. Improved sensitivity and selectivity of pristine zinc oxide nanostructures to H2S gas: Detailed study on the synthesis reaction time

    NASA Astrophysics Data System (ADS)

    Motaung, David E.; Mhlongo, Gugu H.; Bolokang, Amogelang S.; Dhonge, Baban P.; Swart, Hendrik C.; Sinha Ray, Suprakas

    2016-11-01

    The gas sensing properties of ZnO nanostructures synthesized at various reaction times are reported in this study. The response of ZnO nanostructures to H2, NH3, H2S and NO2 gases was investigated at different operating temperatures and gas concentrations. Surface morphology analyses showed that the geometry of the nanostructures transforms with the synthesis reaction time. Topography analyses demonstrated a surface roughness of approximately 68.25, 70.31, 74.75 nm for the samples synthesized for 24, 48 and 72 h, respectively. The dependence of the morphology on the H2, NH3, NO2 and H2S gas sensing performance was observed. The alteration of the nanostructures diameter/geometry demonstrated a change in both the magnitude and temperature of the maximum sensor response. The 72 h ZnO sensing material revealed improved response and higher sensitivity and selectivity to H2S gas, while the 24 h sensing material revealed enhanced response and selectivity to NO2 gas at 300 °C. Moreover, the 72 h sensing material exhibited a higher sensitivity of 144.22 ppm-1 at 300 °C. These findings disclosed that by varying the synthesis reaction time, the sensing properties, such as the response, sensitivity and selectivity of the ZnO nanostructures could be tuned.

  17. Oxidative Reactions with Nonaqueous Enzymes

    SciTech Connect

    Jonathan S. Dordick; Douglas Clark; Brian H Davison; Alexander Klibanov

    2001-12-30

    The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with less waste.

  18. Selected reaction monitoring applied to quantitative proteomics.

    PubMed

    Kiyonami, Reiko; Domon, Bruno

    2010-01-01

    Proteomics is gradually shifting from pure qualitative studies (protein identification) to large-scale quantitative experiments, prompted by the growing need to analyze consistently and precisely a large set of proteins in biological samples. The selected reaction monitoring (SRM) technique is increasingly applied to quantitative proteomics because of its selectivity (two levels of mass selection), its sensitivity (non-scanning mode), and its wide dynamic range. This account describes the different steps in the design and the experimental setup of SRM experiments.

  19. Production of pesticide metabolites by oxidative reactions.

    PubMed

    Hodgson, E

    1982-08-01

    The cytochrome P-450-dependent monooxygenase system catalyzes a wide variety of oxidations of pesticide chemicals and related compounds. These reactions include epoxidation and aromatic hydroxylation, aliphatic hydroxylation, O-, N- and S-dealkylation, N-oxidation, oxidative deamination, S-oxidation, P-oxidation, desulfuration and ester cleavage and may result in either detoxication or activation of the pesticide. The current status of such reactions, relative to the production, in vivo, of biologically active intermediates in pesticide metabolism is summarized. More recently we have shown that the FAD-containing monooxygenase of mammalian liver (E.C.1.14.13.8), a xenobiotic metabolizing enzyme of broad specificity formerly known as an amine oxidase, is involved in a variety of pesticide oxidations. These include sulfoxidation of organophosphorus insecticides such as phorate and disulfoton, oxidative desulfuration of phosphonate insecticides such as fonofos and oxidation at the phosphorus atom in such compounds as the cotton defoliant, folex. The relative importance of the FAD-containing monooxygenase vis-a-vis the cytochrome P-450-dependent monooxygenase system is discussed, based on in vitro studies on purified enzymes.

  20. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, C.Y.

    1993-09-21

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  1. Oxidation state of BZ reaction mixtures.

    PubMed

    Sobel, Sabrina G; Hastings, Harold M; Field, Richard J

    2006-01-12

    The unstirred, ferroin (Fe(phen)(3)2+)-catalyzed Belousov-Zhabotinsky (BZ) reaction1-4 is the prototype oscillatory chemical system. After an induction period of several minutes, one sees "spontaneous" formation of "pacemaker" sites, which oscillate between a blue, oxidized state (high [Fe(phen)3(3+)]) and a red, reduced state (low [Fe(phen)(3)3+]). The reaction medium appears red (reduced) during the induction phase, and the pacemaker sites generate target patterns of concentric, outwardly moving waves of oxidation (blue). Auto-oscillatory behavior is also seen in the Oregonator model of Field, Korös, and Noyes (FKN), a robust, reduced model which captures qualitative BZ kinetics in the auto-oscillatory regime. However, the Oregonator model predicts a blue (oxidized) induction phase. Here, we show that including reaction R8 of the FKN mechanism, not incorporated in the original Oregonator, accounts for bromide release during the induction phase, thus producing the observed red oxidation state.

  2. Hydrogen production from methane through catalytic partial oxidation reactions

    NASA Astrophysics Data System (ADS)

    Freni, S.; Calogero, G.; Cavallaro, S.

    This paper reviews recent developments in syn-gas production processes used for partial methane oxidation with and/or without steam. In particular, we examined different process charts (fixed bed, fluidised bed, membrane, etc.), kinds of catalysts (powders, foams, monoliths, etc.) and catalytically active phases (Ni, Pt, Rh, etc.). The explanation of the various suggested technical solutions accounted for the reaction mechanism that may selectively lead to calibrated mixtures of CO and H 2 or to the unwanted formation of products of total oxidation (CO 2 and H 2O) and pyrolysis (coke). Moreover, the new classes of catalysts allow the use of small reactors to treat large amounts of methane (monoliths) or separate hydrogen in situ from the other reaction products (membrane). This leads to higher conversions and selectivity than could have been expected thermodynamically. Although catalysts based on Rh are extremely expensive, they can be used to minimise H 2O formation by maximising H 2 yield.

  3. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    SciTech Connect

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  4. An “Aprotic” Tamao Oxidation/syn-Selective Tautomerization Reaction for the Efficient Synthesis of the C(1)–C(9) Fragment of Fludelone

    PubMed Central

    Harrison, Tyler J.; Rabbat, Philippe M. A.; Leighton, James L.

    2012-01-01

    An efficient synthesis of the C(1)–C(9) fragment of fludelone has been developed. The key step is a tandem silylformylation-crotylsilylation/Tamao oxidation sequence that establishes the C(5) ketone, the C(6), C(7), and C(8) stereocenters, and the C(9) alkene in a single operation from a readily accessed starting material. The stereochemical outcome at C(6) depends critically on the development of an “aprotic” Tamao oxidation, which leads to a reversal in the intrinsic diastereoselectivity observed using “standard” Tamao oxidation conditions. PMID:22950417

  5. Selected reaction monitoring applied to proteomics.

    PubMed

    Gallien, Sebastien; Duriez, Elodie; Domon, Bruno

    2011-03-01

    Selected reaction monitoring (SRM) performed on triple quadrupole mass spectrometers has been the reference quantitative technique to analyze small molecules for several decades. It is now emerging in proteomics as the ideal tool to complement shotgun qualitative studies; targeted SRM quantitative analysis offers high selectivity, sensitivity and a wide dynamic range. However, SRM applied to proteomics presents singularities that distinguish it from small molecules analysis. This review is an overview of SRM technology and describes the specificities and the technical aspects of proteomics experiments. Ongoing developments aiming at increasing multiplexing capabilities of SRM are discussed; they dramatically improve its throughput and extend its field of application to directed or supervised discovery experiments.

  6. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    PubMed

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-02-03

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  7. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    NASA Astrophysics Data System (ADS)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-02-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  8. Heterogeneous reaction of ozone with aluminum oxide

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1976-01-01

    Rates and collision efficiencies for ozone decomposition on aluminum oxide surfaces were determined. Samples were characterized by BET surface area, X-ray diffraction, particle size, and chemical analysis. Collision efficiencies were found to be between 2 times 10 to the -10 power and 2 times 10 to the -9 power. This is many orders of magnitude below the value of 0.000001 to 0.00001 needed for appreciable long-term ozone loss in the stratosphere. An activation energy of 7.2 kcal/mole was found for the heterogeneous reaction between -40 C and 40 C. Effects of pore diffusion, outgassing and treatment of the aluminum oxide with several chemical species were also investigated.

  9. Selectivity in the carbon-oxygen reaction

    NASA Astrophysics Data System (ADS)

    Skokova, Kristina A.

    The dependence of the carbon-oxygen reaction rate and the CO/COsb2 ratio on temperature, oxygen pressure, carbon crystallite size, concentration of surface C(O) complexes, and content of heteroatoms was studied. It was shown that the temperature dependence of the CO/COsb2 ratio obeys an Arrhenius-type relationship, but the pre-exponential factor and the activation energy depend on oxygen pressure and carbon nature. The Arrhenius parameters were found to be directly proportional to each other. This confirmed the importance of the compensation effect in carbon oxidation. It was explained by active site heterogeneity in carbon materials. For all experimental conditions, the CO/COsb2 ratio was lower for carbons with more ordered graphitic structure. It was shown that the CO/COsb2 ratio is inversely proportional to the surface coverage with reactive C(O) complexes. More ordered carbons were revealed to possess lower concentrations of stable complexes, higher surface coverages with reactive complexes and thus lower CO/COsb2 ratios. The influence of B and N heteroatoms on carbon reactivity and the CO/COsb2 ratio was studied. It was confirmed that B acts as an inhibitor of carbon oxidation due to the formation of a protective Bsb2Osb3 coating. The N presence in the carbon structure increases its rate of oxidation, maybe due to decreasing carbon crystallite dimensions. The CO/COsb2 ratio did not correlate with the N content in the carbon, but depended on the concentration of surface carbon-oxygen complexes. A new reaction mechanism is proposed. A key feature of the mechanism is that it takes into account the presence and mobility of oxygen atoms on the basal plane. It was shown with the aid of theoretical molecular orbital calculations that chemisorption on a pair of adjacent edge and basal sites is thermodynamically favorable as a parallel process to the generally accepted path of chemisorption on two edge carbon atoms. The former process can lead to the formation of a

  10. Highly diastereoselective and regioselective copper-catalyzed nitrosoformate dearomatization reaction under aerobic-oxidation conditions.

    PubMed

    Yang, Weibo; Huang, Long; Yu, Yang; Pflästerer, Daniel; Rominger, Frank; Hashmi, A Stephen K

    2014-04-01

    An unprecedented copper-catalyzed acylnitroso dearomatization reaction, which expands the traditional acylnitroso ene reaction and acylnitroso Diels-Alder reaction to a new type of transformation, has been developed under aerobic oxidation. Intermolecular and intra-/intermolecular reaction modes demonstrate an entirely different N- or O-acylnitroso selectivity. Hence, we can utilize this reaction as a highly diastereoselective access to a series of new pyrroloindoline derivatives, which are important structural motifs for natural-product synthesis.

  11. Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic nad+/nadh co-factors and [cp*rh(bpy)h]+ for selective organic synthesis

    SciTech Connect

    Lutz, Jochen; Hollman, Frank; Ho, The Vinh; Schnyder, Adrian; Fish, Richard H.; Schmid, Andreas

    2004-03-09

    The biocatalytic, regioselective hydroxylation of 2-hydroxybiphenyl to the corresponding catechol was accomplished utilizing the monooxygenase 2-hydroxybiphenyl 3-monooxygenase (HbpA). The necessary natural nicotinamide adenine dinucleotide (NAD{sup +}) co-factor for this biocatalytic process was replaced by a biomimetic co-factor, N-benzylnicotinamide bromide, 1a. The interaction between the flavin (FAD) containing HbpA enzyme and the corresponding biomimetic NADH compound, N-benzyl-1,4-dihdronicotinamide, 1b, for hydride transfers, was shown to readily occur. The in situ recycling of the reduced NADH biomimic 1b from 1a was accomplished with [Cp*Rh(bpy)H](Cl); however, productive coupling of this regeneration reaction to the enzymatic hydroxylation reaction was not totally successful, due to a deactivation process concerning the HbpA enzyme peripheral groups; i.e., -SH or -NH{sub 2} possibly reacting with the precatalyst, [Cp*Rh(bpy)(H{sub 2}O)](Cl){sub 2}, and thus inhibiting the co-factor regeneration process. The deactivation mechanism was studied, and a promising strategy of derivatizing these peripheral -SH or -NH{sub 2} groups with a polymer containing epoxide was successful in circumventing the undesired interaction between HbpA and the precatalyst. This latter strategy allowed tandem co-factor regeneration using 1a or 2a, [Cp*Rh(bpy)(H2O)](Cl){sub 2}, and formate ion, in conjunction with the polymer bound, FAD containing HbpA enzyme to provide the catechol product.

  12. Metal-organic frameworks as selectivity regulators for hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Meiting; Yuan, Kuo; Wang, Yun; Li, Guodong; Guo, Jun; Gu, Lin; Hu, Wenping; Zhao, Huijun; Tang, Zhiyong

    2016-11-01

    Owing to the limited availability of natural sources, the widespread demand of the flavouring, perfume and pharmaceutical industries for unsaturated alcohols is met by producing them from α,β-unsaturated aldehydes, through the selective hydrogenation of the carbon-oxygen group (in preference to the carbon-carbon group). However, developing effective catalysts for this transformation is challenging, because hydrogenation of the carbon-carbon group is thermodynamically favoured. This difficulty is particularly relevant for one major category of heterogeneous catalyst: metal nanoparticles supported on metal oxides. These systems are generally incapable of significantly enhancing the selectivity towards thermodynamically unfavoured reactions, because only the edges of nanoparticles that are in direct contact with the metal-oxide support possess selective catalytic properties; most of the exposed nanoparticle surfaces do not. This has inspired the use of metal-organic frameworks (MOFs) to encapsulate metal nanoparticles within their layers or inside their channels, to influence the activity of the entire nanoparticle surface while maintaining efficient reactant and product transport owing to the porous nature of the material. Here we show that MOFs can also serve as effective selectivity regulators for the hydrogenation of α,β-unsaturated aldehydes. Sandwiching platinum nanoparticles between an inner core and an outer shell composed of an MOF with metal nodes of Fe3+, Cr3+ or both (known as MIL-101; refs 19, 20, 21) results in stable catalysts that convert a range of α,β-unsaturated aldehydes with high efficiency and with significantly enhanced selectivity towards unsaturated alcohols. Calculations reveal that preferential interaction of MOF metal sites with the carbon-oxygen rather than the carbon-carbon group renders hydrogenation of the former by the embedded platinum nanoparticles a thermodynamically favoured reaction. We anticipate that our basic design

  13. Reaction and spectroscopic study of supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Ramani, Narayanan C.

    The role of surface structure, cation reducibility, surface acidity and the effect of the support was examined in the reaction of 1-butene over well characterized, supported metal oxide catalysts. Cr, Mo and W oxides supported on SiOsb2 were used to study the effect of structure, surface acidity and cation reducibility in the isomerization and selective oxidation of 1-butene. Supported oxides of Mo on TiOsb2,\\ Alsb2Osb3 and SiOsb2 were used to understand the role of the support in the selective oxidation of 1-butene. The surface acidity of SiOsb2 supported Cr, Mo, W and V oxide catalysts was examined by pyridine adsorption. Existing theoretical models of acidity were compared against experimental data. Over Mo(VI)/SiOsb2 and W(VI)/SiOsb2, isomerization through both a Bronsted catalyzed pathway and an allylic pathway were observed, while only the allylic pathway was observed over Cr(VI)/SiOsb2. The greater reducibility of the Cr cation compared to Mo and W cations was identified as the reason for the allylic pathway being dominant over Cr(VI)/SiOsb2. Cation reducibility was again seen to play an important role in the selective oxidation of 1-butene over SiOsb2 supported metal oxides. The turn over frequencies for 1,3-butadiene formation followed the trend in red-ox ability, with Cr > Mo > W. The activity to 1,3-butadiene formation did not change with increasing weight loading of Mo over TiOsb2 and Alsb2Osb3 supports. An analysis of the turn over frequencies of the supports and the supported cations revealed that a support effect, through the bridging oxygen ligand, dominated the intrinsic cation reducibility of Mo for these catalysts. The existence of Bronsted acidity over SiOsb2 supported Cr, Mo and V oxides was shown by an analysis of the OH region of the infrared spectrum, and by the adsorption of 1-butene and pyridine. Existing theoretical models for Bronsted acidity over supported metal oxides were shown to be inadequate to describe the observed results over

  14. Reactions of. cap alpha. -oxides in the presence of hexamethylenetetramine and glycerine diphenyl ether

    SciTech Connect

    Nikolaev, P.V.; Sveshnikova, N.F.; Ignatov, V.A.

    1987-11-20

    Hexamethylenetetramine (HMTA) is widely used as a catalyst for the condensation and hardening of compositions based on epoxide oligomer. To provide objective information about the reaction scheme and the kinetics of reactions in which epoxide oligomers participate we studied a model reaction system. The model epoxide oligomer selected was phenyl glycidyl ether (PGE) and the ..cap alpha..,..gamma..-diphenyl ether of glycerine (GDPE). The reference substances in the differential thermal analysis were magnesium oxide, aluminum oxide, and GDPE. Monitoring of the progress of the isothermal reaction was effected by determining the ..cap alpha..-oxide group mercurimetrically. The concentration of HMTA was determined iodometrically.

  15. Oxygen-transfer reactions of methylrhenium oxides

    SciTech Connect

    Abu-Omar, M.M.; Espenson, J.H.; Appelman, E.H.

    1996-12-18

    Methylrhenium dioxide, CH{sub 3}ReO{sub 2} (or MDO), is produced from methylrhenium trioxide, CH{sub 3}ReO{sub 3} (or MTO), and hypophosphorous acid in acidic aqueous medium. Its mechanism is discussed in light of MTO`s coordination ability and the inverse kinetic isotope effect (kie): H{sub 2}P(O)OH, k = 0.028 L mol{sup -1} s{sup -1}; D{sub 2}P(O)OH, k = 0.039 L mol{sup -1} s{sup -1}. The Re(V) complex, MDO, reduces perchlorate and other inorganic oxoanions (XO{sub n}{sup -}, where X = Cl, Br, or I and N = 4 or 3). The rate is controlled by the first oxygen abstraction from perchlorate to give chlorate, with a second-order rate constant at pH 0 and 25 {degrees}C of 7.3 L mol{sup -1} s{sup -1}. Organic oxygen-donors such as sulfoxides and pyridine N-oxides oxidize MDO to MTO as do metal oxo complexes: VO{sup 2+}{sub (aq)}, VO{sub 2}{sup +}{sub (aq)}, HOMoO{sub 2}{sup +}{sub (aq)}, and MnO{sub 4}{sup -}. The reaction between V{sup 2+}{sub (aq)} with MTO and the reduction of VO{sup 2+} with MDO made it possible to determine the free energy for MDO/MTO. Oxygen-atom transfer from oxygen-donors to MDO involves nucleophilic attack of X-O on the electrophilic Re(V) center of MDO; the reaction proceeds via an [MDO{center_dot}XO] adduct, which is supported by the saturation kinetics observed for some. The parameters that control and facilitate the kinetics of such oxygen-transfer processes are suggested and include the force constant for the asymmetric stretching of the element-oxygen bond.

  16. N-Heterocyclic Carbene Complexes in Oxidation Reactions

    NASA Astrophysics Data System (ADS)

    Jurčík, Václav; Cazin, Catherine S. J.

    This chapter describes applications of N-heterocyclic carbenes (NHCs) in oxidation chemistry. The strong σ-donation capabilities of the NHCs allow an efficient stabilisation of metal centres in high oxidation states, while high metal-NHC bond dissociation energies suppress their oxidative decomposition. These properties make NHCs ideal ligands for oxidation processes. The first part of this chapter is dedicated to the reactivity of NHC-metal complexes towards molecular oxygen whilst the second half highlights all oxidation reactions catalysed by such complexes. These include oxidation of alcohols and olefins, oxidative cyclisations, hydrations of alkynes and nitriles, oxidative cleavage of alkenes and the oxidation of methane.

  17. Patterning by area selective oxidation

    SciTech Connect

    Nam, Chang-Yong; Kamcev, Jovan; Black, Charles T.; Grubbs, Robert

    2015-12-29

    Technologies are described for methods for producing a pattern of a material on a substrate. The methods may comprise receiving a patterned block copolymer on a substrate. The patterned block copolymer may include a first polymer block domain and a second polymer block domain. The method may comprise exposing the patterned block copolymer to a light effective to oxidize the first polymer block domain in the patterned block copolymer. The method may comprise applying a precursor to the block copolymer. The precursor may infuse into the oxidized first polymer block domain and generate the material. The method may comprise applying a removal agent to the block copolymer. The removal agent may be effective to remove the first polymer block domain and the second polymer block domain from the substrate, and may not be effective to remove the material in the oxidized first polymer block domain.

  18. THz-Pulse-Induced Selective Catalytic CO Oxidation on Ru.

    PubMed

    LaRue, Jerry L; Katayama, Tetsuo; Lindenberg, Aaron; Fisher, Alan S; Öström, Henrik; Nilsson, Anders; Ogasawara, Hirohito

    2015-07-17

    We demonstrate the use of intense, quasi-half-cycle THz pulses, with an associated electric field component comparable to intramolecular electric fields, to direct the reaction coordinate of a chemical reaction by stimulating the nuclear motions of the reactants. Using a strong electric field from a THz pulse generated via coherent transition radiation from an ultrashort electron bunch, we present evidence that CO oxidation on Ru(0001) is selectively induced, while not promoting the thermally induced CO desorption process. The reaction is initiated by the motion of the O atoms on the surface driven by the electric field component of the THz pulse, rather than thermal heating of the surface.

  19. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  20. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  1. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  2. Selective methane oxidation over promoted oxide catalysts. Quarterly report, September 1 - November 30, 1995

    SciTech Connect

    Klier, Kamil; Herman, R.G.; Wang, C.B.

    1995-12-31

    The objective of this research is the selective oxidation of methane to C{sub 2}H{sub 4} hydrocarbons and to oxygenates, in particular formaldehyde and methanol. Air, oxygen, or carbon dioxide rather than nitrous oxide, are utilized as the oxidizing gas at high gas hourly space velocity but mild reaction conditions (500-700{degrees}C, 1 atm total pressure). All the investigated processes are catalytic, aiming at minimizing gas phase reactions that are difficult to control. During this quarter, solid state {sup 51}V NMR and double catalyst bed experiments were conducted to demonstrate the unfavorable effect of the presence of bulk crystalline V{sub 2}O{sub 5} in V{sub 2}O{sub 5}-SiO{sub 2} xerogel catalysts on selective oxidation of methane to methanol and formaldehyde. Results are discussed.

  3. Selective insertion of sulfur dioxide reduction intermediates on graphene oxide.

    PubMed

    Humeres, Eduardo; Debacher, Nito A; Smaniotto, Alessandra; de Castro, Karen M; Benetoli, Luís O B; de Souza, Eduardo P; Moreira, Regina de F P M; Lopes, Cristiane N; Schreiner, Wido H; Canle, Moisés; Santaballa, J Arturo

    2014-04-22

    Graphite microparticles (d50 6.20 μm) were oxidized by strong acids, and the resultant graphite oxide was thermally exfoliated to graphene oxide sheets (MPGO, C/O 1.53). Graphene oxide was treated with nonthermal plasma under a SO2 atmosphere at room temperature. The XPS spectrum showed that SO2 was inserted only as the oxidized intermediate at 168.7 eV in the S 2p region. Short thermal shocks at 600 and 400 °C, under an Ar atmosphere, produced reduced sulfur and carbon dioxide as shown by the XPS spectrum and TGA analysis coupled to FTIR. MPGO was also submitted to thermal reaction with SO2 at 630 °C, and the XPS spectrum in the S 2p region at 164.0 eV showed that this time only the nonoxidized episulfide intermediate was inserted. Plasma and thermal treatment produced a partial reduction of MPGO. The sequence of thermal reaction followed by plasma treatment inserted both sulfur intermediates. Because oxidized and nonoxidized intermediates have different reactivities, this selective insertion would allow the addition of selective types of organic fragments to the surface of graphene oxide.

  4. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical).

    PubMed

    Lee, Yunho; von Gunten, Urs

    2010-01-01

    Chemical oxidation processes have been widely applied to water treatment and may serve as a tool to minimize the release of micropollutants (e.g. pharmaceuticals and endocrine disruptors) from municipal wastewater effluents into the aquatic environment. The potential of several oxidants for the transformation of selected micropollutants such as atenolol, carbamazepine, 17 alpha-ethinylestradiol (EE2), ibuprofen, and sulfamethoxazole was assessed and compared. The oxidants include chlorine, chlorine dioxide, ferrate(VI), and ozone as selective oxidants versus hydroxyl radicals as non-selective oxidant. Second-order rate constants (k) for the reaction of each oxidant show that the selective oxidants react only with some electron-rich organic moieties (ERMs), such as phenols, anilines, olefins, and deprotonated-amines. In contrast, hydroxyl radicals show a nearly diffusion-controlled reactivity with almost all organic moieties (k>or=10(9)M(-1) s(-1)). Due to a competition for oxidants between a target micropollutant and wastewater matrix (i.e. effluent organic matter, EfOM), a higher reaction rate with a target micropollutant does not necessarily translate into more efficient transformation. For example, transformation efficiencies of EE2, a phenolic micropollutant, in a selected wastewater effluent at pH 8 varied only within a factor of 7 among the selective oxidants, even though the corresponding k for the reaction of each selective oxidant with EE2 varied over four orders of magnitude. In addition, for the selective oxidants, the competition disappears rapidly after the ERMs present in EfOM are consumed. In contrast, for hydroxyl radicals, the competition remains practically the same during the entire oxidation. Therefore, for a given oxidant dose, the selective oxidants were more efficient than hydroxyl radicals for transforming ERMs-containing micropollutants, while hydroxyl radicals are capable of transforming micropollutants even without ERMs. Besides Ef

  5. Concurrent Formation of Carbon–Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction

    NASA Astrophysics Data System (ADS)

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-05-01

    Oxidative C–H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C–C bond formation via C–H transformation and production of functionalized graphene.

  6. Concurrent Formation of Carbon–Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction

    PubMed Central

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-01-01

    Oxidative C–H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C–C bond formation via C–H transformation and production of functionalized graphene. PMID:27181191

  7. Selective aerobic oxidation mediated by TiO(2) photocatalysis.

    PubMed

    Lang, Xianjun; Ma, Wanhong; Chen, Chuncheng; Ji, Hongwei; Zhao, Jincai

    2014-02-18

    TiO2 is one of the most studied metal oxide photocatalysts and has unparal-leled efficiency and stability. This cheap, abundant, and non-toxic material has the potential to address future environmental and energy concerns. Understanding about the photoinduced interfacial redox events on TiO2 could have profound effect on the degradation of organic pollutants, splitting of H2O into H2 and O2, and selective redox organic transformations. Scientists traditionally accept that for a semiconductor photocatalyst such as TiO2 under the illumination of light with energy larger than its band gap, two photocarriers will be created to carry out their independent reduction and oxidation processes. However, our recent discoveries indicate that it is the concerted rather than independent effect of both photocarriers of valence band hole (hvb(+)) and conduction band electron (ecb(-)) that dictate the product formation during interfacial oxidation event mediated by TiO2 photocatalysis. In this Account, we describe our recent findings on the selective oxidation of organic substrates with O2 mediated by TiO2 photocatalysis. The transfer of O-atoms from O2 to the corresponding products dominates the selective oxidation of alcohols, amines, and alkanes mediated by TiO2 photocatalysis. We ascribe this to the concerted effect of both hvb(+) and ecb(-) of TiO2 in contribution to the oxidation products. These findings imply that O2 plays a unique role in its transfer into the products rather than independent role of ecb(-) scavenger. More importantly, ecb(-) plays a crucial role to ensure the high selectivity for the oxygenation of organic substrates. We can also use the half reactions such as those of the conduction band electron of TiO2 for efficient oxidation reactions with O2. To this end, efficient selective oxidation of organic substrates such as alcohols, amines, and aromatic alkanes with O2 mediated by TiO2 photocatalysis under visible light irradiation has been achieved. In

  8. Hierarchical zeolites and their catalytic performance in selective oxidative processes.

    PubMed

    Ojeda, Manuel; Grau-Atienza, Aida; Campos, Rafael; Romero, Antonio A; Serrano, Elena; Maria Marinas, Jose; García Martínez, Javier; Luque, Rafael

    2015-04-24

    Hierarchical ZSM-5 zeolites prepared using a simple alkali treatment and subsequent HCl washing are found to exhibit unprecedented catalytic activities in selective oxidation of benzyl alcohol under microwave irradiation. The metal-free zeolites promote the microwave-assisted oxidation of benzyl alcohol with hydrogen peroxide in yields ranging from 45-35 % after 5 min of reaction under mild reaction conditions as well as the epoxidation of cyclohexene to valuable products (40-60 % conversion). The hierarchically porous systems also exhibited an interesting catalytic activity in the dehydration of N,N-dimethylformamide (25-30 % conversion), representing the first example of transition-metal free catalysts in this reaction.

  9. Oxidation and Reduction Reactions in Organic Chemistry

    ERIC Educational Resources Information Center

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  10. Selective cytotoxicity effect of cerium oxide nanoparticles under UV irradiation.

    PubMed

    Zhang, Li; Jiang, Hui; Selke, Matthias; Wang, Xuemei

    2014-02-01

    During photodynamic therapy (PDT) of cancers, there are numerous side effects, accompanied by damage to normal cells/tissues caused by the abnormal elevation of reactive oxygen species (ROS). In this paper, we aim to provide an effective method to reduce the relevant side effects of PDT by using cerium oxide nanoparticles. The well-dispersed poly(vinyl pyrrolidone) stabilized cerium oxide nanoparticles were successfully synthesized by using a one-pot method at 60 degrees C in slightly alkaline environment. The morphological and structural characterizations clearly illustrate the excellent lattice structures of cerium oxide, nanoparticles. The MTT assay indicates that these cerium oxide nanoparticles show no intrinsic cytotoxicity even at a concentration up to 300 micro g/mL. More importantly, the results demonstrate that these nanoparticles can selectively protect human normal cells but not the cancer cells from ROS damage after exposure to UV-radiation, suggesting their potential applications for PDT treatment. The rationale behind the selective protection effect can be attributed to the hindrance of the Ce (III)/Ce (IV) redox reaction cycle on the surface of cerium oxide nanoparticles due to the abnormal intracellular pH in cancer cells. Furthermore, these cerium oxide nanoparticles can be used as effective drug carriers for enhancing drug delivery efficiency to target cancer cells like hepatoma HepG2 cells. This raises the possibility of applying cerium oxide nanoparticles for multifunctional therapeutic applications, i.e., combination of efficient PDT and chemotherapy.

  11. Dynamics of photoinduced reactions at oxide surfaces

    NASA Astrophysics Data System (ADS)

    Al-Shamery, K.

    1996-11-01

    This report summarizes our work on UV-laser induced desorption of small molecules and atoms from transition metal oxides. The systems presented serve as examples for a simple photochemical reaction, the fission of the molecule surface bond. State resolved detection methods were used to record the final state distributions of the desorbing neutral molecules. Detailed results on the systems NO/NiO(1 1 1) and CO/Cr2O3(0 0 0 1) are presented. The experiments include investigations on stereodynamic aspects like the angular distributions of the desorbing molecules and, in the case of CO desorption, the rotational alignment with respect to the surface normal. Large desorption cross sections of (6±1) ṡ 10-17 cm2 for NO and (3.5±1) ṡ 10-17 cm2 for CO have been found for the desorption at 6.4 eV. The wavelength dependence indicates that the primary excitation step is substrate induced. The final state distributions show a high degree of translational, rotational and vibrational excitation and are clearly nonthermal of origin. The results are consistent with the formation of a negative ion intermediate state of the adsorbate. This observation is supported from a comparison to former results on NO/NiO(1 0 0) for which extensive ab initio calculations including electronically excited states exist. A spin state dependence of the vibrational excitation of NO could only be observed for NO/NiO(1 1 1) and is absent for NO/NiO(1 0 0). We attribute this observation to a spin state dependent coupling of the desorbing molecule to the surface in case the spin lattice orientation of the surface shows a preferential orientation. In the (1 1 1) plane the spin orientation is parallel within neighbour nickel ions while it is alternating in the (1 0 0) plane. For both systems studied the velocity component parallel to the surface is constant leading to a strong peaking along the surface normal for the fast molecules. The change from a preferred helicopter rotation (angular momentum

  12. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    SciTech Connect

    Zhuang Lina; Wang Wenjin; Hong Feng; Yang Shengchun; You Hongjun; Fang Jixiang; Ding Bingjun

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  13. Fly Ash and Mercury Oxidation/Chlorination Reactions

    SciTech Connect

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using

  14. Selective methane oxidation over promoted oxide catalysts. Quarterly report, March--May 1995

    SciTech Connect

    Klier, K.; Herman, R.G.; Wang, Chaun-Bao; Shi, Chunlei; Sun, Qun

    1995-08-01

    The objective of this research is the selective oxidative coupling of methane to C{sub 2}H{sub 4} hydrocarbons and oxygenates, in particular formaldehyde and methanol. Air, oxygen or carbon dioxide, rather than nitrous oxide will be utilized as the oxidizing gas at high gas hourly space velocity, but mild reaction conditions (500-700 {degrees}C, 1 atm total pressure). All the investigated processes are catalytic, aiming at minimizing gas phase reactions that are difficult to control. The research is divided into the following three tasks: (1) maximizing selective methane oxidation to C{sub 2}H{sub 4} products over promoted Sr/La{sub 2}O{sub 3}; (2) selective methane oxidation to oxygenates; and (3) catalyst characterization and optimization. Task 1 dealt with the preparation, testing, and optimization of acidic promoted lanthana-based catalysts for the synthesis of C{sub 2}H{sub 4} hydrocarbons and is essentially completed. Task 2 aims at the formation and optimization of promoted catalysts for the synthesis of oxygenates, in particular formaldehyde and methanol. Task 3 involves characterization of the most promising catalysts so that optimization can be achieved under Task 2. Accomplishments for this period are presented.

  15. CONTAMINANT ADSORPTION AND OXIDATION VIA FENTON REACTION

    EPA Science Inventory

    A ground water treatment process is proposed involving two cgemical processes: adsorption and oxidation. Adsorption of an organic compound onto granulated activated carbon (GAC) containing iron conveniently results in immobilizing and concentrating contaminants from the ground w...

  16. Guanine oxidation: one- and two-electron reactions.

    PubMed

    Pratviel, Geneviève; Meunier, Bernard

    2006-08-07

    Guanine bases in DNA are the most sensitive to oxidation. A lot of effort has been devoted to the understanding of the chemical modifications of guanine under different oxidizing conditions, the final goal being to know which lesions in DNA can be expected in vivo and their biological consequences. This article analyses the mechanisms underlying guanine oxidation by the comparison between one- and two-electron transfer processes. The different oxidants used in vitro give complementary answers. This overview presents a choice of some key intermediates and the predictive description of G-oxidation products that can be generated from these intermediates depending on the reaction conditions.

  17. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation

    NASA Astrophysics Data System (ADS)

    Sabourin, Justin L.

    Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications. In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions. This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and

  18. Mechanism of selective methanol oxidation over vanadium oxide-titanium oxide catalysts: a FT-IT and flow reactor study

    SciTech Connect

    Busca, G.; Elmi, A.S.; Forzatti, P.

    1987-09-24

    The mechanism of the selective oxidation of methanol on two V-Ti oxide catalyst samples, prepared by impregnation and coprecipitation techniques, respectively is investigated. The interaction of methanol and its oxidation products (i.e., formaldehyde, dimethoxymethane, formic acid, and methyl formate) is studied by FR-IR spectroscopy and compares with the results of flow reactor measurements performed at different temperatures, contact times, and methanol/oxygen molar feed ratios. The data are interpreted on the basis of a reaction mechanism which involved the following steps: (i) condensation of methanol with surface VOH groups; (ii) H abstraction from methoxy groups leading to coordinated formaldehyde; (iii) formation of dioxymethylene species by interaction of adsorbed formaldehyde with nucelophilic sites; (iv) reaction of dioxymethylene species with methanol to give dimethoxymethane; (v) successive oxidation of dioxymethylene groups to formate ions; (vi) reaction of these ions either with methanol to produce methyl formate or with water to give formic acid; (vii) decomposition of formate species to produce carbon monoxide; (viii) parallel oxidation of methanol to carbon dioxide. The behaviors of the surface species are compared with those monitored on other systems and the catalyst requirements for the title reaction are discussed.

  19. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  20. Cyclization Reactions through DDQ-Mediated Vinyl Oxazolidinone Oxidation

    PubMed Central

    Liu, Lei; Floreancig, Paul E.

    2009-01-01

    Vinyl oxazolidinones react with DDQ to form α,β-unsaturated acyliminium ions in a new method for forming electrophiles under oxidative conditions. Appended nucleophiles undergo 1,4-addition reactions with these intermediates to form cyclic vinyl oxazolidinones with good levels of diastereocontrol, highlighting a new approach to utilizing oxidative carbon–hydrogen bond functionalization to increase molecular complexity. PMID:19552390

  1. Mutagenicity screening of reaction products from the enzyme-catalyzed oxidation of phenolic pollutants

    SciTech Connect

    Massey, I.J.; Aitken, M.D.; Ball, L.M.; Heck, P.E. . Dept. of Environmental Sciences and Engineering)

    1994-11-01

    Phenol-oxidizing enzymes such as peroxidases, laccases, and mushroom polyphenol oxidase are capable of catalyzing the oxidation of a wide range of phenolic pollutants. Although the use of these enzymes in waste-treatment applications has been proposed by a number of investigators, little information exists on the toxicological characteristics of the oxidation products. The enzymes chloroperoxidase, horseradish peroxidase, lignin peroxidase, and mushroom polyphenol oxidase were used in this study to catalyze the oxidation of phenol, several mono-substituted phenols, and pentachlorophenol. Seventeen reaction mixtures representing selected combinations of enzyme and parent phenol were subjected to mutagenicity screening using the Ames Salmonella typhimurium plate incorporation assay; five selected mixtures were also incubated with the S9 microsomal preparation to detect the possible presence of promutagens. The majority of reaction mixtures tested were not directly mutagenic, and none of those tested with S9 gave a positive response. Such lack of mutagenicity of enzymatic oxidation products provides encouragement for establishing the feasibility of enzyme-catalyzed oxidation as a waste-treatment process. The only positive responses were obtained with reaction products from the lignin peroxidase-catalyzed oxidation of 2-nitrophenol and 4-nitrophenol. Clear positive responses were observed when strain TA100 was incubated with 2-nitrophenol reaction-product mixtures, and when strain TA98 was incubated with the 4-nitrophenol reaction mixture. Additionally, 2,4-dinitrophenol was identified as a reaction product from 4-nitrophenol, and preliminary evidence indicates that both 2,4- and 2,6-dinitrophenol are produced from the oxidation of 2-nitrophenol. Possible mechanism by which these nitration reactions occur are discussed.

  2. Chemical tailoring of teicoplanin with site-selective reactions.

    PubMed

    Pathak, Tejas P; Miller, Scott J

    2013-06-05

    Semisynthesis of natural product derivatives combines the power of fermentation with orthogonal chemical reactions. Yet, chemical modification of complex structures represents an unmet challenge, as poor selectivity often undermines efficiency. The complex antibiotic teicoplanin eradicates bacterial infections. However, as resistance emerges, the demand for improved analogues grows. We have discovered chemical reactions that achieve site-selective alteration of teicoplanin. Utilizing peptide-based additives that alter reaction selectivities, certain bromo-teicoplanins are accessible. These new compounds are also scaffolds for selective cross-coupling reactions, enabling further molecular diversification. These studies enable two-step access to glycopeptide analogues not available through either biosynthesis or rapid total chemical synthesis alone. The new compounds exhibit a spectrum of activities, revealing that selective chemical alteration of teicoplanin may lead to analogues with attenuated or enhanced antibacterial properties, in particular against vancomycin- and teicoplanin-resistant strains.

  3. Thermal oxidative degradation reactions of perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1981-01-01

    The mechanisms operative in thermal oxidative degradation of Fomblin Z and hexafluoropropene oxide derived fluids and the effect of alloys and additives upon these processes are investigated. The nature of arrangements responsible for the inherent thermal oxidative instability of the Fomblin Z fluids is not established. It was determined that this behavior is not associated with hydrogen end groups or peroxy linkages. The degradation rate of these fluids at elevated temperatures in oxidizing atmospheres is dependent on the surface/volume ratio. Once a limiting ratio is reached, a steady rate appears to be attained. Based on elemental analysis and oxygen consumption data, CF2OCF2CF2O2, no. CF2CF2O, is one of the major arrangements present. The action of the M-50 and Ti(4 Al, 4 Mn) alloys is much more drastic in the case of Fomblin Z fluids than that observed for the hexafluoropropene derived materials. The effectiveness of antioxidation anticorrosion additives, P-3 and phospha-s-triazine, in the presence of metal alloys is very limited at 316 C; at 288 C the additives arrested almost completely the fluid degradation. The phospha-s-triazine appears to be at least twice as effective as the P-3 compound; it also protected the coupon better. The Ti(4 Al, 4 Mn) alloy degraded the fluid mainly by chain scission processes this takes place to a much lesser degree with M-50.

  4. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    PubMed Central

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  5. Selective methane oxidation over promoted oxide catalysts. Topical report, September 8, 1992--September 7, 1996

    SciTech Connect

    Klier, K.; Herman, R.G.

    1996-12-31

    The objective of this research was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields using air at the oxidant under milder reaction conditions that heretofore employed over industrially practical oxide catalysts. The research carried out under this US DOE-METC contract was divided into the following three tasks: Task 1, maximizing selective methane oxidation to C{sub 2}{sup +} products over promoted SrO/La{sub 2}O{sub 3} catalysts; Task 2, selective methane oxidation to oxygenates; and Task 3, catalyst characterization and optimization. Principal accomplishments include the following: the 1 wt% SO{sub 4}{sup 2{minus}}/SrO/La{sub 2}O{sub 3} promoted catalyst developed here produced over 2 kg of C{sub 2} hydrocarbons/kg catalyst/hr at 550 C; V{sub 2}O{sub 5}/SiO{sub 2} catalysts have been prepared that produce up to 1.5 kg formaldehyde/kg catalyst/hr at 630 C with low CO{sub 2} selectivities; and a novel dual bed catalyst system has been designed and utilized to produce over 100 g methanol/kg catalyst/hr at 600 C with the presence of steam in the reactant mixture.

  6. A Bioorthogonal Reaction of N-Oxide and Boron Reagents.

    PubMed

    Kim, Justin; Bertozzi, Carolyn R

    2015-12-21

    The development of bioorthogonal reactions has classically focused on bond-forming ligation reactions. In this report, we seek to expand the functional repertoire of such transformations by introducing a new bond-cleaving reaction between N-oxide and boron reagents. The reaction features a large dynamic range of reactivity, showcasing second-order rate constants as high as 2.3×10(3)  M(-1)  s(-1) using diboron reaction partners. Diboron reagents display minimal cell toxicity at millimolar concentrations, penetrate cell membranes, and effectively reduce N-oxides inside mammalian cells. This new bioorthogonal process based on miniscule components is thus well-suited for activating molecules within cells under chemical control. Furthermore, we demonstrate that the metabolic diversity of nature enables the use of naturally occurring functional groups that display inherent biocompatibility alongside abiotic components for organism-specific applications.

  7. Kinetic and photochemical data for atmospheric chemistry reactions of the nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Hampson, R. F., Jr.

    1980-01-01

    Data sheets for thermal and photochemical reactions of importance in the atmospheric chemistry of the nitrogen oxides are presented. For each reaction the available experimental data are summarized and critically evaluated, and a preferred value of the rate coefficient is given. The selection of the preferred value is discussed and an estimate of its accuracy is given. For the photochemical process, the data are summarized, and preferred for the photoabsorption cross section and primary quantum yields are given.

  8. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures

    SciTech Connect

    Liu, Haichao; Iglesia, Enrique

    2004-03-04

    RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99 percent) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable

  9. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Li, W.B.; Yang, R.T.

    1995-12-01

    During this quarter, progress was made on the following tasks: TPD techniques were employed to study the reaction mechanism of the selective catalytic reduction of nitrogen oxide with ammonia over iron oxide pillared clay catalyst; and a sulfur dioxide resistant iron oxide/titanium oxide catalyst was developed.

  10. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    PubMed

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity.

  11. Regioselective Carbohydrate Oxidations: A Nuclear Magnetic Resonance (NMR) Study on Selectivity, Rate, and Side-Product Formation

    PubMed Central

    2017-01-01

    Palladium/neocuproine catalyzed oxidation of glucosides shows an excellent selectivity for the C3-OH, but in mannosides and galactosides, unselective oxidation was initially observed. For further application in more-complex (oligo)saccharides, a better understanding of the reaction, in terms of selectivity and reactivity, is required. Therefore, a panel of different glycosides was synthesized, subjected to palladium/neocuproine catalyzed oxidation and subsequently analyzed by qNMR. Surprisingly, all studied glucosides, mannosides, galactosides, and xylosides show selective oxidation of the C3-OH. However, subsequent reaction of the resulting ketone moiety is the main culprit for side product formation. Measures are reported to suppress these side reactions. The observed differences in reaction rate, glucosides being the most rapidly oxidized, may be exploited for the selective oxidation of complex oligosaccharides. PMID:28367353

  12. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  13. Mild pyrolysis of selectively oxidized coals. Technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Hippo, E.J.; Palmer, S.R.

    1992-12-31

    The primary objective of this study was to evaluate selective oxidation as a pretreatment for the enhanced desulfurization of Illinois Basin coals using a variety of mild thermal/chemical processes. Both an Illinois No.6 and an Indiana No.5 coal were selectively oxidized with peroxyacetic acid in the pretreatment step. The products were then treated with many hydroxide and carbonate bases using either water, methanol or ethanol as the solvent system. Other reaction variables investigated include reaction temperature, reaction time, pyrolysis pressure, particle size of the coal and the level of oxidation in the pretreatment step. Throughout the study the selectively oxidized coals were compared to unoxidized control coals. Model compounds were also studied. The results of these studies overwhelmingly show that selective oxidation with peroxyacetic acid significantly enhances the level of desulfurization obtained with subsequent chemical/thermal treatments. Indeed, every process investigated, including simple pyrolysis experiments, showed sulfur removal in the pretreatment step and the subsequent step to be substantially additive. In addition, considerable enhancement in the reactivity of the sulfur in the coal was obtained by the selective oxidation pretreatment. Sulfur contents lower than 0.25% were obtained for selectively oxidized coals. This represents an overall sulfur reduction of around 95%. This is beyond the level required for compliance with Clean Air Act legislation. No unoxidized coal, regardless of the desulfurization treatment, approached this level of sulfur removal.

  14. Kinetics of oxytetracycline reaction with a hydrous manganese oxide.

    PubMed

    Rubert, Kennedy F; Pedersen, Joel A

    2006-12-01

    Tetracycline antibiotics comprise a class of broad spectrum antimicrobial agents finding application in human therapy, animal husbandry, aquaculture, and fruit crop production. To better understand the processes affecting these antibiotics in soils and sediments, the kinetics of oxytetracycline transformation by a hydrous manganese oxide (MnO2) were investigated as a function of reactant concentration, pH, and temperature. Oxytetracycline was rapidly degraded by MnO2. Initial reaction rates exhibited pronounced pH-dependence, increasing as pH decreased. Reaction of oxytetracycline with MnO2 was accompanied by generation of Mn(II) ions, suggesting oxidative transformation of the antibiotic. At pH 5.6, apparent reaction orders for oxytetracycline and MnO2 were 0.7 and 0.8. Reaction order with respect to H+ was 0.6 between pH 4 and 9. Initial reaction rates increased by a factor of approximately 2.4 for 10 degrees C temperature increases; the apparent activation energy (60 kJ x mol(-1)) was consistent with a surface-controlled reaction. Reactivity of tetracycline antibiotics toward MnO2 increased in the following order: rolitetracyline oxytetracycline < or =tetracycline approximately meclocycline < chlortetracycline. The initial rate of chlortetracycline degradation by MnO2 was substantially larger than that of the other tetracycline antibiotics investigated. MnO2 reactivity toward oxytetracycline decreased with time; a retarded rate equation was used to describe oxytetracycline reaction with MnO2 under declining rate conditions. This study indicates that natural manganese oxides in soils and sediments are likely to promote appreciable degradation of tetracycline antibiotics, and that reaction rates are strongly dependent on reaction time scale and solution conditions.

  15. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  16. Process for the oxidation of materials in water at supercritical temperatures utilizing reaction rate enhancers

    SciTech Connect

    Swallow, K.C.; Killilea, W.R.; Hong, G.T.; Bourhis, A.L.

    1993-08-03

    A method is described for substantially completely oxidizing combustible materials in which an aqueous stream bearing the combustible materials is reacted in the presence of an oxidant comprising diatomic oxygen and at a temperature greater than the critical temperature of water and at a pressure greater than about 25 bar, within a reactor for a period of less than about 5 minutes to produce a reaction product stream, wherein the reaction is initiated in the presence of a rate enhancer comprising at least one oxidizing agent in addition to said oxidant selected from the group consisting of ozone, hydrogen peroxide, salts containing persulfate, salts containing permanganate, nitric acid, salts containing nitrate, oxyacids of chlorine and their corresponding salts, hypochlorous acid, salts containing hypochlorite, chlorous acid, salts containing chlorite, chloric acid, salts containing chlorate, perchloric acid, and salts containing perchlorate.

  17. Selective methane oxidation over promoted oxide catalysts. Quarterly report, March 1 - May 31, 1996

    SciTech Connect

    Klier, K.; Herman, R.G.; Wang, C.-B.

    1996-12-31

    Series of catalysts consisting of MoO{sub 3}, V{sub 2}O{sub 5}, TiO{sub 2}, and SnO{sub 2} impregnated onto oxide supports consisting of SiO{sub 2} (Cab-O-Sil), TiO{sub 2} or SnO{sub 2} were previously prepared and tested for the selective oxidation of methane to oxygenates, and it was found that the V{sub 2}O{sub 5}/SiO{sub 2} catalyst was the most active and most selective toward the formation of formaldehyde. These catalysts have been characterized by laser Raman spectroscopy after dehydration and during the methane oxidation reaction with a CH{sub 4}/02 = 10/1 reaction mixture at 500{degrees}C in a continuous flow in situ reaction cell. With the V{sub 2}O{sub 5}/SiO{sub 2} catalyst (the most active catalyst among those studied), no significant structural changes were revealed by in situ Raman analyses, indicating that the fully oxidized surface sites were related to the high formaldehyde selectivivity. Over the V{sub 2}O{sub 5}/TiO{sub 2} and V{sub 2}O{sub 5}/SnO{sub 2} catalysts, CO and CO{sub 2} were the principal products produced by oxidation of methane. For the first time, in situ Raman analysis clearly showed that for these latter catalysts, the surface vanadium(V) oxide species were partially reduced under the steady-state reaction conditions. The performance of the V{sub 2}O{sub 5}/TiO{sub 2}/SiO{sub 2} catalyst was similar to that of the V{sub 2}O{sub 5}TiO{sub 2} catalyst, consistent with the earlier observation that vanadia was largely bound to the titania overlayer. It appears that formaldehyde selectivity decreased with increasing catalyst reducibility, but no direct correlation of catalyst activity with reductibility was observed.

  18. Elucidation of the reaction mechanism during the removal of copper oxide by halogen surfactant at the surface of copper plate

    NASA Astrophysics Data System (ADS)

    Yokoyama, Shun; Takahashi, Hideyuki; Itoh, Takashi; Motomiya, Kenichi; Tohji, Kazuyuki

    2013-01-01

    Although copper nanoparticles have various attractive properties, electrical applications of these was not achieved because of its surface oxide layer which prohibited electrical conduction. Thus, it can be considered that a new elimination method of the oxide on Cu surface, which simultaneously provide the resistance to re-oxidized, should be developed. In this study, the reaction between the metal oxide on Cu plate surface and halogen surfactant was introduced into development as a new elimination method of surface oxide layer. Since electrochemical and surface analysis are effective for analyzing the reaction mechanism which expected to be the reduction reaction of the oxide on metal surface, Cu electrode, which represented material of Cu nanoparticles surface, was used for the reaction mechanism analysis. The oxide is removed by controlling the temperature and selecting the optimal combination of solvents and the halogen surfactant (TIC). Results of electrochemical measurements strongly suggest that the chemical reaction between the oxides on the surface with the halogen surfactant is a substitution reaction which converts Cu oxide to Cu bromide, and continuously formed Cu bromide was dissolved into solvent. Totally, the oxide on the Cu surface was successfully eliminated.

  19. A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Simonelli, Marco; Tuck, Chris; Aboulkhair, Nesma T.; Maskery, Ian; Ashcroft, Ian; Wildman, Ricky D.; Hague, Richard

    2015-09-01

    The creation of an object by selective laser melting (SLM) occurs by melting contiguous areas of a powder bed according to a corresponding digital model. It is therefore clear that the success of this metal Additive Manufacturing (AM) technology relies on the comprehension of the events that take place during the melting and solidification of the powder bed. This study was designed to understand the generation of the laser spatter that is commonly observed during SLM and the potential effects that the spatter has on the processing of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. With the exception of Ti-6Al-4V, the characterization of the laser spatter revealed the presence of surface oxides enriched in the most volatile alloying elements of the materials. The study will discuss the implication of this finding on the material quality of the built parts.

  20. Selective oxidation of CO in hydrogen over gold supported on manganese oxides

    SciTech Connect

    Torres Sanchez, R.M.; Ueda, Atsushi; Tanaka, Koji

    1997-05-01

    To develop PEFCs for general use it is necessary to make catalysts that are able to operate at low temperature, that work in the presence of CO{sub 2} and H{sub 2}O, and which have the ability to selectively remove CO from reformed gas by oxidizing CO to CO{sub 2}, while at the same time being inactive for the oxidation of H{sub 2}. Through the screening of support materials which give the largest difference in catalytic activity between the oxidation of CO and H{sub 2}, we found Au/MnOx to be one of the best candidates for the removal of CO from hydrogen-rich fuel gases. Gold supported on manganese oxides has also been investigated by Hoflund and co-workers for CO oxidation reaction in an inert gas background and by Iwasawa and his co-workers for the preparation method by use of an organo gold complex in the liquid phase. Because supported gold catalysts prefer oxidizing pretreatments, our major concern has been whether Au/MnOx is stable in H{sub 2}. 13 refs., 3 figs.

  1. Method for facilitating catalyzed oxidation reactions, device for facilitating catalyzed oxidation reactions

    DOEpatents

    Beuhler, Robert J.; White, Michael G.; Hrbek, Jan

    2006-08-15

    A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.

  2. Thermal Behavior Study of the MoVTeNb Oxide Catalyst for Selective Oxidation Process

    SciTech Connect

    Idris, R.; Hamid, S. B. Abd.

    2009-06-01

    Several parameters involved in preparing the multi metal oxide (MMO) catalysts (Mo{sub 1}V{sub 0.3}Te{sub 0.23}Nb{sub 0.12}O{sub x}) for selective oxidation of propane to acrylic acid (AA) were investigated. These included the proper pre-calcined and calcinations atmosphere effect on the performance of the catalysts. It was found that each metal element plays a critical role to the performance of an effective catalyst and also the calcinations under a non-flow inert atmosphere. The characterization results from XRD, SEM, TG and DSC show the important differences depending on the activation procedures of the MoVTeNb oxide catalyst. The XRD analysis is used to identify the phase inventory of the MoVTeNb oxide catalysts. The structure of orthorhombic M1, M2, TeMo{sub 5}O{sub 16}, V{sub 0.95}Mo{sub 0.97}O{sub 5} and Mo{sub 5}O{sub 14} phase was investigated. The orthorhombic M1 phase is the most active and selective phase and is responsible for the major of the efficiently of the best catalyst for selective oxidation process. TGA and DTG allow the identification of the number and types, of reactions involving evaporation of small molecules from removal of ligands and water to condensation or drying processes. From all these analyses it was proven that the activation procedures would affect the performance of the MoVTeNb oxide catalyst.

  3. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.

    PubMed

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina

    2016-04-12

    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  4. Development of Nitric Oxide Oxidation Catalysts for the Fast SCR Reaction

    SciTech Connect

    Mark Crocker

    2005-09-30

    This study was undertaken in order to assess the potential for oxidizing NO to NO{sub 2} in flue gas environments, with the aim of promoting the so-called fast SCR reaction. In principle this can result in improved SCR kinetics and reduced SCR catalyst volumes. Prior to commencing experimental work, a literature study was undertaken to identify candidate catalysts for screening. Selection criteria comprised (1) proven (or likely) activity for NO oxidation, (2) low activity for SO2 oxidation (where data were available), and (3) inexpensive component materials. Catalysts identified included supported base metal oxides, supported and unsupported mixed metal oxides, and metal ion exchanged ZSM-5 (Fe, Co, Cu). For comparison purposes, several low loaded Pt catalysts (0.5 wt% Pt) were also included in the study. Screening experiments were conducted using a synthetic feed gas representative of flue gas from coal-fired utility boilers: [NO] = 250 ppm, [SO{sub 2}] = 0 or 2800 ppm, [H{sub 2}O] = 7%, [CO{sub 2}] = 12%, [O{sub 2}] = 3.5%, balance = N{sub 2}; T = 275-375 C. Studies conducted in the absence of SO{sub 2} revealed a number of supported and unsupported metal oxides to be extremely active for NO oxidation to NO{sub 2}. These included known catalysts (Co{sub 3}O{sub 4}/SiO{sub 2}, FeMnO{sub 3}, Cr{sub 2}O{sub 3}/TiO{sub 2}), as well as a new one identified in this work, CrFeO{sub x}/SiO{sub 2}. However, in the presence of SO{sub 2}, all the catalysts tested were found to be severely deactivated with respect to NO oxidation. Of these, Co{sub 3}O{sub 4}/SiO{sub 2}, Pt/ZSM-5 and Pt/CeO{sub 2} showed the highest activity for NO oxidation in the presence of SO{sub 2} (based on peak NO conversions to NO{sub 2}), although in no cases did the NO conversion exceed 7%. Reactor studies indicate there are two components to SO{sub 2}-induced deactivation of Co{sub 3}O{sub 4}/SiO{sub 2}, corresponding to an irreversible deactivation due to sulfation of the surface of the Co{sub 3

  5. Experimental and Mechanistic Analysis of the Palladium-Catalyzed Oxidative C8-Selective C–H Homocoupling of Quinoline N-Oxides

    PubMed Central

    Stephens, David E.; Lakey-Beitia, Johant; Chavez, Gabriel; Ilie, Carla; Arman, Hadi D.

    2016-01-01

    A novel site-selective palladium-catalyzed oxidative C8–H homocoupling reaction of quinoline N-oxides has been developed. The reaction affords substituted 8,8'-biquinolyl N,N'-dioxides that can be readily converted to a variety of functionalized 8,8'-biquinolyls. Mechanistic studies point to the crucial role of the oxidant and a non-innocent behavior of acetic acid as a solvent. PMID:25966913

  6. A Gallium Oxide-Graphene Oxide Hybrid Composite for Enhanced Photocatalytic Reaction

    PubMed Central

    Kim, Seungdu; Han, Kook In; Lee, In Gyu; Park, Won Kyu; Yoon, Yeojoon; Yoo, Chan Sei; Yang, Woo Seok; Hwang, Wan Sik

    2016-01-01

    Hybrid composites (HCs) made up of gallium oxide (GaO) and graphene oxide (GO) were investigated with the intent of enhancing a photocatalytic reaction under ultraviolet (UV) radiation. The material properties of both GaO and GO were preserved, even after the formation of the HCs. The incorporation of the GO into the GaO significantly enhanced the photocatalytic reaction, as indicated by the amount of methylene blue (MB) degradation. The improvements in the reaction were discussed in terms of increased surface area and the retarded recombination of generated charged carriers. PMID:28335255

  7. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  8. The oxidative burst reaction in mammalian cells depends on gravity.

    PubMed

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  9. The oxidative burst reaction in mammalian cells depends on gravity

    PubMed Central

    2013-01-01

    Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and

  10. Reactions of metal ions at surfaces of hydrous iron oxide

    USGS Publications Warehouse

    Hem, J.D.

    1977-01-01

    Cu, Ag and Cr concentrations in natural water may be lowered by mild chemical reduction involving ferric hydroxide-ferrous ion redox processes. V and Mo solubilities may be controlled by precipitation of ferrous vanadate or molybdate. Concentrations as low as 10-8.00 or 10-9.00 M are readily attainable for all these metals in oxygen-depleted systems that are relatively rich in Fe. Deposition of manganese oxides such as Mn3O4 can be catalyzed in oxygenated water by coupling to ferrous-ferric redox reactions. Once formed, these oxides may disproportionate, giving Mn4+ oxides. This reaction produces strongly oxidizing conditions at manganese oxide surfaces. The solubility of As is significantly influenced by ferric iron only at low pH. Spinel structures such as chromite or ferrites of Cu, Ni, and Zn, are very stable and if locally developed on ferric hydroxide surfaces could bring about solubilities much below 10-9.00 M for divalent metals near neutral pH. Solubilities calculated from thermodynamic data are shown graphically and compared with observed concentrations in some natural systems. ?? 1977.

  11. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOEpatents

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  12. Selective air oxidation of cyclohexane in supercritical CO{sub 2}

    SciTech Connect

    Luan, Li; Buelow, S.J.; Tumas, W.

    1996-12-31

    We have explored the use of molecular oxygen as the oxidant for the selective oxidation of cyclohexane using cobalt catalysts in supercritical CO{sub 2}. We have chosen to use supercritial CO{sub 2} as a co-solvent for reasons: (1) oxygen, cyclohexane and acetic acid are miscible in supercritical CO{sub 2} and therefore oxidation can occur in a homogeneous phase; (2) C02 is inert for oxidation and can be easily separated from the reaction mixture; (3) CO{sub 2} is environmentally benign. Adipic acid was formed at 80 % selectivity with 5% conversion. Reaction rates and product selectivity will be reported as a function of temperature and pressure.

  13. Catalytic Reaction Synthesis for the Partial Oxidation of Methane to Formaldehyde.

    NASA Astrophysics Data System (ADS)

    Cardenas-Galindo, Maria-Guadalupe

    Catalytic reaction synthesis for the partial oxidation of methane to formaldehyde has been studied by combining microkinetic analysis with molecular orbital calculations. This strategy is used to establish microscopic correlations between the structure and composition of the active site and the kinetic parameters of the reaction mechanism. Using atom clusters to represent the active site of transition metal oxide catalysts, the relationship was probed between coordination number, oxidation state, and ionization potential of the active cation and the reaction steps of methane activation and surface reactions leading to formaldehyde formation. The analysis suggests that in transition metal oxide catalysts, the d-band orbitals of the metal cation should be empty, since otherwise CO_2 formation from CO oxidation will be excessive. Furthermore, the transition metal oxide d-band must be located at sufficiently low energy that it may accept electrons during methane activation. Oxygen O- species, representing vacancies in the 2p cluster band, will favor methane activation. However, clusters with fully occupied 2p bands (O^ {2-}^ecies) will favor formaldehyde production. Such inferences illustrate how experimental and theoretical information already incorporated into an existing microkinetic model for the reaction over V _2O_5 and MoO _3 catalysts can be extended to describe the reaction over new materials in the search for more active and selective catalysts. Using parameters estimated from the molecular orbital calculations, microkinetic reaction simulations were also shown to be useful to identify reactor operating conditions that may favor the production of formaldehyde. The simulation can be used to identify key experiments necessary to test the performance of postulated catalytic materials. The economic evaluation of the process design sets important target goals for methane conversion and formaldehyde selectivity that a catalytic material must satisfy to create a new

  14. Reaction Mechanism and Kinetics of Enargite Oxidation at Roasting Temperatures

    NASA Astrophysics Data System (ADS)

    Padilla, Rafael; Aracena, Alvaro; Ruiz, Maria C.

    2012-10-01

    Roasting of enargite (Cu3AsS4) in the temperature range of 648 K to 898 K (375 °C to 625 °C) in atmospheres containing variable amounts of oxygen has been studied by thermogravimetric methods. From the experimental results of weight loss/gain data and X-ray diffraction (XRD) analysis of partially reacted samples, the reaction mechanism of the enargite oxidation was determined, which occurred in three sequential stages:

  15. In situ vibrational spectroscopic investigation of C4 hydrocarbon selective oxidation over vanadium-phosphorus-oxide catalysts

    SciTech Connect

    Xue, Zhi -Yang

    1999-05-10

    n-Butane selective oxidation over the VPO catalyst to maleic anhydride is the first and only commercialized process of light alkane selective oxidation. The mechanism of this reaction is still not well known despite over twenty years of extensive studies, which can partially be attributed to the extreme difficulties to characterize catalytic reactions real-time under typical reaction conditions. In situ spectroscopic characterization techniques such as Infrared spectroscopy and laser Raman spectroscopy were used in the current mechanistic investigations of n-butane oxidation over VPO catalysts. To identify the reaction intermediates, oxidation of n-butane, 1,3-butadiene and related oxygenates on the VPO catalyst were monitored using FTIR spectroscopy under transient conditions. n-Butane was found to adsorb on the VPO catalyst to form olefinic species, which were further oxidized to unsaturated, noncyclic carbonyl species. The open chain dicarbonyl species then experienced cycloaddition to form maleic anhydride. VPO catalyst phase transformations were investigated using in situ laser Raman spectroscopy. This report contains Chapter 1: General introduction; Chapter 2: Literature review; and Chapter 5: Conclusion and recommendations.

  16. Surface chemistry on small ruthenium nanoparticles: evidence for site selective reactions and influence of ligands.

    PubMed

    Novio, Fernando; Monahan, Daniele; Coppel, Yannick; Antorrena, Guillermo; Lecante, Pierre; Philippot, Karine; Chaudret, Bruno

    2014-01-27

    The reactivity of two classes of ruthenium nanoparticles (Ru NPs) of small size, either sterically stabilized by a polymer (polyvinylpyrrolidone, PVP) or electronically stabilized by a ligand (bisdiphenylphosphinobutane, dppb) was tested towards standard reactions, namely CO oxidation, CO2 reduction and styrene hydrogenation. The aim of the work was to identify the sites of reactivity on the nanoparticles and to study how the presence of ancillary ligands can influence the course of these catalytic reactions by using NMR and IR spectroscopies. It was found that CO oxidation proceeds at room temperature (RT) on Ru NPs but that the system deactivates rapidly in the absence of ligands because of the formation of RuO2. In the presence of ligands, the reaction involves exclusively the bridging CO groups and no bulk oxidation is observed at RT under catalytic conditions. The reverse reaction, CO2 reduction, is achieved at 120 °C in the presence of H2 and leads to CO, which coordinates exclusively in a bridging mode, hence evidencing the competition between hydrides and CO for coordination on Ru NPs. The effect of ligands localized on the surface is also evidenced in catalytic reactions. Thus, styrene is slowly hydrogenated at RT by the two systems Ru/PVP and Ru/dppb, first into ethylbenzene and then into ethylcyclohexane. Selectively poisoning the nanoparticles with bridging CO groups leads to catalysts that are only able to reduce the vinyl group of styrene whereas a full poisoning with both terminal and bridging CO groups leads to inactive catalysts. These results are interpreted in terms of location of the ligands on the particles surface, and evidence site selectivity for both CO oxidation and arene hydrogenation.

  17. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Technical Reports Server (NTRS)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  18. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Astrophysics Data System (ADS)

    Tsotsis, T. T.; Sane, R. C.

    1987-04-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  19. Kinetics of the reaction of nitric oxide with hydrogen

    NASA Technical Reports Server (NTRS)

    Flower, W. L.; Hanson, R. K.; Kruger, C. H.

    1974-01-01

    Mixtures of NO and H2 diluted in argon or krypton were heated by incident shock waves, and the infrared emission from the fundamental vibration-rotation band of NO at 5.3 microns was used to monitor the time-varying NO concentration. The reaction kinetics were studied in the temperature range 2400-4500 K using a shock-tube technique. The decomposition of nitric oxide behind the shock was found to be modeled well by a fifteen-reaction system. A principle result of the study was the determination of the rate constant for the reaction H + NO yields N + OH, which may be the rate-limiting step for NO removal in some combustion systems. Experimental values of k sub 1 were obtained for each test through comparisons of measured and numerically predicted NO profiles.

  20. Reaction between nitric oxide and ozone in solid nitrogen

    NASA Technical Reports Server (NTRS)

    Lucas, D.; Pimentel, G. C.

    1979-01-01

    Nitrogen dioxide, NO2, is produced when nitric oxide, NO, and ozone, O3, are suspended in a nitrogen matrix at 11-20 K. The NO2 is formed with first-order kinetics, a 12 K rate constant of (1.4 + or - 0.2) x 0.00001/sec, and an apparent activation energy of 106 + or - 10 cal/mol. Isotopic labeling, variation of concentrations, and cold shield experiments show that the growth of NO2 is due to reaction between ozone molecules and NO monomers, and that the reaction is neither infrared-induced nor does it seem to be a heavy atom tunneling process. Reaction is attributed to nearest-neighbor NO.O3 pairs probably held in a specific orientational relationship that affects the kinetic behavior. When the temperature is raised, more such reactive pairs are generated, presumably by local diffusion. Possible mechanisms are discussed.

  1. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    SciTech Connect

    Grunes, Jeffrey Benjamin

    2004-05-01

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  2. Mild pyrolysis of selectively oxidized coals. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Hippo, E.J.; Palmer, S.R.

    1992-08-01

    The primary objective of this study is to investigate the removal organic sulfur from selectively oxidized Illinois coals using mild thermal/chemical processes. Work completed this quarter primarily concerned establishing the level of selective oxidation required for successful desulfurization in subsequent treatments. Many desulfurization reactions were performed on pretreated as well as unoxidized coal. The results obtained support the following new conclusions: (1) The extent of selective oxidation in the pretreatment step does not effect the level of desulfurization obtained by pyrolysis alone. However this factor was important in the desulfurization obtained with supercritical methanol (SCM)/base. (2) Up to 84% of the sulfur in the IBC 106 coal and 86% of the sulfur in the IBC 106 coal has been removed by combining selective oxidation and SCM/base reactions. (3) Most desulfurizations at 250{degree}C did not produce significant levels of desulfurization. However as the temperature was increased levels of desulfurization increased considerably. (4) Although aqueous base was successful in removing sulfur from both pretreated and untreated samples, the most pronounced desulfurizations were obtained for the untreated samples. This is explained primarily by the dissolution of pyrite in the untreated samples. (5) The best desulfurizations involved SCM and base. Possible synergistic interactions between the methanol and the base are suspected. (6) Overall, selective oxidation pretreatment always led to a lower sulfur product. The severity of desulfurization is reduced by selective oxidation pretreatment.

  3. Selective nitrogen functionalization of graphene by Bucherer-type reaction.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Luxa, Jan; Pumera, Martin

    2015-05-26

    Nitrogen functionalization of graphene offers new hybrid materials with improved performance for important technological applications. Despite studies highlighting the dependence of the performance of nitrogen-functionalized graphene on the types of nitrogen functional groups that are present, precise synthetic control over their ratio is challenging. Herein, the synthesis of nitrogen-functionalized graphene rich in amino groups by a Bucherer-type reaction under hydrothermal conditions is reported. The efficiency of the synthetic method under two hydrothermal conditions was examined for graphite oxide produced by Hummers and Hofmann oxidation routes. The morphological and structural properties of the amino-functionalized graphene were fully characterized. The use of a synthetic method with a well-known mechanism for derivatization of graphene will open new avenues for highly reproducible functionalization of graphene materials.

  4. Switchable selectivity in an NHC-catalysed dearomatizing annulation reaction

    NASA Astrophysics Data System (ADS)

    Guo, Chang; Fleige, Mirco; Janssen-Müller, Daniel; Daniliuc, Constantin G.; Glorius, Frank

    2015-10-01

    The development of general catalytic methods for the regio- and stereoselective construction of chiral N-heterocycles in a diversity-oriented fashion remains a formidable challenge in organic synthesis. N-heterocyclic carbene (NHC) catalysis has been shown to produce a variety of outcomes, but control of the reactivity has rarely been demonstrated. Here we report a switchable catalytic activation of enals with aromatic azomethine imines that provides high selectivity using NHC organocatalysts. The original selectivity corresponds to the acidity of the base used in the reaction. The catalytically generated chiral homoenolate or enol intermediate undergoes enantioselective annulation with electrophiles such as N-iminoquinolinium ylides, N-iminoisoquinolinium ylides and β-N-iminocarboline ylides. The good-to-high overall yields, high regioselectivities and excellent enantioselectivities observed are controlled by the catalyst and reaction conditions.

  5. Method for catalyzing oxidation/reduction reactions of simple molecules

    SciTech Connect

    Bicker, D.; Bonaventura, J.

    1988-06-14

    A method for oxidizing carbon monoxide to carbon dioxide is described comprising: (1) contacting, together, carbon monoxide, a nitrogen-containing chelating agent and water; wherein the chelating agent is at least one member selected from the group consisting of methmeoglobin bound to a support, ferric hemoglobin bound to a support, iron-containing porphyrins bound to a support, and sperm whale myoglobin bound to a support, wherein the support is glass, a natural fiber, a synthetic fiber, a gel, charcoal, carbon ceramic material, a metal oxide, a synthetic polymer, a zeolite, a silica compound of an alumina compound; and (2) obtaining carbon dioxide.

  6. Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

    PubMed Central

    Nguyen, Bichlien H; Perkins, Robert J; Smith, Jake A

    2015-01-01

    Summary The combination of visible light, photovoltaics, and electrochemistry provides a convenient, inexpensive platform for conducting a wide variety of sustainable oxidation reactions. The approach presented in this article is compatible with both direct and indirect oxidation reactions, avoids the need for a stoichiometric oxidant, and leads to hydrogen gas as the only byproduct from the corresponding reduction reaction. PMID:25815081

  7. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  8. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for...

  9. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

    NASA Astrophysics Data System (ADS)

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David

    2016-03-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure.

  10. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces.

    PubMed

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M; Otero, Roberto; Gallego, José M; Ballester, Pablo; Galan-Mascaros, José R; Ecija, David

    2016-03-11

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure.

  11. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

    PubMed Central

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure. PMID:26964764

  12. Electrochemical reaction and oxidation of lecithin under pulsed electric fields (PEF) processing.

    PubMed

    Zhao, Wei; Yang, Ruijin; Liang, Qi; Zhang, Wenbin; Hua, Xiao; Tang, Yali

    2012-12-12

    Pulsed electric fields (PEF) processing is a promising nonthermal food preservation technology, which is ongoing from laboratory and pilot plant scale levels to the industrial level. Currently, greater attention has been paid to side effects occurring during PEF treatment and the influences on food qualities and food components. The present study investigated the electrochemical reaction and oxidation of lecithin under PEF processing. Results showed that electrochemical reaction of NaCl solutions at different pH values occurred during PEF processing. Active chlorine, reactive oxygen, and free radicals were detected, which were related to the PEF parameters and pH values of the solution. Lecithin extracted from yolk was further selected to investigate the oxidation of food lipids under PEF processing, confirming the occurrence of oxidation of lecithin under PEF treatment. The oxidative agents induced by PEF might be responsible for the oxidation of extracted yolk lecithin. Moreover, this study found that vitamin C as a natural antioxidant could effectively quench free radicals and inhibit the oxidation of lipid in NaCl and lecithin solutions as model systems under PEF processing, representing a way to minimize the impact of PEF treatment on food qualities.

  13. Nitrous Oxide-dependent Iron-catalyzed Coupling Reactions of Grignard Reagents.

    PubMed

    Döhlert, Peter; Weidauer, Maik; Enthaler, Stephan

    2015-01-01

    The formation of carbon-carbon bonds is one of the fundamental transformations in chemistry. In this regard the application of palladium-based catalysts has been extensively investigated during recent years, but nowadays research focuses on iron catalysis, due to sustainability, costs and toxicity issues; hence numerous examples for iron-catalyzed cross-coupling reactions have been established, based on the coupling of electrophiles (R(1)-X, X = halide) with nucleophiles (R(2)-MgX). Only a small number of protocols deals with the iron-catalyzed oxidative coupling of nucleophiles (R(1)-MgX + R(2)-MgX) with the aid of oxidants (1,2-dihaloethanes). However, some issues arise with these oxidants; hence more recently the potential of the industrial waste product nitrous oxide (N(2)O) was investigated, because the unproblematic side product N(2) is formed. Based on that, we demonstrate the catalytic potential of easily accessible iron complexes in the oxidative coupling of Grignard reagents. Importantly, nitrous oxide was essential to obtain yields up to >99% at mild conditions (e.g. 1 atm, ambient temperature) and low catalyst loadings (0.1 mol%) Excellent catalyst performance is realized with turnover numbers of up to 1000 and turnover frequencies of up to 12000 h(-1). Moreover, a good functional group tolerance is observed (e.g. amide, ester, nitrile, alkene, alkyne). Afterwards the reaction of different Grignard reagents revealed interesting results with respect to the selectivity of cross-coupling product formation.

  14. Selective Oxidation of Benzene to Phenol. Final Report

    SciTech Connect

    Sherif, F.; Kung, H.; Marshall, C.

    2000-09-30

    Direct catalytic oxidation of commodity aromatics to phenolic compounds was studied by a team from Akzo Nobel Chemicals, Argonne National Lab., and Northwestern University. Results did not exceed previously published performance. The object of the project was to selectively oxidize benzene to phenol using a conventional oxidant.

  15. Kinetics, simulation and insights for CO selective oxidation in fuel cell applications

    NASA Astrophysics Data System (ADS)

    Choi, Yongtaek; Stenger, Harvey G.

    The kinetics of CO preferential oxidation (PROX) was studied to evaluate various rate expressions and to simulate the performance the CO oxidation step of a methanol fuel processor for fuel cell applications. The reaction was carried out in a micro reactor testing unit using a commercial Engelhard Selectoxo (Pt-Fe/γ-alumina) catalyst and three self-prepared catalysts. Temperature was varied between 100 and 300 °C, and a of range feed rates and compositions were tested. A reaction model in which three reactions (CO oxidation, H 2 oxidation and the water gas shift reaction) occur simultaneously was chosen to predict the reactor performance. Using non-linear least squares, empirical power-law type rate expressions were found to fit the experimental data. It was critical to include all three reactions to determine good fitting results. In particular, the reverse water gas shift reaction had an important role when fitting the experimental data precisely and explained the selectivity decrease at higher reaction temperatures. Using this three reaction model, several simulation studies for a commercial PROX reactor were performed. In these simulations, the effect of O 2/CO ratio, the effect of water addition, and various non-isothermal modes of operation were evaluated. The results of the simulation were compared with corresponding experimental data and shows good agreement.

  16. The Pressure Dependency of Stabilized Criegee Intermediate Yields of Selected Ozone-Alkene Reactions

    NASA Astrophysics Data System (ADS)

    Hakala, J. P.; Donahue, N. M.

    2014-12-01

    Stabilized Criegee Intermediates (SCI) play an important role as an oxidizing species in atmospheric reactions. The ozonolysis of alkenes in the atmosphere, i.e. the mechanism by which the SCIs are produced, is a major pathway to the formation of Secondary Organic Aerosols (SOA) in the atmosphere. Just how much SCIs contribute to the SOA formation is not well known and fundamental research in the kinetics of SCI formation need to be performed to shed light on this mystery. The alkene ozonolysis is highly exothermic reaction, so a third body is needed for stabilizing the SCI, thus making the SCI yield pressure dependent. We studied the production of SCIs at different pressures by studying their ability to oxidize sulfur dioxide in a pressure controlled flow reactor. We used a mixture of ultra-high purity nitrogen, oxygen, and a selective scavenger for hydroxyl radical (OH) as a carrier gas, and injected a mixture of nitrogen, sulfur dioxide and selected alkene to the center of the flow for ozonolysis to take place. With the OH radical scavenged, the SCI yield of the reaction was measured by measuring the amount of sulfuric acid formed in the reaction between SCI and sulfur dioxide with a Chemical Ionization Mass Spectrometer (CIMS). This work was supported by NASA/ROSES grant NNX12AE54G to CMU and Academy of Finland Center of Excellence project 1118615.

  17. Ionic Conductivity and its Role in Oxidation Reactions

    NASA Astrophysics Data System (ADS)

    Tamimi, Mazin Abdulla

    In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the

  18. Reaction of lincosamide antibiotics with manganese oxide in aqueous solution.

    PubMed

    Chen, Wan-Ru; Ding, Yunjie; Johnston, Cliff T; Teppen, Brian J; Boyd, Stephen A; Li, Hui

    2010-06-15

    Lincosamides are among the most frequently detected antibacterial agents in effluents from wastewater treatment plants and surface runoff at agricultural production systems. Little is known about their transformations in the environment. This study revealed that manganese oxide caused rapid and extensive decomposition of clindamycin and lincomycin in aqueous solution. The reactions occurred mainly at the pyranose ring of lincosamides, initially by formation of complexes with Mn and cleavage of the ether linkage, leading to the formation of a variety of degradation products via subsequent hydrolytic and oxidative reactions. The results of LC-MS/MS and FTIR analysis confirm cleavage of the C-O-C bond in the pyranose ring, formation of multiple carbonyl groups, and transformation of the methylthio moiety to sulfur oxide. The overall transformation was controlled by interactions of cationic species of lincosamides with MnO(2) surfaces. The presence of electrolytes (i.e., NaCl, CaCl(2), and MnCl(2)) and dissolved organic matter in aqueous solution, and increase of solution pH, diminished lincosamide binding to MnO(2) hence reducing the rate and magnitude of the transformations. Results from this study indicate that manganese dioxides in soils and sediments could contribute to the decomposition of lincosamide antibiotics released into the environment.

  19. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions

    NASA Astrophysics Data System (ADS)

    Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.

  20. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    PubMed Central

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  1. Metal-Organic Frameworks as Catalysts for Oxidation Reactions.

    PubMed

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; Garcia, Hermenegildo

    2016-06-06

    This Concept is aimed at describing the current state of the art in metal-organic frameworks (MOFs) as heterogeneous catalysts for liquid-phase oxidations, focusing on three important substrates, namely, alkenes, alkanes and alcohols. Emphases are on the nature of active sites that have been incorporated within MOFs and on future targets to be set in this area. Thus, selective alkene epoxidation with peroxides or oxygen catalyzed by constitutional metal nodes of MOFs as active sites are still to be developed. Moreover, no noble metal-free MOF has been reported to date that can act as a general catalyst for the aerobic oxidation of primary and secondary aliphatic alcohols. In contrast, in the case of alkanes, a target should be to tune the polarity of MOF internal pores to control the outcome of the autooxidation process, resulting in the selective formation of alcohol/ketone mixtures at high conversion.

  2. PH Dependent Interactions between Aqueous Iodide Ion and Selected Oxidizers.

    DTIC Science & Technology

    1985-12-06

    COSATI CODES I&. SUBJECT IERMS (Continue an evven d mocesaey and idoetfy by 510&k number) C’ ELD GROUP SUB-ROUP >Oxidize Iodometry Titration Oxidation... iodometry : hypochlorite interacts instantly with iodide ion. However, a kinetically rapid decon reaction may not be best for all possible situations. An

  3. Reactions of oxidatively activated arylamines with thiols: reaction mechanisms and biologic implications. An overview.

    PubMed Central

    Eyer, P

    1994-01-01

    Aromatic amines belong to a group of compounds that exert their toxic effects usually after oxidative biotransformation, primarily in the liver. In addition, aromatic amines also undergo extrahepatic activation to yield free arylaminyl radicals. The reactive intermediates are potential promutagens and procarcinogens, and responsible for target tissue toxicity. Since thiols react with these intermediates at high rates, it is of interest to know the underlying reaction mechanisms and the toxicologic implications. Phenoxyl radicals from aminophenols and aminyl radicals from phenylenediamines quickly disproportionate to quinone imines and quinone diimines. Depending on the structure, Michael addition or reduction reactions with thiols may prevail. Products of sequential oxidation/addition reactions (e.g., S-conjugates of aminophenols) are occasionally more toxic than the parent compounds because of their higher autoxidizability and their accumulation in the kidney. Even after covalent binding of quinone imines to protein SH groups, the resulting thioethers are able to autoxidize. The quinoid thioethers can then cross-link the protein by addition to neighboring nucleophiles. The reactions of nitrosoarenes with thiols yield a so-called "semimercaptal" from which various branching reactions detach, depending on substituents. Compounds with strong pi-donors, like 4-nitrosophenetol, give a resonance-stabilized N-(thiol-S-yl)-arylamine cation that may lead to bicyclic products, thioethers, and DNA adducts. Examples of toxicologic implications of the interactions of nitroso compounds with thiols are given for nitrosoimidazoles, heterocyclic nitroso compounds from protein pyrolysates, and nitrosoarenes. These data indicate that interactions of activated arylamines with thiols may not be regarded exclusively as detoxication reactions. PMID:7889834

  4. Selective mono-facial modification of graphene oxide nanosheets in suspension.

    PubMed

    McGrail, Brendan T; Mangadlao, Joey D; Rodier, Bradley J; Swisher, Jordan; Advincula, Rigoberto; Pentzer, Emily

    2016-01-07

    Graphene oxide (GO) is selectively functionalized on one face to prepare Janus platelets which are characterized by various spectroscopic and microscopic techniques. With this methodology, Janus GO platelets can be prepared without the use of a solid substrate and the two platelet faces can be orthogonally modified in a one-pot reaction.

  5. Deciphering Selectivity in Organic Reactions: A Multifaceted Problem.

    PubMed

    Balcells, David; Clot, Eric; Eisenstein, Odile; Nova, Ainara; Perrin, Lionel

    2016-05-17

    Computational chemistry has made a sustained contribution to the understanding of chemical reactions. In earlier times, half a century ago, the goal was to distinguish allowed from forbidden reactions (e.g., Woodward-Hoffmann rules), that is, reactions with low or high to very high activation barriers. A great achievement of computational chemistry was also to contribute to the determination of structures with the bonus of proposing a rationalization (e.g., anomeric effect, isolobal analogy, Gillespie valence shell pair electron repulsion rules and counter examples, Wade-Mingos rules for molecular clusters). With the development of new methods and the constant increase in computing power, computational chemists move to more challenging problems, close to the daily concerns of the experimental chemists, in determining the factors that make a reaction both efficient and selective: a key issue in organic synthesis. For this purpose, experimental chemists use advanced synthetic and analytical techniques to which computational chemists added other ways of determining reaction pathways. The transition states and intermediates contributing to the transformation of reactants into the desired and undesired products can now be determined, including their geometries, energies, charges, spin densities, spectroscopy properties, etc. Such studies remain challenging due to the large number of chemical species commonly present in the reactive media whose role may have to be determined. Calculating chemical systems as they are in the experiment is not always possible, bringing its own share of complexity through the large number of atoms and the associated large number of conformers to consider. Modeling the chemical species with smaller systems is an alternative that historically led to artifacts. Another important topic is the choice of the computational method. While DFT is widely used, the vast diversity of functionals available is both an opportunity and a challenge. Though

  6. Information-Theoretical Complexity Analysis of Selected Elementary Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Molina-Espíritu, M.; Esquivel, R. O.; Dehesa, J. S.

    We investigate the complexity of selected elementary chemical reactions (namely, the hydrogenic-abstraction reaction and the identity SN2 exchange reaction) by means of the following single and composite information-theoretic measures: disequilibrium (D), exponential entropy(L), Fisher information (I), power entropy (J), I-D, D-L and I-J planes and Fisher-Shannon (FS) and Lopez-Mancini-Calbet (LMC) shape complexities. These quantities, which are functionals of the one-particle density, are computed in both position (r) and momentum (p) spaces. The analysis revealed that the chemically significant regions of these reactions can be identified through most of the single information-theoretic measures and the two-component planes, not only the ones which are commonly revealed by the energy, such as the reactant/product (R/P) and the transition state (TS), but also those that are not present in the energy profile such as the bond cleavage energy region (BCER), the bond breaking/forming regions (B-B/F) and the charge transfer process (CT). The analysis of the complexities shows that the energy profile of the abstraction reaction bears the same information-theoretical features of the LMC and FS measures, however for the identity SN2 exchange reaction does not hold a simple behavior with respect to the LMC and FS measures. Most of the chemical features of interest (BCER, B-B/F and CT) are only revealed when particular information-theoretic aspects of localizability (L or J), uniformity (D) and disorder (I) are considered.

  7. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts.

    PubMed

    Cao, Shaowen; Tao, Franklin Feng; Tang, Yu; Li, Yuting; Yu, Jiaguo

    2016-08-22

    Heterogeneous catalysis is one of the most important chemical processes of various industries performed on catalyst nanoparticles with different sizes or/and shapes. In the past two decades, the catalytic performances of different catalytic reactions on nanoparticles of metals and oxides with well controlled sizes or shapes have been extensively studied thanks to the spectacular advances in syntheses of nanomaterials of metals and oxides. This review discussed the size and shape effects of catalyst particles on catalytic activity and selectivity of reactions performed at solid-gas or solid-liquid interfaces with a purpose of establishing correlations of size- and shape-dependent chemical and structural factors of surface of a catalyst with the corresponding catalytic performances toward understanding of catalysis at a molecular level.

  8. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    SciTech Connect

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  9. Iron Complex Catalyzed Selective C-H Bond Oxidation with Broad Substrate Scope.

    PubMed

    Jana, Sandipan; Ghosh, Munmun; Ambule, Mayur; Sen Gupta, Sayam

    2017-02-17

    The use of a peroxidase-mimicking Fe complex has been reported on the basis of the biuret-modified TAML macrocyclic ligand framework (Fe-bTAML) as a catalyst to perform selective oxidation of unactivated 3° C-H bonds and activated 2° C-H bonds with low catalyst loading (1 mol %) and high product yield (excellent mass balance) under near-neutral conditions and broad substrate scope (18 substrates which includes arenes, heteroaromatics, and polar functional groups). Aliphatic C-H oxidation of 3° and 2° sites of complex substrates was achieved with predictable selectivity using steric, electronic, and stereoelectronic rules that govern site selectivity, which included oxidation of (+)-artemisinin to (+)-10β-hydroxyartemisinin. Mechanistic studies indicate Fe(V)(O) to be the active oxidant during these reactions.

  10. Oxidative Degradation of Nadic-End-Capped Polyimides. 2; Evidence for Reactions Occurring at High Temperatures

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher; Cavano, Paul J.; Frimer, Aryeh A.

    1997-01-01

    The oxidative degradation of PMR (for polymerization of monomeric reactants) polyimides at elevated temperatures was followed by cross-polarized magic angle spinning (Cp-MAS) NMR. C-13 labeling of selected sites in the polymers allowed for direct observation of the transformations arising from oxidation processes. As opposed to model compound studies, the reactions were followed directly in the polymer. The labeling experiments confirm the previously reported oxidation of the methylene carbon to ketone in the methylenedianiline portion of the polymer chain. They also show the formation of two other oxidized species, acid and ester, from this same carbon. In addition, the technique provides the first evidence of the kind of degradation reactions that are occurring in the nadic end caps. Several PMR formulations containing moieties determined to be present after oxidation, as suggested by the labeling study, were synthesized. Weight loss, FTIR, and natural abundance NMR of these derivatives were followed during aging. In this way, weight loss could be related to the observed transformations.

  11. Selective Pinacol-Coupling Reaction using a Continuous Flow System.

    PubMed

    Sotto, Nicolas; Cazorla, Clément; Villette, Carole; Billamboz, Muriel; Len, Christophe

    2016-11-18

    The first continuous flow pinacol coupling reaction of carbonyl compounds was successfully achieved within only 2 min during a single pass through a cartridge filled with zinc(0). The optimized method allowed the efficient production of gram-scale value-added compounds with high productivity. The developed methodology is efficient for aromatic or α,β-unsaturated aldehydes but gives moderate results for more stable acetophenone derivatives. Moreover, the flow method displayed better results in terms of yield and selectivity in comparison to the corresponding batch methodology.

  12. Mechanism of heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong; Xu, Wenqing; Yu, Yunbo

    2007-05-24

    Heterogeneous reaction of carbonyl sulfide (OCS) on magnesium oxide (MgO) under ambient conditions was investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), quadrupole mass spectrometer (QMS), and density functional theory (DFT) calculations. It reveals that OCS can be catalytically hydrolyzed by surface hydroxyl on MgO to produce carbon dioxide (CO2) and hydrogen sulfide (H2S), and then H2S can be further catalytically oxidized by surface oxygen or gaseous oxygen on MgO to form sulfite (SO3(2-)) and sulfate (SO4(2-)). Hydrogen thiocarbonate (HSCO2-) was found to be the crucial intermediate. Surface hydrogen sulfide (HS), sulfur dioxide (SO2), and surface sulfite (SO3(2-)) were also found to be intermediates for the formation of sulfate. Furthermore, the surface hydroxyl contributes not only to the formation of HSCO2- but also to HSCO2- decomposition. On the basis of experimental results, the heterogeneous reaction mechanism of OCS on MgO was discussed.

  13. Modeling Selective Intergranular Oxidation of Binary Alloys

    SciTech Connect

    Xu, Zhijie; Li, Dongsheng; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-07

    Intergranular attack of alloys under hydrothermal conditions is a complex problem that depends on metal and oxygen transport kinetics via solid-state and channel-like pathways to an advancing oxidation front. Experiments reveal very different rates of intergranular attack and minor element depletion distances ahead of the oxidation front for nickel-based binary alloys depending on the minor element. For example, a significant Cr depletion up to 9 µm ahead of grain boundary crack tips were documented for Ni-5Cr binary alloy, in contrast to relatively moderate Al depletion for Ni-5Al (~100s of nm). We present a mathematical kinetics model that adapts Wagner’s model for thick film growth to intergranular attack of binary alloys. The transport coefficients of elements O, Ni, Cr, and Al in bulk alloys and along grain boundaries were estimated from the literature. For planar surface oxidation, a critical concentration of the minor element can be determined from the model where the oxide of minor element becomes dominant over the major element. This generic model for simple grain boundary oxidation can predict oxidation penetration velocities and minor element depletion distances ahead of the advancing front that are comparable to experimental data. The significant distance of depletion of Cr in Ni-5Cr in contrast to the localized Al depletion in Ni-5Al can be explained by the model due to the combination of the relatively faster diffusion of Cr along the grain boundary and slower diffusion in bulk grains, relative to Al.

  14. Selective Autooxidation of Ethanol over Titania-Supported Molybdenum Oxide Catalysts: Structure and Reactivity

    PubMed Central

    Caro, Carlos; Thirunavukkarasu, K; Anilkumar, M; Shiju, N R; Rothenberg, Gadi

    2012-01-01

    We study the selective catalytic oxidation of ethanol with air as a sustainable alternative route to acetaldehyde. The reaction is catalysed by molybdenum oxide supported on titania, in a flow reactor under ambient pressure. High selectivity to acetaldehyde (70%–89%, depending on the Mo loading) is obtained at 150 °C. Subsequently, we investigate the structure/performance relationship for various molybdenum oxide species using a combination of techniques including diffuse reflectance UV-visible, infrared, X-ray photoelectron spectroscopies, X-ray diffraction and temperature programmed reduction. As their surface density increases, the monomeric molybdenum oxide species undergo two-dimensional and three-dimensional oligomerisation. This results in polymolybdates and molybdenum oxide crystallites. Importantly, the ethanol oxidation rate depends not only on the overall molybdenum loading and dispersion, but also on the type of molybdenum oxide species prevalent at each surface density and on the domain size. As the molybdenum oxide oligomerisation increases, electron delocalisation becomes easier. This lowers the absorption edge energy and increases the reaction rate. PMID:23396482

  15. Mild pyrolysis of selectively oxidized coals. Technical report, September 1--November 30, 1991

    SciTech Connect

    Hippo, E.J.

    1991-12-31

    The primary objective of this study is to investigate the removal organic sulfur from selectively oxidized Illinois coals using mild thermal/chemical processes. Work completed this quarter includes the investigation of the mild pyrolysis of unoxidized coals plus a selection of selectively oxidized coals. In addition the effect of particle size and extent of oxidation on pyrolysis was investigated. Some preliminary data concerning pyrolysis under vacuum and ambient pressure was also obtained. Work completed this quarter supports the following conclusions: (1) Desulfurization of unoxidized coals increases with increasing pyrolysis temperature and correlates with the loss of volatile matter. (2) Particle size did not influence the extent of desulfurization significantly. (3) Removing pyrite prior to pyrolysis helps to achieve a lower sulfur product beyond that expected from the removal of pyrite alone. (4) The extent of selective oxidation in teh pretreatment step did not effect the level of desulfurization obtained by pyrolysis alone. However this factor was important in the desulfurization obtained with supercritical methanol (SCM)/base. (5) Up to 84% of the sulfur has been removed from the IBC 101 coal by combining selective oxidation and SCM/base reactions. (6) Evidence for regressive reactions between volatilized sulfur compounds and partially desulfurized products was obtained by studying how changes in pyrolysis pressure effected the product sulfur content.

  16. Copper-catalyzed selective hydroamination reactions of alkynes

    PubMed Central

    Shi, Shi-Liang; Buchwald, Stephen L.

    2014-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  17. Copper-catalysed selective hydroamination reactions of alkynes

    NASA Astrophysics Data System (ADS)

    Shi, Shi-Liang; Buchwald, Stephen L.

    2015-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.

  18. Copper-catalysed selective hydroamination reactions of alkynes.

    PubMed

    Shi, Shi-Liang; Buchwald, Stephen L

    2015-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.

  19. Mild pyrolysis of selectively oxidized coals. [Quarterly] technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Hippo, E.J.; Palmer, S.R.

    1992-10-01

    The primary objective of this study is to investigate the removal organic sulfur from selectively oxidized Illinois coals using mild thermal/chemical processes. Work completed this quarter primarily concerned the investigation of the desulfurization of the selectively oxidized coals using aqueous or alcoholic base mixtures. Model compound studies were initiated. Results were: Levels of desulfurization obtained in this study are at, or very close to, the 90% removal levels required for these coals to be in compliance with the Clean Air Act legislation; Up to 89.4% of the sulfur in the IBC 101 coal and 88.9% of the sulfur in the IBC 106 coal has been removed by combining selective oxidation and alcoholic/base reactions; Overall, selective oxidation pretreatment always led to a lower sulfur product than the untreated sample; Substantial enhancement in the reactivity of the sulfur in the coal has been achieved by the selective oxidation pretreatment; The highest levels of desulfurization obtained so far all involve bases as additives; The water/Na{sub 2}CO{sub 3} combination, was superior than any of the aqueous hydroxide bases. Possible synergistic interactions between the alcohol and the base are suspected. Over 70% of the sulfur in the IBC 101 coal can be removed by performing vacuum pyrolysis on the selectively oxidized coal. Lower sulfur contents are obtained by lowing the pyrolysis pressure.

  20. Influence of oxygen and pH on the selective oxidation of ethanol on Pd catalysts

    SciTech Connect

    Hibbitts, David D.; Neurock, Matthew

    2013-03-01

    The selective oxidation of ethanol on supported Pd is catalytically promoted by the presence of hydroxide species on the Pd surface as well as in solution. These hydroxide intermediates act as Brønsted bases which readily abstract protons from the hydroxyl groups of adsorbed or solution-phase alcohols. The C1AH bond of the resulting alkoxide is subsequently activated on the metal surface via hydride elimination to form acetaldehyde. Surface and solution-phase hydroxide intermediates can also readily react with the acetaldehyde via nucleophilic addition to form a germinal diol intermediate, which subsequently undergoes a second C1AH bond activation on Pd to form acetic acid. The role of O2 is to remove the electrons produced in the oxidation reaction via the oxygen reduction reaction over Pd. The reduction reaction also regenerates the hydroxide intermediates and removes adsorbed hydrogen that is produced during the oxidation.

  1. Mass transfer model for two-layer TBP oxidation reactions

    SciTech Connect

    Laurinat, J.E.

    1994-09-28

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development.

  2. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst

    PubMed Central

    Choi, Chang Hyuck; Kim, Minho; Kwon, Han Chang; Cho, Sung June; Yun, Seongho; Kim, Hee-Tak; Mayrhofer, Karl J. J.; Kim, Hyungjun; Choi, Minkee

    2016-01-01

    Maximum atom efficiency as well as distinct chemoselectivity is expected for electrocatalysis on atomically dispersed (or single site) metal centres, but its realization remains challenging so far, because carbon, as the most widely used electrocatalyst support, cannot effectively stabilize them. Here we report that a sulfur-doped zeolite-templated carbon, simultaneously exhibiting large sulfur content (17 wt% S), as well as a unique carbon structure (that is, highly curved three-dimensional networks of graphene nanoribbons), can stabilize a relatively high loading of platinum (5 wt%) in the form of highly dispersed species including site isolated atoms. In the oxygen reduction reaction, this catalyst does not follow a conventional four-electron pathway producing H2O, but selectively produces H2O2 even over extended times without significant degradation of the activity. Thus, this approach constitutes a potentially promising route for producing important fine chemical H2O2, and also offers opportunities for tuning the selectivity of other electrochemical reactions on various metal catalysts. PMID:26952517

  3. Automated workflow for large-scale selected reaction monitoring experiments.

    PubMed

    Malmström, Lars; Malmström, Johan; Selevsek, Nathalie; Rosenberger, George; Aebersold, Ruedi

    2012-03-02

    Targeted proteomics allows researchers to study proteins of interest without being drowned in data from other, less interesting proteins or from redundant or uninformative peptides. While the technique is mostly used for smaller, focused studies, there are several reasons to conduct larger targeted experiments. Automated, highly robust software becomes more important in such experiments. In addition, larger experiments are carried out over longer periods of time, requiring strategies to handle the sometimes large shift in retention time often observed. We present a complete proof-of-principle software stack that automates most aspects of selected reaction monitoring workflows, a targeted proteomics technology. The software allows experiments to be easily designed and carried out. The steps automated are the generation of assays, generation of mass spectrometry driver files and methods files, and the import and analysis of the data. All data are normalized to a common retention time scale, the data are then scored using a novel score model, and the error is subsequently estimated. We also show that selected reaction monitoring can be used for label-free quantification. All data generated are stored in a relational database, and the growing resource further facilitates the design of new experiments. We apply the technology to a large-scale experiment studying how Streptococcus pyogenes remodels its proteome under stimulation of human plasma.

  4. Oxidative-coupling reaction of TNT reduction products by manganese oxide.

    PubMed

    Kang, Ki-Hoon; Lim, Dong-Min; Shin, Hyunsang

    2006-03-01

    Abiotic transformation of TNT reduction products via oxidative-coupling reaction was investigated using Mn oxide. In batch experiments, all the reduction products tested were completely transformed by birnessite, one of natural Mn oxides present in soil. Oxidative-coupling was the major transformation pathway, as confirmed by mass spectrometric analysis. Using observed pseudo-first-order rate constants with respect to birnessite loadings, surface area-normalized specific rate constants, ksurf, were determined. As expected, ksurf of diaminonitrotoluenes (DATs) (1.49-1.91L/m2 d) are greater about 2 orders than that of dinitroaminotoluenes (DNTs) (1.15 x 10(-2)-2.09 x 10(-2)L/m2d) due to the increased number of amine group. In addition, by comparing the value of ksurf between DNTs or DATs, amine group on ortho position is likely to be more preferred for the oxidation by birnessite. Although cross-coupling of TNT in the presence of various mediator compounds was found not to be feasible, transformation of TNT by reduction using Fe0 followed by oxidative-coupling using Mn oxide was efficient, as evaluated by UV-visible spectrometry.

  5. ESIMS and NMR studies on the selective deprotection of acetylated glucosides by dibutyltin oxide.

    PubMed

    Wang, Shao-Min; Zhu, Wei-Guo; Kang, Jian-Xun; Liu, Hong-Min; Chen, Jun-Miao; Li, Cui-Ping; Zhang, Kai

    2011-02-01

    The reaction process for the selective deprotection of acetylated glucosides by dibutyltin oxide in methanol is investigated by using methyl 2,3,4,6-tetra-O-acetyl-α-d-glucopyranoside as a model substrate with ESIMS and NMR techniques. According to the results, it is inferred that at first, dimeric 1,3-dimethoxytetrabutyldistannoxane is formed by the reaction of dibutyltin oxide with methanol, and then the tetraorganodistannoxane reacts with the acetylated glucoside to produce glucoside-organotin complex intermediates. Finally, the complex intermediates are hydrolyzed leading to the free-OH glucoside and organotin acetate derivatives. The reaction is affected by neighboring group participation and steric hindrance, which allow for high selectivities among different acetyl groups in acetylated glucosides.

  6. Self-assembled benzophenone bis-urea macrocycles facilitate selective oxidations by singlet oxygen.

    PubMed

    Geer, Michael F; Walla, Michael D; Solntsev, Kyril M; Strassert, Cristian A; Shimizu, Linda S

    2013-06-07

    This manuscript investigates how incorporation of benzophenone, a well-known triplet sensitizer, within a bis-urea macrocycle, which self-assembles into a columnar host, influences its photophysical properties and affects the reactivity of bound guest molecules. We further report the generation of a remarkably stable organic radical. As expected, UV irradiation of the host suspended in oxygenated solvents efficiently generates singlet oxygen similar to the parent benzophenone. In addition, this host can bind guests such as 2-methyl-2-butene and cumene to form stable solid host-guest complexes. Subsequent UV irradiation of these complexes facilitated the selective oxidation of 2-methyl-2-butene into the allylic alcohol, 3-methyl-2-buten-1-ol, at 90% selectivity as well as the selective reaction of cumene to the tertiary alcohol, α,α'-dimethyl benzyl alcohol, at 63% selectivity. However, these products usually arise through radical pathways and are not observed in the presence of benzophenone in solution. In contrast, typical reactions with benzophenone result in the formation of the reactive singlet oxygen that reacts with alkenes to form endoperoxides, diooxetanes, or hydroperoxides, which are not observed in our system. Our results suggest that the confinement, the formation of a stable radical species, and the singlet oxygen photoproduction are responsible for the selective oxidation processes. A greater understanding of the mechanism of this selective oxidation could lead to development of greener oxidants.

  7. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    EPA Science Inventory

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  8. SN-EXCHANGED HYDROTALCITES AS CATALYSTS FOR CLEAN AND SELECTIVE BAEYER-VILLIGER OXIDATION OF KETONES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    A Sn-doped hydrotalcite (Sn/HT) catalyst prepared by ion-exchange is found to be an active and selective catalyst for the liquid phase Baeyer-Villiger (BV) oxidation of cyclic ketones in acetonitrile using hydrogen peroxide (H2O2) as oxidant. Different reaction perameters such as...

  9. Analyzing site selectivity in Rh2(esp)2-catalyzed intermolecular C-H amination reactions.

    PubMed

    Bess, Elizabeth N; DeLuca, Ryan J; Tindall, Daniel J; Oderinde, Martins S; Roizen, Jennifer L; Du Bois, J; Sigman, Matthew S

    2014-04-16

    Predicting site selectivity in C-H bond oxidation reactions involving heteroatom transfer is challenged by the small energetic differences between disparate bond types and the subtle interplay of steric and electronic effects that influence reactivity. Herein, the factors governing selective Rh2(esp)2-catalyzed C-H amination of isoamylbenzene derivatives are investigated, where modification to both the nitrogen source, a sulfamate ester, and substrate are shown to impact isomeric product ratios. Linear regression mathematical modeling is used to define a relationship that equates both IR stretching parameters and Hammett σ(+) values to the differential free energy of benzylic versus tertiary C-H amination. This model has informed the development of a novel sulfamate ester, which affords the highest benzylic-to-tertiary site selectivity (9.5:1) observed for this system.

  10. DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS

    SciTech Connect

    Dr. Ates Akyurlu; Dr. Jale F. Akyurtlu

    2003-01-28

    Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. A relatively wide temperature window was established for the use of alumina-supported cerium oxide-copper oxide mixtures as regenerable sorbents for SO{sub 2} removal. Evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with methane. Since the replacement of ammonia by methane is commercially very attractive, in this project, it was planned to investigate the effect of promoters on the activity and selectivity of copper oxide/cerium oxide-based catalysts and to obtain data on the reaction mechanism for the SCR with methane. The investigation of the reaction mechanism will help in the selection of promoters to improve the catalytic activity and selectivity of the sorbents in the SCR with methane. This will result in new catalyst formulations. The last component of the project involves our industrial partner TDA Research, and the objective is to evaluate long- term stability and durability of the prepared sorbent/catalysts. In the second year of the project, the catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments indicated that manganese is a more effective promoter than rhodium on the supported copper oxide-ceria catalysts under study; the effectiveness of the promoter increases with the increase in Ce/Cu ratio. The TPD profiles of the unpromoted catalyst (Cu/Ce=3) is different than those promoted with 0.1% rhodium. In the current reporting period, the screening of the promoted catalysts were completed, sufficient amount of the selected catalysts were prepared and delivered to TDA for long term deactivation testing.

  11. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  12. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    EPA Science Inventory

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  13. SELECTIVE OXIDATION OF ALCOHOLS OVER VANADIUM PHOSPHORUS OXIDE CATALYST USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various alcohols is studied in liquid phase under nitrogen atmosphere over vanadium phosphorus oxide catalyst in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method are found to be suitable for the selective oxidation of a variet...

  14. Biotransformations Utilizing β-Oxidation Cycle Reactions in the Synthesis of Natural Compounds and Medicines

    PubMed Central

    Œwizdor, Alina; Panek, Anna; Milecka-Tronina, Natalia; Kołek, Teresa

    2012-01-01

    β-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the β-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via β-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described. PMID:23443116

  15. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  16. Noncovalent Bonding Controls Selectivity in Heterogeneous Catalysis: Coupling Reactions on Gold.

    PubMed

    Karakalos, Stavros; Xu, Yunfei; Cheenicode Kabeer, Fairoja; Chen, Wei; Rodríguez-Reyes, Juan Carlos F; Tkatchenko, Alexandre; Kaxiras, Efthimios; Madix, Robert J; Friend, Cynthia M

    2016-11-23

    Enhancing the selectivity of catalytic processes has potential for substantially increasing the sustainability of chemical production. Herein, we establish relationships between reaction selectivity and molecular structure for a homologous series of key intermediates for oxidative coupling of alcohols on gold using a combination of experiment and theory. We establish a scale of binding for molecules with different alkyl structures and chain lengths and thereby demonstrate the critical nature of noncovalent van der Waals interactions in determining the selectivity by modulating the stability of key reaction intermediates bound to the surface. The binding hierarchy is the same for Au(111) and Au(110), which demonstrates a relative lack of sensitivity to the surface structure. The hierarchy of binding established in this work provides guiding principles for predicting how molecular structure affects the competition for binding sites more broadly. Besides the nature of the primary surface-molecule bonding, three additional factors that affect the stabilities of the reactive intermediates are clearly established: (1) the number of C atoms in the alkyl chain, (2) the presence of C-C bond unsaturation, and (3) the degree of branching of the alkyl group of the adsorbed molecules. We suggest that this is a fundamental principle that is generally applicable to a broad range of reactions on metal catalysts.

  17. Oxidation Numbers, Oxidants, and Redox Reactions: Variants of the Electrophilic Bromination of Alkenes and Variants of the Application of Oxone

    ERIC Educational Resources Information Center

    Eissen, Marco; Strudthoff, Merle; Backhaus, Solveig; Eismann, Carolin; Oetken, Gesa; Kaling, Soren; Lenoir, Dieter

    2011-01-01

    Oxidation-state and donor-acceptor concepts are important areas in the chemical education. Student worksheets containing problems that emphasize oxidation numbers, redox reactions of organic compounds, and stoichiometric reaction equations are presented. All of the examples are incorporated under one unifying topic: the production of vicinal…

  18. Spin-selective recombination reactions of radical pairs: Experimental test of validity of reaction operators

    SciTech Connect

    Maeda, Kiminori; Liddell, Paul; Gust, Devens; Hore, P. J.

    2013-12-21

    Spin-selective reactions of radical pairs are conventionally modelled using an approach that dates back to the 1970s [R. Haberkorn, Mol. Phys. 32, 1491 (1976)]. An alternative approach based on the theory of quantum measurements has recently been suggested [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. We present here the first experimental attempt to discriminate between the two models. Pulsed electron paramagnetic resonance spectroscopy has been used to investigate intramolecular electron transfer in the radical pair form of a carotenoid-porphyrin-fullerene molecular triad. The rate of spin-spin relaxation of the fullerene radical in the triad was found to be inconsistent with the quantum measurement description of the spin-selective kinetics, and in accord with the conventional model when combined with spin-dephasing caused by rotational modulation of the anisotropic g-tensor of the fullerene radical.

  19. Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene

    NASA Astrophysics Data System (ADS)

    Li, Yongjia; Huang, Xiaoqing; Li, Yujing; Xu, Yuxi; Wang, Yang; Zhu, Enbo; Duan, Xiangfeng; Huang, Yu

    2013-05-01

    An effective hemin catalyst on graphene support for selective oxidation of primary C-H bond in toluene is reported with an over 50% conversion rate achieved at mild conditions. Significantly this hybrid material shows catalytic efficiency in toluene oxidation with selectivity towards benzoic acid. The role of graphene support is discussed here as providing large contact area between the catalyst and the substrate, maintaining hemin in catalytically active monomer form, attracting electron to promote site isolation, as well as protecting hemin from oxidative degradation during the reaction. Moreover, graphene is suggested to largely alter the final product selectivity, due to the different π-π interaction strength between the graphene support and the substrate/oxidized products. With longer reaction time, overall conversion rate tends to maintain relatively unchanged while toluene undergoes a series of oxidation to convert mostly to benzoic acid.

  20. Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene

    PubMed Central

    Li, Yongjia; Huang, Xiaoqing; Li, Yujing; Xu, Yuxi; Wang, Yang; Zhu, Enbo; Duan, Xiangfeng; Huang, Yu

    2013-01-01

    An effective hemin catalyst on graphene support for selective oxidation of primary C-H bond in toluene is reported with an over 50% conversion rate achieved at mild conditions. Significantly this hybrid material shows catalytic efficiency in toluene oxidation with selectivity towards benzoic acid. The role of graphene support is discussed here as providing large contact area between the catalyst and the substrate, maintaining hemin in catalytically active monomer form, attracting electron to promote site isolation, as well as protecting hemin from oxidative degradation during the reaction. Moreover, graphene is suggested to largely alter the final product selectivity, due to the different π-π interaction strength between the graphene support and the substrate/oxidized products. With longer reaction time, overall conversion rate tends to maintain relatively unchanged while toluene undergoes a series of oxidation to convert mostly to benzoic acid.

  1. Oxidative stress and inflammatory reaction modulation by white wine.

    PubMed

    Bertelli, Alberto A E; Migliori, Massamiliano; Panichi, Vincenzo; Longoni, Bianamaria; Origlia, Nicola; Ferretti, Agnese; Cuttano, Maria Giuseppa; Giovannini, Luca

    2002-05-01

    Wine and olive oil, essential components of the Mediterranean diet, are considered important factors for a healthy life style. Tyrosol (T) and caffeic acid (CA) are found in both extra virgin olive oil and in white wine. Three white wines from the northeast Italy and four white wines from Germany were analyzed for their content of T and CA. These compounds were tested for their antioxidant activity and their capacity to modulate three different cytokines: IL-1 beta, IL-6, and TNF-alpha, which are currently considered to be the major cytokines influencing the acute phase of the inflammatory response. Furthermore, the antioxidant activity of T and CA was analyzed by monitoring the oxidation of a redox-sensitive probe by using laser scanning confocal microscopy. T and CA, applied at nanomolar range, were found to significantly reduce the generation of oxidants induced by azobis-amidinopropanedihydrochloride. Peripheral blood mononuclear cells (PBMC) from healthy volunteers were incubated at 37 degrees C for 12 hours with 100 ng LPS (E. coli and P. maltofilia). Increasing doses of T and CA (150 nM to 300 microM) were added and cell-associated IL-1 beta and TNF-alpha were determined by immunoreactive tests after three freeze-thaw cycles. IL-6 release was also determined in cell surnatants. LPS-stimulated PBMC showed a significant increase in cytokine release, while T and CA, used at nanomolar concentrations, were able to modulate their expression. Taken together, these results suggest a remarkable effect of white wine non-alcoholic compounds on oxidative stress and inflammatory reaction.

  2. Considerations on selected reaction monitoring experiments: implications for the selectivity and accuracy of measurements.

    PubMed

    Domon, Bruno

    2012-12-01

    Targeted MS analyses based on selected reaction monitoring (SRM) has enabled significant achievements in proteomic quantification, such that its application to clinical studies has augured great advancements for life sciences. The approach has been challenged by the complexity of clinical samples that affects the selectivity of measurements, in many cases limiting analytical performances to a larger extent than expected. This Personal Perspective discusses some insight to better comprehend the mismatch between the often underestimated sample complexity and the selectivity of SRM measurements performed on a triple quadrupole instrument. The implications for the design and evaluation of SRM assays are discussed and illustrated with selected examples, providing a baseline for a more critical use of the technique in the context of clinical samples and to evaluate alternative methods.

  3. Charge transport-driven selective oxidation of graphene.

    PubMed

    Lee, Young Keun; Choi, Hongkyw; Lee, Changhwan; Lee, Hyunsoo; Goddeti, Kalyan C; Moon, Song Yi; Doh, Won Hui; Baik, Jaeyoon; Kim, Jin-Soo; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-06-02

    Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2 diode under UV-ozone exposure. We found that under a reverse bias of 0.6 V on the graphene/TiO2 diode, graphene oxidation was accelerated under UV-ozone exposure, thus confirming the role of charge transfer between the graphene and the TiO2 that results in the selective oxidation of the graphene. The selective oxidation of graphene can be utilized for the precise, nanoscale patterning of the graphene oxide and locally patterned chemical doping, finally leading to the feasibility and expansion of a variety of graphene-based applications.

  4. Two Catalysts for Selective Oxidation of Contaminant Gases

    NASA Technical Reports Server (NTRS)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  5. Application of Mössbauer Spectroscopy to the Carbon Oxides Hydrogenation Reactions

    NASA Astrophysics Data System (ADS)

    Cubeiro, M. L.; González-Jiménez, F.; Goldwasser, M. R.; Pérez-Zurita, M. J.; Pietri, E.; García, L.

    2001-05-01

    Iron-based catalysts have favorable activity and selectivity properties for the CO and CO2 hydrogenation reactions. Several Fe phases (oxides and carbides) can be present in these catalysts. The interaction of Fe with the other components of the catalyst (support, promoters) can affect the ease of reduction and also its transformation during the reactions. In this work, the relationship between catalytic behavior in the CO and CO2 hydrogenation reactions and the Fe phase composition of fresh and reacted catalysts was studied. Two types of catalysts were tested: a laterite and the other one made of iron supported on alumina, both unpromoted and promoted with K and Mn. Only those Fe species which can be reduced-carburized, by means of a pretreatment or by an in situ transformation under the reaction, seem to be able to perform the CO or CO2 hydrogenation. The reoxidation of the Fe carbide to magnetite was not associated to deactivation. The selectivity seems to be more affected by Fe species difficult to reduce than by magnetite produced by reoxidation.

  6. Kinetics and Mechanism of Iodide Oxidation by Iron(III): A Clock Reaction Approach

    ERIC Educational Resources Information Center

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2008-01-01

    A simple method for studying the kinetics of a chemical reaction is described and the significance of reaction orders in deducing reaction mechanisms is demonstrated. In this student laboratory experiment, oxidation of iodide by iron(III) ions in an acidic medium is transformed into a clock reaction. By means of the initial rates method, it is…

  7. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOEpatents

    Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  8. Method for selective catalytic reduction of nitrogen oxides

    DOEpatents

    Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  9. The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide.

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions were studied with the aid of a mass spectrometer. A pinhole bleed system provided continuous sampling of the gas mixture in the cell during the reaction. It was found that the homogeneous reactions of nitric oxide and nitrogen dioxide with hydrogen peroxide are too slow to be of any significance in the upper atmosphere. However, the heterogeneous reactions may be important in the conversion of nitric oxide to nitrogen dioxide in the case of polluted urban atmospheres.

  10. Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals

    NASA Astrophysics Data System (ADS)

    Wang, Zimeng; Lee, Sung-Woo; Kapoor, Pratyul; Tebo, Bradley M.; Giammar, Daniel E.

    2013-01-01

    The longevity of subsurface U(IV) produced by reduction of U(VI) during in situ bioremediation can be limited by reoxidation to more mobile U(VI) species. Coupling of the biogeochemical cycles of U and Mn may affect the fate and transport of uranium. Manganese oxides can act as a powerful oxidant that accelerates the oxidative dissolution of UO2. This study investigated the physical and chemical factors controlling the interaction between UO2 and MnO2, which are both poorly soluble minerals. A multi-chamber reactor with a permeable membrane was used to eliminate direct contact of the two minerals while still allowing transport of aqueous species. The oxidation of UO2 was not significantly enhanced by MnO2 if the two solids were physically separated. Complete mixing of MnO2 with UO2 led to a much greater extent and rate of U oxidation. When direct contact is not possible, the reaction slowly progresses through release of soluble U(IV) with its adsorption and oxidation on MnO2. Continuously-stirred tank reactors (CSTRs) were used to quantify the steady-state rates of UO2 dissolution induced by MnO2. MnO2 dramatically promoted UO2 dissolution, but the degree of promotion leveled off once the MnO2:UO2 ratio exceeded a critical value. Substantial amounts of U(VI) and Mn(II) were retained on MnO2 surfaces. The total production of Mn(II) was less than that of U(VI), indicating that the fate of Mn products and their impact on UO2-MnO2 reaction kinetics were complicated and may involve formation of Mn(III) phases. At higher dissolved inorganic carbon concentrations, UO2 oxidation by MnO2 was faster and less U(VI) was adsorbed to MnO2. Such an inverse relationship suggested that U(VI) may passivate MnO2 surfaces. A conceptual model was developed to describe the oxidation rate of UO2 by MnO2. This model is potentially applicable to a broad range of water chemistry conditions and is relevant to other environmental redox processes involving two poorly soluble minerals.

  11. Identification of a suitable and selective inhibitor towards aldehyde oxidase catalyzed reactions.

    PubMed

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Palacharla, Raghava Choudary; Bhyrapuneni, Gopinadh; Kanamarlapudi, Vijaya Bhargava; Ponnamaneni, Ranjith Kumar; Manoharan, Arun Kumar

    2014-03-01

    1. Aldehyde oxidase (AO) is a liver cytosolic molybdoflavoprotein enzyme whose importance in drug metabolism is gaining in the recent. The objective of this work is to find a potent and selective inhibitor for AO activity using phthalazine oxidation as a marker reaction. 2. Among organic solvents tested, it was identified that methanol was not a suitable choice for AO activity even at concentrations less than 0.2% v/v. Acetonitrile and DMSO did not show any effect till 0.5% v/v but thereafter activites tend to decrease. 3. For selectivity, 23 compounds were selected and evaluated for their effects on AO and nine CYP450 enzymes. Among the tested compounds chlorpromazine, estradiol, hydralazine, quetiapine and raloxifene were selected based on their potency of inhibition towards AO activity. 4. Raloxifene was found to be a non-specific inhibitor of all major tested CYP450 enzymes and was excluded as a selective inhibitor for AO. Quetiapine also showed a degree of inhibition towards the major CYP450 tested. Hydralazine used as a specific inhibitor during the past for AO activity demonstrated a stimulation of AO activity at high and low concentrations respectively and the inhibition noted to be time dependent while inhibiting other enzymes like monoamine oxidase. 5. Estradiol showed no inhibition towards the tested CYP450 enzymes and thus proved to be a selective and specific inhibitor for AO activity with an uncompetitive mode of inhibition.

  12. Thermochemistry and reaction paths in the oxidation reaction of benzoyl radical: C6H5C•(═O).

    PubMed

    Sebbar, Nadia; Bozzelli, Joseph W; Bockhorn, Henning

    2011-10-27

    Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(•)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(•)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products.

  13. Development of oxidative coupling strategies for site-selective protein modification.

    PubMed

    ElSohly, Adel M; Francis, Matthew B

    2015-07-21

    the challenges and opportunities associated with the optimization of site-selective chemistries that target native amino acids. We close by discussing the most recent reports from our laboratory that have capitalized on the unique reactivity of o-iminoquinone derivatives. We discuss the various oxidants and conditions that can be used to generate these reactive intermediates from appropriate precursors, as well as the product distributions that result. We also describe our work to determine the nature of iminoquinone reactivity with proteins and peptides bearing free N-terminal amino groups. Through this discussion, we hope to facilitate the use of oxidative approaches to protein bioconjugation, as well as inspire the discovery of new reactions for the site-selective modification of biomolecular targets.

  14. Free computational resources for designing selected reaction monitoring transitions.

    PubMed

    Cham Mead, Jennifer A; Bianco, Luca; Bessant, Conrad

    2010-03-01

    Selected reaction monitoring (SRM) is a technique for quantifying specific proteins using triple quadrupole MS. Proteins are digested into peptides and fed into MS following HPLC separation. The stream of ionized peptides is filtered by m/z ratio so only specific peptide targets enter the collision cell, where they are fragmented into product ions. A specific product ion is then filtered from the cell and its intensity measured. By spiking an isotopically labeled version of each target peptide into a sample, both native and surrogate peptides enter MS, pass the filters and transition into product ions in tandem; thus the quantity of the native peptide may be calculated by examining the relative intensities of the native and surrogate signals. The choice of precursor-to-product ion transitions is critical for SRM, but predicting the best candidates is challenging and time-consuming. To alleviate this problem, software tools for designing and optimizing transitions have recently emerged, predominantly driven by data from public proteomics repositories, such as the Global Proteome Machine and PeptideAtlas. In this review, we provide an overview of the state-of-the-art in automated SRM transition design tools in the public domain, explaining how the systems work and how to use them.

  15. Selected Reaction Monitoring Mass Spectrometry for Absolute Protein Quantification.

    PubMed

    Manes, Nathan P; Mann, Jessica M; Nita-Lazar, Aleksandra

    2015-08-17

    Absolute quantification of target proteins within complex biological samples is critical to a wide range of research and clinical applications. This protocol provides step-by-step instructions for the development and application of quantitative assays using selected reaction monitoring (SRM) mass spectrometry (MS). First, likely quantotypic target peptides are identified based on numerous criteria. This includes identifying proteotypic peptides, avoiding sites of posttranslational modification, and analyzing the uniqueness of the target peptide to the target protein. Next, crude external peptide standards are synthesized and used to develop SRM assays, and the resulting assays are used to perform qualitative analyses of the biological samples. Finally, purified, quantified, heavy isotope labeled internal peptide standards are prepared and used to perform isotope dilution series SRM assays. Analysis of all of the resulting MS data is presented. This protocol was used to accurately assay the absolute abundance of proteins of the chemotaxis signaling pathway within RAW 264.7 cells (a mouse monocyte/macrophage cell line). The quantification of Gi2 (a heterotrimeric G-protein α-subunit) is described in detail.

  16. Activation energy of tantalum-tungsten oxide thermite reactions

    SciTech Connect

    Cervantes, Octavio G.; Munir, Zuhair A.; Kuntz, Joshua D.; Gash, Alexander E.

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)

  17. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    SciTech Connect

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2010-02-25

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300 C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.

  18. Porcelain enamelled absorbers, coated by spectral selective tin oxide

    SciTech Connect

    Simonis, F.; Faber, A.J.; Hoogendoorn, C.J.

    1987-02-01

    The use of porcelain enamelled absorbers in flat plate collectors features longevity thanks to the durability and thermal stability of the enamel finish. The porcelain enamel can be made spectral selective by coating with doped tin oxide or indium oxide. The application procedure involves an enamelling step followed by a pyrosol process with tin or indium compounds. The optical properties of tin oxide coated enamel yield values of 0.90-0.92 absorptance and 0.13-0.18 hemispherical emittance. The temperature dependence of the emittance is very small. The thermal stability has been proved up to 400/sup 0/C in air.

  19. Combined temperature-programmed reaction and in-situ x-ray scattering studies of size-selected silver clusters under realistic reaction conditions in the epoxidation of propene.

    SciTech Connect

    Vajda, S.; Lee, S.; Sell, K.; Barke, I.; Kleibert, A.; von Oeynhausen, V.; Meiwes-Broer, K. H.; Rodriguez, A. F.; Elam, J. W.; Pellin, M. M.; Lee, B.; Seifert, S.; Winans, R. W.; Yale Univ.; Univ. Rostock; Swiss Light Source

    2009-09-28

    The catalytic activity and dynamical shape changes in size-selected nanoclusters at work are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed reaction with in situ grazing-incidence small angle x-ray scattering. This approach allows drawing a direct correlation between nanocatalyst size, composition, shape, and its function under realistic reaction conditions for the first time. The approach is illustrated in a chemical industry highly relevant selective partial oxidation of propene on a monodisperse silver nanocatalyst. The shape of the catalyst undergoes rapid change already at room temperature upon the exposure to the reactants, followed by a complex evolution of shape with increasing temperature. Acrolein formation is observed around 50 C while the formation of the propylene oxide exhibits a sharp onset at 80 C and is leveling off at 150 C. At lower temperatures acrolein is produced preferentially to propylene oxide; at temperatures above 100 C propylene oxide is favored.

  20. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.

    PubMed

    Xiong, Shangchao; Xiao, Xin; Huang, Nan; Dang, Hao; Liao, Yong; Zou, Sijie; Yang, Shijian

    2017-01-03

    The design of a high-performance catalyst for Hg(0) oxidation and predicting the extent of Hg(0) oxidation are both extremely limited due to the uncertainties of the reaction mechanism and the reaction kinetics. In this work, Fe-Ti-Mn spinel was developed as a high-performance catalyst for Hg(0) oxidation, and the reaction mechanism and the reaction kinetics of Hg(0) oxidation over Fe-Ti-Mn spinel were studied. The reaction orders of Hg(0) oxidation over Fe-Ti-Mn spinel with respect to gaseous Hg(0) concentration and gaseous HCl concentration were approximately 1 and 0, respectively. Therefore, Hg(0) oxidation over Fe-Ti-Mn spinel mainly followed the Eley-Rideal mechanism (i.e., the reaction of gaseous Hg(0) with adsorbed HCl), and the rate of Hg(0) oxidation mainly depended on Cl(•) concentration on the surface. As H2O, SO2, and NO not only inhibited Cl(•) formation on the surface but also interfered with the interface reaction between gaseous Hg(0) and Cl(•) on the surface, Hg(0) oxidation over Fe-Ti-Mn spinel was obviously inhibited in the presence of H2O, SO2, and NO. Furthermore, the extent of Hg(0) oxidation over Fe-Ti-Mn spinel can be predicted according to the kinetic parameter kE-R, and the predicted result was consistent with the experimental result.

  1. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    PubMed

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  2. Charge transport-driven selective oxidation of graphene

    NASA Astrophysics Data System (ADS)

    Lee, Young Keun; Choi, Hongkyw; Lee, Changhwan; Lee, Hyunsoo; Goddeti, Kalyan C.; Moon, Song Yi; Doh, Won Hui; Baik, Jaeyoon; Kim, Jin-Soo; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-06-01

    Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2 diode under UV-ozone exposure. We found that under a reverse bias of 0.6 V on the graphene/TiO2 diode, graphene oxidation was accelerated under UV-ozone exposure, thus confirming the role of charge transfer between the graphene and the TiO2 that results in the selective oxidation of the graphene. The selective oxidation of graphene can be utilized for the precise, nanoscale patterning of the graphene oxide and locally patterned chemical doping, finally leading to the feasibility and expansion of a variety of graphene-based applications.Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2

  3. Surface Reactions of Uranium Oxide Powder, Thin Films and Single Crystals

    SciTech Connect

    Idriss, H.

    2010-01-01

    The review deals with surface reactions of the complex uranium oxide systems with relevance to catalysis and the environment. After a brief introduction on the properties of uranium oxides, the focus of the review is on surface science studies of defined structures of uranium oxides which are entirely on UO{sub 2} because of the lack of available model on other uranium oxide systems. Powder work is also included as it has given considerable information related to the dynamics between the many phases of uranium oxides. Many chemical reactions are mapped and these include water dissociative adsorption and reaction, CO oxidation and reductive coupling, as well as the reaction of oxygen containing organic compounds such as alcohols, aldehydes, ketones and carboxylic acids in addition to a few examples of sulfur and nitrogen containing compounds.

  4. Low-temperature, highly selective, gas-phase oxidation of benzyl alcohol over mesoporous K-Cu-TiO2 with stable copper(I) oxidation state.

    PubMed

    Fan, Jie; Dai, Yihu; Li, Yunlong; Zheng, Nanfeng; Guo, Junfang; Yan, Xiaoqing; Stucky, Galen D

    2009-11-04

    A newly developed mesoporous mixed metal oxide (K-Cu-TiO(2)) catalyst is capable of highly selective, gas-phase benzyl alcoholbenzaldehyde transformation at excellent yields (>99%) under surprisingly low temperatures (203 degrees C, bp of benzyl alcohol). The low-temperature reaction conditions and integration of K and Cu(I) components into the TiO(2) matrix are of vital importance for the stabilization of an active Cu(I) oxidation state and resultant stable, excellent catalytic performance.

  5. Oxidative reactions during early stages of beer brewing studied by electron spin resonance and spin trapping.

    PubMed

    Frederiksen, Anne M; Festersen, Rikke M; Andersen, Mogens L

    2008-09-24

    An electron spin resonance (ESR)-based method was used for evaluating the levels of radical formation during mashing and in sweet wort. The method included the addition of 5% (v/v) ethanol together with the spin trap alpha-4-pyridyl(1-oxide)- N- tert-butylnitrone (POBN) to wort, followed by monitoring the rate of formation of POBN spin adducts during aerobic heating of the wort. The presence of ethanol makes the spin trapping method more selective and sensitive for the detection of highly reactive radicals such as hydroxyl and alkoxyl radicals. Samples of wort that were collected during the early stages of the mashing process gave higher rates of spin adduct formation than wort samples collected during the later stages. The lower oxidative stability of the early wort samples was confirmed by measuring the rate of oxygen consumption during heating of the wort. The addition of Fe(II) to the wort samples increased the rate of spin adduct formation, whereas the addition of Fe(II) during the mashing had no effect on the oxidative stability of the wort samples. Analysis of the iron content in the sweet wort samples demonstrated that iron added during the mashing had no effect on the iron level in the wort. The moderate temperatures during the early steps of mashing allow the endogenous malt enzymes to be active. The potential antioxidative effects of different redox-active enzymes during mashing were tested by measuring the rate of spin adduct formation in samples of wort. Surprisingly, a high catalase dosage caused a significant, 20% reduction of the initial rate of radical formation, whereas superoxide dismutase had no effect on the oxidation rates. This suggests that hydrogen peroxide and superoxide are not the only intermediates that play a role in the oxidative reactions occurring during aerobic oxidation of sweet wort.

  6. Exothermic Surface Reactions in Alumina-Aluminum Shell-Core Nanoparticles with Iodine Oxide Decomposition Fragments

    DTIC Science & Technology

    2014-02-22

    AND SUBTITLE Sa. CONTRACT NUMBER Exothennic smface reactions in alumina-aluminum shell-core W911NF-11-1-0439 nanoprui icles with iodine oxide...is observed for aluminum and an iodine -containing oxidizer. This PIR is exothermic and precedes the main exothennic reaction conesponding to aluminum...combustion. For the aluminum and iodine oxide system, exothennic smface chemistiy was recently predicted for I-0 fragments fonning bridge bonds with

  7. Selective oxidation of glycerol under acidic conditions using gold catalysts

    SciTech Connect

    Villa, Alberto; Veith, Gabriel M; Prati, Laura

    2010-01-01

    H-mordenite-supported PtAu nanoparticles are highly active and selective in the oxidation of glycerol under acidic conditions, which allows the direct preparation of free acids (see picture). The high selectivity for C{sub 3} compounds results from the negligible formation of H{sub 2}O{sub 2}, in contrast to PtAu nanoparticles supported on activated carbon.

  8. Reactions Leading to Ignition in Nanocomposite Al-oxide Systems

    DTIC Science & Technology

    2010-03-01

    processing at room temperature, and the nature of the interface present between aluminum and the oxidizer (metal oxide, e.g., CuO, MoO3, Bi2O3 , etc...at room temperature, and the nature of the interface present between aluminum and the oxidizer (metal oxide, e.g., CuO, MoO3, Bi2O3 , etc.) is

  9. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide.

    PubMed

    Kuwata, Keith T; Hermes, Matthew R; Carlson, Matthew J; Zogg, Cheryl K

    2010-09-02

    Alkene ozonolysis is a major source of hydroxyl radical (*OH), the most important oxidant in the troposphere. Previous experimental and computational work suggests that for many alkenes the measured *OH yields should be attributed to the combined impact of both chemically activated and thermalized syn-alkyl Criegee intermediates (CIs), even though the thermalized CI should be susceptible to trapping by molecules such as water. We have used RRKM/master equation and variational transition state theory calculations to quantify the competition between unimolecular isomerization and bimolecular hydration reactions for the syn and anti acetaldehyde oxide formed in trans-2-butene ozonolysis and for the CIs formed in isoprene ozonolysis possessing syn-methyl groups. Statistical rate theory calculations were based on quantum chemical data provided by the B3LYP, QCISD, and multicoefficient G3 methods, and thermal rate constants were corrected for tunneling effects using the Eckart method. At tropospheric temperatures and pressures, all thermalized CIs with syn-methyl groups are predicted to undergo 1,4-hydrogen shifts from 2 to 8 orders of magnitude faster than they react with water monomer at its saturation number density. For thermalized anti acetaldehyde oxide, the rates of dioxirane formation and hydration should be comparable.

  10. Selective electrochemical generation of hydrogen peroxide from water oxidation

    SciTech Connect

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  11. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGES

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.« less

  12. Quantitation of four guanine oxidation products from reaction of DNA with varying doses of peroxynitrite.

    PubMed

    Yu, Hongbin; Venkatarangan, Lata; Wishnok, John S; Tannenbaum, Steven R

    2005-12-01

    The oxidation products obtained from the reaction of peroxynitrite (ONOO-) with dG include-among others-8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 2,2-diamino-4[(2-deoxy-beta-d-erythro-pentafuranosyl)amino]-5(2H)-oxazolone (oxazolone), spiroiminodihydantoin, and N1-(beta-d-erythro-pentofuranosyl)-5-guanidinohydantoin (guanidinohydantoin). In the present work, the formation of these products from the treatment of calf thymus DNA with varying amounts of ONOO- was studied quantitatively in vitro. 13C-, 15N-labeled standards were synthesized for the nucleosides of interest, and calf thymus DNA was reacted with ONOO- and digested enzymatically down to the nucleoside level. Specific modifications in the DNA were measured by HPLC separation followed by electrospray ionization tandem mass spectrometric analysis in the selected reaction-monitoring mode. Artifacts of the above four oxidation products, arising from oxidation of dG and/or 8-oxodG during DNA digestion and subsequent workup, were evaluated with 7-15N-dG and/or stable-isotope-labeled 8-oxodG as internal standards. Levels of artifactual 8-oxodG were about 5/10(6) nucleosides. The artifacts of spiroiminodihydantoin and guanidinohydantoin, arising from 8-oxodG, were 3.7% and 0.6% of the measured 8-oxodG values, respectively. No artifacts of oxazolone were detected. 8-OxodG and oxazolone were formed dose-dependently in DNA treated with ONOO-, while the levels of spiroiminodihydantoin and guanidinohydantoin increased significantly at low ONOO- doses, and then dropped off at higher ONOO- doses. The complexity of these dose-response relationships is likely due to the dual role of peroxynitrite as both an oxidant and a nucleophile in competition with water.

  13. Selective electrocatalytic oxidation of sorbitol to fructose and sorbose.

    PubMed

    Kwon, Youngkook; de Jong, Ed; van der Waal, Jan Kees; Koper, Marc T M

    2015-03-01

    A new electrocatalytic method for the selective electrochemical oxidation of sorbitol to fructose and sorbose is demonstrated by using a platinum electrode promoted by p-block metal atoms. By the studying a range of C4, C5 and C6 polyols, it is found that the promoter interferes with the stereochemistry of the polyol and thereby modifies its reactivity.

  14. Shape-selective sieving layers on an oxide catalyst surface

    NASA Astrophysics Data System (ADS)

    Canlas, Christian P.; Lu, Junling; Ray, Natalie A.; Grosso-Giordano, Nicolas A.; Lee, Sungsik; Elam, Jeffrey W.; Winans, Randall E.; van Duyne, Richard P.; Stair, Peter C.; Notestein, Justin M.

    2012-12-01

    New porous materials such as zeolites, metal-organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al2O3 (thickness, 0.4-0.7 nm) with ‘nanocavities’ (<2 nm in diameter) on a TiO2 photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations.

  15. Photocatalytic selective oxidation of hydrocarbons in the aqueous phase

    SciTech Connect

    Gonzalez, M.A.; Howell, S.G.; Sikdar, S.K.

    1999-04-01

    The sustainable transformation of an inert alkane into its corresponding oxygenates has been the subject of intense chemical research. These oxygenates typically produced from processes using stringent conditions and materials offer disadvantages that include decreased selectivities to the partial oxygenates and by-product formation. As environmental concerns and regulations become more rigorous, the need for alternative catalytic oxidation processes that use mild or ambient conditions is increased. In this Note, the authors have investigated the use of photocatalysis as a low-temperature and green alternative for the direct and selective oxidation of alkanes with molecular oxygen. Research has been directed toward the use of a heterogeneous liquid-phase reactor for the partial oxidation of cyclohexane, toluene, methylcyclohexane, ethylbenzene, and cumene to their corresponding oxygenates.

  16. Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base.

    PubMed

    Alia, Shaun M; Duong, Kathlynne; Liu, Toby; Jensen, Kurt; Yan, Yushan

    2014-06-01

    Palladium (PdNTs) and gold nanotubes (AuNTs) were synthesized by the galvanic displacement of silver nanowires. PdNTs and AuNTs have wall thicknesses of 6 nm, outer diameters of 60 nm, and lengths of 5-10 and 5-20 μm, respectively. Rotating disk electrode experiments showed that the PdNTs and AuNTs have higher area normalized activities for the oxygen reduction reaction (ORR) than conventional nanoparticle catalysts. The PdNTs produced an ORR area activity that was 3.4, 2.2, and 3.7 times greater than that on carbon-supported palladium nanoparticles (Pd/C), bulk polycrystalline palladium, and carbon-supported platinum nanoparticles (Pt/C), respectively. The AuNTs produced an ORR area activity that was 2.3, 9.0, and 2.0 times greater than that on carbon-supported gold nanoparticles (Au/C), bulk polycrystalline gold, and Pt/C, respectively. The PdNTs also had lower onset potentials than Pd/C and Pt/C for the oxidation of methanol (0.236 V), ethanol (0.215 V), and ethylene glycol (0.251 V). In comparison to Pt/C, the PdNTs and AuNTs further demonstrated improved alcohol tolerance during the ORR.

  17. Selective redox degradation of chlorinated aliphatic compounds by Fenton reaction in pyrite suspension.

    PubMed

    Che, Hyeongsu; Lee, Woojin

    2011-02-01

    Selective redox degradation of chlorinated aliphatics by Fenton reaction in pyrite suspension was investigated in a closed system. Carbon tetrachloride (CT) was used as a representative target of perchlorinated alkanes and trichloroethylene (TCE) was used as one of highly chlorinated alkenes. Degradation of CT in Fenton reaction was significantly enhanced by pyrite used as an iron source instead of soluble Fe. Pyrite Fenton showed 93% of CT removal in 140 min, while Fenton reaction with soluble Fe(II) showed 52% and that with Fe(III) 15%. Addition of 2-propanol to the pyrite Fenton system significantly inhibited degradation of TCE (99% to 44% of TCE removal), while degradation of CT was slightly improved by the 2-propanol addition (80-91% of CT removal). The result suggests that, unlike oxidative degradation of TCE by hydroxyl radical in pyrite Fenton system, an oxidation by the hydroxyl radical is not a main degradation mechanism for the degradation of CT in pyrite Fenton system but a reductive dechlorination by superoxide can rather be the one for the CT degradation. The degradation kinetics of CT in the pyrite Fenton system was decelerated (0.13-0.03 min(-1)), as initial suspension pH decreased from 3 to 2. The formation of superoxide during the CT degradation in the pyrite Fenton system was observed by electron spin resonance spectroscopy. The formation at initial pH 3 was greater than that at initial pH 2, which supported that superoxide was a main reductant for degradation of CT in the pyrite Fenton system.

  18. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.; Singh, M.

    1995-01-01

    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

  19. Oxidation of antibacterial molecules by aqueous ozone: moiety-specific reaction kinetics and application to ozone-based wastewater treatment.

    PubMed

    Dodd, Michael C; Buffle, Marc-Olivier; Von Gunten, Urs

    2006-03-15

    Ozone and hydroxyl radical (*OH) reaction kinetics were measured for 14 antibacterial compounds from nine structural families, to determine whether municipal wastewater ozonation is likely to result in selective oxidation of these compounds' biochemically essential moieties. Each substrate is oxidized by ozone with an apparent second-order rate constant, k''(O3,app) > 1 x 10(3) M(-1) s(-1), at pH 7, with the exception of N(4)-acetylsulfamethoxazole (K''(O3,app) is 2.5 x 102 M(-1) s(-1)). k''(O3,app) values (pH 7) for macrolides, sulfamethoxazole, trimethoprim, tetracycline, vancomycin, and amikacin appear to correspond directly to oxidation of biochemically essential moieties. Initial reactions of ozone with N(4)-acetylsulfamethoxazole, fluoroquinolones, lincomycin, and beta-lactams do not lead to appreciable oxidation of biochemically essential moieties. However, ozone oxidizes these moieties within fluoroquinolones and lincomycin via slower reactions. Measured k''(O3,app) values and second-order *OH rate constants, k''(*OH,app) were utilized to characterize pollutant losses during ozonation of secondary municipal wastewater effluent. These losses were dependent on k''(O3,app), but independent of k''(*OH,app). Ozone doses > or =3 mg/L yielded > or =99% depletion of fast-reacting substrates (K''(O3,app) > 5 x 10(4) M(-1) s(-1)) at pH 7.7. Ten substrates reacted predominantly with ozone; only four were oxidized predominantly by .OH. These results indicate that many antibacterial compounds will be oxidized in wastewater via moiety-specific reactions with ozone.

  20. Photo- and thermal-oxidation studies on methyl and phenyl linoleate: anti-oxidant behaviour and rates of reaction.

    PubMed

    Chacón, J N; Gaggini, P; Sinclair, R S; Smith, F J

    2000-09-01

    Photo-peroxidation of methyl and phenyl linoleate in methanol solutions at 25 degrees C, in the presence of methylene blue or 5,10,15,20-tetra(4-pyridyl)-porphyrin (TPP) as sensitisers of singlet oxygen, was found to proceed at more than 30 times the rate of the same polyunsaturated fatty acid (PUFA) ester species undergoing thermal-peroxidation in the bulk phase at 50 degrees C. The addition of anti-oxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) quench the thermal-oxidation effectively but appear to only partially inhibit the photosensitized peroxidation reactions. The kinetics of the overall peroxidation reactions were followed by ultraviolet spectroscopy, measurements of hydroperoxide concentration and by high performance liquid chromatography (HPLC). The photo-peroxidation reaction proceeds more rapidly in chloroform solution as the lifetime of singlet oxygen is shown to be over ten times longer in chloroform than methanol. The initial fast reaction kinetics of the photo-peroxidation reactions were evaluated using a pulsed laser technique to show that singlet oxygen reacts competitively with both the anti-oxidants and the polyunsaturated fatty acid ester. Second order kinetic rate constants (in the range 10(5)-10(7) dm(3) mol(-1) s(-1)) were evaluated for the reactivity of singlet oxygen with a range of anti-oxidants and a singlet oxygen quencher, and the results used to explain the effect of anti-oxidants at different concentrations on the rate of the linoleate photo-peroxidation reaction.

  1. Selective oxidation of cyclohexane using Ce1-xMnxO2 nanocatalysts.

    PubMed

    Selvamani, A; Selvaraj, M; Gurulakshmi, M; Ramya, R; Shanthi, K

    2014-04-01

    The Ce1-xMnxO2 nanocatalysts (x = 0.25, 0.50 and 0.75 wt.%) were synthesized by sol-gel method. The catalysts were characterized using various techniques such as XRD, N2 sorption study, DRSUV-Vis, TPR, SEM and TEM. The incorporation of Mn ions into the ceria lattice was confirmed by XRD analysis. DRUV-Vis spectra confirm the presence of Ce3+ ions in the lattice of Ce1-xMnxO2. H2-TPR study revealed the oxygen storage capacity of the catalyst. The 3D flowerlike morphology of the nanocatalysts was confirmed from FESEM and HRTEM images. The catalytic activity was tested for the vapor phase oxidation of cyclohexane using air as an oxidant. The key reaction parameters were varied to study the stability, activity and selectivity of the catalysts. The study concluded that suitable amount of manganese content is essential for the selective oxidation of cyclohexane at low temperature and Ce0.25Mn0.75O2 is the most suitable catalyst for high conversion and selectivity under the given reaction conditions. The activity of the catalyst is correlated with the characterization results.

  2. Selective enrichment and desalting of hydrophilic peptides using graphene oxide.

    PubMed

    Jiang, Miao; Qi, Linyu; Liu, Peiru; Wang, Zijun; Duan, Zhigui; Wang, Ying; Liu, Zhonghua; Chen, Ping

    2016-08-01

    The wide variety and low abundance of peptides in tissue brought great difficulties to the separation and identification of peptides, which is not in favor of the development of peptidomics. RP-HPLC, which could purify small molecules based on their hydrophobicity, has been widely used in the separation and enrichment of peptide due to its fast, good reproducibility and high resolution. However, RP-HPLC requires the instrument and expensive C18 column and its sample capacity is also limited. Recently, graphene oxide has been applied to the adsorption of amino acids. However, the enrichment efficiency and selectivity of graphene oxide for peptides remain unclear. In this study, the adsorption efficiency and selectivity of graphene oxide and RP-C18 matrix were compared on trypsinized α-actin and also on tissue extracts from pituitary gland and hippocampus. For α-actin, there exhibit similar elution peaks for total trypsinized products and those adsorpted by GO and C18 matrix. But peptides adsorbed by GO showed the higher hydrophilic peaks than which adsorbed by C18 matrix. The resulted RP-HPLC profile showed that most of peptides enriched by graphene oxide were eluted at low concentration of organic solvent, while peptides adsorbed by RP-C18 matrix were mostly eluted at relatively high concentration. Moreover, mass spectrometry analysis suggested that, in pituitary sample, there were 495 peptides enriched by graphene oxide, 447 peptides enriched by RP-C18 matrix while in hippocampus sample 333 and 243 peptides respectively. The GRAVY value analysis suggested that the graphene oxide has a stronger adsorption for highly hydrophilic peptides compared to the RP-C18 matrix. Furthermore, the combination of these two methods could notably increase the number of identification peptides but also the number of predicted protein precursors. Our study provided a new thought to the role of graphene oxide during the enrichment of peptides from tissue which should be useful for

  3. Nanoporous and highly active silicon carbide supported CeO₂-catalysts for the methane oxidation reaction.

    PubMed

    Hoffmann, Claudia; Biemelt, Tim; Lohe, Martin R; Rümmeli, Mark H; Kaskel, Stefan

    2014-01-29

    CeOx @SiO2 nanoparticles are used for the first time for the generation of porous SiC materials with tailored pore diameter in the mesopore range containing encapsulated and catalytically active CeO2 nanoparticles. The nanocasting approach with a preceramic polymer and subsequent pyrolysis is performed at 1300 °C, selective leaching of the siliceous part results in CeOx /SiC catalysts with remarkable characteristics like monodisperse, spherical pores and specific surface areas of up to 438 m(2) ·g(-1) . Porous SiC materials are promising supports for high temperature applications. The catalysts show excellent activities in the oxidation of methane with onset temperatures of the reaction 270 K below the onset of the homogeneous reaction. The synthesis scheme using core-shell particles is suited to functionalize silicon carbide with a high degree of stabilization of the active nanoparticles against sintering in the core of the template even at pyrolysis temperatures of 1300 °C rendering the novel synthesis principle as an attractive approach for a wide range of catalytic reactions.

  4. Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    1995-01-01

    Pure coupons of chemically vapor deposited (CVD) SiC were oxidized for 100 h in dry flowing oxygen at 1300 C. The oxidation kinetics were monitored using thermogravimetry (TGA). The experiments were first performed using high-purity alumina reaction tubes. The experiments were then repeated using fused quartz reaction tubes. Differences in oxidation kinetics, scale composition, and scale morphology were observed. These differences were attributed to impurities in the alumina tubes. Investigators interested in high-temperature oxidation of silica formers should be aware that high-purity alumina can have significant effects on experiment results.

  5. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  6. Thermal oxidative degradation reactions of linear perfluoroalky lethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1982-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoro alkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors are reported. The liner perfluoro alkylethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoro alkylether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating.

  7. Thermal oxidative degradation reactions of linear perfluoroalkyl ethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paclorek, K. J. L.; Ito, T. I.; Kratzer, R. H.

    1983-01-01

    Thermal and thermal oxidative stability studies were performed on linear perfluoroalkyl ether fluids. The effect on degradation by metal catalysts and degradation inhibitors is reported. The linear perfluoroalkyl ethers are inherently unstable at 316 C in an oxidizing atmosphere. The metal catalysts greatly increased the rate of degradation in oxidizing atmospheres. In the presence of these metals in an oxidizing atmosphere, the degradation inhibitors were highly effective in arresting degradation at 288 C. However, the inhibitors had only limited effectiveness at 316 C. The metals promote degradation by chain scission. Based on elemental analysis and oxygen consumption data, the linear perfluoroalkyl ether fluids have a structural arrangement based on difluoroformyl and tetrafluoroethylene oxide units, with the former predominating. Previously announced in STAR as N82-26468

  8. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    NASA Astrophysics Data System (ADS)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  9. Influence of a reaction medium on the oxidation of aromatic nitrogen-containing compounds by peroxyacids

    NASA Astrophysics Data System (ADS)

    Dutka, V. S.; Matsyuk, N. V.; Dutka, Yu. V.

    2011-01-01

    The influence of different solvents on the oxidation reaction rate of pyridine (Py), quinoline (QN), acridine (AN), α-oxyquinoline (OQN) and α-picolinic acid (APA) by peroxydecanoic acid (PDA) was studied. It was found that the oxidation rate grows in the series Py < QN < AN, and the rate of the oxidation reaction of compounds containing a substituent in the α position from a reactive center is significantly lower than for unsubstituted analogues. The effective energies of activation of the oxidation reaction were found. It was shown that in the first stage, the reaction mechanism includes the rapid formation of an intermediate complex nitrogen-containing compound, peroxyacid, which forms products upon decomposing in the second stage. A kinetic equation that describes the studied process is offered. The constants of equilibrium of the intermediate complex formation ( K eq) and its decomposition constant ( k 2) in acetone and benzene were calculated. It was shown that the nature of the solvent influences the numerical values of both K p and k 2. It was established that introduction of acetic acid (which is able to form compounds with Py) into the reaction medium slows the rate of the oxidation process drastically. Correlation equations linking the polarity, polarizability, electrophilicity, and basicity of solvents with the constant of the PDA oxidation reaction rate for Py were found. It was concluded that the basicity and polarity of the solvent have a decisive influence on the oxidation reaction rate, while the polarizability and electrophilicity of the reaction medium do not influence the oxidation reaction rate.

  10. Copper-Catalyzed SN2'-Selective Allylic Substitution Reaction of gem-Diborylalkanes.

    PubMed

    Zhang, Zhen-Qi; Zhang, Ben; Lu, Xi; Liu, Jing-Hui; Lu, Xiao-Yu; Xiao, Bin; Fu, Yao

    2016-03-04

    A Cu/(NHC)-catalyzed SN2'-selective substitution reaction of allylic electrophiles with gem-diborylalkanes is reported. Different substituted gem-diborylalkanes and allylic electrophiles can be employed in this reaction, and various synthetic valuable functional groups can be tolerated. The asymmetric version of this reaction was initially researched with chiral N-heterocyclic carbene (NHC) ligands.

  11. Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction.

    PubMed

    Dey, Sandeep Kumar; de Sousa Amadeu, Nader; Janiak, Christoph

    2016-06-14

    The first polyurethane material which is microporous (BET surface area of 312 m(2) g(-1)) is prepared by solvothermal synthesis and acts as highly efficient and recyclable heterogeneous catalyst in the Knoevenagel condensation showing size selectivity, and in the Henry reaction showing substrate selectivity under mild reaction conditions.

  12. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2-deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  13. Selective etchant for oxide sacrificial material in semiconductor device fabrication

    SciTech Connect

    Clews, Peggy J.; Mani, Seethambal S.

    2005-05-17

    An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H.sub.2 SO.sub.4). These acids can be used in the ratio of 1:3 to 3:1 HF:H.sub.2 SO.sub.4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H.sub.2 SO.sub.4 can be provided as "semiconductor grade" acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H.sub.2 SO.sub.4.

  14. Passivation oxide controlled selective carbon nanotube growth on metal substrates.

    PubMed

    Bult, J B; Sawyer, W G; Ajayan, P M; Schadler, L S

    2009-02-25

    Vertically aligned arrays of multi-wall carbon nanotubes (MWNT) are grown on Inconel 600, a nickel-based super-alloy. Using x-ray photoelectron spectroscopy (XPS) and chemical vapor deposition (CVD) growth of the MWNTs it is shown that a stable oxidation barrier is required for the stabilization of iron on the substrate and subsequent nanotube growth. This evidence for passivation oxide supported growth of MWNTs was then used to grow MWNTs on patterned oxidized substrates in a selective growth furnace. The unique advantage of this patterned growth on Inconel 600 is found to be the chromia passivation layer's electrical conductivity (measured value of 1.08 micro Omega m), creating the opportunity for low resistivity electrodes made from nanotubes. Inconel substrates with 100 microm long aligned MWNTs are demonstrated to exhibit an average resistance value of 2 Omega.

  15. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.

    PubMed

    Hanson, Susan K; Baker, R Tom

    2015-07-21

    This work began as part of a biomass conversion catalysis project with UC Santa Barbara funded by the first NSF Chemical Bonding Center, CATSB. Recognizing that catalytic aerobic oxidation of diol C-C bonds could potentially be used to break down lignocellulose, we began to synthesize oxovanadium complexes and explore their fundamental reactivity. Of course there were theories regarding the oxidation mechanism, but our mechanistic studies soon revealed a number of surprises of the type that keep all chemists coming back to the bench! We realized that these reactions were also exciting in that they actually used the oxygen-on-every-carbon property of biomass-derived molecules to control the selectivity of the oxidation. When we found that these oxovanadium complexes tended to convert sugars predominantly to formic acid and carbon dioxide, we replaced one of the OH groups with an ether and entered the dark world of lignin chemistry. In this Account, we summarize results from our collaboration and from our individual labs. In particular, we show that oxidation selectivity (C-C vs C-O bond cleavage) of lignin models using air and vanadium complexes depends on the ancillary ligands, the reaction solvent, and the substrate structure (i.e., phenolic vs non-phenolic). Selected vanadium complexes in the presence of added base serve as effective alcohol oxidation catalysts via a novel base-assisted dehydrogenation pathway. In contrast, copper catalysts effect direct C-C bond cleavage of these lignin models, presumably through a radical pathway. The most active vanadium catalyst exhibits unique activity for the depolymerization of organosolv lignin. After Weckhuysen's excellent 2010 review on lignin valorization, the number of catalysis studies and approaches on both lignin models and extracts has expanded rapidly. Today we are seeing new start-ups and lignin production facilities sprouting up across the globe as we all work to prove wrong the old pulp and paper chemist

  16. Process of forming catalytic surfaces for wet oxidation reactions

    NASA Technical Reports Server (NTRS)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  17. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    PubMed Central

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  18. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  19. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  20. Bulk Gold-Catalyzed Reactions of Isocyanides, Amines, and Amine N-Oxides

    SciTech Connect

    Klobukowski, Erik; Angelici, Robert; Woo, Keith L.

    2012-01-26

    Bulk gold powder (5–50 μm particles) catalyzes the reactions of isocyanides with amines and amine N-oxides to produce ureas. The reaction of n-butyl isocyanide (nBu–N≡C) with di-n-propylamine and N-methylmorpholine N-oxide in acetonitrile, which was studied in the greatest detail, produced 3-butyl-1,1-dipropylurea (O═C(NHnBu)(NnPr2)) in 99% yield at 60 °C within 2 h. Sterically and electronically different isocyanides, amines, and amine N-oxides react successfully under these conditions. Detailed studies support a two-step mechanism that involves a gold-catalyzed reaction of adsorbed isocyanide with the amine N-oxide to form an isocyanate (RN═C═O), which rapidly reacts with the amine to give the urea product. These investigations show that bulk gold, despite its reputation for poor catalytic activity, is capable of catalyzing these reactions.

  1. Intrinsic selectivity in some prebiotic reactions of urazole with sugars

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Colloton, Patricia A.

    2004-02-01

    Urazole (1,2,4-triazolidine-3,5-dione) (1), 4-methylurazole (12), and its carbon analog, 4,4-dimethylpyrazolidine-3,5-dione (18), react with 2-deoxy-D-ribose (2-deoxy-D-erythro-pentose; 6) in an aqueous solution at room temperature in a regioselective manner (a single substitution on a hydrazidic nitrogen, no reaction on the imide nitrogen) to give a mixture of four nucleosides. These are α and β pyranosides (p) and α and β furanosides (f). The α p forms in a stereoselective manner. A crystalline precipitate is formed in each of the above reactions, which is an exclusive enantiospecific product, 1R, 2R α p. 1 with 2-deoxy-L-ribose (10) gives a precipitate with the exclusive 1S, 2S α p stereochemistry. With 2-deoxy-D-glucose (2-deoxy-D-arabino-hexose; 7) the reaction with 1 is stereospecific, since only one isomer, β p, forms in the solution. Causes of enhanced reactivity of 1 with sugars were also studied. It was found that cyclic hydrazide analogs of 1, such as 12 and 18, are reactive, but open-chain analogs, 1,2,-diacetylhydrazine (21) and 1,2-dicarbethoxyhydrazine (22), are not. Although this reactivity assessment was done qualitatively and under restrictive reaction conditions, it still may be valuable for understanding α -effect of hydrazide nucleophiles. The prebiotic significance of our results is discussed.

  2. Hybridization of Zinc Oxide Tetrapods for Selective Gas Sensing Applications.

    PubMed

    Lupan, O; Postica, V; Gröttrup, J; Mishra, A K; de Leeuw, N H; Carreira, J F C; Rodrigues, J; Ben Sedrine, N; Correia, M R; Monteiro, T; Cretu, V; Tiginyanu, I; Smazna, D; Mishra, Y K; Adelung, R

    2017-02-01

    In this work, the exceptionally improved sensing capability of highly porous three-dimensional (3-D) hybrid ceramic networks toward reducing gases is demonstrated for the first time. The 3-D hybrid ceramic networks are based on doped metal oxides (MexOy and ZnxMe1-xOy, Me = Fe, Cu, Al) and alloyed zinc oxide tetrapods (ZnO-T) forming numerous junctions and heterojunctions. A change in morphology of the samples and formation of different complex microstructures is achieved by mixing the metallic (Fe, Cu, Al) microparticles with ZnO-T grown by the flame transport synthesis (FTS) in different weight ratios (ZnO-T:Me, e.g., 20:1) followed by subsequent thermal annealing in air. The gas sensing studies reveal the possibility to control and change/tune the selectivity of the materials, depending on the elemental content ratio and the type of added metal oxide in the 3-D ZnO-T hybrid networks. While pristine ZnO-T networks showed a good response to H2 gas, a change/tune in selectivity to ethanol vapor with a decrease in optimal operating temperature was observed in the networks hybridized with Fe-oxide and Cu-oxide. In the case of hybridization with ZnAl2O4, an improvement of H2 gas response (to ∼7.5) was reached at lower doping concentrations (20:1), whereas the increase in concentration of ZnAl2O4 (ZnO-T:Al, 10:1), the selectivity changes to methane CH4 gas (response is about 28). Selectivity tuning to different gases is attributed to the catalytic properties of the metal oxides after hybridization, while the gas sensitivity improvement is mainly associated with additional modulation of the electrical resistance by the built-in potential barriers between n-n and n-p heterojunctions, during adsorption and desorption of gaseous species. Density functional theory based calculations provided the mechanistic insights into the interactions between different hybrid networks and gas molecules to support the experimentally observed results. The studied networked materials and

  3. New Insights into the Diels-Alder Reaction of Graphene Oxide.

    PubMed

    Brisebois, Patrick P; Kuss, Christian; Schougaard, Steen B; Izquierdo, Ricardo; Siaj, Mohamed

    2016-04-18

    Graphene oxide is regarded as a major precursor for graphene-based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels-Alder cycloaddition. The Diels-Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high-resolution (13) C-SS NMR spectra, we show evidence for the formation of new sp(3) carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies.

  4. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  5. Cold state-selected molecular collisions and reactions.

    PubMed

    Stuhl, Benjamin K; Hummon, Matthew T; Ye, Jun

    2014-01-01

    Over the past decade, and particularly the past five years, a quiet revolution has been building at the border between atomic physics and experimental quantum chemistry. The rapid development of techniques for producing cold and even ultracold molecules without a perturbing rare-gas cluster shell is now enabling the study of chemical reactions and scattering at the quantum scattering limit with only a few partial waves contributing to the incident channel. Moreover, the ability to perform these experiments with nonthermal distributions comprising one or a few specific states enables the observation and even full control of state-to-state collision rates in this computation-friendly regime: This is perhaps the most elementary study possible of scattering and reaction dynamics.

  6. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst

    SciTech Connect

    Sheng He; Jinsong Zhou; Yanqun Zhu; Zhongyang Luo; Mingjiang Ni; Kefa Cen

    2009-01-15

    The process of the reaction among elemental mercury (Hg{sup 0}) and reactive flue gas components across the selective catalytic reduction (SCR) catalyst was studied in a laboratory-scale reactor. Prepared vanadia-based SCR catalysts were characterized and analyzed to understand the potential reaction pathways. Mercury oxidation was observed when pro-exposure of the SCR catalyst to HCl, followed by passing through Hg{sup 0}/N{sub 2} in the absence of gas-phase HCl. At testing conditions, Hg{sup 0} was found to desorb from the catalyst surface by adding HCl to the gas stream, which implies that HCl adsorption onto the SCR catalyst is strong relative to the mercury. Surface analysis verified the absorption of HCl onto the SCR catalysts, and the potential reaction pathways were proposed. Indeed, the monomeric vanadyl sites on the catalyst surface were found to be responsible for the adsorption of both Hg{sup 0} and HCl, which means they are active for mercury oxidation. Furthermore, the detailed Langmuir-Hinshelwood mechanism was proposed to explain the mercury oxidation on the SCR catalyst, where reactive Cl generated from adsorbed HCl reacts with adjacent Hg{sup 0}. 44 refs., 10 figs.

  7. Polyhedral Interpolation for Optimal Reaction Control System Jet Selection

    NASA Technical Reports Server (NTRS)

    Gefert, Leon P.; Wright, Theodore

    2014-01-01

    An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.

  8. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.

    PubMed

    Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan

    2016-04-27

    Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications.

  9. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings

    PubMed Central

    2013-01-01

    Background One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. Results We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that

  10. Ceramic oxide reactions with V2O5 and SO3

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Williams, C. E.

    1985-01-01

    Ceramic oxides are not inert in combustion environments, but can react with, inter alia, SO3, and Na2SO4 to yield low melting mixed sulfate eutectics, and with vanadium compounds to produce vanadates. Assuming ceramic degradation to become severe only when molten phases are generated in the surface salt (as found for metallic hot corrosion), the reactivity of ceramic oxides can be quantified by determining the SO3 partial pressure necessary for molten mixed sulfate formation with Na2SO3. Vanadium pentoxide is an acidic oxide that reacts with Na2O, SO3, and the different ceramic oxides in a series of Lux-Flood type of acid-base displacement reactions. To elucidate the various possible vanadium compound-ceramic oxide interactions, a study was made of the reactions of a matrix involving, on the one axis, ceramix oxides of increasing acidity, and on the other axis, vanadium compounds of increasing acidity. Resistance to vanadium compound reaction increased as the oxide acidity increased. Oxides more acidic than ZrO2 displaced V2O5. Examination of Y2O3- and CeO2-stabilized ZrO2 sintered ceramics which were degraded in 700 C NaVO3 has shown good agreement with the reactions predicted above, except that the CeO2-ZrO2 ceramic appears to be inexplicably degraded by NaVO3.

  11. Reaction pathways during oxidation of cereal β-glucans.

    PubMed

    Mäkelä, Noora; Sontag-Strohm, Tuula; Schiehser, Sonja; Potthast, Antje; Maaheimo, Hannu; Maina, Ndegwa H

    2017-02-10

    Oxidation of cereal β-glucans may affect their stability in food products. Generally, polysaccharides oxidise via different pathways leading to chain cleavage or formation of oxidised groups within the polymer chain. In this study, oxidation pathways of oat and barley β-glucans were assessed with different concentrations of hydrogen peroxide (H2O2) or ascorbic acid (Asc) with ferrous iron (Fe(2+)) as a catalyst. Degradation of β-glucans was evaluated using high performance size exclusion chromatography and formation of carbonyl groups using carbazole-9-carbonyloxyamine labelling. Furthermore, oxidative degradation of glucosyl residues was studied. Based on the results, the oxidation with Asc mainly resulted in glycosidic bond cleavage. With H2O2, both glycosidic bond cleavage and formation of carbonyl groups within the β-glucan chain was found. Moreover, H2O2 oxidation led to production of formic acid, which was proposed to result from Ruff degradation where oxidised glucose (gluconic acid) is decarboxylated to form arabinose.

  12. [Formation and reactions of biogenic manganese oxides with heavy metals in environment].

    PubMed

    Meng, You-Ting; Zheng, Yuan-Ming; Zhang, Li-Mei; He, Ji-Zheng

    2009-02-15

    Manganese (Mn) oxides are common minerals in natural environments that may play an important role in the biogeochemical cycles of heavy metals. Increasing evidences have shown that Mn (II) oxidation is a microbially-mediated process, and the Mn oxidizing microorganisms are thus recognized as the major drivers of the global Mn cycle. The major pathway for bacterial Mn (II) oxidation is catalysed by a multicopper oxidizing enzyme family. The primary Mn (IV) biooxides are phyllomanganate-like minerals most similar to delta-MnO2 or acid birnessite. Manganese oxides are known to have high sorption capacities for a wide variety of metal ions and considered to be the important environmental oxidant to many metal ions. This paper reviewed the mechanisms of biogenic manganese oxides formation and their reactions with heavy metal ions in environment.

  13. Catalytic reactions on neutral Rh oxide clusters more efficient than on neutral Rh clusters.

    PubMed

    Yamada, Akira; Miyajima, Ken; Mafuné, Fumitaka

    2012-03-28

    Gas phase catalytic reactions involving the reduction of N(2)O and oxidation of CO were observed at the molecular level on isolated neutral rhodium clusters, Rh(n) (n = 10-28), using mass spectrometry. Sequential oxygen transfer reactions, Rh(n)O(m-1) + N(2)O → Rh(n)O(m) + N(2) (m = 1, 2, 3,…), were monitored and the rate constant for each reaction step was determined as a function of the cluster size. Oxygen extraction reactions by a CO molecule, Rh(n)O(m) + CO → Rh(n)O(m-1) + CO(2) (m = 1, 2, 3,…), were also observed when a small amount of CO was mixed with the reactant N(2)O gas. The rate constants of the oxygen extraction reactions by CO for m ≥ 4 were found to be two or three orders of magnitude higher than the rate constants for m ≤ 3, which indicates that the catalytic reaction proceeds more efficiently when the reaction cycles turn over around Rh(n)O(m) (m ≥ 4) than around bare Rh(n). Rhodium clusters operate as more efficient catalysts when they are oxidized than non- or less-oxidized rhodium clusters, which is consistent with theoretical and experimental studies on the catalytic CO oxidation reaction on a rhodium surface.

  14. Photocatalytic reaction of catechol on rutile titanium oxide

    NASA Astrophysics Data System (ADS)

    Jacobson, Peter; Wang, Chundao; Diebold, Ulrike

    2008-03-01

    In an attempt to understand the fundamental aspects of photocatalysis we have studied the substituted benzene catechol on TiO2(110). Previous studies have given detailed information about the catechol bonding configuration letting our group focus on molecular level interactions with scanning tunneling microscopy and X ray photoelectron spectroscopy. Under UV exposure (248 nm) in an oxygen background, catechol is observed to degrade via oxidation. This oxidation process results in removal of roughly 10% of the initial monolayer. The removal of carbon from the TiO2 surface is shown to depend upon the background gas. Formation of a residual carbon layer is achieved by annealing the catechol monolayer to 600C. This carbon layer is more difficult to remove by photocatalytic oxidation than a pristine catechol monolayer. Work supported by Intel Corporation

  15. Determination of carbon by the oxidation reduction reaction with chromium

    NASA Technical Reports Server (NTRS)

    Mashkovich, L.; Kuteynikov, A. F.

    1978-01-01

    Free carbon was determined in silicon and boron carbides in ash, oxides, and other materials by oxidation to carbon dioxide with a mixture of K2Cr2O7 + H2SO4. The determination was made from the amount of CR(6) consumed, by adding excess Mohr's salt and titrating with a standard solution of KMnO4. The amount of Cr(6) self reduced was determined in a blank test. Optimum oxidation and conditions were achieved when the volumes of 5% k2Cr2Oz and H2SO4 were equal. The mixture was boiled for 1-2 hours using a reflex condenser. The volume should not be reduced, in order to avoid an increase in the sulfuric acid concentration. The relative error was 4-7% for 0.005-0.04 g C and less than or equal to 3.5% for 0.1 g C.

  16. The gas chromatographic analysis of the reaction products of the partial isobutane oxidation as a two phase process.

    PubMed

    Willms, Thomas; Kryk, Holger; Hampel, Uwe

    2016-08-05

    The partial oxidation of isobutane to t-butyl hydroperoxide (TBHP) has been studied analytically for the first time as a two-phase process in a capillary micro reactor. In order to obtain detailed information on products, yields, selectivities and reaction pathways, the products have been investigated by GC/MS. An Rxi-5ms column and a PTV-injector have been used to analyze the liquid products. TBHP, di-t-butyl peroxide (DTBP), t-butanol (TBA), and propanone as main products as well as further by-products e.g. methanal, isopropanol, isobutanol and isobutanal in minor quantities have been identified by MS. The liquid products have been obtained by quenching the reaction and vaporizing the isobutane afterwards by pressure reduction using a mass flow controller allowing a constant mass flow. For all liquid reaction products calibrations, a validation of the method including limits of quantification and detection as well as calculation of uncertainties has been performed. The results have been applied successfully for the investigation of the selectivities of the main products (TBHP, DTBP, TBA, propanone) of the isobutane oxidation. In the frame of the analytical investigation of this reaction a correlation coefficient of r(2)>0.999 for TBHP and DTBP, which is necessary to perform a validation, has been obtained for the first time. The gaseous phase has been analyzed using a GASPRO column, a DEANS switch, a mole sieve column and a TCD detector. Apart from the gaseous reactants, isobutene has been found.

  17. Nitrogen oxide reactions in the urban plume of Boston.

    PubMed

    Spicer, C W

    1982-02-26

    The rate of removal or conversion of nitrogen oxides has been determined from airborne measurements in the urban plume of Boston. The average pseudo-first-order rate constant for removal was 0.18 per hour, with a range of 0.14 to 0.24 per hour under daylight conditions for four study days. The removal process is dominated by chemical conversion to nitric acid and organic nitrates. The removal rate suggests an atmospheric lifetime for nitrogen oxides of about 5 to 6 hours in urban air.

  18. DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS

    SciTech Connect

    Ates Akyurtlu; Jale F. Akyurtlu

    2003-11-30

    Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. Evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with methane. Since the replacement of ammonia by methane is commercially very attractive, in this project, the effect of promoters on the activity and selectivity of copper oxide/cerium oxide-based catalysts and the reaction mechanism for the SCR with methane was investigated. Unpromoted and promoted catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments indicated that manganese is a more effective promoter than the other metals (Rh, Li, K, Na, Zn, and Sn) for the supported copper oxide-ceria catalysts under study. The effectiveness of the promoter increased with the increase in Ce/Cu ratio. Among the catalysts tested, the Cu1Ce3 catalyst promoted with 1 weight % Mn was found to be the best catalyst for the SCR of NO with methane. This catalyst was subjected to long-term testing at the facilities of our industrial partner TDA Research. TDA report indicated that the performance of this catalyst did not deteriorate during 100 hours of operation and the activity and selectivity of the catalyst was not affected by the presence of SO{sub 2}. The conversions obtained by TDA were significantly lower than those obtained at Hampton University due to the transport limitations on the reaction rate in the TDA reactor, in which 1/8th inch pellets were used while the Hampton University reactor contained 250-425-{micro}m catalyst particles. The selected catalyst was also tested at the TDA facilities with high-sulfur heavy oil as the reducing agent. Depending on the heavy oil flow rate, up to 100% NO conversions were obtained. The

  19. A comparative theoretical study of CO oxidation reaction by O2 molecule over Al- or Si-decorated graphene oxide.

    PubMed

    Esrafili, Mehdi D; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-09-01

    Using density functional theory calculations, the probable CO oxidation reaction mechanisms are investigated over Al- or Si-decorated graphene oxide (GO). The equilibrium geometry and electronic structure of these metal decorated-GOs along with the O2/CO adsorption configurations are studied in detail. The relatively large adsorption energies reveal that both Al and Si atoms can disperse on GO quite stably without clustering problem. Hence, both Al- and Si-decorated GOs are stable enough to be utilized in catalytic oxidation of CO by molecular O2. The two possible reaction pathways proposed for the oxidation of CO with O2 molecule are as follows: O2+CO→CO2+Oads and CO+Oads→CO2. The estimated energy barriers of the first oxidation reaction on Si-decorated GOs, following the Eley-Rideal (ER) reaction, are lower than that on Al-decorated ones. This is most likely due to the larger atomic charge on the Si atom than the Al one, which tends to stabilize the corresponding transition state structure. The results of this study can be useful for better understanding the chemical properties of Al- and Si-decorated GOs, and are valuable for the development of an automobile catalytic converter in order to remove the toxic CO molecule.

  20. Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein : A joint experimental and theoretical study.

    SciTech Connect

    Molina, L M.; Lee, S.; Sell, K.; Barcaro, G.; Fortunelli, A.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; Barke, I.; von Oeynhausen, V.; Lei, Y.; Meyer, R. J.; Alonso, J. A.; Fraile-Rodriguez, A.; Kleibert, A.; Giorgio, S.; Henry, C. R.; Heinz Meiwes-Broer, K.; Vadja, S.; Univ. de Valladolid; Univ. Rostock; IPCF-CNR; Univ. of Illinois at Chicago; Swiss Light Source; CINaM-CNRS and Aix-Marseille Univ.; Yale Univ.

    2011-02-02

    Model silver nanocatalysts between 9 and 23 nm in size were prepared by size-selected cluster deposition from a free cluster beam on amorphous alumina films and their size-dependent catalytic performance studied in the partial oxidation of propylene under realistic reaction conditions. Smaller clusters preferentially produced acrolein, while the 23 nm particles were considerably more selective towards the formation of propylene oxide, at reaction rates far exceeding those previously reported for larger silver particles. The activity of clusters dropped significantly with increasing particle size. First-principle calculations, of the activation energies for oxygen adsorption and its dissociation, at variable surface coverage yielded surface energies which resulted in particle shapes resembling the experimentally observed shapes of partially oxidized silver clusters. The calculated activation barriers for propylene oxide and acrolein formation on various facets and on the edges of the nanoparticles provided detailed information about the energetics of the competing reaction pathways. The size- and corresponding morphology dependent theoretical activity and selectivity are in good accord with experimental observations.

  1. DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS

    SciTech Connect

    Dr. Ates Akyurtlu; Dr. Jale F. Akyurtlu

    2001-05-31

    Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. A relatively wide temperature window was established for the use of alumina-supported cerium oxide-copper oxide mixtures as regenerable sorbents for SO{sub 2} removal. Preliminary evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with ammonia, but indicated low selectivity when methane was used as the reductant. Since the replacement of ammonia by another reductant is commercially very attractive, in this project, four research components will be undertaken. The investigation of the reaction mechanism, the first component, will help in the selection of promoters to improve the catalytic activity and selectivity of the sorbents in the SCR with methane. This will result in new catalyst formulations (second component). If this research is successful, the combined SO{sub 2}-NO{sub x} removal process based on alumina-supported copper oxide-ceria sorbent/catalysts will become very attractive for commercial applications. The objective of the third component of the project is to develop an alternative SCR process using another inexpensive fuel, residual fuel oil, instead of natural gas. This innovative proposal is based on very scant evidence concerning the good performance of coked catalysts in the selective reduction of NO and if proven to work the process will certainly be commercially viable. The fourth component of the project involves our industrial partner TDA Research, and the objective is to evaluate long-term stability and durability of the prepared sorbent/catalysts. In the first year of the project, the catalysts were investigated by the temperature-programmed reduction (TPR) technique. The results from TPR indicated that the interaction with support appears to promote reduction at lower temperatures

  2. Lipid oxidation volatiles absent in milk after selected ultrasound processing.

    PubMed

    Juliano, Pablo; Torkamani, Amir Ehsan; Leong, Thomas; Kolb, Veronika; Watkins, Peter; Ajlouni, Said; Singh, Tanoj Kumar

    2014-11-01

    Ultrasonic processing can suit a number of potential applications in the dairy industry. However, the impact of ultrasound treatment on milk stability during storage has not been fully explored under wider ranges of frequencies, specific energies and temperature applications. The effect of ultrasonication on lipid oxidation was investigated in various types of milk. Four batches of raw milk (up to 2L) were sonicated at various frequencies (20, 400, 1000, 1600 and 2000kHz), using different temperatures (4, 20, 45 and 63°C), sonication times and ultrasound energy inputs up to 409kJ/kg. Pasteurized skim milk was also sonicated at low and high frequency for comparison. In selected experiments, non-sonicated and sonicated samples were stored at 4°C and were drawn periodically up to 14days for SPME-GCMS analysis. The cavitational yield, characterized in all systems in water, was highest between 400kHz and 1000kHz. Volatile compounds from milk lipid oxidation were detected and exceeded their odor threshold values at 400kHz and 1000kHz at specific energies greater than 271kJ/kg in raw milk. However, no oxidative volatile compounds were detected below 230kJ/kg in batch systems at the tested frequencies under refrigerated conditions. Skim milk showed a lower energy threshold for oxidative volatile formation. The same oxidative volatiles were detected after various passes of milk through a 0.3L flow cell enclosing a 20kHz horn and operating above 90kJ/kg. This study showed that lipid oxidation in milk can be controlled by decreasing the sonication time and the temperature in the system depending on the fat content in the sample among other factors.

  3. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters.

    PubMed

    Li, Laicai; Wang, Wei; Wang, Xiaolan; Zhang, Lin

    2016-08-01

    Cinnamaldehyde (CAL) belongs to the group of aromatic α,β-unsaturated aldehydes; the selective hydrogenation of CAL plays an important role in the fine chemical and pharmaceutical industries. Using Ptn clusters as catalytic models, we studied the selective hydrogenation reaction mechanism for CAL catalyzed by Ptn (n = 6, 10, 14, 18) clusters by means of B3LYP in density functional theory at the 6-31+ G(d) level (the LanL2DZ extra basis set was used for the Pt atom). The rationality of the transition state was proved by vibration frequency analysis and intrinsic reaction coordinate computation. Moreover, atoms in molecules theory and nature bond orbital theory were applied to discuss the interaction among orbitals and the bonding characteristics. The results indicate that three kinds of products, namely 3-phenylpropyl aldehyde, 3-phenyl allyl alcohol and cinnamyl alcohol, are produced in the selective hydrogenation reaction catalyzed by Ptn clusters; each pathway possesses two reaction channels. Ptn clusters are more likely to catalyze the activation and hydrogenation of the C = O bond in CAL molecules, eventually producing cinnamic alcohol, which proves that Ptn clusters have a strong reaction selectivity to catalyze CAL. The reaction selectivity of the catalyzer cluster is closely related to the size of the Ptn cluster, with Pt14 clusters having the greatest reaction selectivity. Graphical Abstract The reaction mechanism for the selective hydrogenation reaction ofcinnamaldehyde catalyzed by Ptn clusters was studied by densityfunctional theory. The reactionselectivity of cluster catalyzer was concluded to be closely related to the size of Ptn clusters, with Pt14 clusters having the greatest reaction selectivity.

  4. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid.

    PubMed

    Lee, Myungjin; Kim, Kijeong; Lee, Hangil

    2013-09-02

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation.

  5. The aniline-to-azobenzene oxidation reaction on monolayer graphene or graphene oxide surfaces fabricated by benzoic acid

    PubMed Central

    2013-01-01

    The oxidation of aniline to azobenzene was conducted in the presence of either monolayer graphene (EG) or graphene-oxide-like surface, such as GOx, under ultra-high vacuum conditions maintaining a 365-nm UV light exposure to enhance the oxidation reaction. The surface-bound products were investigated using micro Raman spectroscopy, high-resolution photoemission spectroscopy, and work function measurements. The oxygen carriers present on the GOx surfaces, but not on the EG surfaces, acted as reaction reagents to facilitate the oxidation reaction from aniline to azobenzene. Increasing the aniline concentration at 300 K confirmed that the exchange ratio from the aniline to the azobenzene was enhanced, as determined by the intensity ratio between the aniline- and azobenzene-induced N 1 s core-level spectra. The work function changed dramatically as the aniline concentration increased, indicating that the aniline on the GOx surface conveyed n-type doping characteristics at a low coverage level. A higher aniline concentration increased the p-type doping character by increasing the azobenzene concentration on the GOx surface. A comparison of the oxidation reactivity of aniline molecules on the EG or GOx surfaces revealed the role of the oxygen carriers on the GOx surfaces in the context of catalytic oxidation. PMID:24229051

  6. Selective Catalytic Oxidation of Hydrogen Sulfide--IGCC Applications

    SciTech Connect

    Alvin, M.A.; Stevens, R.W.; Newby, R.A.; Keairns, D.L.

    2006-09-01

    Selective catalytic oxidation of hydrogen sulfide (SCOHS) to elemental sulfur using activated carbon and NETL-processed metal oxide catalyst systems has been investigated under bench-scale, simulated pressurized IGCC conditions for use in dry and humid gas cleaning process applications. For this technology to be successful, a 20% cost effective advantage and 1 percentage-point plant efficiency gain over current commercial technology, and <10-15 ppm total gas phase sulfur release into the effluent gas stream must be demonstrated. The results of our bench-scale catalyst/sorbent desulfurization and regeneration efforts for both bulk and polishing sulfur removal indicate that direct selective catalytic oxidation of H2S to elemental sulfur utilizing current activated carbon systems occurs only under conditions of low syngas temperature (<150°C), and in syngas effluent streams containing a low water and CO content. Thus the SCOHS desulfurization process is considered to be only potentially feasible for use in dry gas cleaning conditions for IGCC applications where syngas-CO is shifted to CO2, and regeneration of the catalyst occurs through heating in warm CO2, with simultaneous CO2 sequestration. SCOHS is not considered as a candidate desulfurization approach for use in humid IGCC gas cleaning applications.

  7. Fabrication of highly selective tungsten oxide ammonia sensors

    SciTech Connect

    Llobet, E.; Molas, G.; Molinas, P.; Calderer, J.; Vilanova, X.; Brezmes, J.; Sueiras, J.E.; Correig, X.

    2000-02-01

    Tungsten oxide is shown to be a very promising material for the fabrication of highly selective ammonia sensors. Films of WO{sub 3} were deposited onto a silicon substrate by means of the drop-coating method. Then, the films were annealed in dry air at two different temperatures (300 and 400 C). X-ray photoelectron spectroscopy was used to investigate the composition of the films. Tungsten appeared both in WO{sub 2} and WO{sub 3} oxidation states, but the second state was clearly dominant. Scanning electron microscopy results showed that the oxide was amorphous or nanocrystalline. The WO{sub 3}-based devices were sensitive to ammonia vapors when operated between 250 and 350 C. The optimal operating temperature for the highest sensitivity to ammonia was 300 C. Furthermore, when the devices were operated at 300 C, their sensitivity to other reducing species such as ethanol, methane, toluene, and water vapor was significantly lower, and this resulted in a high selectivity to ammonia. A model for the sensing mechanisms of the fabricated sensors is proposed.

  8. REACTION OF BENZENE OXIDE WITH THIOLS INCLUDING GLUTATHIONE

    EPA Science Inventory

    This study accounts for the observations that the metabolism of benzene is dominated by the formation of phenol. As demonstrated here, the pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at ...

  9. The Psychophysiological Reactions of Film Viewers While Viewing Selected Cinemagraphic Elements.

    ERIC Educational Resources Information Center

    Smeltzer, Dennis K.

    This study focused on the psychophysiological reactions of viewers seeing such selected cinemagraphic elements as varying camera distances, tracking shots, panning shots, and zooming shots. Subjects (N=29), randomly selected from introductory speech courses, viewed five films that varied in the presence or absence of the selected filmic elements.…

  10. [Study on apparent kinetics of photocatalytic oxidation degradation Rhodamine B by photo-Fenton reaction].

    PubMed

    Li, Hong; Zheng, Huai-Li; Li, Xiao-Hong; Xie, Li-Guo; Tang, Xue

    2008-11-01

    The Fenton process, mixed by hydrogen peroxide and iron salts with highly oxidative effect, is recognized as one of powerful advanced oxidation technologies available and can be used to destroy a variety of persistent organic pollutants. The oxidation power of Fenton reagent is due to the generation of hydroxyl radical (* OH) during the iron catalysed decomposition of hydrogen peroxide in acid medium. The hydroxyl radical with a high oxidation potential (2.8 eV) attacks and completely destroys the pollutants in Fenton process. The degradation of pollutants can be considerably improved by using sunlight radiation, which is due to the generation of additional hydroxyl radicals. This photo-Fenton process had been effectively used to degrade the pollutants. In this paper, the definite quantity of Fenton reagent was added in the definite concentration of Rhodamine B solution. The degradation reaction was carried out at pH 3.5 under natural sunlight. The factors influencing on photocatalytic oxidation degradation rate of Rhodamine B were studied following: the initial concentration of Rhodamine B, initial concentrateions of Fe2+ and H2O2. The orders of degradation reaction were obtained by solving exponential kinetics equations of curve fitting, thereby gaining the kinetic parameters and reaction dynamics equation of the reaction system. The research contents included mainly: the UV-Vis spectra of Rhodamine B solution, the concentration-absorbency work curve of Rhodamine B solution, the analysis of the reaction system at various initial Rhodamine B concentrations, the analysis of the reaction system at various initial Fe2+ concentrateions, the analysis of the reaction system at various initial H2O2 concentrations, and the calculation of the apparent kinetics parameters in reaction dynamics equation. The reaction dynamics equation from experiments was constructed: V = 5 x 10(-9) P1.28 F0.366 E0.920, and overall reaction order was 2.57.

  11. Reversible Fluorescent Probe for Selective Detection and Cell Imaging of Oxidative Stress Indicator Bisulfite.

    PubMed

    Zhang, Yajiao; Guan, Lingmei; Yu, Huan; Yan, Yehan; Du, Libo; Liu, Yang; Sun, Mingtai; Huang, Dejian; Wang, Suhua

    2016-04-19

    In this paper, we report a benzothiazole-functionalized cyanine fluorescence probe and demonstrate that it is selectively reactive to bisulfite, an intermediate indicator for oxidative stress. The selective reaction can be monitored by distinct ratiometric fluorescence variation favorable for cell imaging and visualization. The original probe can be regenerated in high yield through the elimination of bisulfite from the product by peroxides such as hydrogen peroxide, accompanied by fluorescence turning on at 590 nm, showing a potential application for the detection of peroxides. We successfully applied this probe for fluorescence imaging of bisulfite in cancer cells (MCF-7) treated with bisulfite and hydrogen peroxide as well as a selective detection limit of 0.34 μM bisulfite in aqueous solution.

  12. The reactions of imidogen with nitric oxide and molecular oxygen

    SciTech Connect

    Miller, J.A.; Melius, C.F.

    1991-01-01

    Using potential energy surface information from BAC-MP4 calculations and statistical-dynamical methods, we have calculated the branching fraction for the NH + NO reaction, NH + NO {r arrow} N{sub 2} + H (1) NH + NO {r arrow} N{sub 2}O + H (2). We find that reaction (2) dominates over the entire temperature range considered, 300 K < T < 3500 K, with f=k{sub 1}/(k{sub 1} + K{sub 2}) varying from about 0.07 at room temperature to about 0.20 at 3500 K. In addition, we have calculated rate coefficients for the two-channel process, NH + O{sub 2} {r arrow} HNO + O (3) NH + O{sub 2} {r arrow} NO + OH (4). In this case we find that reaction (4) dominates at low temperature, reaction (3) at high temperature. All these results are discussed in terms of the experimental results available and compared with previous theoretical investigations where appropriate. 21 refs., 4 figs., 3 tabs.

  13. The reactions of imidogen with nitric oxide and molecular oxygen

    SciTech Connect

    Miller, J.A.; Melius, C.F.

    1991-12-31

    Using potential energy surface information from BAC-MP4 calculations and statistical-dynamical methods, we have calculated the branching fraction for the NH + NO reaction, NH + NO {r_arrow} N{sub 2} + H (1) NH + NO {r_arrow} N{sub 2}O + H (2). We find that reaction (2) dominates over the entire temperature range considered, 300 K < T < 3500 K, with f=k{sub 1}/(k{sub 1} + K{sub 2}) varying from about 0.07 at room temperature to about 0.20 at 3500 K. In addition, we have calculated rate coefficients for the two-channel process, NH + O{sub 2} {r_arrow} HNO + O (3) NH + O{sub 2} {r_arrow} NO + OH (4). In this case we find that reaction (4) dominates at low temperature, reaction (3) at high temperature. All these results are discussed in terms of the experimental results available and compared with previous theoretical investigations where appropriate. 21 refs., 4 figs., 3 tabs.

  14. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  15. Oxidation of flame retardant tetrabromobisphenol a by aqueous permanganate: reaction kinetics, brominated products, and pathways.

    PubMed

    Pang, Su-Yan; Jiang, Jin; Gao, Yuan; Zhou, Yang; Huangfu, Xiaoliu; Liu, Yongze; Ma, Jun

    2014-01-01

    In this work, the most widely used brominated flame retardant tetrabromobisphenol A (TBrBPA) was shown to exhibit appreciable reactivity toward potassium permanganate [Mn(VII)] in water over a wide pH range of 5-10 with the maxima of second-order rate constants (kMn(VII) = 15-700 M(-1) s(-1)) at pH near its pKa values (7.5/8.5). A novel precursor ion scan (PIS) approach using negative electrospray ionization-triple quadrupole mass spectrometry (ESI-QqQMS) was adopted and further optimized for fast selective detection of brominated oxidation products of TBrBPA by Mn(VII). By setting PIS of m/z 79 and 81, two major products (i.e., 4-(2-hydroxyisopropyl)-2,6-dibromophenol and 4-isopropylene-2,6-dibromophenol) and five minor ones (including 2,6-dibromophenol, 2,6-dibromo-1,4-benzoquinone, and three dimers) were detected and suggested with chemical structures from their product ion spectra and bromine isotope patterns. Reaction pathways mainly involving the initial one-electron oxidation of TBrBPA and subsequent release and further reactions of 2,6-dibromo-4-isopropylphenol carbocation intermediate were proposed. The effectiveness of Mn(VII) for treatment of TBrBPA in real waters was confirmed. It is important to better understand the reactivity and toxicity of primary brominated products before Mn(VII) can be applied for treatment of TBrBPA-contaminated wastewater and source water.

  16. Exact probability distributions of selected species in stochastic chemical reaction networks.

    PubMed

    López-Caamal, Fernando; Marquez-Lago, Tatiana T

    2014-09-01

    Chemical reactions are discrete, stochastic events. As such, the species' molecular numbers can be described by an associated master equation. However, handling such an equation may become difficult due to the large size of reaction networks. A commonly used approach to forecast the behaviour of reaction networks is to perform computational simulations of such systems and analyse their outcome statistically. This approach, however, might require high computational costs to provide accurate results. In this paper we opt for an analytical approach to obtain the time-dependent solution of the Chemical Master Equation for selected species in a general reaction network. When the reaction networks are composed exclusively of zeroth and first-order reactions, this analytical approach significantly alleviates the computational burden required by simulation-based methods. By building upon these analytical solutions, we analyse a general monomolecular reaction network with an arbitrary number of species to obtain the exact marginal probability distribution for selected species. Additionally, we study two particular topologies of monomolecular reaction networks, namely (i) an unbranched chain of monomolecular reactions with and without synthesis and degradation reactions and (ii) a circular chain of monomolecular reactions. We illustrate our methodology and alternative ways to use it for non-linear systems by analysing a protein autoactivation mechanism. Later, we compare the computational load required for the implementation of our results and a pure computational approach to analyse an unbranched chain of monomolecular reactions. Finally, we study calcium ions gates in the sarco/endoplasmic reticulum mediated by ryanodine receptors.

  17. Gas-Phase Oxidation via Ion/Ion Reactions: Pathways and Applications

    NASA Astrophysics Data System (ADS)

    Pilo, Alice L.; Zhao, Feifei; McLuckey, Scott A.

    2017-01-01

    Here, we provide an overview of pathways available upon the gas-phase oxidation of peptides and DNA via ion/ion reactions and explore potential applications of these chemistries. The oxidation of thioethers (i.e., methionine residues and S-alkyl cysteine residues), disulfide bonds, S-nitrosylated cysteine residues, and DNA to the [M+H+O]+ derivative via ion/ion reactions with periodate and peroxymono-sulfate anions is demonstrated. The oxidation of neutral basic sites to various oxidized structures, including the [M+H+O]+, [M-H]+, and [M-H-NH3]+ species, via ion/ion reactions is illustrated and the oxidation characteristics of two different oxidizing reagents, periodate and persulfate anions, are compared. Lastly, the highly efficient generation of molecular radical cations via ion/ion reactions with sulfate radical anion is summarized. Activation of the newly generated molecular radical peptide cations results in losses of various neutral side chains, several of which generate dehydroalanine residues that can be used to localize the amino acid from which the dehydroalanine was generated. The chemistries presented herein result in a diverse range of structures that can be used for a variety of applications, including the identification and localization of S-alkyl cysteine residues, the oxidative cleavage of disulfide bonds, and the generation of molecular radical cations from even-electron doubly protonated peptides.

  18. Interfacial electronic effects control the reaction selectivity of platinum catalysts

    NASA Astrophysics Data System (ADS)

    Chen, Guangxu; Xu, Chaofa; Huang, Xiaoqing; Ye, Jinyu; Gu, Lin; Li, Gang; Tang, Zichao; Wu, Binghui; Yang, Huayan; Zhao, Zipeng; Zhou, Zhiyou; Fu, Gang; Zheng, Nanfeng

    2016-05-01

    Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

  19. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    DOE PAGES

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; ...

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication ofmore » crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.« less

  20. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction

    SciTech Connect

    Scofield, Megan E.; Koenigsmann, Christopher; Wang, Lei; Liu, Haiqing; Wong, Stanislaus S.

    2014-11-25

    In the search for alternatives to conventional Pt electrocatalysts, we have synthesized ultrathin, ternary PtRuFe nanowires (NW), possessing different chemical compositions in order to probe their CO tolerance as well as electrochemical activity as a function of composition for both (i) the methanol oxidation reaction (MOR) and (ii) the formic acid oxidation reaction (FAOR). As-prepared ‘multifunctional’ ternary NW catalysts exhibited both higher MOR and FAOR activity as compared with binary Pt₇Ru₃ NW, monometallic Pt NW, and commercial catalyst control samples. In terms of synthetic novelty, we utilized a sustainably mild, ambient wet-synthesis method never previously applied to the fabrication of crystalline, pure ternary systems in order to fabricate ultrathin, homogeneous alloy PtRuFe NWs with a range of controlled compositions. Thus, these NWs were subsequently characterized using a suite of techniques including XRD, TEM, SAED, and EDAX in order to verify not only the incorporation of Ru and Fe into the Pt lattice but also their chemical homogeneity, morphology, as well as physical structure and integrity. Lastly, these NWs were electrochemically tested in order to deduce the appropriateness of conventional explanations such as (i) the bi-functional mechanism as well as (ii) the ligand effect to account for our MOR and FAOR reaction data. Specifically, methanol oxidation appears to be predominantly influenced by the Ru content, whereas formic acid oxidation is primarily impacted by the corresponding Fe content within the ternary metal alloy catalyst itself.

  1. Evaluation of Salivary Nitric Oxide Levels in Smokers, Tobacco Chewers and Patients with Oral Lichenoid Reactions

    PubMed Central

    Jose, Joy Idiculla; Sivapathasundharam, B.; Sabarinath, B.

    2016-01-01

    Introduction Nitric oxide (NO), a free radical, acts as a signalling molecule affecting numerous physiological and pathological processes. Role of nitric oxide as a mediator in tobacco related habits and the resultant oral lichenoid reactions was assessed. Aim The aim of the study is to evaluate and compare the salivary nitric oxide levels in normal patients with that of smokers, tobacco chewers and patients with oral lichenoid reactions. Materials and Methods One hundred and twenty patients were enrolled in the study which included 30 healthy patients without any chronic inflammatory lesion and habit as controls (group I), 30 smokers without the habit of tobacco/betel nut chewing and any oral lesion (group II), 30 tobacco chewers without the habit of smoking and any oral lesion (group III) and 30 histologically confirmed cases of oral lichenoid reaction with the habit of tobacco usage (group IV). Saliva from these patients was collected and the nitrite concentration was assessed. Results Our results concluded that there was highly significant increase in the nitric oxide levels in smokers, tobacco chewers and patients with oral lichenoid reactions compared to that of controls. Also, there was a significant increase in nitric oxide levels in patients with smoking associated oral lichenoid reactions in comparison with smokers and in patients with lichenoid reactions associated with tobacco chewing in comparison with tobacco chewers. Conclusion Estimation of salivary nitric oxide levels is a simple, non-invasive procedure and could be analysed to suggest the role of nitric oxide in the pathogenesis of these lesions. The increased activity of the enzyme may indicate that nitric oxide has a pathophysiological role in these lesions. PMID:26894179

  2. Reaction mechanism of oxidation, hydroxylation, and epoxidation by hypofluorous acid: a theoretical study of unusual H-bond-assisted catalysis.

    PubMed

    Srnec, Martin; Oncak, Milan; Zahradník, Rudolf

    2008-04-24

    The oxidation of organic molecules by hypofluorous acid (HOF) was studied extensively and systematically by Rozen et al. Therefore, it seems appropriate to refer to the process as Rozen oxidation. An entire set of model molecules was selected for quantum chemical investigation of the oxidation mechanism: a C=C double bond in ethylene, sulfur and selenium in dimethyl derivatives, nitrogen and phosphorus in trimethyl derivatives, as well as methyl azides. In the gas phase, van der Waals complexes between HOF and the previously mentioned species easily are formed, but these complexes are reluctant to undergo oxidation. The addition of another HOF molecule connected with the formation of a cyclic complex (i.e., substrate and two molecules of HOF) seems to be decisive for the oxidation process. The attempt to substitute the second HOF molecule with H2O demonstrated the superiority of HOF. Complexes of this kind decompose along the reaction path smoothly (i.e., with a low activation energy) to the respective oxidation product. A potential role of the hydroxyl cation (HO+) in the oxidation step is mentioned. Besides an oxidation product, one HOF molecule is released (an essential feature of catalysis), and furthermore, hydrogen fluoride is formed. It was suggested by Sertchook et al. (J. Phys. Chem. A 2006, 110, 8275) that the interaction between the substrate to be oxidized and HOF is catalytically influenced by the HF molecule. The mechanism suggested here is more feasible and, particularly at the early stages of the oxidation process, decisive. Also, the role of acetonitrile, used as a solvent by Rozen et al., is discussed in terms of a continuum model. Moreover, passing from potential energies to Gibbs energies is considered.

  3. High Temperature Reactions of Uranium Dioxide with Various Metal Oxides

    DTIC Science & Technology

    1956-02-20

    less oxygen than that in U308, even at low tem- peratures; (b) reduction of oxides such as U205 , U30,, and UO3 at temperatures above 1,450’ C to a...Corporation. Thorium dioxide (ThO2). Lindsay Light & Power Co. low-tem- perature, calcined material of 99.99-percent purity. Vanadium pentoxide (V2O6

  4. Application of hydrogen peroxide encapsulated in silica xerogels to oxidation reactions.

    PubMed

    Bednarz, Szczepan; Ryś, Barbara; Bogdał, Dariusz

    2012-07-04

    Hydrogen peroxide was encapsulated into a silica xerogel matrix by the sol-gel technique. The composite was tested as an oxidizing agent both under conventional and microwave conditions in a few model reactions: Noyori's method of octanal and 2-octanol oxidation and cycloctene epoxidation in a 1,1,1-trifluoroethanol/Na2WO4 system. The results were compared with yields obtained for reactions with 30% H2O2 and urea-hydrogen peroxide (UHP) as oxidizing agents. It was found that the composite has activity similar to 30% H2O2 and has a several advantages over UHP such as the fact that silica and H2O are the only products of the composite decomposition or no contamination by urea or its derivatives occurs; the xerogel is easier to heated by microwave irradiation than UHP and could be used as both an oxidizing agent and as solid support for microwave assisted solvent-free oxidations.

  5. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    NASA Astrophysics Data System (ADS)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  6. Boundary effects in a surface reaction model for CO oxidation

    NASA Astrophysics Data System (ADS)

    Brosilow, Benjamin J.; Gulari, Erdogan; Ziff, Robert M.

    1993-01-01

    The surface reaction model of Ziff, Gulari, and Barshad (ZGB) is investigated on finite systems with ``hard'' oxygen boundary conditions. The rate of production of CO2 is calculated as a function of y and system size. When the rate of CO adsorption y is above the first-order transition value y2, the reactive region is found to extend into the system a distance ξ which scales as (y-y2)-0.40 when y→y2.

  7. DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS

    SciTech Connect

    Ates Akyurtlu; Jale F. Akyurtlu

    2001-09-01

    Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. A relatively wide temperature window was established for the use of alumina-supported cerium oxide-copper oxide mixtures as regenerable sorbents for SO{sub 2} removal. Preliminary evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with ammonia, but indicated low selectivity when methane was used as the reductant. Since the replacement of ammonia by another reductant is commercially very attractive, in this project, four research components will be undertaken. The investigation of the reaction mechanism, the first component, will help in the selection of promoters to improve the catalytic activity and selectivity of the sorbents in the SCR with methane. This will result in new catalyst formulations (second component). If this research is successful, the combined SO{sub 2}-NO{sub x} removal process based on alumina-supported copper oxide-ceria sorbent/catalysts will become very attractive for commercial applications. The objective of the third component of the project is to develop an alternative SCR process using another inexpensive fuel, residual fuel oil, instead of natural gas. This innovative proposal is based on very scant evidence concerning the good performance of coked catalysts in the selective reduction of NO and if proven to work the process will certainly be commercially viable. The fourth component of the project involves our industrial partner TDA Research, and the objective is to evaluate long- term stability and durability of the prepared sorbent/catalysts. In the second year of the project, the catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments

  8. Theoretical study of reactions of HO{sub 2} in low-temperature oxidation of benzene

    SciTech Connect

    Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.; Kennedy, Eric M.; Mackie, John C.

    2010-07-15

    We have generated a set of thermodynamic and kinetic parameters for the reactions involving HO{sub 2} in the very early stages of benzene oxidation at low temperatures using density functional theory (DFT). In particular, we report the rate constants for the reactions of HO{sub 2} with benzene and phenyl. The calculated reaction rate constant for the abstraction of H-C{sub 6}H{sub 5} by HO{sub 2} is found to be in good agreement with the limited experimental values. HO{sub 2} addition to benzene is found to be more important than direct abstraction. We show that the reactions of HO{sub 2} with the phenyl radical generate the propagating radical OH in a highly exoergic reaction. The results presented herein should be useful in modeling the oxidation of aromatic compounds at low temperatures. (author)

  9. Chiral Polymerization in Open Systems From Chiral-Selective Reaction Rates

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Nelson, Bradley J.; Walker, Sara Imari

    2012-08-01

    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.

  10. Chiral polymerization in open systems from chiral-selective reaction rates.

    PubMed

    Gleiser, Marcelo; Nelson, Bradley J; Walker, Sara Imari

    2012-08-01

    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.

  11. Selective Neuronal Vulnerability to Oxidative Stress in the Brain

    PubMed Central

    Wang, Xinkun; Michaelis, Elias K.

    2010-01-01

    Oxidative stress (OS), caused by the imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS), plays an important role in brain aging, neurodegenerative diseases, and other related adverse conditions, such as ischemia. While ROS/RNS serve as signaling molecules at physiological levels, an excessive amount of these molecules leads to oxidative modification and, therefore, dysfunction of proteins, nucleic acids, and lipids. The response of neurons to this pervasive stress, however, is not uniform in the brain. While many brain neurons can cope with a rise in OS, there are select populations of neurons in the brain that are vulnerable. Because of their selective vulnerability, these neurons are usually the first to exhibit functional decline and cell death during normal aging, or in age-associated neurodegenerative diseases, such as Alzheimer's disease. Understanding the molecular and cellular mechanisms of selective neuronal vulnerability (SNV) to OS is important in the development of future intervention approaches to protect such vulnerable neurons from the stresses of the aging process and the pathological states that lead to neurodegeneration. In this review, the currently known molecular and cellular factors that contribute to SNV to OS are summarized. Included among the major underlying factors are high intrinsic OS, high demand for ROS/RNS-based signaling, low ATP production, mitochondrial dysfunction, and high inflammatory response in vulnerable neurons. The contribution to the selective vulnerability of neurons to OS by other intrinsic or extrinsic factors, such as deficient DNA damage repair, low calcium-buffering capacity, and glutamate excitotoxicity, are also discussed. PMID:20552050

  12. Comparative analysis of four oxidized guanine lesions from reactions of DNA with peroxynitrite, singlet oxygen, and γ-radiation.

    PubMed

    Cui, Liang; Ye, Wenjie; Prestwich, Erin G; Wishnok, John S; Taghizadeh, Koli; Dedon, Peter C; Tannenbaum, Steven R

    2013-02-18

    Oxidative damage to DNA has many origins, including irradiation, inflammation, and oxidative stress, but the chemistries are not the same. The most oxidizable base in DNA is 2-deoxyguanosine (dG), and the primary oxidation products are 8-oxodG and 2-amino-imidazolone. The latter rapidly converts to 2,2-diamino-oxazolone (Ox), and 8-oxodG is further oxidized to spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). In this study, we have examined the dose-response relationship for the formation of the above four products arising in calf thymus DNA exposed to gamma irradiation, photoactivated rose bengal, and two sources of peroxynitrite. In order to carry out these experiments, we developed a chromatographic system and synthesized isotopomeric internal standards to enable accurate and precise analysis based upon selected reaction monitoring mass spectrometry. 8-OxodG was the most abundant products in all cases, but its accumulation was highly dependent on the nature of the oxidizing agent and the subsequent conversion to Sp and Gh. Among the other oxidation products, Ox was the most abundant, and Sp was formed in significantly greater yield than Gh.

  13. Extensive Bone Reaction From Catastrophic Oxidized Zirconium Wear.

    PubMed

    Cassar-Gheiti, Adrian J; Collins, Dennis; McCarthy, Tom

    2016-01-01

    The use of alternative bearing surfaces for total hip arthroplasty has become popular to minimize wear and increase longevity, especially in young patients. Oxidized zirconium (Oxinium; Smith & Nephew, Memphis, Tennessee) femoral heads were introduced in the past decade for use in total hip arthroplasty. The advantages of oxidized zirconium include less risk of fracture compared with traditional ceramic heads. This case report describes a patient with a history of bilateral avascular necrosis of the femoral head after chemotherapy for acute lymphoblastic leukemia. Nonoperative management of avascular necrosis failed, and the patient was treated with bilateral total hip arthroplasty. The patient was followed at regular intervals and had slow eccentric polyethylene wear during a 10-year period. After 10 years, the patient had accelerated wear, with femoral and acetabular bone changes as a result of Oxinium and ultrahigh-molecular-weight polyethylene wear during a 6-month period. This article highlights the unusual accelerated bone changes that occurred as a result of Oxinium wear particles.

  14. Evaluation of reaction mechanism of coal-metal oxide interactions in chemical-looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Richards, George; Poston, James; Tian, Hanjing; Miller, Duane; Simonyi, Thomas

    2010-11-15

    The knowledge of reaction mechanism is very important in designing reactors for chemical-looping combustion (CLC) of coal. Recent CLC studies have considered the more technically difficult problem of reactions between abundant solid fuels (i.e. coal and waste streams) and solid metal oxides. A definitive reaction mechanism has not been reported for CLC reaction of solid fuels. It has often been assumed that the solid/solid reaction is slow and therefore requires that reactions be conducted at temperatures high enough to gasify the solid fuel, or decompose the metal oxide. In contrast, data presented in this paper demonstrates that solid/solid reactions can be completed at much lower temperatures, with rates that are technically useful as long as adequate fuel/metal oxide contact is achieved. Density functional theory (DFT) simulations as well as experimental techniques such as thermo-gravimetric analysis (TGA), flow reactor studies, in situ X-ray photo electron spectroscopy (XPS), in situ X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to evaluate how the proximal interaction between solid phases proceeds. The data indicate that carbon induces the Cu-O bond breaking process to initiate the combustion of carbon at temperatures significantly lower than the spontaneous decomposition temperature of CuO, and the type of reducing medium in the vicinity of the metal oxide influences the temperature at which the oxygen release from the metal oxide takes place. Surface melting of Cu and wetting of carbon may contribute to the solid-solid contacts necessary for the reaction. (author)

  15. Selective oxidation of bromide in wastewater brines from hydraulic fracturing.

    PubMed

    Sun, Mei; Lowry, Gregory V; Gregory, Kelvin B

    2013-07-01

    Brines generated from oil and natural gas production, including flowback water and produced water from hydraulic fracturing of shale gas, may contain elevated concentrations of bromide (~1 g/L). Bromide is a broad concern due to the potential for forming brominated disinfection byproducts (DBPs) during drinking water treatment. Conventional treatment processes for bromide removal is costly and not specific. Selective bromide removal is technically challenging due to the presence of other ions in the brine, especially chloride as high as 30-200 g/L. This study evaluates the ability of solid graphite electrodes to selectively oxidize bromide to bromine in flowback water and produced water from a shale gas operation in Southwestern PA. The bromine can then be outgassed from the solution and recovered, as a process well understood in the bromine industry. This study revealed that bromide may be selectively and rapidly removed from oil and gas brines (~10 h(-1) m(-2) for produced water and ~60 h(-1) m(-2) for flowback water). The electrolysis occurs with a current efficiency between 60 and 90%, and the estimated energy cost is ~6 kJ/g Br. These data are similar to those for the chlor-alkali process that is commonly used for chlorine gas and sodium hydroxide production. The results demonstrate that bromide may be selectively removed from oil and gas brines to create an opportunity for environmental protection and resource recovery.

  16. Selective hydrodeoxygenation of cyclic vicinal diols to cyclic alcohols over tungsten oxide-palladium catalysts.

    PubMed

    Amada, Yasushi; Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2014-08-01

    Hydrodeoxygenation of cyclic vicinal diols such as 1,4-anhydroerythritol was conducted over catalysts containing both a noble metal and a group 5-7 transition-metal oxide. The combination of Pd and WOx allowed the removal of one of the two OH groups selectively. 3-Hydroxytetrahydrofuran was obtained from 1,4-anhydroerythritol in 72 and 74% yield over WOx -Pd/C and WOx -Pd/ZrO2 , respectively. The WOx -Pd/ZrO2 catalyst was reusable without significant loss of activity if the catalyst was calcined as a method of regeneration. Characterization of WOx -Pd/C with temperature-programmed reduction, X-ray diffraction, and transmission electron microscopy/energy-dispersive X-ray spectroscopy suggested that Pd metal particles approximately 9 nm in size were formed on amorphous tungsten oxide particles. A reaction mechanism was proposed on the basis of kinetics, reaction results with tungsten oxides under an atmosphere of Ar, and density functional theory calculations. A tetravalent tungsten center (W(IV) ) was formed by reduction of WO3 with the Pd catalyst and H2 , and this center served as the reductant for partial hydrodeoxygenation.

  17. Oxidative catalysis using the stoichiometric oxidant as a reagent: an efficient strategy for single-electron-transfer-induced tandem anion-radical reactions.

    PubMed

    Kafka, František; Holan, Martin; Hidasová, Denisa; Pohl, Radek; Císařová, Ivana; Klepetářová, Blanka; Jahn, Ullrich

    2014-09-08

    Oxidative single-electron transfer-catalyzed tandem reactions consisting of a conjugate addition and a radical cyclization are reported, which incorporate the mandatory terminal oxidant as a functionality into the product.

  18. The oxidant and laser power-dependent plasmon-driven surface photocatalysis reaction of p-aminothiophenol dimerizing into p,p'-dimercaptoazobenzene on Au nanoparticles.

    PubMed

    Tan, Enzhong; Yin, Penggang; Yu, Chunna; Yu, Ge; Zhao, Chang

    2016-09-05

    Recently, plasmon-driven surface photocatalysis (PDSPC) reactions have attracted more and more attention by means of surface-enhanced Raman scattering (SERS) because we can in situ monitor the reaction process and determine the final products and their quantities by the real-time SERS spectrum. In this work, self-assembly AuNPs with both high catalytic activity and strong SERS effect were used as a bifunctional platform for in situ monitoring of PDSPC reactions. p-Aminothiophenol (PATP), a famous model molecule, was selected as a probe molecule and FeCl3 and NaClO were selected as oxidants. In this way, oxidation reaction of PATP dimerizing into p,p'-dimercaptoazobenzene (DMAB) has been investigated by SERS, and the results show that oxidant and laser power can alter the conversion rate of the reaction. This work provides a novel approach for controlling PDSPC reaction rate, which may be useful for understanding the mechanism of PDSPC reactions.

  19. High-value chemicals obtained from selective photo-oxidation of glucose in the presence of nanostructured titanium photocatalysts.

    PubMed

    Colmenares, Juan C; Magdziarz, Agnieszka; Bielejewska, Anna

    2011-12-01

    Glucose was oxidized in the presence of powdered TiO(2) photocatalysts synthesized by an ultrasound-promoted sol-gel method. The catalysts were more selective towards glucaric acid, gluconic acid and arabitol (total selectivity approx. 70%) than the most popular photocatalyst, Degussa P-25. The photocatalytic systems worked at mild reaction conditions: 30°C, atmospheric pressure and very short reaction time (e.g. 5 min). Such relatively good selectivity towards high-valued molecules are attributed to the physico-chemical properties (e.g. high specific surface area, nanostructured anatase phase, and visible light absorption) of novel TiO(2) materials and the reaction conditions. The TiO(2) photocatalysts have potential for water purification and energy production and for use in the pharmaceutical, food, perfume and fuel industries.

  20. Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Seo, Eun Jung; Jung, Geun Su; Suh, Dong Woo; De Cooman, Bruno C.

    2016-04-01

    The influence of the addition of Sn on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. A reference TRIP steel and TRIP steels containing Sn in the range of 0.05 to 1 wt pct were intercritically annealed at 1093 K (820 °C) in an N2+ 5 pct H2 gas atmosphere with a dew point of -60 °C. The thin-film oxides formed on the surface of the Sn-added CMnSi TRIP steel were investigated using transmission electron microscopy and 3-dimensional atom probe tomography. The addition of Sn (≥0.05 wt pct) changed the morphology of the xMnO·SiO2 surface oxides from a continuous film morphology to a lens-shaped island morphology. It also suppressed the formation of the Mn-rich oxides of MnO and 2MnO·SiO2. The changes in the morphology and chemistry of the surface oxides were clearly related to the surface segregation of Sn, which appeared to result in a decrease of the oxygen permeability at the surface. The formation of lens-shaped oxides improved the wettability of the CMnSi TRIP steel surface by the molten Zn. The improved wetting effect was attributed to an increased area fraction of the surface where the oxide layer was thinner. This enabled a direct, unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer in the initial stages of the hot dipping. The addition of a small amount of Sn was also found to decrease significantly the density of Zn-coating defects on CMnSi TRIP steel.

  1. Weighted next reaction method and parameter selection for efficient simulation of rare events in biochemical reaction systems.

    PubMed

    Xu, Zhouyi; Cai, Xiaodong

    2011-07-25

    The weighted stochastic simulation algorithm (wSSA) recently developed by Kuwahara and Mura and the refined wSSA proposed by Gillespie et al. based on the importance sampling technique open the door for efficient estimation of the probability of rare events in biochemical reaction systems. In this paper, we first apply the importance sampling technique to the next reaction method (NRM) of the stochastic simulation algorithm and develop a weighted NRM (wNRM). We then develop a systematic method for selecting the values of importance sampling parameters, which can be applied to both the wSSA and the wNRM. Numerical results demonstrate that our parameter selection method can substantially improve the performance of the wSSA and the wNRM in terms of simulation efficiency and accuracy.

  2. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural.

    PubMed

    Pacheco, Joshua J; Davis, Mark E

    2014-06-10

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed.

  3. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    NASA Astrophysics Data System (ADS)

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen-Popper, Dion-Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  4. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    DOE PAGES

    Garcia, Andres; Wang, Jing; Windus, Theresa L.; ...

    2016-05-20

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.

  5. Using reduced catalysts for oxidation reactions: mechanistic studies of the "Periana-Catalytica" system for CH4 oxidation.

    PubMed

    Mironov, Oleg A; Bischof, Steven M; Konnick, Michael M; Hashiguchi, Brian G; Ziatdinov, Vadim R; Goddard, William A; Ahlquist, Mårten; Periana, Roy A

    2013-10-02

    Designing oxidation catalysts based on CH activation with reduced, low oxidation state species is a seeming dilemma given the proclivity for catalyst deactivation by overoxidation. This dilemma has been recognized in the Shilov system where reduced Pt(II) is used to catalyze methane functionalization. Thus, it is generally accepted that key to replacing Pt(IV) in that system with more practical oxidants is ensuring that the oxidant does not over-oxidize the reduced Pt(II) species. The "Periana-Catalytica" system, which utilizes (bpym)Pt(II)Cl2 in concentrated sulfuric acid solvent at 200 °C, is a highly stable catalyst for the selective, high yield oxy-functionalization of methane. In lieu of the over-oxidation dilemma, the high stability and observed rapid oxidation of (bpym)Pt(II)Cl2 to Pt(IV) in the absence of methane would seem to contradict the originally proposed mechanism involving CH activation by a reduced Pt(II) species. Mechanistic studies show that the originally proposed mechanism is incomplete and that while CH activation does proceed with Pt(II) there is a solution to the over-oxidation dilemma. Importantly, contrary to the accepted view to minimize Pt(II) overoxidation, these studies also show that increasing that rate could increase the rate of catalysis and catalyst stability. The mechanistic basis for this counterintuitive prediction could help to guide the design of new catalysts for alkane oxidation that operate by CH activation.

  6. Surface-catalyzed air oxidation reactions of hydrazines: Tubular reactor studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, symmetrical dimethylhydrazine, trimethylhydrazine and tetramethylhydrazine were investigated in a metal-powder packed turbular flow reactor at 55 plus or minus 3 C. Hydrazine was completely reacted on all surfaces studied. The major products of monomethylhydrazine (MMH) oxidation were methanol, methane and methyldiazene. The di-, tri- and tetra-methyl hydrazines were essentially unreactive under these conditions. The relative catalytic reactivities toward MMH are: Fe greater than Al2O3 greater than Ti greater than Zn greater than 316 SS greater than Cr greater than Ni greater than Al greater than 304L SS. A kinetic scheme and mechanism involving adsorption, oxidative dehydrogenation and reductive elimination reactions on a metal oxide surface are proposed.

  7. Interfacial Cu+ promoted surface reactivity: Carbon monoxide oxidation reaction over polycrystalline copper-titania catalysts

    DOE PAGES

    Senanayake, S. D.; Pappoe, N. A.; Nguyen-Phan, T. -D.; ...

    2016-10-01

    We have studied the catalytic carbon monoxide (CO) oxidation (CO+0.5O2 → CO2) reaction using a powder catalyst composed of both copper (5wt% loading) and titania (CuOx-TiO2). Our study was focused on revealing the role of Cu, and the interaction between Cu and TiO2, by systematic comparison between two nanocatalysts, CuOx-TiO2 and pure CuOx. We interrogated these catalysts under in situ conditions using X-ray Diffraction (XRD), X-ray Absorption Fine Structure (XAFS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) to probe the structure and electronic properties of the catalyst at all stages of the reaction and simultaneously probe the surface statesmore » or intermediates of this reaction. With the aid of several ex situ characterization techniques including Transmission Electron Microscopy (TEM), the local catalyst morphology and structure was also studied. Our results show that a CuOx-TiO2 system is more active than bulk CuOx for the CO oxidation reaction due to its lower onset temperature and better stability at higher temperatures. Our results also suggests that a surface Cu+ species observed in the CuOx-TiO2 interface are likely to be a key player in the CO oxidation mechanism, while implicating that the stabilization of this species is probably associated with the oxide-oxide interface. Both in situ DRIFTS and XAFS measurements reveal that there is likely to be a Cu(Ti)-O mixed oxide at this interface. We discuss the nature of this Cu(Ti)-O interface and interpret its role on the CO oxidation reaction.« less

  8. Interfacial Cu+ promoted surface reactivity: Carbon monoxide oxidation reaction over polycrystalline copper-titania catalysts

    NASA Astrophysics Data System (ADS)

    Senanayake, Sanjaya D.; Pappoe, Naa Adokaley; Nguyen-Phan, Thuy-Duong; Luo, Si; Li, Yuanyuan; Xu, Wenqian; Liu, Zongyuan; Mudiyanselage, Kumudu; Johnston-Peck, Aaron C.; Frenkel, Anatoly I.; Heckler, Ilana; Stacchiola, Dario; Rodriguez, José A.

    2016-10-01

    We have studied the catalytic carbon monoxide (CO) oxidation (CO + 0.5O2 → CO2) reaction using a powder catalyst composed of both copper (5 wt.% loading) and titania (CuOx-TiO2). Our study was focused on revealing the role of Cu, and the interaction between Cu and TiO2, by systematic comparison between two nanocatalysts, CuOx-TiO2 and pure CuOx. We interrogated these catalysts under in situ conditions using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to probe the structure and electronic properties of the catalyst at all stages of the reaction and simultaneously probe the surface states or intermediates of this reaction. With the aid of several ex situ characterization techniques including transmission electron microscopy (TEM), the local catalyst morphology and structure were also studied. Our results show that a CuOx-TiO2 system is more active than bulk CuOx for the CO oxidation reaction due to its lower onset temperature and better stability at higher temperatures. Our results also suggest that surface Cu+ species observed in the CuOx-TiO2 interface are likely to be a key player in the CO oxidation mechanism, while implicating that the stabilization of this species is probably associated with the oxide-oxide interface. Both in situ DRIFTS and XAFS measurements reveal that there is likely to be a Cu(Ti)-O mixed oxide at this interface. We discuss the nature of this Cu(Ti)-O interface and interpret its role on the CO oxidation reaction.

  9. Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane → Ethylene Coupling. Scope and Mechanistic Observations.

    PubMed

    Peter, Matthias; Marks, Tobin J

    2015-12-09

    Using abundant soft oxidants, a high methane-to-ethylene conversion might be achievable due to the low thermodynamic driving force for over-oxidation. Here we report on the oxidative coupling of methane by gaseous S2 (SOCM). The catalytic properties of Pd/Fe3O4 are compared with those of Fe3O4, and it is found that high ethylene selectivities can be achieved without noble metals; conversion and selectivity on Fe3O4 are stable for at least 48 h at SOCM conditions. SOCM data for 10 oxides are compared, and ethylene selectivities as high as 33% are found; the C2H4/C2H6 ratios of 9-12 observed at the highest S2 conversions are significantly higher than the C2H4/C2H6 ratios usually found in the CH4 coupling with O2. Complementary in-detail analytical studies show that, on Mg, Zr, Sm, W, and La catalysts, which strongly coke during the reaction, lower ethylene selectivities are observed than on Fe, Ti, and Cr catalysts, which only coke to a minor extent. Further catalyst-dependent changes during SOCM in surface area, surface composition, and partial conversion to oxysulfides and sulfides are discussed. Evidence concerning the reaction mechanism is obtained taking into account the selectivity for the different reaction products versus the contact time. CH4 coupling proceeds non-oxidatively with the evolution of H2 on some catalysts, and evidence is presented that C2H4 and C2H2 formation occur via C2H6 and C2H4 dehydrogenation, respectively.

  10. Ultrasound promoted selective synthesis of 1,1'-binaphthyls catalyzed by Fe impregnated pillared Montmorillonite K10 in presence of TBHP as an oxidant.

    PubMed

    Bhor, Malhari D; Nandurkar, Nitin S; Bhanushali, Mayur J; Bhanage, Bhalchandra M

    2008-03-01

    Naphthols were selectively coupled under sonication using Fe(+3) impregnated pillared Montmorillonite K10 and TBHP as an oxidant. Considerable enhancement in the reaction rate was observed under sonication as compared to the reaction performed under silent condition. The activity of catalyst was compared with other Fe clay catalysts. Various parameters like solvent, catalyst and TBHP concentration has been studied. The heterogeneous active catalyst K10-FePLS120 was recycled without loss in activity and selectivity performance.

  11. "Click" reaction in conjunction with diazeniumdiolate chemistry: developing high-load nitric oxide donors.

    PubMed

    Oladeinde, Oyebola A; Hong, Sam Y; Holland, Ryan J; Maciag, Anna E; Keefer, Larry K; Saavedra, Joseph E; Nandurdikar, Rahul S

    2010-10-01

    The use of Cu(I)-catalyzed "click" reactions of alkyne-substituted diazeniumdiolate prodrugs with bis- and tetrakis-azido compounds is described. The "click" reaction for the bis-azide using CuSO(4)/Na-ascorbate predominantly gave the expected bis-triazole. However, CuI/diisopropylethylamine predominantly gave uncommon triazolo-triazole products as a result of oxidative coupling. Neither set of "click" conditions showed evidence of compromising the integrity of the diazeniumdiolate groups. The chemistry developed has applications in the synthesis of polyvalent and dendritic nitric oxide donors.

  12. Bimolecular Coupling Reactions through Oxidatively Generated Aromatic Cations: Scope and Stereocontrol

    PubMed Central

    Cui, Yubo; Villafane, Louis A.; Clausen, Dane J.

    2013-01-01

    Chromenes, isochromenes, and benzoxathioles react with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone to form stable aromatic cations that react with a range of nucleophiles. These oxidative fragment coupling reactions provide rapid access to structurally diverse heterocycles. Conducting the reactions in the presence of a chiral Brønsted acid results in the formation of an asymmetric ion pair that can provide enantiomerically enriched products in a rare example of a stereoselective process resulting from the generation of a chiral electrophile through oxidative carbon–hydrogen bond cleavage. PMID:23913987

  13. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    PubMed Central

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst

    2017-01-01

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect – oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level. PMID:28327642

  14. Reaction Mechanism for m-Xylene Oxidation in the Claus Process by Sulfur Dioxide.

    PubMed

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S; Chung, Suk Ho

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation.

  15. Surface reaction network of CO oxidation on CeO2/Au(110) inverse model catalysts.

    PubMed

    Ding, Liangbing; Xiong, Feng; Jin, Yuekang; Wang, Zhengming; Sun, Guanghui; Huang, Weixin

    2016-11-30

    CeO2/Au(110) inverse model catalysts were prepared and their activity toward the adsorption and co-adsorption of O2, CO, CO2 and water was studied by means of X-ray photoelectron spectroscopy, low energy electron diffraction, thermal desorption spectra and temperature-programmed reaction spectra. The Au surface of CeO2/Au(110) inverse model catalysts molecularly adsorbs CO, CO2 and water, and the polycrystalline CeO2 surface of CeO2/Au(110) inverse model catalysts molecularly adsorbs O2, and molecularly and reactively adsorbs CO, CO2 and water. By controllably preparing co-adsorbed surface species on CeO2/Au(110) inverse model catalysts, we successfully identified various surface reaction pathways of CO oxidation to produce CO2 with different barriers both on the CeO2 surface and at the Au-CeO2 interface, including CO oxidation by various oxygen species, and water/hydroxyl group-involved CO oxidation. These results establish a surface reaction network of CO oxidation catalyzed by Au/CeO2 catalysts, greatly advancing the fundamental understandings of catalytic CO oxidation reactions.

  16. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons.

    PubMed

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A; Wäckerlin, Aneliia; Meyer, Ernst

    2017-03-22

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect - oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level.

  17. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst

    2017-03-01

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect – oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level.

  18. Oxidative C-H/C-H Coupling Reactions between Two (Hetero)arenes.

    PubMed

    Yang, Yudong; Lan, Jingbo; You, Jingsong

    2017-01-13

    Transition metal-mediated C-H bond activation and functionalization represent one of the most straightforward and powerful tools in modern organic synthetic chemistry. Bi(hetero)aryls are privileged π-conjugated structural cores in biologically active molecules, organic functional materials, ligands, and organic synthetic intermediates. The oxidative C-H/C-H coupling reactions between two (hetero)arenes through 2-fold C-H activation offer a valuable opportunity for rapid assembly of diverse bi(hetero)aryls and further exploitation of their applications in pharmaceutical and material sciences. This review provides a comprehensive overview of the fundamentals and applications of transition metal-mediated/catalyzed oxidative C-H/C-H coupling reactions between two (hetero)arenes. The substrate scope, limitation, reaction mechanism, regioselectivity, and chemoselectivity, as well as related control strategies of these reactions are discussed. Additionally, the applications of these established methods in the synthesis of natural products and exploitation of new organic functional materials are exemplified. In the last section, a short introduction on oxidant- or Lewis acid-mediated oxidative Ar-H/Ar-H coupling reactions is presented, considering that it is a very powerful method for the construction of biaryl units and polycylic arenes.

  19. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway.

    PubMed

    Wang, Jianbing; Fu, Wantao; He, Xuwen; Yang, Shaoxia; Zhu, Wanpeng

    2014-08-01

    The development of highly active carbon material catalysts in catalytic wet air oxidation (CWAO) has attracted a great deal of attention. In this study different carbon material catalysts (multi-walled carbon nanotubes, carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction, the removal of phenol was nearly 100% over the functionalized multi-walled carbon, while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals, which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions, a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First, maleic acid is transformed directly into malonic acid. Second, acetic acid is oxidized into an unknown intermediate, which is then oxidized into CO2 and H2O. Finally, formic acid and oxalic acid can mutually interconvert when conditions are favorable.

  20. Proton Coupled Electron Transfer Reactions at the Surface of Metal Oxide Nanomaterials

    NASA Astrophysics Data System (ADS)

    Braten, Miles N.

    Nanostructured metal oxide materials are found in many products and processes in our society today, but they play a particularly important role in the conversion and storage of energy. The materials are used as catalysts and redox active supports in devices such as dye sensitized solar cells, solid oxide fuel cells, and flow batteries, where they transfer and store electrons and charge balancing cations. Oftentimes electron transfer is modulated by the cations and when the cation is a proton, these redox reactions are known as proton coupled electron transfer (PCET) reactions. The work described in this dissertation focuses on understanding the PCET reactivity of nanocrystalline metal oxide materials. Chapter 1 introduces the concept of PCET and provides background information on the zinc oxide (ZnO) nanocrystals (NCs) which the majority of the research is focused on. Chapter 2 examines the chemistry that occurs during the photoreduction of ZnO NCs. Chapter 3 describes experiments probing how ZnO NC capping ligand concentration and NC size modulate PCET reaction rates. Chapter 4 describes experiments that compare the PCET reactivity of ZnO NCs with different numbers of electrons and protons stored on them. Chapter 5 describes attempts to observe the electrochemical reduction of ZnO NCs attached to gold electrodes. Finally, Chapter 6 contains attempts to identify a nanostructured metal oxide alkane oxidation catalyst for use in fuel cell.

  1. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives

    PubMed Central

    Solís-Calero, Christian; Ortega-Castro, Joaquín; Frau, Juan; Muñoz, Francisco

    2015-01-01

    Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease. PMID:25977746

  2. Secondary Organic Aerosol Formation by Molecular-Weight Building Reactions of Biogenic Oxidation Products

    NASA Astrophysics Data System (ADS)

    Barsanti, K.; Guenther, A.; Matsunaga, S.; Smith, J.

    2006-12-01

    Understanding the chemical composition of atmospheric organic aerosols (OA) remains one of the significant challenges to accurately representing OA in air quality and climate models. Meeting this challenge will require further understanding of secondary organic aerosols (SOA), of which biogenic emissions are thought to be major precursors. Of recent interest is the significance of higher-molecular weight (MW) compounds (i.e., "oligomers"). Theoretical, laboratory, and field study results suggest that relatively volatile oxidation products may contribute to SOA formation through multi-phase MW- building reactions. The significance of such reactions for biogenic SOA formation, including for newly considered precursors such as isoprene, is explored in this work. Theoretical and field studies are employed to: 1) identify MW-building reactions that may contribute to SOA formation in the atmosphere, 2) identify MW-building reaction products in ambient samples, and 3) parameterize atmospheric SOA formation by MW-building reactions of biogenic oxidation products. Likely reactions of biogenic oxidation products include ester, amide, and peroxyhemiacetal formation. Each of the proposed reactions involves known oxidation productions of biogenic precursors (e.g., carboxylic acids and aldehydes) reacting with one another and/or other atmospheric constituents (e.g., sulfuric acid and ammonia) to form higher-MW/lower-volatility products that can condense to form SOA. It has been suggested that products of MW-building reactions can revert to the parent reactants during sampling and analysis. Thus, relatively volatile compounds detected in ambient particle samples in fact may be decomposition products of higher-MW products. The contribution of relatively volatile biogenic oxidation products to SOA via ester, amide, and peroxyhemiacetal formation, as determined by studies based on fundamental thermodynamics and gas/particle partitioning theory, will be discussed; in addition to

  3. Acidity-controlled selective oxidation of alpha-pinene, isolated from Indonesian pine's turpentine oils (pinus merkusii)

    NASA Astrophysics Data System (ADS)

    Masruri; Farid Rahman, Mohamad; Nurkam Ramadhan, Bagus

    2016-02-01

    Alpha-pinene was isolated in high purity from turpentine oil harvested from Pinus merkusii plantation. The recent investigation on selective oxidation of alpha-pinene using potassium permanganate was undertaken under acidic conditions. The result taught the selective oxidation of alpha-pinene in acidic using potassium permanganate lead to the formation of 2-(3-acetyl-2,2-dimethylcyclobutyl)acetaldehyde or pinon aldehyde. The study method applied reaction in various different buffer conditions i.e. pH 3, 4, 5, and 6, respectively, and each reaction product was monitored using TLC every hour. Product determination was undertaken on spectrometry basis such as infrared, ultra violet-visible, gas chromatography- and liquid chromatography-mass spectrometry.

  4. Materials selection for oxide-based resistive random access memories

    SciTech Connect

    Guo, Yuzheng; Robertson, John

    2014-12-01

    The energies of atomic processes in resistive random access memories (RRAMs) are calculated for four typical oxides, HfO{sub 2}, TiO{sub 2}, Ta{sub 2}O{sub 5}, and Al{sub 2}O{sub 3}, to define a materials selection process. O vacancies have the lowest defect formation energy in the O-poor limit and dominate the processes. A band diagram defines the operating Fermi energy and O chemical potential range. It is shown how the scavenger metal can be used to vary the O vacancy formation energy, via controlling the O chemical potential, and the mean Fermi energy. The high endurance of Ta{sub 2}O{sub 5} RRAM is related to its more stable amorphous phase and the adaptive lattice rearrangements of its O vacancy.

  5. Increased Oxidative Stress as a Selective Anticancer Therapy

    PubMed Central

    Liu, Jiahui; Wang, Zhichong

    2015-01-01

    Reactive oxygen species (ROS) are closely related to tumorgenesis. Under hypoxic environment, increased levels of ROS induce the expression of hypoxia inducible factors (HIFs) in cancer stem cells (CSCs), resulting in the promotion of the upregulation of CSC markers, and the reduction of intracellular ROS level, thus facilitating CSCs survival and proliferation. Although the ROS level is regulated by powerful antioxidant defense mechanisms in cancer cells, it is observed to remain higher than that in normal cells. Cancer cells may be more sensitive than normal cells to the accumulation of ROS; consequently, it is supposed that increased oxidative stress by exogenous ROS generation therapy has an effect on selectively killing cancer cells without affecting normal cells. This paper reviews the mechanisms of redox regulation in CSCs and the pivotal role of ROS in anticancer treatment. PMID:26273420

  6. A Highly Selective Vanadium Catalyst for Benzylic C–H Oxidation

    PubMed Central

    Xia, Ji-Bao; Cormier, Kevin W.; Chen, Chuo

    2012-01-01

    Vanadium complexes have been used extensively to catalyze olefin and alcohol oxidation. However, their application in C–H oxidation has not been well-studied. We report herein that commercially available Cp2VCl2 catalyzes benzylic C–H oxidation selectively and effectively, giving no aromatic oxidation products. PMID:22712051

  7. Reaction pattern and mechanism of light induced oxidative water splitting in photosynthesis.

    PubMed

    Renger, Gernot; Kühn, Philipp

    2007-06-01

    This mini review is an attempt to briefly summarize our current knowledge on light driven oxidative water splitting in photosynthesis. The reaction leading to molecular oxygen and four protons via photosynthesis comprises thermodynamic and kinetic constraints that require a balanced fine tuning of the reaction coordinates. The mode of coupling between electron (ET) and proton transfer (PT) reactions is shown to be of key mechanistic relevance for the redox turnover of Y(Z) and the reactions within the WOC. The WOC is characterized by peculiar energetics of its oxidation steps in the WOC. In all oxygen evolving photosynthetic organisms the redox state S(1) is thermodynamically most stable and therefore this general feature is assumed to be of physiological relevance. Available information on the Gibbs energy differences between the individual redox states S(i+1) and S(i) and on the activation energies of their oxidative transitions are used to construct a general reaction coordinate of oxidative water splitting in photosystem II (PS II). Finally, an attempt is presented to cast our current state of knowledge into a mechanism of oxidative water splitting with special emphasis on the formation of the essential O-O bond and the active role of the protein environment in tuning the local proton activity that depends on time and redox state S(i). The O-O linkage is assumed to take place within a multistate equilibrium at the redox level of S(3), comprising both redox isomerism and proton tautomerism. It is proposed that one state, S(3)(P), attains an electronic configuration and nuclear geometry that corresponds with a hydrogen bonded peroxide which acts as the entatic state for the generation of complexed molecular oxygen through S(3)(P) oxidation by Y(Z)(ox).

  8. Selected attributes of polyphenols in targeting oxidative stress in cancer.

    PubMed

    Stepanic, Visnja; Gasparovic, Ana Cipak; Troselj, Koraljka Gall; Amic, Dragan; Zarkovic, Neven

    2015-01-01

    Various plant polyphenols have been recognized as redox active molecules. This review discusses some aspects of polyphenols' modes of redox action, corresponding structure-activity relationships and their potential to be applied as adjuvants to conventional cytostatic drugs. Polyphenols' antioxidative capacity has been discussed as the basis for targeting oxidative stress and, consequently, for their chemopreventive and anti-inflammatory activities, which may alleviate side-effects on normal cells arising from oxidative stress caused by cytostatics. Some polyphenols may scavenge various free radicals directly, and some of them are found to suppress free radical production through inhibiting NADPH oxidases and xanthine oxidase. Additionally, polyphenols may increase antioxidative defense in normal cells by increasing the activity of NRF2, transcription factor for many protective proteins. The activation of the NRF2-mediated signaling pathways in cancer cells results in chemoresistance. Luteolin, apigenin and chrysin reduce NRF2 expression and increase the chemosensitivity of cancer cells to cytostatic drugs. Their common 5,7-dihydroxy-4H-chromen-4-one moiety, may represent a starting pharmacophore model for designing novel, non-toxic compounds for overcoming chemoresistance. However, prooxidative activity of some polyphenols (quercetin, EGCG) may also provide a basis for their use as chemotherapeutic adjuvants since they may enhance cytotoxic effects of cytostatics selectively on cancer cells. However, considerable caution is needed in applying polyphenols to anticancer therapy, since their effects greatly depend on the applied dose, the cell type, exposure time and environmental conditions.

  9. Influence of Synbiotics on Selected Oxidative Stress Parameters

    PubMed Central

    2017-01-01

    The aim of the present study was to assess synbiotic (Lactobacillus casei + inulin) influence on oxidative stress parameters such as concentrations of malondialdehyde (MDA), hydrogen peroxide (H2O2), glutathione, and free sulfhydryl groups content. Experiments were carried out on healthy volunteers (n = 32). The subjects were divided into women group (n = 16) and men group (n = 16) and randomly assigned to synbiotic and control groups. Blood samples were collected before synbiotic supplementation and after 7 wks, at the end of the study. The administration of synbiotic resulted in a significant decrease in MDA (p < 0.01), H2O2 (p < 0.01), and GSSG concentrations (p < 0.05) as compared with the control groups and significant increase in the concentrations of GSHt (p < 0.001), GSH (p < 0.01), and -SH group content (p < 0.05) versus control. Synbiotics containing L. casei plus inulin may have positive influence on selected oxidative stress markers. PMID:28286605

  10. The reaction mechanism of catalytic oxidation with hydrogen peroxide and ozone in aqueous solution.

    PubMed

    Park, J S; Choi, H; Ahn, K H

    2003-01-01

    The sorption and catalytic oxidation of model compounds (pCBA and phenanthrene) and NOM on FeOOH were investigated using hydrogen peroxide and ozone, respectively. After oxidation with ozone, the hydrophobic, transphilic, and hydrophilic NOM fractions were isolated using XAD-8 and -4 resins to analyze the reaction characteristics. The sorption of pCBA was strongly dependent upon the pH, but phenanthrene exhibited a sorption behavior that was independent of the pH. In the case of NOM, the hydrophobic portion showed higher sorption affinity than hydrophilic and transphilic at pH 7.2. The concentrations of model compounds and oxidants were measured during the oxidations and the efficiency was compared for tests done with ozone alone and those using catalytic ozonation. Through the comparison of the sorption and decomposition of the model compounds, along with the effects of bicarbonate addition, mechanisms for catalytic oxidation with hydrogen peroxide or ozone were proposed, respectively.

  11. Anion effect controlling the selectivity in the zinc-catalysed copolymerisation of CO2 and cyclohexene oxide

    PubMed Central

    Elmas, Sait; Subhani, Muhammad Afzal; Leitner, Walter

    2015-01-01

    Summary The choice of the anion has a surprisingly strong effect on the incorporation of CO2 into the polymer obtained during the zinc-catalysed copolymerisation of CO2 and cyclohexene oxide. The product span ranges from polyethercarbonates, where short polyether sequences alternate with carbonate linkages, to polycarbonates with a strictly alternating sequence of the repeating units. Herein, we report on the influence of the coordination ability of the anion on the selectivity and kinetics of the copolymerisation reaction. PMID:25670991

  12. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  13. The reactions of O(ID) and OH with CH3OH, oxidation of the HCO radial, and the photochemical oxidation of formaldehyde. [photochemical reactions in stratosphere

    NASA Technical Reports Server (NTRS)

    Osif, T. L.

    1976-01-01

    An experimental, laboratory study of the various photochemical reactions that can occur in the mesosphere and stratosphere is presented. N2O was photolyzed at 2139 A in the presence of CH3OH and CO. The O(id) produced in the photolysis reacted with CH3OH to produce OH radicals, and thus the reactions of both O(id) and OH were able to be studied. Also considered was the oxidation of the HCO radical. Mixtures of Cl2, O2, H2CO, and sometimes N2 or He were irradiated at 3660 A at several temperatures to photodecompose the Cl2. The photochemical oxidation of formaldehyde was studied as follows: formaldehyde in the presence of N2 and/or O2 (usually dry air) was photolyzed with a medium pressure Hg lamp used in conjunction with various filters which transmit different relative amounts of Hg lines from 2894 A to 3660 A. Results are presented and discussed, along with a description of experimental procedures and apparatus, and chemical reaction kinetics.

  14. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    SciTech Connect

    Haas, P.A.

    1992-02-01

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl{sub 4}) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO{sub 2}) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl{sub 4}-UO{sub 2} shows a reaction to form uranium oxychloride (UOCl{sub 2}) that has a good solubility in molten UCl{sub 4}. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl{sub 4}, ZrCl{sub 4}, SiCl{sub 4}, ThCl{sub 4}) by reaction of oxides with chlorine (Cl{sub 2}) and carbon has application to the preparation of UCl{sub 4}.

  15. Highly Selective Oxidation of Carbohydrates in an Efficient Electrochemical Energy Converter: Cogenerating Organic Electrosynthesis.

    PubMed

    Holade, Yaovi; Servat, Karine; Napporn, Teko W; Morais, Cláudia; Berjeaud, Jean-Marc; Kokoh, Kouakou B

    2016-02-08

    The selective electrochemical conversion of highly functionalized organic molecules into electricity, heat, and added-value chemicals for fine chemistry requires the development of highly selective, durable, and low-cost catalysts. Here, we propose an approach to make catalysts that can convert carbohydrates into chemicals selectively and produce electrical power and recoverable heat. A 100% Faradaic yield was achieved for the selective oxidation of the anomeric carbon of glucose and its related carbohydrates (C1-position) without any function protection. Furthermore, the direct glucose fuel cell (DGFC) enables an open-circuit voltage of 1.1 V in 0.5 m NaOH to be reached, a record. The optimized DGFC delivers an outstanding output power Pmax =2 mW cm(-2) with the selective conversion of 0.3 m glucose, which is of great interest for cogeneration. The purified reaction product will serve as a raw material in various industries, which thereby reduces the cost of the whole sustainable process.

  16. DNA lesions derived from the site selective oxidation of Guanine by carbonate radical anions.

    PubMed

    Joffe, Avrum; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-12-01

    Carbonate radical anions are potentially important oxidants of nucleic acids in physiological environments. However, the mechanisms of action are poorly understood, and the end products of oxidation of DNA by carbonate radicals have not been characterized. These oxidation pathways were explored in this work, starting from the laser pulse-induced generation of the primary radical species to the identification of the stable oxidative modifications (lesions). The cascade of events was initiated by utilizing 308 nm XeCl excimer laser pulses to generate carbonate radical anions on submicrosecond time scales. This laser flash photolysis method involved the photodissociation of persulfate to sulfate radical anions and the one electron oxidation of bicarbonate anions by the sulfate radicals to yield the carbonate radical anions. The latter were monitored by their characteristic transient absorption band at 600 nm. The rate constants of reactions of carbonate radicals with oligonucleotides increase in the ascending order: 5'-d(CCATCCTACC) [(5.7 +/- 0.6) x 10(6) M(-)(1) s(-)(1)] < 5'-d(TATAACGTTATA), self-complementary duplex [(1.4 +/- 0.2) x 10(7) M(-)(1) s(-)(1)] < 5'-d(CCATCGCTACC [(2.4 +/- 0.3) x 10(7) M(-)(1) s(-)(1)] < 5'-d(CCATC[8-oxo-G]CTACC) [(3.2 +/- 0.4) x 10(8) M(-)(1) s(-)(1)], where 8-oxo-G is 8-oxo-7,8-dihydroguanine, the product of a two electron oxidation of guanine. This remarkable enhancement of the rate constants is correlated with the presence of either G or 8-oxo-G bases in the oligonucleotides. The rate constant for the oxidation of G in a single-stranded oligonuclotide is faster by a factor of approximately 2 than in the double-stranded form. The site selective oxidation of G and 8-oxo-G residues by carbonate radicals results in the formation of unique end products, the diastereomeric spiroiminodihydantoin (Sp) lesions, the products of a four electron oxidation of guanine. These lesions, formed in high yields (40-60%), were isolated by reversed phase

  17. The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons.

    PubMed

    Botella, Pablo; Solsona, Benjamín; García-González, Ester; González-Calbet, José M; López Nieto, José M

    2007-12-21

    Mixed metal oxides with tetragonal tungsten bronze (TTB) structure, showing high activity and selectivity for the gas phase partial oxidation of olefins, have been prepared by hydrothermal synthesis from Keggin-type heteropolyacids.

  18. Efficient synthesis of oxygenated terphenyls and other oligomers: sequential arylation reactions through phenol oxidation-rearomatization.

    PubMed

    Dohi, Toshifumi; Kamitanaka, Tohru; Watanabe, Shohei; Hu, Yinjun; Washimi, Naohiko; Kita, Yasuyuki

    2012-10-22

    One by one: starting from simple phenols, a diverse series of oxygenated terphenyl compounds can be prepared in a concise and practical manner using sequential arylation reactions involving phenol oxidation/rearomatization and quinone monoacetal intermediates. Many of the terphenyl products can be used for preparing well-defined oligomers and, furthermore, contain valuable functional groups that can be transformed for further diversification.

  19. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    ERIC Educational Resources Information Center

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  20. Surface electronic structure and isomerization reactions of alkanes on some transition metal oxides

    NASA Astrophysics Data System (ADS)

    Katrib, A.; Logie, V.; Saurel, N.; Wehrer, P.; Hilaire, L.; Maire, G.

    1997-04-01

    XP spectra of some reduced transition metal oxides are presented. Different number of free nd,( n + 1)s valence electrons in each case could be observed by the presence of a certain density of states (DOS) at the Fermi-level in the valence band (VB) energy region of the XP spectrum. Catalytic isomerization reactions of 2-methylpentane yielding 3-methylpentane and n-hexane at 350°C have been observed on these reduced valence surface states. The bifunctionel mechanism in terms of metallic and acidic sites required for such reactions is proposed by considering the metallic properties of the rutile deformed structure through the C-axis in the case of MoO 2 and WO 2, while the oxygen atom(s) in the lattice structure exhibit Brönsted acidic properties. On the other hand, highly reduced or clean surfaces of these transition metals yield hydrogenolysis catalytic reactions for the same reactant with methane as the major product. In all cases, the exposure of the lower valence oxidation states of bulk transition metal oxides to air results in the surface partial oxidation to the stable oxides such as MoO 3, WO 3, V 2O 5 and Nb 2O 5.

  1. Ion-molecule reactions of O,S-dimethyl methylphosphonothioate: evidence for intramolecular sulfur oxidation during VX perhydrolysis.

    PubMed

    McAnoy, Andrew M; Williams, Jilliarne; Paine, Martin R L; Rogers, Michael L; Blanksby, Stephen J

    2009-12-18

    The alkaline perhydrolysis of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) was investigated by studying the ion-molecule reactions of HOO(-) with O,S-dimethyl methylphosphonothioate in a modified linear ion-trap mass spectrometer. In addition to simple proton transfer, two other abundant product ions are observed at m/z 125 and 109 corresponding to the S-methyl methylphosphonothioate and methyl methylphosphonate anions, respectively. The structure of these product ions is demonstrated by a combination of collision-induced dissociation and isotope-labeling experiments that also provide evidence for their formation by nucleophilic reaction pathways, namely, (i) S(N)2 at carbon to yield the S-methyl methylphosphonothioate anion and (ii) nucleophilic addition at phosphorus affording a reactive pentavalent intermediate that readily undergoes internal sulfur oxidation and concomitant elimination of CH(3)SOH to yield the methyl methylphosphonate anion. Consistent with previous solution phase observations of VX perhydrolysis, the toxic P-O cleavage product is not observed in this VX model system and theoretical calculations identify P-O cleavage to be energetically uncompetitive. Conversely, intramolecular sulfur oxidation is calculated to be extremely exothermic and kinetically accessible explaining its competitiveness with the facile gas phase proton transfer process. Elimination of a sulfur moiety deactivates the nerve agent VX and thus the intramolecular sulfur oxidation process reported here is also able to explain the selective perhydrolysis of the nerve agent to relatively nontoxic products.

  2. Methanol oxidation and hydrogen reactions on NiZr in acid solution

    NASA Astrophysics Data System (ADS)

    Hays, C. C.; Manoharan, R.; Goodenough, J. B.

    The electrochemical properties of a Ni 50Zr 50 (at.%) alloy have been investigated by cyclic voltammetry and steady-state polarization measurements. The alloy forms a passivating oxyhydroxide film that makes it electrochemically stable in an acid solution. The oxyhydroxide film is shown to be an electrocatalyst for the methanol oxidation reaction (MOR). The reaction proceeds at surface O 2- ions neighboring a Ni 3+ ion of a thicker passivating film; electron transfer from the surface to the electrode occurs diffusively by the nickel atoms of the film. A reaction pathway is presented that accounts for the observation of an optimum thickness for the passivating film. The NiZr alloy was also found to catalyze both hydrogen-oxidation and proton-reduction reactions (HOR and PRR) if it has a thinner surface oxyhydroxide film. The alloy appears to form mixed NiZrH and NiZrH 3- x hydrides on cycling negative of the normal hydrogen potential. The activity of the hydrogen-oxidation reaction on a hydride surface was found to increase in the presence of streaming hydrogen gas and also with increasing negative initial potential. Although the hydride is unstable in acid, it may be an attractive candidate for use as a rechargeable negative electrode in an alkaline metal/air or nickel-metal hydride secondary battery.

  3. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts.

    PubMed

    Rey, A; Bahamonde, A; Casas, J A; Rodríguez, J J

    2010-01-01

    Two Fe/AC catalysts prepared with different iron precursors (iron nitrate and iron pentacarbonyl) and the same AC support have been tested in H(2)O(2) decomposition in presence and absence of methanol, a known strong scavenger of hydroxyl radicals, to investigate the selectivity towards .OH formation in this reaction and their behavior in the CWPO of phenol. The catalyst prepared with iron nitrate, with the most oxidized surface and the highest Fe surface content, seems to favor a higher selectivity towards .OH formation in CWPO allowing for complete phenol conversion and a significant TOC removal, with the highest mineralization degree at 50 degrees C and atmospheric pressure. Fe/AC catalysts were more efficient in the CWPO of phenol than in methanol presence due to a better use of the oxidant since adsorbed phenol on catalyst surface minimizes inefficient H(2)O(2) decomposition to H(2)O and O(2)(g). The influence of the initial H(2)O(2) concentration on phenol oxidation with this catalyst was also studied. A theoretical stoichiometric amount of H(2)O(2) for complete oxidation of phenol was chosen as the best starting concentration since auto-scavenging reactions can be minimized and it is sufficient for oxidizing phenol and the aromatic intermediates.

  4. Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction

    NASA Astrophysics Data System (ADS)

    Kabiri, Roya; Namazi, Hassan

    2014-07-01

    Reduced graphene oxide (RGO) sheet was functionalized with nanocrystalline cellulose (NCC) via click coupling between azide-functionalized graphene oxide (GO-N3) and terminal propargyl-functionalized nanocrystalline cellulose (PG-NCC). First, the reactive azide groups were introduced on the surface of GO with azidation of 2-chloroethyl isocyanate-treated graphene oxide (GO-Cl). Then, the resulted compounds were reacted with PG-NCC utilizing copper-catalyzed azide-alkyne cycloaddition. During the click reaction, GO was simultaneously reduced to graphene. The coupling was confirmed by Fourier transform infrared, Raman, DEPT135, and 13C NMR spectroscopy, and the complete exfoliation of graphene in the NCC matrix was confirmed with X-ray diffraction measurement. The degree of functionalization from the gradual mass loss of RGO-NCC suggests that around 23 mass % has been functionalized covalently. The size of both NCC and GO was found to be in nanometric range, which decreased after click reaction.

  5. Modelling of silicon oxynitridation by nitrous oxide using the reaction rate approach

    SciTech Connect

    Dominique Krzeminski, Christophe

    2013-12-14

    Large technological progress in oxynitridation processing leads to the introduction of silicon oxynitride as ultra-thin gate oxide. On the theoretical side, few studies have been dedicated to the process modelling of oxynitridation. Such an objective is a considerable challenge regarding the various atomistic mechanisms occurring during this fabrication step. In this article, some progress performed to adapt the reaction rate approach for the modelling of oxynitride growth by a nitrous ambient are reported. The Ellis and Buhrman's approach is used for the gas phase decomposition modelling. Taking into account the mass balance of the species at the interface between the oxynitride and silicon, a minimal kinetic model describing the oxide growth has been calibrated and implemented. The influence of nitrogen on the reaction rate has been introduced in an empirical way. The oxidation kinetics predicted with this minimal model compares well with several experiments.

  6. Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling.

    PubMed

    Poux, T; Bonnefont, A; Ryabova, A; Kéranguéven, G; Tsirlina, G A; Savinova, E R

    2014-07-21

    Hydrogen peroxide has been identified as a stable intermediate of the electrochemical oxygen reduction reaction on various electrodes including metal, metal oxide and carbon materials. In this article we study the hydrogen peroxide oxidation and reduction reactions in alkaline medium using a rotating disc electrode (RDE) method on oxides of the perovskite family (LaCoO3, LaMnO3 and La0.8Sr0.2MnO3) which are considered as promising electrocatalytic materials for the cathode of liquid and solid alkaline fuel cells. The experimental findings, such as the higher activity of Mn-compared to that of Co-perovskites, the shape of RDE curves, and the influence of the H2O2 concentration, are rationalized with the help of a microkinetic model.

  7. Reactions of Ions with Ionic Liquid Vapors by Selected-Ion Flow Tube Mass Spectrometry

    DTIC Science & Technology

    2016-06-07

    are observed by selected ion flow tube mass spectrometry. Free energies of the reactions involved are determined by ab initio quantum mechanical...spectrometry. Free energies of the reactions involving 1-ethyl-3-methylimidazolium bis-trifluoromethylsulfonylimide determined by ab initio...of the ion pairs should indicate potential reactivity with the above ions. Apparently, the Coulombic energy gained by ion addition or ion exchange

  8. Zircon coronas around Fe-Ti oxides: a physical reference frame for metamorphic and metasomatic reactions

    NASA Astrophysics Data System (ADS)

    Austrheim, Håkon; Putnis, Christine V.; Engvik, Ane K.; Putnis, Andrew

    2008-10-01

    Ilmenite in coronitic gabbros from the Bamble and Kongsberg sectors, southern Norway, is surrounded by zircons ranging in diameters from a fraction of a micrometer to 10 μm across. The zircons are inert during subsequent metamorphism (amphibolite- to pumpellyite-prehnite facies) and metasomatism (scapolitization and albitization) and can be found as trails in silicates (phlogopite, talc, chlorite, amphibole, albite, and tourmaline) in the altered rocks. The trails link up to form polygons outlining the former oxide grain boundary. This 3-dimensional framework of zircons is used to (a) recognize metasomatic origin of rocks, (b) quantify the mobility of elements during mineral replacement, (c) establish the growth direction of reaction fronts and to identify the reaction mechanism as dissolution-reprecipitation. Zircon coronas on Fe-Ti oxides have been described from a number of terrains and appear to be common in mafic rocks (gabbros and granulites) providing a tool for a better understanding of metasomatic and metamorphic reactions.

  9. Metamorphosis of palladium and its relation to selectivity in the Rosenmund reaction

    SciTech Connect

    Maier, W.F.; Chettle, S.J.; Rai, R.S.; Thomas, G.

    1986-05-14

    Drastic changes in morphology and particle sizes of the Pd particles were detected during the classical catalyst pretreatment. These changes are connected to the increase in selectivity as well as to the problems encountered in the Rosenmund reaction. A major action of the poison in Rosenmund reactions was found to be the acceleration of the initial reconstruction of the surface of fresh catalysts to prevent overreduction. The instability of the Pd under reaction conditions appears to be responsible for typical problems encountered with the Rosenmund reaction such as irreproducibility and catalyst deactivation during the reaction. With the use of Pd single crystals stepped and kinked surfaces were found to be active for hydrogenolysis of acid chlorides to aldehydes. Transmission electron microscopy and diffraction have been employed to characterize the change in dispersion and structure of Pd particles on carbon supports after various pretreatments.

  10. Mass transfer model for two-layer TBP oxidation reactions: Revision 1

    SciTech Connect

    Laurinat, J.E.

    1994-11-04

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments.

  11. The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Benito, M.; Padilla, R.; Serrano-Lotina, A.; Rodríguez, L.; Brey, J. J.; Daza, L.

    In order to study the role of surface reactions involved in bioethanol steam reforming mechanism, a very active and selective catalyst for hydrogen production was analysed. The highest activity was obtained at 700 °C, temperature at which the catalyst achieved an ethanol conversion of 100% and a selectivity to hydrogen close to 70%. It also exhibited a very high hydrogen production efficiency, higher than 4.5 mol H 2 per mol of EtOH fed. The catalyst was operated at a steam to carbon ratio (S/C) of 4.8, at 700 °C and atmospheric pressure. No by-products, such as ethylene or acetaldehyde were observed. In order to consider a further application in an ethanol processor, a long-term stability test was performed under the conditions previously reported. After 750 h, the catalyst still exhibited a high stability and selectivity to hydrogen production. Based on the intermediate products detected by temperature programmed desorption and reaction (TPD and TPR) experiments, a reaction pathway was proposed. Firstly, the adsorbed ethanol is dehydrogenated to acetaldehyde producing hydrogen. Secondly, the adsorbed acetaldehyde is transformed into acetone via acetic acid formation. Finally, acetone is reformed to produce hydrogen and carbon dioxide, which were the final reaction products. The promotion of such reaction sequence is the key to develop an active, selective and stable catalyst, which is the technical barrier for hydrogen production by ethanol reforming.

  12. Chemical oxidation of anthracite with hydrogen peroxide via the Fenton reaction

    USGS Publications Warehouse

    Heard, I.; Senftle, F.E.

    1984-01-01

    Solutions of 30% H2O2 ranging from pH = 0 to pH = 11.5 have been used to oxidize anthracite at room temperature. The inorganic impurities, primarily pyrite, catalysed the oxidation and reduction of H2O2 (the Fenton reaction) to form the hydroxyl radical; the oxidation of the organic matter was minimal and was observed only in strong acidic solutions (pH < 1.5). After acid demineralization, samples of the same anthracite underwent a significant enhancement of oxidation in both acid and alkaline solutions (pH = 0.4-11.5). As all the iron had been removed from the surface and the reactions were completed in a much shorter time, the oxidation mechanism must have been of a different nature than that for the untreated anthracite. A qualitative model based on the catalytic decomposition of H2O2 by activated carbon sites in the coal surface is used to explain the oxidation of the demineralized anthracite. ?? 1984.

  13. Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride.

    PubMed

    Raff, Jonathan D; Njegic, Bosiljka; Chang, Wayne L; Gordon, Mark S; Dabdub, Donald; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2009-08-18

    Gaseous HCl generated from a variety of sources is ubiquitous in both outdoor and indoor air. Oxides of nitrogen (NO(y)) are also globally distributed, because NO formed in combustion processes is oxidized to NO(2), HNO(3), N(2)O(5) and a variety of other nitrogen oxides during transport. Deposition of HCl and NO(y) onto surfaces is commonly regarded as providing permanent removal mechanisms. However, we show here a new surface-mediated coupling of nitrogen oxide and halogen activation cycles in which uptake of gaseous NO(2) or N(2)O(5) on solid substrates generates adsorbed intermediates that react with HCl to generate gaseous nitrosyl chloride (ClNO) and nitryl chloride (ClNO(2)), respectively. These are potentially harmful gases that photolyze to form highly reactive chlorine atoms. The reactions are shown both experimentally and theoretically to be enhanced by water, a surprising result given the availability of competing hydrolysis reaction pathways. Airshed modeling incorporating HCl generated from sea salt shows that in coastal urban regions, this heterogeneous chemistry increases surface-level ozone, a criteria air pollutant, greenhouse gas and source of atmospheric oxidants. In addition, it may contribute to recently measured high levels of ClNO(2) in the polluted coastal marine boundary layer. This work also suggests the potential for chlorine atom chemistry to occur indoors where significant concentrations of oxides of nitrogen and HCl coexist.

  14. Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst.

    PubMed

    Xu, Lingshun; Wu, Zongfang; Jin, Yuekang; Ma, Yunsheng; Huang, Weixin

    2013-08-07

    We have employed XPS and TDS to study the adsorption and surface reactions of H2O, CO and HCOOH on an FeO(111)/Pt(111) inverse model catalyst. The FeO(111)-Pt(111) interface of the FeO(111)/Pt(111) inverse model catalyst exposes coordination-unsaturated Fe(II) cations (Fe(II)CUS) and the Fe(II)CUS cations are capable of modifying the reactivity of neighbouring Pt sites. Water facilely dissociates on the Fe(II)CUS cations at the FeO(111)-Pt(111) interface to form hydroxyls that react to form both water and H2 upon heating. Hydroxyls on the Fe(II)CUS cations can react with CO(a) on the neighbouring Pt(111) sites to produce CO2 at low temperatures. Hydroxyls act as the co-catalyst in the CO oxidation by hydroxyls to CO2 (PROX reaction), while they act as one of the reactants in the CO oxidation by hydroxyls to CO2 and H2 (WGS reaction), and the recombinative reaction of hydroxyls to produce H2 is the rate-limiting step in the WGS reaction. A comparison of reaction behaviors between the interfacial CO(a) + OH reaction and the formate decomposition reaction suggest that formate is the likely surface intermediate of the CO(a) + OH reaction. These results provide some solid experimental evidence for the associative reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts.

  15. The selection reaction of homogeneous catalyst in soy-epoxide hydroxylation

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2014-04-01

    Hydroxylation reaction of soy-epoxide has resulted soy-polyol; a prepolymeric material for polyurethane. The conversion and selectivity of soy-epoxide butanol based to hydroxylation was found higher than soy-ethylene glycol (EG) based. These reactions were performed by sulfur acid which commonly known as homogeneous catalyst. Conversion and selectivity of homogeneous catalyst compared to bentonite; a heteregeneous catalyst was lower as in fact the mixtures were more viscous. The catalysis were significantly effected to cell morphology. Foams were conducted by heterogeneous catalyst resulted an irregular form of windows while homogeneous catalyst are more ordered.

  16. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  17. Mathematical modeling of an exothermic leaching reaction system: pressure oxidation of wide size arsenopyrite participates

    NASA Astrophysics Data System (ADS)

    Papangelakis, V. G.; Berk, D.; Demopoulos, G. P.

    1990-10-01

    In the design of processes involving exothermic reactions, as is the case of several sulfide leaching systems, it is desirable to utilize the energy liberated by the reaction to drive the reactor toward autogenous operation. For optimal reactor design, models which couple leaching kinetics and heat effects are needed. In this paper, the principles of modeling exothermic leaching reactions are outlined. The system investigated is the high-temperature (160 °C to 200 °C) pressure (O2) oxidation of arsenopyrite (FeAsS). The reaction system is characterized by three consecutive reactions: (1) heterogeneous dissolution of arsenopyrite particles, (2) homogeneous oxidation of iron(II) to iron(III), and (3) precipitation of scorodite (FeAsO4-2H2O). The overall kinetics is controlled by the arsenopyrite surface reaction. There was good agreement between laboratory-scale batch tests and model predictions. The model was expanded to simulate the performance of large-scale batch and single-stage continuous stirred tank reactor (CSTR) for the same rate-limiting regime. Emphasis is given to the identification of steady-state temperatures for autogenous processing. The effects of operating variables, such as feed temperature, slurry density, and retention time, on reactor operation and yield of leaching products are discussed.

  18. Water-gas Shift Reaction on oxide/Cu(111): Rational Catalyst Screening from Density Functional Theory

    SciTech Connect

    Liu, P.

    2010-11-28

    Developing improved catalysts based on a fundamental understanding of reaction mechanism has become one of the grand challenges in catalysis. A theoretical understanding and screening the metal-oxide composite catalysts for the water-gas shift (WGS) reaction is presented here. Density functional theory was employed to identify the key step for the WGS reaction on the Au, Cu-oxide catalysts, where the calculated reaction energy for water dissociation correlates well with the experimental measured WGS activity. Accordingly, the calculated reaction energy for water dissociation was used as the scaling descriptor to screen the inverse model catalysts, oxide/Cu(111), for the better WGS activity. Our calculations predict that the WGS activity increases in a sequence: Cu(111), ZnO/Cu(111) < TiO{sub 2}/Cu(111), ZrO{sub 2}/Cu(111) < MoO{sub 3}/Cu(111). Our results imply that the high performances of Au, Cu-oxide nanocatalysts in the WGS reaction rely heavily on the direct participation of both oxide and metal sites. The degree that the oxide is reduced by Cu plays an important role in determining the WGS activity of oxide/Cu catalysts. The reducible oxide can be transformed from the fully oxidized form to the reduced form due to the interaction with Cu and, therefore, the transfer of electron density from Cu, which helps in releasing the bottleneck water dissociation and, therefore, facilitating the WGS reaction on copper.

  19. Oxidation of aqueous Cr(III) at birnessite surfaces: Constraints on reaction mechanism

    SciTech Connect

    Banerjee, D.; Nesbitt, H.W.

    1999-06-01

    X-ray Photoelectron Spectroscopy (XPS) was used to investigate oxidation of aqueous Cr(III) at the surface of 7 {angstrom}-birnessite [MnO{sub 1.75}(OH){sub 0.25}]. Special emphasis was placed on detection of intermediate oxidation states of chromium due to their critical environmental significance. No previous studies have been able to identify these intermediate oxidation states of chromium (namely, Cr[IV], and Cr[V]) on mineral surfaces or in natural solutions. Mn(2p{sub 3/2}), Cr(2p{sub 3/2}) and O(1s) spectra of the reacted surfaces reveal that Mn(IV) of synthetic birnessite undergoes reductive dissolution in two steps. The first step involves Mn(IV) reduction to Mn(III), that forms at the oxide surface probably as an oxyhydroxide (MnOOH), and in the second step Mn(III) is reduced to Mn(II) that is subsequently taken into solution. Each reductive reaction step involves transfer of only one electron to the Mn ion. After Cr(III){sub aq} is adsorbed onto the MnO{sub 2} surface, it undergoes oxidation in three separate steps, each involving the loss of one electron to Mn ions, so that Cr(IV), Cr(V) and Cr(VI) are produced. The intermediate reaction products, namely Mn(III), and Cr(V) were positively identified by XPS spectral analyses. Similarity in XPS binding energy values of Cr(III) and Cr(IV) as well as that of Cr(V) and Cr(VI), however, preclude separate identification of Cr(III) from Cr(IV) and Cr(VI) from Cr(V) multiplets on the near-surface of the solid. A parallel reaction scheme (exclusive of sorption reactions) best describes the birnessite-Cr(III){sub aq} redox reactions. The two parallel reactions proceed by separate mechanisms with a monodentate complex formed in one mechanism and a bidentate complex in another. The bulk of Cr(IV) probably is formed via the monodentate complex and Cr(V) via the bidentate complex. The rate expressions associated with these reactions display near-perfect correlation with changing surface abundances of Cr(IV) and Cr

  20. Hydrogen Oxidation-Selective Electrocatalysis by Fine Tuning of Pt Ensemble Sites to Enhance the Durability of Automotive Fuel Cells.

    PubMed

    Yun, Su-Won; Park, Shin-Ae; Kim, Tae-June; Kim, Jun-Hyuk; Pak, Gi-Woong; Kim, Yong-Tae

    2017-02-08

    A simple, inexpensive approach is proposed for enhancing the durability of automotive proton exchange membrane fuel cells by selective promotion of the hydrogen oxidation reaction (HOR) and suppression of the oxygen reduction reaction (ORR) at the anode in startup/shutdown events. Dodecanethiol forms a self-assembled monolayer (SAM) on the surface of Pt particles, thus decreasing the number of Pt ensemble sites. Interestingly, by controlling the dodecanethiol concentration during SAM formation, the number of ensemble sites can be precisely optimized such that it is sufficient for the HOR but insufficient for the ORR. Thus, a Pt surface with an SAM of dodecanethiol clearly effects HOR-selective electrocatalysis. Clear HOR selectivity is demonstrated in unit cell tests with the actual membrane electrode assembly, as well as in an electrochemical three-electrode setup with a thin-film rotating disk electrode configuration.

  1. Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction.

    PubMed

    Seitz, Linsey C; Hersbach, Thomas J P; Nordlund, Dennis; Jaramillo, Thomas F

    2015-10-15

    Developing improved catalysts for the oxygen evolution reaction (OER) is key to the advancement of a number of renewable energy technologies, including solar fuels production and metal air batteries. In this study, we employ electrochemical methods and synchrotron techniques to systematically investigate interactions between metal oxides and noble metals that lead to enhanced OER catalysis for water oxidation. In particular, we synthesize porous MnOx films together with nanoparticles of Au, Pd, Pt, or Ag and observe significant improvement in activity for the combined catalysts. Soft X-ray absorption spectroscopy (XAS) shows that increased activity correlates with increased Mn oxidation states to 4+ under OER conditions compared to bare MnOx, which exhibits minimal OER current and remains in a 3+ oxidation state. Thickness studies of bare MnOx films and of MnOx films deposited on Au nanoparticles reveal trends suggesting that the enhancement in activity arises from interfacial sites between Au and MnOx.

  2. Selective oxidation of buried AlGaAs for fabrication of vertical-cavity lasers

    SciTech Connect

    Choquette, K.D.; Geib, K.M.; Chui, H.C.; Hou, H.Q.; Hull, R.

    1996-06-01

    The authors discuss the selective conversion of buried layers of AlGaAs to a stable oxide and the implementation of this oxide into high performance vertical-cavity surface emitting lasers (VCSELs). The rate of lateral oxidation is shown to be linear with an Arrhenius temperature dependence. The measured activation energies vary with Al composition, providing a high degree of oxidation selectivity between AlGaAs alloys. Thus buried oxide layers can be selectively fabricated within the VCSEL through small compositional variations in the AlGaAs layers. The oxidation of AlGaAs alloys, as opposed to AlAs, is found to provide robust processing of reliable lasers. The insulating and low refractive index oxide provides enhanced electrical and optical confinement for ultralow threshold currents in oxide-apertured VCSELs.

  3. Mild and selective deprotection method of acetylated steroids and diterpenes by dibutyltin oxide.

    PubMed

    Wang, Shao-Min; Zhang, Yan-Bing; Liu, Hong-Min; Yu, Guo-Bin; Wang, Ke-Rang

    2007-01-01

    Dibutyltin oxide (DBTO) was first utilized for the deacetylation of steroid and diterpene esters. The results showed the deprotection of acetylated steroids and diterpenes separately with moderate catalysis dibutyltin oxide in methanol selectively removed part acetyl groups of these substrates, whereas several functional groups of the steroids and diterpenes were retained and neither isomerization nor degradation of these substrates was observed. It seems that the acetyl groups with lower steric hindrance or near carbonyl, alkoxy, or hydroxyl groups can be cleaved by the reaction, whereas the acetyl groups with higher steric hindrance or without carbonyl, alkoxy, or hydroxyl groups neighboring were retained under the same conditions. One of the interesting results obtained was the selective hydrolysis of the 3beta-O-acetyl group in the presence of the 6beta group in 3beta,6beta-Di-O-acetyl-5alpha-hydroxypregn-16-en-20-one. This allows for subsequent introduction of one unit at C-3 and the other unit at C-6. This procedure is useful for the synthesis of a series of closely related isomers of 3beta,5alpha,6beta-trihydroxypregn-16-en-20-one and other widespread polyhydroxysteroids in marine organisms and some terrestrial species.

  4. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    NASA Astrophysics Data System (ADS)

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo; Han, Sheng

    2015-12-01

    A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO-La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO-La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO-La/CPE electrode for determining DA was linear in the region of 0.01-0.1 μM and 0.1-400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  5. Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane.

    SciTech Connect

    McCormick, R.L.; Alptekin, G.O.

    1997-07-30

    This document is the seventeenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 `Development of Vanadium- Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane` and covers the period April-June, 1997. Vanadium phosphate, vanadyl pyrophosphate specifically, is used commercially to oxidize butane to maleic anhydride and is one of the few examples of an active and selective oxidation catalyst for alkanes. In this project we are examining this catalyst for the methane oxidation reaction. Initial process variable and kinetic studies indicated that vanadyl pyrophosphate is a reasonably active catalyst below 500{degrees}C but produces CO as the primary product, no formaldehyde or methanol were observed. A number of approaches for modification of the catalyst to improve selectivity have been tried. Results obtained earlier in this project are summarized under Project Description in the body of this report. Iron phosphate and iron phosphate supported on silica catalysts have been shown in our previous work to produce much higher yields of partial oxidation products from methane than VPO. During this quarter we have expanded these studies dramatically by detailed testing of a new silica support, by performance of detailed kinetic and product selectivity studies on the quartz form of FePO{sub 4}, both unsupported and supported on silica, by testing of a mixed valence iron phosphate Fe{sub 4}(P{sub 2}0{sub 7}), and by detailed characterization of and other materials by a number of methods including Moessbauer spectroscopy. The most selective catalyst examined to date is FePO{sub 4} supported on silica. This material has produced formaldehyde with space time yields of nearly 500 g/kg-h. Methanol yields are low but quantifiable at roughly 10 g/kg-h. Interestingly, addition of water to the feed gas produces large improvements in the formaldehyde yield by suppression of the parallel reaction to form carbon dioxide. Increasing

  6. Online Monitoring of Methanol Electro-Oxidation Reactions by Ambient Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cheng, Si; Wu, Qiuhua; Dewald, Howard D.; Chen, Hao

    2016-08-01

    Online detection of methanol electro-oxidation reaction products [e.g., formaldehyde (HCHO)] by mass spectrometry (MS) is challenging, owing to the high salt content and extreme pH of the electrolyte solution as well as the difficulty in ionizing the reaction products. Herein we present an online ambient mass spectrometric approach for analyzing HCHO generated from methanol electro-oxidation, taking the advantage of high salt tolerance of desorption electrospray ionization mass spectrometry (DESI-MS). It was found that HCHO can be detected as PhNHNH+=CH2 (m/z 121) by DESI after online derivatization with PhNHNH2. With this approach, the analysis of HCHO from methanol electro-oxidation by MS was carried out not only in acidic condition but also in alkaline media for the first time. Efficiencies of different electrodes for methanol oxidation at different pHs were also evaluated. Our results show that Au electrode produces more HCHO than Pt-based electrodes at alkaline pH, while the latter have higher yields at acidic solution. The presented methodology would be of great value for elucidating fuel cell reaction mechanisms and for screening ideal fuel cell electrode materials.

  7. Supercritical water oxidation of Quinazoline: Effects of conversion parameters and reaction mechanism.

    PubMed

    Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan

    2016-09-01

    The supercritical water oxidation reaction of quinazoline and a set of related reaction products were investigated in batch reactors by varying the temperature (T, 400-600 °C), time (t, 0-400 s), water density (ρ, 70.79-166.28  kg m(-3)) and oxidation coefficient (OC, 0-4.0). The TOC removal efficiency (CRE) increased significantly as the OC increased, whereas this effect was very limited at high OC (>2.0). Lack of oxygen resulted in low CRE and TN removal efficiency (NRE), also cause coke-formation, and giving high yield of NH3 and nitrogenous organic intermediates. Prolonging reaction time did not provide an appreciable improvement on CRE but remarkably increased NRE at temperature higher than 500 °C. Pyrimidines and pyridines as the nitrogenous intermediates were largely found in GC-MS spectrum. Polymerization among benzene, phenyl radical and benzyl radical played important roles in the formation of PAHs, such as naphthalene, biphenyl, phenanthrene. These collective results showed how the yield of intermediate products responded to changes in the process variables, which permitted the development of a potential reaction network for supercritical water oxidation of quinazoline.

  8. Water Oxidation by a Cytochrome P450: Mechanism and Function of the Reaction

    PubMed Central

    Prasad, Brinda; Mah, Derrick J.; Lewis, Andrew R.; Plettner, Erika

    2013-01-01

    P450cam (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450cam catalysis is controlled by oxygen levels: at high O2 concentration, P450cam catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using 17O and 2H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450cam, and we present a plausible mechanism that accounts for the 1∶1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450cam and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce. PMID:23634216

  9. Defect/Edge-Selective Functionalization of Carbon Materials by "Direct" Friedel-Crafts Acylation Reaction.

    PubMed

    Seo, Jeong-Min; Tan, Loon-Seng; Baek, Jong-Beom

    2017-02-21

    Popularly utilized oxidation media, via nitric acid/sulfuric acid mixtures, are too corrosive and oxidizing to preserve structural integrity of highly ordered graphitic materials (carbon nanotubes (CNTs) and graphene). Here, for the most commonly used oxidation method, the important advantages of defect/edge-selective functionalization of carbon materials (CNTs/graphene/graphite) in a polyphosphoric acid (PPA)/phosphorous pentoxide (P2 O5 ) medium are elucidated. The optimized PPA/P2 O5 medium is a mild acid that is not only less corrosive than popularly utilized oxidation media, but also has a strong capability to drive Friedel-Crafts acylation by covalently modifying carbon materials. With a broader spectrum of functional groups accessible, the PPA/P2 O5 -driven Friedel-Crafts acylation offers more options for tailoring the properties and processing of carbon materials.

  10. Selective Catalytic Oxidation of Hydrogen Sulfide--Systems Analysis for IGCC Applications

    SciTech Connect

    Newby, R.A.; Keairns, D.L.; Alvin, M.A.

    2006-09-01

    Selective catalytic oxidation of hydrogen sulfide (SCOHS) has been evaluated conceptually for IGCC applications, and the theoretical limits of reaction performance, process performance, and economic potential in IGCC have been estimated. Syngas conditions that have high partial pressures of total sulfur result in substantial liquid sulfur retention within the catalyst bed, with relatively complex processing being required. Applications that have much lower total sulfur partial pressure in the process gas might permit SCOHS operation under conditions where little liquid sulfur is retained in the catalyst, reducing the processing complexity and possibly improving the desulfurization performance. The results from our recent IGCC process evaluations using the SCOHS technology and conventional syngas cleaning are presented, and alternative SCOHS process configurations and applications that provide greater performance and cost potential are identified.

  11. The surface of iron molybdate catalysts used for the selective oxidation of methanol

    NASA Astrophysics Data System (ADS)

    Yeo, Benjamin R.; Pudge, Geoffrey J. F.; Bugler, Keith G.; Rushby, Alice V.; Kondrat, Simon; Bartley, Jonathan; Golunski, Stanislaw; Taylor, Stuart H.; Gibson, Emma; Wells, Peter. P.; Brookes, Catherine; Bowker, Michael; Hutchings, Graham J.

    2016-06-01

    The oxidation of methanol to formaldehyde is a major chemical process carried out catalytically and iron molybdate is one of the major catalysts for this process. In this paper we explore the nature of the active and selective surfaces of iron molybdate catalysts and show that the effective catalysts comprise molybdenum rich surfaces. We conclude that it is therefore important to maximise the surface area of these active catalysts and to this end we have studied catalysts made using a new physical grinding method with oxalic acid. For super-stoichiometric materials (Fe:Mo = 1:2.2) the reaction data show that physical mixing produces effective catalysts, possibly offering an improvement over the conventional co-precipitation method.

  12. Role of laccase from Coriolus versicolor MTCC-138 in selective oxidation of aromatic methyl group.

    PubMed

    Chaurasia, Pankaj Kumar; Singh, Sunil Kumar; Bharati, Shashi Lata

    2014-01-01

    Now a day, laccases are the most promising enzymes in the area of biotechnology and synthesis. One of the best applications of laccases is the selective oxidation of aromatic methyl group to aldehyde group. Such transformations are valuable because it is difficult to stop the reaction at aldehyde stage. Chemical methods used for such biotransformations areexpensive and give poor yields. But, the laccase-catalyzed biotransformations of such type are non-expensive and yield is excellent. Authors have used crude laccase obtained from the liquid culture growth medium of fungal strain Coriolus versicolor MTCC-138 for the biotransformations of toluene, 3-nitrotoluene, and 4-chlorotoluene to benzaldehyde, 3-nitrobenzaldehyde, and 4-chlorobenzaldehyde, respectively, instead of purified laccase because purification process requires much time and cost. This communication reports that crude laccase can also be used in the place of purified laccase as effective biocatalyst.

  13. Selective molecular oxygen oxidation of thioethers to sulfoxides catalyzed by Ce(IV)

    SciTech Connect

    Riley, D.P.; Smith, M.R.; Correa, P.E.

    1988-01-06

    The selective molecular oxygen conversion of thioethers to sulfoxides is catalyzed by ceric ammonium nitrate (CAN) with rate enhancements that are at least three orders of magnitude greater than the uncatalyzed autoxidation of thioethers. Mechanistic studies (including spectroscopic, labeling, uptake, mixed reactant, and autocatalysis studies) of this novel reaction reveal that both atoms of dioxygen are incorporated into product sulfoxide, that a novel oxygen-driven Ce(IV)Ce(III) redox cycle gives rise to the catalysis, and that molecular oxygen efficiently traps a sulfur-centered radial cation of the thioether (produced by Ce(IV) oxidation of thioether) to yield the oxygenated radical cation R/sub 2/S/sup +/OO/sup ./, which, it is proposed, reoxidizes Ce(III) to Ce(IV). The zwitterionic R/sub 2/S/sup +/OO/sup -/ intermediate (persulfoxide) reacts with thioether to yield two sulfoxide product molecules.

  14. Bond selectivity in electron-induced reaction due to directed recoil on an anisotropic substrate

    NASA Astrophysics Data System (ADS)

    Anggara, Kelvin; Huang, Kai; Leung, Lydie; Chatterjee, Avisek; Cheng, Fang; Polanyi, John C.

    2016-12-01

    Bond-selective reaction is central to heterogeneous catalysis. In heterogeneous catalysis, selectivity is found to depend on the chemical nature and morphology of the substrate. Here, however, we show a high degree of bond selectivity dependent only on adsorbate bond alignment. The system studied is the electron-induced reaction of meta-diiodobenzene physisorbed on Cu(110). Of the adsorbate's C-I bonds, C-I aligned `Along' the copper row dissociates in 99.3% of the cases giving surface reaction, whereas C-I bond aligned `Across' the rows dissociates in only 0.7% of the cases. A two-electronic-state molecular dynamics model attributes reaction to an initial transition to a repulsive state of an Along C-I, followed by directed recoil of C towards a Cu atom of the same row, forming C-Cu. A similar impulse on an Across C-I gives directed C that, moving across rows, does not encounter a Cu atom and hence exhibits markedly less reaction.

  15. Permanganate oxidation of arsenic(III): Reaction stoichiometry and the characterization of solid product

    NASA Astrophysics Data System (ADS)

    Lee, Giehyeon; Song, Kyungsun; Bae, Jongseong

    2011-09-01

    Permanganate (MnO 4-) has widely been used as an effective oxidant for drinking water treatment systems, as well as for in situ treatment of groundwater impacted by various organic contaminants. The reaction stoichiometry of As(III) oxidation by permanganate has been assumed to be 1.5, based on the formation of solid product, which is putatively considered to be MnO 2(s). This study determined the stoichiometric ratio (SR) of the oxidation reaction with varying doses of As(III) (3-300 μM) and MnO 4- (0.5 or 300 μM) under circumneutral pH conditions (pH 4.5-7.5). We also characterized the solid product that was recovered ˜1 min after the oxidation of 2.16 mM As(III) by 0.97 mM MnO 4- at pH 6.9 and examined the feasibility of secondary heterogeneous As(III) oxidation by the solid product. When permanganate was in excess of As(III), the SR of As(III) to Mn(VII) was 2.07 ± 0.07, regardless of the solution pH; however, it increased to 2.49 ± 0.09 when As(III) was in excess. The solid product was analogous to vernadite, a poorly crystalline manganese oxide based on XRD analysis. The average valence of structural Mn in the solid product corresponded to +III according to the splitting interval of the Mn3s peaks (5.5 eV), determined using X-ray photoelectron spectroscopy (XPS). The relative proportions of the structural Mn(IV):Mn(III):Mn(II) were quantified as 19:62:19 by fitting the Mn2p 3/2 spectrum of the solid with the five multiplet binding energy spectra for each Mn valence. Additionally, the O1s spectrum of the solid was comparable to that of Mn-oxide but not of Mn-hydroxide. These results suggest that the solid product resembled a poorly crystalline hydrous Mn-oxide such as (Mn II0.19Mn III0.62Mn IV0.19) 2O 3· nH 2O, in which Mn(II) and Mn(IV) were presumably produced from the disproportionation of aqueous phase Mn(III). Thermodynamic calculations also show that the formation of Mn(III) oxide is more favorable than that of Mn(IV) oxide from As(III) oxidation

  16. Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions.

    PubMed

    Kuo, Chung-Hao; Li, Weikun; Pahalagedara, Lakshitha; El-Sawy, Abdelhamid M; Kriz, David; Genz, Nina; Guild, Curtis; Ressler, Thorsten; Suib, Steven L; He, Jie

    2015-02-16

    The Earth-abundant and inexpensive manganese oxides (MnOx) have emerged as an intriguing type of catalysts for the water oxidation reaction. However, the overall turnover frequencies of MnOx catalysts are still much lower than that of nanostructured IrO2 and RuO2 catalysts. Herein, we demonstrate that doping MnOx polymorphs with gold nanoparticles (AuNPs) can result in a strong enhancement of catalytic activity for the water oxidation reaction. It is observed that, for the first time, the catalytic activity of MnOx/AuNPs catalysts correlates strongly with the initial valence of the Mn centers. By promoting the formation of Mn(3+) species, a small amount of AuNPs (<5%) in α-MnO2/AuNP catalysts significantly improved the catalytic activity up to 8.2 times in the photochemical and 6 times in the electrochemical system, compared with the activity of pure α-MnO2.

  17. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site

    PubMed Central

    Evans, Christopher D.; Smith, Paul J.; Manning, Troy D.; Miedziak, Peter J.; Brett, Gemma L.; Armstrong, Robert D.; Bartley, Jonathan K.; Taylor, Stuart H.; Rosseinsky, Matthew J.; Hutchings, Graham J.

    2016-01-01

    Gold and gold alloys, in the form of supported nanoparticles, have been shown over the last three decades to be highly effective oxidation catalysts. Mixed metal oxide perovskites, with their high structural tolerance, are ideal for investigating how changes in the chemical composition of supports affect the catalysts' properties, while retaining similar surface areas, morphologies and metal co-ordinations. However, a significant disadvantage of using perovskites as supports is their high crystallinity and small surface area. We report the use of a supercritical carbon dioxide anti-solvent precipitation methodology to prepare large surface area lanthanum based perovskites, making the deposition of 1 wt% AuPt nanoparticles feasible. These catalysts were used for the selective oxidation of glycerol. By changing the elemental composition of the perovskite B site, we dramatically altered the reaction pathway between a sequential oxidation route to glyceric or tartronic acid and a dehydration reaction pathway to lactic acid. Selectivity profiles were correlated to reported oxygen adsorption capacities of the perovskite supports and also to changes in the AuPt nanoparticle morphologies. Extended time on line analysis using the best oxidation catalyst (AuPt/LaMnO3) produced an exceptionally high tartronic acid yield. LaMnO3 produced from alternative preparation methods was found to have lower activities, but gave comparable selectivity profiles to that produced using the supercritical carbon dioxide anti-solvent precipitation methodology. PMID:27074316

  18. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance.

    PubMed

    Rusevova, Klara; Kopinke, Frank-Dieter; Georgi, Anett

    2012-11-30

    Nano-sized Fe(II, III) oxides with various Fe(II)/Fe(III) ratios were characterized and tested as catalysts for the oxidative degradation of phenol via Fenton-like reactions at neutral pH. Under conditions typically applied for wet peroxide oxidation, Fe(II) in magnetite is oxidized to Fe(III), successively converting the mineral into maghemite. The residual Fe(II) content in the catalyst core is of only minor benefit for the catalytic activity in phenol oxidation, i.e. magnetite is not superior to maghemite. Achievable reaction rates for phenol degradation appeared to be rather low, e.g. phenol half-life of about 12 h when 3 g L(-1) magnetite and 5 g L(-1) H(2)O(2) were applied. Preceding surface-reduction of maghemite by NaBH(4), leading to an over-stoichiometric Fe(II) content compared to magnetite, only enhanced the non-productive decomposition of H(2)O(2) rather than the rate of phenol degradation. Reaction rates were shown to be relatively insensitive to catalyst concentration in the range of 1-10 g L(-1), probably resulting from a scavenging of reactive species by the catalyst surface, whereby particle agglomeration seems to play a key role. Degradation experiments with various structurally distinct compounds were carried out, indicating a similar selectivity of the heterogeneous Fenton-like system to that known for oxidation with ·OH.

  19. Selective laser sintering of MA956 oxide dispersion strengthened steel

    NASA Astrophysics Data System (ADS)

    Hunt, Ryan M.; Kramer, Kevin J.; El-Dasher, Bassem

    2015-09-01

    Oxide Dispersion Strengthened (ODS) steels' qualities of radiation damage resistance and high strength at high temperature make them promising nuclear structural materials. However, the dispersed yttria that gives ODS steel its beneficial qualities are generally compromised during joining processes, making fabrication difficult and expensive. The selective laser sintering process offers a potential path through this barrier by which net-shape parts can feasibly be built via additive manufacturing without fully melting the structure. Rastering a 400 W laser over a 110 μm MA956 ODS steel powder bed, we additively built parts with varying build conditions. Although density was achieved to within 97% of the wrought MA956, ultimate tensile strengths achieved only 65% of the wrought strength. Spectroscopy analysis points to the agglomeration of the yttria nano-particles as a possible explanation for the loss in strength. Further study might benefit from exploration of other parameters such as thinner powder build layers which would require less energy input to achieve sintering while minimizing time above the melting temperature.

  20. Pd(Quinox)-Catalyzed Allylic Relay Suzuki Reactions of Secondary Homostyrenyl Tosylates via Alkene-Assisted Oxidative Addition.

    PubMed

    Stokes, Benjamin J; Bischoff, Amanda J; Sigman, Matthew S

    2014-06-01

    Pd-catalyzed allylic relay Suzuki cross-coupling reactions of secondary alkyl tosylates, featuring a sterically-hindered oxidative addition and precise control of β-hydride elimination, are reported. The identification of a linear free energy relationship between the relative rates of substrate consumption and the electronic nature of the substrate alkene suggests that the oxidative addition requires direct alkene involvement. A study of the effect of chain length on the reaction outcome supports a chelation-controlled oxidative addition.

  1. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    PubMed

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-02

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  2. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  3. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    NASA Technical Reports Server (NTRS)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  4. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    SciTech Connect

    Garcia, Andres; Wang, Jing; Windus, Theresa L.; Sadow, Aaron D.; Evans, James W.

    2016-05-20

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A → Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Hence, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A.

  5. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly report, July - September 1996

    SciTech Connect

    McCormick, R.L.; Alptekin, G.O.

    1996-12-01

    This document covers the period July-September, 1996. Activities included studies of the oxidation of dimethyl ether over vanadyl pyrophosphate and synthesis of all previously acquired kinetic data. This synthesis revealed the need for additional data on methane and methanol oxidation and these experiments were performed. A further series of methanol oxidation/dehydration experiments was conducted on samples with varying surface acidity that have been described in earlier reports. Oxidation of methane over Cr- promoted VPO was also reinvestigated. The kinetic studies performed to date allow us to determine optimum conditions for methanol and formaldehyde production from methane using VPO catalysts, and in particular determine the effect of lean conditions (excess oxygen), oxygen deficient conditions (used in most other methane oxidation studies), and the potential of using the catalyst as a stoichiometric oxidant or oxygen carrier. However, unpromoted VPO yields only CO as the primary oxidation product. Studies of promoters have shown improvements in the formaldehyde selectivity but no methanol has been observed. The best promoters tested have been Fe and Cr (results for Cr are described in this report). We have also examined the use of iron phosphate for the methane conversion reaction. FePO{sub 4}is a more selectivity catalyst than the promoted VPO materials. Support of this iron phosphate on silica results in further improvements in selectivity. Current work is directed at understanding the improved selectivity for promoted VPO and at obtaining a knowledge of the optimum conditions for methane conversion of iron phosphate. 15 refs., 2 figs., 1 tab.

  6. Solid-gas reactions of complex oxides inside an environmental high-resolution transmission electron microscope.

    PubMed

    Sayagués, M J; Krumeich, F; Hutchison, J L

    2001-07-01

    In a gas reaction cell (GRC), installed in a high-resolution transmission electron microscope (HRTEM) (JEOL 4000EX), samples can be manipulated in an ambient atmosphere (p<50mbar). This experimental setup permits not only the observation of solid-gas reactions in situ at close to the atomic level but also the induction of structural modifications under the influence of a plasma, generated by the ionization of gas particles by an intense electron beam. Solid state reactions of non-stoichiometric niobium oxides and niobium tungsten oxides with different gases (O2, H2 and He) have been carried out inside this controlled environment transmission electron microscope (CETEM), and this has led to reaction products with novel structures which are not accessible by conventional solid state synthesis methods. Monoclinic and orthorhombic Nb(12)O(29) crystallize in block structures comprising [3x4] blocks. The oxidation of the monoclinic phase occurs via a three step mechanism: firstly, a lamellar defect of composition Nb(11)O(27) is formed. Empty rectangular channels in this defect provide the diffusion paths in the subsequent oxidation. In the second step, microdomains of the Nb(22)O(54) phase are generated as an intermediate state of the oxidation process. The structure of the final product Nb(10)O(25), which consists of [3x3] blocks and tetrahedral coordinated sites, is isostructural to PNb(9)O(25). Microdomains of this apparently metastable phase appear as a product of the Nb(22)O(54) oxidation. The oxidation reaction of Nb(12)O(29) was found to be a reversible process: the reduction of the oxidation product with H(2) results in the formation of the starting Nb(12)O(29) structure. On the other hand, the block structure of Nb(12)O(29) has been destroyed by a direct treatment of the sample with H(2) while NbO in a cubic rock salt structure is produced. This in situ technique has also been applied to niobium tungsten oxides which constitute the solid solution series Nb(8-n

  7. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    PubMed

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  8. Catalyst-Controlled Regioselectivity in the Synthesis of Branched Conjugated Dienes via Aerobic Oxidative Heck Reactions

    PubMed Central

    Zheng, Changwu; Wang, Dian; Stahl, Shannon S.

    2012-01-01

    Pd-catalyzed aerobic oxidative coupling of vinylboronic acids and electronically unbiased alkyl olefins provides regioselective access to 1,3-disubstituted conjugated dienes. Catalyst-controlled regioselectivity is achieved by using 2,9-dimethylphenanthroline as a ligand. The observed regioselectivity is opposite to that observed from a traditional (non-oxidative) Heck reaction between a vinyl bromide and an alkene. DFT computational studies reveal that steric effects of the 2,9-dimethylphenanthroline ligand promote C–C bond-formation at the internal position of the alkene. PMID:22998540

  9. Metal-Organic Frameworks derivatives for improving the catalytic activity of CO oxidation reaction.

    PubMed

    Ji, Wenlan; Xu, Zhiling; Liu, Pengfei; Zhang, Suoying; Zhou, Weiqiang; Li, Hongfeng; Zhang, Tao; Li, Linjie; Lu, Xiaohua; Wu, Jiansheng; Zhang, Weina; Huo, Fengwei

    2017-03-15

    Metal-Organic Frameworks (MOFs) based derivatives have attracted an increasing interest in various research fields. However, most of reported papers mainly focused on the pristine MOFs-based derivatives, and researches on the functional MOFs-based derivatives composites are rare. Here, a simple strategy was reported to design the functional MOFs based derivatives composites by the encapsulation of the metal nanoparticles (MNPs) in MOFs matrixes (MNPs@MOFs) and the high-temperature calcination of MNPs@MOFs composites. The as-prepared MNPs@metal oxide composites with the hierarchical pore structure exhibited excellent catalytic activity and high stability for CO oxidation reaction.

  10. Substrate activation for O2 reactions by oxidized metal centers in biology.

    PubMed

    Pau, Monita Y M; Lipscomb, John D; Solomon, Edward I

    2007-11-20

    The uncatalyzed reactions of O(2) (S = 1) with organic substrates (S = 0) are thermodynamically favorable but kinetically slow because they are spin-forbidden and the one-electron reduction potential of O(2) is unfavorable. In nature, many of these important O(2) reactions are catalyzed by metalloenzymes. In the case of mononuclear non-heme iron enzymes, either Fe(II) or Fe(III) can play the catalytic role in these spin-forbidden reactions. Whereas the ferrous enzymes activate O(2) directly for reaction, the ferric enzymes activate the substrate for O(2) attack. The enzyme-substrate complex of the ferric intradiol dioxygenases exhibits a low-energy catecholate to Fe(III) charge transfer transition that provides a mechanism by which both the Fe center and the catecholic substrate are activated for the reaction with O(2). In this Perspective, we evaluate how the coupling between this experimentally observed charge transfer and the change in geometry and ligand field of the oxidized metal center along the reaction coordinate can overcome the spin-forbidden nature of the O(2) reaction.

  11. Nitrile Oxide-Norbornene Cycloaddition as a Bioorthogonal Crosslinking Reaction for the Preparation of Hydrogels.

    PubMed

    Truong, Vinh X; Zhou, Kun; Simon, George P; Forsythe, John S

    2015-10-01

    This communication describes the first application of cycloaddition between an in situ generated nitrile oxide with norbornene leading to a polymer crosslinking reaction for the preparation of poly(ethylene glycol) hydrogels under physiological conditions. Hydrogels with high water content and robust physical strength are readily formed within 2-5 min by a simple two-solution mixing method which allows 3D encapsulation of neuronal cells. This bioorthogonal crosslinking reaction provides a simple yet highly effective method for preparation of hydrogels to be used in bioengineering.

  12. Variation of the oxidation state of verdoheme in the heme oxygenase reaction

    SciTech Connect

    Gohya, Tomohiko; Sato, Michihiko; Zhang Xuhong; Migita, Catharina T.

    2008-11-14

    Heme oxygenase (HO) converts hemin to biliverdin, CO, and iron applying molecular oxygen and electrons. During successive HO reactions, two intermediates, {alpha}-hydroxyhemin and verdoheme, have been generated. Here, oxidation state of the verdoheme-HO complexes is controversial. To clarify this, the heme conversion by soybean and rat HO isoform-1 (GmHO-1 and rHO-1, respectively) was compared both under physiological conditions, with oxygen and NADPH coupled with ferredoxin reductase/ferredoxin for GmHO-1 or with cytochrome P450 reductase for rHO-1, and under a non-physiological condition with hydrogen peroxide. EPR measurements on the hemin-GmHO-1 reaction with oxygen detected a low-spin ferric intermediate, which was undetectable in the rHO-1 reaction, suggesting the verdoheme in the six-coordinate ferric state in GmHO-1. Optical absorption measurements on this reaction indicated that the heme degradation was extremely retarded at verdoheme though this reaction was not inhibited under high-CO concentrations, unlike the rHO-1 reaction. On the contrary, the Gm and rHO-1 reactions with hydrogen peroxide both provided ferric low-spin intermediates though their yields were different. The optical absorption spectra suggested that the ferric and ferrous verdoheme coexisted in reaction mixtures and were slowly converted to the ferric biliverdin complex. Consequently, in the physiological oxygen reactions, the verdoheme is found to be stabilized in the ferric state in GmHO-1 probably guided by protein distal residues and in the ferrous state in rHO-1, whereas in the hydrogen peroxide reactions, hydrogen peroxide or hydroxide coordination stabilizes the ferric state of verdoheme in both HOs.

  13. Wet air oxidation as a pretreatment option for selective biodegradability enhancement and biogas generation potential from complex effluent.

    PubMed

    Padoley, K V; Tembhekar, P D; Saratchandra, T; Pandit, A B; Pandey, R A; Mudliar, S N

    2012-09-01

    This study looks at the possibility of wet air oxidation (WAO) based pretreatment of complex effluent to selectively enhance the biodegradability (without substantial COD destruction) and facilitate biogas generation potential. A lab-scale wet air oxidation reactor with biomethanated distillery wastewater (B-DWW) as a model complex effluent (COD 40,000 mg L(-1)) was used to demonstrate the proof-of-concept. The studies were conducted using a designed set of experiments and reaction temperature (150-200°C), air pressure (6-12 bar) and reaction time (15-120 min) were the main process variables of concern for WAO process optimization. WAO pretreatment of B-DWW enhanced the biodegradability of the complex wastewater by the virtue of enhancing its biodegradability index (BI) from 0.2 to 0.88, which indicate favorable Biochemical Methane Potential (BMP) for biogas generation. The kinetics of COD destruction and BI enhancement has also been reported.

  14. A flexible modeling framework for gas transport and reaction: Applied to oxide removal from non-oxide porous media

    NASA Astrophysics Data System (ADS)

    Pantina, Joseph Albert

    Many non-oxide ceramics are produced through the densification of a non-oxide powder compact by sintering. A pervasive problem when processing non-oxide powders is the growth of a native oxide layer on the powder surface due to oxidation. Non-oxide powders sinter poorly without the addition of sintering additives to aid in the removal of surface oxide and lower grain boundary energies. Reducing agents, such as C, remove the oxide layer at hold temperatures much below the sintering temperature, forming a significant amount of gas (mainly CO(g)) to be removed. However, sintering additives to enhance densification at the sintering temperature can also form gas at the lower temperature, depleting the additive before reaching the sintering temperature. In this work, we have developed an analytical modeling framework to simulate gas transport and reaction in a porous medium comprised of an arbitrary collection of chemical species. This modeling framework automatically generates the necessary conditions to calculate the thermodynamic equilibrium composition at a given temperature and uses the Dusty Gas Model (DGM) to predict the gas transport. This model accounts for processing parameters including the initial powder composition, sample thickness, porosity, pore radius, and tortuosity of the powder compact, plus the furnace pressure and heating cycle. This model was used to predict the time for complete oxide removal ( tc) and residual composition for three material systems. The C/SiC/SiO2 and B4C/B2O3/C systems were studied to identify the functional dependence of t c with respect to each processing parameter. Additionally, the C/SiC/SiO2 system was studied to determine optimal heating cycles to control the rate of CO(g) effusion into the furnace while reduce heating times. The C/SiC/SiO2/B4C system was studied to quantify the amount B4C depleted and redistributed during SiO 2 removal for samples of varying thicknesses, initial SiO2 content, and holding temperature. B4C

  15. Selective Growth of Noble Gases at Metal/Oxide Interface.

    PubMed

    Takahashi, Keisuke; Oka, Hiroshi; Ohnuki, Somei

    2016-02-17

    The locations and roles of noble gases at an oxide/metal interface in oxide dispersed metal are theoretically and experimentally investigated. Oxide dispersed metal consisting of FCC Fe and Y2Hf2O7 (Y2Ti2O7) is synthesized by mechanical alloying under a saturated Ar gas environment. Transmission electron microscopy and density functional theory observes the strain field at the interface of FCC Fe {111} and Y2Hf2O7 {111} whose physical origin emerges from surface reconstruction due to charge transfer. Noble gases are experimentally observed at the oxide (Y2Ti2O7) site and calculations reveal that the noble gases segregate the interface and grow toward the oxide site. In general, the interface is defined as the trapping site for noble gases; however, transmission electron microscopy and density functional theory found evidence which shows that noble gases grow toward the oxide, contrary to the generally held idea that the interface is the final trapping site for noble gases. Furthermore, calculations show that the inclusion of He/Ar hardens the oxide, suggesting that material fractures could begin from the noble gas bubble within the oxides. Thus, experimental and theoretical results demonstrate that noble gases grow from the interface toward the oxide and that oxides behave as a trapping site for noble gases.

  16. A practical synthesis of betulonic acid using selective oxidation of betulin on aluminium solid support.

    PubMed

    Melnikova, Nina; Burlova, Irina; Kiseleva, Tatiana; Klabukova, Irina; Gulenova, Marina; Kislitsin, Capital A Cyrillicleksey; Vasin, Viktor; Tanaseichuk, Boris

    2012-10-09

    The room temperature oxidation of betulin by Cr(VI) compounds in aqueous acetone on solid supports such as alumina, zeolites and silica gel has been studied. The oxidation on alumina support leaded to a single product--betulonic acid--in quantitative yield. One hundred percent selective oxidation during 30 min of betulin up to betulonic aldehyde was determined when silica gel support was used. The oxidation of betulin using zeolites as a support gives a mixture of betulonic acid and aldehyde in a 2:1 ratio. It is proposed the selective oxidation up to betulonic acid is due to the influence of Al³⁺-ions.

  17. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  18. Theoretical study of the dark-oxidation reaction mechanisms for organic polymers

    NASA Astrophysics Data System (ADS)

    Wang, Guixiu; Zhu, Rongxiu; Zhang, Dongju; Liu, Chengbu

    2006-08-01

    To model the dark-oxidation mechanism of organic polymers, the reactions of the corresponding model compounds, including cumene, methyl 2-methylbutyrate, methyl methacrylate and methylacrylic acid, with triplet O 2 molecule, have been studied by performing density functional theory calculations at the UB3LYP/6-31G(d) level. The calculated results show that these model compounds can be oxygenated by O 2 via an H-abstract mechanism. The structures of initial contact charge transfer complexes, transition states, intermediates of cage-like pairs of radicals, and final hydro-peroxides involved in the reactions have been shown in details. The present results are expected to provide a general guidance for understanding the dark-oxidation mechanism of organic polymers.

  19. Theoretical evaluation of isotopic fractionation factors in oxidation reactions of benzene, phenol and chlorophenols.

    PubMed

    Adamczyk, Paweł; Paneth, Piotr

    2011-09-01

    We have studied theoretically the rate determining steps of reactions of benzene with permanganate, perchlorate, ozone and dioxygen in the gas phase and aqueous solution as well as phenol and dichlorophenol in protonated and unprotonated forms in aqueous solution. Kinetic isotope effects were then calculated for all carbon atoms and based on their values isotopic fractionation factors corresponding to compound specific isotopic analysis have been evaluated. The influence of the oxidant, substituents, environment and protonation on the isotopic fractionation factors has been analyzed.

  20. Preparation and characterization TiO(x)-Pt/C catalyst for hydrogen oxidation reaction.

    PubMed

    Elezović, N R; Babić, B M; Vracar, Lj M; Radmilović, V R; Krstajić, N V

    2009-07-07

    The hydrogen oxidation reaction (HOR) was studied at the home made TiO(x)-Pt/C nanocatalysts in 0.5 mol dm(-3) HClO(4) at 25 degrees C. Pt/C catalyst was first synthesized by modified ethylene glycol method (EG) on commercially used carbon support (Vulcan XC-72). Then TiO(x)-Pt/C catalyst was prepared by the polyole method followed by TiO(x) post-deposition. The synthesized catalyst was characterized by XRD, TEM and EDX techniques. It was found that Pt/C catalyst nanoparticles were homogenously distributed over carbon support with the mean particle size of about 2.4 nm. The quite similar, homogenous distribution and particle size were obtained for Pt/C doped by TiO(x) catalyst which was the confirmation that TiO(x) post-deposition did not lead to significant growth of the Pt nanoparticles. The electrochemically active surface area of the catalyst was determined by using the cyclic voltammetry technique.The kinetics of hydrogen oxidation was investigated by the linear sweep voltammetry technique at the rotating disc electrode (RDE). The kinetic equations used for the analysis were derived considering the reversible or irreversible nature of the kinetics of the HOR. It was found that the hydrogen oxidation reaction for an investigated catalyst proceeded as an electrochemically reversible reaction. The values determined for the kinetic parameters-Tafel slope of 28 mV dec(-1) and exchange current density about 0.4 mA cm(-2)(Pt) are in good agreement with usually reported values for a hydrogen oxidation reaction with platinum catalysts in acid solutions.

  1. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2014-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification by various microorganisms. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathways. To determine representative SP values for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for the NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  2. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2013-10-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans, respectively. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  3. Oxidation of elemental mercury by chlorine: Gas phase, Surface,and Photo-induced reaction pathways

    SciTech Connect

    Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

    2004-10-22

    Accurate oxidation rate constants of mercury gas are needed for determining its dispersion and lifetime in the atmosphere. They would also help in developing a technology for the control of mercury emissions from coal-fired power plants. However, it is difficult to establish the accurate rate constants primarily due to the fact that mercury easily adsorbs on solid surface and its reactions can be catalyzed by the surface. We have demonstrated a procedure that allows the determination of gas phase, surface-induced, and photo-induced contributions in the kinetic study of the oxidation of mercury by chlorine gas. The kinetics was studied using reactors with various surface to volume ratios. The effect of the surface and the photo irradiation on the reaction was taken into consideration. The pressure dependent study revealed that the gas phase oxidation was a three-body collision process. The third order rate constant was determined to be 7.5({+-}0.2) x 10{sup -39} mL{sup 2} molecules{sup -2}s{sup -1} with N{sub 2} as the third body at 297 {+-} 1 K. The surface induced reaction on quartz window was second order and the rate constant was 2.7 x 10{sup -17} mL{sup 2} molecules{sup -1} cm{sup -2} sec. Meanwhile, the 253.7 nm photon employed for mercury detection was found to accelerate the reaction. The utilization efficiency of 253.7 nm photon for Hg{sup 0} oxidation was 6.7 x 10{sup -4} molecules photon{sup -1} under the conditions employed in this study.

  4. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure?

    PubMed

    Pattison, David I; Hawkins, Clare L; Davies, Michael J

    2007-08-28

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.

  5. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    PubMed

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs.

  6. Thiol adsorption on metal oxides: an approach for selective deposition on zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Steeves, Diane M.; Singh, Jagdeep; Im, Jisun; Whitten, James E.

    2011-02-01

    We have previously discovered a novel, facile approach to encapsulate ZnO nanorods within thiol complexes. This approach results in a thiol uptake of 30-40% and a 400-500 nm thick thiol-Zn-thiol complex encapsulation layer surrounding ZnO nanorods. By controlling experimental parameters, it is possible to control the thiol deposition, enabling less uptake, which results in a surface monolayer instead of encapsulation. Through this approach, thiol modification of other metal oxide materials, namely TiO2, Al2O3, and MgO, has been attempted. FTIR analysis indicates that thiol adsorption occurs only on ZnO; chemisorption of thiols on other nanoparticles is not evident. Ultrahigh vacuum single crystal adsorption studies demonstrate that ZnO(0001) is also more susceptible to thiol monolayer formation, as evidenced by lack of methanethiol adsorption on TiO2(110) and MgO(0001). These results indicate that the facile thiol modification approach opens a new avenue for surface modification of multi-component metal oxide materials by enabling selective thiol modification of ZnO. This work has potential applicability for creating multiple ligand-functionalized materials, which could be useful for the design of novel multiplexing sensors and photovoltaics.

  7. Selective reduction of nitric oxides with ammonia using a cellular block catalyst

    SciTech Connect

    M.V. D'yakov; A.I. Kozlov; E.S. Lukin

    2004-03-15

    An aluminum-vanadium cellular block catalyst for selective reduction of nitric oxides with ammonia has been developed. With an average degree of conversion of oxides over 90%, the efficiency of the proposed catalyst is significantly higher than that of industrial catalysts currently used. Such catalyst can be recommended for use in selective plants for purification of waste gases from nitric oxides, which makes it possible to significantly decrease the cost of making a catalyst block.

  8. Scientific basis for process and catalyst design in the selective oxidation of methane to formaldehyde.

    PubMed

    Arena, Francesco; Parmaliana, Adolfo

    2003-12-01

    The mechanism and kinetics of the gas-phase selective oxidation of methane to formaldehyde (MPO) are revised in the general context of catalytic oxidations. In agreement with ab initio calculations of the energy barrier for the activation of methane on transition metal oxide complexes, a formal Langmuir-Hinshelwood kinetic model is proposed which accounts for the "steady-state" conditions and activity-selectivity pattern of MPO catalysts, providing an original support to process design and catalyst development.

  9. Stable platinum nanoclusters on genomic DNA-graphene oxide with a high oxygen reduction reaction activity.

    PubMed

    Tiwari, Jitendra N; Nath, Krishna; Kumar, Susheel; Tiwari, Rajanish N; Kemp, K Christian; Le, Nhien H; Youn, Duck Hyun; Lee, Jae Sung; Kim, Kwang S

    2013-01-01

    Nanosize platinum clusters with small diameters of 2-4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA-graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA-graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA-graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries.

  10. Adsorption and Reaction of Methanethiol on Thin-Film Cerium Oxide

    SciTech Connect

    Mullins, David R; McDonald, Tom S

    2008-01-01

    The adsorption and reaction of methanethiol, CH{sub 3}SH, have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The behavior of the CH{sub 3}SH was examined as a function of the Ce oxidation state. CH{sub 3}SH weakly interacts with fully oxidized CeO{sub 2}(1 1 1) forming both chemisorbed CH{sub 3}SH and CH{sub 3}S + OH. OH forms through the reaction of the sulfhydrol H with the surface O. These species recombine and desorb near 180 K leaving the surface virtually clean. When the ceria is ca. 50% reduced, the chemisorbed CH{sub 3}SH desorbs near 150 K while the CH{sub 3}S + OH are stable to 400 K. These species react above 450 K to produce predominantly CH{sub 4} and CH{sub 3}SH. A small amount of CH{sub 2}O and water are also formed through reaction with the O in the ceria. Atomic S is left on the surface. S 2p, C 1s and O 1s soft X-ray photoelectron spectroscopy were used to identify the nature of the chemisorbed species and the adsorption site of the CH{sub 3}S or S.

  11. Adsorption and reaction of methanethiol on thin-film cerium oxide

    NASA Astrophysics Data System (ADS)

    Mullins, D. R.; McDonald, T. S.

    2008-03-01

    The adsorption and reaction of methanethiol, CH 3SH, have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The behavior of the CH 3SH was examined as a function of the Ce oxidation state. CH 3SH weakly interacts with fully oxidized CeO 2(1 1 1) forming both chemisorbed CH 3SH and CH 3S + OH. OH forms through the reaction of the sulfhydrol H with the surface O. These species recombine and desorb near 180 K leaving the surface virtually clean. When the ceria is ca. 50% reduced, the chemisorbed CH 3SH desorbs near 150 K while the CH 3S + OH are stable to 400 K. These species react above 450 K to produce predominantly CH 4 and CH 3SH. A small amount of CH 2O and water are also formed through reaction with the O in the ceria. Atomic S is left on the surface. S 2p, C 1s and O 1s soft X-ray photoelectron spectroscopy were used to identify the nature of the chemisorbed species and the adsorption site of the CH 3S or S.

  12. A transition state view on reactive scattering: Initial state-selected reaction probabilities for the H+CH4-->H2+CH3 reaction studied in full dimensionality

    NASA Astrophysics Data System (ADS)

    Schiffel, Gerd; Manthe, Uwe

    2010-11-01

    Initial state-selected reaction probabilities for the H+CH4→H2+CH3 reaction are computed for vanishing total angular momentum by full-dimensional calculations employing the multiconfigurational time-dependent Hartree approach. An ensemble of wave packets completely describing reactivity for total energies up to 0.58 eV is constructed in the transition state region by diagonalization of the thermal flux operator. These wave packets are then propagated into the reactant asymptotic region to obtain the initial state-selected reaction probabilities. Reaction probabilities for reactants in all rotational states of the vibrational 1A1, 1F2, and 1E levels of methane are presented. Vibrational excitation is found to decrease reactivity when reaction probabilities at equivalent total energies are compared but to increase reaction probabilities when the comparison is done at the basis of equivalent collision energies. Only a fraction of the initial vibrational energy can be utilized to promote the reaction. The effect of rotational excitation on the reactivity differs depending on the initial vibrational state of methane. For the 1A1 and 1F2 vibrational states of methane, rotational excitation decreases the reaction probability even when comparing reaction probabilities at equivalent collision energies. In contrast, rotational energy is even more efficient than translational energy in increasing the reaction probability when the reaction starts from the 1E vibrational state of methane. All findings can be explained employing a transition state based interpretation of the reaction process.

  13. Selective Removal of Technetium from Water Using Graphene Oxide Membranes.

    PubMed

    Williams, Christopher D; Carbone, Paola

    2016-04-05

    The effective removal of radioactive technetium ((99)Tc) from contaminated water is of enormous importance from an environmental and public health perspective, yet many current methodologies are highly ineffective. In this work, however, we demonstrate that graphene oxide membranes may remove (99)Tc, present in the form of pertechnetate (TcO4(-)), from water with a high degree of selectivity, suggesting they provide a cost-effective and efficient means of achieving (99)Tc decontamination. The results were obtained by quantifying and comparing the free energy changes associated with the entry of the ions into the membrane capillaries (ΔFperm), using molecular dynamics simulations. Initially, three capillary widths were investigated (0.35, 0.68, and 1.02 nm). In each case, the entry of TcO4(-) from aqueous solution into the capillary is associated with a decrease in free energy, unlike the other anions (SO4(2-), I(-), and Cl(-)) investigated. For example, in the model with a capillary width of 0.68 nm, ΔFperm(TcO4(-)) = -6.3 kJ mol(-1), compared to ΔFperm(SO4(2-)) = +22.4 kJ mol(-1). We suggest an optimum capillary width (0.48 nm) and show that a capillary with this width results in a difference between ΔFperm(TcO4(-)) and ΔFperm(SO4(2-)) of 89 kJ mol(-1). The observed preference for TcO4(-) is due to its weakly hydrating nature, reflected in its low experimental hydration free energy.

  14. Comparison of targeted peptide quantification assays for reductive dehalogenases by selective reaction monitoring (SRM) and precursor reaction monitoring (PRM).

    PubMed

    Schiffmann, Christian; Hansen, Rasmus; Baumann, Sven; Kublik, Anja; Nielsen, Per Halkjær; Adrian, Lorenz; von Bergen, Martin; Jehmlich, Nico; Seifert, Jana

    2014-01-01

    Targeted absolute protein quantification yields valuable information about physiological adaptation of organisms and is thereby of high interest. Especially for this purpose, two proteomic mass spectrometry-based techniques namely selective reaction monitoring (SRM) and precursor reaction monitoring (PRM) are commonly applied. The objective of this study was to establish an optimal quantification assay for proteins with the focus on those involved in housekeeping functions and putative reductive dehalogenase proteins from the strictly anaerobic bacterium Dehalococcoides mccartyi strain CBDB1. This microbe is small and slow-growing; hence, it provides little biomass for comprehensive proteomic analysis. We therefore compared SRM and PRM techniques. Eleven peptides were successfully quantified by both methods. In addition, six peptides were solely quantified by SRM and four by PRM, respectively. Peptides were spiked into a background of Escherichia coli lysate and the majority of peptides were quantifiable down to 500 amol absolute on column by both methods. Peptide quantification in CBDB1 lysate resulted in the detection of 15 peptides using SRM and 14 peptides with the PRM assay. Resulting quantification of five dehalogenases revealed copy numbers of <10 to 115 protein molecules per cell indicating clear differences in abundance of RdhA proteins during growth on hexachlorobenzene. Our results indicated that both methods show comparable sensitivity and that the combination of the mass spectrometry assays resulted in higher peptide coverage and thus more reliable protein quantification.

  15. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage.

    PubMed

    Lu, F S H; Bruheim, I; Haugsgjerd, B O; Jacobsen, C

    2014-08-15

    The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40 °C) for 28 or 42 days. The oxidative stability of krill oil was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature firstly increased the lipid oxidation in krill oil and subsequently the non-enzymatic browning reactions. The occurrence of these reactions was most likely due to the reaction between α-dicarbonyl or carbonyl compounds with amino acids or ammonia. In addition to tocopherol and astaxanthin esters, the formation of pyrroles might help to protect the krill oil against lipid oxidation.

  16. A catalytic reactor for the trapping of free radicals from gas phase oxidation reactions

    NASA Astrophysics Data System (ADS)

    Conte, Marco; Wilson, Karen; Chechik, Victor

    2010-10-01

    A catalytic reactor for the trapping of free radicals originating from gas phase catalytic reactions is described and discussed. Radical trapping and identification were initially carried out using a known radical generator such as dicumyl peroxide. The trapping of radicals was further demonstrated by investigating genuine radical oxidation processes, e.g., benzaldehyde oxidation over manganese and cobalt salts. The efficiency of the reactor was finally proven by the partial oxidation of cyclohexane over MoO3, Cr2O3, and WO3, which allowed the identification of all the radical intermediates responsible for the formation of the products cyclohexanol and cyclohexanone. Assignment of the trapped radicals was carried out using spin trapping technique and X-band electron paramagnetic resonance spectroscopy.

  17. Iron Oxides from Volcanic Soils as Potential Catalysts in the Water Gas Shift Reaction

    SciTech Connect

    Pizarro, C.; Escudey, M.; Moya, S.A.; Fabris, J.D.

    2005-04-26

    This study was focused on changes of the iron oxide mineralogy with temperature of two Chilean soils (Andisol and Ultisol) derived from volcanic materials and their use as iron-based catalysts in the water gas shift reaction (WGSR). Ultisol materials produced about twice as much hydrogen than did those from Andisol upon WGSR, but in both cases hydrogen yielding increased as the heating temperature of the soil materials increased from 124 deg. C to 500 deg. C. The room temperature Moessbauer spectra showed an increase of the relative proportion of the magnetically ordered components as temperature increased. Higher heating temperature produced a negative effect on the catalytic activity, whereas the organic matter destruction led to a positive effect, due to an increasing exposition of the iron oxide surfaces; heating the soil sample at 600 deg. C induced changes on the iron oxide mineralogy with a significant decrease of the catalytic activity.

  18. Construction materials for reaction unit in the liquid-phase synthesis of propylene oxide

    SciTech Connect

    Zaritskii, V.I.D.

    1987-09-01

    The main components of the reaction medium in equipment for the synthesis of propylene oxide by liquid-phase oxidation of gaseous propylene with peracetic acid are propylene, peracetic acid, ethyl acetate, acetic acid, propylene oxide, carbon dioxide, oxygen, methane, and propylene glycol acetates. The operating conditions of the equipment and content of the main components of the medium are shown. Results are given for the investigation of the corrosion behavior of 12Kh18N10T, 10Kh17N13M2T, 08Kh22N6T, and 08Kh21N6M2T steels, AD0 and AD1 aluminum, and VT1-0 titanium. VSt3 carbon steel was tested for comparison.

  19. Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction.

    PubMed

    Bai, Hao; Jiang, Wentao; Kotchey, Gregg P; Saidi, Wissam A; Bythell, Benjamin J; Jarvis, Jacqueline M; Marshall, Alan G; Robinson, Renã A S; Star, Alexander

    2014-05-15

    Graphene represents an attractive two-dimensional carbon-based nanomaterial that holds great promise for applications such as electronics, batteries, sensors, and composite materials. Recent work has demonstrated that carbon-based nanomaterials are degradable/biodegradable, but little work has been expended to identify products formed during the degradation process. As these products may have toxicological implications that could leach into the environment or the human body, insight into the mechanism and structural elucidation remain important as carbon-based nanomaterials become commercialized. We provide insight into a potential mechanism of graphene oxide degradation via the photo-Fenton reaction. We have determined that after 1 day of treatment intermediate oxidation products (with MW 150-1000 Da) were generated. Upon longer reaction times (i.e., days 2 and 3), these products were no longer present in high abundance, and the system was dominated by graphene quantum dots (GQDs). On the basis of FTIR, MS, and NMR data, potential structures for these oxidation products, which consist of oxidized polycyclic aromatic hydrocarbons, are proposed.

  20. Facile synthesis of PdSx/C porous nanospheres and their applications for ethanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Fuhua; Ma, Xuemei; Zheng, Yiqun; Hou, Shifeng

    2016-12-01

    We report a facile approach for the synthesis of carbon-supported palladium polysulphide porous nanospheres (PdSx/C) and their applications for ethanol oxidation reaction. Typical synthesis started with generation of palladium/poly (3,4-ethylenedioxythiophene)(Pd/PEDOT) nanospheres, followed by a calcination process at an optimized temperature to form PdSx/C, with an average size of 2.47 ± 0.60 and 50 nm of PdSx nanoparticles and carbon porous nanospheres, respectively. Various techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were performed to characterize their morphologies, compositions and structures. In contrary to most Pd-based electrochemical catalysts that could be easily poised with trace sulfur during the catalytic oxidation process, the as-prepared PdSx/C porous nanospheres exhibited high electrocatalytic activities and stabilities for the electrochemical catalytic oxidation of ethanol in alkaline medium. In particular, the forward peak current intensity achieved 162.1 mA mg-1 and still maintained at 46.7 mA mg-1 even after 1000 cycles. This current work not only offers a novel type of fuel-cell catalyst for ethanol oxidation reaction, but also provides a possible route for solving the sulfur-poisoning problem in catalysis.

  1. Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction

    PubMed Central

    2015-01-01

    Graphene represents an attractive two-dimensional carbon-based nanomaterial that holds great promise for applications such as electronics, batteries, sensors, and composite materials. Recent work has demonstrated that carbon-based nanomaterials are degradable/biodegradable, but little work has been expended to identify products formed during the degradation process. As these products may have toxicological implications that could leach into the environment or the human body, insight into the mechanism and structural elucidation remain important as carbon-based nanomaterials become commercialized. We provide insight into a potential mechanism of graphene oxide degradation via the photo-Fenton reaction. We have determined that after 1 day of treatment intermediate oxidation products (with MW 150–1000 Da) were generated. Upon longer reaction times (i.e., days 2 and 3), these products were no longer present in high abundance, and the system was dominated by graphene quantum dots (GQDs). On the basis of FTIR, MS, and NMR data, potential structures for these oxidation products, which consist of oxidized polycyclic aromatic hydrocarbons, are proposed. PMID:24860637

  2. The Effect of Anodic Oxide Films on the Nickel-Aluminum Reaction in Aluminum Braze Sheet

    NASA Astrophysics Data System (ADS)

    Tadgell, Colin A.; Wells, Mary A.; Corbin, Stephen F.; Colley, Leo; Cheadle, Brian; Winkler, Sooky

    2017-01-01

    The influence of an anodic oxide surface film on the nickel-aluminum reaction at the surface of aluminum brazing sheet has been investigated. Samples were anodized in a barrier-type solution and subsequently sputtered with nickel. Differential scanning calorimetry (DSC) and metallography were used as the main investigative techniques. The thickness of the anodic film was found to control the reaction between the aluminum substrate and nickel coating. Solid-state formation of nickel-aluminum intermetallic phases occurred readily when a relatively thin oxide film (13 to 25 nm) was present, whereas intermetallic formation was suppressed in the presence of thicker oxides ( 60 nm). At an intermediate oxide film thickness of 35 nm, the Al3Ni phase formed shortly after the initiation of melting in the aluminum substrate. Analysis of DSC traces showed that formation of nickel-aluminum intermetallic phases changed the melting characteristics of the aluminum substrate, and that the extent of this change can be used as an indirect measure of the amount of nickel incorporated into the intermetallic phases.

  3. Surface reaction mechanisms during ozone and oxygen plasma assisted atomic layer deposition of aluminum oxide.

    PubMed

    Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit

    2010-09-07

    We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.

  4. Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM.

    PubMed

    Booth, Elizabeth S; Basran, Jaswir; Lee, Michael; Handa, Sandeep; Raven, Emma L

    2015-12-25

    The kynurenine pathway is the major route of L-tryptophan (L-Trp) catabolism in biology, leading ultimately to the formation of NAD(+). The initial and rate-limiting step of the kynurenine pathway involves oxidation of L-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237-244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of L-Trp, 1-methyl-L-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.

  5. The Effect of Anodic Oxide Films on the Nickel-Aluminum Reaction in Aluminum Braze Sheet

    NASA Astrophysics Data System (ADS)

    Tadgell, Colin A.; Wells, Mary A.; Corbin, Stephen F.; Colley, Leo; Cheadle, Brian; Winkler, Sooky

    2017-03-01

    The influence of an anodic oxide surface film on the nickel-aluminum reaction at the surface of aluminum brazing sheet has been investigated. Samples were anodized in a barrier-type solution and subsequently sputtered with nickel. Differential scanning calorimetry (DSC) and metallography were used as the main investigative techniques. The thickness of the anodic film was found to control the reaction between the aluminum substrate and nickel coating. Solid-state formation of nickel-aluminum intermetallic phases occurred readily when a relatively thin oxide film (13 to 25 nm) was present, whereas intermetallic formation was suppressed in the presence of thicker oxides ( 60 nm). At an intermediate oxide film thickness of 35 nm, the Al3Ni phase formed shortly after the initiation of melting in the aluminum substrate. Analysis of DSC traces showed that formation of nickel-aluminum intermetallic phases changed the melting characteristics of the aluminum substrate, and that the extent of this change can be used as an indirect measure of the amount of nickel incorporated into the intermetallic phases.

  6. Selective hydroformylation-hydrogenation tandem reaction of isoprene to 3-methylpentanal.

    PubMed

    Behr, Arno; Reyer, Sebastian; Tenhumberg, Nils

    2011-11-28

    The hydroformylation of isoprene catalysed by rhodium phosphine complexes usually yields a broad mixture of the monoaldehydes, the isomeric methylpentenals, as well as the dialdehyde 3-methyl-1,6-hexandial. Under usual reaction conditions the products of a consecutive hydrogenation are only formed as minor by-products. Surprisingly we discovered now a selective auto-tandem reaction consisting of a hydroformylation and a hydrogenation step if a rhodium complex with the chelate ligand bis(diphenylphosphino)ethane is used as catalyst. If branched aromatic solvents like cumene are applied the conversion of isoprene is nearly quantitatively and the yield of the tandem product 3-methylpentanal amounts to 85%.

  7. Effects of aluminum and zirconia contents on the reaction bonded aluminum oxide process

    NASA Astrophysics Data System (ADS)

    Sheedy, Paul Martin

    The effects of aluminum and ZrO2 contents on the reaction and sintering of reaction bonded aluminum oxide (RBAO) were investigated. It was apparent that ZrO2-containing RBAO powders with higher initial aluminum contents (>45 vol%) were increasingly more difficult to react and sinter. During oxidation in air, samples often underwent a self-propagating high-temperature synthesis (SHS) reaction which led to catastrophic failure. This reaction and cracking behavior was more pronounced with increasing aluminum and ZrO2 contents of the powders. Subsequently, it was shown that the SHS reaction was actually two combustion phenomena: a thermal explosion reaction on the surface of the sample between aluminum and oxygen, which (in ZrO2-containing samples) triggered a self propagating aluminothermic reduction of ZrO2, forming Al2O3 and Al 3Zr. Therefore, methods for controlling the rate of the initial oxidation reaction were effective since both SHS reactions were prevented. Despite the use of controlled firing, initial samples with increasing aluminum contents proved difficult to densify. It was found that in all RBAO samples (regardless of ZrO2 content), the reactively formed Al 2O3 underwent the gamma to alpha-Al2O 3 transformation, which resulted in the development of a vermicular microstructure. In ZrO2-containing RBAO samples, this transformation was inhibited and occurred concurrently with the start of densification. In addition, the start of bulk shrinkage in these samples was delayed and the densification rates were decreased in comparison to samples without ZrO 2. This ultimately resulted in a decrease in the limiting density to which ZrO2-containing RBAO samples could be sintered. Surprisingly, in samples without ZrO2, increasing the aluminum content did not appear to have any effects upon the densification behavior of RBAO. In examining RBAO samples with similar aluminum contents but increasing ZrO2 contents, it became apparent that the grain growth inhibiting

  8. Sub-micrometer sized yttrium oxide fibers prepared through hydrothermal reaction

    SciTech Connect

    Li, Nan; Yanagisawa, Kazumichi

    2011-03-15

    Research highlights: {yields} Y{sub 2}O{sub 3} fibers were synthesized by hydrothermal reaction followed by calcination. {yields} Y(OH){sub x}Cl{sub 3-x}.yH{sub 2}O was received from hydrothermal reaction. {yields} Y{sub 2}O{sub 3} fibers showed outstanding high-temperature stability. -- Abstract: Yttrium oxide fibers have been synthesized via hydrothermal reaction and subsequent thermal treatment using yttrium chloride as precursor. The products before and after the thermal treatment were characterized by powder X-ray diffractions (XRD), scanning electron microscopy (SEM), ion-chromatograph analysis, and thermogravimetry and differential thermal analysis (TG-DTA). The fiber diameter ranged from 100 to 300 nm, while the length was up to tens of microns. It was found that the chemical composition and morphology of the products were closely related to the pH value of reaction solution, and fibrous products could be obtained at pH 9.5-10.25. These oxide fibers exhibited outstanding high-temperature stability, which maintained their morphology at temperature up to 1400 {sup o}C.

  9. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    NASA Astrophysics Data System (ADS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-04-01

    The electro-catalytic behavior of Pt-CoOx/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH4 as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoOx, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of COads on Pt active sites by the participation of CoOx. Compared to Pt/MWCNTs, Pt-CoOx/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoOx/MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups controls the total rate of MOR process.

  10. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  11. Characterizing Pyroxene Reaction Space in Calcium-Aluminum Rich Inclusions: Oxidation During CAI Rim Formation

    NASA Astrophysics Data System (ADS)

    Dyl, K. A.; Young, E. D.

    2009-12-01

    We define the reaction space that controls changes in pyroxene composition in CAIs and Wark-Lovering (WL) rims in an oxidizing solar nebula. Ti-rich pyroxenes in CAIs record a sub-solar oxygen fugacity (Ti3+/Ti4+~1.5). WL rim pyroxenes in the CAI Leoville 144A have a distinctly lower oxidation state.This difference supports WL rim condensation in an environment of increasing O2(g) and Mg(g) (Simon et al. 2005). We used the following phase components to identify four linearly independent reactions (Thompson 1982): diopside, CaTs (Al2Mg-1Si-1), T3 (Ti3+AlMg-1Si-1), T4 (Ti4+Al2Mg-1Si-2), En (MgCa-1), perovskite, O(g), Mg(g), SiO(g), and Ca(g). Compositional variation in this system is dominated by two reactions. The first is oxidation of Ti3+ via reaction with O and Mg in the gas phase: 1.5 O(g) + Mg(g) → ¼ Di + [Ti4+Mg3/4Ti3+-1Ca-1/4Si-1/2] (1). Pyroxene is produced and En is introduced. The second reaction (2) is perovskite formation. It is observed in the WL rim of Leoville 144A, and experiments confirm that an elevated Ti component converts pyroxene to perovskite(Gupta et al. 1973). MgCa-1 is the third linearly independent reaction (3). They combine to give: ½ Di + x Ca(g)→ x Mg(g)+ Pv + [Mg1/2-xSiTi4+-1Ca-1/2+x](2,3). Unlike (1), pyroxene is consumed in this reaction. The parameter x defines the extent of Mg-Ca exchange. When x > 0.5, WL rim formation occurs in an environment where Mg is volatile and Ca condenses. The reaction space defined by reactions (1) and (2,3) describes the transition from CAI interior to WL rims. WL rim pyroxene Ti contents, [CaTs], and Ca < 1 pfu are all explained in this space. The fourth linearly independent reaction is SiO(g):1/8 Di + ¼ Mg(g)→ ¾ SiO(g) + [Mg3/8Ca1/8Ti4+Ti3+-1Si-1/2](4). Silica reduction forms Ti4+, releasing SiO(g). (4) does not describe the oxidation of Ti3+ in WL rim pyroxene, but (1) - (4) results in En formation directly from the gas phase. This may explain WL rim analyses that have Si contents in excess

  12. Effect of atmospheric oxidative plasma treatments on polypropylenic fibers surface: Characterization and reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Nisticò, Roberto; Magnacca, Giuliana; Faga, Maria Giulia; Gautier, Giovanna; D'Angelo, Domenico; Ciancio, Emanuele; Lamberti, Roberta; Martorana, Selanna

    2013-08-01

    Atmospheric pressure plasma-dielectric barrier discharge (APP-DBD, open chamber configuration) was used to functionalize polypropylene (PP) fibers surface in order to generate oxidized-reactive groups such as hydroperoxides, alcohols and carbonyl species (i.e. ketones and others). Such a species increased the surface polarity, without causing material degradation. Three different types of plasma mixture (He, He/O2, He/O2/H2O) under three different values of applied power (750, 1050, 1400 W) were investigated. The formed plasma species (O2+, O single atom and OH radical) and their distribution were monitored via optical emission spectrometry (OES) measurements, and the plasma effects on PP surface species formation were followed by X-ray photoemission spectroscopy (XPS). Results allowed to better understand the reaction pathways between plasma phase and PP fibers. In fact, two reaction mechanisms were proposed, the first one concerning the plasma phase reactions and the second one involving material surface modifications.

  13. I2-promoted selective oxidative cross-coupling/annulation of 2-naphthols with methyl ketones: a strategy to build naphtho[2,1-b]furan-1(2H)-ones with a quaternary center.

    PubMed

    Gao, Qinghe; Wu, Xia; Liu, Shan; Wu, Anxin

    2014-03-21

    A highly efficient and selective molecular iodine-promoted oxidative cross-coupling/annulation between 2-naphthols and methyl ketones has been realized. The reaction successfully constructed a new quaternary carbon center within 3(2H)-furanones. Our synthetic strategy provided an in situ iodination-based oxidative coupling pathway. Based on the experimental results, a self-sequenced iodination/Kornblum oxidation/Friedel-Crafts/oxidation/cyclization mechanism was proposed.

  14. Sequential ozone advanced oxidation and biological oxidation processes to remove selected pharmaceutical contaminants from an urban wastewater.

    PubMed

    Espejo, Azahara; Aguinaco, Almudena; García-Araya, J F; Beltrán, Fernando J

    2014-01-01

    Sequential treatments consisting in a chemical process followed by a conventional biological treatment, have been applied to remove mixtures of nine contaminants of pharmaceutical type spiked in a primary sedimentation effluent of a municipal wastewater. Combinations of ozone, UVA black light (BL) and Fe(III) or Fe₃O₄ catalysts constituted the chemical systems. Regardless of the Advanced Oxidation Process (AOP), the removal of pharmaceutical compounds was achieved in 1 h of reaction, while total organic carbon (TOC) only diminished between 3.4 and 6%. Among selected ozonation systems to be implemented before the biological treatment, the application of ozone alone in the pre-treatment stage is recommended due to the increase of the biodegradability observed. The application of ozone followed by the conventional biological treatment leads high TOC and COD removal rates, 60 and 61%, respectively, and allows the subsequent biological treatment works with shorter hydraulic residence time (HRT). Moreover, the influence of the application of AOPs before and after a conventional biological process was compared, concluding that the decision to take depends on the characterization of the initial wastewater with pharmaceutical compounds.

  15. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, July 1--September 30, 1992

    SciTech Connect

    Heinemann, H.; Somorjai, G.A.; Perry, D.L.

    1992-09-01

    Work will continue on the oxidative coupling reaction of methane over ternary oxide catalysts to produce C{sub 2}, C{sub 3} and C{sub 4} hydrocarbons and Particularly Olefins with high selectivity. The work which has shown that close to 100% selectivity can be obtained has received wide attention and has resulted in collaborative efforts with industry (CRADA) towards the development of a commercial process. An immediate purpose of additional work is to increase the conversion without diminishing the extremely high selectivity of the reaction and also to permit operation at higher space velocity to reduce equipment size. The mechanism of this reaction is not understood and much additional work is needed to explain the role of carbon formation and of water as intermediates in the reaction and to investigate whether carbon oxides are intermediates. It has been found that oxides other than calcium-nickel-potassium oxides can be useful catalysts for this reaction in the presence of steam and at relatively low temperatures and long contact times. Better definition of the class of binary metal oxides is required and better catalyst characterization is needed to ensure reproducibility Of catalyst preparation and operational results. Pretreatment of the catalyst should be shortened and higher space velocities must be obtained. Close collaboration with Orion ACT is required to advance the project toward the pilot plant stage. In the area of coal and char catalytic steam gasification, the large volume of data obtained at atmospheric pressure will be extended to operations at higher pressures.

  16. Guanine Oxidation in Double-stranded DNA by MnTMPyP/KHSO(5): At Least Three Independent Reaction Pathways.

    PubMed

    Lapi, A; Pratviel, G; Meunier, B

    2001-01-01

    In order to better define the mechanism and the products of guanine oxidation within DNA, we investigated the details of the mechanism of guanine oxidation by a metalloporphyrin, Mn-TMPyP, associated to KHSO(5) on oligonucleotides. We found that the three major products of guanine oxidation are formed by independent reaction routes. The oxidized guanidinohydantoin (1) and the proposed spiro compound 3 derivatives are not precursors of imidazolone lesion (Iz). These guanine lesions as well as their degradation products, may account for non-detected guanine oxidation products on oxidatively damaged DNA.

  17. Practical nitric oxide measurement employing a nitric oxide-selective electrode

    NASA Astrophysics Data System (ADS)

    Ichimori, K.; Ishida, H.; Fukahori, M.; Nakazawa, H.; Murakami, E.

    1994-08-01

    An NO-selective electrode was developed as an easily applicable tool for a real-time nitric oxide (NO) measurement. The working electrode (0.2 mm diam) was made from Pt/Ir alloy coated with a three-layered membrane. The counterelectrode was made from a carbon fiber. When a stable NO donor, S-nitroso-N-acetyl-dl-penicillamine, was applied, the electrode current increased in a dose-dependent fashion. The current and calculated NO concentration showed a linear relationship in the range from 0.2 nM (S/N=1) to 1 μM of NO. The response of the electrode was 1.14±0.09 s. The effects of temperature, pH, and chemicals other than NO on the electrode current were also evaluated. Electrodes which were placed in the luminal side of rat aortic rings exhibited 30 pA of current due to NO generation induced by the addition of 10-6 M of acetylcholine. The current was eliminated in the presence of 50 μM NG-monomethyl-L-arginine, an inhibitor of NO synthase. Thus, this NO-selective electrode is applicable to real-time NO assay in biological systems.

  18. Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction.

    PubMed

    Zhang, Cuijuan; Berlinguette, Curtis P; Trudel, Simon

    2016-01-25

    We present an amorphous quaternary Ba-Sr-Co-Fe oxide (a-BSCF) with a specific stoichiometry, readily fabricated via a photochemical decomposition method. a-BSCF demonstrates high catalytic activity towards the oxygen-evolution reaction (OER).

  19. Reactions between Grignard reagents and heterocyclic N-oxides: stereoselective synthesis of substituted pyridines, piperidines, and piperazines.

    PubMed

    Andersson, Hans; Olsson, Roger; Almqvist, Fredrik

    2011-01-21

    In this perspective we discuss the recent developments of stereoselective synthesis of substituted pyridines, piperidines, and piperazines from cheap and commercially readily available starting materials. Pyridine N-oxides and pyrazine N-oxides are reacted with alkyl, aryl, alkynyl and vinyl Grignard reagents to give a diverse set of heterocycles in high yields. Optically active substituted piperazines are obtained by an asymmetric reaction from pyrazine N-oxides using sparteine as chiral ligand. In addition, a stereoselective synthesis of dienal-oximes from the reaction between pyridine N-oxides and Grignard reagents is presented, which results in a useful intermediate for the synthesis of a diverse set of compounds.

  20. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  1. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases

    PubMed Central

    Deng, Kai; Takasuka, Taichi E.; Bianchetti, Christopher M.; Bergeman, Lai F.; Adams, Paul D.; Northen, Trent R.; Fox, Brian G.

    2015-01-01

    Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements. PMID:26579511

  2. Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment.

    PubMed

    Rodríguez, Eva; Majado, María E; Meriluoto, Jussi; Acero, Juan L

    2007-01-01

    A few genera of cyanobacteria produce toxins which contaminate drinking water resources. Microcystins (MC), widely reported cyanotoxins, cause acute and chronic toxicity effects in living beings including humans and warrant removal from drinking water. In the present study, unknown second-order rate constants for the reactions of microcystin-LR (MC-LR), -RR and -YR with potassium permanganate were determined at pH 6.2-8.2 and temperature 10-25 degrees C. The reaction of permanganate with MCs is second-order overall and first-order with respect to both permanganate and toxin. The second-order rate constant for the reaction of MC-LR with permanganate at pH 7 and 20 degrees C was 357.2+/-17.5M(-1)s(-1). The influence of pH on the oxidation process was not appreciable and the activation energy was 28.8 kJ mol(-1). Slightly higher reactivity with permanganate was found for MC-RR (418.0M(-1)s(-1)) and MC-YR (405.9M(-1)s(-1)). According to the results obtained, permanganate likely attacks the Adda moiety of the MC molecule. The oxidation of MCs in a natural surface water was also investigated. A permanganate dose of 1-1.25mgL(-1) was enough to reduce MCs concentration below the guideline value of 1microgL(-1). Permanganate oxidation is therefore a feasible option for microcystin removal during preoxidation processes. However, the oxidant dose must be carefully optimized in order to remove extracellular MCs without causing cell lysis (due to chemical stress) and further release of MCs.

  3. The Photochemical Oxidation of Siderite That Drove Hydrogen Based Microbial Redox Reactions in The Archean Biosphere

    NASA Astrophysics Data System (ADS)

    Kim, J. D.; Yee, N.; Falkowski, P. G.

    2012-12-01

    Hydrogen is the most abundant element in the universe and molecular hydrogen (H2) is a rich source of electron in a mildly reducing environment for microbial redox reactions, such as anoxygenic photosynthesis and methanogenesis. Subaerial volcanoes, ocean crust serpentinization and mid-ocean ridge volcanoes have been believed to be the major source of the hydrogen flux to the atmosphere. Although ferrous ion (Fe2+) photooxidation has been proposed as an alternative mechanism by which hydrogen gas was produced, ferruginous water in contact with a CO2-bearing atmosphere is supersaturated with respect to FeCO3 (siderite), thus the precipitation of siderite would have been thermodynamically favored in the Archean environment. Siderite is the critical mineral component of the oldest fossilized microbial mat. It has also been inferred as a component of chemical sedimentary protolith in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada and the presence of siderite in the protolith suggests the occurrence of siderite extends to Hadean time. Analyses of photooxidation of siderite suggest a significant flux of hydrogen in the early atmosphere. Our estimate of the hydrogen production rate under Archean solar flux is approximately 50 times greater than the estimated hydrogen production rate by the volcanic activity based on a previous report (Tian et al. Science 2005). Our analyses on siderite photooxidation also suggest a mechanism by which banded iron formation (BIF) was formed. The photooxidation transforms siderite to magnetite/maghemite (spinnel iron oxide), while oxygenic oxidation of siderite leads to goethite, and subsequently to hematite (Fe3+2O3) upon dehydration. We will discuss the photochemical reaction, which was once one of the most ubiquitous photochemical reactions before the rise of oxygen in the atmosphere. Photooxidation of siderite over time by UV light From left to right: UV oxidized siderite, pristine siderite, oxidized siderite by oxygen

  4. Octahedral Ni-nanocluster (Ni85) for Efficient and Selective Reduction of Nitric Oxide (NO) to Nitrogen (N2)

    PubMed Central

    Mahata, Arup; Rawat, Kuber Singh; Choudhuri, Indrani; Pathak, Biswarup

    2016-01-01

    Nitric oxide (NO) reduction pathways are systematically studied on a (111) facet of the octahedral nickel (Ni85) nanocluster in the presence/absence of hydrogen. Thermodynamic (reaction free energies) and kinetic (free energy barriers, and temperature dependent reaction rates) parameters are investigated to find out the most favoured reduction pathway for NO reduction. The catalytic activity of the Ni-nanocluster is investigated in greater detail toward the product selectivity (N2 vs. N2O vs. NH3). The previous theoretical (catalyzed by Pt, Pd, Rh and Ir) and experimental reports (catalyzed by Pt, Ag, Pd) show that direct N-O bond dissociation is very much unlikely due to the high-energy barrier but our study shows that the reaction is thermodynamically and kinetically favourable when catalysed by the octahedral Ni-nanocluster. The catalytic activity of the Ni-nanocluster toward NO reduction reaction is very much efficient and selective toward N2 formation even in the presence of hydrogen. However, N2O (one of the major by-products) formation is very much unlikely due to the high activation barrier. Our microkinetic analysis shows that even at high hydrogen partial pressures, the catalyst is very much selective toward N2 formation over NH3. PMID:27157072

  5. A study of ethanol reactions on O2-treated Au/TiO2. Effect of support and metal loading on reaction selectivity

    NASA Astrophysics Data System (ADS)

    Nadeem, M. A.; Waterhouse, G. I. N.; Idriss, H.

    2016-08-01

    The reactions of ethanol have been studied on bare and Au supported TiO2 polymorphs (anatase and rutile) in order to understand the effect of Au loading and prior O2 treatment on the reaction selectivity and conversion using temperature programmed desorption (TPD). Although O2 treatment has negligible effect on the reaction selectivity of ethanol on TiO2 alone it considerably affects the reaction on Au/TiO2. Au/TiO2 had three main effects on the reaction when compared to TiO2 alone. First, it switches the reaction selectivity of the dehydration (to ethylene) in favor of dehydrogenation (to acetaldehyde) on both polymorphs. Second, it decreases the desorption temperature of the main reaction products. Third, it increases secondary reaction products (mainly C4 (crotonaldehyde, butene, furan) reaching ca. 78% of the overall carbon selectivity for the 8 wt.% Au/TiO2 anatase. These effects are more pronounced on the anatase phase when compared to that on the rutile phase. Reasons for these are discussed.

  6. Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Manivannan, A; Balasubramanian, M; Prakash, GKS; Narayanan, SR

    2015-04-16

    Rechargeable metal-air batteries and water electrolyzers based on aqueous alkaline electrolytes hold the potential to be sustainable solutions to address the challenge of storing large amounts of electrical energy generated from solar and wind resources. For these batteries and electrolyzers to be economically viable, it is essential to have efficient, durable, and inexpensive electrocatalysts for the oxygen evolution reaction. In this article, we describe new insights for predicting and tuning the activity of inexpensive transition metal oxides for designing efficient and inexpensive electrocatalysts. We have focused on understanding the factors determining the electrocatalytic activity for oxygen evolution in a strong alkaline medium. To this end, we have conducted a systematic investigation of nanophase calcium-doped lanthanum cobalt manganese oxide, an example of a mixed metal oxide that can be tuned for its electrocatalytic activity by varying the transition metal composition. Using X-ray absorption spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electrochemical polarization experiments, and analysis of mechanisms, we have identified the key determinants of electrocatalytic activity. We have found that the Tafel slopes are determined by the oxidation states and the bond energy of the surface intermediates of Mn-OH and Co-OH bonds while the catalytic activity increased with the average d-electron occupancy of the sigma* orbital of the M-OH bond. We anticipate that such understanding will be very useful in predicting the behavior of other transition metal oxide catalysts.

  7. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules.

    PubMed

    Xu, Liang; Zhang, Shuai; Li, Pengfei

    2015-12-21

    In the context of modular and rapid construction of molecular diversity and complexity for applications in organic synthesis, biomedical and materials sciences, a generally useful strategy has emerged based on boron-selective chemical transformations. In the last decade, these types of reactions have evolved from proof-of-concept to some advanced applications in the efficient preparation of complex natural products and even automated precise manufacturing on the molecular level. These advances have shown the great potential of boron-selective reactions in simplifying synthetic design and experimental operations, and should inspire new developments in related chemical and technological areas. This tutorial review will highlight the original contributions and representative advances in this emerging field.

  8. Fabrication of Ultrafine Soft-Matter Arrays by Selective Contact Thermochemical Reaction

    PubMed Central

    Cai, X.; Wang, Yue; Wang, Xiaowei; Ji, Junhui; Hong, Jian; Pan, Feng; Chen, Jitao; Xue, Mianqi

    2013-01-01

    Patterning of functional soft matters at different length scales is important for diverse research fields including cell biology, tissue engineering and medicinal science and the development of optics and electronics. Here we have further improved a simple but very efficient method, selective contact thermochemical reaction (SCTR), for patterning soft matters over large area with a sub-100 nm resolution. By selecting contact between different precursors through a topographically patterned PDMS stamp and subsequently any heating way for thermalchemical reaction, thermal-related soft matters can be patterned to form controllable micro or nano structures, even three-dimensional structures. The fine tunability and controllability of as-prepared micro and nano structures demonstrate this versatile approach a far wide range of uses than the merely academic.

  9. Interconversion, reactivity and thermal stability of polyaniline in selected oxidation states

    SciTech Connect

    Masters, J.G.

    1992-01-01

    The objectives of this study were: (i) to determine if the base form of the conducting polymer, polyaniline, existed in a continuum of oxidation states ranging from the completely reduced leucoemeraldine oxidation state, (1 [minus] y) = 0, to the completely oxidized pernigraniline oxidation state, (1 [minus] y = 1). (ii) To investigate a novel type of reductive ring amination reaction of protonated polyaniline, of oxidation state 1 [minus] y = 0.50. (iii) Tascertain whether certain forms of polyaniline exhibited thermochromic behavior. (iv) To study factors responsible for enhancing the thermal/oxidative stability of [open quotes]doped[close quotes] polyaniline. (v) To study the reaction between polyaniline and C[sub 60]. The significant results and conclusions are: (a) In the oxidation state range between 1 [minus] y = 0.0 and 1 [minus] y = 1.0, polyaniline base exists in only three discrete oxidation states at the molecular level in the solid state and also in N-methylpyrrolidinone (NMP) solution. (b) Equimolar quantities of the two extreme oxidation states of polyaniline in the base form, leucoemeraldine, (1 [minus] y = 0.0), and pernigraniline, (1 [minus] y = 1.0), undergo a [open quotes]mutual[close quotes] oxidation and reduction when mixed in NMP solution. (c) In the oxidation state range between 1 [minus] y = 0.0 and 1 [minus] y = 0.50, only two species are observed in NMP solution of the polymer after the addition of excess aq. HCl, viz., fully protonated emeraldine salt and non-protonated leucoemeraldine base. (d) Protonation of emeraldine base, (1 [minus] y = 0.50), with nonvolatile acids has allowed the determination of the intrinsic thermal stability of the [open quotes]doped[close quotes] polymer. (e) A new reaction between emeraldine HCl and anhydrous amines results in reductive ring amination to produce leucoemeraldine base derivatives. (f) Reactions of the bases gave reversible thermochromic behavior and the formation of insoluble fullerenes.

  10. Amperometric nitric oxide sensors with enhanced selectivity over carbon monoxide via platinum oxide formation under alkaline conditions.

    PubMed

    Jensen, Gary C; Zheng, Zheng; Meyerhoff, Mark E

    2013-11-05

    An improved planar amperometric nitric oxide (NO) sensor with enhanced selectivity over carbon monoxide (CO), which represents a volatile interfering species for NO sensors that has been largely overlooked until recently, is described. Formation of an oxide film on the inner platinum working electrode via anodic polarization using an inner alkaline electrolyte solution provides the basis for improved selectivity. Cyclic voltammetry reveals that formation of an oxidized Pt film inhibits adsorption of CO to the electrode surface, which is a necessary initial step in the electrocatalytic oxidation of CO on Pt. Previous NO gas sensors that employ internal electrolyte solutions have been assembled using acidic internal solutions that inhibit the formation of a dense platinum oxide film on the working electrode surface. It is demonstrated herein that increasing the internal electrolyte pH promotes oxidized platinum film formation, resulting in improved selectivity over CO. Selectivity coefficients (log KNO,j) for sensors assembled with internal solutions at various pH values range from -0.08 at pH 2.0 to -2.06 at pH 11.7, with average NO sensitivities of 1.24 nA/μM and a limit of detection (LOD) of <1 nM.

  11. Direct site-selective arylation of enamides via a decarboxylative cross-coupling reaction.

    PubMed

    Gigant, Nicolas; Chausset-Boissarie, Laëtitia; Gillaizeau, Isabelle

    2013-02-15

    An efficient Pd-catalyzed decarboxylative cross-coupling reaction of simple enamides was achieved. Depending on the choice of the nitrogen-protecting group, a site-selective synthesis of mono- or diarylated framework(s) was performed under mild conditions. This unprecedented reactivity could be applied to the synthesis of a range of 2- or 2,4-diarylated nitrogen-containing bioactive derivatives.

  12. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins

    PubMed Central

    Huang, Guozheng; Schramm, Simon; Heilmann, Jörg; Biedermann, David; Křen, Vladimír

    2016-01-01

    Summary Various Mitsunobu conditions were investigated for a series of flavonolignans (silybin A, silybin B, isosilybin A, and silychristin A) to achieve either selective esterification in position C-23 or dehydration in a one-pot reaction yielding the biologically important enantiomers of hydnocarpin D, hydnocarpin and isohydnocarpin, respectively. This represents the only one-pot semi-synthetic method to access these flavonolignans in high yields. PMID:27340458

  13. Rapid Bacterial Identification, Resistance, Virulence and Type Profiling using Selected Reaction Monitoring Mass Spectrometry

    PubMed Central

    Charretier, Yannick; Dauwalder, Olivier; Franceschi, Christine; Degout-Charmette, Elodie; Zambardi, Gilles; Cecchini, Tiphaine; Bardet, Chloe; Lacoux, Xavier; Dufour, Philippe; Veron, Laurent; Rostaing, Hervé; Lanet, Veronique; Fortin, Tanguy; Beaulieu, Corinne; Perrot, Nadine; Dechaume, Dominique; Pons, Sylvie; Girard, Victoria; Salvador, Arnaud; Durand, Géraldine; Mallard, Frédéric; Theretz, Alain; Broyer, Patrick; Chatellier, Sonia; Gervasi, Gaspard; Van Nuenen, Marc; Ann Roitsch, Carolyn; Van Belkum, Alex; Lemoine, Jérôme; Vandenesch, François; Charrier, Jean-Philippe

    2015-01-01

    Mass spectrometry (MS) in Selected Reaction Monitoring (SRM) mode is proposed for in-depth characterisation of microorganisms in a multiplexed analysis. Within 60–80 minutes, the SRM method performs microbial identification (I), antibiotic-resistance detection (R), virulence assessment (V) and it provides epidemiological typing information (T). This SRM application is illustrated by the analysis of the human pathogen Staphylococcus aureus, demonstrating its promise for rapid characterisation of bacteria from positive blood cultures of sepsis patients. PMID:26350205

  14. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    NASA Astrophysics Data System (ADS)

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J. R.

    2016-05-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OHrad) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OHrad generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OHrad was removed. This suggests that OHrad radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures.

  15. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    PubMed Central

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J.R.

    2016-01-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OH•) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OH• generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OH• was removed. This suggests that OH• radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures. PMID:27346977

  16. Dechlorination reaction of hexachlorobenzene with calcium oxide at 300-400 degrees C.

    PubMed

    Gao, Xingbao; Wang, Wei; Liu, Xiao

    2009-09-30

    Hexachlorobenzene (HCB) was thermally treated with calcium oxide (CaO) at 300-400 degrees C. Analyses of chloride ions and residual HCB confirmed that a dechlorination reaction had occurred. The dechlorination mechanism was investigated with a series of analytical methods including X-ray fluorescence (XRF), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The final products detected were CaCO(3) by XRD and Raman spectroscopy, amorphous carbon by Raman spectroscopy, and CaCl(2) by XPS. The newly produced species of CaCO(3) and amorphous carbon were thought to be the ultimate fate of the C element of HCB. After identification of the final dechlorination products, we can conclude that the reaction of HCB with CaO at 300-400 degrees C is through a dechlorination/polymerization pathway, which is induced by electron transfer. An overall reaction formula for HCB reaction with CaO was proposed and was energetically quite favorable. The results are helpful for the further comprehension of the reaction mechanism for thermal dechlorination of PCDD/Fs in CaO rich matrices.

  17. Supercritical water oxidation of quinazoline: Reaction kinetics and modeling.

    PubMed

    Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan; Xu, Donghai

    2017-03-01

    This paper presents a first quantitative kinetic model for supercritical water oxidation (SCWO) of quinazoline that describes the formation and interconversion of intermediates and final products at 673-873 K. The set of 11 reaction pathways for phenol, pyrimidine, naphthalene, NH3, etc, involved in the simplified reaction network proved sufficient for fitting the experimental results satisfactorily. We validated the model prediction ability on CO2 yields at initial quinazoline loading not used in the parameter estimation. Reaction rate analysis and sensitivity analysis indicate that nearly all reactions reach their thermodynamic equilibrium within 300 s. The pyrimidine yielding from quinazoline is the dominant ring-opening pathway and provides a significant contribution to CO2 formation. Low sensitivity of NH3 decomposition rate to concentration confirms its refractory nature in SCWO. Nitrogen content in liquid products decreases whereas that in gaseous phase increases as reaction time prolonged. The nitrogen predicted by the model in gaseous phase combined with the experimental nitrogen in liquid products gives an accurate nitrogen balance of conversion process.

  18. Effects of oxidative stress reaction for the Eisenia fetida with exposure in Cd(2).

    PubMed

    Dongxing, Zhou; Yucui, Ning; Jiabin, Liu; Jie, Deng; Guohua, Rong; Bilige, Siqin; Yijun, Liu

    2016-11-01

    Earthworms are widely used in all kinds of pollutants as sensitive bio-indicator organisms because of their immediately oxidative stress response under the stress of heavy metal. However, there are a large number of indexes associated with the oxidative stress response. Finding out the key monitoring indexes in the stress process becomes a practical demand of the pollution monitoring and warning process. We studied two groups, the short-term test and the long-term test. The former one is for 10 days, taking out an earthworm every day. The latter test lasted 30 days, taking out an earthworm every 10 days. The Cd(2+) concentration was set at 50, 100, 125, 250, and 500 mg kg(-1). Post-clitellum segments of earthworms were chosen to determine superoxide enzyme (SOD), peroxidase (POD), glutathione peroxidase (GSH-Px), glutathione-S transferase (GST), catalase (CAT), vitamin E (VE), malondialdehyde (MDA), and acetylcholinesterase (AChE). The results showed that the main bio-indicators associating with oxidative stress reaction in short-term group were CAT, SOD, and POD. MDA could be used as a bio-indicator in the early and mid-term. VE was only the bio-indicator in the mid-term stress. While with the long-term test, the main bio-indicators associated with oxidative stress reaction were GSH-Px and MDA. The AChE activity was only suitable for oxidative stress response caused by heavy metal stress more than 30 days.

  19. Immunological reaction and oxidative stress after light or heavy polypropylene mesh implantation in inguinal hernioplasty

    PubMed Central

    Donati, Marcello; Brancato, Giovanna; Grosso, Giuseppe; Li Volti, Giovanni; La Camera, Giuseppina; Cardì, Francesco; Basile, Francesco; Donati, Angelo

    2016-01-01

    Abstract The relationship between mesh weight and host tissue reaction has, so far, not been fully investigated. Lightweight meshes (LWM) are thought to give less inflammatory response compared with heavyweight meshes (HWM). The present study is a randomized, controlled, double-blind clinical trial performed in 61 patients who underwent an elective inguinal hernioplasty. The primary outcome of the study was to investigate the relationship between total amount of prosthetic material (polypropylene), immunological reaction, and oxidative stress. The study was double-blinded. Sixty-one patients were recruited for the study and randomly assigned to 2 groups (groups A and B). Levels of inflammation markers (interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]) and oxidative stress markers (reduced glutathione [GSH] and lipid hydroperoxides [LOOH]) were determined preoperatively and after undergoing inguinal hernioplasty (after 6, 72, and 288 hours), respectively, with LWM and HWM. There was no significant difference in IL-6 levels between HWM and LWM (P = 0.3, 0.7, 0.8 after 6, 72, and 288 hours, respectively). A statistically significant difference was found after 72 hours for TNF-α (P = 0.01), for GSH after 6 hours (P < 0.01), and after 6 and 72 hours for LOOH (P = 0.05, 0.01, respectively). Oxidative stress occurred at earlier time points and was pore accentuated HWM versus LWM and prodromal to TNF-α increase. Also, in randomized clinical trial, the use of LWM gives advantages in terms of less inflammatory response when compared with HWM. Moreover, there is a significant higher oxidative stress after implantation of HWM. The intensity of oxidative stress seems to be strongly related to the amount of implanted polypropylene. (Trial registration number: NCT01090284). PMID:27310955

  20. SELECTIVE OXIDATION OF ALCOHOLS - COMPARING DIFFERENT CATALYTIC PROCESSES

    EPA Science Inventory

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alc...

  1. Defect-induced selective oxidation of graphene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Xing, Yu-heng; Lu, Peng-fei; Wang, Jian; Yang, Jin-peng; Chen, Yong-ping

    2017-02-01

    Controlled oxidation of graphene is extremely important for nanopatterning and chemical functionalization. It is generally assumed in experiments that the oxidizing agent in the liquid-phase oxidation first attacks the defective sites in carbon lattices. To explore how the oxidation in the graphene sheet first begins, we have investigated the oxidization process with the structural defect using the density functional theory. Ten reaction pathways in the frame of the transition state theory are considered. We find that the most preferential reaction locus is located at the center of defect. It has also been observed that the preexistence of hydroxyl functional group on the graphene surface substantially decrease energy barrier for oxidization. Such facilitation of oxidation due to hydroxyl can explain how the oxidation process continues after its first oxidation around defects. The uneven redistributions of electron density caused both by defect and by the hydroxyl functional group account for the mechanism of the oxidization process on graphene sheet. Our calculation fully verifies the experimental assumption and is consistent with the recent experimental observations.

  2. IBX-mediated oxidation of unactivated cyclic amines: application in highly diastereoselective oxidative Ugi-type and aza-Friedel-Crafts reactions.

    PubMed

    de Graaff, C; Bensch, L; van Lint, Matthijs J; Ruijter, E; Orru, R V A

    2015-10-28

    The first o-iodoxybenzoic acid (IBX) mediated oxidation of unactivated amines to imines is described. A range of meso-pyrrolidines were shown to be suitable substrates. The chemical space was further explored with one-pot oxidative Ugi-type and aza-Friedel-Crafts reactions, which proved to be highly diastereoselective.

  3. Relationship between reaction rate constants of organic pollutants and their molecular descriptors during Fenton oxidation and in situ formed ferric-oxyhydroxides.

    PubMed

    Jia, Lijuan; Shen, Zhemin; Su, Pingru

    2016-05-01

    Fenton oxidation is a promising water treatment method to degrade organic pollutants. In this study, 30 different organic compounds were selected and their reaction rate constants (k) were determined for the Fenton oxidation process. Gaussian09 and Material Studio software sets were used to carry out calculations and obtain values of 10 different molecular descriptors for each studied compound. Ferric-oxyhydroxide coagulation experiments were conducted to determine the coagulation percentage. Based upon the adsorption capacity, all of the investigated organic compounds were divided into two groups (Group A and Group B). The percentage adsorption of organic compounds in Group A was less than 15% (wt./wt.) and that in the Group B was higher than 15% (wt./wt.). For Group A, removal of the compounds by oxidation was the dominant process while for Group B, removal by both oxidation and coagulation (as a synergistic process) took place. Results showed that the relationship between the rate constants (k values) and the molecular descriptors of Group A was more pronounced than for Group B compounds. For the oxidation-dominated process, EHOMO and Fukui indices (f(0)x, f(-)x, f(+)x) were the most significant factors. The influence of bond order was more significant for the synergistic process of oxidation and coagulation than for the oxidation-dominated process. The influences of all other molecular descriptors on the synergistic process were weaker than on the oxidation-dominated process.

  4. Enzyme-catalysed synthesis and reactions of benzene oxide/oxepine derivatives of methyl benzoates.

    PubMed

    Boyd, Derek R; Sharma, Narain D; Harrison, John S; Malone, John F; McRoberts, W Colin; Hamilton, John T G; Harper, David B

    2008-04-07

    A series of twelve benzoate esters was metabolised, by species of the Phellinus genus of wood-rotting fungi, to yield the corresponding benzyl alcohol derivatives and eight salicylates. The isolation of a stable oxepine metabolite, from methyl benzoate, allied to evidence of the migration and retention of a carbomethoxy group (the NIH Shift), during enzyme-catalysed ortho-hydroxylation of alkyl benzoates to form salicylates, is consistent with a mechanism involving an initial arene epoxidation step. This mechanism was confirmed by the isolation of a remarkably stable, optically active, substituted benzene oxide metabolite of methyl 2-(trifluoromethyl)benzoate, which slowly converted into the racemic form. The arene oxide was found to undergo a cycloaddition reaction with 4-phenyl-1,2,4-triazoline-3,5-dione to yield a crystalline cycloadduct whose structure and racemic nature was established by X-ray crystallography. The metabolite was also found to undergo some novel benzene oxide reactions, including epoxidation to give an anti-diepoxide, base-catalysed hydrolysis to form a trans-dihydrodiol and acid-catalysed aromatisation to yield a salicylate derivative via the NIH Shift of a carbomethoxy group.

  5. The analysis of magnesium oxide hydration in three-phase reaction system

    SciTech Connect

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  6. Theoretical study of structure, stability, and the hydrolysis reactions of small iridium oxide nanoclusters.

    PubMed

    Zhou, Xin; Yang, Jingxiu; Li, Can

    2012-10-11

    The geometric structures and relative stabilities of small iridium oxide nanoclusters, Ir(m)O(n) (m = 1-5 and n = 1-2m), have been systematically investigated using density functional theory (DFT) calculations at the B3LYP level. Our results show that the lowest-energy structures of these clusters can be obtained by the sequential oxidation of small "core" iridium clusters. The iridium-monoxide-like clusters have relatively higher stability because of their relatively high binding energy and second difference in energies. On the basis of the optimized lowest-energy structures of neutral and cationic (IrO(2))(n) (n = 1-5), DFT has been used to study the hydrolysis reaction of these clusters with water molecules. The calculated results show that the addition of water molecules to the cationic species is much easier than the neutral ones. The overall hydrolysis reaction energies are more exothermic for the cationic clusters than for the neutral clusters. Our calculations indicate that H(2)O can be more easily split on the cationic iridium oxide clusters than on the neutral clusters.

  7. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions.

    PubMed

    Mueller, David N; Machala, Michael L; Bluhm, Hendrik; Chueh, William C

    2015-01-19

    Surface redox-active centres in transition-metal oxides play a key role in determining the efficacy of electrocatalysts. The extreme sensitivity of surface redox states to temperatures, to gas pressures and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Here we report the direct observation of surface redox processes by surface-sensitive, operando X-ray absorption spectroscopy using thin-film iron and cobalt perovskite oxides as model electrodes for elevated-temperature oxygen incorporation and evolution reactions. In contrast to the conventional view that the transition metal cations are the dominant redox-active centres, we find that the oxygen anions near the surface are a significant redox partner to molecular oxygen due to the strong hybridization between oxygen 2p and transition metal 3d electronic states. We propose that a narrow electronic state of significant oxygen 2p character near the Fermi level exchanges electrons with the oxygen adsorbates. This result highlights the importance of surface anion-redox chemistry in oxygen-deficient transition-metal oxides.

  8. Confining a bi-enzyme inside the nanochannels of a porous aluminum oxide membrane for accelerating the enzymatic reactions.

    PubMed

    Shangguan, Li; Wei, Yuanqing; Liu, Xu; Yu, Jiachao; Liu, Songqin

    2017-02-28

    An artificial metabolon with high conversion efficiency was constructed by confining a bi-enzyme into porous aluminum oxide nanochannels, which accelerated enzymatic reactions by minimizing the diffusion loss of intermediate species.

  9. Diffusion-reaction of aluminum and oxygen in thermally grown Al2O3 oxide layers

    NASA Astrophysics Data System (ADS)

    Osorio, Julián D.; Giraldo, Juliana; Hernández, Juan C.; Toro, Alejandro; Hernández-Ortiz, Juan P.

    2014-04-01

    The diffusion-reaction of aluminum (Al) and oxygen (O), to form thermally grown oxide (TGO) layers in thermal barrier coatings (TBCs), is studied through an analytical model. A nonsymmetrical radial basis function approach is used to numerically solve the mass balance equations that predict the TGO growth. Correct boundary conditions for the Al and O reactions are laid out using scaling arguments. The Damköhler number shows that the O-Al reaction is several orders of magnitude faster than diffusion. In addition, a comparison between aluminum and oxygen diffusivities indicates that TGO growth is governed by aluminum diffusion. The results are compared with experimental measurements on air plasma spray-deposited TBCs treated at 1,373 K with exposure times ranging from 1 to 1700 hours. We found that, for several time decades, the thickness of the thermally grown layer has power law dependence of time with an exponent of ½, following the diffusion control mechanism. At later times, however, the presence of other oxides and additional kinetics modify the diffusive exponent.

  10. Behavior of Supported Palladium Oxide Nanoparticles under Reaction Conditions, Studied with near Ambient Pressure XPS.

    PubMed

    Jürgensen, Astrid; Heutz, Niels; Raschke, Hannes; Merz, Klaus; Hergenröder, Roland

    2015-08-04

    Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is a promising method to close the "pressure gap", and thus, study the surface composition during heterogeneous reactions in situ. The specialized spectrometers necessary for this analytical technique have recently been adapted to operate with a conventional X-ray source, making it available for routine quantitative analysis in the laboratory. This is shown in the present in situ study of the partial oxidation of 2-propanol catalyzed with PdO nanoparticles supported on TiO2, which was investigated under reaction conditions as a function of gas composition (alcohol-to-oxygen ratio) and temperature. Exposure of the nanoparticles to 2-propanol at 30 °C leads to immediate partial reduction of the PdO, followed by a continuous reduction of the remaining PdO during heating. However, gaseous oxygen inhibits the reduction of PdO below 90 °C, and the oxidation of 2-propanol to carboxylates only occurs in the presence of oxygen above 90 °C. These results support the theory that metallic palladium is the active catalyst material, and they show that environmental conditions affect the nanoparticles and the reaction process significantly. The study also revealed challenges and limitations of this analytical method. Specifically, the intensity and fixed photon energy of a conventional X-ray source limit the spectral resolution and surface sensitivity of lab-based NAP-XPS, which affect precision and accuracy of the quantitative analysis.

  11. Iridium−Ruthenium Alloyed Nanoparticles for the Ethanol Oxidation Fuel Cell Reactions

    SciTech Connect

    Su D.; Du, W.; Deskins, N.A.; Teng, X.

    2012-06-01

    In this study, carbon supported Ir-Ru nanoparticles with average sizes ranging from 2.9 to 3.7 nm were prepared using a polyol method. The combined characterization techniques, that is, scanning transmission electron microscopy equipped with electron energy loss spectroscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, were used to determine an Ir-Ru alloy nanostructure. Both cyclic voltammetry and chronoamperometry (CA) results demonstrate that Ir{sub 77}Ru{sub 23}/C bears superior catalytic activities for the ethanol oxidation reaction compared to Ir/C and commercial Pt/C catalysts. In particular, the Ir{sub 77}Ru{sub 23}/C catalyst shows more than 21 times higher mass current density than that of Pt/C after 2 h reaction at a potential of 0.2 V vs Ag/AgCl in CA measurement. Density functional theory simulations also demonstrate the superiority of Ir-Ru alloys compared to Ir for the ethanol oxidation reaction.

  12. Gold-TiO2-Nickel catalysts for low temperature-driven CO oxidation reaction

    NASA Astrophysics Data System (ADS)

    Hinojosa-Reyes, Mariana; Zanella, Rodolfo; Maturano-Rojas, Viridiana; Rodríguez-González, Vicente

    2016-04-01

    Nickel-doped-TiO2 catalysts were prepared by the sol-gel method and surface modified with gold nanoparticles (AuNPs) by the urea-deposition-precipitation technique. The as-synthesized catalysts were characterized by X-ray diffraction, Raman and XPS spectroscopies, N2 physisorption, STEM-HAADF microscopy and TPR hydrogen consumption. The Au/TiO2-Ni catalysts were evaluated catalytically performing CO oxidation reactions. The catalyst with nickel content of 1 wt. % (Au/TiO2-Ni 1) showed the highest CO conversion with respect to the high-nickel-content or bare/commercial TiO2 at 0 °C. In situ DRIFTS showed a strong participation of both nickel due to the presence of surface-nickel-metallic nanoparticles formed during the CO adsorption process at reaction temperatures above 200 °C, and surface-bridged-nickel-CO species. A minor deactivation rate was observed for the Au/TiO2-Ni 1 catalyst in comparison with the Au/TiO2 one. The oxygen vacancies that were created on the sol-gel-doped TiO2 improved the catalytic behavior during the performance of CO oxidation reactions, and inhibited the AuNP sintering.

  13. Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Giannouri, M.; Boukos, N.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Reduced graphene oxide sheets (rGO) were prepared by hydrothermal treatment of aqueous dispersions of graphite oxide (GtO) applied for short (4 h) and prolonged reaction times (19-24 h). The effect of process duration as well as the alkaline conditions (pH ∼10) by addition of K2CO3 on the quality characteristics of the produced rGO materials was investigated. Both reduction and exfoliation occurred during this process as it was evidenced by FTIR and XRD data. SEM, TEM and HRTEM microscopy displayed highly exfoliated rGO materials. XPS verified that the re-establishment of the conjugated graphene network is more extensive for prolonged times of hydrothermal processing in accordance to Raman spectroscopy measurements. The sample produced under alkaline conditions bore fewer defects and almost 5 times higher BET surface area (∼181 m2/g) than the sample with no pH adjustment (∼34 m2/g) for the same hydrothermal reaction time (19 h), attributed to the developed microporosity. The specific capacitance of this material estimated by electrochemical impedance using three-electrode cell and KCl aqueous solution as an electrolyte was ∼400-500 F/g. When EDLC capacitors were fabricated from rGO materials the electrochemical testing in organic electrolyte i.e. TEABF4 in PC, revealed that the shortest hydrothermal reaction time (4 h) was more efficient resulting in capacitance around 60 F/g.

  14. Facilitated and selective oxidation of thiophenic sulfur compounds using MoOx/Al₂O₃-H₂O₂ system under ultrasonic irradiation.

    PubMed

    Akbari, Azam; Omidkhah, Mohammadreza; Towfighi Darian, Jafar

    2015-03-01

    Oxidative desulfurization of thiophenic sulfur compounds of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) with MoOx/Al₂O₃ catalyst and H₂O₂ oxidant has been facilitated and more selective under ultrasonic irradiation. The catalyst with the optimum 10% of Mo loading consisted of isolated tetrahedral molybdenum oxide species based on FTIR analysis. The increase of Mo loading to 15% and 20% caused to generation of polymolybdate and MoO₃ crystals which decreased desulfurization activity. Sonication enhanced the apparent reaction rate constants in oxidation of all three sulfur compounds. An increase in the Arrhenius factor (A0), which is the total number of collisions per second, could explain the acceleration in the rate constants by sonication. The apparent activated energy (Ea) of BT oxidation was reduced from 96.6 to 75.3 kJ/mol by using ultrasound. This indicated that ultrasound had also a chemical effect, like a catalytic influence, in the acceleration of BT removal. DBT oxidation was reduced when investigated in the presence of tetralin, naphthalene and 2-methyl naphthalene as the model aromatic compounds of actual light oils. A higher selectivity toward DBT elimination in the presence of aromatics was obtained by sonication when compared with the silent treatment. Ultrasound cleaned the catalyst surface from adsorbed aromatics. On the basis of the obtained results, a mechanistic proposal for this desulfurization was explained. Oxidation was performed by nucleophilic attack of sulfur atom to the molybdenum peroxide species of tetrahedral molybdates, which was more advanced by sonication.

  15. Oxidative Dehydrogenation of Cyclohexane on Cobalt Oxide (Co3O4) Nanoparticles: The Effect of Particle Size on Activity and Selectivity

    SciTech Connect

    Tyo, Eric C.; Yin, Chunrong; Di Vece, Marcel; Qian, Qiang; Kwon, Gihan; Lee, Sungsik; Lee, Byeongdu; DeBartolo, Janae E.; Seifert, Sönke; Winans, Randall E.; Si, Rui; Ricks, Brian; Goergen, Simone; Rutter, Matthew; Zugic, Branko; Flytzani-Stephanopoulos, Maria; Wang, Zhi Wei; Palmer, Richard E.; Neurock, Matthew; Vajda, Stefan

    2012-10-02

    The oxidative dehydrogenation of cyclohexane by cobalt oxide nanoparticles was studied via temperature programmed reaction combined with in situ grazing incidence X-ray absorption spectroscopy and grazing incidence small-angle X-ray scattering and theoretical calculations on model Co3O4 substrates. Both 6 and 12 nm Co3O4 nanoparticles were made through a surfactant-free preparation and dispersed on an Al2O3 surface formed by atomic layer deposition. Under reaction conditions the nanoparticles retained their oxidation state and did not sinter. They instead underwent an assembly/disassembly process and could reorganize within their assemblies. The selectivity of the catalyst was found to be size- and temperature-dependent, with larger particles preferentially producing cyclohexene at lower temperatures and smaller particles predominantly resulting in benzene at higher temperatures. The mechanistic features thought to control the oxidative dehydrogenation of cyclohexane and other light alkanes on cobalt oxide were established by carrying out density functional theory calculations on the activation of propane, a surrogate model alkane, over model Co3O4 surfaces. The initial activation of the alkane (propane) proceeds via hydrogen abstraction over surface oxygen sites. The subsequent activation of the resulting alkoxide intermediate occurs at a second surface oxygen site to form the alkene (propene) which then desorbs from the surface. Hydroxyl recombination results in the formation of water which desorbs from the surface. Finally, oxygen is necessary to regenerate the surface oxygen sites, catalyze C–H activation steps, and minimize catalyst degradation.

  16. CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.; Ju, Tina; Kunin, Daniel; Lieberman, Erica; Nguyen, Thai; Tran, Forrest; Xiang, Daniel; Fujishima, Kosuke

    2015-01-01

    The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.

  17. Palladium networks decorated by cuprous oxide for remarkably enhanced electrocatalytic activity of methanol oxidation reaction with high CO-tolerance

    NASA Astrophysics Data System (ADS)

    Ji, Yuanyuan; Ying, Ye; Pan, Yuxia; Li, Mengzhu; Guo, Xiaoyu; Wu, Yiping; Wen, Ying; Yang, Haifeng

    2016-10-01

    The CuO nanorods (NRs) are prepared with the help of inositol hexakisphosphate which serves as a binding agent and stabilizer. We have successfully fabricated Cu2O-decorated palladium networks (Cu2O/Pd Networks) by using such CuO NRs as reaction beds. Transmission electron microscopy images show that Cu2O/Pd network is composed of small and irregular fused nanoparticles with an average size of about 10 nm. Electrochemical results depict that the as-synthesized catalyst exhibits 2-fold higher activity for methanol oxidation than the commercially available 20% Pd/C catalyst and Pd black catalyst. Furthermore, CO-tolerance is also remarkably enhanced due to the presence of Cu2O. Such highly active, low-cost, and superiorly CO-tolerant catalysts of Cu2O/Pd Networks will open up a new avenue for direct methanol fuel cells.

  18. Destruction efficiencies and dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene.

    PubMed

    Lee, Eung Seok; Seol, Yongkoo; Fang, Y C; Schwartz, Franklin W

    2003-06-01

    Although potassium permanganate (KMnO4) flushing is commonly used to destroy chlorinated solvents in groundwater, many of the problems associated with this treatment scheme have not been examined in detail. We conducted a KMnO4 flushing experiment in a large sand-filled flow tank (L x W x D = 180 cm x 60 cm x 90 cm) to remove TCE emplaced as a DNAPL in a source zone. The study was specifically designed to investigate cleanup progress and problems of pore plugging associated with the dynamics of the solid-phase reaction front (i.e., MnO2) using chemical and optical monitoring techniques. Ambient flow through the source zone formed a plume of dissolved TCE across the flow tank. The volume and concentration of TCE plume diminished with time because of the in situ oxidation of the DNAPL source. The migration velocity of the MnO2 reaction front decreased with time, suggesting that the kinetics of the DNAPL oxidation process became diffusion-controlled because of the pore plugging. A mass balance calculation indicated that only approximately 18% of the total applied KMnO4 (MnO4- = 1250 mg/ L) participated in the oxidation reaction to destroy approximately 41% of emplaced TCE. Evidently, the efficiency of KMnO4 flushing scheme diminished with time due to pore plugging by MnO2 and likely CO2, particularly in the TCE source zone. In addition, the excess KMnO4 used for flushing may cause secondary aquifer contamination. One needs to be concerned about the efficacy of KMnO4 flushing in the field applications. Development of a new approach that can provide both contaminant destruction and plugging/ MnO4- control is required.

  19. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation

    PubMed Central

    2011-01-01

    Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075

  20. Oxidation of Annelated Diarylamines: Analysis of Reaction Pathways to Nitroxide Diradical and Spirocyclic Products

    SciTech Connect

    Rajca, Andrzej; Shiraishi, Kouichi; Boraty; #324; ski, Przemyslaw J.; Pink, Maren; Miyasaka, Makoto; Rajca, Suchada

    2012-02-06

    Oxidation of diaryldiamine 2, a tetrahydrodiazapentacene derivative, provides diarylnitroxide diradical 1 accompanied by an intermediate nitroxide monoradical and a multitude of isolable diamagnetic products. DFT-computed tensors for EPR spectra and paramagnetic {sup 1}H NMR isotropic shifts for nitroxide diradical 1 show good agreement with the experimental EPR spectra in rigid matrices and paramagnetic {sup 1}H NMR spectra in solution, respectively. Examination of the diamagnetic products elucidates their formation via distinct pathways involving C-O bond-forming reactions, including Baeyer-Villiger-type oxidations. An unusual diiminoketone structure and two spirocyclic structures of the predominant diamagnetic products are confirmed by either X-ray crystallography or correlations between DFT-computed and experimental spectroscopic data such as {sup 1}H, {sup 13}C, and {sup 15}N NMR chemical shifts and electronic absorption spectra.

  1. Characteristics of the oxygen evolution reaction on synthetic copper - cobalt - oxide electrodes for water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Yoo Sei; Park, Chan Su; Kim, Chi Ho; Kim, Yang Do; Park, Sungkyun; Lee, Jae Ho

    2016-10-01

    A nano-sized Cu0.7Co2.3O4 powder was prepared using a thermal decomposition method to achieve an efficient anode catalyst for an economical water electrolysis system for high-purity hydrogen-gas production without using a noble-metal catalyst. This study showed that the calcination temperature should be maintained under 400 °C to obtain a spinel copper - cobalt oxide structure without secondary oxide phases. The powder calcined at 250 °C showed the highest current density at the oxygen evolution reaction. This was due mainly to the increased number of available active sites and the active surface area of the powders. Further systematic analyses of the electrochemical characteristics of Cu x Co3- x O4 synthesized by using the fusion method were performed to assess it as potential anode material for use in alkaline-anion-exchange-membrane water electrolysis.

  2. A sterilization system using ultraviolet photochemical reactions based on nitrous oxide and oxygen gases.

    PubMed

    Ohnishi, Yasutaka; Matsumoto, Hiroyuki; Iwamori, Satoru

    2016-03-01

    Active oxygen species (AOS) generated under ultraviolet (UV) lamps can be applied for various industrial processes owing to extremely strong oxidative abilities. We have already reported on an application of the AOS for a sterilization process of microorganisms. Here, a sterilization method using active oxygen generated under ultraviolet (UV) lamps introducing nitrous oxide (N2O) and oxygen gases into a vacuum chamber was investigated. Nitrogen dioxide (NO2) gas was readily produced from N2O by UV photochemical reactions under the low-pressure mercury lamp and then used to sterilize medical devices. We compared the ability of the N2O gas to sterilize Geobacillus stearothermophilus spores with those of conventional methods. Successful sterilization of spores on various biological indicators was achieved within 60 min, not only in sterilization bags but also in a lumen device.

  3. Reaction kinetics of waste sulfuric acid using H2O2 catalytic oxidation.

    PubMed

    Wang, Jiade; Hong, Binxun; Tong, Xinyang; Qiu, Shufeng

    2016-12-01

    The process of recovering waste sulfuric acids using H2O2 catalytic oxidation is studied in this paper. Activated carbon was used as catalyst. Main operating parameters, such as temperature, feed rate of H2O2, and catalyst dosage, have effects on the removal of impurities from waste sulfuric acids. The reaction kinetics of H2O2 catalytic oxidation on impurities are discussed. At a temperature of 90°C, H2O2 feeding rate of 50 g (kg waste acid)(-1) per hour, and catalyst dosage of 0.2 wt% (waste acid weight), the removal efficiencies of COD and chrominance were both more than 99%, the recovery ratio of sulfuric acid was more than 95%, and the utilization ratio of H2O2 was 88.57%.

  4. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    SciTech Connect

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2013-07-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U{sub 3}O{sub 8} without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  5. Oxidation stability of advanced reaction-bonded Si3N4 materials

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.; Richerson, D. W.; Carruthers, W. D.; Gersch, H. M.

    1982-01-01

    Four slip-cast, injection-molded and isostatically-pressed specimens of reaction-bonded silicon nitride (RBSN) were subjected to static oxidation tests at 900 C for 10 hours. Specimens containing 8-10% interconnected open porosity of size greater than one micron exhibited a 20-30% decrease in average room temperature four-point flexure strength, while those with 10% open porosity of magnitudes much smaller than one micron as well as those with 2-4% interconnected open porosity of about one micron did not decrease in strength after 900 C exposure. It was determined that preoxidation treatment at 1350 C prevents the 20-30% strength degradation due to internal oxidation, and evidence is presented which suggests that surface pit formation in some RBSN may result from contamination by the furnace environment rather than any intrinsic material properties.

  6. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Liu, Huijuan; Liu, Yang; Qu, Jiuhui; Li, Jinghong

    2015-01-01

    The development of low cost, durable and efficient nanocatalysts to substitute expensive and rare noble metals (e.g. Pt, Au and Pd) in overcoming the sluggish kinetic process of the oxygen reduction reaction (ORR) is essential to satisfy the demand for sustainable energy conversion and storage in the future. Graphene based transition metal oxide nanocomposites have extensively been proven to be a type of promising highly efficient and economic nanocatalyst for optimizing the ORR to solve the world-wide energy crisis. Synthesized nanocomposites exhibit synergetic advantages and avoid the respective disadvantages. In this feature article, we concentrate on the recent leading works of different categories of introduced transition metal oxides on graphene: from the commonly-used classes (FeOx, MnOx, and CoOx) to some rare and heat-studied issues (TiOx, NiCoOx and Co-MnOx). Moreover, the morphologies of the supported oxides on graphene with various dimensional nanostructures, such as one dimensional nanocrystals, two dimensional nanosheets/nanoplates and some special multidimensional frameworks are further reviewed. The strategies used to synthesize and characterize these well-designed nanocomposites and their superior properties for the ORR compared to the traditional catalysts are carefully summarized. This work aims to highlight the meaning of the multiphase establishment of graphene-based transition metal oxide nanocomposites and its structural-dependent ORR performance and mechanisms.

  7. Improved reaction sintered silicon nitride. [protective coatings to improve oxidation resistance

    NASA Technical Reports Server (NTRS)

    Baumgartner, H. R.

    1978-01-01

    Processing treatments were applied to as-nitrided reaction sintered silicon nitride (RSSN) with the purposes of improving strength after processing to above 350 MN/m2 and improving strength after oxidation exposure. The experimental approaches are divided into three broad classifications: sintering of surface-applied powders; impregnation of solution followed by further thermal processing; and infiltration of molten silicon and subsequent carburization or nitridation of the silicon. The impregnation of RSSN with solutions of aluminum nitrate and zirconyl chloride, followed by heating at 1400-1500 C in a nitrogen atmosphere containing silicon monoxide, improved RSSN strength and oxidation resistance. The room temperature bend strength of RSSN was increased nearly fifty percent above the untreated strength with mean absolute strengths up to 420 MN/m2. Strengths of treated samples that were measured after a 12 hour oxidation exposure in air were up to 90 percent of the original as-nitrided strength, as compared to retained strengths in the range of 35 to 60 percent for untreated RSSN after the same oxidation exposure.

  8. Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions.

    PubMed

    Chen, Dengjie; Chen, Chi; Zhang, Zhenbao; Baiyee, Zarah Medina; Ciucci, Francesco; Shao, Zongping

    2015-04-29

    Mixed conducting perovskite oxides are promising catalysts for high-temperature oxygen reduction reaction. Pristine SrCoO(3-δ) is a widely used parent oxide for the development of highly active mixed conductors. Doping a small amount of redox-inactive cation into the B site (Co site) of SrCoO(3-δ) has been applied as an effective way to improve physicochemical properties and electrochemical performance. Most findings however are obtained only from experimental observations, and no universal guidelines have been proposed. In this article, combined experimental and theoretical studies are conducted to obtain fundamental understanding of the effect of B-site doping concentration with redox-inactive cation (Sc) on the properties and performance of the perovskite oxides. The phase structure, electronic conductivity, defect chemistry, oxygen reduction kinetics, oxygen ion transport, and electrochemical reactivity are experimentally characterized. In-depth analysis of doping level effect is also undertaken by first-principles calculations. Among the compositions, SrCo0.95Sc0.05O(3-δ) shows the best oxygen kinetics and corresponds to the minimum fraction of Sc for stabilization of the oxygen-vacancy-disordered structure. The results strongly support that B-site doping of SrCoO(3-δ) with a small amount of redox-inactive cation is an effective strategy toward the development of highly active mixed conducting perovskites for efficient solid oxide fuel cells and oxygen transport membranes.

  9. Low-temperature oxidation of alkali overlayers: Ionic species and reaction kinetics

    NASA Astrophysics Data System (ADS)

    Krix, David; Nienhaus, Hermann

    2013-04-01

    Clean and oxidized alkali metal films have been studied using X-ray photoelectron spectroscopy (XPS). Thin films, typically 10 nm thick, of lithium, sodium, potassium, rubidium and cesium have been deposited on silicon substrates and oxidized at 120 K. Plasmon losses were found to dress the primary photo emission structures of the metals’ core lines which confirms the metallic, bulk like nature of the films. The emission from the O 1s core levels was used to determine the chemical composition and the reaction kinetics during the exposure to molecular oxygen at low pressures. Molecular oxide ions O2- and O22- as well as atomic oxygen ions O2- were detected in varying amounts depending on the alkali metal used. Diffusive transport of material in the film is shown to greatly determine the composition of the oxides. Especially, the growth of potassium superoxide is explained by the diffusion of potassium atoms to the surface and growth at the surface in a Deal-Grove like model.

  10. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions.

    PubMed

    Breitenfeld, Jan; Ruiz, Jesus; Wodrich, Matthew D; Hu, Xile

    2013-08-14

    Many nickel-based catalysts have been reported for cross-coupling reactions of nonactivated alkyl halides. The mechanistic understanding of these reactions is still primitive. Here we report a mechanistic study of alkyl-alkyl Kumada coupling catalyzed by a preformed nickel(II) pincer complex ([(N2N)Ni-Cl]). The coupling proceeds through a radical process, involving two nickel centers for the oxidative addition of alkyl halide. The catalysis is second-order in Grignard reagent, first-order in catalyst, and zero-order in alkyl halide. A transient species, [(N2N)Ni-alkyl(2)](alkyl(2)-MgCl), is identified as the key intermediate responsible for the activation of alkyl halide, the formation of which is the turnover-determining step of the catalysis.

  11. Reaction of nitric oxide with heme proteins and model compounds of hemoglobin

    SciTech Connect

    Sharma, V.S.; Traylor, T.G.; Gardiner, R.; Mizukami, H.

    1987-06-30

    Rates for the reaction of nitric oxide with several ferric heme proteins and model compounds have been measured. The NO combination rates are markedly affected by the presence or absence of distal histidine. Elephant myoglobin in which the E7 distal histidine has been replaced by glutamine reacts with NO 500-1000 times faster than do the native hemoglobins or myoglobins. By contrast, there is not difference in the CO combination rate constants of sperm whale and elephant myoglobins. Studies on ferric model compounds for the R and T states of hemoglobin indicate that their NO combination rate constants are similar to those observed for the combination of CO with the corresponding ferro derivatives. The last observation suggests that the presence of an axial water molecule at the ligand binding site of ferric hemoglobin A prevents it from exhibiting significant cooperativity in its reactions with NO.

  12. Theoretical study of the reaction mechanism of platinum oxide with methane

    NASA Astrophysics Data System (ADS)

    Hwang, Der-Yan; Mebel, Alexander M.

    2002-10-01

    Density functional B3LYP calculations have been employed to investigate the reaction of platinum oxide with methane. PtO is shown to form a molecular complex with CH 4 bound by ˜13 kcal/mol. At elevated temperatures, direct abstraction of a hydrogen atom is possible leading to PtOH and free methyl radical with a barrier of ˜26 kcal/mol. A minor reaction channel is insertion into a C-H bond to produce a CH 3PtOH molecule, which can be also formed by recombination of PtOH and CH 3. CH 3PtOH would preferably dissociates through a mechanism involving 1,2-CH 3 migration to produce a PtCH 3OH complex and eventually Pt+CH 3OH.

  13. Fabrication of Fe-Al nanoparticles by selective oxidation of Fe-Al thin films

    NASA Astrophysics Data System (ADS)

    Jang, Pyungwoo; Shin, Seungchan; Jung, Chip-Sup; Kim, Kwang-Ho; Seomoon, Kyu

    2013-04-01

    The possibility of a new technique for fabricating nanoparticles from thin films using selective oxidation in an atmosphere mixture of water vapor and hydrogen was investigated. Fe-5wt.%Al films were RF-sputtered and annealed in the atmosphere mixture at 900°C for up to 200 min, in order to oxidize aluminum selectively. Thermodynamics simulation showed that temperatures exceeding 800°C are necessary to prevent iron from being oxidized, as confirmed by the depth profile of XPS. As the annealing time increased, the morphology of the 200-nm Fe-Al films changed from the continuous to the discontinuous type; thus, particulate Fe-Al films formed after 100 min. The particulate 10- to 100-nm Fe-Al films showed super-paramagnetic behavior after the oxidation. Thus, a new technique for fabricating nanoparticles was successfully introduced using selective oxidation.

  14. Stresses in Selectively Oxidized GaAs/(AlGa){sub x}O{sub y} Structures

    SciTech Connect

    Blokhin, S.A.; Smirnov, A.N.; Sakharov, A.V.; Gladyshev, A.G.; Kryzhanovskaya, N.V.; Maleev, N.A.; Zhukov, A.E.; Semenova, E.S.; Bedarev, D.A.; Nikitina, E.V.; Kulagina, M.M.; Maksimov, M.V.; Ledentsov, N.N.; Ustinov, V.M.

    2005-07-15

    Raman scattering spectroscopy is used to study the process of selective oxidation of Al{sub 0.97}Ga{sub 0.03}As layers. Stresses arising in GaAs/(AlGa){sub x}O{sub y} layers as a result of selective oxidation under different conditions are determined. The effects of local heating of the samples with laser radiation during measurements of the Raman signals, photoresist hardening resulting from the oxidation, and overoxidation are analyzed. The instrumentation and method of selective oxidation are optimized; as a result, arrays of vertical-cavity surface-emitting lasers are fabricated. The active region of these lasers is based on two InGaAs quantum wells with top oxidized and bottom semiconductor distributed Bragg reflectors.

  15. SIC-BASED HYDROGEN SELECTIVE MEMBRANES FOR WATER-GAS-SHIFT REACTION

    SciTech Connect

    Paul K.T. Liu

    2003-12-01

    A hydrogen selective membrane as a membrane reactor (MR) can significantly improve the power generation efficiency with a reduced capital and operating cost for the waster-gas-shift reaction. Existing hydrogen selective ceramic membranes are not suitable for the proposed MR due to their poor hydrothermal stability. In this project we have focused on the development of innovative silicon carbide (SiC) based hydrogen selective membranes, which can potentially overcome this technical barrier. SiC macro-porous membranes have been successfully fabricated via extrusion of commercially available SiC powder. Also, an SiC hydrogen selective thin film was prepared via our CVD/I technique. This composite membrane demonstrated excellent hydrogen selectivity at high temperature ({approx}600 C). More importantly, this membrane also exhibited a much improved hydrothermal stability at 600 C with 50% steam (atmospheric pressure) for nearly 100 hours. In parallel, we have explored an alternative approach to develop a H{sub 2} selective SiC membrane via pyrolysis of selected pre-ceramic polymers and sol-gel techniques. Building upon the positive progress made in the membrane development study, we conducted an optimization study to develop an H{sub 2} selective SiC membrane with sufficient hydrothermal stability suitable for the WGS environment. In addition, mathematical simulation has been performed to compare the performance of the membrane reactor (MR) vs conventional packed bed reactor for WGS reaction. Our result demonstrates that >99.999% conversion can be accomplished via WGS-MR using the hydrogen selective membrane developed by us. Further, water/CO ratio can be reduced, and >97% hydrogen recovery and <200 ppm CO can be accomplished according to the mathematical simulation. Thus, we believe that the operating economics of WGS can be improved significantly based upon the proposed MR concept. In parallel, gas separations and hydrothermal and long-term-storage stability of the

  16. Oxidation behavior in reaction-bonded aluminum-silicon alloy/alumina powder compacts

    SciTech Connect

    Yokota, S.H.

    1992-12-01

    Goal of this research is to determine the feasibility of producing low-shrinkage mullite/alumina composites by applying the reaction-bonded alumina (RBAO) process to an aluminum-silicon alloy/alumina system. Mirostructural and compositional changes during heat treatment were studied by removing samples from the furnace at different steps in the heating schedule and then using optical and scanning electron microscopy, EDS and XRD to characterize the powder compacts. Results suggest that the oxidation behavior of the alloy compact is different from the model proposed for the pure Al/alumina system.

  17. Radiolytic reactions of nitro blue tetrazolium under oxidative and reductive conditions: a pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Kovacs, A.; Wojnarovits, L.; Baranyai, M.; Moussa, A.; Othman, I.; McLaughlin, W. L.

    1999-08-01

    The radiolytic reactions of the ditetrazolium salt nitro blue tetrazolium chloride (NBTCl 2) were studied by pulse radiolysis technique in aqueous solution under reducing and oxidising conditions with the aim of potential dosimetry application. Under reducing conditions the fast formation of the tetrazolinyl radical is observed that is followed by the appearance of monoformazan (MF +), i.e. one of the tetrazolium rings is reduced to formazan. The formation of the water-insoluble diformazan, i.e. the result of the second reduction step was not observed in pulse radiolysis. Formazan formation was not found under oxidative conditions.

  18. The direct oxidative diene cyclization and related reactions in natural product synthesis

    PubMed Central

    2016-01-01

    Summary The direct oxidative cyclization of 1,5-dienes is a valuable synthetic method for the (dia)stereoselective preparation of substituted tetrahydrofurans. Closely related reactions start from 5,6-dihydroxy or 5-hydroxyalkenes to generate similar products in a mechanistically analogous manner. After a brief overview on the history of this group of transformations and a survey on mechanistic and stereochemical aspects, this review article provides a summary on applications in natural product synthesis. Moreover, current limitations and future directions in this area of chemistry are discussed. PMID:27829917

  19. The Role of Metal Oxides in Nanothermite Reactions: Evidence of Condensed Phase Initiation

    DTIC Science & Technology

    2010-01-01

    Al/WO3, and Al/ Bi2O3 were all tested with this system along with 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES The...Fe2O3, Al/WO3, and Al/ Bi2O3 were all tested with this system along with the neat Al and metal oxide powders. High speed imaging was also used to...visually compare reaction rates of each sample showing that, contradictory to some previous works, Al/ Bi2O3 reacts much faster than the other

  20. Investigation of