Science.gov

Sample records for selective reflection spectroscopy

  1. Hyperfine dipole-dipole broadening of selective reflection spectroscopy at the gas-solid interface

    NASA Astrophysics Data System (ADS)

    Meng, Tengfei; Ji, Zhonghua; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang

    2016-09-01

    We theoretically and experimentally investigate hyperfine dipole-dipole broadening in the selective reflection (SR) spectroscopy at the gas-solid interface with the atomic density of 1014-1015 cm-3. The two-level SR theory considering pump beam and dipole-dipole interaction between excited-state atom and ground-state atom is presented. The numerical simulation of the SR spectrum is in agreement with experimental results. The reduction of spectral width is observed by introducing a pump beam which is an effective technique to improve the resolution of spectroscopy. We analyze the dependence of dipole-dipole broadening on atomic density and pump beam power. This study is helpful for the description of the SR spectroscopy at the gas-solid interface where the Doppler broadening is comparable with dipole-dipole broadening.

  2. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: feature selection.

    PubMed

    Shi, Tiezhu; Chen, Yiyun; Liu, Huizeng; Wang, Junjie; Wu, Guofeng

    2014-01-01

    This study, with Yixing (Jiangsu Province, China) and Honghu (Hubei Province, China) as study areas, aimed to compare the successive projection algorithm (SPA) and the genetic algorithm (GA) in spectral feature selection for estimating soil organic carbon (SOC) contents with visible-near-infrared (Vis-NIR) reflectance spectroscopy and further to assess whether the spectral features selected from one site could be applied to another site. The SOC content and Vis-NIR reflectance spectra of soil samples were measured in the laboratory. Savitzky-Golay smoothing and log10(1/R) (R is reflectance) were used for spectral preprocessing. The reflectance spectra were resampled using different spacing intervals ranging from 2 to 10 nm. Then, SPA and GA were conducted for selecting the spectral features of SOC. Partial least square regression (PLSR) with full-spectrum PLSR and the spectral features selected by SPA (SPA-PLSR) and GA (GA-PLSR) were calibrated and validated using independent datasets, respectively. Moreover, the spectral features selected from one study area were applied to another area. Study results showed that, for the two study areas, the SPA-PLSR and GA-PLSR improved estimation accuracies and reduced spectral variables compared with the full spectrum PLSR in estimating SOC contents; GA-PLSR obtained better estimation results than SPA-PLSR, whereas SPA was simpler than GA, and the spectral features selected from Yixing could be well applied to Honghu, but not the reverse. These results indicated that the SPA and GA could reduce the spectral variables and improve the performance of PLSR model and that GA performed better than SPA in estimating SOC contents. However, SPA is simpler and time-saving compared with GA in selecting the spectral features of SOC. The spectral features selected from one dataset could be applied to a target dataset when the dataset contains sufficient information adequately describing the variability of samples of the target dataset.

  3. Selectively reflective transparent sheets

    NASA Astrophysics Data System (ADS)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  4. Reflectance spectroscopy for soil analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last three decades or more, researchers have estimated soil properties using visible and near infrared (VNIR) diffuse reflectance spectroscopy (DRS), with varying results. This presentation reviews the history and state-of –the art of VNIR-DRS, including relative estimation accuracy for var...

  5. Instrument independent diffuse reflectance spectroscopy.

    PubMed

    Yu, Bing; Fu, Henry L; Ramanujam, Nirmala

    2011-01-01

    Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post∕premeasurement calibration, thus saving up to an hour of precious clinical time.

  6. Cartilage analysis by reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Laun, T.; Muenzer, M.; Wenzel, U.; Princz, S.; Hessling, M.

    2015-07-01

    A cartilage bioreactor with analytical functions for cartilage quality monitoring is being developed. For determining cartilage composition, reflection spectroscopy in the visible (VIS) and near infrared (NIR) spectral region is evaluated. Main goal is the determination of the most abundant cartilage compounds water, collagen I and collagen II. Therefore VIS and NIR reflection spectra of different cartilage samples of cow, pig and lamb are recorded. Due to missing analytical instrumentation for identifying the cartilage composition of these samples, typical literature concentration values are used for the development of chemometric models. In spite of these limitations the chemometric models provide good cross correlation results for the prediction of collagen I and II and water concentration based on the visible and the NIR reflection spectra.

  7. Waveband selection of reagent-free determination for thalassemia screening indicators using Fourier transform infrared spectroscopy with attenuated total reflection.

    PubMed

    Long, Xiaoli; Liu, Guisong; Pan, Tao; Chen, Jiemei

    2014-08-01

    A reagent-free determination method for the thalassemia screening indicators hemoglobin (Hb), mean corpuscular Hb (MCH), and mean corpuscular volume (MCV) was developed based on Fourier transform infrared spectrometers equipped with an attenuated total reflection accessory. A random and stability-dependent rigorous process of calibration, prediction, and validation was conducted. Appropriate wavebands were selected using the improved moving window partial least squares method with stability and equivalence. The obtained optimal wavebands were 1722 to 1504 cm⁻¹ for Hb, 1653 to 901 cm⁻¹ for MCH, and 1562 to 964 cm⁻¹ for MCV. A model set equivalent to the optimal model was proposed for each indicator; the public waveband of Hb equivalent wavebands was 1717 to 1510 cm⁻¹, and the public equivalent waveband for MCH and MCV was 1562 to 901 cm⁻¹. All selected wavebands were within the MIR fingerprint region and achieved high validation effects. The sensitivity and specificity were 100.0% and 96.9% for the optimal wavebands and 100.0% and 95.3% for the equivalent wavebands, respectively. Thus, the spectral prediction was highly accurate for determining negative and positive for thalassemia screening. This technique is rapid and simple in comparison with conventional methods and is a promising tool for thalassemia screening in large populations.

  8. Reflections/Selected Readings.

    ERIC Educational Resources Information Center

    Cook, Gillian; Gorman, Arlene; Junco, Carol; Martinez, Miriam; Perez, Bertha; Torres, Azucena; Tschoepe, Mary

    1998-01-01

    Offers reflections on lingering issues raised in this themed issue on the "Gardendale Family": maintaining the integrity of the family; issues of time; curriculum standards; and effects on the rest of the school. Offers a bibliography of works considering the global concerns which prompted the formation of the Gardendale Family. (SR)

  9. [In situ diffuse reflectance FTIR spectroscopy study of the selective catalytic reduction reaction of NO over Ag/SAPO-34 catalysis].

    PubMed

    Zhang, Ping; Wang, Le-fu; Xu, Jian-chang

    2003-02-01

    An in situ diffuse reflectance FTIR spectroscopy (DRIFTS) study of the selective catalytic reduction (SCR) of NO with propene in the presence of excess O2 was carried out over Ag/SAPO-34 catalyst. The SCR reaction was investigated at temperatures from 573 to 773 K, and the role of oxygen in the NO reduction process was determined by comparing experiments using an initial reaction mixture containing oxygen and without oxygen. The results show that both NO and propene are easily activated in oxygen. Furthermore, the presence of oxygen is necessary to form organo-NOx adsorbed species. Based on these experiments, a reaction mechanism is proposed that NO, propene and oxygen react to form organo-nitro and organo-nitrito adsorbed species as key intermediates, and then these intermediates decompose to nitrogen.

  10. In situ infrared reflection and transmission absorption spectroscopy study of surface reactions in selective chemical-vapor deposition of tungsten using WF6 and SiH4

    NASA Astrophysics Data System (ADS)

    Kobayashi, Nobuyoshi; Nakamura, Yoshitaka; Goto, Hidekazu; Homma, Yoshio

    1993-05-01

    The adsorption of tungsten hexafluoride (WF6) and monosilane (SiH4) in selective chemical-vapor deposition (CVD) of tungsten (W) is investigated in situ using Fourier-transform infrared reflection and transmission absorption spectroscopy (FTIR RAS and TMS). The selectivity for W growth is found to originate from the dissociation of SiH4 on a W surface. That is, SiH4 dissociates on a W surface to form Si-containing adsorbed species when the W surface is exposed to SiH4 at temperatures higher than 110 °C, whereas SiH4 does not dissociate on a SiO2 surface. On the other hand, when W and SiO2 surfaces are exposed to WF6 at temperatures from 20 to 300 °C, no adsorbed species are observed by FTIR RAS. However, WF6 can easily react with the Si-containing adsorbed species on a W surface to form W and byproduct gases of SiHF3 and SiF4. The main surface reaction of selective W CVD can be expressed as WF6+2SiH4=W+2SiHF3+3H2. These experimental results support the selective W-CVD mechanism previously proposed, which shows that dissociation of SiH4 and not the dissociation of WF6 has a central role in this process.

  11. Selected techniques in radioecology: Model development and comparison for internal dosimetry of rainbow trout (Oncorhynchus mykiss) and feasibiltiy assessment of reflectance spectroscopy use as a tool in phytoremediation

    NASA Astrophysics Data System (ADS)

    Martinez, Nicole

    Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling, and combined with the empirical models for predicting activity concentration, to estimate dose rates and ultimately determine cumulative radiation dose (microGy) to selected organs after several half-lives of either 131I or 99Mo. The different computational models provided similar results, especially for organs that were both the source and target of radiation (less than 30% difference between estimated doses). Part 2 considers the use of reflectance spectroscopy as a remediation tool through its potential to determine plant stress from metal contaminants. The studies in Part 2 further investigate the potential use of reflectance spectroscopy as a method for assessing metal stress in plants. In the first study, Arabidopsis thaliana plants were treated twice weekly in a laboratory setting with varying levels (0 mM, 0.5 mM, or 5 mM) of cesium chloride (CsCl) solution, and reflectance spectra were collected every week for three weeks using an ASD FieldSpec Pro spectroradiometer with both a contact probe and a field of view probe at 36.8 and 66.7 cm above the plant. As metal stress is known to mimic drought stress, plants were harvested each week after spectra collection for determination of relative water content and chlorophyll content. A visual assessment of the plants was also conducted using point observations on a uniform grid of 81 points. Two-way ANOVAs were performed on selected vegetation indices (VI) to determine the significance of the effects of treatment level and length of treatment. Linear regression was used to relate the most appropriate vegetation indices to the aforementioned endpoints and to compare results provided by the three different spectra collection techniques. One-way ANOVAs were performed on selected VI at each time point to determine which, if any, indices offered a significant prediction of the overall extent of Cs toxicity. Of the

  12. High spectral resolution reflectance spectroscopy of minerals

    USGS Publications Warehouse

    Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N.

    1990-01-01

    The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 ??m. Selected absorption bands were studied at resolving powers (??/????) as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 ??m. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition. The study shows that high-resolution reflectance spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field-portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces. -from Authors

  13. High resolution selective reflection spectroscopy as a probe of long-range surface interaction : measurement of the surface van der Waals attraction exerted on excited Cs atoms

    NASA Astrophysics Data System (ADS)

    Chevrollier, Martine; Fichet, Michèle; Oria, Marcos; Rahmat, Gabriel; Bloch, Daniel; Ducloy, Martial

    1992-04-01

    Selective reflection spectroscopy at an interface with a low-density resonant vapor, especially when combined with a frequency modulation technique, is a high-resolution Doppler-free tool for probing atoms interacting with a surface. We analyze different types of relevant surface interaction, emphasizing the spectral consequences of a van der Waals surface attraction associated to a z^{-3} potential dependence (z: distance to the wall). We present detailed results of two series of experiments at a Cs vapor/dielectric window interface on the 6S{1/2}-6P{3/2} (λ = 852 nm) resonance line and on the 6S{1/2}-7P second resonance line (λ = 455 nm and 459 nm). Lineshape analysis at various pressures consistently shows that a van der Waals-type surface attraction has to be considered to interpret strong lineshape distortions and resonance shift. The attractive strengths are found to be equal respectively to ≈ 2 kHz μm^3 and ≈ 20 kHz μm^3, independently of the considered hyperfine component, within the experimental accuracy. It yields also typical parameters of pressure broadening and shift, which are shown to originate in collisional processes, at densities where the medium is opaque. Theoretical expectations for the VW strength are discussed on the basis of the results of atomic theory. The predicted values are smaller, by a typical factor of 2, than those deduced from the experiments. The validity of the theory, when applied to a dielectric interface, is discussed and seems questionable when the frequency of virtual atomic transitions involved in the van der Waals attraction potential lies in the dielectric window absorption range. La spectroscopie de réflexion sélective à l'interface d'une vapeur résonnante de faible densité, combinée à une technique de modulation de fréquence, permet de sonder à haute résolution et sans effet Doppler des atomes en interaction avec une surface. On analyse différents types d'interaction de surface envisageables, en

  14. Diffuse reflectance spectroscopy of liver tissue

    NASA Astrophysics Data System (ADS)

    Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan

    2015-06-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.

  15. Determination of trans Fat in Selected Fast Food Products and Hydrogenated Fats of India Using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy.

    PubMed

    Khan, Mohd Umar; Hassan, Mohammad Fahimul; Rauf, Abdul

    2017-01-01

    This paper reports the application of a simple and rapid method for the determination of trans fatty acid (TFA) content in some of the selected Indian fast food products and hydrogenated fats using Fourier transform infrared (FTIR) spectroscopy in conjunction with second derivative procedure. FTIR spectroscopy has been successfully applied to trans measurement using the absorbance bands at or near 966 cm(-1) in the FTIR spectra. It was found from the analysis that TFA content of fast food product was ranging from 1.57% to 3.83% of the total fat while for hydrogenated fats, comparatively large quantity of TFA was detected in the range of 3.31% to 4.73%. Since GC-FID is most widely used method for the determination of fatty acid (FA) composition, this method was used for the sake of comparison. Value of regression coefficient was found very close to one (0.99503) with standard deviation of 0.10247 showing a good agreement between GC-FID and proposed ATR-FTIR method.

  16. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  17. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.

  18. Optical Reflection Spectroscopy of GEO Objects

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cardona, Tammaso; Lederer, Susan M.; Cowardin, Heather; Abercromby, Kira J.; Barker, Edwin S.; Bedard, Donald

    2013-01-01

    We report on optical reflection spectroscopy of geosynchronous (GEO) objects in the US Space Surveillance Network (SSN) catalog. These observations were obtained using imaging spectrographs on the 6.5-m Magellan telescopes at the Las Campanas Observatory in Chile. Our goal is to determine the composition of these objects by comparing these spectral observations with ground-based laboratory measurements of spacecraft materials. The observations are all low resolution (1 nm after smoothing) obtained through a 5 arcsecond wide slit and using a grism as the dispersing element. The spectral range covered was from 450 nm to 800 nm. All spectra were flux calibrated using observations of standard stars with the exact same instrumental setup. An effort was made to obtain all observations within a limited range of topocentric phase angle, although the solar incident angle is unknown due to the lack of any knowledge of the attitude of the observed surface at the time of observation.

  19. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  20. Diagnosis of Breast Cancer Using Fluorescence and Reflectance Spectroscopy

    DTIC Science & Technology

    2004-09-01

    breast cancer based on fluorescence and diffuse reflectance spectroscopy . Our first objective include was to characterize the fluorescence properties of...device based on fluorescence and diffuse reflectance spectroscopy has the advantage of being fast, quantitative, and minimally invasive, and has the...Fluorescence and diffuse reflectance spectroscopy in the ultraviolet-visible wavelength range were made with a multi-separation probe at three illumination

  1. High spectral resolution reflectance spectroscopy of minerals

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; King, Trude V. V.; Klejwa, Matthew; Swayze, Gregg A.; Vergo, Norma

    1990-01-01

    The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 microns. Selected absorption bands were studied at resolving powers as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 micron. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition.

  2. Specular Reflection and Diffuse Reflectance Spectroscopy of Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies on the occurrence and effects of specular reflection in mid-infrared spectra of soils have shown that distortions due to specular reflection occur for both organic (humic acid) and non-organic fractions (carbonates, silica, ashed fraction of soil). The results demonstrated explain why the s...

  3. Attenuated total reflection far-ultraviolet spectroscopy

    NASA Astrophysics Data System (ADS)

    Ozaki, Yukihiro; Morisawa, Yusuke; Goto, Takeyoshi; Tanabe, Ichiro

    2016-09-01

    Recently, far-ultraviolet (FUV) spectroscopy of solid and liquid states has been a matter of keen interest because it provides new possibilities for studying electronic structures and transitions of almost all kinds of molecules. It has also great potential for a variety of applications from quantitative and qualitative analysis of aqueous solutions to environmental and geographical analyses. This review describes the state-of- the-art of FUV spectroscopy; an introduction to FUV spectroscopy, the development of FUV spectrometers, investigations on electronic transitions and structure, its various applications, and future prospects.

  4. Mechanism of the selective catalytic oxidation of slip ammonia over Ru-modified Ce-Zr complexes determined by in situ diffuse reflectance infrared Fourier transform spectroscopy.

    PubMed

    Chen, Wanmiao; Ma, Yongpeng; Qu, Zan; Liu, Qinghang; Huang, Wenjun; Hu, Xiaofang; Yan, Naiqiang

    2014-10-21

    The slip ammonia from selective catalytic reduction (SCR) of NOx in coal-fired flue gas can result in deterioration of the utilities or even the environmental issues. To achieve selective catalytic oxidation (SCO) of slip ammonia, Ru-modified Ce-Zr solid solution catalysts were prepared and evaluated under various conditions. It was found that the Ru/Ce(0.6)Zr(0.4)O2(polyvinylpyrrolidone (PVP)) catalyst displayed significant catalytic activity and the slip ammonia was almost completely removed with the coexistence of NOx and SO2. Interestingly, the effect of SO2 on NH3 oxidation was bifacial, and the N2 selectivity of the resulting products was as high as 100% in the presence of SO2 and NH3. The mechanism of the SCO of NH3 over Ru/Ce(0.6)Zr(0.4)O2(PVP) was studied using various techniques, and the results showed that NH3 oxidation follows an internal SCR (iSCR) mechanism. The adsorbed ammonia was first activated and reacted with lattice oxygen atoms to form an -HNO intermediate. Then, the -HNO mainly reacted with atomic oxygen from O2 to form NO. Meanwhile, the formed NO interacted with -NH2 to N2 with N2O as the byproduct, but the presence of SO2 can effectively inhibit the production of N2O.

  5. Analysis of reflectance characteristics of selected plants

    NASA Astrophysics Data System (ADS)

    Kaszczuk, Miroslawa; Mierczyk, Zygmunt; Zygmunt, Marek; Piotrowski, Wieslaw; Mierczyk, Jadwiga

    2011-06-01

    The paper presents reflectance characteristics of plants. The objects of the research were the selected plants, taking the various levels of organization and structure into consideration, as well as the state of plant health and growth. Reflectance spectrum was analyzed in the range of wavelengths from 0,2 to 2,5 μm. The values of reflectance for three wavelengths (λ1=850 nm, λ2=905 nm, λ3=1550 nm) were analyzed with the particular emphasis. The sample tests were performed immediately after biological material taking and in the several 24-hour time intervals. The time intervals enabled the process of plants wilting and drying. The reflectance measurements were repeated until the moment of plant complete dried out. All measurements were performed with the use of the spectrometer Lambda 900 (Perkin Elmer) equipped with the 150 mm integrating sphere PELA1001 dedicated for the measurements of the hemispherical reflectance both of diffuse and specular type. On the basis of the obtained results one calculated the values of signal ratios for the three selected wavelengths: 850/1550nm, 905/1550nm, and 850/905nm. The collected spectra and reflectance characteristics enabled the analyses of both results similarities and differences, which enabled the determination of the reflectance changes tendency associated with the typical processes occurring in plants. The analyses of plants reflectance characteristics were made for the use of the laser system for identification of terrain elements and their physico-chemical properties.

  6. Fiber-remote reflectance spectroscopy with an optimized diffuse reflectance sensor system

    SciTech Connect

    Driver, R.D.; Grim, K.P.; Dewey, G.; Brubaker, M.L.

    1995-12-31

    A diffuse reflectance spectroscopy system is described which can operate in a contact and non-contact mode on powders, slurries and other diffusely scattering materials. Diffuse reflectance spectra are presented for a number of samples including common household materials. A comparison is made of the probe with a Bio-Rad diffuse reflectance accessory. Second derivative spectra are shown of a calibration mixture of polymer additives. The use of the diffuse reflectance system for non-destructive tablet hardness measurements is discussed. Sensor multiplexing for diffuse reflectance spectroscopy, is reviewed.

  7. Fiber-remote reflectance spectroscopy with an optimized diffuse reflectance sensor system

    NASA Astrophysics Data System (ADS)

    Driver, Richard D.; Grim, Kirk P.; Dewey, G.; Brubaker, M. L.

    1995-01-01

    A diffuse reflectance spectroscopy system is described which can operate in a contact and non- contact mode on powders, slurries and other diffusely scattering materials. Diffuse reflectance spectra are presented for a number of samples including common household materials. A comparison is made of the probe with a Bio-Rad diffuse reflectance accessory. Second derivative spectra are shown of a calibration mixture of polymer additives. The use of the diffuse reflectance system for non-destructive tablet hardness measurements is discussed. Sensor multiplexing for diffuse reflectance spectroscopy is reviewed.

  8. Characterization of Degradation Using Reflectance Spectroscopy (Postprint)

    DTIC Science & Technology

    2013-08-01

    could be performed in field. Fourier transform infrared (FTIR) devices have been developed with in field inspection capabilities [4]. Spectroscopy is a...the data to be transformed to a linear model. In these cases, all the techniques for linear models may be applied such as PCA and PLS [6, 7]. These...number of molecules of that oscillator type. This is known as the Lorentz model in dispersion analysis 1597 This article is copyrighted as indicated in

  9. Apollo 17 Soil Characterization for Reflectance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Taylor, L. A.; Pieters, C.; Patchen, A.; Morris, R. V.; Keller, L. P.; Wentworth, S.; McKay, D. S.

    1999-01-01

    It is the fine fractions that dominate the observed spectral signatures of bulk lunar soil, and the next to the smallest size fractions are the most similar to the overall properties of the bulk soil. Thus, our Lunar Soil Characterization Consortium has concentrated on understanding the inter-relations of compositional, mineralogical, and optical properties of the <45-micron size fraction and its component sizes (20-44 micron, 10-20 micron, and <10 micron size fractions). To be able to generalize our results beyond the particular sample set studied, it is necessary to quantitatively identify the observed effects of space weathering and evaluate the processes involved. For this, it is necessary to know the chemistry of each size fraction, modal abundances of each phase, average compositions of the minerals and glasses, I(sub s)/FeO values, reflectance spectra, and the physical makeup of the individual particles and their patinas. This characterization includes the important dissection of the pyroxene minerals into four separate populations, with data on both modes and average chemical compositions. Armed with such data, it should be possible to effectively isolate spectral effects of space weathering from spectral properties related to mineral and glass chemistry. Four mare soils from the Apollo 17 site were selected for characterization based upon similarities in bulk composition and their contrasting maturities, ranging from immature to submature to mature. The methodology of our characterization has been discussed previously. Results of the Apollo 17 mare soils, outlined herein, are being prepared for publication in MAPS. As shown, with decreasing grain size, the agglutinitic (impact) glass content profoundly increases. This is the most impressive change for the mare soils. In several soils we have examined, there is an over two-fold increase in the agglutinitic glass contents between the 90-150- micron and the 10-20-micron size fractions. Accompanying this

  10. Does Spectral Format Matter in Diffuse Reflection Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near- and more recently, mid-infrared diffuse reflectance spectroscopy have come to be extensively used to determine the composition of products ranging from forages to drugs. In these methods, spectra are generally collected as (Reflectance or R) and transformed to log (1/R) according to the Beer-...

  11. Estimating soil quality indicators with diffuse reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid estimation of soil quality is needed for determining and mapping soil variability in site-specific management. One technology that can fulfill this need is diffuse reflectance spectroscopy, which measures light reflected from the soil in the visible and near infrared wavelength bands. Reflecta...

  12. Reflectance spectroscopy for evaluating hair follicle cycle

    NASA Astrophysics Data System (ADS)

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhu, Dan

    2014-02-01

    Hair follicle, as a mini-organ with perpetually cycling of telogen, anagen and catagen, provides a valuable experimental model for studying hair and organ regeneration. The transition of hair follicle from telogen to anagen is a significant sign for successful regeneration. So far discrimination of the hair follicle stage is mostly based on canonical histological examination and empirical speculation based on skin color. Hardly a method has been proposed to quantitatively evaluate the hair follicle stage. In this work, a commercial optical fiber spectrometer was applied to monitor diffuse reflectance of mouse skin with hair follicle cycling, and then the change of reflectance was obtained. Histological examination was used to verify the hair follicle stage. In comparison with the histological examination, the skin diffuse reflectance was relatively high for mouse with telogen hair follicles; it decreased once hair follicles transited to anagen stage; then it increased reversely at catagen stage. This study provided a new method to quantitatively evaluate the hair follicle stage, and should be valuable for the basic and therapeutic investigations on hair regeneration.

  13. Optimization of diffuse reflectance infrared spectroscopy accessories

    SciTech Connect

    Hirschfeld, T.

    1986-11-01

    The value of diffuse reflectance as an infrared or near-infrared spectroscopic sampling procedure has been limited by the low efficiency of accessories designed for it. In terms of signal-to-noise ratio, these average 2-6% for integrating spheres and 10-12% for various ellipsoidal mirror arrangements. Much better performances, up to 37% efficiency, can be obtained by optimizing a concentric confocal ellipsoidal mirror arrangement by using a very large central opening in the amular collector mirror, and adapting the throughput of the detector to the geometry of the collected beam.

  14. Combined theory of reflectance and emittance spectroscopy

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce

    1995-01-01

    The theory in which either or both reflected sunlight and thermally emitted radiation contribute to the power received by a detector viewing a particulate medium, such as a powder in the laboratory or a planetary regolith, is considered theoretically. This theory is of considerable interest for the interpretation of data from field or spacecraft instruments that are sensitive to the near-infrared region of the spectrum, such as NIMS (near-infrared mapping spectrometer) and VIMS (visual and infrared mapping spectrometer), as well as thermal infrared detectors.

  15. Passive optical element with selective angular reflection.

    PubMed

    Tremblay, C; Rheault, F; Boulay, R; Tremblay, R

    1987-02-01

    This work is related to the development of passive selective transmission materials that will contribute to regularize the solar thermal gain. We propose an original solution to the problem of seasonal control of energetic input into buildings through windows. A passive optical element with selective angular reflection is used to solve this problem. This optical element allows sunlight to enter windows during the fall and winter, whereas, owing to the different astronomical path of the sun, it stops and rejects direct sunlight by means of the optical effect called total internal reflection (TIR) during the central spring-summer period. The purpose of this paper is to describe the optical element in some detail, to develop the principal design equations, and give the results of the optimization of optical and geometrical parameters.

  16. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].

    PubMed

    Tao, Lin-Li; Yang, Xiu-Juan; Deng, Jun-Ming; Zhang, Xi

    2013-11-01

    In contrast to conventional methods for the determination of meat chemical composition, near infrared reflectance spectroscopy enables rapid, simple, secure and simultaneous assessment of numerous meat properties. The present review focuses on the use of near infrared reflectance spectroscopy to predict meat chemical compositions. The potential of near infrared reflectance spectroscopy to predict crude protein, intramuscular fat, fatty acid, moisture, ash, myoglobin and collagen of beef, pork, chicken and lamb is reviewed. This paper discusses existing questions and reasons in the current research. According to the published results, although published results vary considerably, they suggest that near-infrared reflectance spectroscopy shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. In particular, under commercial conditions where simultaneous measurements of different chemical components are required, near infrared reflectance spectroscopy is expected to be the method of choice. The majority of studies selected feature-related wavelengths using principal components regression, developed the calibration model using partial least squares and modified partial least squares, and estimated the prediction accuracy by means of cross-validation using the same sample set previously used for the calibration. Meat fatty acid composition predicted by near-infrared spectroscopy and non-destructive prediction and visualization of chemical composition in meat using near-infrared hyperspectral imaging and multivariate regression are the hot studying field now. On the other hand, near infrared reflectance spectroscopy shows great difference for predicting different attributes of meat quality which are closely related to the selection of calibration sample set, preprocessing of near-infrared spectroscopy and modeling approach. Sample preparation also has an important effect on the reliability of NIR prediction; in particular

  17. Accessing deep optical properties of skin using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Koenig, Anne; Roig, Blandine; Le Digabel, Jimmy; Josse, Gwendal; Dinten, Jean-Marc

    2015-07-01

    Diffuse reflectance spectroscopy characterizes composition and structure of tissues by determining their scattering and absorption properties. We have developed in our laboratory a low-cost spatially resolved diffuse reflectance spectroscopy instrument. We present in this study some results showing how to adapt this technology on multi-layered tissues. First of all, a method enabling determination of scattering and absorption properties of multi-layered phantoms is described; the adaptation of the initial methodology to focus on deep layers is especially detailed. Then some preliminary results obtained on a panel of volunteer's redness faces are presented.

  18. Does the spectral format matter in diffuse reflection spectroscopy?

    PubMed

    Reeves, James B

    2009-06-01

    Near-infrared, and more recently, mid-infrared diffuse reflection spectroscopy (more commonly and erroneously called reflectance spectroscopy) have come to be extensively used to determine the composition of products ranging from forages and drugs to soils. In these methods, spectra are generally collected as reflectance or R and transformed to log (1/reflectance). However, some near-infrared researchers do not transform the data, but use the data directly as reflectance. As it is generally held that procedures such as partial least squares regression do not work well with nonlinear data and the log (1/reflectance) transformation is held to be a best effort at linearization for near-infrared diffuse reflection spectral data, the question arises as to why then does not everyone transform the data? The objective of this work was to investigate this question using near-infrared and mid-infrared spectra in various formats. Calibrations were developed using spectral data from forages in several formats: reflectance, log (1/reflectance), non-background corrected single beam spectra, interferograms, and Kubelka-Munk transformed data. Calibrations were developed using both non-pretreated spectra and using data pretreatments such as derivatives. Results showed that calibrations using partial least squares regression did not require any specific data format. Accurate calibrations were developed for fiber, digestibility, and protein measures in forages using any of the aforementioned spectral formats including non-background-corrected single beam spectra and even interferograms. While calibrations could be developed using any of the formats, results indicated that those using Kubelka-Munk and especially interferograms did not perform as well as the others, although they were still quite good. In conclusion, results using forage spectra indicated that accurate and equivalent calibrations can be developed using diffuse reflectance data, with (reflectance) or without background

  19. Soil phosphorus and potassium estimation by reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible and near infrared (VNIR) diffuse reflectance spectroscopy has potential in site-specific measurement of soil properties. However, previous studies have reported VNIR estimates of plant available soil phosphorus (P) and potassium (K) to be of variable accuracy. In this study, we used a databa...

  20. Instrumentation for Reflectance Spectroscopy and Microspectroscopy with Application to Astrobiology

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Blaney, Diana L.; Green, Robert O.

    2008-01-01

    We present instrument concepts for in-situ reflectance spectroscopy over a spatial resolution range from several meters to tens of micrometers. These have been adapted to the low mass and power requirements of rover or similar platforms. Described are a miniaturized imaging spectrometer for rover mast, a combined mast and arm point spectrometer, and an imaging microspectrometer for the rover arm.

  1. Analytical study of spacecraft deposition contamination by internal reflection spectroscopy

    NASA Technical Reports Server (NTRS)

    Mookherji, T.

    1972-01-01

    Infrared absorption spectra of ten individual contaminant materials and four binary mixtures of these have been studied using the internal reflection spectroscopy technique. The effect of ultraviolet radiation on these contaminants has also been studied. It has been observed that all siloxanes, silanes, and esters are drastically affected by ultraviolet irradiation. In most cases polymerization and tar formation results.

  2. Estimating a soil quality index with VNIR reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensor-based approaches to assessment and quantification of soil quality are important to facilitate cost-effective, site-specific soil management. The objective of this research was to evaluate the ability of visible, near-infrared (VNIR) diffuse reflectance spectroscopy to estimate multiple soil q...

  3. Factors affecting soil phosphorus and potassium estimation by reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible and near infrared (VNIR) diffuse reflectance spectroscopy has potential in site-specific measurement of soil properties. However, previous studies have reported VNIR estimates of plant available soil phosphorus (P) and potassium (K) to be of variable accuracy. In this study, we used a databa...

  4. [Identification of pearl powder using microscopic infrared reflectance spectroscopy].

    PubMed

    Zhang, Xuan; Hu, Chao; Yan, Yan; Yang, Hai-Feng; Li, Jun-Fang; Bai, Hua; Xi, Guang-Cheng; Liao, Jie

    2014-09-01

    Pearl is a precious ornament and traditional Chinese medicine, which application history in China is more than 2000 years. It is well known that the chemical ingredients of shell and pearl are very similar, which all of them including calcium carbonate and various amino acids. Generally, shell powders also can be used as medicine; however, its medicinal value is much lower than that of pearl powders. Due to the feature similarity between pearl powders and shell powders, the distinguishment of them by detecting chemical composition and morphology is very difficult. It should be noted that shell powders have been often posing as pearl powders in markets, which seriously infringes the interests of consumers. Identification of pearl powder was investigated by microscopic infrared reflectance spectroscopy, and pearl powder as well as shell powder was calcined at different temperatures for different time before infrared reflectance spectroscopy analysis. The experimental results indicated that when calcined at 400 °C for 30 minutes under atmospheric pressure, aragonite in pearl powder partly transformed into calcite, while aragonite in shell powder completely transformed into calcite. At the same time, the difference in phase transition between the pearl powders 'and shell powders can be easily detected by using the microscopic infrared reflectance spectroscopy. Therefore, based on the difference in their phase transition process, infrared reflectance spectroscopy can be used to identify phase transformation differences between pearl powder and shell powder. It's more meaningfully that the proposed infrared reflectance spec- troscopy method was also investigated for the applicability to other common counterfeits, such as oyster shell powders and abalone shell powders, and the results show that the method can be a simple, efficiently and accurately method for identification of pearl powder.

  5. Optical fiber sensing based on reflection laser spectroscopy.

    PubMed

    Gagliardi, Gianluca; Salza, Mario; Ferraro, Pietro; Chehura, Edmond; Tatam, Ralph P; Gangopadhyay, Tarun K; Ballard, Nicholas; Paz-Soldan, Daniel; Barnes, Jack A; Loock, Hans-Peter; Lam, Timothy T-Y; Chow, Jong H; De Natale, Paolo

    2010-01-01

    An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  6. Depth-resolved measurements with elliptically polarized reflectance spectroscopy

    PubMed Central

    Bailey, Maria J.; Sokolov, Konstantin

    2016-01-01

    The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712

  7. Reflectance spectroscopy of gold nanoshells: computational predictions and experimental measurements

    NASA Astrophysics Data System (ADS)

    Lin, Alex W. H.; Lewinski, Nastassja A.; Lee, Min-Ho; Drezek, Rebekah A.

    2006-10-01

    Gold nanoshells are concentric spherical constructs that possess highly desirable optical responses in the near infrared. Gold nanoshells consist of a thin outer gold shell and a silica core and can be used for both diagnostic and therapeutic purposes by tuning the optical response through changing the core-shell ratio as well as the overall size. Although optical properties of gold nanoshells have already been well documented, the reflectance characteristics are not well understood and have not yet been elucidated by experimental measurements. Yet, in order to use gold nanoshells as an optical contrast agent for scattering-based optical methods such as reflectance spectroscopy, it is critical to characterize the reflectance behavior. With this in mind, we used a fiber-optic-based spectrometer to measure diffuse reflectance of gold nanoshell suspensions from 500 nm to 900 nm. Experimental results show that gold nanoshells cause a significant increase in the measured reflectance. Spectral features associated with scattering from large angles ( 180°) were observed at low nanoshell concentrations. Monte Carlo modeling of gold nanoshells reflectance demonstrated the efficacy of using such methods to predict diffuse reflectance. Our studies suggest that gold nanoshells are an excellent candidate as optical contrast agents and that Monte Carlo methods are a useful tool for optimizing nanoshells best suited for scattering-based optical methods.

  8. Raman and infrared spectroscopy of selected vanadates.

    PubMed

    Frost, Ray L; Erickson, Kristy L; Weier, Matt L; Carmody, Onuma

    2005-03-01

    Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V10O28)6-. Decavanadate consists of four distinct VO6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm(-1). Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm(-1) and originate from four distinct VO6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V5O14)3- units. Barnesite is characterised by a single Raman band at 1010 cm(-1), whilst hummerite has Raman bands at 999 and 962 cm(-1). The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO6 sites. Metarossite is characterised by a strong band at 953 cm(-1). These bands are assigned to nu1 symmetric stretching modes of (V6O16)2- units and terminal VO3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm(-1) and in the 803-833 cm(-1) region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to nu3 antisymmetric stretching of (V10O28)6- units or (V5O14)3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm(-1) region and are assigned to the nu2 bending modes of (V10O28)6- units or (V5O14)3- units. Raman bands are observed in the 530-620 cm(-1) region and are assigned to the nu4 bending modes of (V10O28)6- units or (V5O14)3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO

  9. Raman and infrared spectroscopy of selected vanadates

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Erickson, Kristy L.; Weier, Matt L.; Carmody, Onuma

    2005-03-01

    Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V 10O 28) 6-. Decavanadate consists of four distinct VO 6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm -1. Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm -1 and originate from four distinct VO 6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V 5O 14) 3- units. Barnesite is characterised by a single Raman band at 1010 cm -1, whilst hummerite has Raman bands at 999 and 962 cm -1. The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO 6 sites. Metarossite is characterised by a strong band at 953 cm -1. These bands are assigned to ν1 symmetric stretching modes of (V 6O 16) 2- units and terminal VO 3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm -1 and in the 803-833 cm -1 region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to ν 3 antisymmetric stretching of (V 10O 28) 6- units or (V 5O 14) 3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm -1 region and are assigned to the ν2 bending modes of (V 10O 28) 6- units or (V 5O 14) 3- units. Raman bands are observed in the 530-620 cm -1 region and are assigned to the ν4 bending modes of (V 10O 28) 6- units or (V 5O 14) 3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are

  10. Reflectance spectroscopy for noninvasive evaluation of hair follicle stage

    NASA Astrophysics Data System (ADS)

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhong, Xiewei; Liu, Xiuli; Zhu, Dan

    2015-05-01

    Hair follicle offers an excellent model for systems biology and regenerative medicine. So far, the stages of hair follicle growth have been evaluated by histological examination. In this work, a noninvasive spectroscopy was proposed by measuring the diffuse reflectance of mouse skin and analyzing the melanin value. Results show that the skin diffuse reflectance was relatively high when hair follicles were at the telogen stage and at the beginning of the anagen stage, and decreased with the progression of the anagen stage. When the hair follicle entered into the catagen stage, the diffuse reflectance gradually increased. The changes in the melanin content of skin had contrary dynamics. Substages of the hair follicle cycle could be distinguished by comparing the changes in melanin value with the histological examination. This study provided a new method for noninvasive evaluation of the hair follicle stage, and should be valuable for basic and therapeutic investigations on hair regeneration.

  11. Quantitative analysis of binary polymorphs mixtures of fusidic acid by diffuse reflectance FTIR spectroscopy, diffuse reflectance FT-NIR spectroscopy, Raman spectroscopy and multivariate calibration.

    PubMed

    Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia

    2017-03-10

    Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs.

  12. Reflective mesoscopic spectroscopy for noninvasive detection of reflective index alternations at nano-scale

    NASA Astrophysics Data System (ADS)

    Tao, Yuanhao; Ding, Zhihua

    2011-01-01

    Cancer has been one of the most serious threats to human life. However, there is no substantial improvement in overall treatment of cancer patients. One of the key reasons is the unavailability of convenient method to detect cellular alterations in ultra-early stage of carcinogenesis processes, where genetic aberrations at nano-scale have not yet resulted in histological changes. In this paper, we described an optical method based on reflective mesoscopic spectroscopy for ultra-early cancer detection. According to mesoscopic light transport theory, photons propagating in one dimension (1D) within a weakly disordered medium have the non-self-averaging effect. Reflected signal after 1D propagating is sensitive to any length scale of refractive index fluctuations due to multiple interferences of light waves travelling along 1D trajectory. The principle of mesoscopic spectroscopy for perceiving reflective index fluctuations at length scale of nanometers is introduced. A system for the measurement of reflective mesoscopic spectroscopy based on spatial-incoherence broadband source and spectrometer is established. Simulations on light propagation in cell-emulating model with controlled refractive index distribution are done by finite-difference time-domain (FDTD) approach.

  13. Catheter based mid-infrared reflectance and reflectance generated absorption spectroscopy

    DOEpatents

    Holman, Hoi-Ying N

    2013-10-29

    A method of characterizing conditions in a tissue, by (a) providing a catheter that has a light source that emits light in selected wavenumbers within the range of mid-IR spectrum; (b) directing the light from the catheter to an area of tissue at a location inside a blood vessel of a subject; (c) collecting light reflected from the location and generating a reflectance spectra; and (d) comparing the reflectance spectra to a reference spectra of normal tissue, whereby a location having an increased number of absorbance peaks at said selected wavenumbers indicates a tissue inside the blood vessel containing a physiological marker for atherosclerosis.

  14. Anisotropic Differential Reflectance Spectroscopy of Thin GeSe

    NASA Astrophysics Data System (ADS)

    Matson, Joseph; Woods, Grace; Churchill, Hugh

    2017-01-01

    Atomically thin monochalcogenides are predicted to exhibit a two-dimensional structural phase transition. This phase transition could be useful for designing new phase change memory devices. The critical temperature is dependent on the material as well as the thickness, and is predicted to occur just above room temperature for monolayer GeSe. We used differential reflectance spectroscopy on thin samples of GeSe to measure changes in the optical anisotropy with temperature as a signature of this phase transition. We constructed an apparatus for temperature-depedendent spectroscopy of micro-scale GeSe samples, and measured anisotropic optical absorption of thin GeSe. We observed a decrease in optical anisotropy of GeSe at elevated temperatures, which may be a first indication of the continuous transition from a rectangular to a square lattice in that material. This work was supported by NSF REU Grant #EEC-1359306.

  15. Depth Profile Determination of Stratified Layers Using Internal Reflection Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shick, Robert Adam

    It is the purpose of this project to develop a method to quantitatively determine depth profile information using internal reflection spectroscopy. The theory allowing depth profile information to be recovered from variable angle attenuated total reflection (VA-ATR) spectroscopy is shown for both perpendicular and parallel polarization. The major approximation is that the extinction coefficient must be small, so that the field decay due to distance and absorption are comparable. The errors invoked by these approximations are evaluated by comparison with exact optical simulations using dispersion theory. Having shown that the newly developed method is theoretically feasible, it is important to show that it is a viable technique with current instrumentation. It is shown that VA-ATR Fourier transform infrared spectroscopy is a valuable technique to recover depth profile information on the molecular level. A number of known step profiles are measured to determine the limits of applicability for this method. Thickness results obtained using the internal reflection technique are compared with thickness determination using a stylus profilometer. It is shown that the results using p-polarization are somewhat more realistic than s -polarization. The VA-ATR infrared technique was used to investigate the interaction and diffusion of poly(2,6-dimethyl-1,4 -phenylene oxide), PPO, and polystyrene, PS. Optical theory was employed to clarify the effect of the local interactions on the infrared spectra. Optical theory was also used to determine composition profiles at various times of inter -diffusion. It was observed that migration occurred between the PPO and the PS layer, even below the glass transition of the PPO. This migration proceeded linearly with time ^{1/2} which is an indication of Fickian diffusion, although the profiles had some additional non-Fickian characteristics.

  16. Depth sensitive oblique polarized reflectance spectroscopy of oral epithelial tissue

    NASA Astrophysics Data System (ADS)

    Jimenez, Maria K.; Lam, Sylvia; Poh, Catherine; Sokolov, Konstantin

    2014-05-01

    Identifying depth-dependent alterations associated with epithelial cancerous lesions can be challenging in the oral cavity where variable epithelial thicknesses and troublesome keratin growths are prominent. Spectroscopic methods with enhanced depth resolution would immensely aid in isolating optical properties associated with malignant transformation. Combining multiple beveled fibers, oblique collection geometry, and polarization gating, oblique polarized reflectance spectroscopy (OPRS) achieves depth sensitive detection. We report promising results from a clinical trial of patients with oral lesions suspected of dysplasia or carcinoma demonstrating the potential of OPRS for the analysis of morphological and architectural changes in the context of multilayer, epithelial oral tissue.

  17. Analysis of remote reflection spectroscopy to monitor plant health

    NASA Astrophysics Data System (ADS)

    Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M.

    1994-11-01

    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System CELSS type crops. Lettuce (Latuca Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  18. Analysis of remote reflection spectroscopy to monitor plant health.

    PubMed

    Woodhouse, R; Heeb, M; Berry, W; Hoshizaki, T; Wood, M

    1994-11-01

    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System CELSS type crops. Lettuce (Lactuca [correction of Latuca] Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  19. Hydrodynamic potential-modulated reflectance spectroscopy: theory and experiment.

    PubMed

    Wang, R L; Peter, L M; Qiu, F L; Fisher, A C

    2001-05-15

    This article describes the development and application of a new electrochemical methodology based on potential-modulated UV-vis reflectance spectroscopy (PMRS). The device configuration is based upon a thin-layer flow-through channel cell incorporating a platinum working electrode. Reagent solutions are pumped through the cell under well-defined hydrodynamic conditions and electrolyzed at the platinum working electrode. Measurements are presented for linear sweep and fixed dc potentials with a superimposed small amplitude sinusoidal potential perturbation. A UV-vis source is employed to irradiate the electrode region, and the resulting reflected signal is analyzed using a phase sensitive detector. Experimental studies using tris(4-bromophenyl) amine (TBPA) in acetonitrile are presented which quantify the relationship between the absorption spectrum and reflected light intensity as a function of the transport rate, electrolysis reactions, and the modulation frequency of the incident irradiation. The experimental results are analyzed using numerical simulations based on a finite difference strategy. These permit the quantitative prediction of the concentration distribution of reagents within the cell. A fast Fourier transform (FFT) routine was used to analyze the frequency response of the numerically predicted reflectance signal. Excellent agreement was observed between the numerical predictions and experimental observations.

  20. Development of techniques for advanced optical contamination measurement with internal reflection spectroscopy, phase 1, volume 1

    NASA Technical Reports Server (NTRS)

    Hayes, J. D.

    1972-01-01

    The feasibility of monitoring volatile contaminants in a large space simulation chamber using techniques of internal reflection spectroscopy was demonstrated analytically and experimentally. The infrared spectral region was selected as the operational spectral range in order to provide unique identification of the contaminants along with sufficient sensitivity to detect trace contaminant concentrations. It was determined theoretically that a monolayer of the contaminants could be detected and identified using optimized experimental procedures. This ability was verified experimentally. Procedures were developed to correct the attenuated total reflectance spectra for thick sample distortion. However, by using two different element designs the need for such correction can be avoided.

  1. Assessing human skin with diffuse reflectance spectroscopy and colorimetry

    NASA Astrophysics Data System (ADS)

    Seo, InSeok; Liu, Yang; Bargo, Paulo R.; Kollias, Nikiforos

    2012-02-01

    Colorimetry has been used as an objective measure of perceived skin color by human eye to document and score physiological responses of the skin from external insults. CIE color space values (L*, a* and b*) are the most commonly used parameters to correlate visually perceived color attributes such as L* for pigment, a* for erythema, and b* for sallowness of the skin. In this study, we investigated the relation of Lab color scale to the amount of major skin chromophores (oxy-, deoxyhemoglobin and melanin) calculated from diffuse reflectance spectroscopy. Thirty two healthy human subjects with ages from 20 to 70 years old, skin types I-VI, were recruited for the study. DRS and colorimetry measurements were taken from the left and right cheeks, and on the right upper inner arm. The melanin content calculated from 630-700 nm range of DRS measurements was shown to correlate with the lightness of skin (L*) for most skin types. For subjects with medium-to-light complexion, melanin measured at the blue part spectrum and hemoglobin interfered on the relation of lightness of the skin color to the melanin content. The sallowness of the skin that is quantified by the melanin contribution at the blue part spectrum of DRS was found to be related to b* scale. This study demonstrates the importance of documenting skin color by assessing individual skin chromophores with diffuse reflectance spectroscopy, in comparison to colorimetry assessment.

  2. Autofluorescence and diffuse reflectance patterns in cervical spectroscopy

    NASA Astrophysics Data System (ADS)

    Marin, Nena Maribel

    Fluorescence and diffuse reflectance spectroscopy are two new optical technologies, which have shown promise to aid in the real time, non-invasive identification of cancers and precancers. Spectral patterns carry a fingerprint of scattering, absorption and fluorescence properties in tissue. Scattering, absorption and fluorescence in tissue are directly affected by biological features that are diagnostically significant, such as nuclear size, micro-vessel density, volume fraction of collagen fibers, tissue oxygenation and cell metabolism. Thus, analysis of spectral patterns can unlock a wealth of information directly related with the onset and progression of disease. Data from a Phase II clinical trial to assess the technical efficacy of fluorescence and diffuse reflectance spectroscopy acquired from 850 women at three clinical locations with two research grade optical devices is calibrated and analyzed. Tools to process and standardize spectra so that data from multiple spectrometers can be combined and analyzed are presented. Methodologies for calibration and quality assurance of optical systems are established to simplify design issues and ensure validity of data for future clinical trials. Empirically based algorithms, using multivariate statistical approaches are applied to spectra and evaluated as a clinical diagnostic tool. Physically based algorithms, using mathematical models of light propagation in tissue are presented. The presented mathematical model combines a diffusion theory in P3 approximation reflectance model and a 2-layer fluorescence model using exponential attenuation and diffusion theory. The resulting adjoint fluorescence and reflectance model extracts twelve optical properties characterizing fluorescence efficiency of cervical epithelium and stroma fluorophores, stromal hemoglobin and collagen absorption, oxygen saturation, and stromal scattering strength and shape. Validations with Monte Carlo simulations show that adjoint model extracted

  3. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].

    PubMed

    Du, Juan; An, Dong; Xia, Tian; Huang, Yan-Hua; Li, Hong-Chao; Zhang, Yun-Wei

    2013-12-01

    Near infrared reflectance spectroscopy technology, as a new analytic method, can be used to determine the content of lignin, cellulose and hemi-cellulose which is faster, effective, easier to operate, and more accurate than the traditional wet chemical methods. Nowadays it has been widely used in measuring the composition of lignocelluloses in woody plant and herbaceous plant. The domestic and foreign research progress in determining the lignin, cellulose and hemi-cellulose content in woody plant ( wood and bamboo used as papermaking raw materials and wood served as potential biomass energy) and herbaceous plant (forage grass and energy grass) by near infrared reflectance spectroscopy technology is comprehensively summarized and the advances in method studies of measuring the composition of lignocelluloses by near infrared reflectance spectroscopy technology are summed up in three aspects, sample preparation, spectral data pretreatment and wavelength selection methods, and chemometric analysis respectively. Four outlooks are proposed combining the development statues of wood, forage grass and energy grass industry. First of all, the authors need to establish more feasible and applicable models for a variety of uses which can be used for more species from different areas, periods and anatomical parts. Secondly, comprehensive near infrared reflectance spectroscopy data base of grass products quality index needs to be improved to realize on-line quality and process control in grassproducts industry, which can guarantee the quality of the grass product. Thirdly, the near infrared reflectance spectroscopy quality index model of energy plant need to be built which can not only contribute to breed screening, but also improve the development of biomass industry. Besides, modeling approaches are required to be explored and perfected any further. Finally, the authors need to try our best to boost the advancement in the determination method of lignin, cellulose and hemi

  4. Infrared spectroscopy of mass-selected carbocations

    SciTech Connect

    Duncan, Michael A.

    2015-01-22

    Small carbocations are of longstanding interest in astrophysics, but there are few measurements of their infrared spectroscopy in the gas phase at low temperature. There are fewer-still measurements of spectra across the full range of IR frequencies useful to obtain an IR signature of these ions to detect them in space. We have developed a pulsed-discharge supersonic nozzle ion source producing high densities of small carbocations at low temperatures (50–70K). We employ mass-selected photodissociation spectroscopy and the method of rare gas “tagging”, together with new broadly tunable infrared OPO lasers, to obtain IR spectra for a variety of small carbocations including C{sub 2}H{sub 3}{sup +}, C{sub 3}H{sub 3}{sup +}, C{sub 3}H{sub 5}{sup +}, protonated benzene and protonated naphthalene. Spectra in the frequency range of 600–4500 cm{sup −1} provide new IR data for these ions and evidence for the presence of co-existing isomeric structures (e.g., C{sub 3}H{sub 3}{sup +} is present as both cyclopropenyl and propargyl). Protonated naphthalene has sharp bands at 6.2, 7.7 and 8.6 microns matching prominent features in the UIR spectra.

  5. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  6. Quantification of tissue oxygenation levels using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    B. S., Suresh Anand; N., Sujatha

    2010-12-01

    Tumor growth is characterized by increased metabolic activity. The light absorption profile of hemoglobin in dysplastic tissue is different from a normal tissue. Neovascularization is a hallmark of many diseases and can serve as a predictive biomarker for the detection of cancers. Spectroscopic techniques can provide information about the metabolic and morphological changes related to the progression of neoplasia. Diffuse reflectance spectroscopy (DRS) measures the absorption and scattering properties of a biological tissue and this method can provide clinically useful information for the early diagnosis of epithelial precancers. We used tissue simulating phantoms with absorbing and scattering molecules for the determination of total hemoglobin concentration, hemoglobin oxygen saturation and intensity difference between the deoxy and oxy hemoglobin bands. The results show promising approach for the differentiating normal and malignant states of a tissue.

  7. Quantification of tissue oxygenation levels using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    B. S., Suresh Anand; N., Sujatha

    2011-08-01

    Tumor growth is characterized by increased metabolic activity. The light absorption profile of hemoglobin in dysplastic tissue is different from a normal tissue. Neovascularization is a hallmark of many diseases and can serve as a predictive biomarker for the detection of cancers. Spectroscopic techniques can provide information about the metabolic and morphological changes related to the progression of neoplasia. Diffuse reflectance spectroscopy (DRS) measures the absorption and scattering properties of a biological tissue and this method can provide clinically useful information for the early diagnosis of epithelial precancers. We used tissue simulating phantoms with absorbing and scattering molecules for the determination of total hemoglobin concentration, hemoglobin oxygen saturation and intensity difference between the deoxy and oxy hemoglobin bands. The results show promising approach for the differentiating normal and malignant states of a tissue.

  8. Analysis of silage composition by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.

    1991-02-01

    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  9. Laboratory Studies of Organic Compounds With Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Curchin, J. M.; Clark, R. N.; Hoefen, T. M.

    2007-12-01

    In order to properly interpret reflectance spectra of any solar system surface from the earth to the Oort cloud, laboratory spectra of candidate materials for comparative analysis are needed. Although the common cosmochemical species (H2O, CO2, CO, NH3, and CH4) are well represented in the spectroscopic literature, comparatively little reflectance work has been done on organics from room to cryogenic temperatures at visible to near infrared wavelengths. Reflectance spectra not only enhance weak or unseen transmission features, they are also more analogous to spectra obtained by spacecraft that are imaging such bodies as giant planet moons, kuiper belt objects, centaurs, comets and asteroids, as well as remote sensing of the earth. The USGS Spectroscopy Laboratory is measuring reflectance spectra of organic compounds from room to cryogenic temperatures over the spectral range of 0.35 to 15.5 microns. This region encompasses the fundamental absorptions and many overtones and combinations of C, H, O, and N molecular bonds. Because most organic compounds belong to families whose members have similar structure and composition, individual species identification within a narrow wavelength range may be ambiguous. By measuring spectral reflectance of the pure laboratory samples from the visible through the near and mid-infrared, absorption bands unique to each can be observed, cataloged, and compared to planetary reflectance data. We present here spectra of organic compounds belonging to five families: the alkanes, alkenes, alkynes, aromatics, and cyanides. Common to all of these are the deep C-H stretch fundamental absorptions, which shift shortward from 3.35+ microns in alkanes to 3.25+ microns in aromatics, to 3.2+ microns in alkenes, and down to 3.0+ microns in alkynes. Mid-IR absorptions due to C-H bending deformations at 6.8+ and 7.2+ microns are also identified. In the near infrared these stretching and bending fundamentals yield a diagnostic set of combination

  10. Resonant Reflection Spectroscopy of Biomolecular Arrays in Muscle

    PubMed Central

    Young, Kevin W.; Radic, Stojan; Myslivets, Evgeny; O’Connor, Shawn M.; Lieber, Richard L.

    2014-01-01

    Sarcomeres, the functional units of contraction in striated muscle, are composed of an array of interdigitating protein filaments. Direct interaction between overlapping filaments generates muscular force, which produces animal movement. When filament length is known, sarcomere length successfully predicts potential force, even in whole muscles that contain billions of sarcomere units. Inability to perform in vivo sarcomere measurements with submicrometer resolution is a long-standing challenge in the muscle physiology field and has hampered studies of normal muscle function, adaptation, injury, aging, and disease, particularly in humans. Here, we develop theory and demonstrate the feasibility of to our knowledge a new technique that measures sarcomere length with submicrometer resolution. In this believed novel approach, we examine sarcomere structure by measuring the multiple resonant reflections that are uniquely defined by Fourier decomposition of the sarcomere protein spatial framework. Using a new supercontinuum spectroscopic system, we show close agreement between sarcomere lengths measured by resonant reflection spectroscopy and laser diffraction in an ensemble of 10 distinct muscles. PMID:25418304

  11. Optimal wavelength selection for noncontact reflection photoplethysmography

    NASA Astrophysics Data System (ADS)

    Corral Martinez, Luis F.; Paez, Gonzalo; Strojnik, Marija

    2011-08-01

    In this work, we obtain backscattered signals from human forehead for wavelengths from 380 to 980 nm. The results reveal bands with strong pulsatile signals that carry useful information. We describe those bands as the most suitable wavelengths in the visible and NIR regions from which heart and respiratory rate parameters can be derived using long distance non-contact reflection photoplethysmography analysis. The latter results show the feasibility of a novel technique for remotely detection of vital signs in humans. This technique, which may include morphological analysis or maps of tissue oxygenation, is a further step to real non-invasive remote monitoring of patients.

  12. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  13. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy

    NASA Technical Reports Server (NTRS)

    Card, Don H.; Peterson, David L.; Matson, Pamela A.; Aber, John D.

    1988-01-01

    The chemical content of dry, ground leaf material sampled from deciduous and conifer tree species from sites in Alaska, Wisconsin, and California was estimated using visible and shortwave IR spectroscopy. Seven chemical components - sugar, starch, protein, cellulose, total chlorophyll, lignin, and total nitrogen - were analyzed by wet chemical methods and their concentrations regressed against log 1/rho and first and second differences of log 1/rho (where rho is measured reflectance) at wavelengths selected by stepwise regression. Predictions of chemical concentrations based on cross validation suggest that this technique may be useful for extracting vegetation canopy biochemical information by remote sensing.

  14. A study on the protection to relics and the related problems with diffuse reflectance spectroscopy.

    PubMed

    Wang, Liqin; Liang, Guozheng; Dang, Gaochao

    2005-03-01

    The application of diffuse reflectance spectroscopy to relic protection is studied by using a self-made fiber optics reflectance spectrophotometer. The major work done includes: (1) the composition of pigment on colored relics and its changes are identified; (2) the change on metal surface is monitored; (3) the reflectance spectrum characteristics of relic protection materials are studied. The results tell that diffuse reflectance spectroscopy is a new protection technique, characterized by its quickness and non-destructiveness to the relic.

  15. Noninvasive measurements of carotenoids in bovine udder by reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Klein, Julia; Darvin, Maxim E.; Müller, Kerstin E.; Lademann, Jürgen

    2012-10-01

    For a long time, the antioxidative status in cattle has been discussed as an indicator for stress conditions resulting from disease or exertion. Until now, invasive approaches have been necessary to obtain blood samples or biopsy materials and gain insights into the antioxidative status of cattle. Due to these efforts and the costs of the analyses, serial sampling is feasible in an experimental setting, but not for measurements on a routine basis. The present study focuses on the feasibility of an innovative, noninvasive spectroscopic technique that allows in vivo measurements of carotenoids in the skin by reflection spectroscopy. To this end, in a first trial, repeated measurements of the carotenoid concentration of the udder skin were performed on 25 healthy cattle from different breeds. Carotenoid concentrations showed highly significant differences between individual animals (P<0.001), although they were kept under the same environmental conditions and received the same diet. The carotenoid concentrations in "sensitive" and "robust" cows (evaluated by a temperament test) differed significantly (P<0.005), with higher concentrations observed in robust cows.

  16. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  17. Aerosol collection and analysis using diffuse reflectance infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Wong, Diane M.; Meyer, Gerald J.; Roelant, Geoffrey J.; Williams, Barry R.; Miles, Ronald W., Jr.; Manning, Christopher J.

    2004-08-01

    Infrared spectroscopy is routinely employed for the identification of organic molecules and, more recently, for the classification of biological materials. We have developed a sample collection method that facilitates infrared analysis of airborne particulates using a diffuse reflectance (DR) technique. Efforts are underway to extend the method to include simultaneous analysis of vapor phase organics by using adsorbent substrates compatible with the DR technique. This series of laboratory results provides proof-of-principle for both the sample collection and data collection processes. Signal processing of the DR spectra is shown to provide rapid qualitative identification of representative aerosol materials, including particulate matter commonly found in the environment. We compare the results for such materials as bacterial spores, pollens and molds, clays and dusts, smoke and soot. Background correction analysis is shown to be useful for differentiation and identification of these constituents. Issues relating to complex mixtures of environmental samples under highly variable conditions are considered. Instrumentation development and materials research are now underway with the aim of constructing a compact sampling system for near real-time monitoring of aerosol and organic pollutants. A miniature, tilt-compensated Fourier transform spectrometer will provide spectroscopic interrogation. A series of advanced digital signal processing methods are also under development to enhance the sensor package. The approach will be useful for industrial applications, chemical and biological agent detection, and environmental monitoring for chemical vapors, hazardous air pollutants, and allergens.

  18. Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves

    NASA Astrophysics Data System (ADS)

    Lindbergh, Tobias; Larsson, Marcus; Szabó, Zoltán; Casimir-Ahn, Henrik; Strömberg, Tomas

    2010-03-01

    Intramyocardial oxygen transport was assessed during open-chest surgery in calves by diffuse reflectance spectroscopy using a small intramuscular fiber-optic probe. The sum of hemo- and myoglobin tissue fraction and oxygen saturation, the tissue fraction and oxidation of cytochrome aa3, and the tissue fraction of methemoglobin were estimated using a calibrated empirical light transport model. Increasing the oxygen content in the inhaled gas, 21%-50%-100%, in five calves (group A) gave an increasing oxygen saturation of 19+/-4%, 24+/-5%, and 28+/-8% (p<0.001, ANOVA repeated measures design) and mean tissue fractions of 1.6% (cytochrome aa3) and 1.1% (hemo- and myoglobin). Cardiac arrest in two calves gave an oxygen saturation lower than 5%. In two calves (group B), a left ventricular assistive device (LVAD pump) was implanted. Oxygen saturation in group B animals increased with LVAD pump speed (p<0.001, ANOVA) and with oxygen content in inhaled gas (p<0.001, ANOVA). The cytochrome aa3 oxidation level was above 96% in both group A and group B calves, including the two cases involving cardiac arrest. In conclusion, the estimated tissue fractions and oxygenation/oxidation levels of the myocardial chromophores during respiratory and hemodynamic provocations were in agreement with previously presented results, demonstrating the potential of the method.

  19. Diffuse reflectance spectroscopy: towards clinical application in breast cancer.

    PubMed

    Evers, Daniel J; Nachabe, Rami; Vranken Peeters, Marie-Jeanne; van der Hage, Jos A; Oldenburg, Hester S; Rutgers, Emiel J; Lucassen, Gerald W; Hendriks, Benno H W; Wesseling, Jelle; Ruers, Theo J M

    2013-01-01

    Diffuse reflectance spectroscopy (DRS) is a promising new technique for breast cancer diagnosis. However, inter-patient variation due to breast tissue heterogeneity may interfere with the accuracy of this technique. To tackle this issue, we aim to determine the diagnostic accuracy of DRS in individual patients. With this approach, DRS measurements of normal breast tissue in every individual patient are directly compared with measurements of the suspected malignant tissue. Breast tissue from 47 female patients was analysed ex vivo by DRS. A total of 1,073 optical spectra were collected. These spectra were analyzed for each patient individually as well as for all patients collectively and results were compared to the pathology analyses. Collective patient data analysis for discrimination between normal and malignant breast tissue resulted in a sensitivity of 90 %, a specificity of 88 %, and an overall accuracy of 89 %. In the individual analyses all measurements per patient were categorized as either benign or malignant. The discriminative accuracy of these individual analyses was nearly 100 %. The diagnosis was classified as uncertain in only one patient. Based on the results presented in this study, we conclude that the analysis of optical characteristics of different tissue classes within the breast of a single patient is superior to an analysis using the results of a cohort data analysis. When integrated into a biopsy device, our results demonstrate that DRS may have the potential to improve the diagnostic workflow in breast cancer.

  20. Diffuse reflectance spectroscopy for the measurement of tissue oxygen saturation.

    PubMed

    Sircan-Kucuksayan, A; Uyuklu, M; Canpolat, M

    2015-12-01

    Tissue oxygen saturation (StO2) is a useful parameter for medical applications. A spectroscopic method has been developed to detect pathologic tissues, due to a lack of normal blood circulation, by measuring StO2. In this study, human blood samples with different levels of oxygen saturation have been prepared and spectra were acquired using an optical fiber probe to investigate the correlation between the oxygen saturation levels and the spectra. A linear correlation between the oxygen saturation and ratio of the intensities (760 nm to 790 nm) of the spectra acquired from blood samples has been found. In a validation study, oxygen saturations of the blood samples were estimated from the spectroscopic measurements with an error of 2.9%. It has also been shown that the linear dependence between the ratio and the oxygen saturation of the blood samples was valid for the blood samples with different hematocrits. Spectra were acquired from the forearms of 30 healthy volunteers to estimate StO2 prior to, at the beginning of, after 2 min, and at the release of total vascular occlusion. The average StO2 of a forearm before and after the two minutes occlusion was significantly different. The results suggested that optical reflectance spectroscopy is a sensitive method to estimate the StO2 levels of human tissue. The technique developed to measure StO2 has potential to detect ischemia in real time.

  1. Reconstructing spectral reflectance from digital camera through samples selection

    NASA Astrophysics Data System (ADS)

    Cao, Bin; Liao, Ningfang; Yang, Wenming; Chen, Haobo

    2016-10-01

    Spectral reflectance provides the most fundamental information of objects and is recognized as the "fingerprint" of them, since reflectance is independent of illumination and viewing conditions. However, reconstructing high-dimensional spectral reflectance from relatively low-dimensional camera outputs is an illposed problem and most of methods requaired camera's spectral responsivity. We propose a method to reconstruct spectral reflectance from digital camera outputs without prior knowledge of camera's spectral responsivity. This method respectively averages reflectances of selected subset from main training samples by prescribing a limit to tolerable color difference between the training samples and the camera outputs. Different tolerable color differences of training samples were investigated with Munsell chips under D65 light source. Experimental results show that the proposed method outperforms classic PI method in terms of multiple evaluation criteria between the actual and the reconstructed reflectances. Besides, the reconstructed spectral reflectances are between 0-1, which make them have actual physical meanings and better than traditional methods.

  2. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle.

    PubMed

    Hoy, Christopher L; Gamm, Ute A; Sterenborg, Henricus J C M; Robinson, Dominic J; Amelink, Arjen

    2013-10-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical properties, enabling quantification of intrinsic fluorescence. In our previous work, we have used a series of pinholes to show that selective illumination and light collection using a coherent fiber bundle can simulate a single solid-core optical fiber with variable diameter for the purposes of MDSFR spectroscopy. Here, we describe the construction and validation of a clinical MDSFR/SFF spectroscopy system that avoids the limitations encountered with pinholes and free-space optics. During one measurement, the new system acquires reflectance spectra at the effective diameters of 200, 600, and 1000 μm, and a fluorescence spectrum at an effective diameter of 1000 μm. From these spectra, we measure the absolute absorption coefficient, μ(a), reduced scattering coefficient, μ'(s'), phase function parameter, γ, and intrinsic fluorescence, Qμ(a,x)(f), across the measured spectrum. We validate the system using Intralipid- and polystyrene sphere-based scattering phantoms, with and without the addition of the absorber Evans Blue. Finally, we demonstrate the combined MDSFR/SFF of phantoms with varying concentrations of Intralipid and fluorescein, wherein the scattering properties are measured by MDSFR and used to correct the SFF spectrum for accurate quantification of Qμ(a,x)(f).

  3. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NASA Astrophysics Data System (ADS)

    Amelink, A.; Hoy, C. L.; Gamm, U. A.; Sterenborg, H. J. C. M.; Robinson, D. J.

    2014-03-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical properties, enabling quantification of intrinsic fluorescence. In our previous work, we have used a series of pinholes to show that selective illumination and light collection using a coherent fiber bundle can simulate a single solid-core optical fiber with variable diameter for the purposes of MDSFR spectroscopy. Here, we describe the construction and validation of a clinical MDSFR/SFF spectroscopy system that avoids the limitations encountered with pinholes and free-space optics. During one measurement, the new system acquires reflectance spectra at the effective diameters of 200, 600, and 1000 μm, and a fluorescence spectrum at an effective diameter of 1000 μm. From these spectra, we measure the absolute absorption coefficient, μa, reduced scattering coefficient, μ's, phase function parameter, γ, and intrinsic fluorescence, Qμfa, across the measured spectrum. We validate the system using Intralipid- and polystyrene sphere-based scattering phantoms, with and without the addition of the absorber Evans Blue. Finally, we demonstrate the combined MDSFR/SFF of phantoms with varying concentrations of Intralipid and fluorescein, wherein the scattering properties are measured by MDSFR and used to correct the SFF spectrum for accurate quantification of Qμfa.

  4. Mid-IR fiber-optic reflectance spectroscopy for identifying the finish on wooden furniture.

    PubMed

    Poli, T; Chiantore, O; Nervo, M; Piccirillo, A

    2011-05-01

    Mid-IR fiber-optic reflectance spectroscopy (FORS) is a totally noninvasive infrared analytical technique allowing the investigation of artworks without the need for any sampling. The development and optimization of this analytical methodology can provide a tool that is capable of supporting conservators during the first steps of their interventions, yielding fast results and dramatically reducing the number of samples needed to identify the materials involved. Furthermore, since reflection IR spectra suffer from important spectral anomalies that complicate accurate spectral interpretation, it is important to characterize known reference materials and substrates in advance. This work aims to verify the possibility of investigating and identifying the most widely used wood finishes by means of fiber-optic (chalcogenide and metal halides) mid-infrared spectroscopy. Two historically widely employed wood finishes (beeswax, shellac) and two modern ones (a hydrogenated hydrocarbon resin and a microcrystalline wax) were investigated in an extended IR range (from 1000 to 6000 cm(-1)) with reflectance spectroscopy and with FORS. The broad spectral response of the MCT detector was exploited in order to include overtones and combination bands from the NIR spectral range in the investigation. The reflectance spectra were compared with those collected in transmission mode in order to highlight modifications to shapes and intensities, to assign absorptions, and finally to select "marker" bands indicating the presence of certain finishing materials, even when applied onto a substrate such as wood, which shows many absorptions in the mid-infrared region. After the characterization, the different products were applied to samples of aged pear wood and investigated with the same techniques in order to check the ability of mid-IR FORS to reveal the presence and composition of the product on the wooden substrate.

  5. Near- and Mid-Infrared Reflectance Spectroscopy for the Quantitative and Qualitative Analysis of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several decades near-infrared diffuse reflectance spectroscopy (NIRS) has been used to determine the composition of a variety of agricultural products. More recently, diffuse reflectance Fourier transform mid-infrared spectroscopy (DRIFTS) has similarly been shown to be able to determine the co...

  6. Fluorescence and Diffuse Reflectance Spectroscopy for Breast Cancer Diagnosis During Core Needle Biopsy

    DTIC Science & Technology

    2007-09-01

    The goal of this project is to explore the potential of using tissue fluorescence and diffuse reflectance spectroscopy for breast cancer detection...sensor based on tissue fluorescence and diffuse reflectance spectroscopy as an adjunct diagnostic tool, which has the potential to provide guidance for core needle breast biopsy.

  7. Spectral reflectance and photometric properties of selected rocks

    USGS Publications Warehouse

    Watson, Robert D.

    1971-01-01

    Studies of the spectral reflectance and photometric properties of selected rocks at the USGS Mill Creek, Oklahoma, remote sensing test site demonstrate that discrimination of rock types is possible through reflection measurements, but that the discrimination is complicated by surface conditions, such as weathering and lichen growth. Comparisons between fresh-broken, weathered, and lichen-covered granite show that whereas both degree of weathering and amount of lichen cover change the reflectance quality of the granite, lichen cover also considerably changes the photometric properties of the granite. Measurements of the spectral reflectance normal to the surface of both limestone and dolomite show limestone to be more reflective than dolomite in the wavelength range from 380 to 1550 nanometers. The reflectance difference decreases at view angles greater than 40° owing to the difference in the photometric properties of dolomite and limestone.

  8. [Determination of baicalin and total flavonoids in Radix scutellariae by near infrared diffuse reflectance spectroscopy].

    PubMed

    Huang, Qian-qian; Pan, Rui-le; Wei, Jian-he; Wu, Yan-wei; Zhang, Lu-da

    2009-09-01

    The objective of the present study was to develop a method for rapid determination of baicalin and total flavonoids in radix scutellariae by near infrared diffuse reflectance spectroscopy. Sixty one samples of radix scutellariae from different areas containing baicalin of 12.24%-21.34% and total flavonoids of 16.08%-26.52% were used. The range of 8000-4000 cm(-1) of near infrared spectra (NIRS) was selected. Calibration models were established using the PLS(partial least squares). Different spectra pretreatment methods were compared and the optimal model was selected. The study showed that first derivative pretreatments and minimum-maximum normalization methods can be used to extracted spectra information thoroughly to analyze the contents of baicalin and total flavonoids, respectively. The correlation coefficient (r) of baicalin was 0.9024, SEC was 1.01 (standard deviation of the calibration sets) and SEP was 0.8764 (standarddeviation ofthe prediction sets). The correlation coefficient(r) of total flavonoids was 0.9527, SEC was 0.7850 and SEP was 0.5211. Results indicated that near infrared diffuse reflectance spectroscopy method can be used to analyze the main active components in radix scutellariae rapidly.

  9. Rapid and nondestructive analysis of pharmaceutical products using near-infrared diffuse reflectance spectroscopy.

    PubMed

    Li, Pao; Du, Guorong; Cai, Wensheng; Shao, Xueguang

    2012-11-01

    Near-infrared diffuse reflectance spectroscopy (NIRDRS) was applied to classification and quantification of azithromycin tablets with the aid of chemometric multivariate analysis. Repeatability was investigated by repeated measurements, and the effect of morphology was examined by preparing the tablets in four forms, i.e. tablet product, tablet without coating, powder of tablet without coating, and powder of tablet. Furthermore, baseline elimination by continuous wavelet transform (CWT) and wavenumber selection was discussed for improving the repeatability and accuracy of the method. The results show that the spectra of the samples in the four forms can be measured with an acceptable repeatability, and classification of manufacture sites and quantitative analysis of the active pharmaceutical ingredient (API) can be achieved by principal component analysis (PCA) and partial least squares (PLS) regression, respectively. More importantly, baseline elimination and wavenumber selection can significantly simplify the calculation and improve the results.

  10. Determination of plant silicon content with near infrared reflectance spectroscopy

    PubMed Central

    Smis, Adriaan; Ancin Murguzur, Francisco Javier; Struyf, Eric; Soininen, Eeva M.; Herranz Jusdado, Juan G.; Meire, Patrick; Bråthen, Kari Anne

    2014-01-01

    Silicon (Si) is one of the most common elements in the earth bedrock, and its continental cycle is strongly biologically controlled. Yet, research on the biogeochemical cycle of Si in ecosystems is hampered by the time and cost associated with the currently used chemical analysis methods. Here, we assessed the suitability of Near Infrared Reflectance Spectroscopy (NIRS) for measuring Si content in plant tissues. NIR spectra depend on the characteristics of the present bonds between H and N, C and O, which can be calibrated against concentrations of various compounds. Because Si in plants always occurs as hydrated condensates of orthosilicic acid (Si(OH)4), linked to organic biomolecules, we hypothesized that NIRS is suitable for measuring Si content in plants across a range of plant species. We based our testing on 442 samples of 29 plant species belonging to a range of growth forms. We calibrated the NIRS method against a well-established plant Si analysis method by using partial least-squares regression. Si concentrations ranged from detection limit (0.24 ppmSi) to 7.8% Si on dry weight and were well predicted by NIRS. The model fit with validation data was good across all plant species (n = 141, R2 = 0.90, RMSEP = 0.24), but improved when only graminoids were modeled (n = 66, R2 = 0.95, RMSEP = 0.10). A species specific model for the grass Deschampsia cespitosa showed even slightly better results than the model for all graminoids (n = 16, R2 = 0.93, RMSEP = 0.015). We show for the first time that NIRS is applicable for determining plant Si concentration across a range of plant species and growth forms, and represents a time- and cost-effective alternative to the chemical Si analysis methods. As NIRS can be applied concurrently to a range of plant organic constituents, it opens up unprecedented research possibilities for studying interrelations between Si and other plant compounds in vegetation, and for addressing the role of Si in ecosystems across a range of Si

  11. Technique for examining biological materials using diffuse reflectance spectroscopy and the kubelka-munk function

    DOEpatents

    Alfano, Robert R.; Yang, Yuanlong

    2003-09-02

    Method and apparatus for examining biological materials using diffuse reflectance spectroscopy and the Kubelka-Munk function. In one aspect, the method is used to determine whether a tissue sample is cancerous or not and comprises the steps of (a) measuring the diffuse reflectance from the tissue sample at a first wavelength and at a second wavelength, wherein the first wavelength is a wavelength selected from the group consisting of 255-265 nm and wherein the second wavelength is a wavelength selected from the group consisting of 275-285 nm; (b) using the Kubelka-Munk function to transform the diffuse reflectance measurement obtained at the first and second wavelengths; and (c) comparing a ratio or a difference of the transformed Kubelka-Munk measurements at the first and second wavelengths to appropriate standards determine whether or not the tissue sample is cancerous. One can use the spectral profile of KMF between 250 nm to 300 nm to determine whether or not the tissue sample is cancerous or precancerous. According to the value at the first and second wavelengths determine whether or not the malignant tissue is invasive or mixed invasive and in situ or carcinoma in situ.

  12. The view of AGN-host alignment via reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; Parker, Michael L.; Reynolds, Christopher S.; Fabian, Andrew C.; Lohfink, Anne M.

    2016-04-01

    The fuelling of active galactic nuclei (AGN) - via material propagated through the galactic disc or via minor mergers - is expected to leave an imprint on the alignment of the sub-pc disc relative to the host galaxy's stellar disc. Determining the inclination of the inner disc usually relies on the launching angle of the jet; here instead we use the inclination derived from reflection fits to a sample of AGN. We determine the distorting effect of unmodelled Fe XXV/XXVI features and, via extensive simulations, determine the difference in disc inclination resulting from the use of RELXILL compared to REFLIONX. We compare inner disc inclinations to those for the host galaxy stellar disc derived from the Hubble formula and, via Monte Carlo simulations, find a strong lack of a correlation (at ≫5σ) implying either widespread feeding via mergers if we assume the sample to be homogeneous, or that radiative disc warps are distorting our view of the emission. However, we find that by removing a small (˜1/5) subset of AGN, the remaining sample is consistent with random sampling of an underlying 1:1 correlation (at the 3σ level). A heterogenous sample would likely imply that our view is not dominated by radiative disc warps but instead by different feeding mechanisms with the majority consistent with coplanar accretion (although this may be the result of selection bias), whilst a smaller but not insignificant fraction may have been fuelled by minor mergers in the recent history of the host galaxy.

  13. Reflectance spectroscopy in planetary science: Review and strategy for the future

    NASA Technical Reports Server (NTRS)

    Mccord, Thomas B. (Editor)

    1987-01-01

    Reflectance spectroscopy is a remote sensing technique used to study the surfaces and atmospheres of solar system bodies. It provides first-order information on the presence and amounts of certain ions, molecules, and minerals on a surface or in an atmosphere. Reflectance spectroscopy has become one of the most important investigations conducted on most current and planned NASA Solar System Exploration Program space missions. This book reviews the field of reflectance spectroscopy, including information on the scientific technique, contributions, present conditions, and future directions and needs.

  14. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  15. Oblique polarized reflectance spectroscopy for depth sensitive measurements in the epithelial tissue

    NASA Astrophysics Data System (ADS)

    Jimenez, Maria K.; Fradkin, Leonid; Nieman, Linda T.; Lam, Sylvia; Poh, Catherine; Sokolov, Konstantin

    2013-02-01

    Optical spectroscopy has shown potential as a tool for precancer detection by discriminating alterations in the optical properties within epithelial tissues. Identifying depth-dependent alterations associated with the progression of epithelial cancerous lesions can be especially challenging in the oral cavity due to the variable thickness of the epithelium and the presence of keratinization. Optical spectroscopy of epithelial tissue with improved depth resolution would greatly assist in the isolation of optical properties associated with cancer progression. Here, we report a fiber optic probe for oblique polarized reflectance spectroscopy (OPRS) that is capable of depth sensitive detection by combining the following three approaches: multiple beveled fibers, oblique collection geometry, and polarization gating. We analyze how probe design parameters are related to improvements in collection efficiency of scattered photons from superficial tissue layers and to increased depth discrimination within epithelium. We have demonstrated that obliquely-oriented collection fibers increase both depth selectivity and collection efficiency of scattering signal. Currently, we evaluate this technology in a clinical trial of patients presenting lesions suspicious for dysplasia or carcinoma in the oral cavity. We use depth sensitive spectroscopic data to develop automated algorithms for analysis of morphological and architectural changes in the context of the multilayer oral epithelial tissue. Our initial results show that OPRS has the potential to improve the detection and monitoring of epithelial precancers in the oral cavity.

  16. Magnetically tunable selective reflection of light by heliconical cholesterics

    NASA Astrophysics Data System (ADS)

    Salili, S. M.; Xiang, J.; Wang, H.; Li, Q.; Paterson, D. A.; Storey, J. M. D.; Imrie, C. T.; Lavrentovich, O. D.; Sprunt, S. N.; Gleeson, J. T.; Jákli, A.

    2016-10-01

    We present studies of chiral nematic liquid crystals composed of flexible dimer molecules subject to large dc magnetic fields between 0 and 31 T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. The use of magnetic field here instead of electric field allows precise measurements of some material constants and holds promise for wireless tuning of selective reflection.

  17. Magnetically tunable selective reflection of light by heliconical cholesterics.

    PubMed

    Salili, S M; Xiang, J; Wang, H; Li, Q; Paterson, D A; Storey, J M D; Imrie, C T; Lavrentovich, O D; Sprunt, S N; Gleeson, J T; Jákli, A

    2016-10-01

    We present studies of chiral nematic liquid crystals composed of flexible dimer molecules subject to large dc magnetic fields between 0 and 31 T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. The use of magnetic field here instead of electric field allows precise measurements of some material constants and holds promise for wireless tuning of selective reflection.

  18. Feasibility of quantitative diffuse reflectance spectroscopy for targeted measurement of renal ischemia during laparoscopic partial nephrectomy.

    PubMed

    Goel, Utsav O; Maddox, Michael M; Elfer, Katherine N; Dorsey, Philip J; Wang, Mei; McCaslin, Ian Ross; Brown, J Quincy; Lee, Benjamin R

    2014-01-01

    Reduction of warm ischemia time during partial nephrectomy (PN) is critical to minimizing ischemic damage and improving postoperative kidney function, while maintaining tumor resection efficacy. Recently, methods for localizing the effects of warm ischemia to the region of the tumor via selective clamping of higher-order segmental artery branches have been shown to have superior outcomes compared with clamping the main renal artery. However, artery identification can prolong operative time and increase the blood loss and reduce the positive effects of selective ischemia. Quantitative diffuse reflectance spectroscopy (DRS) can provide a convenient, real-time means to aid in artery identification during laparoscopic PN. The feasibility of quantitative DRS for real-time longitudinal measurement of tissue perfusion and vascular oxygenation in laparoscopic nephrectomy was investigated in vivo in six Yorkshire swine kidneys (n=three animals ). DRS allowed for rapid identification of ischemic areas after selective vessel occlusion. In addition, the rates of ischemia induction and recovery were compared for main renal artery versus tertiary segmental artery occlusion, and it was found that the tertiary segmental artery occlusion trends toward faster recovery after ischemia, which suggests a potential benefit of selective ischemia. Quantitative DRS could provide a convenient and fast tool for artery identification and evaluation of the depth, spatial extent, and duration of selective tissue ischemia in laparoscopic PN.

  19. Feasibility of quantitative diffuse reflectance spectroscopy for targeted measurement of renal ischemia during laparoscopic partial nephrectomy

    NASA Astrophysics Data System (ADS)

    Goel, Utsav O.; Maddox, Michael M.; Elfer, Katherine N.; Dorsey, Philip J.; Wang, Mei; McCaslin, Ian Ross; Brown, J. Quincy; Lee, Benjamin R.

    2014-10-01

    Reduction of warm ischemia time during partial nephrectomy (PN) is critical to minimizing ischemic damage and improving postoperative kidney function, while maintaining tumor resection efficacy. Recently, methods for localizing the effects of warm ischemia to the region of the tumor via selective clamping of higher-order segmental artery branches have been shown to have superior outcomes compared with clamping the main renal artery. However, artery identification can prolong operative time and increase the blood loss and reduce the positive effects of selective ischemia. Quantitative diffuse reflectance spectroscopy (DRS) can provide a convenient, real-time means to aid in artery identification during laparoscopic PN. The feasibility of quantitative DRS for real-time longitudinal measurement of tissue perfusion and vascular oxygenation in laparoscopic nephrectomy was investigated in vivo in six Yorkshire swine kidneys (n=three animals). DRS allowed for rapid identification of ischemic areas after selective vessel occlusion. In addition, the rates of ischemia induction and recovery were compared for main renal artery versus tertiary segmental artery occlusion, and it was found that the tertiary segmental artery occlusion trends toward faster recovery after ischemia, which suggests a potential benefit of selective ischemia. Quantitative DRS could provide a convenient and fast tool for artery identification and evaluation of the depth, spatial extent, and duration of selective tissue ischemia in laparoscopic PN.

  20. Select Higher Education Chief Diversity Officers: Roles, Realities, and Reflections

    ERIC Educational Resources Information Center

    Pittard, Lesley-Anne

    2010-01-01

    This naturalistic inquiry sought to obtain the "essence" of select administrative chief diversity officers (CDOs), by exploring their participant profiles, organizational realities, and career reflections. Participants self-identified as their institution's senior most chief executive, were poised executively, and charged to facilitate an…

  1. Nonlinear infrared spectroscopy free from spectral selection

    PubMed Central

    Paterova, Anna; Lung, Shaun; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.

    2017-01-01

    Infrared (IR) spectroscopy is an indispensable tool for many practical applications including material analysis and sensing. Existing IR spectroscopy techniques face challenges related to the inferior performance and the high cost of IR-grade components. Here, we develop a new method, which allows studying properties of materials in the IR range using only visible light optics and detectors. It is based on the nonlinear interference of entangled photons, generated via Spontaneous Parametric Down Conversion (SPDC). In our interferometer, the phase of the signal photon in the visible range depends on the phase of an entangled IR photon. When the IR photon is traveling through the media, its properties can be found from observations of the visible photon. We directly acquire the SPDC signal with a visible range CCD camera and use a numerical algorithm to infer the absorption coefficient and the refraction index of the sample in the IR range. Our method does not require the use of a spectrometer and a slit, thus it allows achieving higher signal-to-noise ratio than the earlier developed method. PMID:28218302

  2. Nonlinear infrared spectroscopy free from spectral selection

    NASA Astrophysics Data System (ADS)

    Paterova, Anna; Lung, Shaun; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.

    2017-02-01

    Infrared (IR) spectroscopy is an indispensable tool for many practical applications including material analysis and sensing. Existing IR spectroscopy techniques face challenges related to the inferior performance and the high cost of IR-grade components. Here, we develop a new method, which allows studying properties of materials in the IR range using only visible light optics and detectors. It is based on the nonlinear interference of entangled photons, generated via Spontaneous Parametric Down Conversion (SPDC). In our interferometer, the phase of the signal photon in the visible range depends on the phase of an entangled IR photon. When the IR photon is traveling through the media, its properties can be found from observations of the visible photon. We directly acquire the SPDC signal with a visible range CCD camera and use a numerical algorithm to infer the absorption coefficient and the refraction index of the sample in the IR range. Our method does not require the use of a spectrometer and a slit, thus it allows achieving higher signal-to-noise ratio than the earlier developed method.

  3. Diffuse reflectance spectroscopy study of in vitro tissue for nasopharyngeal carcinoma diagnosis

    NASA Astrophysics Data System (ADS)

    Xu, Zhihong; Lin, Xueliang; Ge, Xiaosong; Lin, Duo; Huang, Wei

    2016-10-01

    Diffuse reflectance spectroscopy is a non-contact, non-invasive, and low-cost optical technique that provides real-time feedback about the absorptive characteristics and the microstructure properties of biological tissue. This optical technique shows the potential for monitoring metabolic status associated with malignancy transformation. Nasopharyngeal carcinoma (NPC) is the third most frequently diagnosed cancer associated with virus and is the most common male malignancy with a characteristic regional and racial distribution worldwide. This paper investigates the current screening state of nasopharyngeal malignancies and also provides an overview on the applications of diffuse reflectance spectroscopy in the cancer detection. Furthermore, the latest research relevant to the diagnosis of NPC in vitro tissue using diffuse reflectance spectroscopy is introduced. The results of diffuse reflectance spectroscopy are summarized, showing a significant experimental and clinical value for further NPC detection in vivo in the future.

  4. Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-07-01

    We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.

  5. Quantitative characterization of traumatic bruises by combined pulsed photothermal radiometry and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Randeberg, Lise L.; Majaron, Boris

    2015-02-01

    We apply diffuse reflectance spectroscopy (DRS) and pulsed photothermal radiometry (PPTR) for characterization of the bruise evolution process. While DRS provides information in a wide range of visible wavelengths, the PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin). In this study, we simulate experimental DRS spectra and PPTR signals using the Monte Carlo technique and focus on characterization of a suitable fitting approach for their analysis. We find inverse Monte Carlo to be superior to the diffusion approximation approach for the inverse analysis of DRS spectra. The analysis is then augmented with information obtainable by the fitting of the PPTR signal. We show that both techniques can be coupled in a combined fitting approach. The combining of two complementary techniques improves the robustness and accuracy of the inverse analysis, enabling a comprehensive quantitative characterization of the bruise evolution dynamics.

  6. Determination of styrene-butadiene rubber composition by attenuated total internal reflection infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Orlov, A. S.; Kiselev, S. A.; Kiseleva, E. A.; Budeeva, A. V.; Mashukov, V. I.

    2013-03-01

    A rapid method for determining the composition of styrene-butadiene rubber using attenuated total internal reflection infrared spectroscopy was proposed. PMR and 13C NMR spectroscopy and infrared transmission spectroscopy were used as absolute techniques for determining the compositions of calibration samples. It was shown that the method was applicable to a wide range of styrene-butadiene rubbers, did not require additional sample preparation, and was easily reproducible.

  7. Improved depth resolution in near-infrared diffuse reflectance spectroscopy using obliquely oriented fibers

    NASA Astrophysics Data System (ADS)

    Thilwind, Rachel Estelle; 't Hooft, Gert; Uzunbajakava, Natallia E.

    2009-03-01

    We demonstrate a significant improvement of depth selectivity when using obliquely oriented fibers for near-infrared (NIR) diffuse reflectance spectroscopy. This is confirmed by diffuse reflectance measurements of a two-layer tissue-mimicking phantom across the spectral range from 1000 to 1940 nm. The experimental proof is supported by Monte Carlo simulations. The results reveal up to fourfold reduction in the mean optical penetration depth, twofold reduction in its variation, and a decrease in the number of scattering events when a single fiber is oriented at an angle of 60 deg. The effect of reducing the mean optical penetration depth is enhanced by orienting both fibers inwardly. Using outwardly oriented fibers enables more selective probing of deeper layers, while reducing the contribution from surface layers. We further demonstrate that the effect of an inward oblique arrangement can be approximated to a decrease in fiber-to-fiber separation in the case of a perpendicular fiber arrangement. This approximation is valid in the weak- or absorption-free regime. Our results assert the advantages of using obliquely oriented fibers when attempting to specifically address superficial tissue layers, for example, for skin cancer detection, or in noninvasive glucose monitoring. Such flexibility could be further advantageous in a range of minimally invasive applications, including catheter-based interventions.

  8. Doppler-shifted reflections of X rays in beamfoil spectroscopy

    NASA Technical Reports Server (NTRS)

    Bernstein, E. M.; Mcintyre, L. C., Jr.

    1976-01-01

    Carbon foils were positioned at roughly 10 deg to the conventional perpendicular position so that the spectrometer would view the beam on emergence from the foil, with no radiation shielded by a bowed or wrinkled foil or by the foil holder. Extraneous peaks due to reflected radiation were detected in the spectrum obtained with the tilted foil. A large satellite appears longward of the spectral line and is attributed to Doppler-shifted radiation reflected from the foil surface. Special tests arranged to validate the origin of the satellites are described. The relative intensity of the reflected radiation compared with the direct radiation observed is at variance with the relative intensities reported for longer wavelengths. The reasons for this, possible effects of spectrometer geometry, and applications in the investigation or generation of polarization remain to be investigated

  9. Quantitative reflection spectroscopy at the human ocular fundus

    NASA Astrophysics Data System (ADS)

    Hammer, Martin; Schweitzer, Dietrich

    2002-01-01

    A new model of the reflection of the human ocular fundus on the basis of the adding-doubling method, an approximate solution of the radiative transport equation, is described. This model enables the calculation of the concentrations of xanthophyll in the retina, of melanin in the retinal pigment epithelium and the choroid, and of haemoglobin in the choroid from fundus reflection spectra. The concentration values found in 12 healthy subjects are in excellent agreement with published data. In individual cases of pathologic fundus alterations, possible benefits to the ophthalmologic diagnostics are demonstrated.

  10. Mode Selective Excitation Using Coherent Control Spectroscopy

    SciTech Connect

    Singh, Ajay K.; Konradi, Jakow; Materny, Arnulf; Sarkar, Sisir K.

    2008-11-14

    Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. However, femtosecond laser pulses are spectrally broad and therefore coherently excite several molecular modes. While the temporal resolution is high, usually no mode-selective excitation is possible. This paper demonstrates the feasibility of selectively exciting specific molecular vibrations in solution phase with shaped fs laser excitation using a feedback-controlled optimization technique guided by an evolutionary algorithm. This approach is also used to obtain molecule-specific CARS spectra from a mixture of different substances. The optimized phase structures of the fs pulses are characterized to get insight into the control process. Possible applications of the spectrum control are discussed.

  11. Determining Water Content of Geologic Materials Using Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Milliken, R. E.; Mustard, J. F.

    2004-03-01

    TGA data and reflectance spectra are used to track changes in water absorptions as a function of absolute water content. Calculating band depth areas of absorptions in VIS-NIR data may prove useful for quantifying the water content of Mars' surface.

  12. Identification of thermal degradation using probabilistic models in reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Criner, A. K.; Cherry, A. J.; Cooney, A. T.; Katter, T. D.; Banks, H. T.; Hu, Shuhua; Catenacci, Jared

    2015-03-01

    Different probabilistic models of molecular vibration modes are considered to model the reflectance spectra of chemical species through the dielectric constant. We discuss probability measure estimators in parametric and nonparametric models. Analyses of ceramic matrix composite samples that have been heat treated for different amounts of times are compared. We finally compare these results with the analysis of vitreous silica using nonparametric models.

  13. Monitoring bruise age using visible diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    McMurdy, John W.; Duffy, Susan; Crawford, Gregory P.

    2007-02-01

    The ability to determine the age of a bruise of unknown age mechanism is important in matters of domestic and child abuse and forensics. While physicians are asked to make clinical judgment on the age of a bruise using color and tenderness, studies have shown that a physicians estimate is highly inaccurate and in cases no better than chance alone. We present here the temporal progression of reflection spectrum collected from accidentally inflicted contusions in adult and child study participants with a synopsis of the observed phenomena. Reflection spectra collected using a portable fiber optic reflection spectrometer can track the increase in extravasated hemoglobin from trauma caused blood vessel rupture and subsequent removal of this hemoglobin occurring concurrent with an increase in the absorption attributed to the breakdown product bilirubin. We hypothesize that this time dependent pattern can be used to determine the age of an unknown bruise in an individual provided rate constant information for the patient can be determined in a controlled calibration bruise. Using reflection spectra to estimate bruise age can provide a rapid and noninvasive method to improve the ability of physicians in dating the age of a contusion.

  14. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    PubMed

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil.

  15. ChemCam Passive Reflectance Spectroscopy at Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Johnson, J. R.; Bell, J. F.; Cloutis, E.; Bender, S.; Blaney, D. L.; Ehlmann, B. L.; Gasnault, O.; Kinch, K. M.; Le Mouelic, S.; Rice, M. S.; Wiens, R. C.; DeFlores, L.; Team, M.

    2013-12-01

    The Laser-Induced Breakdown Spectrometer (LIBS) portion of the ChemCam instrument on the Mars Science Laboratory Curiosity rover uses 3 dispersive spectrometers to cover the ultraviolet (240-342 nm), visible (382-469 nm) and visible/near-infrared (474-906 nm) spectral regions at high spectral (<0.5nm) and spatial (0.65mrad) resolution. In active LIBS mode, light emitted from a laser-generated plasma is dispersed onto these spectrometers and used to detect elemental emission lines. Typical observations include 3 msec-exposure 'dark' spectra (acquired with the LIBS laser off) used to remove the background signal from the LIBS measurement. Similar 'passive' observations of the ChemCam calibration target holder can be made at similar times of day and at identical exposure times (to minimize variations from dark current). Because this target exhibits ~95% flat reflectance in the ~400-900 nm region, radiance spectra ratios (surface/calibration target) can be normalized to known calibration target lab spectra to produce relative reflectance spectra (400-900 nm) with an estimated accuracy of 10-20%. Initial results replicated the known spectral shape and overall reflectance values of the ChemCam calibration targets and green color chip on the Mastcam calibration target. Dust contamination was evident, although dust on the ChemCam calibration targets is minimized by their tilted placement on the rover deck. All ChemCam targets that were sunlit during LIBS acquisition (~80% of all measurements) provide 'dark' spectra for which relative reflectance spectra can be obtained. Owing to the dusty nature of the Gale landing sites, passive spectra observed to date exhibit spectral shapes indicative of ferric phases, similar to spectra of palagonitic soils. Most spectra are bracketed in reflectance by typical 'bright' and 'dark' spectra from the OMEGA and CRISM orbital spectrometers. Preliminary Mastcam reflectance spectra are similar, providing additional confidence regarding the

  16. Reflection Electron Energy Loss Spectroscopy of Iron Monosilicide

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2017-02-01

    X-ray photoelectron spectra, reflection electron energy loss spectra, and inelastic electron scattering cross section spectra of iron monosilicide FeSi are investigated. It is shown that the spectra of inelastic electron scattering cross section have advantages over the reflection electron energy loss spectra in studying the processes of electron energy losses. An analysis of the fine structure of the inelastic electron scattering cross section spectra allows previously unresolved peaks to be identified and their energy, intensity, and nature to be determined. The difference between energies of fitting loss peaks in the spectra of inelastic electron scattering cross section of FeSi and pure Fe are more substantial than the chemical shifts in X-ray photoelectron spectra, which indicates the possibility of application of the fine structure of the spectra of inelastic electron scattering cross section for elemental analysis.

  17. Microwave Reflection Spectroscopy of a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Liu, Ruiyuan; Du, Lingjie; Du, Rui-Rui; Pfeiffer, Loren; West, Ken

    Cyclotron resonance (CR) is a standard method to determine the carrier effective mass in two-dimensional electron systems, typically by measuring/analyzing the absorption or transmission signal. Here we report a microwave spectrometer utilizing the reflection signal. In our experiment setup based on a top-loading helium3 cryostat and a superconducting solenoid, the microwave (up to 40GHz) is sent down via a coax cable to the sample surface, and the reflection signal is then collected by the same cable and fed upward to a directional coupler, and being detected. We demonstrate the applicability of the spectrometer by measuring the CR of high-mobility electrons or holes in GaAs/AlGaAs quantum wells. The construction of spectrometer, preliminary data, and brief discussions will be presented. The work at Rice was supported by Welch Foundation Grant C-1682.

  18. Optical characterization of volcanic ash using diffuse reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Bravo, D. Kelly; Falcón, Nelsón; Narea, Freddy J.; Muñoz, Rafael A.; Muñoz, Aaron A.

    2013-11-01

    The determination of the optical parameters are important for remote sensing and aircraft, in this case allow the difference between a cloud composed solely of water and water plus ash. Therefore, this research is intended to determine the optical properties of the ash four active volcanoes, by studying the spectral resolution reflectance interpreting the results in the approximation of Kubelka - Munk equation through the transfer equation radiative. The results allow classifying these ashes depending on their place of origin.

  19. Early detection and differentiation of venous and arterial occlusion in skin flaps using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy.

    PubMed

    Zhu, Caigang; Chen, Shuo; Chui, Christopher Hoe-Kong; Tan, Bien-Keem; Liu, Quan

    2016-02-01

    Our previous preclinical study demonstrated that both visible diffuse reflectance and autofluorescence spectroscopy, each of which yields a different set of physiological information, can predict skin flap viability with high accuracy in a MacFarlane rat dorsal skin flap model. In this report, we further evaluated our technique for the early detection and differentiation of venous occlusion and arterial occlusion in a rat groin flap model. We performed both diffuse reflectance and autofluorescence measurements on the skin flap model and statistically differentiated between flaps with and without occlusions as well as between flaps with venous occlusion and those with arterial occlusion based on these non-invasive optical measurements. Our preliminary results suggested that visible diffuse reflectance and autofluorescence spectroscopy can be potentially used clinically to detect both venous and arterial occlusion and differentiate one from the other accurately at an early time point.

  20. Early detection and differentiation of venous and arterial occlusion in skin flaps using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy

    PubMed Central

    Zhu, Caigang; Chen, Shuo; Chui, Christopher Hoe-Kong; Tan, Bien-Keem; Liu, Quan

    2016-01-01

    Our previous preclinical study demonstrated that both visible diffuse reflectance and autofluorescence spectroscopy, each of which yields a different set of physiological information, can predict skin flap viability with high accuracy in a MacFarlane rat dorsal skin flap model. In this report, we further evaluated our technique for the early detection and differentiation of venous occlusion and arterial occlusion in a rat groin flap model. We performed both diffuse reflectance and autofluorescence measurements on the skin flap model and statistically differentiated between flaps with and without occlusions as well as between flaps with venous occlusion and those with arterial occlusion based on these non-invasive optical measurements. Our preliminary results suggested that visible diffuse reflectance and autofluorescence spectroscopy can be potentially used clinically to detect both venous and arterial occlusion and differentiate one from the other accurately at an early time point. PMID:26977363

  1. Diffuse reflectance spectroscopy of pre- and post-treated oral submucous fibrosis: an in vivo study

    NASA Astrophysics Data System (ADS)

    Sivabalan, S.; Ponranjini Vedeswari, C.; Jayachandran, S.; Koteeswaran, D.; Pravda, C.; Aruna, P.; Ganesan, S.

    2010-02-01

    Oral submucous fibrosis (OSF) is a high risk precancerous condition characterized by changes in the connective tissue fibers of the lamina propria and deeper parts leading to stiffness of the mucosa and restricted mouth opening, fibrosis of the lining mucosa of the upper digestive tract involving the oral cavity, oro- and hypo-pharynx and the upper two-thirds of the oesophagus. Optical reflectance measurements have been used to extract diagnostic information from a variety of tissue types, in vivo. We apply diffuse reflectance spectroscopy to quantitatively monitor tumour response to chemotherapy. Twenty patients with submucous fibrosis were diagnosed with diffuse reflectance spectroscopy and treated with the chemotherapy drug, Dexamethasone sodium phosphate and Hyaluronidase injection for seven weeks and after the treatment they were again subjected to the diffuse reflectance spectroscopy. The major observed spectral alterations on pre and post treated submucous fibrosis is an increase in the diffuse reflectance from 450 to 600 nm. Normal mucosa has showed higher reflectance when compared to the pre and post-treated cases. The spectral changes were quantified and correlated to conventional diagnostic results viz., maximum mouth opening, tongue protrusion and burning sensation. The results of this study suggest that the diffuse reflectance spectroscopy may also be considered as complementary optical techniques to monitor oral tissue transformation.

  2. Understanding the composition of the lunar mare through reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Denevi, Brett Wilcox

    2007-08-01

    In order to quantify the spectral behavior of maturity variations in the mare, spectral trends of nearly 10,000 craters in six mare regions are examined. Radiative transfer theory is used to model these trends in order to better understand their causes. The maturity trends are confirmed to be more parallel than radial as previously suggested, and this fact is exploited to develop a new algorithm for determination of iron content in mare regions. This new mare iron algorithm better compensates for maturity than previous methods, and uncertainties due to maturity variations are less than 0.5 wt% FeO. Measured optical constants of synthetic glasses of lunar-like compositions are used to predict the optical constants of any glass of an arbitrary combination of FeO and TiO 2 content. These optical constants are employed along with radiative transfer theory to determine composition from telescopic spectra of three regional lunar pyroclastic deposits which are likely to contain large amounts of glass: the Aristarchus Plateau, Mare Humorum, and Sulpicius Gallus. The imaginary coefficient of the complex index of refraction ( k ) is derived from reflectance spectra of 30 pyroxenes. Modified Gaussian modeling is applied to these k spectra to obtain two continuum parameters and nine Gaussian parameters that describe the 1, 2, and 1.2 mm crystal field absorptions. Multiple regression results indicate that the continuum and Gaussian parameters are well predicted by pyroxene FeO and CaO contents; thus, a method to predict a complete pyroxene k spectrum from its FeO and CaO concentrations is developed. The ability of radiative transfer modeling to reproduce reflectance spectra of known composition, and extract compositional information from reflectance spectra, is examined. This model is tested using spectra of mineral mixtures, nine lunar mare soil samples studied by the Lunar Soil Characterization Consortium, and the Apollo 11 landing site. The model is able to accurately

  3. Detection of propranolol in pharmaceutical formulations by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gotardo, Mara Andréia; Tognolli, João Olímpio; Pezza, Helena Redigolo; Pezza, Leonardo

    2008-04-01

    This paper describes an analytical reflectometric method that has an objective not only the industrial quality control but also to detect possible falsifications and/or adulterations of propranolol in pharmaceutical formulations. The method is based on the diffuse reflectance measurements of the colored product (III) of the spot test reaction between propranolol hydrochloride (I) and 2,6-dichloroquinone-4-chloroimide (II) using filter paper as solid support. Spot test conditions have been investigated using experimental design in order to identify and optimize the critical factors. The factors evaluated were DCQ concentration, propranolol solvent and DCQ solvent. The best reaction conditions were achieved with the addition of 30 μL of propranolol solution in ethanol 35% (v/v) and 30 μL of DCQ solution at 70 mg mL -1 in acetone, in this order. All reflectance measurements were carried out at 500 nm and the linear range was from 8.45 × 10 -4 to 8.45 × 10 -2 mol L -1 ( r = 0.998). The limit of detection was 1.01 × 10 -4 mol L -1. No interference was observed from the assessed excipients and drugs. The method was applied to determine propranolol in commercial brands of pharmaceuticals. The results obtained by the proposed method were favorably compared with those given by the British Pharmacopoeia procedure.

  4. Study of electronic transitions by using attenuated total reflectance spectroscopy in the far-UV region

    NASA Astrophysics Data System (ADS)

    Morisawa, Yusuke; Tachibana, Shin; Ehara, Masahiro; Ozaki, Yukihiro

    2016-09-01

    The wavelength region shorter than 200 nm, far-ultraviolet (FUV) region, is very rich in information about the electronic states and structure of a molecule. Since the molar absorption coefficient is very high ( 105 mol-1 dm3 cm-1) in the FUV region, the electronic states and structure mainly for gas molecules has been investigated for a long time. On the other hand, as to molecules in the condensed phase transmittance spectra could not measure because of high molecular density, and reflection spectroscopy has been used to observe spectra of solid samples in the FUV region. However, for liquid samples generally either absorption spectroscopy or specular reflection spectroscopy was difficult to observe. Accordingly, FUV spectroscopy for liquid samples has been a relatively undeveloped research area. To solve the above difficulties of FUV spectroscopy we have recently developed a totally new UV spectrometer based on attenuated total reflection (ATR) that enables us to measure spectra of liquid and solid samples in the 140-280 nm region. This paper shows the studies by the attenuated total reflection far-ultraviolet (ATR-FUV) spectroscopy. These investigations elucidate the electronic structure and electronic transition in the FUV region for molecules such as n- and branched alkanes, alcohols, ketones, amides, and nylons in the liquid or solid phase. The consistent assignments were performed with a help of quantum chemical calculation.

  5. Using diffuse reflectance spectroscopy (DRS) for qualitative examination of iron minerals formed in a hydromorphic soil

    NASA Astrophysics Data System (ADS)

    Ringer, Marianna; Kiss, Klaudia; Németh, Tibor; Sipos, Péter; Szalai, Zoltán

    2016-04-01

    The method of diffuse reflectance spectroscopy (DRS) allows a large number of measurements in a rapid, non-destructive mode and does not require complex sample preparation. Based on the recorded wavelength-reflectance spectra, the simultaneous investigation of various soil parameters such as colour, mineral composition, organic matter and moisture content is possible. Several publications have presented results of the qualitative and quantitative analysis of iron-oxides containing trivalent iron (primarily hematite, goethite) by DRS. These iron minerals are usually formed in soils and sediments under surface conditions. Nevertheless in the case of hydromorhic soils water saturation can result iron mineral formation in the absence of oxygen. However, the related soil forming process leads to the appearance of ferrous iron-hydroxides (green rust) in the soil profile, in the literature no reference was found discussing the investigation of samples from reduced soil conditions by DRS method. Our aim was to reveal if DRS is suitable to perform qualitative characterization of both ferrous and ferric iron-oxide and hydroxide minerals of waterlogged soils. In the present study samples from a sandy meadow soil (calcic, gleyic Phaeozem ferric, arenic) profile were examined in the laboratory using an UV-Vis-NIR spectrophotometer with a diffuse reflectance attachement. Pedogenic iron minerals were characterized through spectral transformations and by comparison with spectrum database and literature data. The results were compared with data obtained from widely used routine methods. X-ray powder diffraction (XRD) for the determination of mineral composition, X-ray fluorescence spectroscopy (XRF) for total iron content and selective chemical dissolution (SCD) for the amorphous and crystalline iron content were presented. Although iron oxide minerals are usually at low concentrations (approx. 0,1%) or present in a poorly crystalline form, our results show that the presence of

  6. Total reflection X-ray photoelectron spectroscopy as a semiconductor lubricant elemental analysis method

    NASA Astrophysics Data System (ADS)

    Alshehabi, Abbas; Sasaki, Nobuharu; Kawai, Jun

    2015-12-01

    Photoelectron spectra from a typical hard disk storage media device (HDD) were measured at total reflection and non-total reflection at unburnished, acetone-cleaned, and argon-sputtered conditions. F, O, N, and C usually making the upper layer of a typical hard disk medium were detected. Enhancement of the photoelectron emission of the fluorocarbon lubricant was observed at total reflection. Pt and Co were only found by non-total X-ray photoelectron spectroscopy (XPS) because they are constituents of a deeper region than the top and interface regions. Argon-sputtered, ultrasonic acetone-cleaned, and unburnished top layers were compared at total and non-total reflection conditions. Total reflection X-ray photoelectron spectroscopy (TRXPS) is demonstrated to be a powerful tool for storage media lubrication layer chemical state analysis, reliable for industrial quality control application , and reproducible.

  7. Noninvasive particle sizing using camera-based diffuse reflectance spectroscopy.

    PubMed

    Abildgaard, Otto Højager Attermann; Frisvad, Jeppe Revall; Falster, Viggo; Parker, Alan; Christensen, Niels Jørgen; Dahl, Anders Bjorholm; Larsen, Rasmus

    2016-05-10

    Diffuse reflectance measurements are useful for noninvasive inspection of optical properties such as reduced scattering and absorption coefficients. Spectroscopic analysis of these optical properties can be used for particle sizing. Systems based on optical fiber probes are commonly employed, but their low spatial resolution limits their validity ranges for the coefficients. To cover a wider range of coefficients, we use camera-based spectroscopic oblique incidence reflectometry. We develop a noninvasive technique for acquisition of apparent particle size distributions based on this approach. Our technique is validated using stable oil-in-water emulsions with a wide range of known particle size distributions. We also measure the apparent particle size distributions of complex dairy products. These results show that our tool, in contrast to those based on fiber probes, can deal with a range of optical properties wide enough to track apparent particle size distributions in a typical industrial process.

  8. Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses

    USGS Publications Warehouse

    Byrnes, J.M.; Ramsey, M.S.; King, P.L.; Lee, R.J.

    2007-01-01

    This investigation seeks to better understand the thermal infrared (TIR) spectral characteristics of naturally-occurring amorphous materials through laboratory synthesis and analysis of glasses. Because spectra of glass phases differ markedly from their mineral counterparts, examination of glasses is important to accurately determine the composition of amorphous surface materials using remote sensing datasets. Quantitatively characterizing TIR (5-25 ??m) spectral changes that accompany structural changes between glasses and mineral crystals provides the means to understand natural glasses on Earth and Mars. A suite of glasses with compositions analogous to common terrestrial volcanic glasses was created and analyzed using TIR reflectance and emission techniques. Documented spectral characteristics provide a basis for comparison with TIR spectra of other amorphous materials (glasses, clays, etc.). Our results provide the means to better detect and characterize glasses associated with terrestrial volcanoes, as well as contribute toward understanding the nature of amorphous silicates detected on Mars. Copyright 2007 by the American Geophysical Union.

  9. Cryogenic Reflectance Spectroscopy in Support of Planetary Missions

    NASA Technical Reports Server (NTRS)

    Dalton, J. B.

    2002-01-01

    Present understanding of planetary composition is based primarily on remotely-sensed data, and in particular upon ultraviolet, visible, and infrared spectroscopy. Spectra acquired by telescopic and spacecraft instruments are compared to laboratory measurements of pure materials in order to identify surface components based on characteristic absorption features. Cryogenic spectral measurements are necessary for the study of worlds beyond the Earth's orbit. While some materials exhibit only small spectral changes as a function of temperature, many others are strongly temperature-dependent. For example, hydrated salts exhibit different spectral behavior under conditions appropriate to Europa than at terrestrial temperatures. The icy satellites of the outer solar system contain significant quantities of volatile ices which do not even exist at standard temperature and pressure (STP). A comprehensive spectral database of ices and minerals covering a wide temperature range will have applications ranging from the study of comets and Kuiper Belt objects to outer planet satellites and the polar regions of Mars. Efforts are presently underway at NASA-Ames to develop capabilities which will contribute to such a database. As spacecraft instruments feature increasing spatial and spectral resolution, appropriate laboratory reference spectra become increasingly critical to accurate interpretation of the spacecraft data.

  10. Investigation of select energetic materials by differential reflection spectrometry

    NASA Astrophysics Data System (ADS)

    Fuller, Anna Marie

    The presence of explosive or energetic materials is prevalent in today's world. Terrorists continue to target buildings and mass transit systems with explosive devices. The detection of these energetic materials is necessary to insure national security and welfare. Detection techniques such as X-ray scanners, Raman spectroscopy, Terahertz spectroscopy and ion mobility spectrometry are in current use or development; however, none of these are appropriate for all necessary applications. These techniques include. The present document provides an overview of the current detection techniques and describes a new technique for detecting energetic materials called differential reflection spectrometry (DRS). DRS essentially measures the optical absorption of energetic materials. The use of DRS has led to the discovery of previously unreported optical characteristics for some energetic compounds that are unique to the individual material. These optical characteristics consist of absorption shoulders between 270 and 420 nm, e.g. near 420 nm for 2, 4, 6 trinitrotoluene (TNT). In the presented research, the origin of the differential reflection spectra obtained was investigated using several techniques including UV-Visible spectrophotometry (transmission and reflection) and computer molecular modeling. Experimental DRS spectra of TNT, hexahydro-1,3,5 trinitro-1,3,5 triazine (RDX), octahydro 1,3,5,7-tetranitro-1,3,5,6 tetrazocine (HMX), 18 pentaerythritol tetranitrate (PETN), and 2, 4, 6, n-tetranitro-n-methylaniline (Tetryl) were taken and analyzed. From the experimental results and verification by molecular modeling, it was found that the absorption features observed in the redder region of the UV range (270--420 nm) are due to molecular orbital transitions in the nitro (NO2) groups of the measured explosives. These transitions only occur in specific conditions, such as high concentration solutions and solids, where the normally forbidden transitions are allowed. The unique

  11. Reflectance and Emittance of Selected Materials and Coatings

    DTIC Science & Technology

    1975-01-13

    clearly visible. A second source of data (Ref. 6) is pre- sented in Figure 4 for 6061 aluminum, pla-te with a surface condition defined as unpolished ...longer wavelengths tend to be relatively small. The unpolished 6A1-4V specimen is selected as the baseline titauium alloy with properties of a 0... UNPOLISHED u-,J 20 0.3 0.4 U6 1 2 4 6 10 20 WAVEL[ NGT[I, microns .’igure 4. Normal Spectral Reflectance for Alumninmum Alloy 6061 if’in ;., .... - I "" * I I

  12. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    SciTech Connect

    Bertram, F. Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-07-21

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  13. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.

  14. Effect of data pretreatment on the noninvasive blood glucose measurement by diffuse reflectance NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Heise, Herbert M.; Marbach, Ralf

    1994-01-01

    Recent progress in spectroscopy and chemometrics have brought in-vitro blood glucose analysis into clinical reach. Parallel to these efforts noninvasive experiments by NIR- spectroscopy have also been proposed and carried out. A specially designed and optimized accessory for diffuse reflectance measurements in the spectral range of 9000 - 5000 cm-1 was used. The spectral data and reference concentration values were obtained using oral glucose tolerance tests. Calibration results are provided for log(1/R) and single beam spectra. In addition, the effects of smoothing and the use of derivative filtering were evaluated. The best results were achieved by multivariate PLS-modeling with raw data from single beam reflectance spectra.

  15. Reflectance spectroscopy: application of the Kubelka-Munk theory to the rates of photoprocesses of powders.

    PubMed

    Simmons, E L

    1976-04-01

    The Kubelka-Munk theory of reflectance spectroscopy is used to derive an approximate equation that describes the rate of the photoprocess of a powdered sample in terms of the remission function. The equation is compared with one obtained using the particle model theory of diffuse reflectance and with experimental data for the photochemical reaction of powdered K(3)[Fe(C(2)O(4))(3)]-3H(2)O.

  16. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Bo; Chen, Yunqing; Bastiaans, Glenn J.; Zhang, X.-C.

    2006-01-01

    The reflection spectrum of the explosive RDX was acquired from a diffuse reflection measurement using a THz time-domain spectroscopy system in combination with a diffuse reflectance accessory. By applying the Kramers-Kronig transform to the reflection spectrum, the absorption spectrum (0.2-1.8 THz) was obtained. It agrees with the result from a transmission measurement and distinguishes RDX from other materials. The effect of the reference spectrum was examined by using both a Teflon pellet and a copper plate as references. The strong absorption of RDX at 0.82 THz allowed it to be identified by the diffuse reflection measurement even when the RDX sample was covered with certain optically opaque materials. Our investigation demonstrates that THz technique is capable of detecting and identifying hidden RDX-related explosives in a diffuse reflection mode, which is crucial for the standoff detection in the real world applications.

  17. Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography

    NASA Astrophysics Data System (ADS)

    Delaney, John K.; Zeibel, Jason G.; Thoury, Mathieu; Littleton, Roy; Morales, Kathryn M.; Palmer, Michael; de la Rie, E. René

    2009-07-01

    Reflectance imaging spectroscopy, the collection of images in narrow spectral bands, has been developed for remote sensing of the Earth. In this paper we present findings on the use of imaging spectroscopy to identify and map artist pigments as well as to improve the visualization of preparatory sketches. Two novel hyperspectral cameras, one operating from the visible to near-infrared (VNIR) and the other in the shortwave infrared (SWIR), have been used to collect diffuse reflectance spectral image cubes on a variety of paintings. The resulting image cubes (VNIR 417 to 973 nm, 240 bands, and SWIR 970 to 1650 nm, 85 bands) were calibrated to reflectance and the resulting spectra compared with results from a fiber optics reflectance spectrometer (350 to 2500 nm). The results show good agreement between the spectra acquired with the hyperspectral cameras and those from the fiber reflectance spectrometer. For example, the primary blue pigments and their distribution in Picasso's Harlequin Musician (1924) are identified from the reflectance spectra and agree with results from X-ray fluorescence data and dispersed sample analysis. False color infrared reflectograms, obtained from the SWIR hyperspectral images, of extensively reworked paintings such as Picasso's The Tragedy (1903) are found to give improved visualization of changes made by the artist. These results show that including the NIR and SWIR spectral regions along with the visible provides for a more robust identification and mapping of artist pigments than using visible imaging spectroscopy alone.

  18. Reflectance and Thermal Infrared Spectroscopy of Mars: Relationship Between ISM and TES for Compositional Determinations

    NASA Technical Reports Server (NTRS)

    Boyce, Joseph (Technical Monitor); Mustard, John

    2004-01-01

    Reflectance spectroscopy has demonstrated that high albedo surfaces on Mars contain heavily altered materials with some component of hematite, poorly crystalline ferric oxides, and an undefined silicate matrix. The spectral properties of many low albedo regions indicate crystalline basalts containing both low and high calcium pyroxene, a mineralogy consistent with the basaltic SNC meteorites. The Thermal Emission Spectrometer (TES) experiment on the Mars Geochemical Surveyor has acquired critical new data relevant to surface composition and mineralogy, but in a wavelength region that is complementary to reflectance spectroscopy. The essence of the completed research was to analyze TES data in the context of reflectance data obtained by the French ISM imaging spectrometer experiment in 1989. This approach increased our understanding of the complementary nature of these wavelength regions for mineralogic determinations using actual observations of the martian surface. The research effort focused on three regions of scientific importance: Syrtis Major-Isidis Basin, Oxia Palus-Arabia, and Valles Marineris. In each region distinct spatial variations related to reflectance, and in derived mineralogic information and interpreted compositional units were analyzed. In addition, specific science questions related to the composition of volcanics and crustal evolution, soil compositions and pedogenic processes, and the relationship between pristine lithologies and weathering provided an overall science-driven framework for the work. The detailed work plan involved colocation of TES and ISM data, extraction of reflectance and emissivity spectra from areas of known reflectance variability, and quantitative analysis using factor analysis and statistical techniques to determine the degree of correspondence between these different wavelength regions. Identified coherent variations in TES spectroscopy were assessed against known atmospheric effects to validate that the variations

  19. Analysis of Total Oil and Fatty Acids Composition by Near Infrared Reflectance Spectroscopy in Edible Nuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edib...

  20. Real time, in-situ temperature monitoring using diffuse reflectance spectroscopy

    SciTech Connect

    Booth, J.L.; Beard, B.T.; Pearsall, T.P.; Wang, Z.Z.; Stevens, J.E.; Blain, M.G.; Meisenheimer, T.L.

    1996-11-01

    Real time temperature measurements have been performed on both GaAs and silicon substrates during wafer processing using a technique based upon diffuse reflectance spectroscopy (DRS). Good temperature resolution ({+-}O.4 {degrees}C) and rapid updates have enabled the process control potential of the device to be demonstrated.

  1. Reflectance spectroscopy detects management and landscape differences in soil carbon and nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many studies document the successful calibration of visible and near infrared (VNIR) diffuse reflectance spectroscopy (DRS) to various soil properties. However, few studies have reported on the use of VNIR DRS to detect treatment differences in controlled experiments. Therefore, our objective in thi...

  2. Prediction of olive quality using FT-NIR spectroscopy in reflectance and transmittance modes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to use FT-NIR spectroscopy to predict the firmness, oil content and color of two olive (Olea europaea L) varieties (‘Ayvalik’ and ‘Gemlik’). Spectral measurements were performed on the intact olives for the wavelengths of 780-2500 nm in reflectance and for 800-1725...

  3. Nondestructive Olive Quality Detection Using FT-NIR Spectroscopy in Reflectance Mode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quality features (firmness, oil content and color in terms of hue and chroma) of two olive (Olea europaea L) varieties (‘Ayvalik’ and ‘Gemlik’) were predicted using Fourier transform near-infrared (FT-NIR) spectroscopy. Reflectance measurements of intact olives were performed using a bifurcated fibe...

  4. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  5. Diffuse Reflectance Spectroscopy of Human Skin Using a Commercial Fiber Optic Spectrometer

    SciTech Connect

    Atencio, J. A. Delgado; Rodriguez, M. Cunill; Montiel, S. Vazquez y; Castro, Jorge; Rodriguez, A. Cornejo; Gutierrez, J. L.; Martinez, F.; Gutierrez, B.; Orozco, E.

    2008-08-11

    Diffuse reflectance spectroscopy is a reliable and easy to implement technique in human tissue characterization. In this work we evaluate the performance of the commercial USB4000 miniature fiber optic spectrometer in the in-vivo measurement of the diffuse reflectance spectra of different healthy skin sites and lesions in a population of 54 volunteers. Results show, that this spectrometer reproduces well the typical signatures of skin spectra over the 400-1000 nm region. Remarkable spectral differences exist between lesions and normal surrounding skin. A diffusion-based model was used to simulate reflectance spectra collected by the optical probe of the system.

  6. Exemplar Selectivity Reflects Perceptual Similarities in the Human Fusiform Cortex

    PubMed Central

    Davidesco, Ido; Zion-Golumbic, Elana; Bickel, Stephan; Harel, Michal; Groppe, David M.; Keller, Corey J.; Schevon, Catherine A.; McKhann, Guy M.; Goodman, Robert R.; Goelman, Gadi; Schroeder, Charles E.; Mehta, Ashesh D.; Malach, Rafael

    2014-01-01

    While brain imaging studies emphasized the category selectivity of face-related areas, the underlying mechanisms of our remarkable ability to discriminate between different faces are less understood. Here, we recorded intracranial local field potentials from face-related areas in patients presented with images of faces and objects. A highly significant exemplar tuning within the category of faces was observed in high-Gamma (80–150 Hz) responses. The robustness of this effect was supported by single-trial decoding of face exemplars using a minimal (n = 5) training set. Importantly, exemplar tuning reflected the psychophysical distance between faces but not their low-level features. Our results reveal a neuronal substrate for the establishment of perceptual distance among faces in the human brain. They further imply that face neurons are anatomically grouped according to well-defined functional principles, such as perceptual similarity. PMID:23438448

  7. Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy.

    PubMed Central

    Thompson, N L; Axelrod, D

    1983-01-01

    An experimental application of total internal reflection with fluorescence correlation spectroscopy (TIR/FCS) is presented. TIR/FCS is a new technique for measuring the binding and unbinding rates and surface diffusion coefficient of fluorescent-labeled solute molecules in equilibrium at a surface. A laser beam totally internally reflects at the solid-liquid interface, selectively exciting surface-adsorbed molecules. Fluorescence collected by a microscope from a small, well-defined surface area approximately 5 micron2 spontaneously fluctuates as solute molecules randomly bind to, unbind from, and/or diffuse along the surface in chemical equilibrium. The fluorescence is detected by a photomultiplier and autocorrelated on-line by a minicomputer. The shape of the autocorrelation function depends on the bulk and surface diffusion coefficients, the binding rate constants, and the shape of the illuminated and observed region. The normalized amplitude of the autocorrelation function depends on the average number of molecules bound within the observed area. TIR/FCS requires no spectroscopic or thermodynamic change between dissociated and complexed states and no extrinsic perturbation from equilibrium. Using TIR/FCS, we determine that rhodamine-labeled immunoglobulin and insulin each nonspecifically adsorb to serum albumin-coated fused silica with both reversible and irreversible components. The characteristic time of the most rapidly reversible component measured is approximately 5 ms and is limited by the rate of bulk diffusion. Rhodamine-labeled bivalent antibodies to dinitrophenyl (DNP) bind to DNP-coated fused silica virtually irreversibly. Univalent Fab fragments of these same antibodies appear to specifically bind to DNP-coated fused silica, accompanied by a large amount of nonspecific binding. TIR/FCS is shown to be a feasible technique for measuring absorption/desorption kinetic rates at equilibrium. In suitable systems where nonspecific binding is low, TIR

  8. [Characterization of oxidation on pyrite by in situ attenuated total reflection-Fourier transform infrared spectroscopy].

    PubMed

    Zhang, Ping; Chen, Yong-Heng; Liu, Juan; Wang, Chun-Lin

    2008-11-01

    Pyrite is one of common natural minerals in the environment, which is easily oxidated and is the main source of acidity mine drainage (AMD). The study on the oxidation of pyrite is helpful to comprehend the mechanism of its pollution. In the present paper, the oxidation of pyrite under the condition of air and water was respectively investigated by the attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) through the designing experiment on the formation of carbon dioxide by the reaction of carbonate in pyrite with sulfuric acid formed by the oxidation of pyrite. The CO2 measurement by in situ ATR indicated that the oxidation rate of pyrite both in the air and in water both reduced by time and the latter reduced more obviously than the former, which indicates that the oxidation rate of pyrite in water is slower than that in the air. In the ATR measurement, the double absorption peaks at 2 350 cm(-1) that indicates CO2 have high selectivity, and permits the in situ analysis.

  9. Diffuse reflectance spectroscopy and optical polarization imaging of in-vivo biological tissue

    NASA Astrophysics Data System (ADS)

    Mora-Núñez, A.; Castillejos, Y.; García-Torales, G.; Martínez-Ponce, G.

    2013-11-01

    A number of optical techniques have been reported in the scientific literature as accomplishable methodologies to diagnose diseases in biological tissue, for instance, diffuse reflectance spectroscopy (DRS) and optical polarization imaging (OPI). The skin is the largest organ in the body and consists of three primary layers, namely, the epidermis (the outermost layer exposed to the world), the dermis, and the hypodermis. The epidermis changes from to site to site, mainly because of difference in hydration. A lower water content increase light scattering and reduce the penetration depth of radiation. In this work, two hairless mice have been selected to evaluate their skin features by using DRS and OPI. Four areas of the specimen body were chosen to realize the comparison: back, abdomen, tail, and head. From DRS, it was possible to distinguish the skin nature because of different blood irrigation at dermis. In the other hand, OPI shows pseudo-depolarizing regions in the measured Mueller images related to a spatially varying propagation of the scattered light. This provides information about the cell size in the irradiated skin.

  10. Recent progress in noninvasive diabetes screening by diffuse reflectance near-infrared skin spectroscopy

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Haiber, S.; Licht, M.; Ihrig, D. F.; Moll, C.; Stuecker, M.

    2006-02-01

    Near infrared spectroscopy exhibits a tremendous potential for clinical chemistry and tissue pathology. Owing to its penetration depth into human skin, near infrared radiation can probe chemical and structural information non-invasively. Metabolic diseases such as diabetes mellitus increase nonenzymatic glycation with the effect of glucose molecules bonding chemically to proteins. In addition, glycation accumulates on tissue proteins with the clearest evidence found in extracellular skin collagen, affecting also covalent crosslinking between adjacent protein strands, which reduces their flexibility, elasticity, and functionality. Non-enzymatically glycated proteins in human skin and following chemical and structural skin changes were our spectroscopic target. We carried out measurements on 109 subjects using two different NIR-spectrometers equipped with diffuse reflection accessories. Spectra of different skin regions (finger and hand/forearm skin) were recorded for comparison with clinical blood analysis data and further patient information allowing classification into diabetics and non-diabetics. Multivariate analysis techniques for supervised classification such as linear discriminant analysis (LDA) were applied using broad spectral interval data or a number of optimally selected wavelengths. Based on fingertip skin spectra recorded by fiber-optics, it was possible to classify diabetics and non-diabetics with a maximum accuracy of 87.8 % using leave-5-out cross-validation (sensitivity of 87.5. %, specificity of 88.2 %). With the results of this study, it can be concluded that ageing and glycation at elevated levels cannot always be separated from each other.

  11. Midinfrared spectroscopy of synthetic olivines: Thermal emission, specular and diffuse reflectance, and attenuated total reflectance studies of forsterite to fayalite

    NASA Astrophysics Data System (ADS)

    Lane, Melissa D.; Glotch, Timothy D.; Dyar, M. Darby; Pieters, Carle M.; Klima, Rachel; Hiroi, Takahiro; Bishop, Janice L.; Sunshine, Jessica

    2011-08-01

    Synthetic olivine samples ranging in composition from forsterite to fayalite are analyzed in the midinfrared using thermal emission, specular and diffuse reflectance, and attenuated total reflectance spectroscopies to study the spectral effects of Mg-Fe solid solution. For each method, fundamental bands gradually change in position and strength from Mg2SiO4 at larger wave numbers to Fe2SiO4 at smaller wave numbers. Each spectrum is diagnostic of chemistry within the continuum, as previously noted. In this study, 10 identified fundamental bands are traceable across the solid solution series for each technique. In pelletized sample spectra, the 10 bands shift approximately linearly in position by as little as 11 to as much as 64 cm-1. In powdered sample spectra, the bands shift by as little as 12 to as much as 74 cm-1 (disregarding one outlier point). Moreover, for every spectral technique, an even larger linear shift is identified of a specific emissivity maximum/reflectivity minimum (the flection position). From forsterite to fayalite, this flection position shifts by at least 88 cm-1, which is, on average, 48% more than the largest fundamental band shift within the same data set for the pelletized spectra and 44% more for the powdered spectra. Also the R2 and 2σ values of the best fit line for the flection position shift (versus Fo#) generally were as good as or routinely better than those of the fundamental bands. Thus, the flection position should be considered as a means of determining Mg-Fe olivine composition when using thermal emission, specular reflectance, diffuse reflectance, or attenuated total reflectance spectroscopic data.

  12. In vivo detection of epileptic brain tissue using static fluorescence and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yadav, Nitin; Bhatia, Sanjiv; Ragheb, John; Mehta, Rupal; Jayakar, Prasanna; Yong, William; Lin, Wei-Chiang

    2013-02-01

    Diffuse reflectance and fluorescence spectroscopy are used to detect histopathological abnormalities of an epileptic brain in a human subject study. Static diffuse reflectance and fluorescence spectra are acquired from normal and epileptic brain areas, defined by electrocorticography (ECoG), from pediatric patients undergoing epilepsy surgery. Biopsy specimens are taken from the investigated sites within an abnormal brain. Spectral analysis reveals significant differences in diffuse reflectance spectra and the ratio of fluorescence and diffuse reflectance spectra from normal and epileptic brain areas defined by ECoG and histology. Using these spectral differences, tissue classification models with accuracy above 80% are developed based on linear discriminant analysis. The differences between the diffuse reflectance spectra from the normal and epileptic brain areas observed in this study are attributed to alterations in the static hemodynamic characteristics of an epileptic brain, suggesting a unique association between the histopathological and the hemodynamic abnormalities in an epileptic brain.

  13. Investigation of the mineralization process of biosystems by IR diffuse reflection spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.

    2014-04-01

    Particular features of the application of Fourier-transform IR diffuse reflection spectroscopy methods to the in situ investigation of spectra of porous rough objects have been considered. The reciprocal influence of the scattering and absorption of porous objects on the formation of the impurity-band contour in the diffuse reflection spectrum when the impurity center is in the vicinity of the fundamental IR absorption band has been analyzed. Using methods of Fourier-transform IR diffuse reflection spectroscopy, processes of mineralization of fragments of mammoth tusks from a multilayer paleolithic site at Yudinovo (Bryansk oblast, Russia) and fragments of mammoth tusks from Yakutia (Russia) have been investigated. Particular features of mineralization processes (carbonate formation and silicification) on the surface and in the volume of objects at different conditions of their burial (humidity, temperature, soil acidity) have been studied.

  14. Carbon dioxide adsorption on a ZnO(101[combining macron]0) substrate studied by infrared reflection absorption spectroscopy.

    PubMed

    Buchholz, Maria; Weidler, Peter G; Bebensee, Fabian; Nefedov, Alexei; Wöll, Christof

    2014-01-28

    The adsorption of carbon dioxide on the mixed-terminated ZnO(101[combining macron]0) surface of a bulk single crystal was studied by UHV Infrared Reflection Absorption Spectroscopy (IRRAS). In contrast to metals, the classic surface selection rule for IRRAS does not apply to bulk oxide crystals, and hence vibrational bands can also be observed for s-polarized light. Although this fact substantially complicates data interpretation, a careful analysis allows for a direct determination of the adsorbate geometry. Here, we demonstrate the huge potential of IR-spectroscopy for investigations on oxide single crystal surfaces by considering all three components of the incident polarized light separately. We find that the tridentate (surface) carbonate is aligned along the [0001] direction. A comparison to data reported previously for CO2 adsorbed on the surfaces of ZnO nanoparticles provides important insight into the role of defects in the surface chemistry of powder particles.

  15. Development of techniques for advanced optical contamination measurement with internal reflection spectroscopy, phase 2, volume 2

    NASA Technical Reports Server (NTRS)

    Hayes, J. D.

    1972-01-01

    Attenuated total reflectance spectra of individual contaminants in space simulation chambers are presented as well as spectra of mixtures and figures exhibiting the effects of film thickness on reflectance spectra. Detailed calibration spectra were made for three selected concentrations (film thickness) for two contaminants and for one concentration for all contaminants.

  16. Comparison of two methods for noninvasive determination of carotenoids in human and animal skin: Raman spectroscopy versus reflection spectroscopy.

    PubMed

    Darvin, Maxim E; Sandhagen, Carl; Koecher, Wolfgang; Sterry, Wolfram; Lademann, Juergen; Meinke, Martina C

    2012-07-01

    Based on compelling in vivo and in vitro studies on human skin, carotenoids are thought to be of great interest as powerful antioxidants acting to prevent free-radical-induced damages, including premature skin ageing and the development of skin diseases such as cancer. Among the available techniques that are suitable for noninvasive determination of carotenoids in human skin, are resonance Raman spectroscopy (RRS) and reflection spectroscopy (RS). For RS, a LED-based miniaturized spectroscopic system (MSS) was developed for noninvasive measurement of carotenoids in human skin. The optimization and subsequent calibration of the MSS was performed with the use of RRS. A strong correlation between the carotenoid concentration determined by the RS and for the RRS system was achieved for human skin in vivo (R = 0.88) and for bovine udder skin in vitro (R = 0.81).

  17. [Preliminary Study on the Detection of Pork Tenderness by Three-Dimensional Diffuse Reflectance Spectroscopy].

    PubMed

    Zhang, Zhi-yong; Zuo, Yue-ming; Chen, Jin-ming; Li, Gang; Chen, Chen; Yang, Wei

    2015-06-01

    Tenderness is an important index to evaluate the pork's quality, in this paper a method called three-dimensional diffuse reflectance spectroscopy was proposed to detect pork tenderness. Because pork has a strong scattering impact on light, this method introduced more scattering information of pork samples into spectral analysis of tenderness. Using the special data acquisition system, three-dimensional diffuse reflectance spectra of 64 pork samples were constructed by collecting the emergent light signals of different distances away from the light incident point. And n-way partial least squares (NPLS) regression was applied to establish the calibration model between the pork tenderness and three-dimensional diffuse reflectance spectra which were denoised by wavelet transform. The determination coefficient of model for the calibration set (R2(Cal)) is 0.883 1, and the root mean squared error of calibration (RMSEC) is 3.685 0N. The determination coefficient of model for the prediction set (R2(Pred)) is 0.874 7, and the root mean squared error of prediction (RMSEP) is 3.975 6N. The result indicates that the NPLS model of pork tenderness built by three-dimensional diffuse reflectance spectra has higher calibration accuracy and prediction stability than the traditional diffuse reflectance spectra. Three-dimensional diffuse reflectance spectroscopy can be expected to be a new method to quickly detect the tenderness and the other qualities of pork.

  18. Reflectance spectroscopy of palagonite and iron-rich montmorillonite clay mixtures: Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, J. B.; Handy, J.

    1991-01-01

    Because of the power of remote sensing reflectance spectroscopy in determining mineralogy, it was used as the major method of identifying possible mineral analogs of the Martian surface. A summary of proposed Martian surface compositions from reflectance spectroscopy before 1979 was presented. Since that time, iron-rich montmorillonite clay, nanocrystalline or nanophase hematite, and palagonite were suggested as Mars soil analog materials.

  19. Time-dependent diffuse reflectance spectroscopy for in vivo characterization of pediatric epileptogenic brain lesions

    NASA Astrophysics Data System (ADS)

    Oh, Sanghoon; Ragheb, John; Bhatia, Sanjiv; Sandberg, David; Johnson, Mahlon; Fernald, Bradley; Lin, Wei-Chiang

    2008-02-01

    Optical spectroscopy for in vivo tissue diagnosis is performed traditionally in a static manner; a snap shot of the tissue biochemical and morphological characteristics is captured through the interaction between light and the tissue. This approach does not capture the dynamic nature of a living organ, which is critical to the studies of brain disorders such as epilepsy. Therefore, a time-dependent diffuse reflectance spectroscopy system with a fiber-optic probe was designed and developed. The system was designed to acquire broadband diffuse reflectance spectra (240 ~ 932 nm) at an acquisition rate of 33 Hz. The broadband spectral acquisition feature allows simultaneous monitoring of various physiological characteristics of tissues. The utility of such a system in guiding pediatric epilepsy surgery was tested in a pilot clinical study including 13 epilepsy patients and seven brain tumor patients. The control patients were children undergoing suregery for brain tumors in which measurements were taken from normal brain exposed during the surgery. Diffuse reflectance spectra were acquired for 12 seconds from various parts of the brain of the patients during surgery. Recorded spectra were processed and analyzed in both spectral and time domains to gain insights into the dynamic changes in, for example, hemodynamics of the investigated brain tissue. One finding from this pilot study is that unsynchronized alterations in local blood oxygenation and local blood volume were observed in epileptogenic cortex. These study results suggest the advantage of using a time-dependent diffuse reflectance spectroscopy system to study epileptogenic brain in vivo.

  20. Diffuse reflectance spectroscopy measurements for tissue-type discrimination during deep brain stimulation.

    PubMed

    Antonsson, Johan; Eriksson, Ola; Blomstedt, Patric; Bergenheim, A Tommy; I Hariz, Marwan; Richter, Johan; Zsigmond, Peter; Wårdell, Karin

    2008-06-01

    Diffuse reflectance spectroscopy as a method for improving intracerebral guidance during functional neurosurgery has been investigated. An optical probe was developed for measurements during stereotactic and functional neurosurgery in man. The aim of the study was to investigate the spectral differences between white and grey matter and between white matter and functional targets. Diffuse reflectance spectroscopy measurements in ten patients were recorded at incremental steps towards and in three different functional targets (STN, GPi and Zi). The recorded spectra along the trajectory were sorted into white or grey matter, based on preoperative MRI images or the recorded spectral shape and intensity. The difference between tissue types was calculated as a quotient. Significant intensity differences between white and grey matter were found to be at least 14% (p < 0.05) and 20% (p < 0.0001) for MRI and spectral-sorted data respectively. The reflectance difference between white matter and the functional targets of GPi was higher than for STN and Zi. The results indicate that diffuse reflectance spectroscopy has a potential to be developed to a suitable complement to other intracerebral guidance methods.

  1. A in Situ Study of Plasma Etching Surface Chemistry Using Reflection Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucchesi, Robert Peter

    Plasma etching is an important process in semiconductor manufacturing. The present work describes a means by which plasma etching surface chemistry may be studied in situ. The systems of interest were the sulfur hexafluoride plasma etching of silicon and tungsten in a diode reactor. A reflection infrared spectrometer was designed and constructed to be able to scan the frequency region from about 550cm ^{-1} to 1300cm ^{-1}, and a plasma etch reactor was modified to allow access to the infrared beam. Reflection infrared spectroscopy (RIS) allows the measurement of light absorbed by molecules adsorbed on a reflective surface selectively from light absorbed by molecules in the gas phase. RIS applied to heavily doped silicon substrates had limited success. While sulfur fluorine species were detected on the surface during plasma etching, no silicon fluorine species were ever detected. The sulfur fluorine species (referred to as SF_{rm x}) were not seen under any circumstances in the absence of an SF_6 plasma. Severe baseline drift of the infrared spectrometer during plasma etching was the main reason for the limited success. However, the results were significant in that they demonstrated the presence of sulfur fluorine species during the plasma etching of silicon in an SF_6 plasma. The baseline drift problems experienced with silicon were not found when tungsten was studied. The same SF _{rm x} feature detected on silicon was also found on tungsten during etching in an SF_6 plasma, but was never seen in the absence of the plasma. A detailed experimental and theoretical study was performed to show that the surface absorption feature seen was actually due to SF _{rm x} adsorbed on the surface. A hysteresis behavior was observed in the SF_ {rm x} concentration as the plasma power was ramped up and subsequently decreased. Finally, it could not be concluded if SF_{rm x} participated in the etch reaction by fluorinating the tungsten surface, but the presence of SF_ {rm x} on

  2. Discrimination between immature and mature green coffees by attenuated total reflectance and diffuse reflectance Fourier transform infrared spectroscopy.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Oliveira, Leandro S

    2011-10-01

    The objective of this work was to evaluate the potential of Fourier transform infrared spectroscopy (FTIR) in the characterization and discrimination between immature and mature or ripe coffee beans. Arabica coffee beans were submitted to FTIR analysis by reflectance readings employing attenuated total reflectance (ATR) and diffuse reflectance (DR) accessories. The obtained spectra were similar, but in general higher absorbance values were observed for nondefective beans in comparison to immature ones. Multivariate statistical analysis (principal component analysis, PCA, and agglomerative hierarchical clustering, AHC) was performed in order to verify the possibility of discrimination between immature and mature coffee samples. A clear separation between immature and mature coffees was observed based on AHC and PCA analyses of the normalized spectra obtained by employing both ATR and DR accessories. Linear discriminant analysis was employed for developing classification models, with recognition and prediction abilities of 100%. Such results showed that FTIR analysis presents potential for the development of a simple routine methodology for separation of immature and mature coffee beans. Practical Application: The ultimate goal of this research is to be able to propose improvements in the way immature coffee beans are separated from graded mature beans in coffee facilities (cooperatives and other coffee producer's associations). The results obtained herein point toward FTIR as a potential tool for the aimed improvements.

  3. High-sensitivity polarization modulation reflectance spectroscopy of cavity polaritons in a ZnO microcavity

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takayuki; Kishimoto, Ryo; Takagi, Yoshihiro; Kawase, Toshiki; Kim, DaeGwi; Nakayama, Masaaki

    2014-03-01

    We report that polarization modulation reflectance (PMR) spectroscopy is highly sensitive to the cavity polaritons in a ZnO microcavity with HfO2/SiO2 distributed Bragg reflectors. We demonstrate that the cavity-polariton dispersion, even in the energy region of strong absorption by exciton continuum states, is clearly observed by PMR spectroscopy. The PMR spectra were quantitatively analyzed by a transfer-matrix method taking into account three types of excitons labeled A, B, and C. Line-shape analysis of the PMR spectra indicates that the anisotropy of the excitonic transitions is considerable in treating the cavity polariton in the ZnO microcavity.

  4. [Sugar characterization of mini-watermelon and rapid sugar determination by near infrared diffuse reflectance spectroscopy].

    PubMed

    Wang, Shuo; Yuan, Hong-fu; Song, Chun-feng; Xie, Jin-chun; Li, Xiao-yu; Feng, Le-ping

    2012-08-01

    In the present paper, the distribution of sugar level within the mini-watermelon was studied, a new sugar characterization method of mini-watermelon using average sugar level, the highest sugar level and the lowest sugar level index is proposed. Feasibility of nondestructive determination of mini-watermenlon sugar level using diffuse reflectance spectroscopy information was investigated by an experiment. PLS models for measuring the 3 sugar levels were established. The results obtained by near infrared spectroscopy agreed with that of the new method established above.

  5. Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy

    SciTech Connect

    Borisova, E; Avramov, L; Troyanova, P; Pavlova, P

    2008-06-30

    Results of investigation of cutaneous benign and malignant pigmented lesions by laser-induced autofluorescence spectroscopy (LIAFS) and diffuse reflectance spectroscopy (DRS) are presented. The autofluorescence of human skin was excited by a 337-nm nitrogen laser. A broadband halogen lamp (400-900 nm) was used for diffuse reflectance measurements. A microspectrometer detected in vivo the fluorescence and reflectance signals from human skin. The main spectral features of benign (dermal nevi, compound nevi, dysplastic nevi) and malignant (melanoma) lesions are discussed. The combined usage of the fluorescence and reflectance spectral methods to determine the type of the lesion, which increases the total diagnostic accuracy, is compared with the usage of LIAFS or DRS only. We also applied colorimetric transformation of the reflectance spectra detected and received additional evaluation criteria for determination of type of the lesion under study. Spectra from healthy skin areas near the lesion were detected and changes between healthy and lesion skin spectra were revealed. The influence of the main skin pigments on the detected spectra is discussed and evaluation of possibilities for differentiation between malignant and benign lesions is performed based on their spectral properties. This research shows that the non-invasive and high-sensitive in vivo detection by means of appropriate light sources and detectors should be possible, related to the real-time determination of existing pathological conditions. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  6. Attenuated Total Reflection (ATR) Sampling in Infrared Spectroscopy of Heterogeneous Materials Requires Reproducible Pressure Control.

    PubMed

    Lu, Zhenyu; Cassidy, Brianna M; DeJong, Stephanie A; Belliveau, Raymond G; Myrick, Michael L; Morgan, Stephen L

    2017-01-01

    Attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, in which the sample is pressed against an internal reflection element, is a popular technique for rapid IR spectral collection. However, depending on the accessory design, the pressure applied to the sample is not always well controlled. While collecting data from fabrics with heterogeneous coatings, we have observed systematic pressure-dependent changes in spectra that can be eliminated by more reproducible pressure control. We also described a pressure sensor adapted to work with an ATR tower to enable more precise control of pressure during ATR sampling.

  7. Modelling of sensory and instrumental texture parameters in processed cheese by near infrared reflectance spectroscopy.

    PubMed

    Blazquez, Carmen; Downey, Gerard; O'Callaghan, Donal; Howard, Vincent; Delahunty, Conor; Sheehan, Elizabeth; Everard, Colm; O'Donnell, Colm P

    2006-02-01

    This study investigated the application of near infrared (NIR) reflectance spectroscopy to the measurement of texture (sensory and instrumental) in experimental processed cheese samples. Spectra (750 to 2498 nm) of cheeses were recorded after 2 and 4 weeks storage at 4 degrees C. Trained assessors evaluated 9 sensory properties, a texture profile analyser (TPA) was used to record 5 instrumental parameters and cheese 'meltability' was measured by computer vision. Predictive models for sensory and instrumental texture parameters were developed using partial least squares regression on raw or pre-treated spectral data. Sensory attributes and instrumental texture measurements were modelled with sufficient accuracy to recommend the use of NIR reflectance spectroscopy for routine quality assessment of processed cheese.

  8. Application of backward diffuse reflection spectroscopy for monitoring the state of tissues in photodynamic therapy

    SciTech Connect

    Stratonnikov, Aleksandr A; Meerovich, G A; Ryabova, A V; Savel'eva, T A; Loshchenov, V B

    2006-12-31

    The application of backward diffuse reflection (BDR) spectroscopy for in vivo monitoring the degree of haemoglobin oxygenation and concentration of photosensitisers in tissues subjected to photodynamic therapy is demonstrated. A simple experimental technique is proposed for measuring diffuse reflection spectra. The measurements are made under steady-state conditions using a fibreoptic probe with one transmitting and one receiving fibre separated by a fixed distance. Although this approach does not ensure the separation of contributions of scattering and absorption to the spectra being measured, it can be used for estimating the degree of haemoglobin oxygenation and concentration of photosensitisers in the tissues. Simple expressions for estimating the concentration of photosensitisers from the BDR spectra are presented and the accuracy of this approach is analysed. The results of application of BDR spectroscopy for monitoring various photosensitisers are considered. (special issue devoted to multiple radiation scattering in random media)

  9. Monitoring of landfill leachate dispersion using reflectance spectroscopy and ground-penetrating radar.

    PubMed

    Splajt, T; Ferrier, G; Frostick, L E

    2003-09-15

    The utility of ground-penetrating radar and reflectance spectroscopy in the monitoring of landfill sites has been investigated. Strong correlations between red edge inflection position and chlorophyll and heavy metal concentrations have been demonstrated from grassland species affected by leachate contamination of the soil adjacent to the landfill test site. This study demonstrated that reflectance spectroscopy can identify vegetation affected by leachate-contaminated soil at a range of spatial resolutions. To identify the vegetation affected by leachate contamination, the spectroradiometer must have contiguous bands at sufficient spectral resolution over the critical wave range that measures chlorophyll absorption and the red edge (between 650 and 750 nm). The utility of ground-penetrating radar data to identify leachate escaping from breakout points in the contaminant wall has also been demonstrated. An integrated approach using these techniques, combined with field and borehole sampling and contaminant migration modeling, offers a possible cost-effective monitoring approach for landfill sites.

  10. Subdiffusion reflectance spectroscopy to measure tissue ultrastructure and microvasculature: model and inverse algorithm.

    PubMed

    Radosevich, Andrew J; Eshein, Adam; Nguyen, The-Quyen; Backman, Vadim

    2015-01-01

    Reflectance measurements acquired from within the subdiffusion regime (i.e., lengthscales smaller than a transport mean free path) retain much of the original information about the shape of the scattering phase function. Given this sensitivity, many models of subdiffusion regime light propagation have focused on parametrizing the optical signal through various optical and empirical parameters. We argue, however, that a more useful and universal way to characterize such measurements is to focus instead on the fundamental physical properties, which give rise to the optical signal. This work presents the methodologies that used to model and extract tissue ultrastructural and microvascular properties from spatially resolved subdiffusion reflectance spectroscopy measurements. We demonstrate this approach using ex-vivo rat tissue samples measured by enhanced backscattering spectroscopy.

  11. Subdiffusion reflectance spectroscopy to measure tissue ultrastructure and microvasculature: model and inverse algorithm

    PubMed Central

    Radosevich, Andrew J.; Eshein, Adam; Nguyen, The-Quyen; Backman, Vadim

    2015-01-01

    Abstract. Reflectance measurements acquired from within the subdiffusion regime (i.e., lengthscales smaller than a transport mean free path) retain much of the original information about the shape of the scattering phase function. Given this sensitivity, many models of subdiffusion regime light propagation have focused on parametrizing the optical signal through various optical and empirical parameters. We argue, however, that a more useful and universal way to characterize such measurements is to focus instead on the fundamental physical properties, which give rise to the optical signal. This work presents the methodologies that used to model and extract tissue ultrastructural and microvascular properties from spatially resolved subdiffusion reflectance spectroscopy measurements. We demonstrate this approach using ex-vivo rat tissue samples measured by enhanced backscattering spectroscopy. PMID:26414387

  12. Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials

    NASA Astrophysics Data System (ADS)

    Frisenda, Riccardo; Niu, Yue; Gant, Patricia; Molina-Mendoza, Aday J.; Schmidt, Robert; Bratschitsch, Rudolf; Liu, Jinxin; Fu, Lei; Dumcenco, Dumitru; Kis, Andras; Perez De Lara, David; Castellanos-Gomez, Andres

    2017-02-01

    Optical spectroscopy techniques such as differential reflectance and transmittance have proven to be very powerful techniques for studying 2D materials. However, a thorough description of the experimental setups needed to carry out these measurements is lacking in the literature. We describe a versatile optical microscope setup for carrying out differential reflectance and transmittance spectroscopy in 2D materials with a lateral resolution of ~1 µm in the visible and near-infrared part of the spectrum. We demonstrate the potential of the presented setup to determine the number of layers of 2D materials and characterize their fundamental optical properties, such as excitonic resonances. We illustrate its performance by studying mechanically exfoliated and chemical vapor-deposited transition metal dichalcogenide samples.

  13. Application of transcutaneous diffuse reflectance spectroscopy in the measurement of blood glucose concentration

    NASA Astrophysics Data System (ADS)

    Chen, Wenliang; Liu, Rong; Cui, Houxin; Xu, Kexin; Lv, Lina

    2004-07-01

    In this paper, the propagation characteristics of near-infrared (NIR) light in the palm tissue are analyzed, and the principle and feasibility of using transcutaneous diffuse reflectance spectroscopy for non-invasive blood glucose detection are presented. An optical probe suitable for measuring the diffuse reflectance spectrum of human palm and a non-invasive blood glucose detection system using NIR spectroscopy are designed. Based on this system, oral glucose tolerance tests are performed to measure the blood glucose concentrations of two young healthy volunteers. The partial least square calibration model is then constructed by all individual experimental data. The final result shows that correlation coefficients of the two experiments between the predicted blood glucose concentrations and the reference blood glucose concentrations are 0.9870 and 0.9854, respectively. The root mean square errors of prediction of full cross validation are 0.54 and 0.52 mmol/l, respectively.

  14. A reflectance anisotropy spectroscopy study of underpotential deposition of copper onto Au(110)

    NASA Astrophysics Data System (ADS)

    Smith, C. I.; Farell, T.; Lucas, C. A.; Nichols, R. J.; Weightman, P.

    2005-11-01

    The underpotential deposition of Cu on Au(110) has been monitored by Reflection Anisotropy Spectroscopy (RAS). The changes in the intensity of spectral features observed at 2.6 eV and 3.4 eV in the RA spectrum of Au(110) that are induced by the deposition of Cu occur on different timescales. It is suggested that these changes arise, respectively, from the partial quenching of surface states and from changes in surface morphology.

  15. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy.

    PubMed

    Hennessy, Ricky; Goth, Will; Sharma, Manu; Markey, Mia K; Tunnell, James W

    2014-01-01

    The sampling depth of light for diffuse reflectance spectroscopy is analyzed both experimentally and computationally. A Monte Carlo (MC) model was used to investigate the effect of optical properties and probe geometry on sampling depth. MC model estimates of sampling depth show an excellent agreement with experimental measurements over a wide range of optical properties and probe geometries. The MC data are used to define a mathematical expression for sampling depth that is expressed in terms of optical properties and probe geometry parameters.

  16. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    NASA Astrophysics Data System (ADS)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  17. Quantitative reflectance spectroscopy of buddingtonite from the Cuprite mining district, Nevada

    SciTech Connect

    Felzer, B.; Hauff, P.; Goetz, A.F.H.

    1994-02-01

    Buddingtonite, an ammonium-bearing feldspar diagnostic of volcanic-hosted alteration, can be identified and, in some cases, quantitatively measured using short-wave infrared (SWIR) reflectance spectroscopy. In this study over 200 samples from Cuprite, Nevada, were evaluated by X ray diffraction, chemical analysis, scanning electron microscopy, and SWIR reflectance spectroscopy with the objective of developing a quantitative remote-sensing technique for rapid determination of the amount of ammonium or buddingtonite present, and its distribution across the site. Based upon the Hapke theory of radiative transfer from particulate surfaces, spectra from quantitative, physical mixtures were compared with computed mixture spectra. We hypothesized that the concentration of ammonium in each sample is related to the size and shape of the ammonium absorption bands and tested this hypothesis for samples of relatively pure buddingtonite. We found that the band depth of the 2.12-micron NH4 feature is linearly related to the NH4 concentration for the Cuprite buddingtonite, and that the relationship is approximately exponential for a larger range of NH4 concentrations. Associated minerals such as smectite and jarosite suppress the depth of the 2.12-micron NH4 absorption band. Quantitative reflectance spectroscopy is possible when the effects of these associated minerals are also considered.

  18. Prediction of erodibility in Oxisols using iron oxides, soil color and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Arantes Camargo, Livia; Marques, José, Jr.

    2015-04-01

    The prediction of erodibility using indirect methods such as diffuse reflectance spectroscopy could facilitate the characterization of the spatial variability in large areas and optimize implementation of conservation practices. The aim of this study was to evaluate the prediction of interrill erodibility (Ki) and rill erodibility (Kr) by means of iron oxides content and soil color using multiple linear regression and diffuse reflectance spectroscopy (DRS) using regression analysis by least squares partial (PLSR). The soils were collected from three geomorphic surfaces and analyzed for chemical, physical and mineralogical properties, plus scanned in the spectral range from the visible and infrared. Maps of spatial distribution of Ki and Kr were built with the values calculated by the calibrated models that obtained the best accuracy using geostatistics. Interrill-rill erodibility presented negative correlation with iron extracted by dithionite-citrate-bicarbonate, hematite, and chroma, confirming the influence of iron oxides in soil structural stability. Hematite and hue were the attributes that most contributed in calibration models by multiple linear regression for the prediction of Ki (R2 = 0.55) and Kr (R2 = 0.53). The diffuse reflectance spectroscopy via PLSR allowed to predict Interrill-rill erodibility with high accuracy (R2adj = 0.76, 0.81 respectively and RPD> 2.0) in the range of the visible spectrum (380-800 nm) and the characterization of the spatial variability of these attributes by geostatistics.

  19. Quantitative reflectance spectroscopy of buddingtonite from the Cuprite mining district, Nevada

    NASA Technical Reports Server (NTRS)

    Felzer, Benjamin; Hauff, Phoebe; Goetz, Alexander F. H.

    1994-01-01

    Buddingtonite, an ammonium-bearing feldspar diagnostic of volcanic-hosted alteration, can be identified and, in some cases, quantitatively measured using short-wave infrared (SWIR) reflectance spectroscopy. In this study over 200 samples from Cuprite, Nevada, were evaluated by X ray diffraction, chemical analysis, scanning electron microscopy, and SWIR reflectance spectroscopy with the objective of developing a quantitative remote-sensing technique for rapid determination of the amount of ammonium or buddingtonite present, and its distribution across the site. Based upon the Hapke theory of radiative transfer from particulate surfaces, spectra from quantitative, physical mixtures were compared with computed mixture spectra. We hypothesized that the concentration of ammonium in each sample is related to the size and shape of the ammonium absorption bands and tested this hypothesis for samples of relatively pure buddingtonite. We found that the band depth of the 2.12-micron NH4 feature is linearly related to the NH4 concentration for the Cuprite buddingtonite, and that the relationship is approximately exponential for a larger range of NH4 concentrations. Associated minerals such as smectite and jarosite suppress the depth of the 2.12-micron NH4 absorption band. Quantitative reflectance spectroscopy is possible when the effects of these associated minerals are also considered.

  20. Determination of nitrogen dioxide in ambient air employing diffuse reflectance Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verma, Santosh Kumar; Deb, Manas Kanti; Verma, Devsharan

    2008-10-01

    This paper presents the development of a simple and precise analytical method for the determination of nitrogen dioxide in ambient air. In this method nitrogen dioxide is determined in the form of nitrite. The determination of nitrogen dioxide needs no reagents except for a solution of sodium hydroxide mixed with sodium arsenite (NaOH-Na 2As 2O 3) which is used as an absorbing reagent for trapping the nitrogen dioxide from the atmosphere in the form of nitrite, i.e., a prior analysis step. The determination of submicrogram levels of nitrogen dioxide is based on the selection of a strong and sharp quantitative analytical peak at 1380 cm - 1 using diffuse reflectance infrared spectroscopy (DRS-FTIR). The limit of detection (LOD) and the limit of quantification of the method are found to be 0.008 μg g - 1 NO 2- and 0.05 μg g - 1 NO 2-, respectively. The precision in terms of standard deviation and relative standard deviation value at a level of 2 μg NO 2- / 0.1 g KBr for n = 10 is found to be 0.036 μg NO 2- and 1.8%, respectively. The relative standard deviation ( n = 10) for the determination of nitrogen dioxide in ambient air was observed to be in the range 2.6-3.8%. The method proposed is time-saving and eliminates the slow and cumbersome steps of pH maintenance of the reaction mixture and color formation of the EPA recommended spectrophotometric and other methods for quantitative determination of nitrogen dioxide.

  1. [Component analysis of complex mixed solution based on multidimensional diffuse reflectance spectroscopy].

    PubMed

    Li, Gang; Xiong, Chan; Zhao, Li-ying; Lin, Ling; Tong, Ying; Zhang, Bao-ju

    2012-02-01

    In the present paper, the authors proposed a method for component analysis of complex mixed solutions based on multidimensional diffuse reflectance spectroscopy by analyzing the information carried by spectrum signals from various optical properties of various components of the analyte. The experiment instrument was designed with supercontinuum laser source, the motorized precision translation stage and the spectrometer. The Intralipid-20% was taken as an analyte, and was diluted over a range of 1%-20% in distilled water. The diffuse reflectance spectrum signal was measured at 24 points within the distance of 1.5-13 mm (at an interval of 0.5 mm) above the incidence point. The partial least squares algorithm model was used to perform a modeling and forecasting analysis for the spectral analysis data collected from single-point and multi-point. The results showed that the most accurate calibration model was created by the spectral data acquired from the nearest 1-13 points above the incident point; the most accurate prediction model was created by the spectral signal acquired from the nearest 1-7 points above the incident point. It was proved that multidimensional diffuse reflectance spectroscopy can improve the spectral signal to noise ratio. Compared with the traditional spectrum technology using a single optical property such as absorbance or reflectance, this method increased the impact of scattering characteristics of the analyte. So the use of a variety of optical properties of the analytes can make an improvement of the accuracy of the modeling and forecasting, and also provide a basis for component analysis of the complex mixed solution based on multidimensional diffuse reflectance spectroscopy.

  2. A partial least squares model for non-volatile residue quantification using diffuse reflectance infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Amylynn; Moision, Robert M.

    2016-09-01

    Traditionally, quantification of non-volatile residue (NVR) on surfaces relevant to space systems has been performed using solvent wipes for NVR removal followed by gravimetric analysis. In this approach the detectable levels of NVR are ultimately determined by the mass sensitivity of the analytical balance employed. Unfortunately, for routine samples, gravimetric measurement requires large sampling areas, on the order of a square foot, in order to clearly distinguish sample and background levels. Diffuse Reflectance Infrared Reflectance Spectroscopy (DRIFTS) is one possible alternative to gravimetric analysis for NVR measurement. DRIFTS is an analytical technique used for the identification and quantification of organic compounds that has two primary advantages relative to gravimetric based methods: increased sensitivity and the ability to identify classes of organic species present. However, the use of DRIFTS is not without drawbacks, most notably repeatability of sample preparation and the additive quantification uncertainty arising from overlapping infrared signatures. This can result in traditional calibration methods greatly overestimating the concentration of species in mixtures. In this work, a partial least squares (PLS) regression model is shown to be an effective method for removing the over prediction error of a three component mixture of common contaminant species.

  3. Combined reflectance spectroscopy and stochastic modeling approach for noninvasive hemoglobin determination via palpebral conjunctiva

    PubMed Central

    Kim, Oleg; McMurdy, John; Jay, Gregory; Lines, Collin; Crawford, Gregory; Alber, Mark

    2014-01-01

    Abstract A combination of stochastic photon propagation model in a multilayered human eyelid tissue and reflectance spectroscopy was used to study palpebral conjunctiva spectral reflectance for hemoglobin (Hgb) determination. The developed model is the first biologically relevant model of eyelid tissue, which was shown to provide very good approximation to the measured spectra. Tissue optical parameters were defined using previous histological and microscopy studies of a human eyelid. After calibration of the model parameters the responses of reflectance spectra to Hgb level and blood oxygenation variations were calculated. The stimulated reflectance spectra in adults with normal and low Hgb levels agreed well with experimental data for Hgb concentrations from 8.1 to 16.7 g/dL. The extracted Hgb levels were compared with in vitro Hgb measurements. The root mean square error of cross‐validation was 1.64 g/dL. The method was shown to provide 86% sensitivity estimates for clinically diagnosed anemia cases. A combination of the model with spectroscopy measurements provides a new tool for noninvasive study of human conjunctiva to aid in diagnosing blood disorders such as anemia. PMID:24744871

  4. Measuring the Complex Optical Conductivity of Graphene by Fabry-Pérot Reflectance Spectroscopy

    PubMed Central

    Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito; Fuhrer, Michael S.; Anlage, Steven M.

    2016-01-01

    We have experimentally studied the dispersion of optical conductivity in few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a supercontinuum laser source measured the frequency dependence of the reflectance of exfoliated graphene flakes, including monolayer, bilayer and trilayer graphene, loaded on a Si/SiO2 Fabry-Pérot resonator in the 545–700 nm range. The complex refractive index of few-layer graphene, n − ik, was extracted from the reflectance contrast to the bare substrate. It was found that each few-layer graphene possesses a unique dispersionless optical index. This feature indicates that the optical conductivity does not simply scale with the number of layers, and that inter-layer electrodynamics are significant at visible energies. PMID:27682974

  5. Determination of Cellulose Fiber Structure Using IR Reflectance Spectroscopy of Paper

    NASA Astrophysics Data System (ADS)

    Derkacheva, O. Yu.

    2015-01-01

    A rapid and non-destructive method for analyzing the structure of cellulose fibers using IR reflectance spectroscopy from a paper surface was developed and verified for correctness. IR absorption and reflectance spectra of standard paper samples of known composition (sheets made of four fibers of different origin without additives and with additives of kaolin and chalk) were analyzed. Good correlations between these two spectral methods were found for the studied samples. Calibration curves were useful for assessing the structure of cellulose samples from XVIth century historical paper. Data on the degree of cellulose ordering that were obtained from the paper reflectance spectra indicated that the studied sheets consisted mainly of flax fibers with added cotton. This agreed fully with the historical fact that the studied samples were rag papers.

  6. A method to improve the reproducibility of in vivo reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Douplik, Alexandre; Shalaby, David; Wilson, Brian C.; Perry, Joseph

    2005-04-01

    The goal of this study was to optimize measurement techniques for tissue point spectroscopy during gastrointestinal (GI) endoscopy, as part of a program to enhance and apply autofluorescence/reflectance imaging for early GI cancer detection. The effect of fiberoptic probe pressure on tissue on the measured diffuse reflectance spectra was evaluated, with both fiber-to-fiber probe geometry (standard contact probe) and imaging illumination geometry (wide field illumination and fiber collection) for the wavelength range 440-640 nm, using normal skin in vivo as a model tissue, and by taking continuous spectral measurements while the fiber is approaching the tissue. The most significant finding was a sudden change in the reflectance signal that occurs as the probe comes into contact with the tissue surface.

  7. Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Khlopachev, G. A.

    2013-06-01

    We have considered an optical model of a porous rough surface with optical properties of objects (bone, flint) that are typical of archeology and paleontology. We have formulated an approach that makes it possible to perform mathematical processing of the IR reflection spectra of objects of this kind using standard algorithms and determine criteria that ensure obtaining reliable information on objects with a rough surface in the course of interpretation of frequencies in their IR reflection spectra. The potential of the approach has been demonstrated using as an example an investigation by the IR Fourier-transform reflection spectroscopy of mineralization processes of mammoth tusks from two paleolithic sites (14000 and 16000 BCE) located by the town of Yudinovo, Bryansk oblast, Russia.

  8. Reflection infrared spectroscopy for the non-invasive in situ study of artists' pigments

    NASA Astrophysics Data System (ADS)

    Miliani, C.; Rosi, F.; Daveri, A.; Brunetti, B. G.

    2012-02-01

    The potential of fibre optic reflection infrared spectroscopy for the non-invasive identification of artists' pigments is presented. Sixteen different carbonate, sulphate and silicate-based pigments are taken into account considering their wide use during the history of art and their infrared optical properties. The infrared distortions mainly generated by the specular reflection are discussed on the basis of experimental measurements carried out on reference samples. The study on pure materials permitted the definition of marker bands, mainly combination and overtone modes, enhanced by the diffuse reflection component of the light, functional for the non-invasive pigment identification in real artworks. Several case studies are reported, including wall, easel, canvas paintings and manuscripts from ancient to modern art demonstrating the strengths of the technique on the identification of pigments even in the presence of complex mixtures of both organic (binders, varnishes) and inorganic (supports, fillers and other pigments) compounds.

  9. Monitoring of a pharmaceutical nanomilling process using grating light reflection spectroscopy.

    PubMed

    Hamad, Mazen L; Kailasam, Srividya; Brodsky, Anatol M; Han, Ronald; Higgins, John P; Thomas, Denise; Reed, Robert A; Burgess, Lloyd W

    2005-01-01

    An optical diagnostic method, grating light reflection spectroscopy (GLRS), has been demonstrated for the in situ monitoring of properties of heterogeneous matrices in industrial processes. The technique is based on measurements near the critical points of intensity and phase in waves reflected from a transmission diffraction grating in contact with a diagnostic sample. The features contained in the reflection spectrum near these thresholds allow for the simultaneous determination of the real and imaginary parts of the dielectric function of the sample. Using these data, the milling progress of highly concentrated fluid suspensions is observed as the material is milled from approximately 40 mm to 160 nm in diameter. A theoretical model that closely resembles experimentally determined spectra was constructed and applied in combination with principal components analysis (PCA) to demonstrate that GLRS can be used to closely monitor changes in the mean particle size of the nanomilled drug product.

  10. Transmission and Reflection Terahertz Spectroscopy of Insensitive Melt-Cast High-Explosive Materials

    NASA Astrophysics Data System (ADS)

    Palka, Norbert; Szala, Mateusz

    2016-10-01

    Currently, artillery shells and grenades that are introduced into the market are based on melt-castable insensitive high explosives (IHEs), which do not explode while they run a risk of impact, heat or shrapnel. Particles of explosives (such as hexogen, nitroguanidine and nitrotriazolone) are suspended in different proportions in a matrix of 2.4-dinitroanisole. In this paper, we investigated samples of commonly used IHEs: PAX-41, IMX-104 and IMX-101, whose internal structures were determined by a scanning electron microscope. Terahertz time domain spectroscopy was applied in both transmission and reflection configurations. At first, the complex refraction indices of four pure constituents creating IHEs were determined and became the basis of further calculations. Next, the experimentally determined transmission and reflection spectra of IHEs and pure constituents were compared with theoretical considerations. The influence of the grain size of constituent material and scattering on the reflection spectra was analysed, and good agreement between the experimental and theoretical data was achieved.

  11. Study of normal, fibrous and calcified aortic valve tissue by Raman and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodrigues, Kátia Calligaris; Munin, Egberto; Alves, Leandro P.; Silveira, Fabrício L.; Junior, Landulfo S.; De Lima, Carlos J.; Lázzaro, João C.; De Souza, Genivaldo C.; Piotto, José A. B.; Pacheco, Marcos T. T.; Zângaro, Renato A.

    2007-02-01

    Several studies have identified the degree of aortic valve calcification as a strong predictor both for the progression and outcome of aortic stenosis. In industrialized countries, aortic valve stenosis is most frequently caused by progressive calcification and degeneration of aortic cusps. However, there are no accurate methods to quantify the extent of aortic valve calcification. To provide a non-invasive alternative to biopsy, a range of optical methods have been investigated, including Raman and reflectance spectroscopy. A Raman spectrum can be used to access the molecular constitution of a particular tissue and classify it. Raman spectroscopy is largely used in the quantification and evaluation of human atherosclerosis, being a powerful technique for performing biochemical analysis without tissue removal. Nevertheless, increased thickness and disorganization of the collagen fibre network and extracellular matrix are known to affect the diffuse spectral reflectance of the tissue. A catheter with the "6 around 1" configuration, the central fiber transmit laser radiation to the sample and the scattered light is collected by the other six surrounding fibers, was used both for Raman and reflectance spectroscopy. A white light (krypton lamp, flashtube Model FX 1160 Perkin Elmer, USA) excitation was used for reflectance measurements. A Ti-sapphire (785nm, Spectra Physics, model 3900S, USA) laser, pumped by an argon laser (Spectra Physics, model Stabilite 2017, USA) was used as the near infrared Raman set up. Several ex-vivo spectra of aortic valve samples were analyzed. The results show a promising way to differentiate normal, fibrous and calcified tissue in aortic valve.

  12. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method

    PubMed Central

    Kaniber, M.; Schraml, K.; Regler, A.; Bartl, J.; Glashagen, G.; Flassig, F.; Wierzbowski, J.; Finley, J. J.

    2016-01-01

    We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of = 4.5 nm = 2.6 nm and = 5.4 nm = 3.8 nm, respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρmax ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities. PMID:27005986

  13. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method

    NASA Astrophysics Data System (ADS)

    Kaniber, M.; Schraml, K.; Regler, A.; Bartl, J.; Glashagen, G.; Flassig, F.; Wierzbowski, J.; Finley, J. J.

    2016-03-01

    We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of = 4.5 nm = 2.6 nm and = 5.4 nm = 3.8 nm, respectively. The corresponding optical properties of individual nanoantennas studied by differential reflection spectroscopy show a strong reduction of the localised surface plasmon polariton resonance linewidth from 0.21 eV to 0.07 eV upon reducing the antenna size from 150 nm to 100 nm. This is attributed to the absence of inhomogeneous broadening as compared to optical measurements on nanoantenna ensembles. The inter-particle coupling of an individual bowtie nanoantenna, which gives rise to strongly localised and enhanced electromagnetic hotspots, is demonstrated using polarization-resolved spectroscopy, yielding a large degree of linear polarization of ρmax ~ 80%. The combination of highly reproducible nanofabrication and fast, non-destructive and non-contaminating optical spectroscopy paves the route towards future semiconductor-based nano-plasmonic circuits, consisting of multiple photonic and plasmonic entities.

  14. Structural changes in a polyelectrolyte multilayer assembly investigated by reflection absorption infrared spectroscopy and sum frequency generation spectroscopy.

    PubMed

    Kett, Peter J N; Casford, Michael T L; Yang, Amanda Y; Lane, Thomas J; Johal, Malkiat S; Davies, Paul B

    2009-02-12

    The structure of polyelectrolyte multilayer films adsorbed onto either a per-protonated or per-deuterated 11-mercaptoundecanoic acid (h-MUA/d-MUA) self assembled monolayer (SAM) on gold was investigated in air using two surface vibrational spectroscopy techniques, namely, reflection absorption infrared spectroscopy (RAIRS) and sum frequency generation (SFG) spectroscopy. Determination of film masses and dissipation values were made using a quartz crystal microbalance with dissipation monitoring (QCM-D). The films, containing alternating layers of the polyanion poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and the polycation poly(ethylenimine) (PEI) built on the MUA SAM, were formed using the layer-by-layer electrostatic self-assembly method. The SFG spectrum of the SAM itself comprised strong methylene resonances, indicating the presence of gauche defects in the alkyl chains of the acid. The RAIRS spectrum of the SAM also contained strong methylene bands, indicating a degree of orientation of the methylene groups parallel to the surface normal. Changes in the SFG and RAIRS spectra when a PEI layer was adsorbed on the MUA monolayer showed that the expected electrostatic interaction between the polymer and the SAM, probably involving interpenetration of the PEI into the MUA monolayer, caused a straightening of the alkyl chains of the MUA and, consequently, a decrease in the number of gauche defects. When a layer of PAZO was subsequently deposited on the MUA/PEI film, further spectral changes occurred that can be explained by the formation of a complex PEI/PAZO interpenetrated layer. A per-deuterated MUA SAM was used to determine the relative contributions from the adsorbed polyelectrolytes and the MUA monolayer to the RAIRS and SFG spectra. Spectroscopic and adsorbed mass measurements combined showed that as further bilayers were constructed the interpenetration of PAZO into preadsorbed PEI layers was repeated, up to

  15. Remote identification of the invasive tunicate Didemnum vexillum using reflectance spectroscopy.

    PubMed

    Leeuw, Thomas; Newburg, Seth O; Boss, Emmanuel S; Slade, Wayne H; Soroka, Michael G; Pederson, Judith; Chryssostomidis, Chryssostomos; Hover, Franz S

    2013-03-10

    Benthic coverage of the invasive tunicate Didemnum vexillum on Georges Bank is largely unknown. Monitoring of D. vexillum coverage is vital to understanding the impact this invasive species will have on the productive fishing grounds of Georges Bank. Here we investigate using reflectance spectroscopy as a method for remote identification of D. vexillum. Using two different systems, a NightSea Dive-Spec and a combination of LED light sources with a hyperspectral radiometer, we collected in-situ measurements of reflectance from D. vexillum colonies. In comparison to reflectance spectra of other common benthic substrates, D. vexillum appears to have a unique spectral signature between 500 and 600 nm. Measuring the slope of the spectrum between these wavelengths appears to be the most robust method for spectral identification. Using derivative analysis or principal component analysis, the reflectance spectra of D. vexillum can be identified among numerous other spectra of common benthic substrates. An optical system consisting of a radiometer, light source, and camera was deployed on a remotely operated vehicle to test the feasibility of using reflectance to assess D. vexillum coverage. Preliminary results, analyzed here, prove the method to be successful for the areas we surveyed and open the way for its use on large-scale surveys.

  16. Broadband reflectance spectroscopy for establishing a quantitative metric of vascular leak using the Miles assay

    NASA Astrophysics Data System (ADS)

    McMurdy, John; Reichner, Jonathan; Mathews, Zara; Markey, Mary; Intwala, Sunny; Crawford, Gregory

    2009-09-01

    Monitoring the physiological effects of biological mediators on vascular permeability is important for identifying potential targets for antivascular leak therapy. This therapy is relevant to treatments for pulmonary edema and other disorders. Current methods of quantifying vascular leak are in vitro and do not allow repeated measurement of the same animal. Using an in vivo diffuse reflectance optical method allows pharmacokinetic analysis of candidate antileak molecules. Here, vascular leak is assessed in mice and rats by using the Miles assay and introducing irritation both topically using mustard oil and intradermally using vascular endothelial growth factor (VEGF). The severity of the leak is assessed using broadband diffuse reflectance spectroscopy with a fiber reflectance probe. Postprocessing techniques are applied to extract an artificial quantitative metric of leak from reflectance spectra at vascular leak sites on the skin of the animal. This leak metric is calculated with respect to elapsed time from irritation in both mustard oil and VEGF treatments on mice and VEGF treatments on rats, showing a repeatable increase in leak metric with leak severity. Furthermore, effects of pressure on the leak metric are observed to have minimal effect on the reflectance spectra, while spatial positioning showed spatially nonuniform leak sites.

  17. The research on noninvasive detection of skin cholesterol by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Huayi; Han, Yongsheng; Dong, Meili; Zhang, Yuanzhi; Zhu, Ling; Wang, Yikun; Liu, Yong

    2017-01-01

    Skin cholesterol is a novel biomarker to assess the risk of atherosclerotic diseases. To detect skin cholesterol noninvasively and rapidly, a system was designed based on the diffuse reflectance spectroscopy. The feasibility of this system was validated through detecting cholesterol of pig skin samples, and skin cholesterol in vivo of subjects. The experimental results showed that, diffuse reflectance absorbance integrated intensity S measured the concentration of cholesterol in the pig skin samples quantitatively. After adjusting for age, gender and other factors, it showed a significant positive correlation between S of subjects and the total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) which were the main risk factors for atherosclerotic diseases with the correlation coefficients 0.860(P <0.01) and 0.787(P <0.01). The study has shown that the diffuse reflectance spectroscopy provides a noninvasive and convenient method for the detection of skin cholesterol, and the noninvasive detection of skin cholesterol in vivo will contribute to the early detection of atherosclerotic diseases.

  18. Diffuse reflectance spectroscopy for monitoring diabetic foot ulcer - A pilot study

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Sujatha, N.; Narayanamurthy, V. B.; Seshadri, V.; Poddar, Richa

    2014-02-01

    Foot ulceration due to diabetes mellitus is a major problem affecting 12-25% of diabetic subjects in their lifetime. An untreated ulcer further gets infected which causes necrosis leading to amputation of lower extremities. Early identification of risk factors and treatment for these chronic wounds would reduce health care costs and improve the quality of life for people with diabetes. Recent clinical investigations have shown that a series of factors including reduced oxygen delivery and disturbed metabolism have been observed on patients with foot ulceration due to diabetes. Also, these factors can impair the wound healing process. Optical techniques based on diffuse reflectance spectroscopy provide characteristic spectral finger prints shed light on tissue oxygenation levels and morphological composition of a tissue. This study deals with the application of diffuse reflectance intensity ratios based on oxyhemoglobin bands (R542/R580), ratios of oxy- and deoxy-hemoglobin bands (R580/R555), total hemoglobin concentration and hemoglobin oxygen saturation between normal and diabetic foot ulcer sites. Preliminary results obtained are found to be promising indicating the application of reflectance spectroscopy in the assessment of foot ulcer healing.

  19. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties

    PubMed Central

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E.; Ramanujam, Nimmi

    2010-01-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer. PMID:21499501

  20. Parameter estimation and analysis model selections in fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Shiqing; Zhou, Jie; Ding, Xuemei; Wang, Yuhua; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Fluorescence correlation spectroscopy (FCS) is a powerful technique that could provide high temporal resolution and detection for the diffusions of biomolecules at extremely low concentrations. The accuracy of this approach primarily depends on experimental condition requirements and the data analysis model. In this study, we have set up a confocal-based FCS system. And then we used a Rhodamine6G solution to calibrate the system and get the related parameters. An experimental measurement was carried out on one-component solution to evaluate the relationship between a certain number of molecules and concentrations. The results showed FCS system we built was stable and valid. Finally, a two-component solution experiment was carried out to show the importance of analysis model selection. It is a promising method for single molecular diffusion study in living cells.

  1. Interaction of mineral surfaces with simple organic molecules by diffuse reflectance IR spectroscopy (DRIFT)

    SciTech Connect

    Thomas, Joan E.; Kelley, Michael J.

    2008-06-01

    Diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was used to characterize multi-layers of lysine, glutamic acid and salicylic acid on -alumina and kaolinite surfaces. The results agreed well with those previously obtained by ATR-IR in aqueous media where available, indicating that DRIFT may be regarded as effectively an in-situ spectroscopy for these materials. In the case of salicylic acid adsorption onto γ-alumina, DRIFTS was used to identify monolayer coverage and to detect molecules down to coverage of 3% of a monolayer. The spectroscopic results as to coverage were confirmed by analysis of the solutions used for treatment. The spectra obtained allowed identification of changes in the bonding environment with increasing surface coverage. DRIFTS, offers several advantages in terms of materials, experimental technique and data treatment, motivating further investigations.

  2. Phthalocyanine identification in paintings by reflectance spectroscopy. A laboratory and in situ study

    NASA Astrophysics Data System (ADS)

    Poldi, G.; Caglio, S.

    2013-06-01

    The importance of identifying pigments using non invasive (n.i.) analyses has gained increasing importance in the field of spectroscopy applied to art conservation and art studies. Among the large set of pigments synthesized and marketed during 20th century, surely phthalocyanine blue and green pigments occupy an important role in the field of painting (including restoration) and printing, thanks to their characteristics like brightness and fastness. This research focused on the most used phthalocyanine blue (PB15:1 and PB15:3) and green pigments (PG7), and on the possibility to identify these organic compounds using a methodology like reflectance spectroscopy in the UV, visible and near IR range (UV-vis-NIR RS), performed easily through portable instruments. Laboratory tests and three examples carried out on real paintings are discussed.

  3. Point-contact Andreev reflection spectroscopy on Bi 2 Se 3 single crystals

    DOE PAGES

    Granstrom, C. R.; Fridman, I.; Lei, H. -C.; ...

    2016-04-27

    In order to study how Andreev reflection (AR) occurs between a superconductor and a three-dimensional topological insulator (TI), we use superconducting Nb tips to perform point-contact AR spectroscopy at 4.2 K on as-grown single crystals of Bi2Se3. Scanning tunneling spectroscopy and scanning tunneling microscopy are also used to characterize the superconducting tip and both the doping level and surface condition of the TI sample. Furthermore, the point-contact measurements show clear spectral signatures of AR, as well as a depression of zero-bias conductance with decreasing junction impedance. The latter observation can be attributed to interfacial Rashba spin-orbit coupling, and the presencemore » of bulk bands at the Fermi level in our samples suggests that bulk states of Bi2Se3 are involved in the observed AR.« less

  4. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    SciTech Connect

    Lastras-Martínez, A. E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F.; Lastras-Montaño, L. A.; Lastras-Montaño, M. A.

    2014-03-01

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  5. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    NASA Astrophysics Data System (ADS)

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-10-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis.

  6. Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems.

    PubMed

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Delle Piane, Claudio; Raven, Mark; Mizaikoff, Boris

    2014-10-31

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis.

  7. Application of multibounce attenuated total reflectance fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks.

    PubMed

    Khurana, Harpreet Kaur; Cho, Il Kyu; Shim, Jae Yong; Li, Qing X; Jun, Soojin

    2008-02-13

    Aspartame is a low-calorie sweetener commonly used in soft drinks; however, the maximum usage dose is limited by the U.S. Food and Drug Administration. Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance sampling accessory and partial least-squares regression (PLS) was used for rapid determination of aspartame in soft drinks. On the basis of spectral characterization, the highest R2 value, and lowest PRESS value, the spectral region between 1600 and 1900 cm(-1) was selected for quantitative estimation of aspartame. The potential of FTIR spectroscopy for aspartame quantification was examined and validated by the conventional HPLC method. Using the FTIR method, aspartame contents in four selected carbonated diet soft drinks were found to average from 0.43 to 0.50 mg/mL with prediction errors ranging from 2.4 to 5.7% when compared with HPLC measurements. The developed method also showed a high degree of accuracy because real samples were used for calibration, thus minimizing potential interference errors. The FTIR method developed can be suitably used for routine quality control analysis of aspartame in the beverage-manufacturing sector.

  8. Characterization of a variable angle reflection Fourier transform infrared accessory modified for surface plasmon resonance spectroscopy.

    PubMed

    Menegazzo, Nicola; Kegel, Laurel L; Kim, Yoon-Chang; Booksh, Karl S

    2010-10-01

    The Harrick AutoSeagull variable angle reflection accessory for Fourier transform infrared (FT-IR) spectrometers provides access to various spectroscopic techniques in a highly flexible platform. In particular, its ability to perform total internal reflection measurements is of interest because it also forms the basis for surface plasmon resonance (SPR) spectroscopy in prism-based configurations. The work presented here discusses the modification of the AutoSeagull to perform SPR spectroscopy, allowing for easy incorporation of the technique into most common FT-IR spectrometers. The wavelength dependency of the dielectric constant of the plasmon-supporting metal (in our case, gold) is largely responsible for the sensitivity attributed to changes in the sample's refractive index (RI) monitored by SPR spectroscopy. Furthermore, the optical properties of gold are such that when near-infrared (NIR) and/or mid-infrared (mid-IR) wavelengths are used to excite surface plasmons, higher sensitivities to RI changes are experienced compared to surface plasmons excited with visible wavelengths. The result is that in addition to instrumental simplicity, SPR analysis on FT-IR spectrometers, as permitted by the modified AutoSeagull, also benefits from the wavelength ranges accessible. Adaptation of the AutoSeagull to SPR spectroscopy involved the incorporation of slit apertures to minimize the angular spread reaching the detector, resulting in sharper SPR "dips" but at the cost of noisier spectra. In addition, discussion of the system's analytical performance includes comparison of dip quality as a function of slit size, tailoring of the dip minima location with respect to incident angle, and sensitivity to bulk RI changes.

  9. Multitemporal spectroscopy for crop stress detection using band selection methods

    NASA Astrophysics Data System (ADS)

    Mewes, Thorsten; Franke, Jonas; Menz, Gunter

    2008-08-01

    A fast and precise sensor-based identification of pathogen infestations in wheat stands is essential for the implementation of site-specific fungicide applications. Several works have shown possibilities and limitations for the detection of plant stress using spectral sensor data. Hyperspectral data provide the opportunity to collect spectral reflectance in contiguous bands over a broad range of the electromagnetic spectrum. Individual phenomena like the light absorption of leaf pigments can be examined in detail. The precise knowledge of stress-dependent shifting in certain spectral wavelengths provides great advantages in detecting fungal infections. This study focuses on band selection techniques for hyperspectral data to identify relevant and redundant information in spectra regarding a detection of plant stress caused by pathogens. In a laboratory experiment, five 1 sqm boxes with wheat were multitemporarily measured by a ASD Fieldspec® 3 FR spectroradiometer. Two stands were inoculated with Blumeria graminis - the pathogen causing powdery mildew - and one stand was used to simulate the effect of water deficiency. Two stands were kept healthy as control stands. Daily measurements of the spectral reflectance were taken over a 14-day period. Three ASD Pro Lamps were used to illuminate the plots with constant light. By applying band selection techniques, the three types of different wheat vitality could be accurately differentiated at certain stages. Hyperspectral data can provide precise information about pathogen infestations. The reduction of the spectral dimension of sensor data by means of band selection procedures is an appropriate method to speed up the data supply for precision agriculture.

  10. Hygrothermal degradation of 3-glycidoxypropyltrimethoxysilane films studied by neutron and X-ray reflectivity and attenuated total reflection infrared spectroscopy.

    SciTech Connect

    Tallant, David Robert; Garcia, Manuel Joseph; Majewski, Jaroslaw; Kent, Michael Stuart; Yim, Hyun

    2005-05-01

    Thin films of organosilanes have great technological importance in the areas of adhesion promotion, durability, and corrosion resistance. However, it is well-known that water can degrade organosilane films, particularly at elevated temperatures. In this work, X-ray and neutron reflectivity (XR and NR) were combined with attenuated total reflection infrared (ATR-IR) spectroscopy to study the chemical and structural changes within thin films of (3-glycidoxypropyl)trimethoxysilane (GPS) after exposure for various periods of time to air saturated with either D{sub 2}O or H{sub 2}O at 80 C. For NR and XR, ultrathin ({approx}100 {angstrom}) films were prepared by spin-coating. Both D{sub 2}O and H{sub 2}O provide neutron scattering contrast with GPS. Variations in the neutron scattering length density (SLD) profiles (a function of mass density and atomic composition) with conditioning time were measured after drying the samples out and also swelled with H{sub 2}O or D{sub 2}O vapor at room temperature. For samples that were dried out prior to measurement, little or no change was observed for H{sub 2}O conditioning up to 3.5 days, but large changes were observed after 30 days of conditioning. The range of conditioning time for this structural change was narrowed to between 4 and 10 days with XR. The SLD profiles indicated that the top portion of the GPS film was transformed into a thick low-density layer after conditioning, but the bottom portion showed little structural change. A previous NR study of as-prepared GPS films involving swelling with deuterated nitrobenzene showed that the central portion of the film has much lower cross-link density than the region nearest the substrate. The present data show that the central portion also swells to a much greater extent with water and hydrolyzes more rapidly. The chemical degradation mechanism was identified by IR as hydrolysis of siloxane bonds. For ATR-IR, GPS films were prepared by dip-coating, which resulted in a greater

  11. Thin-film absorption coefficients by attenuated-total-reflection spectroscopy.

    PubMed

    Holm, R T; Palik, E D

    1978-02-01

    The application of attenuated-total-reflection spectroscopy to the measurement of the absorption coefficient of thin films is presented. For low absorption the sensitivity of ATR is discussed in terms of the concept of an effective thickness. Both the case in which the refractive index of the film is higher and the case in which it is lower than that of the ATR trapezoid are considered. Experimental ATR data for antireflection-coating materials for laser windows is analyzed and compared with calorimetric data.

  12. Single-component reflecting objective for low-temperature imaging and spectroscopy of single nano objects

    NASA Astrophysics Data System (ADS)

    Fujiwara, Masanori; Fujiyoshi, Satoru; Matsushita, Michio

    In order to perform imaging and spectroscopy of nano-sized emitters at a temperature of a few kelvins, we have developed a single-component reflecting objective (M. Fujiwara, et al. 2009 [1]). In this work, we report a method to find the optimum numerical aperture (NA) which balances the spherical aberration on one hand and the solid angle to collect emitted photons on the other. For the objective of a focal length of 2 mm, the optimum NA was found to be 0.50 at a wavelength of 250 nm, 0.55 at 400 nm, and 0.60 at 800 nm.

  13. Preliminary Method for Direct Quantification of Colistin Methanesulfonate by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    PubMed Central

    Niece, Krista L.

    2015-01-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). PMID:26124160

  14. Remote diffuse reflectance spectroscopy sensor for tissue engineering monitoring based on blind signal separation.

    PubMed

    Martín-Mateos, Pedro; Crespo-Garcia, Sergio; Ruiz-Llata, Marta; Lopez-Fernandez, José Ramón; Jorcano, José Luis; Del Rio, Marcela; Larcher, Fernando; Acedo, Pablo

    2014-09-01

    In this study the first results on evaluation and assessment of grafted bioengineered skin substitutes using an optical Diffuse Reflectance Spectroscopy (DRS) system with a remote optical probe are shown. The proposed system is able to detect early vascularization of skin substitutes expressing the Vascular Endothelial Growth Factor (VEGF) protein compared to normal grafts, even though devitalized skin is used to protect the grafts. Given the particularities of the biological problem, data analysis is performed using two Blind Signal Separation (BSS) methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). These preliminary results are the first step towards point-of-care diagnostics for skin implants early assessment.

  15. Determination of Moisture Content in 5-Fluorouracil using Diffuse Reflectance Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Parul; Jangir, Deepak Kumar; Mehrotra, Ranjana; Kandpal, H. C.

    2008-11-01

    Determination of moisture content in pharmaceuticals is very important, as moisture is mainly responsible for the degradation of drugs. The degraded drug has not only reduced efficacy but is also hazardous for health. The objective of the present work is to replace the Karl Fischer (KF) titration method used for moisture analysis with a method that is rapid, involves no toxic materials and is more effective. Diffuse reflectance infrared spectroscopy, which is explored as a potential alternate for various applications, is investigated for moisture analysis in 5-Fluorouracil, an anticancer drug.

  16. Exploiting Optical Contrasts for Cervical Precancer Diagnosis via Diffuse Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chang, Vivide Tuan-Chyan

    collagen without altering the amount of collagen present. Further work would be required to elucidate the exact sources of scattering contrast observed. Common confounding variables that limit the accuracy and clinical acceptability of optical spectroscopic systems are calibration requirements and variable probe-tissue contact pressures. Our results suggest that using a real-time self-calibration channel, as opposed to conventional post-experiment diffuse reflectance standard calibration measurements, significantly improved data integrity for the extraction of scattering contrast. Extracted [total Hb] and scattering were also significantly associated with applied contact probe pressure in colposcopically normal sites. Hence, future contact probe spectroscopy or imaging systems should incorporate a self-calibration channel and ensure spectral acquisition at a consistent contact pressure to collect reliable data with enhanced absorption and scattering contrasts. Another method to enhance optical contrast is to selectively interrogate different depths in the dysplastic cervix. For instance, scattering has been shown to increase in the epithelium (increase in nuclear-to-cytoplasmic ratio) while decrease in the stroma (re-organization of the extra-cellular matrix and changes in of collagen fiber cross-links). A fiber-optic probe with 45° illumination and collection fibers with a separation distance of 330 μm was designed and constructed to selectively interrogate the cervical epithelium. Mean extraction errors from liquid phantoms with optical properties mimicking the cervical epithelium for μa and μs' were 11.3 % and 12.7 %, respectively. Diffuse reflectance spectra from 9 sites in four loop electrosurgical excision procedure (LEEP) patients were analyzed. Preliminary data demonstrate the utility of the oblique fiber geometry in extracting scattering contrast in the cervical epithelium. Further work is needed to study the systematic error in optical property extraction and

  17. High-Throughput Near-Infrared Reflectance Spectroscopy for Predicting Quantitative and Qualitative Composition Phenotypes of Individual Maize Kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared reflectance (NIR) spectroscopy can be used for fast and reliable prediction of organic compounds in complex biological samples. We used a recently developed NIR spectroscopy instrument to predict starch, protein, oil, and weight of individual maize (Zea mays) seeds. The starch, prote...

  18. [Nondestructive analysis and identification of pigments on colored relics by fiber optic reflectance spectroscopy].

    PubMed

    Wang, Li-qin; Dang, Gao-chao; Zhao, Jing

    2008-08-01

    and reliable, and verified by XRF analysis. Fiber optics reflectance spectroscopy is a new quick analytical technique to identify pigments on colored relics.

  19. [Detection of erucic acid and glucosinolate in intact rapeseed by near-infrared diffuse reflectance spectroscopy].

    PubMed

    Riu, Yu-kui; Huang, Kun-lun; Wang, Wei-min; Guo, Jing; Jin, Yin-hua; Luo, Yun-bo

    2006-12-01

    With the rapid development of transgenic food, more and more transgenic food has been pouring into the market, raising great concern about transgenic food' s edible safety. To analyze the content of erucic acid and glucosinolate in transgenic rapeseed and its parents, all the seeds were scanned intact by continuous wave of near infrared diffuse reflectance spectrometry ranging from 12 000 to 4 000 cm(-1) with a resolution of 4 cm(-1) and 64 times of scanning. Bruker OPUS software package was applied for quantification, while the results were compared with the standard methods. The results showed that the method of NIRS was very precise, which proved that infrared diffuse reflectance spectroscopy can be applied to detect the toxins in transgenic food. On the other hand, the results also showed that the content of erucic acid in transgenic rapeseeds is 0. 5-1. 0 times

  20. Sediment mineralogy based on visible and near-infrared reflectance spectroscopy

    USGS Publications Warehouse

    Jarrard, R.D.; Vanden Berg, M.D.; ,

    2006-01-01

    Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.

  1. Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy.

    PubMed

    Jepsen, Peter U; Jensen, Jens K; Møller, Uffe

    2008-06-23

    We demonstrate a method based on self-referenced THz time-domain spectroscopy for inspection of aqueous liquids, and in particular alcohol solutions, inside closed containers. We demonstrate that it is possible to determine the alcohol content of an aqueous solution, and that liquids can be classified as either harmless or inflammable. The method operates in reflection mode with the result that liquids opaque to THz radiation can be characterized with little influence of the bottle shape. The method works with plastic bottles as well as glass bottles, with absorption of THz radiation by the plastic or the glass being the limiting factor. The reflection mode allows for automatic control of the validity of the measurement. The method will be useful in liquid scanning systems at security checkpoints.

  2. Reflection terahertz time-domain spectroscopy of RDX and HMX explosives

    NASA Astrophysics Data System (ADS)

    Choi, Kyujin; Hong, Taeyoon; Ik Sim, Kyung; Ha, Taewoo; Cheol Park, Byung; Hyuk Chung, Jin; Gyeong Cho, Soo; Hoon Kim, Jae

    2014-01-01

    We report on our study of RDX and HMX, two of the most commonly used explosive materials, in bulk pellets with reflection terahertz time-domain spectroscopy in the frequency range of 0.3-3 THz. The maximum entropy method was utilized to correct our raw reflection data against the phase error due to the relative displacement between the sample and the reference. Both the refractive index n and the extinction coefficient k in the terahertz region were acquired for these two explosives without a Kramers-Kronig analysis. Both RDX and HMX exhibit a series of distinct peaks not quite detectable in the more conventional transmission-type measurements due to their high terahertz absorptivity. Our results are compared with the literature data on powder samples.

  3. Dry film preparation from whole blood, plasma and serum for quantitative infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bittner, A.; Heise, H. M.

    1998-06-01

    The potential of infrared spectroscopy in the analysis of biotic fluids for the determination of important clinical parameters such as glucose and other blood substrates has been investigated. For this purpose dried films from whole blood, blood plasma and serum were prepared on diffusely reflecting gold-coated substrates from sandpaper of different grades. This enabled measurements in the mid and near infrared spectral ranges by using special diffuse reflectance accessories. The removal of water leads to a considerable enrichment of the fluid constituents. Due to the reduced sample complexity a considerable gain in spectral information is obtained. This is especially valid for measurements in the near infrared where the problems associated with variability in the spectra of aqueous samples due to several parameters, i.e., temperature, electrolyte content etc., are well known. Additionally, mid infrared studies were carried out into the stability of dried samples.

  4. The comparison for leaf nitrogen estimating in rice by chlorophyll meters and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Fenfang; Wang, Ke

    Handheld chlorophyll sensors is a very important technique to determine the timing and number of N applications, which can improve the fertilizer-N use efficiency and monitor leaf N status of irrigated rice. One solution-culture and two field experiments with four rice genotypes were conducted to obtain variables reflecting nitrogen (N) status at different developmental stages. The paper systemically compared SPAD indices calculated from the SPAD readings of various leaf positions and hyperspectral vegetation indices. The results showed that the indices RSI and RDSI were more reliable SPAD indices for estimating foliar N status in rice plant; In addition, from view of quickness and cheapness, chlorophyll meters are more suitable for estimating foliar N status in rice than reflectance spectroscopy on the basis of meeting accuracy requirements.

  5. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).

    PubMed

    Kwon, Cheol-Woong; Chirila, Madalina M; Lee, Taekhee; Harper, Martin; Rando, Roy J

    2013-01-01

    Emerging concerns regarding the toxicity of inhaled wood dust support the need for techniques to quantitate wood content of mixed industrial dusts. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis technique was applied to the determination of wood content of 181 inhalable dust samples (geometric mean concentration: 0.895 mg/m(3); geometric standard deviation: 2.73) collected from six wood product industry factories using 25mm glass fibre filters with the Button aerosol sampler. Prior to direct DRIFTS analysis the filter samples were treated with ethyl acetate and re-deposited uniformly. Standards ranging from 125 μg to 4000 μg were prepared for red oak, southern yellow pine, and red cedar and used for quantitation of samples depending upon the wood materials present at a given factory. The oak standards spectra were quantitated by linear regression of response in Kubelka-Munk units at 1736 cm(-1), whereas the pine standards and the cedar standards spectra were quantitated by polynomial regression of response in log 1/R units at 1734 cm(-1), with the selected wavenumbers corresponding to stretching vibration of free C=O from cellulose and hemicelluloses. For one factory which used both soft- and hardwoods, a separate polynomial standard curve was created by proportionally combining the oak and pine standards polynomial regression equations based on response (log 1/R) at 1734 cm(-1). The analytical limits of detection were approximately 52 μg of oak, 20 μg of pine, 30 μg of cedar, and 16 μg of mixed oak and pine for the factory with mixed woods. Overall, the average of dry wood dust percentage of inhalable dust was approximately 56% and the average dry wood dust weight was 0.572mg for the Button samples. Across factories, there were statistically significant differences (p<0.001) for the percentage of dry wood dust in inhalable dust with factory averages ranging from 33.5 to 97.6%.

  6. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

    PubMed Central

    Kwon, Cheol-Woong; Chirila, Madalina M.; Lee, Taekhee; Harper, Martin; Rando, Roy J.

    2015-01-01

    Emerging concerns regarding the toxicity of inhaled wood dust support the need for techniques to quantitate wood content of mixed industrial dusts. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis technique was applied to the determination of wood content of 181 inhalable dust samples (geometric mean concentration: 0.895 mg/m3; geometric standard deviation: 2.73) collected from six wood product industry factories using 25mm glass fibre filters with the Button aerosol sampler. Prior to direct DRIFTS analysis the filter samples were treated with ethyl acetate and re-deposited uniformly. Standards ranging from 125 μg to 4000 μg were prepared for red oak, southern yellow pine, and red cedar and used for quantitation of samples depending upon the wood materials present at a given factory. The oak standards spectra were quantitated by linear regression of response in Kubelka-Munk units at 1736 cm−1, whereas the pine standards and the cedar standards spectra were quantitated by polynomial regression of response in log 1/R units at 1734 cm−1, with the selected wavenumbers corresponding to stretching vibration of free C=O from cellulose and hemicelluloses. For one factory which used both soft- and hardwoods, a separate polynomial standard curve was created by proportionally combining the oak and pine standards polynomial regression equations based on response (log 1/R) at 1734 cm−1. The analytical limits of detection were approximately 52 μg of oak, 20 μg of pine, 30 μg of cedar, and 16 μg of mixed oak and pine for the factory with mixed woods. Overall, the average of dry wood dust percentage of inhalable dust was approximately 56% and the average dry wood dust weight was 0.572mg for the Button samples. Across factories, there were statistically significant differences (p<0.001) for the percentage of dry wood dust in inhalable dust with factory averages ranging from 33.5 to 97.6%. PMID:26526539

  7. Evaluating Reflectance Spectroscopy as a Method of Rapid Cryptotephra Identification using Component Analysis: Tephrochronology of the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Fisher, E. A.

    2015-12-01

    The reactivation of Montserrat's South Soufrière-Soufrière Hills volcanic complex has impelled the creation of tephrochronologic records in the Lesser Antilles Arc in order to assess volcanic hazards to human safety. Developing an eruptive history of Montserrat by recording tephra layers preserved in marine sediment is hindered by the lack of a rapid, non-destructive method for detecting cryptotephra, tephra deposits invisible to the naked eye, in marine cores. Identifying cryptotephra is important because some cryptotephra layers represent primary tephra emplacement from small proximal eruptions, events that if excluded from a volcanic record could mischaracterize a volcano's eruptive frequency over time. VSWIR [0.4-2.5 μm] reflectance spectroscopy is a candidate for rapid, non-destructive cryptotephra detection in marine sediment cores because it can detect tephra in hemipelagic sediment using summary parameters sensitive to iron content and clay minerals (McCanta et al. 2014, AGU abstract OS53D-1086). Spectra from marine cores U1396C-1H-1A through U1396C-1H-5A, collected during International Ocean Discovery Program (IODP) mission 340, reveal 29 potential cryptotephra layers (McCanta et al. 2014, AGU abstract OS53D-1086). This study seeks to determine the effectiveness of reflectance spectroscopy at identifying cryptotephra by measuring the abundance of volcanic materials (i.e., glass shards/vesicular pumice and non-vesicular lava clasts) in these layers ( LeFriant et al. 2008; Cassidy et al. 2014). Component analysis was conducted on select core intervals with both cryptotephra-identifying peaks in reflectance parameters, and tephra-indicative peaks in core scanning XRF and magnetic susceptibility parameters (McCanta et al. 2014, AGU abstract OS53D-1086). Samples in this subset show abundances of non-vesicular lava and vesicular pumice clasts above expected background abundances, supporting the existence of cryptotephra at these locations (Fig. 1; LeFriant et

  8. Modeling changes in the hemoglobin concentration of skin with total diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Glennie, Diana L.; Hayward, Joseph E.; Farrell, Thomas J.

    2015-03-01

    The ability to monitor changes in the concentration of hemoglobin in the blood of the skin in real time is a key component to personalized patient care. Since hemoglobin has a unique absorption spectrum in the visible light range, diffuse reflectance spectroscopy is the most common approach. Although the collection of the diffuse reflectance spectrum with an integrating sphere (IS) has several calibration challenges, this collection method is sufficiently user-friendly that it may be worth overcoming the initial difficulty. Once the spectrum is obtained, it is commonly interpreted with a log-inverse-reflectance (LIR) or "absorbance" analysis that can only accurately monitor changes in the hemoglobin concentration when there are no changes to the nonhemoglobin chromophore concentrations which is not always the case. We address the difficulties associated with collection of the diffuse reflectance spectrum with an IS and propose a model capable of retrieving relative changes in hemoglobin concentration from the visible light spectrum. The model is capable of accounting for concentration changes in the nonhemoglobin chromophores and is first characterized with theoretical spectra and liquid phantoms. The model is then used in comparison with a common LIR analysis on temporal measurements from blanched and reddened human skin.

  9. Noninvasive blood glucose sensing on human body with near-infrared reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zhen-hao; Hao, Chang-ning; Zhang, Lin-lin; Huang, Yan-chao; Shi, Yi-qin; Jiang, Geng-ru; Duan, Jun-li

    2011-08-01

    The non-invasive blood glucose sensing method has shown its high impact on the clinic application. This can make the measurement on the clinically relevant concentrations of glucose be free from the pain of patient. The transmission spectrum study indicates that the dependence of glucose concentration on the absorbance is in linear manner for the glucose concentration in the region of 30mg/dL to 4.5×104mg/dL. By the near infrared reflection spectroscopy of fiber spectrometer, the reflection band between 1.2μm and 1.35μm can be used to correlated with the glucose concentration in the range of 30 to 300 mg/dL. This reflection band is finally used to measure the glucose concentration effect in non-invasive manner, which gives the statistical significance of P value 0.02. Our experiment result shows that it is possible to get the glucose concentration by the near infrared reflection spectrum measurement on the human forefinger. This non-invasive blood glucose sensing method may useful in clinic after more experiment for different people.

  10. Modeling changes in the hemoglobin concentration of skin with total diffuse reflectance spectroscopy.

    PubMed

    Glennie, Diana L; Hayward, Joseph E; Farrell, Thomas J

    2015-03-01

    The ability to monitor changes in the concentration of hemoglobin in the blood of the skin in real time is a key component to personalized patient care. Since hemoglobin has a unique absorption spectrum in the visible light range, diffuse reflectance spectroscopy is the most common approach. Although the collection of the diffuse reflectance spectrum with an integrating sphere (IS) has several calibration challenges, this collection method is sufficiently user-friendly that it may be worth overcoming the initial difficulty. Once the spectrum is obtained, it is commonly interpreted with a log-inverse-reflectance (LIR) or “absorbance” analysis that can only accurately monitor changes in the hemoglobin concentration when there are no changes to the nonhemoglobin chromophore concentrations which is not always the case. We address the difficulties associated with collection of the diffuse reflectance spectrum with an IS and propose a model capable of retrieving relative changes in hemoglobin concentration from the visible light spectrum. The model is capable of accounting for concentration changes in the nonhemoglobin chromophores and is first characterized with theoretical spectra and liquid phantoms. The model is then used in comparison with a common LIR analysis on temporal measurements from blanched and reddened human skin.

  11. UV-Vis Reflection-Absorption Spectroscopy at air-liquid interfaces.

    PubMed

    Rubia-Payá, Carlos; de Miguel, Gustavo; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-11-01

    UV-Visible Reflection-Absorption Spectroscopy (UVRAS) technique is reviewed with a general perspective on fundamental and applications. UVRAS is formally identical to IR Reflection-Absorption Spectroscopy (IRRAS), and therefore, the methodology developed for this IR technique can be applied in the UV-visible region. UVRAS can be applied to air-solid, air-liquid or liquid-liquid interfaces. This review focuses on the use of UVRAS for studying Langmuir monolayers. We introduce the theoretical framework for a successful understanding of the UVRAS data, and we illustrate the usage of this data treatment to a previous study from our group comprising an amphiphilic porphyrin. For ultrathin films with a thickness of few nm, UVRAS produces positive or negative bands when p-polarized radiation is used, depending on the incidence angle and the orientation of dipole absorption. UVRAS technique provides highly valuable information on tilt of chromophores at the air-liquid interface, and moreover allows the determination of optical parameters. We propose UVRAS as a powerful technique to investigate the in situ optical properties of Langmuir monolayers.

  12. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    PubMed

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  13. [Detection of benzoyl peroxide in wheat flour by NIR diffuse reflectance spectroscopy technique].

    PubMed

    Zhang, Zhi-yong; Li, Gang; Liu, Hai-xue; Lin, Ling; Zhang, Bao-ju; Wu, Xiao-rong

    2011-12-01

    Adding benzoyl peroxide (BPO) into wheat flour was prohibited by the relevant government departments since May 1, 2011. And it is of great importance to detect BPO additive amount in wheat flour quickly and accurately. Part of BPO which was added into wheat flour will be deoxidized into benzoic acid, and this make it complex to detect the original BPO additive amount. The objective of the present research is to investigate the potential of NIR diffuse reflectance spectroscopy as a way for measurement of BPO original adding amount in wheat flour. A total of 133 wheat flour samples were prepared by adding different content of BPO into pure wheat flour. Spectra data were obtained by NIR spectrometer and then denoised by wavelet transform. Ninety seven samples were taken as calibration set and other 36 samples as prediction set. Partial least squares regression (PLSR) was applied to establish the calibration model between BPO original adding contents and the spectra data. The determination coefficient of model for the calibration set is 0.8901, and root mean squared error of calibration (RMSEC) is 40.85 mg x kg(-1). The determination coefficient for the prediction set is 0.8865, and root mean squared error of prediction (RMSEP) is 44.69 mg x kg(-1). The result indicates that it is feasible to detect the BPO adding contents in wheat flour by NIR diffuse reflectance spectroscopy technique and this technique has the potential to measure some other additives in food.

  14. Characterizing the moisture content of tea with diffuse reflectance spectroscopy using wavelet transform and multivariate analysis.

    PubMed

    Li, Xiaoli; Xie, Chuanqi; He, Yong; Qiu, Zhengjun; Zhang, Yanchao

    2012-01-01

    Effects of the moisture content (MC) of tea on diffuse reflectance spectroscopy were investigated by integrated wavelet transform and multivariate analysis. A total of 738 representative samples, including fresh tea leaves, manufactured tea and partially processed tea were collected for spectral measurement in the 325-1,075 nm range with a field portable spectroradiometer. Then wavelet transform (WT) and multivariate analysis were adopted for quantitative determination of the relationship between MC and spectral data. Three feature extraction methods including WT, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of spectral data. Comparison of those three methods indicated that the variables generated by WT could efficiently discover structural information of spectral data. Calibration involving seeking the relationship between MC and spectral data was executed by using regression analysis, including partial least squares regression, multiple linear regression and least square support vector machine. Results showed that there was a significant correlation between MC and spectral data (r = 0.991, RMSEP = 0.034). Moreover, the effective wavelengths for MC measurement were detected at range of 888-1,007 nm by wavelet transform. The results indicated that the diffuse reflectance spectroscopy of tea is highly correlated with MC.

  15. [Determination of sinigrin in semen Thlaspi from Sichuan and Tibet using near infrared diffuse reflectance spectroscopy].

    PubMed

    Wang, Lei-Lei; Chen, Cong; Zhou, Min; Wang, Jian-Zhong; Luo, Xia; Huang, Guo; Ye, Li-Ming

    2009-10-01

    The objective of the present study was to develop a method for the determination of sinigrin in semen Thlaspi from Sichuan using near infrared diffuse reflectance spectroscopy. Near infrared spectra (NIR) in the region of 7,502.1-5,446.2 cm(-1) were recorded for the 246 semen Thlaspi samples containing sinigrin in the content of 1.962%-3.917%. Calibration models were established using the PLS (partial least squares). Different spectra pretreatment methods were compared. The study showed that spectral information can be extracted thoroughly by minimum and maximum normalization pretreatment methods. In this calibration model, the correlation coefficient (R2) was 0.9280, the SEC (standard deviation of the calibration sets) was 0.314 and the SEP (standard deviation of the prediction sets) was 0.388. Results indicated that near infrared diffuse reflectance spectroscopy method can be used to rapidly analyze the valid component in traditional Chinese medicine, and also can be used in the quality control of traditional Chinese medicine.

  16. Identification of mineral composition and weathering product of tuff using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hyun, C.; Park, H.

    2009-12-01

    Tuff is intricately composed of various types of rock blocks and ash matrixes during volcanic formation processes. Qualitative identification and quantitative assessment of mineral composition of tuff usually have been done using manual inspection with naked-eyes and various chemical analyses. Those conventional methods are destructive to objects, time consuming and sometimes carry out biased results from subjective decision making. To overcome limits from conventional methods, assessment technique using reflectance spectroscopy was applied to tuff specimens. Reflectance spectroscopy measures electromagnetic reflectance on rock surface and can extract diagnostic absorption features originated from chemical composition and crystal structure of constituents in the reflectance curve so mineral species can be discriminated qualitatively. The intrinsic absorption feature from particular mineral can be converted to absorption depth representing relative coverage of the mineral in the measurement area by removing delineated convex hull from raw reflectance curve. The spectral measurements were performed with field spectrometer FieldSpec®3 of ASD Inc. and the wavelength range of measurement was form 350nm to 2500nm. Three types of tuff blocks, ash tuff, green lapilli tuff and red lapilli tuff, were sampled from Hwasun County in Korea and the types of tuffs. The differences between green tuff and red tuff are from the color of their matrixes. Ash tuff consists of feldspars and quartz and small amount of chalcedony, calcite, dolomite, epidote and basalt fragments. Green lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, sericite, chlorite, quartzite and basalt fragments. Red lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, limonite, zircon, chlorite, quartzite and basalt fragments. The tuff rocks were coarsely crushed and blocks and matrixes were separated to measure standard

  17. Classification of the waxy condition of durum wheat by near infrared reflectance spectroscopy using wavelets and a genetic algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared (NIR) reflectance spectroscopy has been applied to the problem of differentiating four genotypes of durum wheat: ‘waxy’, wx-A1 null, wx-B1 null and wild type. The test data consisted of 95 NIR reflectance spectra of wheat samples obtained from a USDA-ARS wheat breeding program. A two...

  18. The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality.

    PubMed

    Agatonovic-Kustrin, Snezana; Morton, David W

    2012-07-01

    Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl's quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry.

  19. High pressure sample cell for total internal reflection fluorescence spectroscopy at pressures up to 2500 bar

    NASA Astrophysics Data System (ADS)

    Koo, Juny; Czeslik, Claus

    2012-08-01

    Total internal reflection fluorescence (TIRF) spectroscopy is a surface sensitive technique that is widely used to characterize the structure and dynamics of molecules at planar liquid-solid interfaces. In particular, biomolecular systems, such as protein adsorbates and lipid membranes can easily be studied by TIRF spectroscopy. Applying pressure to molecular systems offers access to all kinds of volume changes occurring during assembly of molecules, phase transitions, and chemical reactions. So far, most of these volume changes have been characterized in bulk solution, only. Here, we describe the design and performance of a high pressure sample cell that allows for TIRF spectroscopy under high pressures up to 2500 bar (2.5 × 108 Pa), in order to expand the understanding of volume effects from the bulk phase to liquid-solid interfaces. The new sample cell is based on a cylindrical body made of Nimonic 90 alloy and incorporates a pressure transmitting sample cuvette. This cuvette is composed of a fused silica prism and a flexible rubber gasket. It contains the sample solution and ensures a complete separation of the sample from the liquid pressure medium. The sample solution is in contact with the inner wall of the prism forming the interface under study, where fluorescent molecules are immobilized. In this way, the new high pressure TIRF sample cell is very useful for studying any biomolecular layer that can be deposited at a planar water-silica interface. As examples, high pressure TIRF data of adsorbed lysozyme and two phospholipid membranes are presented.

  20. The Use of UV-Visible Reflectance Spectroscopy as an Objective Tool to Evaluate Pearl Quality

    PubMed Central

    Agatonovic-Kustrin, Snezana; Morton, David W.

    2012-01-01

    Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl’s quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry. PMID:22851919

  1. Selective abortion and gene therapy: reflections on human limits.

    PubMed

    Post, S G

    1991-01-01

    The potential impact of the Human Genome Project on selective abortion is considered here, as is human gene therapy. Themes of emphasis are broadly humanistic: human suffering, contingency, and perfection. The chief concerns of the article lie with selective abortion for less than serious reasons, and with the importance of avoiding efforts to "enhance" human beings by gene transfer methods. The style is widely interdisciplinary.

  2. Evaluation of vitamin C content in kiwifruit by diffuse reflectance FT-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Xiaping; Ying, Yibin; Lu, Huishan; Yu, Haiyan; Liu, Yande

    2005-11-01

    Vitamin C is considered an important nutrition component of fruits, especially of kiwifruit. Traditional destructive method for vitamin C measurement is very complex and fussy. Near Infrared (NIR)spectroscopy is a promising technique for nondestructive measurement of fruit internal qualities, such as soluble solid content (SSC), valid acidity (VA). The objective of this research was to study the potential of NIR diffuse reflectance spectroscopy as a way for nondestructive measurement of vitamin C content in "Qinmei" kiwifruit. NIR spectral data were collected in the spectral range of 800-2500 nm with different combinations of resolution (4 cm-1, 16 cm-1 and 32 cm-1) and scan number (32, 64 and 128). Statistical models were developed using partial least square (PLS) method. The combination with resolution of 4 cm-1 and scan number of 64 gave the best result when all samples were used in calibration sample set. Then two spectral pretreatments multiplicative signal correction (MSC) and standard normal variate (SNV), and three kinds of mathematical treatment of original spectra, first derivative spectra and second derivative spectra were discussed. The PLS model of second derivative spectra using SNV pretreatment turned out better prediction results: correlation coefficient (r) of 0. 93, root mean square error of calibration (RMSEC) of 9.24 mg/100g and root mean square error of prediction (RMSEP) of 10.3 mg/100g. The results of this study showed that NIR diffuse reflectance spectroscopy could be used for kiwifruit vitamin C prediction. The higher the resolution, the better the results, but longer time will be taken, which may not be suitable for on-line use. Therefore, further research still needs to be done.

  3. Mechanism of relativistic Doppler reflection from a photoinduced moving plasma front studied by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Kohno, Nanase; Itakura, Ryuji; Tsubouchi, Masaaki

    2016-10-01

    We applied terahertz (THz) time-domain spectroscopy to reveal the mechanism of the relativistic Doppler reflection of THz light from a photoinduced plasma front in a silicon wafer. The frequency upshift caused by the Doppler reflection was identified by measurement of the reflected THz waveforms and compared to the calculated results obtained using the one-dimensional finite-difference time-domain method. The relation between the energy density of the pump light and the frequency upshift was also explored. We found that the interaction time of the moving plasma front and the reflected THz pulse is a key factor in understanding the mechanism of the relativistic Doppler reflection.

  4. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.

    PubMed

    Kanick, S C; Robinson, D J; Sterenborg, H J C M; Amelink, A

    2009-11-21

    Single fiber reflectance spectroscopy is a method to noninvasively quantitate tissue absorption and scattering properties. This study utilizes a Monte Carlo (MC) model to investigate the effect that optical properties have on the propagation of photons that are collected during the single fiber reflectance measurement. MC model estimates of the single fiber photon path length (L(SF)) show excellent agreement with experimental measurements and predictions of a mathematical model over a wide range of optical properties and fiber diameters. Simulation results show that L(SF) is unaffected by changes in anisotropy (g epsilon [0.8, 0.9, 0.95]), but is sensitive to changes in phase function (Henyey-Greenstein versus modified Henyey-Greenstein). A 20% decrease in L(SF) was observed for the modified Henyey-Greenstein compared with the Henyey-Greenstein phase function; an effect that is independent of optical properties and fiber diameter and is approximated with a simple linear offset. The MC model also returns depth-resolved absorption profiles that are used to estimate the mean sampling depth (Z(SF)) of the single fiber reflectance measurement. Simulated data are used to define a novel mathematical expression for Z(SF) that is expressed in terms of optical properties, fiber diameter and L(SF). The model of sampling depth indicates that the single fiber reflectance measurement is dominated by shallow scattering events, even for large fibers; a result that suggests that the utility of single fiber reflectance measurements of tissue in vivo will be in the quantification of the optical properties of superficial tissues.

  5. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy

    USGS Publications Warehouse

    Li, Junran; Flagg, Cody B.; Okin, Gregory S.; Painter, Thomas H.; Dintwe, Kebonye; Belnap, Jayne

    2015-01-01

    Current approaches to estimate threshold friction velocity (TFV) of soil particle movement, including both experimental and empirical methods, suffer from various disadvantages, and they are particularly not effective to estimate TFVs at regional to global scales. Reflectance spectroscopy has been widely used to obtain TFV-related soil properties (e.g., moisture, texture, crust, etc.), however, no studies have attempted to directly relate soil TFV to their spectral reflectance. The objective of this study was to investigate the relationship between soil TFV and soil reflectance in the visible and near infrared (VIS–NIR, 350–2500 nm) spectral region, and to identify the best range of wavelengths or combinations of wavelengths to predict TFV. Threshold friction velocity of 31 soils, along with their reflectance spectra and texture were measured in the Mojave Desert, California and Moab, Utah. A correlation analysis between TFV and soil reflectance identified a number of isolated, narrow spectral domains that largely fell into two spectral regions, the VIS area (400–700 nm) and the short-wavelength infrared (SWIR) area (1100–2500 nm). A partial least squares regression analysis (PLSR) confirmed the significant bands that were identified by correlation analysis. The PLSR further identified the strong relationship between the first-difference transformation and TFV at several narrow regions around 1400, 1900, and 2200 nm. The use of PLSR allowed us to identify a total of 17 key wavelengths in the investigated spectrum range, which may be used as the optimal spectral settings for estimating TFV in the laboratory and field, or mapping of TFV using airborne/satellite sensors.

  6. A multichannel continuously selectable multifrequency electrical impedance spectroscopy measurement system.

    PubMed

    Hartov, A; Mazzarese, R A; Reiss, F R; Kerner, T E; Osterman, K S; Williams, D B; Paulsen, K D

    2000-01-01

    There is increasing evidence that alterations in the electrical property spectrum of tissues below 10 MHz is diagnostic for tissue pathology and/or pathophysiology. Yet, the complexity associated with constructing a high-fidelity multichannel, multifrequency data acquisition instrument has limited widespread development of spectroscopic electrical impedance imaging concepts. To contribute to the relatively sparse experience with multichannel spectroscopy systems this paper reports on the design, realization and evaluation of a prototype 32-channel instrument. The salient features of the system include a continuously selectable driving frequency up to 1 MHz, either voltage or current source modes of operation and simultaneous measurement of both voltage and current on each channel in either of these driving configurations. Comparisons of performance with recently reported fixed-frequency systems is favorable. Volts dc (VDC) signal-to-noise ratios of 75-80 dB are achieved and the noise floor for ac signals is near 100 dB below the signal strength of interest at 10 kHz and 60 dB down at 1 MHz. The added benefit of being able to record multispectral information on source and sense signal amplitudes and phases has also been realized. Phase-sensitive detection schemes and multiperiod undersampling techniques have been deployed to ensure measurement fidelity over the full bandwidth of system operation.

  7. Ultra-narrow spectroscopic cells in atomic spectroscopy: reflection, transmission, fluorescence, and nonadiabatic transitions at the walls

    NASA Astrophysics Data System (ADS)

    Pazgalev, A.; Sarkisyan, D.; Cartaleva, S.; Przhibelskii, S.; Vartanyan, T.

    2014-11-01

    Ultra-narrow cells with the thicknesses in the range from several wavelengths to the small fractions of the wavelength brought a number of new opportunities for atomic spectroscopy. Depending on the cell thickness, spectral lines recorded in ultra-narrow cells are either Doppler-free or Doppler-broadened. With careful selection of the cell thickness hyperfine structure may be easily resolved without resorting on the multibeam nonlinear optical techniques. Moreover, frequent collisions with the walls leads to the important modifications of velocity selective optical pumping resonances. Finally, ultra-narrow cells provide with the unique opportunity to study collisions of the excited atoms with the solid surfaces. In this contribution several examples of the use of the ultra-narrow spectroscopic cells filled with the alkali atomic vapour is presented. First, we discuss general aspects of the transient polarisation that defines all peculiarities of an ultra-narrow cell as a spectroscopic tool. Second, we demonstrate the resolution of the magnetic sublevels in the transition from Zeeman to Paschen-Back regime in the Cs hyperfine structure. Third, new aspects of velocity selective optical pumping resonances in reflection and transmission of resonant radiation by the 6 wavelengths thick cell filled with Cs are discussed. Forth, the experimental evidences of the nonadiabatic transitions between excited states of Rb atoms in the course of collisions with the sapphire surface are presented.

  8. Spoilage of foods monitored by native fluorescence spectroscopy with selective excitation wavelength

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Wang, Wubao; Alfano, Robert R.

    2015-03-01

    The modern food processing and storage environments require the real-time monitoring and rapid microbiological testing. Optical spectroscopy with selective excitation wavelengths can be the basis of a novel, rapid, reagent less, noncontact and non-destructive technique for monitoring the food spoilage. The native fluorescence spectra of muscle foods stored at 2-4°C (in refrigerator) and 20-24°C (in room temperature) were measured as a function of time with a selective excitation wavelength of 340nm. The contributions of the principal molecular components to the native fluorescence spectra of meat were measured spectra of each fluorophore: collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin. The responsible components were extracted using a method namely Multivariate Curve Resolution with Alternating Least-Squares (MCR-ALS). The native fluorescence combined with MCR-ALS can be used directly on the surface of meat to produce biochemically interpretable "fingerprints", which reflects the microbial spoilage of foods involved with the metabolic processes. The results show that with time elapse, the emission from NADH in meat stored at 24°C increases much faster than that at 4°C. This is because multiplying of microorganisms and catabolism are accompanied by the generation of NADH. This study presents changes of relative content of NADH may be used as criterion for detection of spoilage degree of meat using native fluorescence spectroscopy.

  9. Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy.

    PubMed

    Maynez-Rojas, M A; Casanova-González, E; Ruvalcaba-Sil, J L

    2017-05-05

    Understanding dye chemistry and dye processes is an important issue for studies of cultural heritage collections and science conservation. Fiber Optics Reflectance Spectroscopy (FORS) is a powerful technique, which allows preliminary dye identification, causing no damage or mechanical stress on the artworks subjected to analysis. Some information related to specific light scattering and absorption can be obtained in the UV-visible and infrared range (300-1400nm) and it is possible to discriminate the kind of support fiber in the near infrared region (1000-2500nm). The main spectral features of natural dye fibers samples, such as reflection maxima, inflection points and reflection minima, can be used in the differentiation of various red natural dyes. In this work, a set of dyed references were manufactured following Mexican recipes with red dyes (cochineal and brazilwood) in order to determine the characteristic FORS spectral features of fresh and aged dyed fibers for their identification in historical pieces. Based on these results, twenty-nine indigenous textiles belonging to the National Commission for the Development of Indigenous People of Mexico were studied. Cochineal and brazilwood were successfully identified by FORS in several pieces, as well as the mixture of cochineal and indigo for purple color.

  10. Measuring joint cartilage thickness using reflectance spectroscopy non-invasively and in real-time

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkceken, Tuba; Karagol, Cosar; Aydin, Ahmet T.

    2011-03-01

    Joint cartilage thickness has been estimated using spatially resolved steady-state reflectance spectroscopy noninvasively and in-real time. The system consists of a miniature UV-VIS spectrometer, a halogen tungsten light source, and an optical fiber probe with six 400 um diameter fibers. The first fiber was used to deliver the light to the cartilage and the other five were used to detect back-reflected diffused light. Distances from the detector fibers to the source fiber were 0.8 mm, 1.6 mm, 2.4 mm, 3.2 mm and 4 mm. Spectra of back-reflected diffused light were taken on 40 bovine patella cartilages. The samples were grouped into four; the first group was the control group with undamaged cartilages, in the 2nd, 3rd and 4th groups cartilage thickness was reduced approximately 25%, 50% and 100%, respectively. A correlation between cartilage thicknesses and hemoglobin absorption of light in the wavelength range of 500 nm- 600 nm for source-detector pairs was found. The proposed system with an optical fiber probe less than 4 mm in diameter has the potential for cartilage thickness assessment through an arthroscopy channel in real-time without damaging the cartilage.

  11. Diffuse reflectance spectroscopy as a tool to measure the absorption coefficient in skin: system calibration.

    PubMed

    Karsten, A E; Singh, A; Karsten, P A; Braun, M W H

    2013-02-01

    An individualised laser skin treatment may enhance the treatment and reduces risks and side-effects. The optical properties (absorption and scattering coefficients) are important parameters in the propagation of laser light in skin tissue. The differences in the melanin content of different skin phototypes influence the absorption of the light. The absorption coefficient at the treatment wavelength for an individual can be determined by diffuse reflectance spectroscopy, using a probe containing seven fibres. Six of the fibres deliver the light to the measurement site and the central fibre collects the diffused reflected light. This is an in vivo technique, offering benefits for near-real-time results. Such a probe, with an effective wavelength band from 450 to 800 nm, was used to calibrate skin-simulating phantoms consisting of intralipid and ink. The calibration constants were used to calculate the absorption coefficients from the diffuse reflectance measurements of three volunteers (skin phototypes, II, IV and V) for sun-exposed and non-exposed areas on the arm.

  12. Silver mirror for enhancing the detection ability of near-infrared diffuse reflectance spectroscopy.

    PubMed

    Wang, Cuicui; Wang, Shuyu; Cai, Wensheng; Shao, Xueguang

    2017-01-01

    Near-infrared diffuse reflectance spectroscopy (NIRDRS) has been proved to be a convenient and fast quantitative method for complex samples. The sensitivity or the detection limit, however, has been the obstacle in practical uses, although great efforts have been made through experimental and chemometric approaches. Due to the strong reflectivity of silver in near-infrared region, a novel method that utilizes silver layer as the adsorption substrate was developed to enhance the detection ability of NIRDRS in this study. For investigating the enhancement effect of the method, lysozyme samples with different concentrations were spotted on the silver layer and NIR spectra were measured. Then quantitative determination was performed using multivariate calibration. For comparison, the comparative experiment was performed using the copper sheet as the substrate. The results show that the intensity of diffuse reflection can be enhanced, and the background variation was reduced by taking the mirror layer as the substrate. A linear variation was obtained between the concentrations and the intensities of the spectral response at a wavenumber. Using multivariate calibration for quantitative analysis, the optimal PLS model was obtained. The maximum deviation of the prediction results can be as low as 12.8µg. Therefore, this study made a progress for NIRDRS technique in microanalysis.

  13. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy.

    PubMed

    Mamani-Linares, L W; Gallo, C; Alomar, D

    2012-02-01

    Visible and near infrared reflectance spectroscopy (VIS-NIRS) was used to discriminate meat and meat juices from three livestock species. In a first trial, samples of Longissimus lumborum muscle, corresponding to beef (31) llamas (21) and horses (27), were homogenised and their spectra collected in reflectance (NIRSystems 6500 scanning monochromator, in the range of 400-2500 nm). In the second trial, samples of meat juice (same muscle) from the same species (20 beef, 19 llama and 19 horse) were scanned in folded transmission (transflectance). Discriminating models (PLS regression) were developed against "dummy" variables, testing different mathematical treatments of the spectra. Best models indentified the species of almost all samples by their meat (reflectance) or meat juice (transflectance) spectra. A few (three of beef and one of llama, for meat samples; one of beef and one of horse, for juice samples) were classified as uncertain. It is concluded that NIRS is an effective tool to recognise meat and meat juice from beef, llama and horses.

  14. Reflectance spectroscopy for the assessment of soil salt content in soils of the yellow river delta of China

    USGS Publications Warehouse

    Weng, Yongling; Gong, P.; Zhu, Z.

    2008-01-01

    There has been growing interest in the use of reflectance spectroscopy as a rapid and inexpensive tool for soil characterization. In this study, we collected 95 soil samples from the Yellow River Delta of China to investigate the level of soil salinity in relation to soil spectra. Sample plots were selected based on a field investigation and the corresponding soil salinity classification map to maximize variations of saline characteristics in the soil. Spectral reflectances of air-dried soil samples were measured using an Analytical Spectral Device (ASD) spectrometer (350-2500 nm) with an artificial light source. In the Yellow River Delta, the dominant chemical in the saline soil was NaCl and MgCl2. Soil spectra were analysed using two-thirds of the available samples, with the remaining one-third withheld for validation purposes. The analysis indicated that with some preprocessing, the reflectance at 1931-2123 nm and 2153-2254 nm was highly correlated with soil salt content (SSC). In the spectral region of 1931-2123 nm, the correlation R ranged from -0.80 to -0.87. In the region of 2153-2254 nm, the SSC was positively correlated with preprocessed reflectance (0.79-0.88). The preprocessing was done by fitting a convex hull to the reflectance curve and dividing the spectral reflectance by the value of the corresponding convex hull band by band. This process is called continuum removal, and the resulting ratio is called continuum removed reflectance (CR reflectance). However, the SSC did not have a high correlation with the unprocessed reflectance, and the correlation was always negative in the entire spectrum (350-2500 nm) with the strongest negative correlation at 1981 nm (R = -0.63). Moreover, we found a strong correlation (R=0.91) between a soil salinity index (SSI: Constructed using CR reflectance at 2052 nm and 2203 nm) and SSC. We estimated SSC as a function of SSI and SSI' (SSI': Constructed using unprocessed reflectance at 2052 nm and 2203 nm) using

  15. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma

    PubMed Central

    Arifler, Dizem; Schwarz, Richard A.; Chang, Sung K.; Richards-Kortum, Rebecca

    2009-01-01

    Reflectance spectroscopy is a promising technology for detection of epithelial precancer. Fiber-optic probes that selectively collect scattered light from both the epithelium and the underlying stroma are likely to improve diagnostic performance of in vivo reflectance spectroscopy by revealing diagnostic features unique to each layer. We present Monte Carlo models with which to evaluate fiber-optic probe geometries with respect to sampling depth and depth resolution. We propose a probe design that utilizes half-ball lens coupled source and detector fibers to isolate epithelial scattering from stromal scattering and hence to resolve spectral information from the two layers. The probe is extremely compact and can provide easy access to different organ sites. PMID:16045217

  16. Micro transflection on a metallic stick: an innovative approach of reflection infrared spectroscopy for minimally invasive investigation of painting varnishes.

    PubMed

    Rosi, Francesca; Legan, Lea; Miliani, Costanza; Ropret, Polonca

    2017-03-06

    A new analytical approach, based on micro-transflection measurements from a diamond-coated metal sampling stick, is presented for the analysis of painting varnishes. Minimally invasive sampling is performed from the varnished surface using the stick, which is directly used as a transflection substrate for micro Fourier transform infrared (FTIR) measurements. With use of a series of varnished model paints, the micro-transflection method has been proved to be a valuable tool for the identification of surface components thanks to the selectivity of the sampling, the enhancement of the absorbance signal, and the easier spectral interpretation because the profiles are similar to transmission mode ones. Driven by these positive outcomes, the method was then tested as tool supporting noninvasive reflection FTIR spectroscopy during the assessment of varnish removal by solvent cleaning on paint models. Finally, the integrated analytical approach based on the two reflection methods was successfully applied for the monitoring of the cleaning of the sixteenth century painting Presentation in the Temple by Vittore Carpaccio. Graphical Abstract Micro-transflection FTIR on a metallic stick for the identification of varnishes during painting cleanings.

  17. Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications.

    PubMed

    Soares, Jaqueline S; Barman, Ishan; Dingari, Narahara Chari; Volynskaya, Zoya; Liu, Wendy; Klein, Nina; Plecha, Donna; Dasari, Ramachandra R; Fitzmaurice, Maryann

    2013-01-08

    Microcalcifications geographically target the location of abnormalities within the breast and are of critical importance in breast cancer diagnosis. However, despite stereotactic guidance, core needle biopsy fails to retrieve microcalcifications in up to 15% of patients. Here, we introduce an approach based on diffuse reflectance spectroscopy for detection of microcalcifications that focuses on variations in optical absorption stemming from the calcified clusters and the associated cross-linking molecules. In this study, diffuse reflectance spectra are acquired ex vivo from 203 sites in fresh biopsy tissue cores from 23 patients undergoing stereotactic breast needle biopsies. By correlating the spectra with the corresponding radiographic and histologic assessment, we have developed a support vector machine-derived decision algorithm, which shows high diagnostic power (positive predictive value and negative predictive value of 97% and 88%, respectively) for diagnosis of lesions with microcalcifications. We further show that these results are robust and not due to any spurious correlations. We attribute our findings to the presence of proteins (such as elastin), and desmosine and isodesmosine cross-linkers in the microcalcifications. It is important to note that the performance of the diffuse reflectance decision algorithm is comparable to one derived from the corresponding Raman spectra, and the considerably higher intensity of the reflectance signal enables the detection of the targeted lesions in a fraction of the spectral acquisition time. Our findings create a unique landscape for spectroscopic validation of breast core needle biopsy for detection of microcalcifications that can substantially improve the likelihood of an adequate, diagnostic biopsy in the first attempt.

  18. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water

  19. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials.

    PubMed

    Bishop, J L; Pieters, C M; Burns, R G; Edwards, J O; Mancinelli, R L; Fröschl, H

    1995-09-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mössbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mössbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mössbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the

  20. The use of UV-VIS-NIR reflectance spectroscopy to identify iron minerals

    NASA Astrophysics Data System (ADS)

    Szalai , Z.; Kiss, K.; Jakab, G.; Sipos, P.; Belucz, B.; Németh, T.

    2013-11-01

    Iron minerals - which behave as indicators in earthly and Martian environments - can be identified by UV-VIS-NIR reflectance spectroscopy. The aim of this study was to compare the spectra of various soils and sediments all of which contain iron minerals but developed under different environmental conditions. To identify the mineral of the sediments we used the first and second derivatives of the Kubelka-Munk transformed spectra. According to their iron mineral composition, the analysed samples can be divided into three distinct groups. Goethite refers to the hydromorphic conditions, hematite suffers from the long and intense weathering in leaching environment. In the case of steppe climatic conditions the weathering is so weak that the appearance of pedogenic iron minerals is improbable in these soils.

  1. Diffuse reflectance near infrared spectroscopy can distinguish normal from enzymatically digested cartilage

    NASA Astrophysics Data System (ADS)

    Brown, C. P.; Bowden, J. C.; Rintoul, L.; Meder, R.; Oloyede, A.; Crawford, R. W.

    2009-09-01

    A non-destructive, diffuse reflectance near infrared spectroscopy (DR-NIRS) approach is considered as a potential tool for determining the component-level structural properties of articular cartilage. To this end, DR-NIRS was applied in vitro to detect structural changes, using principal component analysis as the statistical basis for characterization. The results show that this technique, particularly with first-derivative pretreatment, can distinguish normal, intact cartilage from enzymatically digested cartilage. Further, this paper establishes that the use of DR-NIRS enables the probing of the full depth of the uncalcified cartilage matrix, potentially allowing the assessment of degenerative changes in joint tissue, independent of the site of initiation of the osteoarthritic process.

  2. Quantitative Analysis of Alcohol, Sugar, and Tartaric Acid in Alcoholic Beverages Using Attenuated Total Reflectance Spectroscopy

    PubMed Central

    Nagarajan, R.; Gupta, A.; Bajaj, M. M.

    2006-01-01

    Mid-infrared (MIR) spectroscopy in attenuated total reflectance (ATR) mode was used for quantifying ethanol, sucrose, and tartaric acid in alcoholic beverages. One hundred synthetic samples were prepared with different ethanol, sucrose, and tartaric acid concentrations. Experiments were carried out on Bio-Rad 175 C FTS using an ATR accessory. Spectra were recorded in the wavelength region 600–4000 cm −1 . Calibration was performed using partial least squares (PLS) algorithm. Commercially available alcoholic beverages (gin, rum, vodka, etc.) were experimented and concentration of ethanol in these samples was predicted using the developed calibration model. Chemical analysis of these commercial samples was carried out in order to compare the results. The agreement between ATR results with those of chemical analysis revealed good reliability and repeatability of the technique used. PMID:17671618

  3. Minimally invasive screening for colitis using attenuated total internal reflectance fourier transform infrared spectroscopy.

    PubMed

    Titus, Jitto; Viennois, Emilie; Merlin, Didier; Unil Perera, A G

    2017-03-01

    This article describes a rapid, simple and cost-effective technique that could lead to a screening method for colitis without the need for biopsies or in vivo measurements. This screening technique includes the testing of serum using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy for the colitis-induced increased presence of mannose. Chronic (Interleukin 10 knockout) and acute (Dextran Sodium Sulphate-induced) models for colitis are tested using the ATR-FTIR technique. Arthritis (Collagen Antibody Induced Arthritis) and metabolic syndrome (Toll like receptor 5 knockout) models are also tested as controls. The marker identified as mannose uniquely screens and distinguishes the colitic from the non-colitic samples and the controls. The reference or the baseline spectrum could be the pooled and averaged spectra of non-colitic samples or the subject's previous sample spectrum. This shows the potential of having individualized route maps of disease status, leading to personalized diagnosis and drug management.

  4. Prediction of Japanese green tea ranking by fourier transform near-infrared reflectance spectroscopy.

    PubMed

    Ikeda, Tatsuhiko; Kanaya, Shigehiko; Yonetani, Tsutomu; Kobayashi, Akio; Fukusaki, Eiichiro

    2007-11-28

    A rapid and easy determination method of green tea's quality was developed by using Fourier transform near-infrared (FT-NIR) reflectance spectroscopy and metabolomics techniques. The method is applied to an online measurement and an online prediction of green tea's quality. FT-NIR was employed to measure green tea metabolites' alteration affected by green tea varieties and manufacturing processes. A set of ranked green tea samples from a Japanese commercial tea contest was analyzed to create a reliable quality-prediction model. As multivariate analyses, principal component analysis (PCA) and partial least-squares projections to latent structures (PLS) were used. It was indicated that the wavenumber region from 5500 to 5200 cm(-1) had high correlation with the quality of the tea. In this study, a reliable quality-prediction model of green tea has been achieved.

  5. Inexpensive diffuse reflectance spectroscopy system for measuring changes in tissue optical properties

    NASA Astrophysics Data System (ADS)

    Glennie, Diana L.; Hayward, Joseph E.; McKee, Daniel E.; Farrell, Thomas J.

    2014-10-01

    The measurement of changes in blood volume in tissue is important for monitoring the effects of a wide range of therapeutic interventions, from radiation therapy to skin-flap transplants. Many systems available for purchase are either expensive or difficult to use, limiting their utility in the clinical setting. A low-cost system, capable of measuring changes in tissue blood volume via diffuse reflectance spectroscopy is presented. The system consists of an integrating sphere coupled via optical fibers to a broadband light source and a spectrometer. Validation data are presented to illustrate the accuracy and reproducibility of the system. The validity and utility of this in vivo system were demonstrated in a skin blanching/reddening experiment using epinephrine and lidocaine, and in a study measuring the severity of radiation-induced erythema during radiation therapy.

  6. Evaluation of apparent viscosity of Para rubber latex by diffuse reflection near-infrared spectroscopy.

    PubMed

    Sirisomboon, Panmanas; Chowbankrang, Rawiphan; Williams, Phil

    2012-05-01

    Near-infrared spectroscopy in diffuse reflection mode was used to evaluate the apparent viscosity of Para rubber field latex and concentrated latex over the wavelength range of 1100 to 2500 nm, using partial least square regression (PLSR). The model with ten principal components (PCs) developed using the raw spectra accurately predicted the apparent viscosity with correlation coefficient (r), standard error of prediction (SEP), and bias of 0.974, 8.6 cP, and -0.4 cP, respectively. The ratio of the SEP to the standard deviation (RPD) and the ratio of the SEP to the range (RER) for the prediction were 4.4 and 16.7, respectively. Therefore, the model can be used for measurement of the apparent viscosity of field latex and concentrated latex in quality assurance and process control in the factory.

  7. Diffuse Reflectance Spectroscopy and Colorimetry as a Diagnostic Tool for Acanthosis Nigricans

    NASA Astrophysics Data System (ADS)

    Pattamadilok, Bensachee; Devpura, Suneetha; Syed, Zain U.; Vemulapalli, Pranita; Henderson, Marsha; Rehse, Steven J.; Hamzavi, Iltefat; Mahmoud, Bassel H.; Lim, Henry W.; Naik, Ratna

    2011-03-01

    The purpose of this study was to quantify skin color changes due to Acanthosis Nigricans, a disorder common among prediabetic and obese individuals. The non-invasive optical technique diffuse reflectance spectroscopy (DRS) was used to determine skin melanin, oxyhemoglobin and deoxyhemoglobin content through the measured absorption spectrum. Colorimetery was used to measure skin color based on the standard Tristimulus values (L*, a*, and b*). Data was obtained from eight patients, spanning eight months of treatment. Measurements were obtained from lesion tissue on the neck and healthy skin was used as a control. L*, a* and b* values showed significant differences between lesion and normal controls, whereas melanin was the only parameter which showed statistical significant differences in DRS measurements. Future work will use more sensitive chemometric methods to increase diagnostic accuracy based on the raw spectra of the DRS.

  8. Attenuated total reflectance Fourier transform infrared spectroscopy analysis of red seal inks on questioned document.

    PubMed

    Nam, Yun Sik; Park, Jin Sook; Kim, Nak-Kyoon; Lee, Yeonhee; Lee, Kang-Bong

    2014-07-01

    Seals are traditionally used in the Far East Asia to stamp an impression on a document in place of a signature. In this study, an accuser claimed that a personal contract regarding mining development rights acquired by a defendant was devolved to the accuser because the defendant stamped the devolvement contract in the presence of the accuser and a witness. The accuser further stated that the seal ink stamped on the devolvement contract was the same as that stamped on the development rights application document. To verify this, the seals used in two documents were analyzed using micro-attenuated total reflectance Fourier transform infrared spectroscopy and infrared spectra. The findings revealed that the seals originated from different manufacturers. Thus, the accuser's claim on the existence of a devolvement contract was proved to be false.

  9. Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-01-01

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with <1E-3 absorbance noise for a 10 second measurement time.

  10. Determination of moisture in Cheddar cheese by near infrared reflectance spectroscopy.

    PubMed

    Wehling, R L; Pierce, M M

    1988-01-01

    Near infrared reflectance (NIR) spectroscopy was used to determine the moisture content of Cheddar cheese. Through multiple linear regression analysis, a 3-wavelength calibration was developed for use with a commercial filter monochromator instrument. For a validation set of 47 samples, the correlation coefficient squared (r2) between the NIR and oven moisture methods was 0.92, with a standard error of performance (SEP) of 0.38%. Sample temperature was found to significantly affect the spectral response; therefore, it was necessary to equilibrate all samples to a uniform temperature prior to NIR analysis. Aging may also affect the NIR characteristics of cheese, although it was possible to develop a successful calibration that encompassed a wide range of aging times.

  11. Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements.

    PubMed

    Amelink, Arjen; Robinson, Dominic J; Sterenborg, Henricus J C M

    2008-01-01

    We validate a simple method for determining the confidence intervals on fitted parameters derived from modeling optical reflectance spectroscopy measurements using synthetic datasets. The method estimates the parameter confidence intervals as the square roots of the diagonal elements of the covariance matrix, obtained by multiplying the inverse of the second derivative matrix of chi2 with respect to its free parameters by chi2/v, with v the number of degrees of freedom. We show that this method yields correct confidence intervals as long as the model used to describe the data is correct. Imperfections in the fitting model introduces a bias in the fitted parameters that greatly exceeds the estimated confidence intervals. We investigate the use of various methods to identify and subsequently minimize the bias in the fitted parameters associated with incorrect modeling.

  12. Fast determination of total ginsenosides content in ginseng powder by near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua-cai; Chen, Xing-dan; Lu, Yong-jun; Cao, Zhi-qiang

    2006-01-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm~1880 nm and 2230nm~2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm~2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.

  13. Preconcentration of flavonoids on polyurethane foam and their direct determination by diffuse reflectance spectroscopy.

    PubMed

    Dmitrienko, Stanislava G; Apyari, Vladimir V; Kudrinskaya, Vera A; Stepanova, Alexandra V

    2012-12-15

    Sorption preconcentration of flavonoids quercetin, rutin, chrysin, morin, naringenin and naringin on polyurethane foam was investigated. Several parameters that could affect the preconcentration efficiency were evaluated. The preconcentration efficiency is more than 75% for all the flavonoids except for those that are carbohydrate substituted (preconcentration efficiency less than 11%). This can be used for the separation of these two types of flavonoids. An ability of some flavonoids to absorb light in PUF phase allows their direct determination by diffuse reflectance spectroscopy. Validation of calibration linearity, reproducibility, limits of detection and quantification was performed. The method developed allows to determine flavonoids with detection limits 0.01-0.2 μg mL(-1). The method was utilized for the determination of quercetin in some plant extracts.

  14. Inexpensive diffuse reflectance spectroscopy system for measuring changes in tissue optical properties.

    PubMed

    Glennie, Diana L; Hayward, Joseph E; McKee, Daniel E; Farrell, Thomas J

    2014-01-01

    The measurement of changes in blood volume in tissue is important for monitoring the effects of a wide range of therapeutic interventions, from radiation therapy to skin-flap transplants. Many systems available for purchase are either expensive or difficult to use, limiting their utility in the clinical setting. A low-cost system, capable of measuring changes in tissue blood volume via diffuse reflectance spectroscopy is presented. The system consists of an integrating sphere coupled via optical fibers to a broadband light source and a spectrometer. Validation data are presented to illustrate the accuracy and reproducibility of the system. The validity and utility of this in vivo system were demonstrated in a skin blanching/reddening experiment using epinephrine and lidocaine, and in a study measuring the severity of radiation-induced erythema during radiation therapy.

  15. Detection of whitening agents in illegal cosmetics using attenuated total reflectance-infrared spectroscopy.

    PubMed

    Deconinck, E; Bothy, J L; Desmedt, B; Courselle, P; De Beer, J O

    2014-09-01

    Cosmetic products containing illegal whitening agents are still found on the European market. They represent a considerable risk to public health, since they are often characterised by severe side effects when used chronically. The detection of such products at customs is not always simple, due to misleading packaging and the existence of products containing only legal components. Therefore there is a need for easy to use equipment and techniques to perform an initial screening of samples. The use of attenuated total reflectance-infrared (ATR-IR) spectroscopy, combined with chemometrics, was evaluated for that purpose. It was found that the combination of ATR-IR with the simple chemometric technique k-nearest neighbours gave good results. A model was obtained in which a minimum of illegal samples was categorised as legal. The correctly classified illegal samples could be attributed to the illegal components present.

  16. Rapid analysis of tetracycline hydrochloride solution by attenuated total reflection terahertz time-domain spectroscopy.

    PubMed

    Qin, Jianyuan; Xie, Lijuan; Ying, Yibin

    2017-06-01

    Despite numerous methods for the detection of antibiotic residues, they are usually destructive and require tedious pre-treatment. Terahertz time-domain spectroscopy (THz-TDS) is an emerging technology that has advantages for analyzing chemical and biological compounds since THz waves are very sensitive to the molecular vibrational modes. Here we incorporated attenuated total reflection technique into the THz-TDS and demonstrated that this technology (ATR THz-TDS) allowed to determine the complex refractive indices of tetracycline hydrochloride (TCH) solutions with high accuracy and could be used to predict their concentrations. Our results from the simple linear regression models indicated that the complex refractive index exhibited a monotonic decrease with an increase in the TCH concentration. This study will provide new knowledge about the concentration determination of a liquid sample that couldn't be elucidated with the conventional THz-TDS technologies.

  17. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  18. Infrared Reflection-Absorption Spectroscopy: Principles and Applications to Lipid-Protein Interaction in Langmuir Films

    PubMed Central

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R.

    2010-01-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  19. In-vivo reflection spectroscopy measurements in pig brain during stereotactic surgery

    NASA Astrophysics Data System (ADS)

    Antonsson, Johan; Eriksson, Ola; Wardell, Karin

    2003-07-01

    Radio frequency (RF) lesioning in the human brain is a common surgical therapy for relieving severe pain as well as for movement disorders such as Parkinsonia. During the procedure a small electrode is introduced by stereotactic means towards a target area localized by CT or MRI. An RF-current is applied through the electrode tip when positioned in the target area. The tissue in the proximity of the tip is heated by the current and finally coagulated. The overall aim of this study was to improve the RF-technique and its ability to estimate lesion size by means of optical methods. Therefore, the optical differences between white and gray matter, as well as lesioned and unlesioned tissue were investigated. Reflection spectroscopy measurements in the range of 450-800 nm were conducted on fully anesthetized pigs during stereotactic RF-lesioning (n=6). Light from a tungsten lamp was guided to the electrode tip through optical fibers, inserted along a 2 mm in diameter monopolar RF-electrode. Measurements were performed in steps of 0-10 mm from the target in each hemisphere towards the entry point of the skull. In the central gray of the porcine brain measurements were performed both before and after the creation of a lesion. A total of 55 spectra were collected during this study. Correlation to tissue type was done using post-operative MR-images. The spectral signature for white and gray matter differs significantly for the entire spectral range of 450-800 nm. Pre- and post-lesioning reflection spectroscopy showed the largest differences below 600 and above 620 nm, which implies that lasers within this wavelength range may be useful for in-vivo measurements of tissue optical changes during RF-lesioning.

  20. Comparison of visible and near infrared reflectance spectroscopy on fat to authenticate dietary history of lambs.

    PubMed

    Huang, Y; Andueza, D; de Oliveira, L; Zawadzki, F; Prache, S

    2015-11-01

    Since consumers are showing increased interest in the origin and method of production of their food, it is important to be able to authenticate dietary history of animals by rapid and robust methods used in the ruminant products. Promising breakthroughs have been made in the use of spectroscopic methods on fat to discriminate pasture-fed and concentrate-fed lambs. However, questions remained on their discriminatory ability in more complex feeding conditions, such as concentrate-finishing after pasture-feeding. We compared the ability of visible reflectance spectroscopy (Vis RS, wavelength range: 400 to 700 nm) with that of visible-near-infrared reflectance spectroscopy (Vis-NIR RS, wavelength range: 400 to 2500 nm) to differentiate between carcasses of lambs reared with three feeding regimes, using partial least square discriminant analysis (PLS-DA) as a classification method. The sample set comprised perirenal fat of Romane male lambs fattened at pasture (P, n = 69), stall-fattened indoors on commercial concentrate and straw (S, n = 55) and finished indoors with concentrate and straw for 28 days after pasture-feeding (PS, n = 65). The overall correct classification rate was better for Vis-NIR RS than for Vis RS (99.0% v. 95.1%, P < 0.05). Vis-NIR RS allowed a correct classification rate of 98.6%, 100.0% and 98.5% for P, S and PS lambs, respectively, whereas Vis RS allowed a correct classification rate of 98.6%, 94.5% and 92.3% for P, S and PS lambs, respectively. This study suggests the likely implication of molecules absorbing light in the non-visible part of the Vis-NIR spectra (possibly fatty acids), together with carotenoid and haem pigments, in the discrimination of the three feeding regimes.

  1. [Determination of degree of polymerization of natural cellulose pulp using near-infrared diffuse reflectance spectroscopy].

    PubMed

    Yi, Ying; Song, Chun-Feng; Yuan, Hong-Fu; Xie, Jin-Chun; Du, Jun-Qi; Li, Xiao-Yu

    2014-09-01

    A new method of near-infrared (NIR) diffuse reflectance spectroscopy is proposed to rapidly determine the degree of polymerization (DP) of natural cellulose (cotton and wood) pulp produced by a new clean pulping process. One hundred and ninety five samples were collected and their DP data were determined by standard method GB/T 9107-1999. The spectroscopy measurement method of the samples was studied and their near-infrared diffuse reflectance spectra were collected. The quantitative DP calibration models of one mixed cotton & wood and two separate cotton and wood pulps were established by partial least squares (PLS). The optimum models were developed using the spectra pretreated by derivative, autoscaling and mean-centering, and their performance is as follows: correlation coefficient of 0.980, 0.993 and 0.886, and RMSEP of 147, 143 and 53, respectively. The accuracy of NIR method was also studied. The results show that the accuracy of the two separate models of cotton and wood is better than that of the mixed model, and the precision of the two separate models is better than that of GB/T9107-1999. The identification model of cotton and wood was also established using principal component analysis (PCA). The result shows that the spectra of cotton and wood pulp have obvious difference, and the model can identify successfully the two kinds of pulp. The result indicates that the new NIR method is feasible to realize the on-line analysis of polymerization degree of natural cellulose pulp with its advantage of rapidness and easy operation.

  2. Tracing the acetalization of cyclohexanone in CO2-expanded alcohols by attenuated total reflection infrared spectroscopy.

    PubMed

    Seki, Tsunetake; Andanson, Jean-Michel; Jutz, Fabian; Baiker, Alfons

    2009-09-01

    The CO(2)-catalyzed acetalization is regarded as a promising alternative to the conventional acid-catalyzed method from a viewpoint of green chemistry (C. A. Eckert et al., Ind. Eng. Chem. Res. 43, 2605 (2004)). We have applied in situ attenuated total reflection infrared (ATR-IR) spectroscopy for elucidating and monitoring the acetalization of cyclohexanone in CO(2)-expanded ethylene glycol and methanol at 50 degrees C and 3 MPa. The ATR-IR spectra of the reaction mixtures periodically recorded with a ZnSe crystal demonstrate that ATR-IR spectroscopy is a practical tool for tracing the kinetics of acetalizations in situ. In addition, the rate of CO(2) dissolution as well as CO(2) solubility into the cyclohexanone-alcohol mixtures could be evaluated from the CO(2)-nu(3)-antisymmetric stretching band. The ZnSe ATR crystal, however, was corroded during longer use under the acidic conditions realized by the dissolution of CO(2) in the alcohols. In contrast, the corrosion did not occur when a Ge crystal was used instead of a ZnSe crystal, and therefore the application of a Ge ATR crystal is recommended for continuous long-term experiments with these media.

  3. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Schroeter, L. M.; Itoh, M. J.; Nguyen, B. N.; Apitz, S. E.

    1999-09-01

    A suite of naturally-occurring carboxylic acids (acetic, oxalic, citric, benzoic, salicylic and phthalic) and their corresponding sodium salts were adsorbed onto a set of common mineral substrates (quartz, albite, illite, kaolinite and montmorillonite) in batch slurry experiments. Solution pH's of approximately 3 and 6 were used to examine the effects of pH on sorption mechanisms. Attenuated total reflectance Fourier-transform infrared (ATR FTIR) spectroscopy was employed to obtain vibrational frequencies of the organic ligands on the mineral surfaces and in solution. UV/visible spectroscopy on supernatant solutions was also employed to confirm that adsorption from solution had taken place for benzoic, salicylic and phthalic acids. Molecular orbital calculations were used to model possible surface complexes and interpret the experimental spectra. In general, the tectosilicates, quartz and albite feldspar, did not chemisorb (i.e., strong, inner-sphere adsorption) the carboxylate anions in sufficient amounts to produce infrared spectra of the organics after rinsing in distilled water. The clays (illite, kaolinite and montmorillonite) each exhibited similar ATR FTIR spectra. However, the illite sample used in this study reacted to form strong surface and aqueous complexes with salicylic acid before being treated to remove free Fe-hydroxides. Chemisorption of carboxylic acids onto clays is shown to be limited without the presence of Fe-hydroxides within the clay matrix.

  4. Endoscopic reflectance spectrophotometry and visible light spectroscopy in clinical gastrointestinal studies.

    PubMed

    Leung, Felix W

    2008-06-01

    The use of reflectance spectrophotometry (RS) for mucosal hemodynamic measurement relies on the recognition of changes in indexes of mucosal hemoglobin concentration and oxygen saturation. Endoscopic application in clinical studies has confirmed important observations demonstrated in animal experiments. The vasoconstriction induced by propranolol, vasopressin, glypressin, or somatostatin in the portal hypertensive gastric mucosa and the reduction of gastroduodenal mucosal perfusion by nonsteroidal anti-inflammatory drugs (NSAIDs) or smoking, mesenteric venoconstriction associated with systemic hypoxia, and acid-induced duodenal hyperemia are important examples. Prognostic predictions include the development of stress-induced gastric ulcerations in patients with significant reductions in gastric perfusion after thermal or head injury, or the demonstration of delayed gastric or duodenal ulcer healing when the hyperemia at the ulcer margin fails to materialize. In mechanical-ventilator-dependent patients with sepsis, a significantly reduced gastric mucosal RS measurement portends a grave prognosis (mortality >80%). Recent advances in technology resulted in the construction and validation of instruments for visible light spectroscopy. Measurements focused on tissue oxygen saturation demonstrated epinephrine and vessel-ligation-induced vasoconstriction, the absence of ischemia in radiation-induced rectal telangiectasias, and gut ischemia responsive to revascularization treatment. Endoscopic RS and visible light spectroscopy are suitable for assessing the role of blood flow in conditions with a lesser degree of ischemia and for testing the hypothesis that functional dyspepsia and dysmotility syndromes may be due to gut ischemia.

  5. Early detection of cell activation events by means of attenuated total reflection Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Titus, Jitto; Filfili, Chadi; Hilliard, Julia K.; Ward, John A.; Unil Perera, A. G.

    2014-06-01

    Activation of Jurkat T-cells in culture following treatment with anti-CD3 (Cluster of Differentiation 3) antibody is detectable by interrogating the treated T-cells using the Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy technique. Cell activation was detected within 75 min after the cells encountered specific immunoglobulin molecules. Spectral markers noted following ligation of the CD3 receptor with anti CD3 antibody provides proof-of-concept that ATR-FTIR spectroscopy is a sensitive measure of molecular events subsequent to cells interacting with anti-CD3 Immunoglobulin G. The resultant ligation of the CD3 receptor results in the initiation of well defined, specific signaling pathways that parallel the measurable molecular events detected using ATR-FTIR. Paired t-test with post-hoc Bonferroni corrections for multiple comparisons has resulted in the identification of statistically significant spectral markers (p < 0.02) at 1367 and 1358 cm-1. Together, these data demonstrate that early treatment-specific cellular events can be measured by ATR-FTIR and that this technique can be used to identify specific agents via the responses of the cell biosensor at different time points postexposure.

  6. Identification of species' blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy.

    PubMed

    Mistek, Ewelina; Lednev, Igor K

    2015-09-01

    Blood is one of the most common and informative forms of biological evidence found at a crime scene. A very crucial step in forensic investigations is identifying a blood stain's origin. The standard methods currently employed for analyzing blood are destructive to the sample and time-consuming. In this study, attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy is used as a confirmatory, nondestructive, and rapid method for distinction between human and animal (nonhuman) blood. Partial least squares-discriminant analysis (PLS-DA) models were built and demonstrated complete separation between human and animal donors, as well as distinction between three separate species: human, cat, and dog. Classification predictions of unknown blood donors were performed by the model, resulting in 100 % accuracy. This study demonstrates ATR FT-IR spectroscopy's great potential for blood stain analysis and species discrimination, both in the lab and at a crime scene since portable ATR FT-IR instrumentation is commercially available.

  7. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2014-03-04

    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.

  8. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-03

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  9. Total internal reflection photoacoustic spectroscopy for the detection of β-hematin

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Benjamin S.; Sudduth, Amanda S. M.; Samson, Edward B.; Whiteside, Paul J. D.; Bhattacharyya, Kiran D.; Viator, John A.

    2012-06-01

    Evanescent field sensing methods are currently used to detect many different types of disease markers and biologically important chemicals such as the HER2 breast cancer receptor. Hinoue et al. used Total Internal Reflection Photoacoustic Spectroscopy (TIRPAS) as a method of using the evanescent field to detect an optically opaque dye at a sample interface. Although their methods were successful at detecting dyes, the results at that time did not show a very practical spectroscopic technique, which was due to the less than typical sensitivity of TIRPAS as a spectroscopy modality given the low power (~1 to 2 W) lasers being used. Contrarily, we have used an Nd:YAG laser with a five nanosecond pulse that gives peak power of 1 MW coupled with the TIRPAS system to increase the sensitivity of this technique for biological material sensing. All efforts were focused on the eventual detection of the optically absorbing material, hemozoin, which is created as a byproduct of a malarial infection in blood. We used an optically analogous material, β-hematin, to determine the potential for detection in the TIRPAS system. In addition, four properties which control the sensitivity were investigated to increase understanding about the sensor's function as a biosensing method.

  10. Rapid profiling of Swiss cheese by attenuated total reflectance (ATR) infrared spectroscopy and descriptive sensory analysis.

    PubMed

    Kocaoglu-Vurma, N A; Eliardi, A; Drake, M A; Rodriguez-Saona, L E; Harper, W J

    2009-08-01

    The acceptability of cheese depends largely on the flavor formed during ripening. The flavor profiles of cheeses are complex and region- or manufacturer-specific which have made it challenging to understand the chemistry of flavor development and its correlation with sensory properties. Infrared spectroscopy is an attractive technology for the rapid, sensitive, and high-throughput analysis of foods, providing information related to its composition and conformation of food components from the spectra. Our objectives were to establish infrared spectral profiles to discriminate Swiss cheeses produced by different manufacturers in the United States and to develop predictive models for determination of sensory attributes based on infrared spectra. Fifteen samples from 3 Swiss cheese manufacturers were received and analyzed using attenuated total reflectance infrared spectroscopy (ATR-IR). The spectra were analyzed using soft independent modeling of class analogy (SIMCA) to build a classification model. The cheeses were profiled by a trained sensory panel using descriptive sensory analysis. The relationship between the descriptive sensory scores and ATR-IR spectra was assessed using partial least square regression (PLSR) analysis. SIMCA discriminated the Swiss cheeses based on manufacturer and production region. PLSR analysis generated prediction models with correlation coefficients of validation (rVal) between 0.69 and 0.96 with standard error of cross-validation (SECV) ranging from 0.04 to 0.29. Implementation of rapid infrared analysis by the Swiss cheese industry would help to streamline quality assurance.

  11. Investigating Ultrasonic Diffraction Grating Spectroscopy and Reflection Techniques for Characterizing Slurry Properties

    SciTech Connect

    Burgess, L.W.; Brodsky, A.M.

    2005-12-15

    The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes that must be retrieved from underground storage tanks. This waste, in the form of slurries, must be transferred and processed to a final form, such as glass logs. On-line instrumentation to measure the properties of these slurries in real-time during transport is needed in order to prevent plugging and reduce excessive dilution. The results, describes a collaborative effort between Pacific Northwest National Laboratory (PNNL) and the University of Washington to develop a completely new method for using ultrasonics to measure the particle size and viscosity of a slurry. The concepts are based on work in optics on grating-light-reflection spectroscopy (GLRS) at the University of Washington and work on ultrasonic diffraction grating spectroscopy (UDGS) carried out at PNNL. The objective of the research was to extend the GLRS theory for optics to ultrasonics, and to demonstrate its capabilities of UDGS. The proposed ultrasonic method could result in an instrument that would be simple, rugged, and very compact, allowing it to be implemented as part of a pipeline wall at facilities across the DOE complex

  12. Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed

    Hands, James R; Clemens, Graeme; Stables, Ryan; Ashton, Katherine; Brodbelt, Andrew; Davis, Charles; Dawson, Timothy P; Jenkinson, Michael D; Lea, Robert W; Walker, Carol; Baker, Matthew J

    2016-05-01

    The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection-Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100 % for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0 % sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked.

  13. Impact of one-layer assumption on diffuse reflectance spectroscopy of skin

    NASA Astrophysics Data System (ADS)

    Hennessy, Ricky; Markey, Mia K.; Tunnell, James W.

    2015-02-01

    Diffuse reflectance spectroscopy (DRS) can be used to noninvasively measure skin properties. To extract skin properties from DRS spectra, you need a model that relates the reflectance to the tissue properties. Most models are based on the assumption that skin is homogenous. In reality, skin is composed of multiple layers, and the homogeneity assumption can lead to errors. In this study, we analyze the errors caused by the homogeneity assumption. This is accomplished by creating realistic skin spectra using a computational model, then extracting properties from those spectra using a one-layer model. The extracted parameters are then compared to the parameters used to create the modeled spectra. We used a wavelength range of 400 to 750 nm and a source detector separation of 250 μm. Our results show that use of a one-layer skin model causes underestimation of hemoglobin concentration [Hb] and melanin concentration [mel]. Additionally, the magnitude of the error is dependent on epidermal thickness. The one-layer assumption also causes [Hb] and [mel] to be correlated. Oxygen saturation is overestimated when it is below 50% and underestimated when it is above 50%. We also found that the vessel radius factor used to account for pigment packaging is correlated with epidermal thickness.

  14. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pires, Layla; Demidov, Valentin; Vitkin, I. Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C.

    2016-08-01

    Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ˜90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ˜300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ˜750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.

  15. Infrared characterization of surfaces and coatings by internal-reflection spectroscopy.

    PubMed

    Palik, E D; Gibson, J W; Holm, R T; Hass, M; Braunstein, M; Garcia, B

    1978-06-01

    Some problems which arise in the characterization of surfaces and coatings by internal reflection spectroscopy are described. The ir spectra of bare CaF(2) trapezoids and of ThF(4)- and ZnSe-coated trapezoids exhibit absorption bands in the same spectral region as those of H(2)O and hydrocarbon impurities. In accord with previous investigations, it is observed that the absorptance due to water is much greater in the ThF(4) films than in the ZnSe films or on the CaF(2) surfaces. These results suggest that the water is distributed throughout the ThF(4) films, whereas for ZnSe it resides primarily on the surface. In addition, a number of interesting observations on the desorption and adsorption of water and hydrocarbons to these materials are made. The experimentally observed absorptances are analyzed on the basis of the reflectance for a threelayer system. The analysis enables reasonably quantitative values for the absorption coefficient to be determined for these thin-film coatings.

  16. Characterization of historic silk by polarized attenuated total reflectance Fourier transform infrared spectroscopy for informed conservation.

    PubMed

    Garside, Paul; Lahlil, Sophia; Wyeth, Paul

    2005-10-01

    When assessing historic textiles and considering appropriate conservation, display, and storage strategies, characterizing the physical condition of the textiles is essential. Our work has concentrated on developing nondestructive or micro-destructive methodologies that will permit this. Previously, we have demonstrated a correlation between the physical deterioration of unweighted and "pink" tin (IV) chloride weighted silk and certain measurable spectroscopic and chromatographic signatures, derived from polarized Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy (Pol-ATR) and high-performance liquid chromatography (HPLC) microsampling analyses. The application of the Pol-ATR technique to aged silk characterization has now been extended to include a more comprehensive range of weighting methods and aging regimes. This was intended to replicate the full spectrum of states of deterioration observed in silk textiles, from pristine to heavily degraded. Breaking strength was employed as a measure of the physical integrity of the fibers, and, as expected, decreased with aging. An orientational crystallinity parameter, reflecting the microstructural ordering of the fibroin polymer within the fibers, was derived from the Pol-ATR spectra. A good correlation was observed between the breaking strength of the variety of fibers and this parameter. This suggests that the physical state of historic silk fabrics might be adequately characterized for conservation purposes by such indirect micromethodology.

  17. Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy.

    PubMed

    Galvez-Sola, Luis; García-Sánchez, Francisco; Pérez-Pérez, Juan G; Gimeno, Vicente; Navarro, Josefa M; Moral, Raul; Martínez-Nicolás, Juan J; Nieves, Manuel

    2015-01-01

    Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the spectral reflectance values, obtained by using near infrared reflectance spectroscopy (NIRS). This technique is rapid, non-destructive, cost-effective and environmentally friendly. Therefore, the estimation of macro and micronutrients in citrus leaves by this method would be beneficial in identifying the mineral status of the trees. However, to be used effectively NIRS must be evaluated against the standard techniques across different cultivars. In this study, NIRS spectral analysis, and subsequent nutrient estimations for N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn concentration, were performed using 217 leaf samples from different citrus trees species. Partial least square regression and different pre-processing signal treatments were used to generate the best estimation against the current best practice techniques. It was verified a high proficiency in the estimation of N (Rv = 0.99) and Ca (Rv = 0.98) as well as achieving acceptable estimation for K, Mg, Fe, and Zn. However, no successful calibrations were obtained for the estimation of B, Cu, and Mn.

  18. Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy

    PubMed Central

    Galvez-Sola, Luis; García-Sánchez, Francisco; Pérez-Pérez, Juan G.; Gimeno, Vicente; Navarro, Josefa M.; Moral, Raul; Martínez-Nicolás, Juan J.; Nieves, Manuel

    2015-01-01

    Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the spectral reflectance values, obtained by using near infrared reflectance spectroscopy (NIRS). This technique is rapid, non-destructive, cost-effective and environmentally friendly. Therefore, the estimation of macro and micronutrients in citrus leaves by this method would be beneficial in identifying the mineral status of the trees. However, to be used effectively NIRS must be evaluated against the standard techniques across different cultivars. In this study, NIRS spectral analysis, and subsequent nutrient estimations for N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn concentration, were performed using 217 leaf samples from different citrus trees species. Partial least square regression and different pre-processing signal treatments were used to generate the best estimation against the current best practice techniques. It was verified a high proficiency in the estimation of N (Rv = 0.99) and Ca (Rv = 0.98) as well as achieving acceptable estimation for K, Mg, Fe, and Zn. However, no successful calibrations were obtained for the estimation of B, Cu, and Mn. PMID:26257767

  19. Pink berry grape (Vitis vinifera L.) characterization: Reflectance spectroscopy, HPLC and molecular markers.

    PubMed

    Rustioni, Laura; De Lorenzis, Gabriella; Hârţa, Monica; Failla, Osvaldo

    2016-01-01

    Color has a fundamental role for the qualitative evaluation and cultivar characterization of fruits. In grape, a normally functional pigment biosynthesis leads to the accumulation of a high quantity of anthocyanins. In this work, 28 Vitis vinifera L. cultivars accumulating low anthocyanins in berries were studied to characterize the biosynthetic dysfunctions in both a phenotypic and genotypic point of view. Reflectance spectroscopy, HPLC profiles and molecular markers related to VvMybA1 and VvMybA2 genes allowed a detailed description of the pigment-related characteristics of these cultivars. Data were consistent concerning the heterozygosity of the non-functional allele in both investigated genes, resulting in a low colored phenotype as described by reflectance. However, the variability in berry colour among our samples was not fully explained by MybA locus, probably due to specific interferences among the biosynthetic pathways, as suggested by the anthocyanin profile variations detected among our samples. The results presented in this work confirmed the importance of the genetic background: grapes accumulating high levels of cyanidin-3-O-glucosides (di-substituted anthocyanin) are generally originated by white cultivar retro-mutations and they seem to preserve the anomalies in the flavonoid hydroxylases enzymes which negatively affect the synthesis of tri-substituted anthocyanins.

  20. Determination of Optical and Microvascular Parameters of Port Wine Stains Using Diffuse Reflectance Spectroscopy.

    PubMed

    Qiu, Zhihai; Yao, Guangping; Chen, Defu; Wang, Ying; Gu, Ying; Li, Buhong

    2016-01-01

    Characterizing port wine stains (PWS) with its optical parameters [i.e. absorption coefficient (μ a) and reduced scattering coefficient (μ s')] and microvascular parameters [i.e. blood volume fraction (BVF), mean vessel diameter (MVD), and oxygen saturation (StO2)] is extremely important for elucidating the mechanisms for its light-based treatments, such as pulsed dye laser and photodynamic therapy. In this study, a customized diffuse reflectance spectroscopy (DRS) probe with an appropriate source-detector distance was used to measure the diffuse reflectance spectra of PWS lesions in clinical practice. The results demonstrate that optical parameters of different types of PWS lesions can be accurately extracted by fitting the DRS with diffusion equation. Since the sampling depth of the probe coincides with the depth distribution of abnormal vasculature in PWS, the obtained microvascular parameters of PWS lesions that changed from pink to purple are in agreement with the corresponding physiological conditions. This study suggests that DRS can be utilized to quantitatively determine the optical and microvascular parameters of PWS lesions, which have the potential for planning the protocol and predicting the efficiency for light-based PWS treatments.

  1. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography.

    PubMed

    Pires, Layla; Demidov, Valentin; Vitkin, I Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C

    2016-08-01

    Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ∼ 90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ∼ 300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ∼ 750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.

  2. Impact of one-layer assumption on diffuse reflectance spectroscopy of skin.

    PubMed

    Hennessy, Ricky; Markey, Mia K; Tunnell, James W

    2015-02-01

    Diffuse reflectance spectroscopy (DRS) can be used to noninvasively measure skin properties. To extract skin properties from DRS spectra, you need a model that relates the reflectance to the tissue properties. Most models are based on the assumption that skin is homogenous. In reality, skin is composed of multiple layers, and the homogeneity assumption can lead to errors. In this study, we analyze the errors caused by the homogeneity assumption. This is accomplished by creating realistic skin spectra using a computational model, then extracting properties from those spectra using a one-layer model. The extracted parameters are then compared to the parameters used to create the modeled spectra. We used a wavelength range of 400 to 750 nm and a source detector separation of 250 μm. Our results show that use of a one-layer skin model causes underestimation of hemoglobin concentration [Hb] and melanin concentration [mel]. Additionally, the magnitude of the error is dependent on epidermal thickness. The one-layer assumption also causes [Hb] and [mel] to be correlated. Oxygen saturation is overestimated when it is below 50% and underestimated when it is above 50%. We also found that the vessel radius factor used to account for pigment packaging is correlated with epidermal thickness.

  3. Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy.

    PubMed

    Chen, Yu-Wen; Guo, Jun-Yen; Tzeng, Shih-Yu; Chou, Ting-Chun; Lin, Ming-Jen; Huang, Lynn Ling-Huei; Yang, Chao-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao

    2016-02-01

    Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis.

  4. Quantitative skin color measurements in acanthosis nigricans patients: colorimetry and diffuse reflectance spectroscopy.

    PubMed

    Pattamadilok, Bensachee; Devpura, Suneetha; Syed, Zain U; Agbai, Oma N; Vemulapalli, Pranita; Henderson, Marsha; Rehse, Steven J; Mahmoud, Bassel H; Lim, Henry W; Naik, Ratna; Hamzavi, Iltefat H

    2012-08-01

    Tristimulus colorimetry and diffuse reflectance spectroscopy (DRS) are white-light skin reflectance techniques used to measure the intensity of skin pigmentation. The tristimulus colorimeter is an instrument that measures a perceived color and the DRS instrument measures biological chromophores of the skin, including oxy- and deoxyhemoglobin, melanin and scattering. Data gathered from these tools can be used to understand morphological changes induced in skin chromophores due to conditions of the skin or their treatments. The purpose of this study was to evaluate the use of these two instruments in color measurements of acanthosis nigricans (AN) lesions. Eight patients with hyperinsulinemia and clinically diagnosable AN were seen monthly. Skin pigmentation was measured at three sites: the inner forearm, the medial aspect of the posterior neck, and anterior neck unaffected by AN. Of the three, measured tristimulus L*a*b* color parameters, the luminosity parameter L* was found to most reliably distinguish lesion from normally pigmented skin. The DRS instrument was able to characterize a lesion on the basis of the calculated melanin concentration, though melanin is a weak indicator of skin change and not a reliable measure to be used independently. Calculated oxyhemoglobin and deoxyhemoglobin concentrations were not found to be reliable indicators of AN. Tristimulus colorimetry may provide reliable methods for respectively quantifying and characterizing the objective color change in AN, while DRS may be useful in characterizing changes in skin melanin content associated with this skin condition.

  5. Feasibility for quantitative determination of deoxyribonucleic acid by using near-infrared diffuse reflectance spectroscopy.

    PubMed

    Yang, Yafei; Tu, Jiarun; Cai, Wensheng; Shao, Xueguang

    2012-09-15

    A method for quantitative determination of fish sperm deoxyribonucleic acid (fsDNA) in solutions was developed by using adsorption preconcentration and near-infrared diffuse reflectance spectroscopy (NIRDRS). A high capacity adsorbent of amino-modified silica particle (AMSP) was prepared for preconcentration of fsDNA in solutions. Under the optimized conditions, the adsorption rate can be above 90% within 3 min. After adsorbing the DNA onto the adsorbent, near-infrared (NIR) spectra in diffuse reflectance mode were measured and partial least squares (PLS) model was established for fast quantitative prediction. The results show that the correlation coefficient (R) between the predicted and the reference concentration is 0.9894 and the recoveries are in the range of 92.9-123.4% for the validation samples in the concentration range of 3.00-29.38 mg L(-1). Therefore, the feasibility for quantitative analysis of DNA in solutions by NIRDRS is proved. This may provide an alternative way for fast determination of DNA in solutions.

  6. Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy

    PubMed Central

    Chen, Yu-Wen; Guo, Jun-Yen; Tzeng, Shih-Yu; Chou, Ting-Chun; Lin, Ming-Jen; Huang, Lynn Ling-Huei; Yang, Chao-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao

    2016-01-01

    Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis. PMID:26977361

  7. Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films

    SciTech Connect

    McKee, Kristopher; Meyer, Matthew; Smith, Emily

    2012-04-13

    Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D{sub RS}). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.3–4.6 for aqueous pyridine or 2.2–3.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 89–95% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm–1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.

  8. GMASS ultradeep spectroscopy of galaxies at z ~ 2. VII. Sample selection and spectroscopy

    NASA Astrophysics Data System (ADS)

    Kurk, J.; Cimatti, A.; Daddi, E.; Mignoli, M.; Pozzetti, L.; Dickinson, M.; Bolzonella, M.; Zamorani, G.; Cassata, P.; Rodighiero, G.; Franceschini, A.; Renzini, A.; Rosati, P.; Halliday, C.; Berta, S.

    2013-01-01

    Context. Ultra-deep imaging of small parts of the sky has revealed many populations of distant galaxies, providing insight into the early stages of galaxy evolution. Spectroscopic follow-up has mostly targeted galaxies with strong emission lines at z > 2 or concentrated on galaxies at z < 1. Aims: The populations of both quiescent and actively star-forming galaxies at 1 < z < 2 are still under-represented in our general census of galaxies throughout the history of the Universe. In the light of galaxy formation models, however, the evolution of galaxies at these redshifts is of pivotal importance and merits further investigation. In addition, photometry provides only limited clues about the nature and evolutionary status of these galaxies. We therefore designed a spectroscopic observing campaign of a sample of both massive, quiescent and star-forming galaxies at z > 1.4. Methods: To determine redshifts and physical properties, such as metallicity, dust content, dynamical masses, and star formation history, we performed ultra-deep spectroscopy with the red-sensitive optical spectrograph FORS2 at the Very Large Telescope. We first constructed a sample of objects, within the CDFS/GOODS area, detected at 4.5 μm, to be sensitive to stellar mass rather than star formation intensity. The spectroscopic targets were selected with a photometric redshift constraint (z > 1.4) and magnitude constraints (BAB < 26, IAB < 26.5), which should ensure that these are faint, distant, and fairly massive galaxies. Results: We present the sample selection, survey design, observations, data reduction, and spectroscopic redshifts. Up to 30 h of spectroscopy of 174 spectroscopic targets and 70 additional objects enabled us to determine 210 redshifts, of which 145 are at z > 1.4. The redshift distribution is clearly inhomogeneous with several pronounced redshift peaks. From the redshifts and photometry, we deduce that the BzK selection criteria are efficient (82%) and suffer low contamination

  9. Nondestructive inspection of organic films on sandblasted metals using diffuse reflectance infrared spectroscopy

    SciTech Connect

    Powell, G.L.; Cox, R.L.; Barber, T.E.; Neu, J.T.

    1996-07-08

    Diffuse reflectance infrared spectroscopy is a very useful tool for the determination of surface contamination and characterization of films in manufacturing applications. Spectral data from the surfaces of a host of practical materials may be obtained with sufficient insensitivity to characterize relatively thick films, such as paint, and the potential exists to detect very thin films, such as trace oil contamination on metals. The SOC 400 Surface Inspection Machine/InfraRed (SIMIR) has been developed as a nondestructive inspection tool to exploit this potential in practical situations. This SIMIR is a complete and ruggidized Fourier transform infrared spectrometer with a very efficient and robust barrel ellipse diffuse reflectance optical collection system and operating software system. The SIMIR weighs less than 8 Kg, occupies less than 14 L volume, and may be manipulated into any orientation during operation. The surface to be inspected is placed at the focal point of the SIMIR by manipulating the SIMIR or the surface. The SIMIR may or may not contact the surface being inspected. For flat or convex items, there are no size limits to items being inspected. For concave surfaces, the SIMIR geometry limits the surface to those having a radius of curvature greater than 0.2 m. For highly reflective metal surfaces, the SIMIR has a noise level approaching 1 {times} 10{sup {minus}4} absorbance units, which is sufficient for detecting nanometer thick organic film residues on metals. The use of this nondestructive inspection tool is demonstrated by the spatial mapping of organic stains on sand blasted metals in which organic stains such as silicone oils, mineral oils, and triglycerides are identified both qualitatively and quantitatively over the surface of the metal specimen.

  10. The importance of environmental conditions in reflectance spectroscopy of laboratory analogs for Mars surface materials

    NASA Technical Reports Server (NTRS)

    Bishop, J.; Murchie, S.; Pratt, S.; Mustard, J.; Pieters, C.

    1993-01-01

    Reflectance spectra are presented here for a variety of particulate, ferric-containing analogs to Martian soil (Fe(3+)-doped smectites and palagonites) to facilitate interpretation of remotely acquired spectra. The analog spectra were measured under differing environmental conditions to evaluate the influence of exposure history on water content and absorption features due to H2O in these samples. Each of these materials contains structural OH bonded to metal cations, adsorbed H2O, and bound H2O (either in a glass, structural site, or bound to a cation). Previous experiments involving a variety of Mars analogs have shown that the 3 micron H2O band in spectra of palagonites is more resistant to drying than the 3 micron H2O band in spectra of montmorillonites. Other experiments have shown that spectra of ferrihydrite and montmorillonites doped with ferric sulfate also contain sufficient bound H2O to retain a strong 3 micron band under dry conditions. Once the effects of the environment on bound water in clays, oxides, and salts are better understood, the hydration bands measured via reflectance spectroscopy can be used to gain information about the chemical composition and moisture content of real soil systems. Such information would be especially useful in interpreting observations of Mars where subtle spatial variations in the strengths of metal-OH and H2O absorptions have been observed in telescopic and ISM spectra. We measured bidirectional reflectance spectra of several Mars soil analogs under controlled environmental conditions to assess the effects of moisture content on the metal-OH and H2O absorptions. The samples analyzed include chemically altered montmorillonites, ferrihydrite. and palagonites from Hawaii and Iceland. Procedures for preparation of the cation-exchanged montmorillonites, ferric-salt doped montmorillonites, and ferric oxyhydroxides are described in detail elsewhere.

  11. Assessing Salinity in Cotton and Tomato Plants by Using Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Goldshleger, Naftaly

    2016-04-01

    Irrigated lands in semi-arid and arid areas are subjected to salinization processes. An example of this phenomenon is the Jezreel Valley in northern Israel where soil salinity has increased over the years. The increase in soil salinity results in the deterioration of the soil structure and crops damage. In this experiment we quantified the relation between the chemical and spectral features of cotton and tomato plants and their mutual relationship to soil salinity. The experiment was carried out as part of ongoing research aiming to detect and monitor saline soils and vegetation by combining different remote sensing methods. The aim of this study was to use vegetation reflectance measurements to predict foliar Cl and Na concentration and assess salinity in the soil and in vegetation by their reflectance measurements. The model developed for determining concentrations of chlorine and sodium in tomato and cotton produced good results ( R2 = 0.92 for sodium and 0.85 for chlorine in tomato and R2 = 0.84 for sodium and 0.82 for chlorine in cotton). Lately, we extend the method to calculate vegetation salinity, by doing correlation between the reflectance slopes of the tested crops CL and Na from two research areas. The developed model produced a good results for all the data (R2=0.74) Our method can be implemented to assess vegetation salinity ahead of planting, and developed as a generic tool for broader use for agriculture in semi-arid regions. In our opinion these results show the possibility of monitoring for a threshold level of salinity in tomato and cotton leaves so remedial action can be taken in time to prevent crop damage. Our results strongly suggest that future imaging spectroscopy remote sensing measurements collected by airborne and satellite platforms could measure the salinity of soil and vegetation over larger areas. These results can be the first steps for generic a model which includes more vegetation for salinity measurements.

  12. Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR).

    PubMed

    Blum, Marc-Michael; John, Harald

    2012-01-01

    Vibrational spectroscopy has a long history as an important spectroscopic method in chemical and pharmaceutical analysis. Instrumentation for infrared (IR) spectroscopy was revolutionized by the introduction of Fourier Transform Infrared (FTIR) spectrometers. In addition, easier sampling combined with better sample-to-sample reproducibility and user-to-user spectral variation became available with attenuated total reflectance (ATR) probes and their application for in situ IR spectroscopy. These innovations allow many new applications in chemical and pharmaceutical analysis, such as the use of IR spectroscopy in Process Analytical Chemistry (PAC), the quantitation of drugs in complex matrix formulations, the analysis of protein binding and function and in combination with IR microscopy to the emergence of IR imaging technologies. The use of ATR-FTIR instruments in forensics and first response to 'white powder' incidents is also discussed. A short overview is given in this perspective article with the aim to renew and intensify interest in IR spectroscopy.

  13. Sensitive monitoring of photocarrier densities in the active layer of a photovoltaic device with time-resolved terahertz reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamashita, Genki; Matsubara, Eiichi; Nagai, Masaya; Kim, Changsu; Akiyama, Hidefumi; Kanemitsu, Yoshihiko; Ashida, Masaaki

    2017-02-01

    We demonstrate the sensitive measurement of photocarriers in an active layer of a GaAs-based photovoltaic device using time-resolved terahertz reflection spectroscopy. We found that the reflection dip caused by Fabry-Pérot interference is strongly affected by the carrier profile in the active layer of the p-i-n structure. The experimental results show that this method is suitable for quantitative evaluation of carrier dynamics in active layers of solar cells under operating conditions.

  14. Applications of microstructured silicon wafers as internal reflection elements in attenuated total reflection Fourier transform infrared spectroscopy.

    PubMed

    Schumacher, Henrik; Künzelmann, Ulrich; Vasilev, Boris; Eichhorn, Klaus-Jochen; Bartha, Johann W

    2010-09-01

    A novel internal reflection element (IRE) for attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectral acquisition is introduced and applied for several surface-sensitive measurements. It is based on microstructured double-side-polished (100) silicon wafers with v-shaped grooves of {111} facets on their backside. These facets of the so-called "microstructured single-reflection elements" (mSRE) are formed by a crystal-oriented anisotropic wet etching process within a conventional wafer structuring process. They are used to couple infrared radiation into and out of the IRE. In contrast to the application of the commonly used silicon multiple-reflection elements (MRE), the new elements provide single-reflection ATR measurements at the opposite wafer side by using simple reflection accessories without any special collimation. Due to the short light path, the spectral range covers the entire mid-infrared region with a high optical throughput, including the range of silicon lattice vibrations from 300 to 1500 cm(-1). In addition to typical ATR applications, i.e., the measurement of bulk liquids and soft materials, the new reflection elements can be effectively used and customer-specifically designed for in situ and ex situ investigations of aqueous solutions, thin films, and monolayers on Si. Examples presented in this article are in situ etching of native as well as thermal SiO(2) and characterization of polydimethylsiloxane (PDMS) films on Si under various measuring conditions.

  15. Photoinduced phase transition in tetrathiafulvalene- p -chloranil observed in femtosecond reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Okamoto, H.; Ishige, Y.; Tanaka, S.; Kishida, H.; Iwai, S.; Tokura, Y.

    2004-10-01

    Photoinduced transitions from ionic (I) to neutral (N) and neutral (N) to ionic (I) phases in an organic charge transfer (CT) complex, tetrathiafulvalene- p -chloranil (TTF-CA), were investigated by femtosecond pump-probe reflection spectroscopy. Transient reflectivity changes of the intramolecular transition band of TTF sensitive to the degree of CT between a donor molecule of TTF and an acceptor molecule of CA are measured as a function of excitation energy, excitation density, and temperature. By adopting the multilayer model for the analysis of the obtained transient reflectivity spectra, we have derived the time characteristics of amounts and spatial distributions of photoinduced N(I) states in the I(N) phase. The results reveal that the I to N(IN) transition induced by the resonant excitation of the CT band at 4K is composed of three processes; (1) formation of a confined one-dimensional (1D) N domain, that is, a sequence of D0A0 pairs, just after the photoexcitation, (2) multiplication of the 1D N domains to the semimacroscopic N states up to 20ps within the absorption depth of the excitation light, and (3) proceeding of the IN transition along the direction normal to the sample surface. At 77K near the NI transition temperature (Tc=81K) , the size of the 1D N domain initially produced is enlarged and its multiplication process is strongly enhanced. When the excitation energy is increased, the initial photoproduct is changed from the confined 1D N domain to the positively and negatively charged N states. The spatial size of the latter is considerably larger than that of the former, indicating that the introduction of charge carriers makes the neighboring I state strongly unstable. The dynamics of the photoinduced N to I(NI) transition has also been investigated. The 1D I domains are initially produced by lights, however, they decay within 20ps even if the density of the I domains is increased. The results demonstrate that there is a clear difference of the

  16. [Testing of germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy].

    PubMed

    Li, Yi-nian; Jiang, Dan; Liu, Ying-ying; Ding, Wei-min; Ding, Qi-shuo; Zha, Liang-yu

    2014-06-01

    Germination rate of rice seeds was measured according to technical stipulation of germination testing for agricultural crop seeds at present. There existed many faults for this technical stipulation such as long experimental period, more costing and higher professional requirement. A rapid and non-invasive method was put forward to measure the germination rate of hybrid rice seeds based on near-infrared reflectance spectroscopy. Two varieties of hybrid rice seeds were aged artificially at temperature 45 degrees C and humidity 100% condition for 0, 24, 48, 72, 96, 120 and 144 h. Spectral data of 280 samples for 2 varieties of hybrid rice seeds with different aging time were acquired individually by near-infrared spectra analyzer. Spectral data of 280 samples for 2 varieties of hybrid rice seeds were randomly divided into calibration set (168 samples) and prediction set (112 samples). Gormination rate of rice seed with different aging time was tested. Regression model was established by using partial least squares (PLS). The effect of the different spectral bands on the accuracy of models was analyzed and the effect of the different spectral preprocessing methods on the accuracy of models was also compared. Optimal model was achieved under the whole bands and by using standardization and orthogonal signal correction (OSC) preprocessing algorithms with CM2000 software for spectral data of 2 varieties of hybrid rice seeds, the coefficient of determination of the calibration set (Rc) and that of the prediction set (Rp) were 0.965 and 0.931 individually, standard error of calibration set (SEC) and that of prediction set (SEP) were 1.929 and 2.899 respectively. Relative error between tested value and predicted value for prediction set of rice seeds is below 4.2%. The experimental results show that it is feasible that rice germination rate is detected rapidly and nondestructively by using the near-infrared spectroscopy analysis technology.

  17. Near infrared reflectance spectroscopy for the fast identification of PVC-based films.

    PubMed

    Laasonen, M; Rantanen, J; Harmia-Pulkkinen, T; Michiels, E; Hiltunen, R; Räsänen, M; Vuorela, H

    2001-07-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a non-destructive and rapid qualitative method for the analysis of plastic films used by the pharmaceutical industry for blistering. Three types of films were investigated: 250 microm PVC [poly(vinyl chloride)] films, 250 microm PVC films coated with 40 g m(-2) of PVDC [poly(vinylidene dichloride)] and 250 microm PVC films coated with 5 g m(-2) of TE (Thermoelast) and 90 g m(-2) of PVDC. Three analyses were carried out using different pre-treatment options and a PLS (partial least squares) algorithm. Each analysis was aimed at identifying one type of film and rejecting all types of false sample (different thickness, colour or layer). True and false samples from four plastics manufacturers were included in the calibration sets in order to obtain robust methods that were suitable regardless of the supplier. Specificity was demonstrated by testing validation sets against the methods. The tests showed 0% of type I (false negative identification) and 1% of type II errors (false positive identification) for the PVC method, 13 and 3%, respectively, for the PVC-PVDC method and no error for the PVC-TE-PVDC method. Type II errors, mostly due to the slight sensitivity of the methods to film thickness, are easily corrected by simple thickness measurements. This study demonstrates that NIR spectroscopy is an excellent tool for the identification of PVC-based films. The three methods can be used by the pharmaceutical industry or plastics manufacturers for the quality control of films used in blister packaging.

  18. Quantification of bovine immunoglobulin G using transmission and attenuated total reflectance infrared spectroscopy.

    PubMed

    Elsohaby, Ibrahim; McClure, J Trenton; Riley, Christopher B; Shaw, R Anthony; Keefe, Gregory P

    2016-01-01

    In this study, we evaluated and compared the performance of transmission and attenuated total reflectance (ATR) infrared (IR) spectroscopic methods (in combination with quantification algorithms previously developed using partial least squares regression) for the rapid measurement of bovine serum immunoglobulin G (IgG) concentration, and detection of failure of transfer of passive immunity (FTPI) in dairy calves. Serum samples (n = 200) were collected from Holstein calves 1-11 days of age. Serum IgG concentrations were measured by the reference method of radial immunodiffusion (RID) assay, transmission IR (TIR) and ATR-IR spectroscopy-based assays. The mean IgG concentration measured by RID was 17.22 g/L (SD ±9.60). The mean IgG concentrations predicted by TIR and ATR-IR spectroscopy methods were 15.60 g/L (SD ±8.15) and 15.94 g/L (SD ±8.66), respectively. RID IgG concentrations were positively correlated with IgG levels predicted by TIR (r = 0.94) and ATR-IR (r = 0.92). The correlation between 2 IR spectroscopic methods was 0.94. Using an IgG concentration <10 g/L as the cut-point for FTPI cases, the overall agreement between TIR and ATR-IR methods was 94%, with a corresponding kappa value of 0.84. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for identifying FTPI by TIR were 0.87, 0.97, 0.91, 0.95, and 0.94, respectively. Corresponding values for ATR-IR were 0.87, 0.95, 0.86, 0.95, and 0.93, respectively. Both TIR and ATR-IR spectroscopic approaches can be used for rapid quantification of IgG level in neonatal bovine serum and for diagnosis of FTPI in dairy calves.

  19. Fiber optic reflectance spectroscopy and hyper-spectral image spectroscopy: two integrated techniques for the study of the Madonna dei Fusi

    NASA Astrophysics Data System (ADS)

    Casini, A.; Bacci, M.; Cucci, C.; Lotti, F.; Porcinai, S.; Picollo, M.; Radicati, B.; Poggesi, M.; Stefani, L.

    2005-06-01

    Reflectance spectroscopy supplies fundamental information for investigating art objects and diagnosing their state of conservation. Until recently, reflectance spectra could be measured only on samples taken from the art objects. Recent progresses in fiber optics reflectance spectroscopy (FORS) and image spectroscopy (IS) have made it possible, however, to perform non-invasive measurements. Moreover, the two techniques can supply data in large enough quantities as to make the use of sophisticated statistical methods significant for detecting variations due to ageing and degradation. FORS and IS are, in a sense, complementary techniques as the former provides information on single points, while the latter provides 2-D maps from which the reflectance spectrum of each pixel can be displayed. Both FORS and IS were applied in the case study on the Lansdowne version of the Madonna dei fusi (Madonna of the Yarnwinder). In particular, IS was realized by means of a hyper-spectral scanner recently assembled at the "Nello Carrara" Istituto di Fisica Applicata. The characteristics of the scanner are: 0.1 mm spatial sampling over a 1x1 m2 surface and ~1 nm spectral sampling in the wavelength range from 400 nm to 900 nm. The information provided by these two techniques was consistent with what supplied by the non-invasive techniques employed by the other teams participating in the case study, in particular as regards the pigments, the preparatory layer, the binding medium, and the previous restoration works.

  20. Selective Attention of Impulsive and Reflective Children. Research Report No. 66.

    ERIC Educational Resources Information Center

    Egeland, Byron; Thibodeau, Anne

    The present investigation looked at selective attention in impulsive and reflective children using a central/incidental task similar to that used by Hagen, 1967. In order to examine developmental change in selective attention, children at kindergarten, second, and fifth grades were tested. The central recall task involved presenting the child with…

  1. Field spectroscopy sampling strategies for improved measurement of Earth surface reflectance

    NASA Astrophysics Data System (ADS)

    Mac Arthur, A.; Alonso, L.; Malthus, T. J.; Moreno, J. F.

    2013-12-01

    Over the last two decades extensive networks of research sites have been established to measure the flux of carbon compounds and water vapour between the Earth's surface and the atmosphere using eddy covariance (EC) techniques. However, contributing Earth surface components cannot be determined and (as the ';footprints' are spatially constrained) these measurements cannot be extrapolated to regional cover using this technique. At many of these EC sites researchers have been integrating spectral measurements with EC and ancillary data to better understand light use efficiency and carbon dioxide flux. These spectroscopic measurements could also be used to assess contributing components and provide support for imaging spectroscopy, from airborne or satellite platforms, which can provide unconstrained spatial cover. Furthermore, there is an increasing interest in ';smart' database and information retrieval systems such as that proposed by EcoSIS and OPTIMISE to store, analyse, QA and merge spectral and biophysical measurements and provide information to end users. However, as Earth surfaces are spectrally heterogeneous and imaging and field spectrometers sample different spatial extents appropriate field sampling strategies require to be adopted. To sample Earth surfaces spectroscopists adopt either single; random; regular grid; transect; or 'swiping' point sampling strategies, although little comparative work has been carried out to determine the most appropriate approach; the work by Goetz (2012) is a limited exception. Mac Arthur et al (2012) demonstrated that, for two full wavelength (400 nm to 2,500 nm) field spectroradiometers, the measurement area sampled is defined by each spectroradiometer/fore optic system's directional response function (DRF) rather than the field-of-view (FOV) specified by instrument manufacturers. Mac Arthur et al (2012) also demonstrated that each reflecting element within the sampled area was not weighted equally in the integrated

  2. Monitoring longitudinal changes in irradiated head and neck cancer xenografts using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vishwanath, Karthik; Jiang, Shudong; Gunn, Jason R.; Marra, Kayla; Andreozzi, Jacqueline M.; Pogue, Brian W.

    2016-02-01

    Radiation therapy is often used as the preferred clinical treatment for control of localized head and neck cancer. However, during the course of treatment (6-8 weeks), feedback about functional and/or physiological changes within impacted tissue are not obtained, given the onerous financial and/or logistical burdens of scheduling MRI, PET or CT scans. Diffuse optical sensing is well suited to address this problem since the instrumentation can be made low-cost and portable while still being able to non-invasively provide information about vascular oxygenation in vivo. Here we report results from studies that employed an optical fiber-based portable diffuse reflectance spectroscopy (DRS) system to longitudinally monitor changes in tumor vasculature within two head and neck cancer cell lines (SCC-15 and FaDu) xenografted in the flanks of nude mice, in two separate experiments. Once the tumor volumes were 100mm3, 67% of animals received localized (electron beam) radiation therapy in five fractions (8Gy/day, for 5 days) while 33% of the animals served as controls. DRS measurements were obtained from each animal on each day of treatment and then for two weeks post-treatment. Reflectance spectra were parametrized to extract total hemoglobin concentration and blood oxygen-saturation and the resulting time-trends of optical parameters appear to be dissimilar for the two cell-lines. These findings are also compared to previous animal experiments (using the FaDu line) that were irradiated using a photon beam radiotherapy protocol. These results and implications for the use of fiber-based DRS measurements made at local (irradiated) tumor site as a basis for identifying early radiotherapy-response are presented and discussed.

  3. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions

    SciTech Connect

    Walker, Rachel L.; Searles, Keith; Willard, Jesse A.; Michelsen, Rebecca R. H.

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

  4. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  5. Enhanced single seed trait predictions in soybean (Glycine max) and robust calibration model transfer with near infrared reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single seed near infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait...

  6. Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy as a Method of Characterizing Changes in Soil Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (FTIR) can be used quickly and non destructively to identify and quantify the presence of important organic functional groups in environmental samples. However, soils contain myriad organic and inorganic components that absorb in the M...

  7. Extracting Complex Refractive Index from Polycrystalline Glucose with Self-Referenced Method for Terahertz Time-Domain Reflection Spectroscopy.

    PubMed

    Zhang, Yu; Zhang, Lin; Sun, Ping; He, Yingfeng; Zou, Yun; Deng, Yuqiang

    2016-07-01

    A self-referenced method for extracting the complex refractive index of material was proposed. The method utilized signals reflected from the front and rear surfaces of a slice sample as reference and sample signals, respectively. Before using the self-referenced method, a hybrid filtering technique for eliminating systematic and random noises of time-domain terahertz reflection spectroscopy was used. A terahertz reflection spectrum of crystalline glucose was measured and three feature absorption peaks were obtained from 0.2 to 2.0 THz. We suggest that intermolecular vibrational modes may contribute to the observed absorption spectra in the THz frequency range.

  8. Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants

    NASA Astrophysics Data System (ADS)

    Shi, Tiezhu; Wang, Junjie; Chen, Yiyun; Wu, Guofeng

    2016-10-01

    Visible and near-infrared reflectance spectroscopy provides a beneficial tool for investigating soil heavy metal contamination. This study aimed to investigate mechanisms of soil arsenic prediction using laboratory based soil and leaf spectra, compare the prediction of arsenic content using soil spectra with that using rice plant spectra, and determine whether the combination of both could improve the prediction of soil arsenic content. A total of 100 samples were collected and the reflectance spectra of soils and rice plants were measured using a FieldSpec3 portable spectroradiometer (350-2500 nm). After eliminating spectral outliers, the reflectance spectra were divided into calibration (n = 62) and validation (n = 32) data sets using the Kennard-Stone algorithm. Genetic algorithm (GA) was used to select useful spectral variables for soil arsenic prediction. Thereafter, the GA-selected spectral variables of the soil and leaf spectra were individually and jointly employed to calibrate the partial least squares regression (PLSR) models using the calibration data set. The regression models were validated and compared using independent validation data set. Furthermore, the correlation coefficients of soil arsenic against soil organic matter, leaf arsenic and leaf chlorophyll were calculated, and the important wavelengths for PLSR modeling were extracted. Results showed that arsenic prediction using the leaf spectra (coefficient of determination in validation, Rv2 = 0.54; root mean square error in validation, RMSEv = 12.99 mg kg-1; and residual prediction deviation in validation, RPDv = 1.35) was slightly better than using the soil spectra (Rv2 = 0.42, RMSEv = 13.35 mg kg-1, and RPDv = 1.31). However, results also showed that the combinational use of soil and leaf spectra resulted in higher arsenic prediction (Rv2 = 0.63, RMSEv = 11.94 mg kg-1, RPDv = 1.47) compared with either soil or leaf spectra alone. Soil spectral bands near 480, 600, 670, 810, 1980, 2050 and

  9. Reflectance and transmittance characteristics of several selected green and blue-green unialgae.

    NASA Technical Reports Server (NTRS)

    Gramms, L. C.; Boyle, W. C.

    1971-01-01

    Obtained reflectance properties of green and blue-green unialgae are evaluated for determining the feasibility of using selected wavelengths in differentiating between green and blue-green algae. The attempt is made to establish selected wavelengths and ratios that would delineate relative concentrations of the algal suspensions. The results should prove helpful in the selection of spectral bands usable in conjunction with multispectrum scanners for qualitative and quantitative studies of algae in bodies of water.

  10. Simultaneous determination of CRP and D-dimer in human blood plasma samples with White Light Reflectance Spectroscopy.

    PubMed

    Koukouvinos, Georgios; Petrou, Panagiota; Misiakos, Konstantinos; Drygiannakis, Dimitris; Raptis, Ioannis; Stefanitsis, Gerasimos; Martini, Spyridoula; Nikita, Dimitra; Goustouridis, Dimitrios; Moser, Isabella; Jobst, Gerhard; Kakabakos, Sotirios

    2016-10-15

    A dual-analyte assay for the simultaneous determination of C-reactive protein (CRP) and D-dimer in human blood plasma based on a white light interference spectroscopy sensing platform is presented. Measurement is accomplished in real-time by scanning the sensing surface, on which distinct antibody areas have been created, with a reflection probe used both for illumination of the surface and collection of the reflected interference spectrum. The composition of the transducer, the sensing surface chemical activation and biofunctionalization procedures were optimized with respect to signal magnitude and repeatability. The assay format involved direct detection of CRP whereas for D-dimer a two-site immunoassay employing a biotinylated reporter antibody and reaction with streptavidin was selected. The assays were sensitive with detection limits of 25ng/mL for both analytes, precise with intra- and inter-assay CV values ranging from 3.6% to 7.7%, and from 4.8% to 9.5%, respectively, for both assays, and accurate with recovery values ranging from 88.5% to 108% for both analytes. Moreover, the values determined for the two analytes in 35 human plasma samples were in excellent agreement with those received for the same samples by standard diagnostic laboratory instrumentation employing commercial kits. The excellent agreement of the results supported the validity of the proposed system for clinical application for the detection of multiple analytes since it was demonstrated that up to seven antibody areas can be created on the sensing surface and successfully interrogated with the developed optical set-up.

  11. Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

    NASA Astrophysics Data System (ADS)

    Budinčević, I.; Billowes, J.; Bissell, M. L.; Cocolios, T. E.; de Groote, R. P.; De Schepper, S.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Procter, T. J.; Rossel, R. E.; Rothe, S.; Strashnov, I.; Stroke, H. H.; Wendt, K. D. A.

    2014-07-01

    The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich 218m,219,229,231Fr isotopes were measured with the newly installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at the On-Line Isotope Mass Separator (ISOLDE), CERN, probing the 7s2S1/2 to 8p2P3/2 atomic transition. The δA,221 values for 218m,219Fr and 229,231Fr follow the observed increasing slope of the charge radii beyond N =126. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that 220Fr has a weakly inverted odd-even staggering while 228Fr has normal staggering. This suggests that both isotopes reside at the borders of a region of inverted staggering, which has been associated with reflection-asymmetric shapes. The g(219Fr )=+0.69(1) value supports a π1h9/2 shell-model configuration for the ground state. The g(229,231Fr ) values support the tentative Iπ(229,231Fr)=(1/2+) spin and point to a πs1/2-1 intruder ground-state configuration.

  12. Fast Pyrolysis of Wood for Biofuels: Spatiotemporally Resolved Diffuse Reflectance In situ Spectroscopy of Particles.

    PubMed

    Paulsen, Alex D; Hough, Blake R; Williams, C Luke; Teixeira, Andrew R; Schwartz, Daniel T; Pfaendtner, Jim; Dauenhauer, Paul J

    2014-02-20

    Fast pyrolysis of woody biomass is a promising process capable of producing renewable transportation fuels to replace gasoline, diesel, and chemicals currently derived from nonrenewable sources. However, biomass pyrolysis is not yet economically viable and requires significant optimization before it can contribute to the existing oil-based transportation system. One method of optimization uses detailed kinetic models for predicting the products of biomass fast pyrolysis, which serve as the basis for the design of pyrolysis reactors capable of producing the highest value products. The goal of this work is to improve upon current pyrolysis models, usually derived from experiments with low heating rates and temperatures, by developing models that account for both transport and pyrolysis decomposition kinetics at high heating rates and high temperatures (>400 °C). A new experimental technique is proposed herein: spatiotemporally resolved diffuse reflectance in situ spectroscopy of particles (STR-DRiSP), which is capable of measuring biomass composition during fast pyrolysis with high spatial (10 μm) and temporal (1 ms) resolution. Compositional data were compared with a comprehensive 2D single-particle model, which incorporated a multistep, semiglobal reaction mechanism, prescribed particle shrinkage, and thermophysical properties that varied with temperature, composition, and orientation. The STR-DRiSP technique can be used to determine the transport-limited kinetic parameters of biomass decomposition for a wide variety of biomass feedstocks.

  13. Non-invasive detection of periodontal disease using diffuse reflectance spectroscopy: a clinical study

    NASA Astrophysics Data System (ADS)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Subhash, Narayanan; Jayanthi, Jayaraj L.; Prasanthila, Janam

    2012-03-01

    In clinical diagnostic procedures, gingival inflammation is considered as the initial stage of periodontal breakdown. This is often detected clinically by bleeding on probing as it is an objective measure of inflammation. Since conventional diagnostic procedures have several inherent drawbacks, development of novel non-invasive diagnostic techniques assumes significance. This clinical study was carried out in 15 healthy volunteers and 25 patients to demonstrate the applicability of diffuse reflectance (DR) spectroscopy for quantification and discrimination of various stages of inflammatory conditions in periodontal disease. The DR spectra of diseased lesions recorded using a point monitoring system consisting of a tungsten halogen lamp and a fiber-optic spectrometer showed oxygenated hemoglobin absorption dips at 545 and 575 nm. Mean DR spectra on normalization shows marked differences between healthy and different stages of gingival inflammation. Among the various DR intensity ratios investigated, involving oxy Hb absorption peaks, the R620/R575 ratio was found to be a good parameter of gingival inflammation. In order to screen the entire diseased area and its surroundings instantaneously, DR images were recorded with an EMCCD camera at 620 and 575 nm. We have observed that using the DR image intensity ratio R620/R575 mild inflammatory tissues could be discriminated from healthy with a sensitivity of 92% and specificity of 93%, and from moderate with a sensitivity of 83% and specificity of 96%. The sensitivity and specificity obtained between moderate and severe inflammation are 82% and 76% respectively.

  14. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  15. Micro-FTIR reflectance spectroscopy of the solid products from processing heavy oils/resids

    SciTech Connect

    Kybett, B.D.; Potter, J.; Vasu Nambudiri, E.M.; Krane-Solomon, M. ); Rahimi, P.M.; Dawson, W.H. )

    1989-04-01

    The various semicokes present in the solid products of processing heavy oils and resid can be characterized by their morphology. Knowledge of their chemicl composition would provide additional information about their origin and fate. Eser and Jenkins investigated the carbonization of Ashland-240 pitch and a vacuum distillation residue (VDR) at 723-773 K and obtained the FTIR spectra (KBr disc) of the pyridine insolubles without separation. The A-240 pitch showed gradual development of the mesophase producing large flow domains consisting of planar polycyclic aromatic units. The VDR showed more rapid development of the mesophase and the formation of mosaic semicoke containing highly substituted and condensed rings. Separation of the complex solid products of processing, in order to obtain spectra of each constituent, is difficult. Micro-FTIR reflectance spectroscopy can be used to obtain absorbance-like spectra of the components of solid mixtures without prior separation. The differences in the spectra of isotropic and anisotropic semicokes from the hydrogenation of a resid and the coprocessing of a coal/resid are discussed.

  16. Measurement of the fractional oxygenation of leghemoglobin in intact detached pea nodules by reflectance spectroscopy

    SciTech Connect

    Monroe, J.D.; Owens, T.G. ); LaRue, T.A. )

    1989-10-01

    A method is presented for the rapid measurement of the spectral properties of detached nodules of pea (Pisum sativum L. cv Sparkle) by diffuse reflectance spectroscopy. After correcting the spectra for surface light scattering, the spectrum of leghemoglobin is obtained. From this, the fractional oxygenation of leghemoglobin and the internal O{sub 2} concentration can be calculated. With this method, we determined internal O{sub 2} while measuring nitrogenase activity (C{sub 2}H{sub 2}) in detached pea nodules over a range of external O{sub 2} concentrations. Nitrogenase activity was maximum when leghemoglobin was 25% oxygenated, corresponding to a calculated free O{sub 2} concentration of 45 nanomolar in infected cells. Advantages of this method over previous methods which employed transmitted light are: (a) many nodules can be assayed simultaneously, (b) nitrogenase activity (C{sub 2}H{sub 2}) can be determined at the same time as spectra are recorded, and (c) spectra can be obtained from nodules submerged in buffer containing metabolic effectors.

  17. Smartphone spectrometer for non-invasive diffuse reflectance spectroscopy based hemoglobin sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Edwards, Perry S.

    2016-10-01

    Fiber-optic based diffuse reflectance spectroscopy (DRS) is shown to be a highly specific and highly sensitive method for non-invasive detection of various cancers (e.g. cervical and oral) as well as many other diseases. Fiber-optic DRS diagnosis relies on non-invasive biomarker detection (e.g. oxy- and deoxy-hemoglobin) and can be done without the need for sophisticated laboratory analysis of samples. Thus, it is highly amenable for clinical adoption especially in resource scarce regions that have limited access to such developed laboratory infrastructure. Despite the demonstrated effectiveness of fiber-optic DRS, such systems remain cost prohibitive in many of these regions, mainly due to the use of bulky and expensive spectrometers. Here, a fiber-optic DRS system is coupled to a smartphone spectrometer and is proposed as a low-cost solution for non-invasive tissue hemoglobin sensing. The performance of the system is assessed by measuring tissue phantoms with varying hemoglobin concentrations. A DRS retrieval algorithm is used to extract hemoglobin parameters from the measurements and determine the accuracy of the system. The results are then compared with those of a previously reported fiber-optic DRS system which is based on a larger more expensive spectrometer system. The preliminary results are encouraging and indicate the potential of the smartphone spectrometer as a viable low-cost option for non-invasive tissue hemoglobin sensing.

  18. Preliminary Results from Reflectance Spectroscopy Observations of Space Debris in GEO

    NASA Astrophysics Data System (ADS)

    Vananti, A.; Schidknecht, T.; Krag, H.; Erd, C.

    2009-03-01

    The space debris environment in the Geostationary Earth Orbit (GEO) region is mostly investigated using optical telescopes. The detection of the objects and the determination of their orbits are based on optical observations. However, for a better characterization of the environment it would be necessary to know the shape and the material of the objects. The area-to-mass ratio can be estimated from orbit determinations. In some rare case additional information can be derived from photometric measurements. A possible technique to investigate the material type of the debris is the reflectance spectroscopy. This paper discusses preliminary results obtained from spectrometric observations of orbital space debris. The observations were acquired at the 1-meter ESA Space Debris Telescope (ESASDT) on Tenerife with a low-resolution spectrograph in the wavelength range of 450-960 nm. The observed objects are space debris in GEO orbits with brightness as small as magnitude 16. The spectra show shape variations expected to be caused by the different physical properties of the objects. The determination of the material and of the type of object is still in a preliminary phase. Limitations of the acquisition process of the spectra and the subsequent analysis are discussed. Future steps planned for a better characterization of the debris from the observed data are briefly outlined.

  19. Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Fredriksson, Ingemar; Burdakov, Oleg; Larsson, Marcus; Strömberg, Tomas

    2013-12-01

    The tissue fraction of red blood cells (RBCs) and their oxygenation and speed-resolved perfusion are estimated in absolute units by combining diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF). The DRS spectra (450 to 850 nm) are assessed at two source-detector separations (0.4 and 1.2 mm), allowing for a relative calibration routine, whereas LDF spectra are assessed at 1.2 mm in the same fiber-optic probe. Data are analyzed using nonlinear optimization in an inverse Monte Carlo technique by applying an adaptive multilayered tissue model based on geometrical, scattering, and absorbing properties, as well as RBC flow-speed information. Simulations of 250 tissue-like models including up to 2000 individual blood vessels were used to evaluate the method. The absolute root mean square (RMS) deviation between estimated and true oxygenation was 4.1 percentage units, whereas the relative RMS deviations for the RBC tissue fraction and perfusion were 19% and 23%, respectively. Examples of in vivo measurements on forearm and foot during common provocations are presented. The method offers several advantages such as simultaneous quantification of RBC tissue fraction and oxygenation and perfusion from the same, predictable, sampling volume. The perfusion estimate is speed resolved, absolute (% RBC×mm/s), and more accurate due to the combination with DRS.

  20. Monitoring the sorption of propanoic acid by montmorillonite using Diffuse Reflectance Fourier Transform Infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Parker, R. W.; Frost, R. L.

    1998-06-01

    This paper describes how Diffuse Reflectance Fourier Transform Infrared (DRIFT) spectroscopy was used to monitor the sorption behavior of a short chain fatty acid, propanoic acid, on the clay mineral, montmorillonite. Organic acids bind to montmorillonite in two ways, either by dipole interaction with the oxygens in the interlayer space, or by bonding of the carboxylate anions to exposed aluminum ions. The DRIFT spectra of propanoic acid-montmorillonite complexes have bands at 1728 and 1554 cm-1, which are attributed to the symmetric, and antisymmetric stretching vibrations, respectively, of the C=O, ν(C=O)s, and O-C-O, ν(O-C-O)a, bonds of the carboxylic acid group. Each band represents one of the two different binding modes. These bands can be used to monitor the physical and chemical adsorption of the acid by the montmorillonite. When the peak area of each vibration is plotted against increasing acid concentration, both increase to a maximum. However the peak area for the ν(O-C-O)a vibration reaches a maximum at a much lower acid concentration than the ν(O=O)s vibration. The former maximum corresponds to saturation of the available binding sites on the edge surface aluminum ions. This concentration can be used to calculate the number of binding sites on the clay crystal. Where propanoic acid is allowed to diffuse from the clay, the bound fraction remains on the montmorillonite reducing the available acid that can be desorbed or leached from the clay.

  1. Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy.

    PubMed Central

    Picard, F; Buffeteau, T; Desbat, B; Auger, M; Pézolet, M

    1999-01-01

    Quantitative orientation measurements by attenuated total reflectance (ATR) infrared spectroscopy require the accurate knowledge of the dichroic ratio and of the mean-square electric fields along the three axes of the ATR crystal. In this paper, polarized ATR spectra of single supported bilayers of the phospholipid dimyristoylphosphatidic acid covered by either air or water have been recorded and the dichroic ratio of the bands due to the methylene stretching vibrations has been calculated. The mean-square electric field amplitudes were calculated using three formalisms, namely the Harrick thin film approximation, the two-phase approximation, and the thickness- and absorption-dependent one. The results show that for dry bilayers, the acyl chain tilt angle varies with the formalism used, while no significant variations are observed for the hydrated bilayers. To test the validity of the different formalisms, s- and p-polarized ATR spectra of a 40-A lipid layer were simulated for different acyl chain tilt angles. The results show that the thickness- and absorption-dependent formalism using the mean values of the electric fields over the film thickness gives the most accurate values of acyl chain tilt angle in dry lipid films. However, for lipid monolayers or bilayers, the tilt angle can be determined with an acceptable accuracy using the Harrick thin film approximation. Finally, this study shows clearly that the uncertainty on the determination of the tilt angle comes mostly from the experimental error on the dichroic ratio and from the knowledge of the refractive index. PMID:9876167

  2. Detection of citrus Huanglongbing by Fourier transform infrared-attenuated total reflection spectroscopy.

    PubMed

    Hawkins, Samantha A; Park, Bosoon; Poole, Gavin H; Gottwald, Timothy; Windham, William R; Lawrence, Kurt C

    2010-01-01

    Citrus Huanglongbing (HLB, also known as citrus greening disease) was discovered in Florida in 2005 and is spreading rapidly amongst the citrus growing regions of the state. Detection via visual symptoms of the disease is not a long-term viable option. New techniques are being developed to test for the disease in its earlier presymptomatic stages. Fourier transform infrared-attenuated total reflection (FT-IR-ATR) spectroscopy is a candidate for rapid, inexpensive, early detection of the disease. The mid-infrared region of the spectrum reveals dramatic changes that take place in the infected leaves when compared to healthy non-infected leaves. The carbohydrates that give rise to peaks in the 900-1180 cm(-1) range are reliable in distinguishing leaves from infected plants versus non-infected plants. A model based on chemometrics was developed using the spectra from 179 plants of known disease status. This model then correctly predicted the status of >95% of the plants tested.

  3. Optical characterization of thin nickel films on polymer substrates using reflectance difference spectroscopy

    SciTech Connect

    Rinnerbauer, V.; Schmidegg, K.; Hohage, M.; Sun, L. D.; Flores-Camacho, J. M.; Zeppenfeld, P.

    2009-06-15

    We have used reflectance difference spectroscopy (RDS) and its extension, azimuth-dependent RDS (ADRDS), to study the properties of sputtered and evaporated nickel films on biaxially oriented poly(ethylene terephtalate) (PET) films in a roll to roll web-coating process. From the full set of ADRDS spectra we extract and analyze both the intrinsic RDS spectra and the azimuthal orientation of the effective optical anisotropy of the samples. From the latter, contributions to the RDS spectra arising from the nickel layer and the PET substrate with different orientations of the optical eigenaxes can be inferred. We find an attenuation of the characteristic RDS signal of the PET substrate with increasing nickel film thickness which is in good agreement with the theoretical prediction. For film thicknesses above 20 nm another contribution to the RDS signal attributed to the optical anisotropy of the deposited nickel layers can be observed. Its strength depends on the deposition method, and is considerably larger for evaporated films than for sputtered ones. With increasing nickel film thickness, the azimuthal orientation of the sample anisotropy changes from the initial value of the PET substrate by about 20 deg.toward the machine direction of the foil. We demonstrate that RDS is also a valuable tool for inline monitoring in the roll to roll process, as the attenuation of the RDS signal, under proper consideration of the orientation of the effective anisotropy, is a function of the film thickness and characteristic for the deposited material.

  4. Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, C. P.; Jayadev, C.; Glyn-Jones, S.; Carr, A. J.; Murray, D. W.; Price, A. J.; Gill, H. S.

    2011-04-01

    Interest in localized and early stage treatment technologies for joint conditions such as osteoarthritis is growing rapidly. It has therefore become important to develop objective measures capable of characterizing the earliest (non-visible) changes associated with degeneration to aid treatment procedures. In addition to assessing tissue before treatment, it is further important to develop an effective, non-destructive means of monitoring post-treatment tissue healing, and of providing the high-quality data needed for trials of developing treatment methods. To investigate its ability to detect the early stages of degeneration in cartilage-on-bone, diffuse reflectance near infrared spectroscopy was applied to normal and osteoarthritic joints. A discriminating function was developed to relate absorbance peaks of interest and track degradation around focal osteoarthritic defects. The function could distinguish between normal and degraded tissue (100% separation of normal tissue from that within 25 mm of a defect) and between different stages of osteoarthritic progression (p < 0.05). This technique allows simple, practical and non-destructive assessment of component-level properties over the full depth of the tissue. It has the potential to increase our understanding of the underlying etiologic and pathogenic processes in early stage degeneration, to assist classification and the development of new treatment methods.

  5. Simultaneous Determination of Amiloride and Hydrochlorothiazide in a Compound Tablet by Diffuse Reflectance Spectroscopy and Chemometrics

    NASA Astrophysics Data System (ADS)

    Tang, J.; Li, X.; Feng, Y.; Liang, B.

    2016-09-01

    This paper studies the simultaneous determination of amiloride hydrochloride (AMH) and hydrochlorothiazide (HCTZ) in amiloride hydrochloride tablets by ultraviolet-visible-shortwave near-infrared diffuse reflectance spectroscopy (UV-Vis-swNIR DRS) and chemometrics. Quantitative models for the two components were established by partial least squares (PLS) and support vector regression (SVR), respectively. For the PLS models of AMH and HCTZ, the determination coefficient R2 of the calibration set was 0.9503 and 0.9538, and the coefficient R2 of the prediction set was 0.8983 and 0.9260, respectively. The root mean square error of the calibration set (RMSEC) was 0.8 mg and 8.1 mg, while the root mean square error of the prediction set (RMSEP) was 1.0 mg and 8.7 mg, respectively. For the SVR models of AMH and HCTZ, the R2 of the calibration set was 0.9668 and 0.9609; the R2 of the prediction set was 0.9145 and 0.9446, respectively. The RMSEC was 0.7 and 7.5 mg, and the RMSEP was 0.9 and 8.9 mg, respectively. The results show that SVR modeling has a satisfactory prediction effect. The proposed method based on UV-vis-swNIR and chemometrics is efficient, nondestructive, and expected to be used for online quality monitoring in the production of drugs.

  6. [Discriminant Analysis of Lavender Essential Oil by Attenuated Total Reflectance Infrared Spectroscopy].

    PubMed

    Tang, Jun; Wang, Qing; Tong, Hong; Liao, Xiang; Zhang, Zheng-fang

    2016-03-01

    This work aimed to use attenuated total reflectance Fourier transform infrared spectroscopy to identify the lavender essential oil by establishing a Lavender variety and quality analysis model. So, 96 samples were tested. For all samples, the raw spectra were pretreated as second derivative, and to determine the 1 750-900 cm(-1) wavelengths for pattern recognition analysis on the basis of the variance calculation. The results showed that principal component analysis (PCA) can basically discriminate lavender oil cultivar and the first three principal components mainly represent the ester, alcohol and terpenoid substances. When the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was established, the 68 samples were used for the calibration set. Determination coefficients of OPLS-DA regression curve were 0.959 2, 0.976 4, and 0.958 8 respectively for three varieties of lavender essential oil. Three varieties of essential oil's the root mean square error of prediction (RMSEP) in validation set were 0.142 9, 0.127 3, and 0.124 9, respectively. The discriminant rate of calibration set and the prediction rate of validation set had reached 100%. The model has the very good recognition capability to detect the variety and quality of lavender essential oil. The result indicated that a model which provides a quick, intuitive and feasible method had been built to discriminate lavender oils.

  7. [Attenuated Total Reflection Infrared Spectroscopy for Degradation Profile of High Density Polyethylene after Weathering Aging].

    PubMed

    Guo, Jun-jun; Yan, Hua; Bao, He-bin; Wang, Xue-mei; Hu, Zhi-de; Yang, Jian-jian

    2015-06-01

    High density polyethylene (HDPE) was widely used as rotational packaging case in the material reserve field. The chemical changes of HDPE, exposed to particular climatic conditions of tropic marine atmosphere for one year-long in Wanning Hainan, were elucidated by the attenuated total reflection infrared spectroscopy (ATR-FTIR). The structural changes were studied qualitatively, mainly from the polymeric chain breaking, branching and oxidation to distinguish the degradation profile. The variations of crystallinity & carbonyl index were also studied quantitatively according to the characteristic peaks intensity & area ratio. Finally, the relationships between structural changes and mechanical properties were investigated. The results showed that the polymeric chain breaking & branching play a leading role before 3 months in the aging progress. Then oxidation phenomena gradually takes place during 3-6 months. The chain branching & oxidation were predominant factors after 6 months. Nine months later, the oxidation was saturated gradually. Furthermore, the aging process is positively correlated to the temperature and irradiation. After 12 months aging, the carbonyl index increased by 112 times and crystallinity was 10% higher than before. The tensile/bending modulus deceased faster than tensile/bending strength of HDPE. The linear degree of tensile modulus and carbonyl index was 0.97. The degree of linearity of tensile strength and crystallinity calculated by feature bands (720-730 cm(-1)) was 0.96. It showed that the mechanical properties of HDPE can be speculated from the structural changes by ATR-FTIR.

  8. [Experimental study of the red-bed pigment with diffuse reflectance spectroscopy].

    PubMed

    Jiang, Lian-Ting; Chen, Guo-Neng; Peng, Zhuo-Lun

    2013-10-01

    Red pigment of continental red-bed is known originating from the fine-particle hematite in the rocks. Advance of researches on the origin of continental red-bed demonstrates that the red pigment of red-bed originated from its diagenetic but not depositional process. The high diagenetic temperature causes the dehydration of iron hydrate to form hematite, generating the red pigment. For examining the above hypothesis, the authors of this paper designed an experiment to approach the reddening process, i.e. formation of the red pigment of continental red-bed. Black ooze sampled from the Holocene sediments of the Pearl River Delta was heated in different ways. The diffuse reflectance spectroscopy (DRS) of those heated ooze samples were detected with Perkin-Elmer Lamdba 950 ultraviolet/visible/near-infrared spectrophotometer, and moreover, red-values of the samples were calculated for determining their coloring levels. Iron in black ooze sediment is predominantly in the form of goethite. Experimental results verified that initial dehydration-temperature of goethite is about 150 degrees C, either enhancing temperature or prolonging heating time is accompanied with decreasing goethite and increasing hematite, and a positive relationship exists between red-value of samples and peak-height of hematite. The experimental results strongly support the idea of thermal origin of continental red-bed.

  9. Non-invasive evaluation of therapeutic response in keloid scar using diffuse reflectance spectroscopy.

    PubMed

    Hsu, Chao-Kai; Tzeng, Shih-Yu; Yang, Chao-Chun; Lee, Julia Yu-Yun; Huang, Lynn Ling-Huei; Chen, Wan-Rung; Hughes, Michael; Chen, Yu-Wen; Liao, Yu-Kai; Tseng, Sheng-Hao

    2015-02-01

    The pathogenesis and ideal treatment of keloid are still largely unknown, and it is essential to develop an objective assessment of keloid severity to evaluate the therapeutic response. We previously reported that our diffuse reflectance spectroscopy (DRS) system could assist clinicians in understanding the functional and structural condition of keloid scars. The purpose of this study was to understand clinical applicability of our DRS system on evaluating the scar severity and therapeutic response of keloid. We analyzed 228 spectral data from 71 subjects with keloid scars. The scars were classified into mild (0-3), moderate (4-7) and severe (8-11) according to the Vancouver scar scale. We found that as the severity of the scar increased, collagen concentration and water content increased, and the reduced scattering coefficient at 800 nm and oxygen saturation (SaO2) decreased. Using the DRS system, we found that collagen bundles aligned in a specific direction in keloid scars, but not in normal scars. Water content and SaO2 may be utilized as reliable parameters for evaluating the therapeutic response of keloid. In conclusion, the results obtained here suggest that the DRS has potential as an objective technique with which to evaluate keloid scar severity. In addition, it may be useful as a tool with which to track longitudinal response of scars in response to various therapeutic interventions.

  10. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy.

    PubMed

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  11. Diffuse reflectance spectroscopy: toward real-time quantification of steatosis in liver.

    PubMed

    Evers, Daniel J; Westerkamp, Andrie C; Spliethoff, Jarich W; Pully, Vishnu V; Hompes, Daphne; Hendriks, Benno H W; Prevoo, Warner; van Velthuysen, Marie-Louise F; Porte, Robert J; Ruers, Theo J M

    2015-04-01

    Assessment of fatty liver grafts during orthotopic liver transplantation is a challenge due to the lack of real-time analysis options during surgery. Diffuse reflectance spectroscopy (DRS) could be a new diagnostic tool to quickly assess steatosis. Eight hundred and seventy-eight optical measurements were performed in vivo in 17 patients in liver tissue during surgery and ex vivo on liver resection specimens from 41 patients. Liver steatosis was quantified from the collected optical spectra and compared with the histology analysis from the measurement location by three independent pathologists. Twenty two patients were diagnosed with <5% steatosis, 15 patients had mild steatosis, and four had moderate steatosis. Severe steatosis was not identified. Intraclass correlation between the pathologists analysis was 0.949. A correlation of 0.854 was found between the histology and DRS analyses of liver steatosis ex vivo. For the same liver tissue, a correlation of 0.925 was demonstrated between in vivo and ex vivo DRS analysis for steatosis quantification. DRS can quantify steatosis in liver tissue both in vivo and ex vivo with good agreement compared to histopathology analysis. This analysis can be performed real time and may therefore be useful for fast objective assessment of liver steatosis in liver surgery.

  12. Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry.

    PubMed

    Fredriksson, Ingemar; Burdakov, Oleg; Larsson, Marcus; Strömberg, Tomas

    2013-12-01

    The tissue fraction of red blood cells (RBCs) and their oxygenation and speed-resolved perfusion are estimated in absolute units by combining diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF). The DRS spectra (450 to 850 nm) are assessed at two source-detector separations (0.4 and 1.2 mm), allowing for a relative calibration routine, whereas LDF spectra are assessed at 1.2 mm in the same fiber-optic probe. Data are analyzed using nonlinear optimization in an inverse Monte Carlo technique by applying an adaptive multilayered tissue model based on geometrical, scattering, and absorbing properties, as well as RBC flow-speed information. Simulations of 250 tissue-like models including up to 2000 individual blood vessels were used to evaluate the method. The absolute root mean square (RMS) deviation between estimated and true oxygenation was 4.1 percentage units, whereas the relative RMS deviations for the RBC tissue fraction and perfusion were 19% and 23%, respectively. Examples of in vivo measurements on forearm and foot during common provocations are presented. The method offers several advantages such as simultaneous quantification of RBC tissue fraction and oxygenation and perfusion from the same, predictable, sampling volume. The perfusion estimate is speed resolved, absolute (% RBC×mm/s), and more accurate due to the combination with DRS.

  13. Micro-analysis by near-infrared diffuse reflectance spectroscopy with chemometric methods.

    PubMed

    Liu, Yan; Ning, Yu; Cai, Wensheng; Shao, Xueguang

    2013-11-07

    Great attention has been paid to near-infrared diffuse reflectance spectroscopy (NIRDRS) due to its practicability in analyzing real complex samples. However, the application of the technique in micro-analysis is badly restricted by its low sensitivity or high detection limit. In this study, the possibility of achieving the sensitive detection of micro-components using NIRDRS with the help of chemometric methods is studied with two experimental datasets. The results show that a very high sensitivity can be obtained when the noise and the variant background are minimized. Quantitative determination of low concentrations of pesticides and trace Cr(3+) in solutions is achieved by using preconcentration and chemometric approaches to minimize the noise and background. The absolute prediction error of the method can be as low as 7.6 μg for the pesticide and 28.6 μg for Cr(3+). These quantities are equivalent to 76 ng mL(-1) and 286 ng mL(-1) if 100 mL of solution are used for the analysis.

  14. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.

    PubMed

    Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas

    2012-04-01

    Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing.

  15. Evaluation of the stage of hemorrhage using optical diffuse reflectance spectroscopy: an in vivo study.

    PubMed

    Takeuchi, Satoru; Kawauchi, Satoko; Sato, Shunichi; Nawashiro, Hiroshi; Nagatani, Kimihiro; Kobayashi, Hiroaki; Otani, Naoki; Osada, Hideo; Wada, Kojiro; Shima, Katsuji

    2013-01-01

    Intracerebral hemorrhage (ICH) is a common and often fatal subtype of stroke. Estimation of the stage of hemorrhage allows clinicians to know when the hemorrhage occurred, even in unconscious patients, enabling decisions to be made about the optimal management and treatment strategy. After ICH, oxidative denaturation of the hemoglobin progresses, and deoxyhemoglobin is gradually converted to methemoglobin. MRI has been used to estimate the stage of hemorrhage by evaluating the status of hemoglobin. However, there is currently no bedside device that can be used for the measurement of hemoglobin derivatives in patients with hematomas. The aim of the present study was to investigate the validity of using optical diffuse reflectance spectroscopy (ODRS) for bedside evaluation of the stage of hemorrhage. An ICH model was generated in adult Sprague-Dawley male rats by stereotactically injecting 50 μl of autologous blood into the right caudate nucleus. To analyze the hemoglobin derivatives in the hematomas, ODRS measurement was performed for the rats in vivo. In all rats, we found increased absorption at around 630 nm, which indicated the formation of methemoglobin. In conclusion, the results of the present study suggest that ODRS allows clinicians to more easily evaluate the stage of hemorrhage at the patient's bedside.

  16. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    SciTech Connect

    Chen Li; Ueta, Hirokazu; Beck, Rainer D.; Bisson, Regis

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  17. Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; He, Yong

    2006-09-01

    The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.

  18. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination.

    PubMed

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2013-08-06

    The ability to link a suspect to a particular shooting incident is a principal task for many forensic investigators. Here, we attempt to achieve this goal by analysis of gunshot residue (GSR) through the use of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) combined with statistical analysis. The firearm discharge process is analogous to a complex chemical process. Therefore, the products of this process (GSR) will vary based upon numerous factors, including the specific combination of the firearm and ammunition which was discharged. Differentiation of FT-IR data, collected from GSR particles originating from three different firearm-ammunition combinations (0.38 in., 0.40 in., and 9 mm calibers), was achieved using projection to latent structures discriminant analysis (PLS-DA). The technique was cross (leave-one-out), both internally and externally, validated. External validation was achieved via assignment (caliber identification) of unknown FT-IR spectra from unknown GSR particles. The results demonstrate great potential for ATR-FT-IR spectroscopic analysis of GSR for forensic purposes.

  19. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  20. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy.

    PubMed

    Chen, Li; Ueta, Hirokazu; Bisson, Régis; Beck, Rainer D

    2013-05-01

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S(θ). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  1. Attenuated Total Internal Reflectance Infrared Spectroscopy (ATR-FTIR): A Quantitative Approach for Kidney Stone Analysis

    PubMed Central

    Gulley-Stahl, Heather J.; Haas, Jennifer A.; Schmidt, Katherine A.; Evan, Andrew P.; Sommer, André J.

    2011-01-01

    The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflectance infrared spectroscopy (ATR-FTIR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 ± 0.02% COM/HAP where COM is the analyte and HAP the matrix to 0.26 ± 0.07% HAP/COM where HAP is the analyte and COM the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size. PMID:19589213

  2. Determination of non-starch polysaccharides in cereal grains with near-infared reflectance spectroscopy.

    PubMed

    Blakeney, Anthony B; Flinn, Peter C

    2005-06-01

    Cereal grains contain variable amounts of non-starch polysaccharides, such as arabinoxylans and (1-->3),(1-->4)-beta-glucans (beta-glucans), which are associated with their cell walls. The type and composition of these polysaccharides is of increasing interest in both human and animal nutrition. Reference analysis for these polysaccharides requires the use both enzymic and monosaccharide methods. To evaluate fully the non-starch polysaccharides present in grains, some analysts further distinguish between the soluble and insoluble fractions of these components. Near-infrared reflectance (NIR) spectroscopy provides fast, inexpensive analysis. It is, however, a comparative technique that relies on multivariate calibration of sample spectra and accurate reference analysis. It has the potential to be exploited as a rapid analytical method for nutritionally important polysaccharides. The calibration statistics for arabinoxylans and beta-glucans obtained in this study suggest that NIR can be used in plant breeding, nutritional and product studies to obtain simple and rapid estimates of non-starch polysaccharides. The occurrence of wheats with high cell wall contents together with barleys with high beta-glucan contents is well known. However, to date, this genetic variation has not been extensively exploited for the production of grains for use as human food ingredients.

  3. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy.

    PubMed

    Rejmstad, Peter; Johansson, Johannes D; Haj-Hosseini, Neda; Wårdell, Karin

    2017-03-01

    Continuous measurement of local brain oxygen saturation (SO2 ) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the "gold standard" in measuring cerebral oxygen pressure (pO2 ), which is closely related to SO2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO2 for different blood concentrations. The P3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO2 . The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5-2%) where pO2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile.

  4. Monitoring blood volume and saturation using superficial fibre optic reflectance spectroscopy during PDT of actinic keratosis.

    PubMed

    Middelburg, Tom A; Kanick, Stephen C; de Haas, Ellen R M; Sterenborg, Henricus J C M; Amelink, Arjen; Neumann, Martino H A M; Robinson, Dominic J

    2011-10-01

    Optically monitoring the vascular physiology during photodynamic therapy (PDT) may help understand patient-specific treatment outcome. However, diffuse optical techniques have failed to observe changes herein, probably by optically sampling too deep. Therefore, we investigated using differential path-length spectroscopy (DPS) to obtain superficial measurements of vascular physiology in actinic keratosis (AK) skin. The AK-specific DPS interrogation depth was chosen up to 400 microns in depth, based on the thickness of AK histology samples. During light fractionated aminolevulinic acid-PDT, reflectance spectra were analyzed to yield quantitative estimates of blood volume and saturation. Blood volume showed significant lesion-specific changes during PDT without a general trend for all lesions and saturation remained high during PDT. This study shows that DPS allows optically monitoring the superficial blood volume and saturation during skin PDT. The patient-specific variability supports the need for dosimetric measurements. In DPS, the lesion-specific optimal interrogation depth can be varied based on lesion thickness.

  5. Spectral characteristics of chlorites and Mg-serpentines using high- resolution reflectance spectroscopy

    USGS Publications Warehouse

    King, T.V.V.; Clark, R.N.

    1989-01-01

    The present laboratory study using high-resolution reflectance spectroscopy (0.25-2.7 ??m) focuses on two primary phyllosilicate groups, serpentines and chlorites. The results show that it is possible to spectrally distinguish between isochemical end-members of the Mg-rich serpentine group (chrysotile, antigorite, and lizardite) and to recognize spectral variations in chlorites as a function of Fe/Mg ratio (~8-38 wt% Fe). The position and relative strength of the 1.4-??m absorption feature in the trioctahedral chlorites appear to be correlated to the total iron content and/or the Mg/Si ratio and the loss on ignition values of the sample. Spectral differences in the 2.3-??m wavelength region can be attributed to differences in lattice environments and are characteristic for specific trioctahedral chlorites. The 1.4-??m feature in the isochemical Mg-rich serpentines (total iron content ~1.5-7.0 wt%) show marked spectral differences, apparently due to structural differences. -Authors

  6. High Explosives Mixtures Detection Using Fiber Optics Coupled: Grazing Angle Probe/Fourier Transform Reflection Absorption Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Primera-Pedrozo, Oliva M.; Soto-Feliciano, Yadira M.; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.

    2008-12-01

    Fourier Transform Infrared Spectroscopy operating in Reflection-Absorption mode has been demonstrated as a potential spectroscopic technique to develop new methodologies for detection of chemicals deposited on metallic surfaces. Mid-IR transmitting optical fiber bundle coupled to an external Grazing Angle Probe and an MCT detector together with a bench Michelson interferometer have been used to develop a highly sensitive and selective methodology for detecting traces of organic compounds on metal surfaces. The methodology is remote sensed, in situ and can detect surface loading concentrations of nanograms/cm2 of most target compounds. It is an environmentally friendly, solvent free technique that does not require sample preparation. In this work, the ever-important task of high explosives detection, present as traces of neat crystalline forms and in lab-made mixtures, equivalent to the important explosive formulation Pentolite, has been addressed. The sample set consisted of TNT, PETN (both pure samples) and the formulation based on them: Pentolite, present in various loading concentrations. The spectral data collected was subjected to a number of statistical pre-treatments, including first derivative and normalization transformations to make the data more suitable for the analysis. Principal Components Analysis combined with Linear Discriminant Analysis allowed the classification and discrimination of the target analytes contained in the sample set. Loading concentrations as 220 ng/cm2 were detected for each explosive in neat form and the in the simulated mixture of Pentolite.

  7. Chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot after reactive gas probing using diffuse reflectance FTIR spectroscopy (DRIFTS).

    PubMed

    Tapia, A; Salgado, M S; Martín, M P; Rodríguez-Fernández, J; Rossi, M J; Cabañas, B

    2017-01-23

    A chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot has been developed using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) before and after the reaction with different probe gases. Samples were generated under combustion conditions corresponding to an urban operation mode of a diesel engine and were reacted with probe gas-phase molecules in a Knudsen flow reactor. Specifically, NH2OH, O3 and NO2 were used as reactants (probes) and selected according to their reactivities towards specific functional groups on the sample surface. Samples of previously ground soot were diluted with KBr and were introduced in a DRIFTS accessory. A comparison between unreacted and reacted soot samples was made in order to establish chemical changes on the soot surface upon reaction. It was concluded that the interface of diesel and HVO soot before reaction mainly consists polycyclic aromatic hydrocarbons, nitro and carbonyl compounds, as well as ether functionalities. The main difference between both soot samples was observed in the band of the C=O groups that in diesel soot was observed at 1719 cm(-1) but not in HVO soot. After reaction with probe gases, it was found that nitro compounds remain on the soot surface, that the degree of unsaturation decreases for reacted samples, and that new spectral bands such as hydroxyl groups are observed.

  8. Assessment of biophysical tumor response to PDT in pancreatic cancer using localized reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Isabelle, Martin; Klubben, William; He, Ting; Laughney, Ashley M.; Glaser, Adam; Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Hasan, Tayyaba; Pogue, Brian W.

    2011-02-01

    Biophysical changes such as inflammation and necrosis occur immediately following PDT and may be used to assess the treatment response to PDT treatment in-vivo. This study uses localized reflectance measurements to quantify the scatter changes in tumor tissue occurring in response to verteporfin-based PDT treatment in xenograft pancreas tumors. Nude mice were implanted with subcutaneous AsPC-1 pancreatic tumors cells in matrigel, and allowed to establish solid tumors near 100mm3 volume. The mice were sensitized with 1mg/kg of the active component of verteporfin (benzoporphryin derivative, BPD), one hour before light delivery. The optical irradiation was performed using a 1 cm cylindrical interstitial diffusing tip fiber with 20J of red light (690nm). Tumor tissue was excised progressively and imaged, from 1 day to 4 weeks, after PDT treatment. The tissue sections were stained and analyzed by an expert veterinary pathologist, who provided information on tissue regions of interest. This information was correlated with variations in scattering and absorption parameters elucidated from the spectral images and the degree of necrosis and inflammation involvement was identified. Areas of necrosis and dead cells exhibited the lowest average scatter irradiance signature (3.78 and 4.07 respectively) compared to areas of viable pancreatic tumor cells and areas of inflammation (5.81 and 7.19 respectively). Bilirubin absorbance parameters also showed a lower absorbance value in necrotic tissue and areas of dead cells (0.05 and 0.1 respectively) compared to tissue areas for viable pancreatic tumor cells and areas of inflammation (0.28 and 0.35). These results demonstrate that localized reflectance spectroscopy is an imaging modality that can be used to identify tissue features associated with PDT treatment (e.g. necrosis and inflammation) that can be correlated with histopathologically-reviewed H&E stained slides. Further study of this technique may provide means for automated

  9. Diffuse near-infrared reflectance spectroscopy during heatstroke in a mouse model: pilot study

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Zafrir, Elad; Nesher, Elimelech; Pinhasov, Albert; Sternklar, Shmuel; Mathews, Marlon S.

    2012-10-01

    Heatstroke, a form of hyperthermia, is a life-threatening condition characterized by an elevated core body temperature that rises above 40°C (104°F) and central nervous system dysfunction that results in delirium, convulsions, or coma. Without emergency treatment, the victim lapses into a coma and death soon follows. The study presented was conducted with a diffuse reflectance spectroscopy (DRS) setup to assess the effects of brain dysfunction that occurred during heatstroke in mice model (n=6). It was hypothesized that DRS can be utilized in small animal studies to monitor change in internal brain tissue temperature during heatstroke injury since it induces a sequence of pathologic changes that change the tissue composition and structure. Heatstroke was induced by exposure of the mice body under general anesthesia, to a high ambient temperature. A type of DRS in which the brain tissue was illuminated through the intact scalp with a broadband light source and diffuse reflected spectra was employed, taking in the spectral region between 650 and 1000 nm and acquired at an angle of 90 deg at a position on the scalp ˜12 mm from the illumination site. The temperature at the onset of the experiment was ˜34°C (rectal temperature) with increasing intervals of 1°C until mouse death. The increase in temperature caused optical scattering signal changes consistent with a structural alteration of brain tissue, ultimately resulting in death. We have found that the peak absorbance intensity and its second derivative at specific wavelengths correlate well with temperature with an exponential dependence. Based on these findings, in order to estimate the influence of temperature on the internal brain tissue a reflectance-temperature index was established and was seen to correlate as well with measured temperature. Overall, results indicate variations in neural tissue properties during heatstroke and the feasibility to monitor and assess internal temperature variations using

  10. Study on mechanism of selective chemical vapor deposition of tungsten using in situ infrared spectroscopy and Auger electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kobayashi, Nobuyoshi; Goto, Hidekazu; Suzuki, Masayuki

    1991-01-01

    Selective chemical vapor deposition (CVD) of tungsten (W) using tungsten hexafluoride (WF6) and monosilane (SiH4) is investigated by in situ infrared spectroscopy and Auger electron spectroscopy. The infrared spectra show that trifluorosilane (SiHF3) is the main by-product species, and that silicon-tetrafluoride (SiF4) is less than 20%-25% of SiHF3 in partial pressure. The main chemical reaction involved in selective W CVD can be expressed as WF6+2SiH4→W+2SiHF3+3H2. Based on our experimental results, a new mechanism of selective W CVD, which notes hydrogen dissociation having a central role in this process, is proposed. It disproves the widely accepted model, which is based on the assumption that SiF4 is the major reaction product.

  11. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    PubMed

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks.

  12. Imaging and Reflectance Spectroscopy for the Evaluation of Effective Camouflage in the SWIR

    DTIC Science & Technology

    2007-12-01

    26 D. REFLECTANCE MEASUREMENT .................................................... 29 IV. EFFECTIVE CAMOUFLAGE IN SWIR...51 C. REFLECTANCE MEASUREMENT OF OPTOELECTRONIC FIBER...Figure 38. Optoelectronic fiber produced by MIT................................................. 54 Figure 39. Reflectance measurement of the

  13. A fecal near-infrared reflectance spectroscopy-aided methodology to determine goat dietary composition in a Mediterranean shrubland.

    PubMed

    Glasser, T; Landau, S; Ungar, E D; Perevolotsky, A; Dvash, L; Muklada, H; Kababya, D; Walker, J W

    2008-06-01

    An ecologically sound approach to the problem of brush encroachment onto Israeli rangeland might be their utilization by goats, but better knowledge of the feeding selectivity and ability of goats to thrive in encroached areas is required to devise viable production systems. Direct observation of bites could provide precise and accurate estimates of diet selection, but construction of a sufficiently large database would require too much time. The present study describes the first attempt to construct fecal near-infrared reflectance spectroscopy (NIRS) calibrations of the botanical and nutritional composition of the diet, and of the total intake of free-ranging goats, based on reference values determined with bite-count procedures. Calibration of fecal NIRS was based on 43 observations encompassing 3 goat breeds and 4 periods (spring, summer, and fall of 2004, and spring of 2005). Each observation comprised 242 min of continuous recording of the species and bite-type category selected by a single animal, on each of 2 consecutive days. The mass and chemical quality of each species and bite-type category-a total of more than 200,000 bites-were determined by using the simulated bite technique. Associated feces were scanned in the 1,100- to 2,500-nm range with a reflectance monochromator. Fecal NIRS calibrations had reasonable precision for dietary percentages of the 3 main botanical components: herbaceous vegetation (as one category; R(2) = 0.85), Phillyrea latifolia (R(2) = 0.89), and tannin-rich Pistacia lentiscus (R(2) = 0.77), with SE of cross-validation (SECV) of 7.8, 6.3, and 5.6% of DM, respectively. The R(2) values for dietary percentages of CP, NDF, IVDMD, and polyethylene glycol-binding tannins were 0.93, 0.88, 0.91, and 0.74, respectively, with SECV values of 0.9, 2.1, 4.3, and 0.9% of DM, respectively. The R(2) values for intakes of herbaceous vegetation, P. latifolia, and P. lentiscus were 0.80, 0.75, and 0.65, with SECV values of 71, 64, and 46 g of DM

  14. Rapid determination of ions by combined solid-phase extraction--diffuse reflectance spectroscopy

    NASA Technical Reports Server (NTRS)

    Fritz, James S.; Arena, Matteo P.; Steiner, Steven A.; Porter, Marc D.

    2003-01-01

    We introduce colorimetric solid-phase extraction (C-SPE) for the rapid determination of selected ions. This new technique links the exhaustive concentration of an analyte by SPE onto a membrane disk surface for quantitative measurement with a hand-held diffuse reflectance spectrometer. The concentration/measurement procedure is complete in approximately 1 min and can be performed almost anywhere. This method has been used to monitor iodine and iodide in spacecraft water in the 0.1-5.0 ppm range and silver(I) in the range of 5.0-1000 microg/l. Applications to the trace analysis of copper(II), nickel(II), iron(III) and chromium(VI) are described. Studies on the mechanism of extraction showed that impregnation of the disk with a surfactant as well as a complexing reagent results in uptake of additional water, which markedly improves the extraction efficiency.

  15. Diffuse-reflectance infrared Fourier transform spectroscopy: new technique of sample preparation

    NASA Astrophysics Data System (ADS)

    Hrebičík, M.; Budínová, G.; Godarská, T.; Vláčil, D.; Vogenseh, Stine B.; Volka, K.

    1997-06-01

    A new technique of measurement of the diffuse-reflectance infrared FT spectra, based on the preparation of a cylinder from the mixture of the sample and powdered KBr under pressure of about 5.85 MPa, has been tested. During the measurement, the axis of the formed cylinder is perpendicular to the direction of the incident light. A repeatability of the measurement of selected bands and also of the background was investigated for hydroquinone, nicotinamide, silica gel, rice, tea and also lyophilized human aqueous humour. The relative standard deviations of log( {1}/{R}) showed a dependence on the character of the measured compound, but in general were comparable or slightly better than those obtained by the standard method of loosely packed cups. The values were better than 1.5% in the most cases. The main advantage of the proposed technique lies in its simplicity and rapidity of obtaining statistically significant data.

  16. Determination of the factors governing soil erodibility using hyperspectral visible and near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Guoqiang; Fang, Qingqing; Teng, Yanguo; Yu, Jingshan

    2016-12-01

    Soil erodibility, which is difficult to estimate and upscaling, was determined in this study using multiple spectral models of soil properties (soil organic matter (SOM), water-stable aggregates (WSA) > 0.25 mm, the geometric mean radius (Dg)). Herein, the soil erodibility indicators were calculated, and soil properties were quantitatively analyzed based on laboratory simulation experiments involving two selected contrasting soils. In addition, continuous wavelet transformation was applied to the reflectance spectra (350-2500 nm) of 65 soil samples from the study area. To build the relationship, the soil properties that control erodibility were identified prior to the spectral analysis. In this study, the SOM, Dg and WSA >0.25 mm were selected to represent the most significant soil properties controlling erodibility and describe the erodibility indicator based on a logarithmic regression model as a function of SOM or WSA > 0.25 mm. Five, six and three wavelet features were observed to calibrate the estimated soil properties model, and the best performance was obtained with a combination feature regression model for SOM (R2 = 0.86, p < 0.01), Dg (R2 = 0.79, p < 0.01) and WSA >0.25 mm (R2 = 0.61, p < 0.01), respectively. One part of the wavelet features captured amplitude variations in the broad shape of the reflectance spectra, and another part captured variations in the shape and depth of the soil dry substances. The wavelet features for the validated dataset used to predict the SOM, WSA >0.25 mm and Dg were not significantly different compared with the calibrated dataset. The synthesized spectral models of soil properties, and the formation of a new equation for soil erodibility transformed from the spectral models of soil properties are presented in this study. These results show that a spectral analytical approach can be applied to complex datasets and provide new insights into emerging dynamic variation with erodibility estimation.

  17. Extraordinary reflection and transmission with direction dependent wavelength selectivity based on parity-time-symmetric multilayers

    SciTech Connect

    Ding, Shulin; Wang, Guo Ping

    2015-01-14

    In this paper, we present a kind of periodical ternary parity-time (PT) -symmetric multilayers to realize nearly 100% reflectance and transmittance simultaneously when light is incident from a certain direction. This extraordinary reflection and transmission is original from unidirectional Bragg reflection of PT-symmetric systems as the symmetry spontaneous breaking happens at PT thresholds. The extra energy involved in reflection and transmission lights is obtained from pumping light to the gain regions of the structure. Moreover, we find that our PT-symmetric structure shows direction dependent wavelength selectivity. When the illumination light is incident from two opposite directions into the multilayer structure, such extraordinary reflection and transmission appear at visible and near-infrared wavelengths, respectively. Such distinguishing properties may provide these structures with attractive applications as beam splitters, laser mirrors, narrow band filters, and multiband PT-symmetric optical devices.

  18. Analysis of selective reflection spectrum in cholesteric liquid crystal cells for solar-ray controller

    NASA Astrophysics Data System (ADS)

    Ogiwara, Akifumi; Kakiuchida, Hiroshi

    2015-09-01

    The cholesteric liquid crystal (CLC) cells are fabricated by varying the concentration of various chiral dopants and liquid crystal (LC) diacrylate monomers. The wavelength and bandwidth of selective reflection spectrum in CLC cells are measured by a spectroscopic technique. The variation of the selective reflection spectrum in CLC cells is investigated by doping the different kinds of liquid crystal (LC) diacrylate monomers which stabilize a helical twisting structure by photopolymerization. The effects of the selective reflection spectrum on the visible and infrared lights in spectral solar irradiance are explained by the performance for a solar-ray controller based on the spectral solar irradiance for air mass 1.5 and the standard luminous efficiency function for photopic vision.

  19. Efficiency of arsenic and phosphorus precursors investigated by reflectance anisotropy spectroscopy

    NASA Astrophysics Data System (ADS)

    Kurpas, P.; Jönsson, J.; Richter, W.; Gutsche, D.; Pristovsek, M.; Zorn, M.

    1994-12-01

    The efficiency of several alternative group-V precursors was measured throught the As or P related structures in the reflectance anisotropy spectra from (001) surfaces of GaAs and InP. As arsenic precursors were investigated: arsine (AsH 3), tertiarybutylarsine (tBAsH 2) and triethylarsine (TEAs). The strength of the As-related feature at 2.5 eV in the reflectance anisotropy spectroscopy (RAS) spectrum of the typical metalorganic vapour phase epitaxy (MOVPE) pregrowth surface GaAs(001)-c(4 × 4) was measured as a function of precursor partial pressure and temperature. From these measurements, a relative efficiency for the arsenic supplied to the surface for the different precursors can be given. A higher efficiency of tBAsH 2 as compared to AsH 3 at 723 and 823 K, but equal efficiencies at 923 K, for both compounds are observed. For TEAs at lower temperatures (723 to 823 K), a new RAS spectrum different from the one for the c(4 × 4) is obtained. This reveals a surface different from the As double layer due to TEAs derivatives absorbed on the surface. At higher temperatures (923 K), a c(4 × 4)-like RAS spectrum is obtained indicating that at this temperature predominantly As is supplied from TEAs to the surface. Using both TEAs and AsH 3 simultaneously, the additional adsorbate structure disappears also at lower temperatures. This effect is attributed to the reaction of atomic hydrogen, derived from arsine, with the organic TEAs derivatives. The efficiencies of the alternative P precursors were evaluated through the P-related peak at 2.7 eV in the RAS spectrum of the phosphorus-rich InP(001)-(2 × 4). At a temperature of 873 K, the precursor tertiarybutylphosphine tBPH 2 revealed a much higher P efficiency than PH 3. In contrast, with tetraethyldiphosphine (TEDP) no P-rich (2 × 4)-like spectrum could be obtained but rather an In-rich (4 × 2) spectrum was indicated. This reveals a much lower P efficiency for TEDP than for two other P precursors. Accordingly, TEDP

  20. Assessing spatial variability of soil petroleum contamination using visible near-infrared diffuse reflectance spectroscopy.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Zhu, Yuanda; Li, Bin; Morgan, Cristine L S; Ge, Yufeng; Galbraith, John

    2012-11-01

    Visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) is a rapid, non-destructive method for sensing the presence and amount of total petroleum hydrocarbon (TPH) contamination in soil. This study demonstrates the feasibility of VisNIR DRS to be used in the field to proximally sense and then map the areal extent of TPH contamination in soil. More specifically, we evaluated whether a combination of two methods, penalized spline regression and geostatistics could provide an efficient approach to assess spatial variability of soil TPH using VisNIR DRS data from soils collected from an 80 ha crude oil spill in central Louisiana, USA. Initially, a penalized spline model was calibrated to predict TPH contamination in soil by combining lab TPH values of 46 contaminated and uncontaminated soil samples and the first-derivative of VisNIR reflectance spectra of these samples. The r(2), RMSE, and bias of the calibrated penalized spline model were 0.81, 0.289 log(10) mg kg(-1), and 0.010 log(10) mg kg(-1), respectively. Subsequently, the penalized spline model was used to predict soil TPH content for 128 soil samples collected over the 80 ha study site. When assessed with a randomly chosen validation subset (n = 10) from the 128 samples, the penalized spline model performed satisfactorily (r(2) = 0.70; residual prediction deviation = 2.0). The same validation subset was used to assess point kriging interpolation after the remaining 118 predictions were used to produce an experimental semivariogram and map. The experimental semivariogram was fitted with an exponential model which revealed strong spatial dependence among soil TPH [r(2) = 0.76, nugget = 0.001 (log(10) mg kg(-1))(2), and sill 1.044 (log(10) mg kg(-1))(2)]. Kriging interpolation adequately interpolated TPH with r(2) and RMSE values of 0.88 and 0.312 log(10) mg kg(-1), respectively. Furthermore, in the kriged map, TPH distribution matched with the expected TPH variability of the study site. Since the

  1. X-ray reflection and scatter measurements on selected optical samples

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Reynolds, J. M.; Holland, R. L.

    1975-01-01

    The results from an experimental program to determine the reflection efficiency and scatter parameters of selected optical samples are presented. The measurements were made using 8.34A X-rays at various angles of incidence. Selected samples were contaminated after being measured and then remeasured to determine the effects of contamination. The instrumentation involved in taking the data, including the X-ray reflectometer and data processing equipment, is discussed in detail. The condition of the optical surfaces, the total reflection measurements, the scatter measurements, and the analysis are discussed.

  2. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments.

    PubMed

    Harrison, Jesse P; Ojeda, Jesús J; Romero-González, María E

    2012-02-01

    Synthetic microplastics (≤5-mm fragments) are globally distributed contaminants within coastal sediments that may transport organic pollutants and additives into food webs. Although micro-Fourier-transform infrared (micro-FT-IR) spectroscopy represents an ideal method for detecting microplastics in sediments, this technique lacks a standardized operating protocol. Herein, an optimized method for the micro-FT-IR analysis of microplastics in vacuum-filtered sediment retentates was developed. Reflectance micro-FT-IR analyses of polyethylene (PE) were compared with attenuated total reflectance FT-IR (ATR-FT-IR) measurements. Molecular mapping as a precursor to the imaging of microplastics was explored in the presence and absence of 150-μm PE fragments, added to sediment at concentrations of 10, 100, 500 and 1000ppm. Subsequently, polymer spectra were assessed across plastic-spiked sediments from fifteen offshore sites. While all spectra obtained of evenly shaped plastics were typical to PE, reflectance micro-FT-IR measurements of irregularly shaped materials must account for refractive error. Additionally, we provide the first evidence that mapping successfully detects microplastics without their visual selection for characterization, despite this technique relying on spectra from small and spatially separated locations. Flotation of microplastics from sediments only enabled a fragment recovery rate of 61 (±31 S.D.) %. However, mapping 3-mm(2) areas (within 47-mm filters) detected PE at spiking concentrations of 100ppm and above, displaying 69 (±12 S.D.) % of the fragments in these locations. Additionally, mapping detected a potential PE fragment in a non-spiked retentate. These data have important implications for research into the imaging of microplastics. Specifically, the sensitivity and spatial resolution of the present protocol may be improved by visualizing the entire filter with high-throughput detection techniques (e.g., focal plane array-based imaging

  3. Experimental results using a three-layer skin model for diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Strömberg, Tomas; Karlsson, Hanna; Fredriksson, Ingemar; Larsson, Marcus

    2013-03-01

    We have previously presented an inverse Monte Carlo algorithm based on a three-layer semi-infinite skin model for analyzing diffuse reflectance spectroscopy (DRS) data. The algorithm includes pre-simulated Monte Carlo data for a range of physiologically relevant epidermal thicknesses and tissue scattering levels. The simulated photon pathlength distributions in each layer are stored and the absorption effect from tissue chromophores added in the post-processing. Recorded DRS spectra at source-detector distances of 0.4 and 1.2 mm were calibrated for the relative intensity between the two distances and matched to simulated spectra in a non-linear optimization algorithm. This study evaluates the DRS spectral fitting accuracy and presents data on the main output parameters; the tissue fraction of red blood cells and local oxygenation (SO2). As a reference, the microcirculatory perfusion (Perf) was measured simultaneously in the same probe using laser Doppler Flowmetry. Data were recorded on the volar forearm of three healthy subjects in a protocol involving a 5 min systolic occlusion. The DRS spectra were modeled with an rms-error < 2%. In two subjects, SO2 decreased during occlusion to <10%, and increased to above baseline after hyperemia, while Perf increased >7 times compared to baseline. In the third subject the SO2 decreased less during occlusion and increased to baseline values at hyperemia with only a 2-fold increase in Perf. The observed difference could be due to different microvascular beds being probed. It is concluded that integrating DRS and LDF enables new possibilities to deduce microcirculation status.

  4. Light-induced autofluorescence and diffuse reflectance spectroscopy in clinical diagnosis of skin cancer

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Pavlova, E.; Kundurjiev, T.; Troyanova, P.; Genova, Ts.; Avramov, L.

    2014-05-01

    We investigated more than 500 clinical cases to receive the spectral properties of basal cell (136 patients) and squamous cell carcinoma (28), malignant melanoma (41) and different cutaneous dysplastic and benign cutaneous lesions. Excitation at 365, 385 and 405 nm using LEDs sources is applied to obtain autofluorescence spectra, and broad-band illumination in the region of 400-900 nm is used to detect diffuse reflectance spectra of all pathologies investigated. USB4000 microspectrometer (Ocean Optics Inc, USA) is applied as a detector and fiber-optic probe is used for delivery of the light. In the case of in vivo tumor measurements spectral shape and intensity changes are observed that are specific for a given type of lesion. Autofluorescence origins of the signals coming from skin tissues are mainly due to proteins, such as collagen, elastin, keratin, their cross-links, co-enzimes - NADH and flavins and endogenous porphyrins. Spectral features significant into diffuse spectroscopy diagnosis are related to the effects of re-absorption of hemoglobin and its forms, as well as melanin and its concentration in different pathologies. We developed significant database and revealed specific features for a large class of cutaneous neoplasia, using about 30 different spectral peculiarities to differentiate cutaneous tumors. Sensitivity and specificity obtained exceed 90%, which make optical biopsy very useful tool for clinical practice. These results are obtained in the frames of clinical investigations for development of significant "spectral features" database for the most common cutaneous malignant, dysplastic and benign lesions. In the forthcoming plans, our group tries to optimize the existing experimental system for optical biopsy of skin, and to introduce it and the diagnostic algorithms developed into clinical practice, based on the high diagnostic accuracy achieved.

  5. Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy

    SciTech Connect

    Tahir, Dahlang; Kraaer, Jens; Tougaard, Sven

    2014-06-28

    We have studied the electronic and optical properties of Fe, Pd, and Ti by reflection electron energy-loss spectroscopy (REELS). REELS spectra recorded for primary energies in the range from 300 eV to 10 keV were corrected for multiple inelastically scattered electrons to determine the effective inelastic-scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic-electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(−1/ε) by using the QUEELS-ε(k,ω)-REELS software package. The complex dielectric functions ε(k,ω), in the 0–100 eV energy range, for Fe, Pd, and Ti were determined from the derived Im(−1/ε) by Kramers-Kronig transformation and then the refractive index n and extinction coefficient k. The validity of the applied model was previously tested and found to give consistent results when applied to REELS spectra at energies between 300 and 1000 eV taken at widely different experimental geometries. In the present paper, we provide, for the first time, a further test on its validity and find that the model also gives consistent results when applied to REELS spectra in the full range of primary electron energies from 300 eV to 10000 eV. This gives confidence in the validity of the applied method.

  6. Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe.

    PubMed

    Yu, Bing; Shah, Amy; Nagarajan, Vivek K; Ferris, Daron G

    2014-03-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic probe can noninvasively quantify the optical properties of epithelial tissues and has shown the potential as a cost-effective, fast and sensitive tool for diagnosis of early precancerous changes in the cervix and oral cavity. However, current DRS systems are susceptible to several sources of systematic and random errors, such as uncontrolled probe-to-tissue pressure and lack of a real-time calibration that can significantly impair the measurement accuracy, reliability and validity of this technology as well as its clinical utility. In addition, such systems use bulky, high power and expensive optical components which impede their widespread use in low- and middle-income countries (LMICs) where epithelial cancer related death is disproportionately high. In this paper we report a portable, easy-to-use and low cost, yet accurate and reliable DRS device that can aid in the screening and diagnosis of oral and cervical cancer. The device uses an innovative smart fiber-optic probe to eliminate operator bias, state-of-the-art photonics components to reduce size and power consumption, and automated software to reduce the need of operator training. The device showed a mean error of 1.4 ± 0.5% and 6.8 ± 1.7% for extraction of phantom absorption and reduced scattering coefficients, respectively. A clinical study on healthy volunteers indicated that a pressure below 1.0 psi is desired for oral mucosal tissues to minimize the probe effects on tissue physiology and morphology.

  7. A Novel, Nondestructive, Dried Blood Spot-Based Hematocrit Prediction Method Using Noncontact Diffuse Reflectance Spectroscopy.

    PubMed

    Capiau, Sara; Wilk, Leah S; Aalders, Maurice C G; Stove, Christophe P

    2016-06-21

    Dried blood spot (DBS) sampling is recognized as a valuable alternative sampling strategy both in research and in clinical routine. Although many advantages are associated with DBS sampling, its more widespread use is hampered by several issues, of which the hematocrit effect on DBS-based quantitation remains undoubtedly the most widely discussed one. Previously, we developed a method to derive the approximate hematocrit from a nonvolumetrically applied DBS based on its potassium content. Although this method yielded good results and was straightforward to perform, it was also destructive and required sample preparation. Therefore, we now developed a nondestructive method which allows to predict the hematocrit of a DBS based on its hemoglobin content, measured via noncontact diffuse reflectance spectroscopy. The developed method was thoroughly validated. A linear calibration curve was established after log/log transformation. The bias, intraday and interday imprecision of quality controls at three hematocrit levels and at the lower and upper limit of quantitation (0.20 and 0.67, respectively) were less than 11%. In addition, the influence of storage and the volume spotted was evaluated, as well as DBS homogeneity. Application of the method to venous DBSs prepared from whole blood patient samples (n = 233) revealed a good correlation between the actual and the predicted hematocrit. Limits of agreement obtained after Bland and Altman analysis were -0.076 and +0.018. Incurred sample reanalysis demonstrated good method reproducibility. In conclusion, mere scanning of a DBS suffices to derive its approximate hematocrit, one of the most important variables in DBS analysis.

  8. Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries.

    PubMed

    de Boer, L L; Molenkamp, B G; Bydlon, T M; Hendriks, B H W; Wesseling, J; Sterenborg, H J C M; Ruers, T J M

    2015-08-01

    Recognition of the tumor during breast-conserving surgery (BCS) can be very difficult and currently a robust method of margin assessment for the surgical setting is not available. As a result, tumor-positive margins, which require additional treatment, are not found until histopathologic evaluation. With diffuse reflectance spectroscopy (DRS), tissue can be characterized during surgery based on optical parameters that are related to the tissue morphology and composition. Here we investigate which optical parameters are able to detect tumor in an area with a mixture of benign and tumor tissue and hence which parameters are most suitable for intra-operative margin assessment. DRS spectra (400-1600 nm) were obtained from 16 ex vivo lumpectomy specimens from benign, tumor border, and tumor tissue. One mastectomy specimen was used with a custom-made grid for validation purposes. The optical parameter related to the absorption of fat and water (F/W-ratio) in the extended near-infrared wavelength region (~1000-1600 nm) provided the best discrimination between benign and tumor sites resulting in a sensitivity and specificity of 100 % (excluding the border sites). Per patient, the scaled F/W-ratio gradually decreased from grossly benign tissue towards the tumor in 87.5 % of the specimens. In one test case, based on a predefined F/W-ratio for boundary tissue of 0.58, DRS produced a surgical resection plane that nearly overlapped with a 2-mm rim of benign tissue, 2 mm being the most widely accepted definition of a negative margin. The F/W-ratio provided excellent discrimination between sites clearly inside or outside the tumor and was able to detect the border of the tumor in one test case. This work shows the potential for DRS to guide the surgeon during BCS.

  9. Evaluation of various polyethylene as potential dosimeters by attenuated total reflectance-Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Halperin, Fred; Collins, Greta; DiCicco, Michael; Logar, John

    2014-12-01

    Various types of polyethylene (PE) have been evaluated in the past for use as a potential dosimeter, chiefly via the formation of an unsaturated transvinylene (TV) double-bond resulting from exposure to ionizing radiation. The utilization of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy in characterizing TV formation in irradiated PE for a potential dosimeter has yet to be fully developed. In this initial investigation, various PE films/sheets were exposed to ionizing radiation in a high-energy 5 megaelectron volt (MeV) electron beam accelerator in the 10-500 kilogray (kGy) dose range, followed by ATR-FTIR analysis of TV peak formation at the 965 cm-1 wavenumber. There was an upward trend in TV formation for low-density polyethylene (LDPE) films and high-density polyethylene (HDPE) sheets as a function of absorbed dose in the 10-50 kGy dose range, however, the TV response could not be equated to a specific absorbed dose. LDPE film displayed a downward trend from 50 kGy to 250 kGy and then scattering up to 500 kGy; HDPE sheets demonstrated an upward trend in TV formation up to 500 kGy. For ultra-high molecular weight polyethylene (UHMWPE) sheets irradiated up to 150 kGy, TV response was equivalent to non-irradiated UHMWPE, and a minimal upward trend was observed for 200 kGy to 500 kGy. The scatter of the data for the irradiated PE films/sheets is such that the TV response could not be equated to a specific absorbed dose. A better correlation of the post-irradiation TV response to absorbed dose may be attained through a better understanding of variables.

  10. Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe

    PubMed Central

    Yu, Bing; Shah, Amy; Nagarajan, Vivek K.; Ferris, Daron G.

    2014-01-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic probe can noninvasively quantify the optical properties of epithelial tissues and has shown the potential as a cost-effective, fast and sensitive tool for diagnosis of early precancerous changes in the cervix and oral cavity. However, current DRS systems are susceptible to several sources of systematic and random errors, such as uncontrolled probe-to-tissue pressure and lack of a real-time calibration that can significantly impair the measurement accuracy, reliability and validity of this technology as well as its clinical utility. In addition, such systems use bulky, high power and expensive optical components which impede their widespread use in low- and middle-income countries (LMICs) where epithelial cancer related death is disproportionately high. In this paper we report a portable, easy-to-use and low cost, yet accurate and reliable DRS device that can aid in the screening and diagnosis of oral and cervical cancer. The device uses an innovative smart fiber-optic probe to eliminate operator bias, state-of-the-art photonics components to reduce size and power consumption, and automated software to reduce the need of operator training. The device showed a mean error of 1.4 ± 0.5% and 6.8 ± 1.7% for extraction of phantom absorption and reduced scattering coefficients, respectively. A clinical study on healthy volunteers indicated that a pressure below 1.0 psi is desired for oral mucosal tissues to minimize the probe effects on tissue physiology and morphology. PMID:24688805

  11. High-throughput evaluation of olefin copolymer composition by means of attenuated total reflection Fourier tranform infrared spectroscopy.

    PubMed

    Tuchbreiter, A; Marquardt, J; Zimmermann, J; Walter, P; Mülhaupt, R; Kappler, B; Faller, D; Roths, T; Honerkamp, J

    2001-01-01

    As a consequence of developing fully automated reactors for organic and organometallic synthesis and polymerizations combined with rapid on-line analysis, databases, and data mining, the analysis of polymers with respect to composition and properties has been speeded up. High-throughput evaluation of olefin copolymers requires fast measurements and high accuracy without tedious sample preparation such as pressing KBr pellets. This has been achieved by using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR spectroscopy) in conjunction with multivariate calibration in order to determine the composition of olefin copolymers such as ethene/propene, ethene/1-hexene and ethene/1-octene copolymers.

  12. Assessment of Microcirculatory Hemoglobin Levels in Normal and Diabetic Subjects using Diffuse Reflectance Spectroscopy in the Visible Region — a Pilot Study

    NASA Astrophysics Data System (ADS)

    Sujatha, N.; Anand, B. S. Suresh; Nivetha, K. Bala; Narayanamurthy, V. B.; Seshadri, V.; Poddar, R.

    2015-07-01

    Light-based diagnostic techniques provide a minimally invasive way for selective biomarker estimation when tissues transform from a normal to a malignant state. Spectroscopic techniques based on diffuse reflectance characterize the changes in tissue hemoglobin/oxygenation levels during the tissue transformation process. Recent clinical investigations have shown that changes in tissue oxygenation and microcirculation are observed in diabetic subjects in the initial and progressive stages. In this pilot study, we discuss the potential of diffuse reflectance spectroscopy (DRS) in the visible (Vis) range to differentiate the skin microcirculatory hemoglobin levels between normal and advanced diabetic subjects with and without neuropathy. Average concentration of hemoglobin as well as hemoglobin oxygen saturation within the probed tissue volume is estimated for a total of four different sites in the foot sole. The results indicate a statistically significant decrease in average total hemoglobin and increase in hemoglobin oxygen saturation levels for diabetic foot compared with a normal foot. The present study demonstrates the ability of reflectance spectroscopy in the Vis range to determine and differentiate the changes in tissue hemoglobin and hemoglobin oxygen saturation levels in normal and diabetic subjects.

  13. Real time diffuse reflectance polarisation spectroscopy imaging to evaluate skin microcirculation

    NASA Astrophysics Data System (ADS)

    O'Doherty, Jim; Henricson, Joakim; Nilsson, Gert E.; Anderson, Chris; Leahy, Martin J.

    2007-07-01

    This article describes the theoretical development and design of a real-time microcirculation imaging system, an extension from a previously technology developed by our group. The technology utilises polarisation spectroscopy, a technique used in order to selectively gate photons returning from various compartments of human skin tissue, namely from the superficial layers of the epidermis, and the deeper backscattered light from the dermal matrix. A consumer-end digital camcorder captures colour data with three individual CCDs, and a custom designed light source consisting of a 24 LED ring light provides broadband illumination over the 400 nm - 700 nm wavelength region. Theory developed leads to an image processing algorithm, the output of which scales linearly with increasing red blood cell (RBC) concentration. Processed images are displayed online in real-time at a rate of 25 frames s -1, at a frame size of 256 x 256 pixels, and is limited only by computer RAM memory and processing speed. General demonstrations of the technique in vivo display several advantages over similar technology.

  14. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials

  15. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural

  16. Spectral reflectance properties of black chrome for use as a solar selective coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    The NASA-Lewis Research Center has determined that a widely available commercially electroplated decorative finish known as black chrome has desirable solar selective properties. Black chrome electroplated coating has high absorbtance in the solar spectrum and low emissivity in the 250 F blackbody thermal spectrum. The spectral reflectance properties of a commercially prepared black chrome on steel have been measured. Values are presented for reflectance of the black chrome, and compared with the reflectance of black paint and with two available samples of black nickel which had been prepared for solar selective properties. The reflectance of black chrome, of the two black nickels, and of black paint integrated over the solar spectrum for air mass 2 were 0.132, 0.123, 0.133, and 0.033, respectively. The reflectance of the black chrome, two black nickels, and of the black paint integrated over the blackbody spectrum for 250 F from 3 to 15 microns are 0.912, 0.934, 0.891, and 0.033, respectively. These reflectance measurements indicate absorptivity-to-emissivity values of 9.8, 13.8, 8.0, and 1.00, respectively.

  17. Spectral reflectance properties of black chrome for use as a solar selective coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    The NASA-Lewis Research Center has determined that a widely available commercially electroplated decorative finish known as black chrome has desirable solar selective properties. The spectral reflectance properties of a commercially prepared black chrome on steel were measured. Values are presented for reflectance of the black chrome, and compared with the reflectance of black paint (Nextel) and with two available samples of black nickel which had been prepared for solar selective properties. The reflectance of black chrome, of the two black nickels, and of black paint integrated over the solar spectrum for air mass 2 were 0.132, 0.123, 0.133, and 0.033, respectively. The reflectance of the black chrome, two black nickels, and of the black paint integrated over the blackbody spectrum for 250 F from 3 to 15 microns are 0.912, 0.934, 0.891, and 0.033, respectively. These reflectance measurements indicate absorptivity-to-emissivity values of 9.8, 13.8, 8.0, and 1.00, respectively.

  18. [Determination of isorhamnetin in Hippophae rhamnoides Linn from West Sichuan plateau using near infrared diffuse reflectance spectroscopy].

    PubMed

    Ye, Li-Ming; Zhou, Min; Zhang, Hao; Chen, Chu; Li, Zhang-Wan; Chen, Cong; Wang, Yan-Ping

    2008-02-01

    The objective of this study was to develop a method for the determination of isorhamnetin in Hippophae rhamnoides Linn from West Sichuan plateau using near infrared diffuse reflectance spectroscopy. Applying the method of mixing with SiO2, the near infrared spectra (NIS) with the range of 12 000-4 000 cm(-1) were recorded for the Hippophae rhamnoides Linn containing isorhamnetin with the content of 0.1%-0.8%. Calibration models were established using the PLS (partial least squares). Different spectra pretreatments methods were compared. The study showed that spectral information can be extracted thoroughly by constant offset elimination (COE) pretreatments method with the correlation coefficient (r2) of 0.739 8, SEC of 0.107 (standard deviation of the calibration sets) and SEP of 0.073 (standard deviation of the prediction sets). The results indicate that near infrared diffuse reflectance spectroscopy is more rapid and convenient than conventional methods.

  19. Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments.

    PubMed

    Zhong, Xiewei; Wen, Xiang; Zhu, Dan

    2014-01-27

    Fiber reflectance spectroscopy is a non-invasive method for diagnosing skin diseases or evaluating aesthetic efficacy, but it is dependent on the inverse model validity. In this work, a lookup-table-based inverse model is developed using two-layered Monte Carlo simulations in order to extract the physiological and optical properties of skin. The melanin volume fraction and blood oxygen parameters are extracted from fiber reflectance spectra of in vivo human skin. The former indicates good coincidence with a commercial skin-melanin probe, and the latter (based on forearm venous occlusion and ischemia, and hot compress experiment) shows that the measurements are in agreement with physiological changes. These results verify the potential of this spectroscopy technique for evaluating the physiological characteristics of human skin.

  20. Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy.

    PubMed

    Dooley, Kathryn A; Lomax, Suzanne; Zeibel, Jason G; Miliani, Costanza; Ricciardi, Paola; Hoenigswald, Ann; Loew, Murray; Delaney, John K

    2013-09-07

    In situ chemical imaging techniques are being developed to provide information on the spatial distribution of artists' pigments used in polychrome works of art such as paintings. The new methods include reflectance imaging spectroscopy and X-ray fluorescence mapping. Results from these new methods have extended the knowledge obtained from site-specific chemical analyses widely in use. While these mapping methods have aided in determining the distribution of pigments, there is a growing interest to develop methods capable of identifying and mapping organic paint binders as well. Near infrared (NIR) reflectance spectroscopy has been extensively used in the remote sensing field as well as in the chemical industry to detect organic compounds. NIR spectroscopy provides a rapid method to assay organics by utilizing vibrational overtones and combination bands of fundamental absorptions that occur in the mid-IR. Here we explore the utility of NIR reflectance imaging spectroscopy to map organic binders in situ by examining a series of panel paintings known to have been painted using distemper (animal skin glue) and tempera (egg yolk) binders as determined by amino acid analysis of samples taken from multiple sites on the panels. In this report we demonstrate the success in identifying and mapping these binders by NIR reflectance imaging spectroscopy in situ. Three of the four panel paintings from Cosimo Tura's The Annunciation with Saint Francis and Saint Louis of Toulouse (ca. 1475) are imaged using a highly sensitive, line-scanning hyperspectral imaging camera. The results show an animal skin glue binder was used for the blue skies and blue robe of the Virgin Mary, and egg yolk tempera was used for the red robes and brown landscape. The mapping results show evidence for the use of both egg yolk and animal skin glue in the faces of the figures. The strongest absorption associated with lipidic egg yolk features visually correlates with areas that appear to have white

  1. Selective mode excitation in finite size plasma crystals by diffusely reflected laser light

    SciTech Connect

    Schablinski, Jan; Block, Dietmar

    2015-02-15

    The possibility to use diffuse reflections of a laser beam to exert a force on levitating dust particles is studied experimentally. Measurements and theoretical predictions are found to be in good agreement. Further, the method is applied to test the selective excitation of breathing-like modes in finite dust clusters.

  2. Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics.

    PubMed

    Xiang, Jie; Li, Yannian; Li, Quan; Paterson, Daniel A; Storey, John M D; Imrie, Corrie T; Lavrentovich, Oleg D

    2015-05-20

    Electrical tuning of selective reflection of light is achieved in a very broad spectral range from ultraviolet to visible and infrared by an oblique helicoidal state of a cholesteric liquid crystal in a wide temperature range (including room temperature). The phenomenon offers potential applications in tunable smart windows, lasers, optical filters and limiters, as well as in displays.

  3. The Case for Using Student Voice in Teacher Selection and Recruitment: Reflections from a School Leader

    ERIC Educational Resources Information Center

    Kent, Peter

    2012-01-01

    In this piece Peter Kent, headteacher of Lawrence Sheriff School in Rugby in the UK, reflects upon the role of the student voice in selecting and recruiting new teaching staff. Contextualised by some recent unsympathetic reporting in the UK media, Peter explains why for their school community, using the student voice to inform teacher recruitment…

  4. Frequency selective reflection and transmission at a layer composed of a periodic dielectric

    NASA Technical Reports Server (NTRS)

    Bertoni, Henry L.; Cheo, Li-Hsiang S.; Tamir, Theodor

    1987-01-01

    The feasibility of using a periodic dielectric layer, composed of alternating bars having dielectric constants epsilon sub 1 and epsilon sub 2, as a frequency selective subreflector in order to permit feed separation in large aperture reflecting antenna systems was examined. For oblique incidence, it is found that total transmission and total reflection can be obtained at different frequencies for proper choices of epsilon sub 1, epsilon 2, and the geometric parameters. The frequencies of total reflection and transmission can be estimated from wave phenomena occurring in a layer of uniform dielectric constant equal to the average for the periodic layers. About some of the frequencies of total transmission, the bandwidth for 90% transmission is found to be 40%. However, the bandwidth for 90% reflection is always found to be much narrower; the greatest value found being 2.5%.

  5. In-line determination of the conversion in acrylate coatings after UV curing using near-infrared reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Scherzer, Tom; Müller, Sabine; Mehnert, Reiner; Volland, Arne; Lucht, Hartmut

    2005-07-01

    Near-infrared (NIR) reflection spectroscopy was used to determine the conversion of acrylic double bonds after UV photopolymerization. Quantitative analysis of the spectra was performed with chemometric methods using FTIR spectroscopy for calibration. Moreover, it was shown that the calibration of the PLS algorithm can also be performed directly to specific properties of the coatings such as their hardness which responds extremely sensitively even to small changes of the conversion. In-line monitoring of the conversion by NIR spectroscopy was carried out for acrylate coatings with a thickness of some micrometers applied to polymer foils and panels and for thick layers of UV-curable adhesives on the basis of acrylic hot-melts. The effect of changes of the irradiation dose, the emission spectrum of the UV source and other parameters on the conversion was studied.

  6. Results of an analytical study of spacecraft deposition contamination by internal reflection spectroscopy. [(haze on spacecraft windows from space debris)

    NASA Technical Reports Server (NTRS)

    Mookherji, T.

    1976-01-01

    Outgassing, deposition, and desorption kinetics of silicone compounds, are examined as examples of optical surface contaminants of spacecraft windows. Their behavior in a space environment after exposure to ultraviolet radiation is also examined. The use of internal reflection spectroscopy is shown to provide a viable means of real-time, in-situ identification of contaminants of orbiting spacecraft. The instrumental techniques are proposed as the basis of further investigations and the development of flight hardware.

  7. Geographical differentiation of dried lentil seed (Lens culinaris) samples using diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis.

    PubMed

    Kouvoutsakis, G; Mitsi, C; Tarantilis, P A; Polissiou, M G; Pappas, C S

    2014-02-15

    Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis were used for the geographical differentiation of dried lentil seed (Lens culinaris) samples. Specifically, 18 Greek samples and nine samples imported from other countries were distinguished using the 2250-1720 and 1275-955 cm⁻¹ spectral regions. The differentiation is complete. The combination of DRIFTS and discriminant analysis enables simple, rapid, cheap and accurate differentiation of commercial lentil seeds in terms of geographical origin.

  8. Colorimetric evaluation of composite materials with different thickness by reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Portero, Priscila Paiva; Florez, Fernando; Bagnato, Vanderlei; de Oliveira, Osmir Batista, Jr.; de Castro Monteiro Loffredo, Leonor

    2007-02-01

    Selection of the proper shade and color matching of restorations to natural dentition continues to be one of the most frustrating problems in dentistry and currently available shade guide presents a limited selection of colors compared to those found in natural dentition. This investigation evaluation if the composites resins shade B2 are equivalent to the Vita shade guide B2. Twelve composite resins (Renamel Microfill Super Brite- Cosmedent USA, Renamel Universal Brite- Cosmedent USA, Renamel Microfill Body- Cosmedent USA, Renamel Universal Body- Cosmedent USA, Opallis EB2-FGM, Opallis DB2-FGM, Filtek Supreme XT-3M/ESPE, Filtek Z250-3M/ESPE, Filtek Z350-3M/ESPE, Z100-3M/ESPE, 4 Seasons Dentin-Ivoclar/Vivadent, Tetric Ceram-Ivoclar/Vivadent) shade B2 were used. From each composite, two specimens were made in a steel matrix with 8.0 mm diameter and 10.0 mm different predetermined thickness (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 mm). The specimens were 40 seconds light polymerized by LED Ultrablue (DMC). The specimens were measured 10 times each to determine the shade using a reflectance spectrophotometer (Pocket Spec). According to results was verified that not any of composites resins shade B2 evaluated in this study presented values of color difference (ΔE) equivalent to the Vita shade guide B2 and the 2 mm thickness showed the closer match to the Vita shade guide B2.

  9. Spectroscopy of six X-ray-selected BL Lacertae candidates

    SciTech Connect

    Margon, B.; Boroson, T.A.; Chanan, G.A.; Thompson, I.B.; Schneider, D.P.

    1986-11-01

    Results of a continuing program aimed at extending the small list of X-ray-selected BL Lac objects are reported. High-quality spectra have been obtained of six faint blue objects that lie within the positional error boxes of X-ray sources discovered serendipitously by the Einstein Observatory. Three of the objects are found to be previously uncataloged low-red-shift quasi-stellar objects, including one formerly suggested as BL Lac candidate. Two are faint galactic stars, while the final object has a featureless spectrum, and thus remains a candidate. Although X-ray selection may ultimately be an effective means of discovering faint BL Lac objects, such sources are evidently rare at the X-ray flux levels attainable by the Einstein Observatory. 15 references.

  10. A few selected applications of surface nonlinear optical spectroscopy.

    PubMed Central

    Shen, Y R

    1996-01-01

    As a second-order nonlinear optical process, sum-frequency generation is highly surface-specific and accordingly has been developed into a very powerful and versatile surface spectroscopic tool. It has found many unique applications in different disciplines and thus provided many exciting new research opportunities in surface and surface-related science. Selected examples are discussed here to illustrate the power of the technique. PMID:8901540

  11. Applicability of near-infrared reflectance spectroscopy (NIRS) for determination of crude protein content in cowpea (Vigna unguiculata) leaves.

    PubMed

    Towett, Erick K; Alex, Merle; Shepherd, Keith D; Polreich, Severin; Aynekulu, Ermias; Maass, Brigitte L

    2013-01-01

    There is uncertainty on how generally applicable near-infrared reflectance spectroscopy (NIRS) calibrations are across genotypes and environments, and this study tests how well a single calibration performs across a wide range of conditions. We also address the optimization of NIRS to perform the analysis of crude protein (CP) content in a variety of cowpea accessions (n = 561) representing genotypic variation as well as grown in a wide range of environmental conditions in Tanzania and Uganda. The samples were submitted to NIRS analysis and a predictive calibration model developed. A modified partial least-squares regression with cross-validation was used to evaluate the models and identify possible spectral outliers. Calibration statistics for CP suggests that NIRS can predict this parameter in a wide range of cowpea leaves from different agro-ecological zones of eastern Africa with high accuracy (R (2)cal = 0.93; standard error of cross-validation = 0.74). NIRS analysis improved when a calibration set was developed from samples selected to represent the range of spectral variability. We conclude from the present results that this technique is a good alternative to chemical analysis for the determination of CP contents in leaf samples from cowpea in the African context, as one of the main advantages of NIRS is the large number of compounds that can be measured at once in the same sample, thus substantially reducing the cost per analysis. The current model is applicable in predicting the CP content of young cowpea leaves for human nutrition from different agro-ecological zones and genetic materials, as cowpea leaves are one of the popular vegetables in the region.

  12. Near-infrared reflectance spectroscopy predictions as indicator traits in breeding programs for enhanced beef quality.

    PubMed

    Cecchinato, A; De Marchi, M; Penasa, M; Albera, A; Bittante, G

    2011-09-01

    The aims of this study were 1) to investigate the potential application of near-infrared spectroscopy (NIRS) to predict beef quality (BQ) traits, 2) to assess genetic variations of BQ measures and their predictions obtained by NIRS, and 3) to infer the genetic relationship between measures of BQ and their predictions. Young Piedmontese bulls (n = 1,230) were raised and fattened on 124 farms and slaughtered at the same commercial abattoir. The BQ traits evaluated were shear force (SF, kg), cooking loss (CL, %), drip loss (DL, %), lightness (L*), redness (a*), yellowness (b*), saturation index (SI), and hue angle. Near-infrared spectra were collected using a Foss NIRSystems 5000 instrument over a spectral range of 1,100 to 2,498 nm every 2 nm, in reflectance mode. After editing, prediction models were developed on a calibration subset (n = 268) using partial least squares regressions, followed by application of these models to the validation subset (n = 940). Estimations of (co)variance for measures of BQ and NIRS-based predictions were obtained through a set of bivariate Bayesian analyses on the validation subset. Near-infrared predictions were satisfactory for measurements of L* (R(2) = 0.64), a* (R(2) = 0.68), hue angle (R(2) = 0.81), and saturation index (R(2) = 0.59), but not for b*, DL, CL, and SF. The loss of additive genetic variance of predicted vs. measured L*, a*, DL, CL, and SF was generally high and was similar to the loss of residual variance, being a function of the calibration parameter R(2). As a consequence, estimated heritabilities of measures and predictions of BQ were similar for traits with high calibration R(2) values. Genetic correlations between BQ measures and predictions were high for all color traits and DL, and were greater than the corresponding phenotypic correlations, whereas both the phenotypic and genetic correlations for SF and CL were nil. Results suggest that NIRS-based predictions for color features and DL may be used as

  13. Reflectance spectroscopy: a tool for predicting the risk of iron chlorosis in soils

    NASA Astrophysics Data System (ADS)

    Cañasveras, J. C.; Barrón, V.; Del Campillo, M. C.; Viscarra Rossel, R. A.

    2012-04-01

    Chlorosis due to iron (Fe) deficiency is the most important nutritional problem a plant can have in calcareous soils. The most characteristic symptom of Fe chlorosis is internervial yellowing in the youngest leaves due to a lack of chlorophyll caused by a disorder in Fe nutrition. Fe chlorosis is related with calcium carbonate equivalent (CCE), clay content and Fe extracted with oxalate (Feo). The conventional technique for determining these properties and others, based on laboratory analysis, are time-consuming and costly. Reflectance spectroscopy (RS) is a rapid, non-destructive, less expensive alternative tool that can be used to enhance or replace conventional methods of soil analysis. The aim of this work was to assess the usefulness of RS for the determination of some properties of Mediterranean soils including clay content, CCE, Feo, cation exchange capacity (CEC), organic matter (OM) and pHw, with emphasis on those with a specially marked influence on the risk of Fe chlorosis. To this end, we used partial least-squares regression (PLS) to construct calibration models, leave-one-out cross-validation and an independent validation set. Our results testify to the usefulness of qualitative soil interpretations based on the variable importance for projection (VIP) as derived by PLS decomposition. The accuracy of predictions in each of the Vis-NIR, MIR and combined spectral regions differed considerably between properties. The R2adj and root mean square error (RMSE) for the external validation predictions were as follows: 0.83 and 37 mg kg-1 for clay content in the Vis-NIR-MIR range; 0.99 and 25 mg kg-1 for CCE, 0.80 and 0.1 mg kg-1 for Feo in the MIR range; 0.93 and 3 cmolc kg-1 for CEC in the Vis-NIR range; 0.87 and 2 mg kg-1 for OM in the Vis-NIR-MIR range, 0.61 and 0.2 for pHw in the MIR range. These results testify to the potential of RS in the Vis, NIR and MIR ranges for efficient soil analysis, the acquisition of soil information and the assessment of the

  14. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-01

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  15. Thermal stability of hydrogenated diamond films in nitrogen ambience studied by reflection electron energy spectroscopy and X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ren, Bing; Huang, Jian; Yu, Hongze; Yang, Weichuan; Wang, Lin; Pan, Zhangmin; Wang, Linjun

    2016-12-01

    (1 1 0)-oriented diamond films were grown by microwave plasma chemical vapor deposition technique, followed by an optimized hydrogen-plasma treatment process. Thermal stability of hydrogenated diamond films were studied by annealing in nitrogen atmosphere at temperature varied from 400 to 950 °C. Reflection electron energy spectroscopy associated with X-ray photoelectron spectroscopy indicates that approximate at. 50% hydrogen was present at the surface of hydrogenated diamond films, which is close to the theoretical value. Pinning effect in surface Fermi level in hydrogenated diamond films could not be eliminated by annealing in nitrogen until the temperature was exceeded 950 °C. The films underwent hydrogen desorption and subsequent graphitization mainly on the very surface region without significant bulk modification. Besides, hydrogenated diamond films annealed in N2 at 950 °C showed similar hydrophilicity and resistance to that of the oxidized one, indicating rupture of C-H bond on the surface of hydrogenated diamond films.

  16. Electrically tunable selective reflection of light by heliconical cholesteric structures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Oleg D.; Xiang, Jie; Shiyanovskii, Sergij V.; Li, Quan

    2015-10-01

    Cholesteric liquid crystals with helicoidal molecular architecture are known for their ability to selectively reflect light with the wavelength that is determined by the periodicity of molecular orientations. Resulting interference colors are highly saturated, they add like colored lights and produce a color gamut greater than that obtained with inks, dyes, and pigments. The periodicity of the helical structure and thus the wavelength of the reflected light can be controlled by chemical composition and sometimes by temperature, but tuning with the electric field has been so far elusive. Here we demonstrate that by using a cholesteric with oblique helicoidal (heliconical) structure, as opposed to the classic "right-angle" helicoid, one can vary the wavelength of selectively reflected light in a broad spectral range, by simply adjusting the electric field applied parallel to the helicoidal axis. The effect can enable many applications that require dynamically controlled transmission and reflection of light, from energy-saving smart windows to tunable organic lasers, and transparent "see-through" displays. Since the material is non-absorbing and transparent everywhere except the electrically preselected reflection band, the effect can be used in creating multilayered structures with a dynamic additive mixture of colors.

  17. Identification of Hydrated Sulfates Collected in the Northern Rio Tinto Valley by Reflectance and Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chemtob, S. M.; Arvidson, R. E.; Fernandez-Remolar, D. C.; Amils, R.; Morris, R. V.; Ming, D. W.; Prieto-Ballesteros, O.; Mustard, J. F.; Hutchinson, L.; Stein, T. C.; Donovan, C. E.; Fairchild, G. M.; Friedlander, L. R.; Karas, N. M.; Klasen, N.; Mendenhall, M. P.; Robinson, E. M.; Steinhardt, S. E.; Weber, L. R.

    2006-01-01

    OMEGA recently identified spectral signatures of kieserite, gypsum, and other polyhydrated sulfates at multiple locations on the surface of Mars [1,2]. The presence of sulfates was confirmed through in situ spectroscopy by MER Opportunity [3]. An approach to validate these interpretations is to collect corresponding spectral data from sulfate-rich terrestrial analog sites. The northern Rio Tinto Valley near Nerva, Spain, is a good Martian analog locale because it features extensive seasonal sulfate mineralization driven by highly acidic waters [4]. We report on mineralogical compositions identified by field VNIR spectroscopy and laboratory Raman spectroscopy.

  18. Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes.

    PubMed

    Kanick, Stephen Chad; van der Leest, Cor; Aerts, Joachim G J V; Hoogsteden, Henk C; Kascáková, Slávka; Sterenborg, Henricus J C M; Amelink, Arjen

    2010-01-01

    We describe the incorporation of a single-fiber reflectance spectroscopy probe into the endoscopic ultrasound fine-needle aspiration (EUS-FNA) procedure utilized for lung cancer staging. A mathematical model is developed to extract information about the physiological and morphological properties of lymph tissue from single-fiber reflectance spectra, e.g., microvascular saturation, blood volume fraction, bilirubin concentration, average vessel diameter, and Mie slope. Model analysis of data from a clinical pilot study shows that the single-fiber reflectance measurement is capable of detecting differences in the physiology between normal and metastatic lymph nodes. Moreover, the clinical data show that probe manipulation within the lymph node can perturb the in vivo environment, a concern that must be carefully considered when developing a sampling strategy. The data show the feasibility of this novel technique; however, the potential clinical utility has yet to be determined.

  19. Terahertz imaging of composite materials in reflection and transmission mode with a time-domain spectroscopy system

    NASA Astrophysics Data System (ADS)

    Sørgârd, Trygve R.; van Rheenen, Arthur D.; Haakestad, Magnus W.

    2016-02-01

    A fiber-coupled Terahertz time domain spectroscopy (THz-TDS) system based on photoconductive antennas, pumped by a 100-fs fiber laser, has been used to characterize materials in transmission and reflection mode. THz images are acquired by mounting the samples under investigation on an x-y stage, which is stepped through the beam while the transmitted or reflected THz waveform is captured. The samples include a carbon fiber epoxy composite and a sandwich-structured composite panel with an aramid fiber honeycomb core in between two skin layers of fiberglass reinforced plastic. The former has an artificially induced void, and from a comparison of recorded reflected time-domain signals, with and without the void, a simple model for the structure of the composite is proposed that describes the time-domain signals reasonably well.

  20. Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes

    NASA Astrophysics Data System (ADS)

    Kanick, Stephen Chad; van der Leest, Cor; Aerts, Joachim G. J. V.; Hoogsteden, Henk C.; Kaščáková, Slávka; Sterenborg, Henricus J. C. M.; Amelink, Arjen

    2010-01-01

    We describe the incorporation of a single-fiber reflectance spectroscopy probe into the endoscopic ultrasound fine-needle aspiration (EUS-FNA) procedure utilized for lung cancer staging. A mathematical model is developed to extract information about the physiological and morphological properties of lymph tissue from single-fiber reflectance spectra, e.g., microvascular saturation, blood volume fraction, bilirubin concentration, average vessel diameter, and Mie slope. Model analysis of data from a clinical pilot study shows that the single-fiber reflectance measurement is capable of detecting differences in the physiology between normal and metastatic lymph nodes. Moreover, the clinical data show that probe manipulation within the lymph node can perturb the in vivo environment, a concern that must be carefully considered when developing a sampling strategy. The data show the feasibility of this novel technique; however, the potential clinical utility has yet to be determined.

  1. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    PubMed

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-01-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  2. Study on mechanism of selective chemical vapor deposition of tungsten using in situ infrared spectroscopy and Auger electron spectroscopy

    SciTech Connect

    Kobayashi, N.; Goto, H. ); Suzuki, M. )

    1991-01-15

    Selective chemical vapor deposition (CVD) of tungsten (W) using tungsten hexafluoride (WF{sub 6}) and monosilane (SiH{sub 4}) is investigated by {ital in} {ital situ} infrared spectroscopy and Auger electron spectroscopy. The infrared spectra show that trifluorosilane (SiHF{sub 3}) is the main by-product species, and that silicon-tetrafluoride (SiF{sub 4}) is less than 20%--25% of SiHF{sub 3} in partial pressure. The main chemical reaction involved in selective W CVD can be expressed as WF{sub 6}+2SiH{sub 4}{r arrow}W+2SiHF{sub 3}+3H{sub 2}. Based on our experimental results, a new mechanism of selective W CVD, which notes hydrogen dissociation having a central role in this process, is proposed. It disproves the widely accepted model, which is based on the assumption that SiF{sub 4} is the major reaction product.

  3. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  4. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  5. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  6. Selective colors reflection from stratified aragonite calcium carbonate plates of mollusk shells.

    PubMed

    Lertvachirapaiboon, Chutiparn; Parnklang, Tewarak; Pienpinijtham, Prompong; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2015-08-01

    An interaction between the incident light and the structural architecture within the shell of Asian green mussel (Perna viridis) induces observable pearlescent colors. In this paper, we investigate the influence of the structural architecture on the expressed colors. After a removal of the organic binder, small flakes from crushed shells show vivid rainbow reflection under an optical microscope. An individual flake expresses vivid color under a bright-field illumination while become transparent under a dark-field illumination. The expressed colors of the aragonite flakes are directly associated with its structural architecture. The flakes with aragonite thickness of 256, 310, and 353 nm, respectively, appear blue, green, and red under an optical microscope. The spectral simulation corroborates the experimentally observed optical effects as the flakes with thicker aragonite layers selectively reflected color with longer wavelengths. Flakes with multiple aragonite thicknesses expressed multi-color as the upper aragonite layers allow reflected colors from the lower layers to be observed.

  7. Sulfate adsorption at the buried hematite/solution interface investigated using total internal reflection (TIR)-Raman spectroscopy.

    PubMed

    Jubb, Aaron M; Verreault, Dominique; Posner, Ralf; Criscenti, Louise J; Katz, Lynn E; Allen, Heather C

    2013-06-15

    Sulfate adsorption at buried mineral/solution interfaces is of great interest in geochemistry and atmospheric aerosol chemistry due to the sulfate anion's environmental ubiquity and the wide role of physical and chemical phenomena that it impacts. Here we present the first application of total internal reflection-Raman (TIR-Raman) spectroscopy, a surface sensitive spectroscopy, to probe sulfate ion behavior at the buried hematite/solution interface. Hematite is the most thermodynamically stable iron oxide polymorph and as such is widely found in nature. Our results demonstrate the feasibility of a TIR-Raman approach to study simple, inorganic anion adsorption at buried interfaces. Moreover, our data suggest that inner-sphere sulfate adsorption proceeds in a bidentate fashion at the hematite surface. These results help clarify long-standing questions as to whether sulfate forms inner-sphere adsorption complexes at hematite surfaces in a mono- or bidentate fashion based on attenuated total reflection-infrared (ATR-IR) observations. Our results are discussed with perspective to this debate and the applicability of TIR-Raman spectroscopy to address ambiguities of ion adsorption to mineral surfaces.

  8. Experimental study on synergistic effects of reflectance and transmittance for near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Liu, Jiajia; Ma, Congcong; Li, Lin; Lu, Junsheng; Xu, Kexin

    2016-03-01

    Usually, diffused reflectance or diffused transmittance has been collected respectively when performing the near-infrared spectroscopic measurements. However, glucose-relative spectral signal is quite weak due to the noises from the measuring system and the environment. Previous Monte-Carlo simulation results from our group showed that the spectral magnitude of both diffused reflectance and diffused transmittance can reach the same order. In this talk, it is our aim to further investigate the synergistic effect of diffused reflectance and diffused transmittance for Near Infrared spectral measurements. The diffused reflectance spectra and diffused transmittance spectra of human's earlobe have been obtained simultaneously by home-made optical probes within the wavelength of 1100-1400nm. Two processing methods---Superposition Method and Division Method are introduced to demonstrate the synergistic effect of reflectance and transmittance. Both of the processing methods are performed on diffused reflectance and diffused transmittance in accordance with corresponding wavelengths. The results show that the combination of diffused reflectance and transmittance can effectively enhances the SNR by reducing the interference caused by individual differences and measuring environmental factors. Moreover, comparatively, the Division Method has a more distinguished effect.

  9. Assessing the use of reflectance spectroscopy in determining CsCl stress in the model species Arabidopsis thaliana

    DOE PAGES

    Martinez, N. E.; Sharp, J. L.; Kuhne, W. W.; ...

    2015-11-23

    Here, reflectance spectroscopy is a rapid and non-destructive analytical technique that may be used for assessing plant stress, and has potential applications for use in remediation. Changes in reflectance such as that due to metal stress may occur before damage is visible, and existing studies have shown that metal stress does cause changes in plant reflectance. To further investigate the potential use of reflectance spectroscopy as a method for assessing metal stress in plants, an exploratory study was conducted in which Arabidopsis thaliana plants were treated twice weekly in a laboratory setting with varying levels (0, 0.5, or 5 mMmore » (millimolar)) of caesium chloride (CsCl) solution, and reflectance spectra were collected every week for three weeks using an Analytical Spectral Devices FieldSpec Pro spectroradiometer with both a contact probe (CP) and a field of view (FOV) probe at 36.8 and 66.7 cm, respectively, above the plant. Plants were harvested each week after spectra collection for determination of relative water content and chlorophyll content. A visual assessment of the plants was also conducted using point observations on a uniform grid of 81 points. A mixed-effects model analysis was conducted for each vegetation index (VI) considered to determine the effects of length of treatment, treatment level, view with which spectra were acquired, and the interactions of these terms. Two-way analyses of variance (ANOVAs) were performed on the aforementioned endpoints (e.g. chlorophyll content) to determine the significance of the effects of treatment level and length of treatment. Multiple linear regression (MLR) was used to develop a predictive model for each endpoint, considering VI acquired at each view (CP, high FOV, and low FOV). Of the 14 VI considered, 8 were included in the MLR models. Contact probe readings and FOV readings differed significantly, but FOV measurements were generally consistent at each height.« less

  10. Optimal source to detector separation for extracting sub-dermal chromophores in fiber optic diffuse reflectance spectroscopy: a simulation study

    NASA Astrophysics Data System (ADS)

    Sujatha, N.; Nivetha, K. Bala; Singhal, Akshay

    2014-05-01

    Localization and determination of blood region parameters in skin tissue can serve as a valuable supplement to standard non invasive techniques, especially in accessing the degree of depth of burns on skin and for the classification of vascular malformations. Quantitative optical examination of skin local blood region requires the use of depth sensitive techniques and preferential probing for assessment of data from specific layers of skin tissue. This work incorporates the depth sensitivity of diffuse reflectance spectroscopy and optimal source to detector fiber separation for maximum reflectance collection efficiency from local blood region in skin. Monte Carlo simulation for diffuse reflectance was performed on a multi layered skin tissue model consisting of epidermis, perfused dermis and localized blood region. It was found that the slope of the spatially resolved reflectance curve plotted with respect to the source to detector separation distance in semi log scale varies with the depth of the local blood region at specific wavelengths corresponding to the absorption wavelengths of hemoglobin. From the depth information obtained from the spatially resolved reflectance data, the optimum source to detector separation (SDS) is determined for maximum collection efficiency from the chromophore layer. The results obtained from simulation suggest the design of a linearly variable source to detector separation probe for preferential analysis of the depth of a specific tissue layer and subsequent determination of optimal source to detector separation for extracting the layer information.

  11. Fiber-bundle microendoscopy with sub-diffuse reflectance spectroscopy and intensity mapping for multimodal optical biopsy of stratified epithelium.

    PubMed

    Greening, Gage J; James, Haley M; Powless, Amy J; Hutcheson, Joshua A; Dierks, Mary K; Rajaram, Narasimhan; Muldoon, Timothy J

    2015-12-01

    Early detection of structural or functional changes in dysplastic epithelia may be crucial for improving long-term patient care. Recent work has explored myriad non-invasive or minimally invasive "optical biopsy" techniques for diagnosing early dysplasia, such as high-resolution microendoscopy, a method to resolve sub-cellular features of apical epithelia, as well as broadband sub-diffuse reflectance spectroscopy, a method that evaluates bulk health of a small volume of tissue. We present a multimodal fiber-based microendoscopy technique that combines high-resolution microendoscopy, broadband (450-750 nm) sub-diffuse reflectance spectroscopy (sDRS) at two discrete source-detector separations (374 and 730 μm), and sub-diffuse reflectance intensity mapping (sDRIM) using a 635 nm laser. Spatial resolution, magnification, field-of-view, and sampling frequency were determined. Additionally, the ability of the sDRS modality to extract optical properties over a range of depths is reported. Following this, proof-of-concept experiments were performed on tissue-simulating phantoms made with poly(dimethysiloxane) as a substrate material with cultured MDA-MB-468 cells. Then, all modalities were demonstrated on a human melanocytic nevus from a healthy volunteer and on resected colonic tissue from a murine model. Qualitative in vivo image data is correlated with reduced scattering and absorption coefficients.

  12. Estimation of regional hemoglobin concentration in biological tissues using diffuse reflectance spectroscopy with a novel spectral interpretation algorithm.

    PubMed

    Chen, P; Fernald, B; Lin, W

    2011-07-07

    Both in medical research and clinical settings, regional hemoglobin concentrations ([Hb]) in the microcirculation of biological tissues are highly sought. Diffuse reflectance spectroscopy has been proven to be a favorable method by which to detect regional [Hb]. This paper introduces a new algorithm to retrieve [Hb] information from diffuse reflectance spectra. The proposed algorithm utilizes the natural logarithmic operation and the differential wavelet transform to effectively quench the scattering effects, and then employs the concept of isosbestic wavelength in the transformed spectra to reduce the effects of hemoglobin oxygenation. As a result, the intensity at the defined isosbestic wavelength of the transformed spectra is a good indicator of [Hb] estimation. The algorithm was derived and validated using theoretical spectra produced by Monte Carlo simulation of photon migration. Its accuracy was further evaluated using liquid tissue phantoms, and its clinical utility with an in vivo clinical study of brain tumors. The results demonstrate the applicability of the algorithm for real-time [Hb] estimations from diffuse reflectance spectra, acquired by means of a fiber-optic spectroscopy system.

  13. Fiber-bundle microendoscopy with sub-diffuse reflectance spectroscopy and intensity mapping for multimodal optical biopsy of stratified epithelium

    PubMed Central

    Greening, Gage J.; James, Haley M.; Powless, Amy J.; Hutcheson, Joshua A.; Dierks, Mary K.; Rajaram, Narasimhan; Muldoon, Timothy J.

    2015-01-01

    Early detection of structural or functional changes in dysplastic epithelia may be crucial for improving long-term patient care. Recent work has explored myriad non-invasive or minimally invasive “optical biopsy” techniques for diagnosing early dysplasia, such as high-resolution microendoscopy, a method to resolve sub-cellular features of apical epithelia, as well as broadband sub-diffuse reflectance spectroscopy, a method that evaluates bulk health of a small volume of tissue. We present a multimodal fiber-based microendoscopy technique that combines high-resolution microendoscopy, broadband (450-750 nm) sub-diffuse reflectance spectroscopy (sDRS) at two discrete source-detector separations (374 and 730 μm), and sub-diffuse reflectance intensity mapping (sDRIM) using a 635 nm laser. Spatial resolution, magnification, field-of-view, and sampling frequency were determined. Additionally, the ability of the sDRS modality to extract optical properties over a range of depths is reported. Following this, proof-of-concept experiments were performed on tissue-simulating phantoms made with poly(dimethysiloxane) as a substrate material with cultured MDA-MB-468 cells. Then, all modalities were demonstrated on a human melanocytic nevus from a healthy volunteer and on resected colonic tissue from a murine model. Qualitative in vivo image data is correlated with reduced scattering and absorption coefficients. PMID:26713207

  14. Optical diffuse reflectance accessory for measurements of skin tissue by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Marbach, R.; Heise, H. M.

    1995-02-01

    An optimized accessory for measuring the diffuse reflectance spectra of human skin tissue in the near-infrared spectral range is presented. The device includes an on-axis ellipsoidal collecting mirror with efficient illumination optics for small sampling areas of bulky body specimens. The optical design is supported by the results of a Monte Carlo simulation study of the reflectance characteristics of skin tissue. Because the results evolved from efforts to measure blood glucose noninvasively, the main emphasis is placed on the long-wavelength near-infrared range where sufficient penetration depth for radiation into tissue is still available. The accessory is applied for in vivo diffuse reflectance measurements.

  15. Optical diffuse reflectance accessory for measurements of skin tissue by near-infrared spectroscopy.

    PubMed

    Marbach, R; Heise, H M

    1995-02-01

    An optimized accessory for measuring the diffuse reflectance spectra of human skin tissue in the near-infrared spectral range is presented. The device includes an on-axis ellipsoidal collecting mirror with efficient illumination optics for small sampling areas of bulky body specimens. The optical design is supported by the results of a Monte Carlo simulation study of the reflectance characteristics of skin tissue. Because the results evolved from efforts to measure blood glucose noninvasively, the main emphasis is placed on the long-wavelength near-infrared range where sufficient penetration depth for radiation into tissue is still available. The accessory is applied for in vivo diffuse reflectance measurements.

  16. Visible and near-infrared reflectance spectroscopy of planetary analog materials. Experimental facility at Laboratoire de Planetologie de Grenoble.

    NASA Astrophysics Data System (ADS)

    Pommerol, A.; Brissaud, O.; Schmitt, B.; Quirico, E.; Doute, S.

    2007-08-01

    We have developed an original experimental facility designed to measure the bidirectional reflectance spectra of planetary analog materials. These measurements are helpful to interpret the observations of the spectrometers on board space probes in orbit around various Solar System bodies. The central part of the facility is the LPG spectrogonio- radiometer (Brissaud et al., 2004). This instrument provides measurements of samples BRDF (Bidirectional Reflectance Distribution Function) with high photometric and spectrometric accuracy in the spectral range of visible and near-infrared (0.3 - 4.8 microns). Measurements can be made at any value of incidence and emergence angle up to 80°. Azimuth angle is allowed to vary between 0 and 180°. The instrument was recently installed in a cold room allowing ambient temperatures as low as -20°C. This makes possible the measurements on different kinds of water ice samples (slab ice, frost, snow...) and mixtures of minerals and water ice with unprecedented accuracy. We also have designed and built a simulation chamber to measure spectra of samples (water ice and/or minerals) under an atmosphere with perfectly controlled temperature, pressure and composition. The main objective of this last improvement is the study of water exchange between planetary regolith analogs and atmosphere (adsorption/ desorption, condensation/sublimation). Experimental results will mainly apply to Martian water cycle and hydrated mineralogy. This simulation chamber also provides an efficient way to obtain bidirectional reflectance spectra of dry materials (removal of adsorbed water) with implications for planetary bodies without atmospheric or surface water (Titan, asteroids...). The reflectance spectroscopy facility is part of a large panel of instruments and techniques available at Laboratoire de Planetologie de Grenoble that provide complementary measurements on the same samples: infrared transmission spectroscopy of thin ice films, thick liquid and

  17. Frequency-domain method based on the singular value decomposition for frequency-selective NMR spectroscopy.

    PubMed

    Stoica, Petre; Sandgren, Niclas; Selén, Yngve; Vanhamme, Leentje; Van Huffel, Sabine

    2003-11-01

    In several applications of NMR spectroscopy the user is interested only in the components lying in a small frequency band of the spectrum. A frequency selective analysis deals precisely with this kind of NMR spectroscopy: parameter estimation of only those spectroscopic components that lie in a preselected frequency band of the NMR data spectrum, with as little interference as possible from the out-of-band components and in a computationally efficient way. In this paper we introduce a frequency-domain singular value decomposition (SVD)-based method for frequency selective spectroscopy that is computationally simple, statistically accurate, and which has a firm theoretical basis. To illustrate the good performance of the proposed method we present a number of numerical examples for both simulated and in vitro NMR data.

  18. Reflectance spectroscopy - Quantitative analysis techniques for remote sensing applications. [in planetary surface geology

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Roush, T. L.

    1984-01-01

    The empirical methods and scattering theories that are important for solving remote sensing problems are among the methods for remotely sensed reflectance data analysis presently compared. In the case of the photon mean optical path length concept's implications for reflectance spectra modeling, it is shown that the mean optical path length in a particulate surface is in roughly inverse proportion to the square root of the absorption coefficient. Absorption bands, which are Gaussian in shape when plotted as true absorptance vs photon energy, are also Gaussians in apparent absorptance, although they have a smaller intensity. An apparent continuum in a reflectance spectrum is modeled as a mathematical function that is used to isolate a particular absorption feature for analysis, and it is noted that this continuum should be removed by dividing it into the reflectance spectrum.

  19. Point-contact Andreev reflection spectroscopy on Bi 2 Se 3 single crystals

    SciTech Connect

    Granstrom, C. R.; Fridman, I.; Lei, H. -C.; Petrovic, C.; Wei, J. Y. T.

    2016-04-27

    In order to study how Andreev reflection (AR) occurs between a superconductor and a three-dimensional topological insulator (TI), we use superconducting Nb tips to perform point-contact AR spectroscopy at 4.2 K on as-grown single crystals of Bi2Se3. Scanning tunneling spectroscopy and scanning tunneling microscopy are also used to characterize the superconducting tip and both the doping level and surface condition of the TI sample. Furthermore, the point-contact measurements show clear spectral signatures of AR, as well as a depression of zero-bias conductance with decreasing junction impedance. The latter observation can be attributed to interfacial Rashba spin-orbit coupling, and the presence of bulk bands at the Fermi level in our samples suggests that bulk states of Bi2Se3 are involved in the observed AR.

  20. Reflectance Infrared Spectroscopy on Operating Surface Acoustic Wave Chemical Sensors During Exposure to Gas-Phase Analytes

    SciTech Connect

    Hierlemann, A.; Hill, M.; Ricco, A.J.; Staton, A.W.; Thomas, R.C.

    1999-01-11

    We have developed instrumentation to enable the combination of surface acoustic wave (SAW) sensor measurements with direct, in-situ molecular spectroscopic measurements to understand the response of the SAW sensors with respect to the interfacial chemistry of surface-confined sensing films interacting with gas-phase analytes. Specifically, the instrumentation and software was developed to perform in-situ Fourier-transform infrared external-reflectance spectroscopy (FTIR-ERS) on operating SAW devices during dosing of their chemically modified surfaces with analytes. By probing the surface with IR spectroscopy during gas exposure, it is possible to understand in unprecedented detail the interaction processes between the sorptive SAW coatings and the gaseous analyte molecules. In this report, we provide details of this measurement system, and also demonstrate the utility of these combined measurements by characterizing the SAW and FTIR-ERS responses of organic thin-film sensor coatings interacting with gas-phase analytes.

  1. Determination of main components and anaerobic rumen digestibility of aquatic plants in vitro using near-infrared-reflectance spectroscopy.

    PubMed

    Yue, Zheng-Bo; Zhang, Meng-Lin; Sheng, Guo-Ping; Liu, Rong-Hua; Long, Ying; Xiang, Bing-Ren; Wang, Jin; Yu, Han-Qing

    2010-04-01

    A near-infrared-reflectance (NIR) spectroscopy-based method is established to determine the main components of aquatic plants as well as their anaerobic rumen biodegradability. The developed method is more rapid and accurate compared to the conventional chemical analysis and biodegradability tests. Moisture, volatile solid, Klason lignin and ash in entire aquatic plants could be accurately predicted using this method with coefficient of determination (r(2)) values of 0.952, 0.916, 0.939 and 0.950, respectively. In addition, the anaerobic rumen biodegradability of aquatic plants, represented as biogas and methane yields, could also be predicted well. The algorithm of continuous wavelet transform for the NIR spectral data pretreatment is able to greatly enhance the robustness and predictive ability of the NIR spectral analysis. These results indicate that NIR spectroscopy could be used to predict the main components of aquatic plants and their anaerobic biodegradability.

  2. Monitoring preparation and phase transitions of carburized W(1 1 0) by reflectance difference spectroscopy

    PubMed Central

    Bachmann, Magdalena; Memmel, Norbert; Bertel, Erminald; Denk, Mariella; Hohage, Michael; Zeppenfeld, Peter

    2012-01-01

    Reflectance difference spectroscopy (RDS) is applied to follow in situ the preparation of clean and carburized W(1 1 0) surfaces and to study the temperature-induced transition between the R(15 × 3) and R(15 × 12) carbon/tungsten surface phases. RDS data for this transition are compared to data obtained from Auger-electron spectroscopy and low-energy electron diffraction. All techniques reveal that this transition, occurring around 1870 K, is reversible with a small hysteresis, indicating a first-order-like behaviour. The present results also prove a high surface sensitivity of RDS, which is attributed to the excitation of electronic p-like surface resonances of W(1 1 0). PMID:23482867

  3. Optical Reflection Spectroscopy of Thick Corrosion Layers on 304 Stainless Steel

    SciTech Connect

    R Castelli; P Persans; W Strohmayer; V Parkinson

    2006-03-23

    Corrosion resistant structural materials of both iron and nickel based alloys are used in the electric power industry for the construction of the coolant loops of both conventional and nuclear power generating stations. These materials, in the presence of high temperature (e.g. 287 C), high pH (e.g. 10.0 {at} 20 C) water with dissolved hydrogen will oxidize and form corrosion films that are double metal oxides (or spinels) of the form AB{sub 2}O{sub 4}. This work describes optical reflectivity techniques that have been developed to study the growth of these films in situ. The optical technique uses a dual-beam specular reflection spectrometer to measure the spectrum of reflected light in small angle (i.e. < 15{sup o}) scatter. The reflection spectra are then calibrated using a set of corrosion coupons with corrosion films that are well known. Results are compared with models based on multilayer reflection and Mie scattering from a particle size distribution. Surface roughness is found to be the dominant cause of reduced reflection as the films grow.

  4. Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy

    PubMed Central

    Stevens, Antoine; Nocita, Marco; Tóth, Gergely; Montanarella, Luca; van Wesemael, Bas

    2013-01-01

    Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse reflectance spectroscopy is an alternative method to provide cheap and high-density soil data. However, there are still some uncertainties on its capacity to produce reliable predictions for areas characterized by large soil diversity. Using a large-scale EU soil survey of about 20,000 samples and covering 23 countries, we assessed the performance of reflectance spectroscopy for the prediction of soil organic carbon content. The best calibrations achieved a root mean square error ranging from 4 to 15 g C kg−1 for mineral soils and a root mean square error of 50 g C kg−1 for organic soil materials. Model errors are shown to be related to the levels of soil organic carbon and variations in other soil properties such as sand and clay content. Although errors are ∼5 times larger than the reproducibility error of the laboratory method, reflectance spectroscopy provides unbiased predictions of the soil organic carbon content. Such estimates could be used for assessing the mean soil organic carbon content of large geographical entities or countries. This study is a first step towards providing uniform continental-scale spectroscopic estimations of soil organic carbon, meeting an increasing demand for information on the state of the soil that can be used in biogeochemical models and the monitoring of soil degradation. PMID:23840459

  5. Application of NIR reflectance spectroscopy on rapid determination of moisture content of wood pellets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NIR spectroscopy was used to measure the moisture concentration of wood pellets. Pellets were conditioned to various moisture levels between 0.63and 14.16percent (wet basis) and the moisture concentration was verified using a standard oven method. Samples from the various moisture levels were separa...

  6. An investigation of the coordination number of Ni 2+ in nickel bearing phyllosilicates using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tejedor-Tejedor, M. Isabel; Anderson, Marc A.; Herbillon, Adrien J.

    1983-11-01

    Visible region reflectance spectroscopy and nonlinear regression analysis of spectral data have been used to present qualitative and semiquantitative evidence that some tetrahedral Ni 2+ is present in all six phyllosilicates examined. Highly crystalline willemseite and chrysotile, poorly crystalline nepouite as well as two natural minerals, and a mixture of poorly crystalline nepouite and nickel hydroxide all showed the presence of tetrahedral Ni 2+ as well as octahedral nickel. Chemical analysis of willemseite confirmed quantitatively the presence of excess Ni lending further support for the presence of tetrahedral nickel.

  7. Layer-Resolved Evolution of Organic Thin Films Monitored by Photoelectron Emission Microscopy and Optical Reflectance Spectroscopy

    PubMed Central

    2015-01-01

    Photoelectron emission microscopy (PEEM) and differential (optical) reflectance spectroscopy (DRS) have proven independently to be versatile analytical tools for monitoring the evolution of organic thin films during growth. In this paper, we present the first experiment in which both techniques have been applied simultaneously and synchronously. We illustrate how the combined PEEM and DRS results can be correlated to obtain an extended perspective on the electronic and optical properties of a molecular film dependent on the film thickness and morphology. As an example, we studied the deposition of the organic molecule α-sexithiophene on Ag(111) in the thickness range from submonolayers up to several monolayers. PMID:26523159

  8. Critical comparison of diffuse reflectance spectroscopy and colorimetry as dermatological diagnostic tools for acanthosis nigricans: a chemometric approach.

    PubMed

    Devpura, Suneetha; Pattamadilok, Bensachee; Syed, Zain U; Vemulapalli, Pranita; Henderson, Marsha; Rehse, Steven J; Hamzavi, Iltefat; Lim, Henry W; Naik, Ratna

    2011-06-01

    Quantification of skin changes due to acanthosis nigricans (AN), a disorder common among insulin-resistant diabetic and obese individuals, was investigated using two optical techniques: diffuse reflectance spectroscopy (DRS) and colorimetry. Measurements were obtained from AN lesions on the neck and two control sites of eight AN patients. A principal component/discriminant function analysis successfully differentiated between AN lesion and normal skin with 87.7% sensitivity and 94.8% specificity in DRS measurements and 97.2% sensitivity and 96.4% specificity in colorimetry measurements.

  9. Reflection-asymmetric structures in 225Ra from γ-ray spectroscopy study of 229Th α decay

    NASA Astrophysics Data System (ADS)

    Gasparro, J.; Ardisson, G.; Barci, V.; Sheline, R. K.

    2000-12-01

    The level structure of 225Ra, produced in α decay of 229Th, was studied by γ-ray spectroscopy. The sources were continuously purified from daughters with ion-exchange chromatographic separation methods. Energies and intensities of 174 γ rays were accurately measured with HPGe detectors. About 100 γ rays were reported for the first time, especially in the 300-700 keV energy range. A 225Ra level scheme was proposed, accounting for about 200 transitions among 45 excited states. The level structure was interpreted in the framework of reflection-asymmetric structures with parity doublet bands. The model was shown to be in satisfactory agreement with experimental data.

  10. Resin characterization in cured graphite fiber reinforced composites using diffuse reflectance-FTIR. [Fourier transform infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Stein, B. A.; Chang, A. C.

    1983-01-01

    The feasibility of using diffuse reflectance in combination with Fourier transform infrared spectroscopy to obtain information on cured graphite fiber reinforced polymeric matrix resin composites was investigated. Several graphite/epoxy, polysulfone, and polyimide composites exposed to thermal or radiation environments were examined. An experimental polyimide-sulfone adhesive tape was also studied during processing. In each case, significant changes in resin molecular structure was observed due to environmental exposure. These changes in molecular structure were correlated with previously observed changes in material properties providing new insights into material behavior.

  11. Classification of pumpkin seed oils according to their species and genetic variety by attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed

    Saucedo-Hernández, Yanelis; Lerma-García, María Jesús; Herrero-Martínez, José Manuel; Ramis-Ramos, Guillermo; Jorge-Rodríguez, Elisa; Simí-Alfonso, Ernesto F

    2011-04-27

    Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), followed by multivariate treatment of the spectral data, was used to classify seed oils of the genus Cucurbita (pumpkins) according to their species as C. maxima, C. pepo, and C. moschata. Also, C. moschata seed oils were classified according to their genetic variety as RG, Inivit C-88, and Inivit C-2000. Up to 23 wavelength regions were selected on the spectra, each region corresponding to a peak or shoulder. The normalized absorbance peak areas within these regions were used as predictors. Using linear discriminant analysis (LDA), an excellent resolution among all categories concerning both Cucurbita species and C. moschata varieties was achieved. The proposed method was straightforward and quick and can be easily implemented. Quality control of pumpkin seed oils is important because Cucurbita species and genetic variety are both related to the pharmaceutical properties of the oils.

  12. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    SciTech Connect

    Watanabe, Yoshihide Nishimura, Yusaku F.; Suzuki, Ryo; Beniya, Atsushi; Isomura, Noritake; Uehara, Hiromitsu; Asakura, Kiyotaka; Takakusagi, Satoru; Nimura, Tomoyuki

    2016-03-15

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstrated by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.

  13. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model.

    PubMed

    Guilbert, Marie; Roig, Blandine; Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-02-23

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models.

  14. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model

    PubMed Central

    Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D.; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-01-01

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models. PMID:26885896

  15. Mössbauer spectroscopy, magnetic characteristics, and reflection loss analysis of nickel-strontium substituted cobalt ferrite nanoparticles

    SciTech Connect

    Ghasemi, Ali; Paesano, Andrea; Cerqueira Machado, Carla Fabiana; Shirsath, Sagar E.; Liu, Xiaoxi; Morisako, Akimitsu

    2014-05-07

    In current research work, Co{sub 1-x}Ni{sub x/2}Sr{sub x/2}Fe{sub 2}O{sub 4} (x = 0–1 in a step of 0.2) ferrite nanoparticles were synthesized by a sol-gel method. According to the evolution in the subspectral areas obtained from Mössbauer spectroscopy, it was found that the relaxing iron belongs mostly to the site B, since the Mössbauer fraction of site A does not vary appreciably. With an increase in Ni-Sr substitution contents in cobalt ferrite, the coercivity and saturation of magnetization decrease. Variation of reflection loss versus frequency in microwave X-band demonstrates that the reflection peak shifts to lower frequency by adding substituted cations and the synthesized nanoparticles can be considered for application in electromagnetic wave absorber technology.

  16. Suppression of inter-device variation for component analysis of turbid liquids based on spatially resolved diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Shengzhao; Zhang, Linna; Li, Gang; Lin, Ling

    2017-03-01

    Diffuse reflectance spectroscopy is a useful tool for obtaining quantitative information in turbid media, which is always achieved by developing a multivariate regression model that links the spectral signal to the component concentrations. However, in most cases, variations between the actual measurement and the modeling process of the device may cause errors in predicting a component's concentration. In this paper, we propose a data-processing method to resist these variations. The method involves performing a curve fitting of the multiple-position diffuse reflectance spectral data. One of the parameters in the fitting function was found to be insensitive to inter-device variations and sensitive to the component concentrations. The parameter of the fitted equation was used in the modeling instead of directly using the spectral signal. Experiments demonstrate the feasibility of the proposed method and its resistance to errors induced by inter-device variations.

  17. Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption.

    PubMed

    Bydlon, Torre M; Nachabé, Rami; Ramanujam, Nimmi; Sterenborg, Henricus J C M; Hendriks, Benno H W

    2015-01-01

    Diffuse reflectance spectroscopy is a rapidly growing technology in the biophotonics community where it has shown promise in its ability to classify different tissues. In the steady-state domain a wide spectrum of clinical applications is supported with this technology ranging from diagnostic to guided interventions. Diffuse reflectance spectra provide a wealth of information about tissue composition; however, extracting biologically relevant information from the spectra in terms of chromophores may be more useful to gain acceptance into the clinical community. The chromophores that absorb light in the visible and near infrared wavelengths can provide information about tissue composition. The key characteristics of these chromophores and their relevance in different organs and clinical applications is the focus of this review, along with translating their use to the clinic.

  18. High-energy angle resolved reflection spectroscopy on three-dimensional photonic crystals of self-organized polymeric nanospheres.

    PubMed

    Schutzmann, S; Venditti, I; Prosposito, P; Casalboni, M; Russo, M V

    2008-01-21

    We report on the optical characterization of three-dimensional opal-like photonic crystals made by self-organized nanospheres of poly[styrene-(co-2-hydroxyethyl methacrylate)] having a face centred cubic (fcc) structure oriented along the [111] direction. A detailed optical characterization of the samples is presented using angle resolved reflection spectroscopy in specular geometry. The investigated energies are between a/lambda=0.5 and a/lambda=1.5 (where a is the lattice parameter and lambda is the light wavelength), a region in which both first and second-order Bragg diffraction are expected. Some interesting features as branching of the Bragg peak dispersion and high energy reflection peaks are revealed. We compare the experimental data with theoretical calculations using both Bragg diffraction and band structure approach. A comparison with recent results reported in the literature is also presented.

  19. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    PubMed

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-03-30

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion.

  20. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy

    PubMed Central

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion. PMID:27025266

  1. Comparative study of Fourier transform infrared spectroscopy in transmission, attenuated total reflection, and total reflection modes for the analysis of plastics in the cultural heritage field.

    PubMed

    Picollo, Marcello; Bartolozzi, Giovanni; Cucci, Costanza; Galeotti, Monica; Marchiafava, Veronica; Pizzo, Benedetto

    2014-01-01

    This study was completed within the framework of two research projects dealing with the conservation of contemporary artworks. The first is the Seventh Framework Project (FP7) of the European Union, Preservation of Plastic ARTefacts in Museum Collections (POPART), spanning years 2008-2012, and the second is the Italian project funded by the Tuscan Region, Preventive Conservation of Contemporary Art (Conservazione Preventiva dell'Arte Contemporanea (COPAC)), spanning 2011-2013. Both of these programs pointed out the great importance of having noninvasive and portable analytical techniques that can be used to investigate and characterize modern and contemporary artworks, especially those consisting of synthetic polymers. Indeed, despite the extensive presence of plastics in museum collections, there is still a lack of analytical tools for identifying, characterizing, and setting up adequate conservation strategies for these materials. In this work, the potentials of in situ and noninvasive Fourier transform infrared (FT-IR) spectroscopy, implemented by means of portable devices that operate in reflection mode, are investigated with a view to applying the results in large-scale surveys of plastic objects in museums. To this end, an essential prerequisite are the reliability of spectral data acquired in situ and the availability of spectral databases acquired from reference materials. A collection of polymeric samples, which are available commercially as ResinKit, was analyzed to create a reference spectral archive. All the spectra were recorded using three FT-IR configurations: transmission (trans), attenuated total reflection (ATR), and total reflection (TR). A comparative evaluation of the data acquired using the three instrumental configurations is presented, together with an evaluation of the similarity percentages and a discussion of the critical cases.

  2. Quantitative diffuse reflectance infrared spectroscopy of cotton fabrics treated with a cyclodextrin derivative finishing auxiliary

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Kuckuk, R.; Damm, U.; Bereck, A.; Riegel, D.

    2005-06-01

    For the textile industry, infrared spectroscopic methods that are based on diffuse reflectance measurements can be used for the non-destructive analysis of polymer composition of the fabric materials including their auxiliaries. Our diffuse reflectance accessory allows the contact-free measurement of sample spots located on large and bulky samples with a sufficient spectral signal-to-noise ratio. In this study, the results of a quantitative analysis of a reactive auxiliary (cyclodextrin derivative) applied on cotton fabrics up to 5% (by weight) are shown and limitations of the diffuse reflectance measurement technique discussed. Reference values had been provided by the laborious Kjeldahl method. Multivariate calibration based on partial least squares was employed using the specific bands of the cyclodextrin derivative within the spectral interval of 1900-1480 cm -1, providing prediction results with around 5% of relative standard prediction error, based on mean sample population concentrations.

  3. Integrated reflectivity measurements of hydrogen phthalate crystals for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Zastrau, U.; Förster, E.

    2014-09-01

    The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740±14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption is included. Within 4% experimental error margins, specimen that were exposed to ambient conditions over many years show identical reflectivity as specimen that were cleaved just before the measurement. No differences are observed between cleaving off a 10 μm surface layer and splitting the entire crystal bulk of 2 mm thickness. We conclude that at 1.7 keV photon energy the penetration depth of ~ 1 μm is large compared to a potentially deteriorated surface layer of a few 10 nm.

  4. Reflection and transmission mid-infrared spectroscopy for rapid determination of coal properties by multivariate analysis.

    PubMed

    Bona, M T; Andrés, J M

    2008-01-15

    In the present paper, the influence of different acquisition techniques (transmission, diffuse reflectance infrared Fourier transform and attenuated total reflectance) in the determination of nine coal properties related to combustion power plants has been studied. Raw coal samples of different origins were pooled for developing a correlation between the resultant spectra and the corresponding coal properties by multivariate analysis techniques. Thus, the existent collinearity in mid-infrared coal spectra led to the application of partial least squares regression (PLS), studying simultaneously the influence of different spectroscopic units as well as several spectral data mathematical pre-treatments. On the other hand, a principal component analysis (PCA) revealed a relationship between principal components and coal composition in both transmission and reflection techniques. Although the best accuracy and precision results were obtained for coal properties related to organic matter, the system was also able to differentiate coal samples attending to the presence of a specific mineral matter, kaolinite.

  5. Laser trapping and assembling of nanoparticles at solution surface studied by reflection micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Fa; Yuyama, Ken-ichi; Suigiyama, Teruki; Masuhara, Hiroshi

    2015-08-01

    We present the laser power dependent behavior of optical trapping assembling of 208-nm polystyrene (PS) nanoparticles at the solution surface layer. The assembling dynamics is examined by reflection microspectroscopy as well as transmission and backscattering imaging. The transmission imaging shows that the laser irradiation at the solution surface layer forms a nanoparticle assembly, whose diameter becomes large with the increase in the laser power. The backscattering image of the assembly gives structural color, meaning that nanoparticles are periodically arranged over the whole assembly region. In reflection microspectroscopy, one band appears at long wavelength and is gradually shifted to the short wavelength with the irradiation. After the blue shift, the reflection band is located at the shorter wavelength under the laser irradiation at the higher power. We discuss these spectral changes from the viewpoint of the inter-particle distance determined by the dynamic balance between attractive optical force and repulsive electrostatic force among nanoparticles.

  6. Reflectance spectroscopy of diogenite meteorite types from Antarctica and their relationship to asteroids

    NASA Technical Reports Server (NTRS)

    Mcfadden, L. A.; Gaffey, M. J.; Jackowski, T. L.; Reed, K. L.; Takeda, H.

    1982-01-01

    Measurements of the spectral reflectance (0.4-2.5 microns) of three diogenite meteorites found in Antarctica are examined. Comparisons are made with previous measurements of diogenites in order to correlate the mineralogy and petrography with the spectral characteristics that can also be measured on solar system objects of unknown composition. Even though the Antarctic diogenites have the same spectral characteristics as other diogenites, there are measurable differences between all diogenite spectra. Bands caused by spin-forbidden transitions of Fe(2+) ions in pyroxene, which are identified for the first time in reflectance spectra of powdered samples, are revealed in an analysis of the spectra into sums of Gaussian components. It is shown from these laboratory measurements that spectral reflectance measurements of asteroids and other solar system objects made with the visible CVF (circular variable filter) spectrometer used for laboratory measurements can provide useful information on their surface composition.

  7. Interfacial Restructuring of Ionic Liquids Determined by Sum-Frequency Generation Spectroscopy and X-ray Reflectivity

    SciTech Connect

    Jeon, Yoonnam; Sung, Jaeho; Bu, Wei; Vaknin, David; Ouchi, Yukio; Kim, Doseok

    2009-01-16

    Surface sum-frequency generation spectroscopy and X-ray reflectivity were used to study the surface of [BMIM][X] ionic liquids (BMIM = 1-butyl-3-methylimidazolium cation, X = BF{sub 4}{sup -}, PF{sub 6}{sup -}, and I{sup -}). Sum-frequency signal strength from the terminal methyl groups of the cation at the surface indicates that the topmost surface of these ionic liquids is occupied by polar-oriented hydrophobic butyl chains having approximately 1/3 of the in-plane density of fully packed alkyl chains as observed by the same method for the hexadecanol Langmuir monolayer. X-ray reflectivity data reveal a layer with density larger than that of bulk. However, the reflectivity is not sufficiently sensitive to the exact location of this layer either at the vacuum interface or sandwiched between the bulk and the low-density alkyl chain, as observed in the sum-frequency measurements. Analysis of the reflectivity data in conjunction with the sum-frequency spectra strongly suggests the molecules forming the topmost layer are on average polar-oriented with their (loosely packed) butyl chains toward the gas/liquid interface, while the (densely packed) imidazolium cores/anions are in contact with the bulk liquid.

  8. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy.

    PubMed

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (AR) against the concentration were linear in the range 50-500 μg mL(-1), with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL(-1). The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively.

  9. A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Aline Santana; Fernandes, Flávio Cesar Bedatty; Tognolli, João Olímpio; Pezza, Leonardo; Pezza, Helena Redigolo

    2011-09-01

    This article describes a simple, inexpensive, and environmentally friendly method for the monitoring of glyphosate using diffuse reflectance spectroscopy. The proposed method is based on reflectance measurements of the colored compound produced from the spot test reaction between glyphosate and p-dimethylaminocinnamaldehyde ( p-DAC) in acid medium, using a filter paper as solid support. Experimental designs were used to optimize the analytical conditions. All reflectance measurements were carried out at 495 nm. Under optimal conditions, the glyphosate calibration graphs obtained by plotting the optical density of the reflectance signal (A R) against the concentration were linear in the range 50-500 μg mL -1, with a correlation coefficient of 0.9987. The limit of detection (LOD) for glyphosate was 7.28 μg mL -1. The technique was successfully applied to the direct determination of glyphosate in commercial formulations, as well as in water samples (river water, pure water and mineral drinking water) after a previous clean-up or pre-concentration step. Recoveries were in the ranges 93.2-102.6% and 91.3-102.9% for the commercial formulations and water samples, respectively.

  10. Application of infrared reflection and Raman spectroscopy for quantitative determination of fat in potato chips

    NASA Astrophysics Data System (ADS)

    Mazurek, Sylwester; Szostak, Roman; Kita, Agnieszka

    2016-12-01

    Potato chips are important products in the snack industry. The most significant parameter monitored during their quality control process is fat content. The Soxhlet method, which is applied for this purpose, is time consuming and expensive. We demonstrate that both infrared and Raman spectroscopy can effectively replace the extraction method. Raman, mid-infrared (MIR) and near-infrared (NIR) spectra of the homogenised laboratory-prepared chips were recorded. On the basis of obtained spectra, partial least squares (PLS) calibration models were constructed. They were characterised by the values of relative standard errors of prediction (RSEP) in the 1.0-1.9% range for both calibration and validation data sets. Using the developed models, six commercial products were successfully quantified with recovery in the 98.5-102.3% range against the AOAC extraction method. The proposed method for fat quantification in potato chips based on Raman spectroscopy can be easily adopted for on-line product analysis.

  11. A transmit/reflect switchable frequency selective surface based on all dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Zhuo, Xu; Qu, Shaobo

    2015-12-01

    In this paper, we propose a novel transmit/reflect switchable frequency selective surface (FSS) in millimeter wave band based on the effective medium theory under quasi-static limit, which is designed with square-hole elements cut from continuum dielectric plates. The building elements of the surface are composed of all dielectric metamaterial rather than metal material. With proper structural design and parameters tuning, the resonance frequencies can be tuned appropriately. The frequency response of the surface can be switched from that of a reflecting structure to a transmitting one by rotating the surface 90°, which means under different incident polarizations. The reflective response can be realized due to the effect of electric and magnetic resonances. Theoretical analysis shows that the reflective response arises from impedance mismatching by electric and magnetic resonances. And the transmitting response is the left-handed passband, arises from the coupling of the electric and magnetic resonances. In addition, effective electromagnetic parameters and the dynamic induced field distributions are analyzed to explain the mechanism of the responses. The method can also be used to design switchable all-dielectric FSS with continuum structures in other frequencies.

  12. Determining the sign of a polar surface of lithium niobate crystal by UV reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Paranin, V. D.; Pantelei, E.

    2017-01-01

    We propose to reveal the + Z and- Z surfaces of a polar cut lithium niobate crystal by measuring its UV reflection spectrum. By the example of a congruent lithium niobate, it is shown that the intensities of light reflection from polar crystal surfaces of different signs in the region of 190—260 nm differ by up to several percent. The depth of short-wave radiation penetration into surface layers of the crystal in the spectral range of intrinsic absorption is estimated. It is shown that the proposed method can be used for determining the surface signs of polar crystal layers with thicknesses from several dozen to several hundred microns.

  13. ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey R.; Bell, J. F.; Bender, S.; Blaney, D.; Cloutis, E.; DeFlores, L.; Ehlmann, B.; Gasnault, O.; Gondet, B.; Kinch, K.; Lemmon, M.; Le Mouélic, S.; Maurice, S.; Rice, M.; Wiens, R. C.

    2015-03-01

    The spectrometers on the Mars Science Laboratory (MSL) ChemCam instrument were used in passive mode to record visible/near-infrared (400-840 nm) radiance from the martian surface. Using the onboard ChemCam calibration targets' housing as a reflectance standard, we developed methods to collect, calibrate, and reduce radiance observations to relative reflectance. Such measurements accurately reproduce the known reflectance spectra of other calibration targets on the rover, and represent the highest spatial resolution (0.65 mrad) and spectral sampling (<1 nm) visible/near-infrared reflectance spectra from a landed platform on Mars. Relative reflectance spectra of surface rocks and soils match those from orbital observations and multispectral data from the MSL Mastcam camera. Preliminary analyses of the band depths, spectral slopes, and reflectance ratios of the more than 2000 spectra taken during the first year of MSL operations demonstrate at least six spectral classes of materials distinguished by variations in ferrous and ferric components. Initial comparisons of ChemCam spectra to laboratory spectra of minerals and Mars analog materials demonstrate similarities with palagonitic soils and indications of orthopyroxene in some dark rocks. Magnesium-rich "raised ridges" tend to exhibit distinct near-infrared slopes. The ferric absorption downturn typically found for martian materials at <600 nm is greatly subdued in brushed rocks and drill tailings, consistent with their more ferrous nature. Calcium-sulfate veins exhibit the highest relative reflectances observed, but are still relatively red owing to the effects of residual dust. Such dust is overall less prominent on rocks sampled within the "blast zone" immediately surrounding the landing site. These samples were likely affected by the landing thrusters, which partially removed the ubiquitous dust coatings. Increased dust coatings on the calibration targets during the first year of the mission were documented by

  14. [Prediction of minced pork quality attributes using visible and near infrared reflectance spectroscopy].

    PubMed

    Fan, Yu-Xia; Liao, Yi-Tao; Cheng, Fang

    2011-10-01

    The objective of the present study was to estimate minced pork meat quality using visible and near infrared (Vis-NIR) spectroscopy. Two hundred twenty five carcasses samples from longissimus dorsi muscle were scanned over the Vis-NIR spectral range from 350 to 1 015 nm and analysed for intramuscular fat (IMF), protein and moisture according to the official methods. Wavelet transform was employed to eliminate the spectra noise. Partial least square regression (PLSR) and support vector machine (SVM) were used to develop Vis-NIR spectroscopy models for chemical composition detection. According to calibration statistics, the best model to predict intramuscular fat content was developed by SVM with the denoised spectra, the correlation coefficient was 0.889 for calibration and 0.888 for validation. For protein and moisture, the best model was achieved with the PLS method with the correlation coefficient of 0.869 and 0.881 for protein calibration and validation sets and 0.877 and 0.848 for moisture calibration and validation sets, respectively. And all the ratios of standard deviation of validation set to root mean square error of prediction (RPD) were not more than 3.0. Results indicated that it was possible to predict chemical composition in minced pork meat. As a fast predictor of meat quality using Vis-NIR spectroscopy, it is necessary to improve the precision and the robustness of the model for practice.

  15. Sensing of moisture content in in-shell peanuts by NIR (Near Infra Red) reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was found earlier that moisture content (MC) of intact kernels of grain and nuts could be determined by Near Infra Red (NIR) reflectance spectrometry. However, if the MC values can be determined while the nuts are in their shells, it would save lot of labor and money spent in shelling and cleanin...

  16. Online high-speed NIR diffuse-reflectance imaging spectroscopy in food quality monitoring

    NASA Astrophysics Data System (ADS)

    Driver, Richard D.; Didona, Kevin

    2009-05-01

    The use of hyperspectral technology in the NIR for food quality monitoring is discussed. An example of the use of hyperspectral diffuse reflectance scanning and post-processing with a chemometric model shows discrimination between four pharmaceutical samples comprising Aspirin, Acetaminophen, Vitamin C and Vitamin D.

  17. Combination of infrared thermography and reflectance spectroscopy for precise classification of hair follicle stage

    NASA Astrophysics Data System (ADS)

    Wang, Jianru; Guan, Yue; Liu, Caihua; Zhu, Dan

    2015-03-01

    Hair follicles enjoy continual cycle of anagen, catagen and telogen all life. They not only provide a unique opportunity to study the physiological mechanism of organ regeneration, but also benefit to guide the treatment of organ repair in regenerative medicine. Usually, the histological examination as a gold standard has been applied to determine the stage of hair follicle cycle, but noninvasive classification of hair cycle in vivo remains unsolved. In this study, the thermal infrared imager was applied to measure the temperature change of mouse dorsal skin with hair follicle cycle, and the change of diffuse reflectance was monitored by the optical fiber spectrometer. Histological examination was used to verify the hair follicle stages. The results indicated that the skin temperature increased at the beginning of anagen. After having stayed a high value for several days, the temperature began to decrease. At the same time, the skin diffuse reflectance decreased until the end of this period. Then the temperature increased gradually after slightly decreased when the hair follicle entered into catagen stage, and the diffuse reflectance increased at this time. In telogen, both the temperature and the diffuse reflectance went back to a steady state all the time. Sub-stages of hair follicle cycle could be distinguished based on the joint curves. This study provided a new method to noninvasively recognize the hair follicle stage, and should be valuable for the basic and therapeutic investigations on hair regeneration.

  18. Why Do Marbles Become Paler on Grinding? Reflectance, Spectroscopy, Color, and Particle Size

    ERIC Educational Resources Information Center

    Lagorio, Maria Gabriela

    2004-01-01

    A qualitative description of the color-change problem, which will assist in rationalizing the change in color of marbles after grinding them using a simple physical picture and the qualitative dependence of diffuse reflectance on particle size is presented. Different approaches are discussed but it is seen that the interpretation of nanoparticles…

  19. Preliminary evaluation of optical glucose sensing in red cell concentrations using near-infrared diffuse-reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W.; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya

    2012-01-01

    Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.

  20. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    SciTech Connect

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-25

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm{sup -1} to 68 cm{sup -1} to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100 Degree-Sign C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  1. Real time and non-destructive analysis of tablet coating thickness using acoustic microscopy and infrared diffuse reflectance spectroscopy.

    PubMed

    Bikiaris, D; Koutri, I; Alexiadis, D; Damtsios, A; Karagiannis, G

    2012-11-15

    Tablet coating thicknesses were estimated using several techniques such as weight gain and scanning electron microscopy (SEM), in comparison with acoustic microscopy and diffuse reflectance spectroscopy. Acoustic microscopy, used for the first time in such an application, is based on the physical phenomenon of ultrasound propagation through the materials and the echoes generated by their interfaces. Based on the time of flights (TOFs) of the echoes from the coating surface and the tablet, it is possible to calculate the coating thickness. In order to evaluate the accuracy and robustness of these methods, drug tablets were coated with Kollicoat SR polymer for several times, so that to prepare tablets with different coating thicknesses. Tablets with 3, 6 and 9 wt% coating material have been prepared and based on SEM micrographs it was found that the tablet coating thickness is 71.99 ± 1.2 μm, 92.5 ± 1.7 μm and 132.3 ± 2.1 μm, respectively (SEM analysis). The tablet coating thicknesses measured with acoustic microscopy and infrared diffuse reflectance spectroscopy, were in agreement with those obtained using SEM. This verifies that both techniques can be successfully applied for real time and non-destructive thickness measurements of tablet coating. Furthermore, both techniques, compared with SEM and weight gained measurements, are fast and fully automated.

  2. Preliminary evaluation of optical glucose sensing in red cell concentrations using near-infrared diffuse-reflectance spectroscopy.

    PubMed

    Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya

    2012-01-01

    Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.

  3. In vivo characterization of colorectal metastases in human liver using diffuse reflectance spectroscopy: toward guidance in oncological procedures

    NASA Astrophysics Data System (ADS)

    Spliethoff, Jarich W.; de Boer, Lisanne L.; Meier, Mark A. J.; Prevoo, Warner; de Jong, Jeroen; Kuhlmann, Koert; Bydlon, Torre M.; Sterenborg, Henricus J. C. M.; Hendriks, Benno H. W.; Ruers, Theo J. M.

    2016-09-01

    There is a strong need to develop clinical instruments that can perform rapid tissue assessment at the tip of smart clinical instruments for a variety of oncological applications. This study presents the first in vivo real-time tissue characterization during 24 liver biopsy procedures using diffuse reflectance (DR) spectroscopy at the tip of a core biopsy needle with integrated optical fibers. DR measurements were performed along each needle path, followed by biopsy of the target lesion using the same needle. Interventional imaging was coregistered with the DR spectra. Pathology results were compared with the DR spectroscopy data at the final measurement position. Bile was the primary discriminator between normal liver tissue and tumor tissue. Relative differences in bile content matched with the tissue diagnosis based on histopathological analysis in all 24 clinical cases. Continuous DR measurements during needle insertion in three patients showed that the method can also be applied for biopsy guidance or tumor recognition during surgery. This study provides an important validation step for DR spectroscopy-based tissue characterization in the liver. Given the feasibility of the outlined approach, it is also conceivable to make integrated fiber-optic tools for other clinical procedures that rely on accurate instrument positioning.

  4. Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water.

    PubMed

    Mojet, Barbara Louise; Ebbesen, Sune Dalgaard; Lefferts, Leon

    2010-12-01

    IR spectroscopy has been an important tool for studying detailed interactions of reactants and reaction-intermediates with catalyst surfaces. Studying reactions in water is, however, far from trivial, due to the excessive absorption of infrared light by water. One way to deal with this is the use of Attenuated Total Reflection spectroscopy (ATR-IR) minimizing the path length of infrared light through the water. Moreover, ATR-IR allows for a direct comparison of reactions in gas and water on the same sample, which bridges the gap between separate catalyst investigations in gas and liquid phase. This tutorial review describes recent progress in using ATR-IR for studying heterogeneous catalysts in water. An overview is given of the important aspects to be taken into account when using ATR-IR to study heterogeneous catalysts in liquid phase, like the procedure to prepare stable catalyst layers on the internal reflection element. As a case study, CO adsorption and oxidation on noble metal catalysts is investigated with ATR-IR in gas and water. The results show a large effect of water and pH on the adsorption and oxidation of CO on Pt/Al(2)O(3) and Pd/Al(2)O(3). From the results it is concluded that water affects the metal particle potential as well as the adsorbed CO molecule directly, resulting in higher oxidation rates in water compared to gas phase. Moreover, also pH influences the metal particle potential with a clear effect on the observed oxidation rates. Finally, the future outlook illustrates that ATR-IR spectroscopy holds great promise in the field of liquid phase heterogeneous catalysis.

  5. Hydrogen bonding in selected vanadates: a Raman and infrared spectroscopy study.

    PubMed

    Frost, Ray L; Erickson, Kristy L; Weier, Matt L

    2004-08-01

    Water plays an important role in the stability of minerals containing the deca and hexavanadates ions. A selection of minerals including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite has been analysed. Infrared spectroscopy combined with Raman spectroscopy has enabled the spectra of the water HOH stretching bands to be determined. The use of the Libowitsky type function allows for the estimation of hydrogen bond distances to be determined. The strength of the hydrogen bonds can be assessed by these hydrogen bond distances. An arbitrary value of 2.74A was used to separate the hydrogen bonds into two categories such that bond distances less than this value are considered as strong hydrogen bonds whereas hydrogen bond distances greater than this value are considered relatively weaker. Importantly infrared spectroscopy enables the estimation of hydrogen bond distances using an empirical function.

  6. VUV and XUV reflectance of optically coated mirrors for selection of high harmonics.

    PubMed

    Larsen, K A; Cryan, J P; Shivaram, N; Champenois, E G; Wright, T W; Ray, D; Kostko, O; Ahmed, M; Belkacem, A; Slaughter, D S

    2016-08-08

    We report the reflectance, ~1° from normal incidence, of six different mirrors as a function of photon energy, using monochromatic vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation with energies between 7.5 eV and 24.5 eV. The mirrors examined included both single and multilayer optical coatings, as well as an uncoated substrate. We discuss the performance of each mirror, paying particular attention to the potential application of suppression and selection of high-order harmonics of a Ti:sapphire laser.

  7. Infrared reflection absorption spectroscopy investigation of carbon nanotube growth on cobalt catalyst surfaces

    NASA Astrophysics Data System (ADS)

    Kimura, Yasuo; Numasawa, Takeru; Nihei, Mizuhisa; Niwano, Michio

    2007-02-01

    To clarify the effect the oxygen has on the carbon nanotube (CNT) growth mechanisms, the authors use infrared absorption spectroscopy for the monitoring of CNT growth on cobalt catalyst surfaces. CNT grew when methanol was used as a reaction gas, while they did not grow when methane was used. The authors observed spectral changes due to the formation of cobalt oxides and methoxides on the cobalt catalyst surfaces only during the growth of CNT. The results indicate that partial oxidation of the cobalt catalyst surface increases the adsorption probability of the reaction gas and ultimately induces growth of CNT.

  8. Investigating Ultrasonic Diffraction Grating Spectroscopy and Reflection Techniques for Characterizing Slurry Properties

    SciTech Connect

    Greenwood, Margaret S.; Salahuddin Ahmed

    2006-06-01

    The particle size of a slurry and the viscosity of a liquid or slurry are both difficult to measure on-line and in real time. The objectives of this research are to develop the following methods for such measurements: (1) ultrasonic diffraction grating spectroscopy (UDGS) to measure the particle size and concentration of a slurry, (2) develop theoretical models and computer codes to describe the passage of ultrasound through a grating surface in order to increase the sensitivity of the particle size measurement.

  9. Fully reflective deep ultraviolet to near infrared spectrometer and entrance optics for resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulz, B.; Bäckström, J.; Budelmann, D.; Maeser, R.; Rübhausen, M.; Klein, M. V.; Schoeffel, E.; Mihill, A.; Yoon, S.

    2005-07-01

    We present the design and performance of a new triple-grating deep ultraviolet to near-infrared spectrometer. The system is fully achromatic due to the use of reflective optics. The minimization of image aberrations by using on- and off- axis parabolic mirrors as well as elliptical mirrors yields a strong stray light rejection with high resolution over a wavelength range between 165 and 1000nm. The Raman signal is collected with a reflective entrance objective with a numerical aperture of 0.5, featuring a Cassegrain-type design. Resonance Raman studies on semiconductors and on correlated compounds, such as LaMnO3, highlight the performance of this instrument, and show diverse resonance effects between 1.96 and 5.4eV.

  10. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Kosobukin, V. A.; Korotchenkov, A. V.

    2016-12-01

    A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

  11. Thickness measurement of tablet coating using continuous-wave terahertz reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Devi, Nirmala; Dash, Jyotirmayee; Ray, Shaumik; Pesala, Bala

    2016-02-01

    THz rays have higher penetration depth compared to infrared rays and hence can be effectively used to measure tablet coating thickness. In addition, THz wavelength (1 mm - 0.1 mm) provides an optimal depth resolution for the thickness measurement. This method can be non-invasive and hence ideal for inline quality monitoring. Tablet coating thickness is one of the major parameters of interest in Process Analytical Technology (PAT). In this paper, a reflection mode Continuous Wave (CW) Terahertz (THz) system has been employed to measure the tablet coating thickness. A frequency scan of the sample has been carried out from 0.1 THz to 1.1 THz and the reflection coefficient of the sample is inverse fourier transformed to obtain the tablet thickness. The calculated thickness has also been validated using the optical microscope. Results show that the thickness can be measured with considerable accuracy.

  12. Infrared reflection spectroscopy and optical constants of LiNbO3 films on crystal substrates

    NASA Astrophysics Data System (ADS)

    Novikova, N. N.; Yakovlev, V. A.; Medaglia, P. G.

    2016-12-01

    We have measured infrared reflectivity spectra of thin lithium niobate films of nanometer thickness, grown by a pulsed laser deposition technique using KrF-excimer laser (λ=248 nm) on the single crystalline substrates (sapphire, MgO, NdGaO3 and SrTiO3). Using the dispersion analysis technique, we have calculated thicknesses and optical constants of the films. The phonon parameters of the substrates and films are obtained.

  13. Determination of the Factors Governing Soil Erodibility Using Hyperspectral Visible and Near Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Q., II; Ma, G.

    2015-12-01

    Analysis of soil hyperspectral reflectance has been used by many researchers for soil chemical and physical property determination. In the study, we focus on the soil property which influence the soil erosion and to discuss the feasibility of hyperspectral remote sensing in soil erosion. Here, laboratory simulation experiments were conducted to analyze the change of soil physical and chemical properties parameters in the erosion process and which is the key parameters influencing the soil erosion. The rainfall simulation experiment showed that showed that the soil erosion is mainly is mainly subjected to the soil organic content and water stable aggregate under the condition of variable rainfall intensity rainfall intensity. The analysis of the above soil erosion showed that the calculation of soil erosion were significant correlated with soil organic matter content (R2 = 0.933, p < 0.01)and > 0.01 mm water stable aggregate(R2 = 0.960, p < 0.01). In this study, wavelet analysis was applied to determine the hyperspectral reflectance data. The results show that the wavelet coefficients from spectral bands 562-658 nm, 699-839 nm, 859-1070 nm, 1727-1966 nm, 2158-2258 nm, 1350-1450 nm, 1900-205 nm are correlated with organic matter content and spectral bands from 859-1070nm,1350-1450nm,1727-1865nm,1900-2050nm are correlated with Water stable aggregate. According to the simulated rainfall experiments and hyperspectral reflectance analysis, the soil erosion should express by hyperspectral reflectance data.

  14. Attenuated total reflectance spectroscopy of plant leaves: A tool for ecological and botanical studies

    USGS Publications Warehouse

    Ribeiro da Luz, B.

    2006-01-01

    ??? Attenuated total reflectance (ATR) spectra of plant leaves display complex absorption features related to organic constituents of leaf surfaces. The spectra can be recorded rapidly, both in the field and in the laboratory, without special sample preparation. ??? This paper explores sources of ATR spectral variation in leaves, including compositional, positional and temporal variations. Interspecific variations are also examined, including the use of ATR spectra as a tool for species identification. ??? Positional spectral variations generally reflected the abundance of cutin and the epicuticular wax thickness and composition. For example, leaves exposed to full sunlight commonly showed more prominent cutin- and wax-related absorption features compared with shaded leaves. Adaxial vs. abaxial leaf surfaces displayed spectral variations reflecting differences in trichome abundance and wax composition. Mature vs. young leaves showed changes in absorption band position and intensity related to cutin, polysaccharide, and possibly amorphous silica development on and near the leaf surfaces. ??? Provided that similar samples are compared (e.g. adaxial surfaces of mature, sun-exposed leaves) same-species individuals display practically identical ATR spectra. Using spectral matching procedures to analyze an ATR database containing 117 individuals, including 32 different tree species, 83% of the individuals were correctly identified. ?? The Authors (2006).

  15. Reflectance spectroscopy of oxalate minerals and relevance to Solar System carbon inventories

    NASA Astrophysics Data System (ADS)

    Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.

    2016-11-01

    The diversity of oxalate formation mechanisms suggests that significant concentrations of oxalic acid and oxalate minerals could be widely distributed in the Solar System. We have carried out a systematic study of the reflectance spectra of oxalate minerals and oxalic acid, covering the 0.2-16 μm wavelength region. Our analyses show that oxalates exhibit unique spectral features that enable discrimination between oxalate phases and from other commonly occurring compounds, including carbonates, in all regions of the spectrum except for the visible. Using these spectral data, we consider the possible contribution of oxalate minerals to previously observed reflectance spectra of many objects throughout the Solar System, including satellites, comets, and asteroids. We find that polycarboxylic acid dimers and their salts may explain the reflectance spectra of many carbonaceous asteroids in the 3 μm spectral region. We suggest surface concentration of these compounds may be a type of space weathering from the photochemical and oxidative decomposition of the organic macromolecular material found in carbonaceous chondrites. The stability and ubiquity of these minerals on Earth, in extraterrestrial materials, and in association with biological processes make them useful for many applications in Earth and planetary sciences.

  16. Bidirectional reflectance spectroscopy. III - Correction for macroscopic roughness. [of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Hapke, B.

    1984-01-01

    A mathematically rigorous formalism is derived by which an arbitrary photometric function for the bidirectional reflectance of a smooth surface may be corrected to include effects of general macroscopic roughness. The correction involves only one arbitrary parameter, the mean slope angle, and is applicable to surfaces of any albedo. Using physically reasonable assumptions and mathematical approximations, the correction expressions are evaluated analytically to second order in the mean slope angle. The correction is applied to the bidirectional-reflectance function of Hapke (1981). Expressions for both the differential and integral brightnesses are obtained. Photometric profiles on hypothetical smooth and rough planets of low and high albedo are shown to illustrate the effects of macroscopic roughness. The theory is applied to observations of Mercury and predicts the integral phase function, the apparent polar darkening, and the lack of limb brightness surge on the planet. The roughness-corrected bidirectional-reflectance function is sufficiently simple that it can be conveniently evaluated on a programmable hand-held calculator.

  17. NuSTAR SPECTROSCOPY OF GRS 1915+105: DISK REFLECTION, SPIN, AND CONNECTIONS TO JETS

    SciTech Connect

    Miller, J. M.; King, A. L.; Parker, M. L.; Fabian, A. C.; Fuerst, F.; Walton, D. J.; Bachetti, M.; Harrison, F. A.; Barret, D.; Grefenstette, B. W.; Boggs, S. E.; Tomsick, J. A.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Hailey, C. J.; Stern, D. K.; Zhang, W. W.

    2013-10-01

    We report on the results of spectral fits made to a NuSTAR observation of the black hole GRS 1915+105 in a 'plateau' state. This state is of special interest because it is similar to the 'low/hard' state seen in other black holes, especially in that compact, steady jets are launched in this phase. The 3-79 keV bandpass of NuSTAR, and its ability to obtain moderate-resolution spectra free from distortions such as photon pile-up, are extremely well suited to studies of disk reflection in X-ray binaries. In only 15 ks of net exposure, an extraordinarily sensitive spectrum of GRS 1915+105 was measured across the full bandpass. Ionized reflection from a disk around a rapidly spinning black hole is clearly required to fit the spectra; even hybrid Comptonization models including ionized reflection from a disk around a Schwarzschild black hole proved inadequate. A spin parameter of a = 0.98 ± 0.01 (1σ statistical error) is measured via the best-fit model; low spins are ruled out at a high level of confidence. This result suggests that jets can be launched from a disk extending to the innermost stable circular orbit. A very steep inner disk emissivity profile is also measured, consistent with models of compact coronae above Kerr black holes. These results support an emerging association between the hard X-ray corona and the base of the relativistic jet.

  18. On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy.

    PubMed

    Liao, Yi-Tao; Fan, Yu-Xia; Cheng, Fang

    2010-12-01

    Visible/near-infrared (Vis/NIR) spectroscopy was tested to predict the quality attributes of fresh pork (content of intramuscular fat, protein and water, pH and shear force value) on-line. Vis/NIR spectra (350-1100 nm) were obtained from 211 samples using a prototype. Partial least-squares regression (PLSR) models were developed by external validation with wavelet de-noising and several pre-processing methods. The 6th order Daubechies wavelet with 6 decomposition levels (db6-6) showed high de-noising ability with good information preservation. The first derivative of db6-6 de-noised spectra combined with multiplicative scatter correction yielded the prediction models with the highest coefficient of determination (R(2)) for all traits in both calibration and validation periods, which were all above 0.757 except for the prediction of shear force value. The results indicate that Vis/NIR spectroscopy is a promising technique to roughly predict the quality attributes of intact fresh pork on-line.

  19. NuSTAR Spectroscopy of Multi-component X-Ray Reflection from NGC 1068

    NASA Astrophysics Data System (ADS)

    Bauer, Franz E.; Arévalo, Patricia; Walton, Dominic J.; Koss, Michael J.; Puccetti, Simonetta; Gandhi, Poshak; Stern, Daniel; Alexander, David M.; Baloković, Mislav; Boggs, Steve E.; Brandt, William N.; Brightman, Murray; Christensen, Finn E.; Comastri, Andrea; Craig, William W.; Del Moro, Agnese; Hailey, Charles J.; Harrison, Fiona A.; Hickox, Ryan; Luo, Bin; Markwardt, Craig B.; Marinucci, Andrea; Matt, Giorgio; Rigby, Jane R.; Rivers, Elizabeth; Saez, Cristian; Treister, Ezequiel; Urry, C. Megan; Zhang, William W.

    2015-10-01

    We report on high-energy X-ray observations of the Compton-thick Seyfert 2 galaxy NGC 1068 with NuSTAR, which provide the best constraints to date on its >10 keV spectral shape. The NuSTAR data are consistent with those from past and current instruments to within cross-calibration uncertainties, and we find no strong continuum or line variability over the past two decades, which is in line with its X-ray classification as a reflection-dominated Compton-thick active galactic nucleus. The combined NuSTAR, Chandra, XMM-Newton, and Swift BAT spectral data set offers new insights into the complex secondary emission seen instead of the completely obscured transmitted nuclear continuum. The critical combination of the high signal-to-noise NuSTAR data and the decomposition of the nuclear and extranuclear emission with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single NH) reflector, none of the common Compton reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection hump without requiring unrealistic physical parameters (e.g., large Fe overabundances, inconsistent viewing angles, or poor fits to the spatially resolved spectra). A multi-component reflector with three distinct column densities (e.g., with best-fit values of NH of 1.4 × 1023, 5.0 × 1024, and 1025 cm-2) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher NH component provides the bulk of the flux to the Compton hump, while the lower NH component produces much of the line emission, effectively decoupling two key features of Compton reflection. We find that ≈30% of the neutral Fe Kα line flux arises from >2″ (≈140 pc) and is clearly extended, implying that a significant fraction (and perhaps most) of the <10 keV reflected component arises from regions well outside a parsec

  20. NuSTAR SPECTROSCOPY OF MULTI-COMPONENT X-RAY REFLECTION FROM NGC 1068

    SciTech Connect

    Bauer, Franz E.; Arévalo, Patricia; Walton, Dominic J.; Baloković, Mislav; Brightman, Murray; Harrison, Fiona A.; Koss, Michael J.; Puccetti, Simonetta; Gandhi, Poshak; Stern, Daniel; Alexander, David M.; Moro, Agnese Del; Boggs, Steve E.; Craig, William W.; Brandt, William N.; Luo, Bin; Christensen, Finn E.; Comastri, Andrea; Hailey, Charles J.; Hickox, Ryan; and others

    2015-10-20

    We report on high-energy X-ray observations of the Compton-thick Seyfert 2 galaxy NGC 1068 with NuSTAR, which provide the best constraints to date on its >10 keV spectral shape. The NuSTAR data are consistent with those from past and current instruments to within cross-calibration uncertainties, and we find no strong continuum or line variability over the past two decades, which is in line with its X-ray classification as a reflection-dominated Compton-thick active galactic nucleus. The combined NuSTAR, Chandra, XMM-Newton, and Swift BAT spectral data set offers new insights into the complex secondary emission seen instead of the completely obscured transmitted nuclear continuum. The critical combination of the high signal-to-noise NuSTAR data and the decomposition of the nuclear and extranuclear emission with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single N{sub H}) reflector, none of the common Compton reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection hump without requiring unrealistic physical parameters (e.g., large Fe overabundances, inconsistent viewing angles, or poor fits to the spatially resolved spectra). A multi-component reflector with three distinct column densities (e.g., with best-fit values of N{sub H} of 1.4 × 10{sup 23}, 5.0 × 10{sup 24}, and 10{sup 25} cm{sup −2}) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher N{sub H} component provides the bulk of the flux to the Compton hump, while the lower N{sub H} component produces much of the line emission, effectively decoupling two key features of Compton reflection. We find that ≈30% of the neutral Fe Kα line flux arises from >2″ (≈140 pc) and is clearly extended, implying that a significant fraction (and perhaps most) of the <10 keV reflected component