Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues
Gromnicova, Radka; Kaya, Mehmet; Romero, Ignacio A.; Williams, Phil; Satchell, Simon; Sharrack, Basil; Male, David
2016-01-01
The selective entry of nanoparticles into target tissues is the key factor which determines their tissue distribution. Entry is primarily controlled by microvascular endothelial cells, which have tissue-specific properties. This study investigated the cellular properties involved in selective transport of gold nanoparticles (<5 nm) coated with PEG-amine/galactose in two different human vascular endothelia. Kidney endothelium (ciGENC) showed higher uptake of these nanoparticles than brain endothelium (hCMEC/D3), reflecting their biodistribution in vivo. Nanoparticle uptake and subcellular localisation was quantified by transmission electron microscopy. The rate of internalisation was approximately 4x higher in kidney endothelium than brain endothelium. Vesicular endocytosis was approximately 4x greater than cytosolic uptake in both cell types, and endocytosis was blocked by metabolic inhibition, whereas cytosolic uptake was energy-independent. The cellular basis for the different rates of internalisation was investigated. Morphologically, both endothelia had similar profiles of vesicles and cell volumes. However, the rate of endocytosis was higher in kidney endothelium. Moreover, the glycocalyces of the endothelia differed, as determined by lectin-binding, and partial removal of the glycocalyx reduced nanoparticle uptake by kidney endothelium, but not brain endothelium. This study identifies tissue-specific properties of vascular endothelium that affects their interaction with nanoparticles and rate of transport. PMID:27560685
Selective synthesis and characterization of chlorins as sensitizers for photodynamic therapy
NASA Astrophysics Data System (ADS)
Montforts, Franz-Peter; Kusch, Dirk; Hoper, Frank; Braun, Stefan; Gerlach, Benjamin; Brauer, Hans-Dieter; Schermann, Guido; Moser, Joerg G.
1996-04-01
Chlorin type sensitizers have ideal photophysical properties for an application in PDT. The basic chlorin framework of these sensitizers has to be modified by attachment of lipophilic and hydrophilic residues to achieve a good cell uptake and tumor enrichment. In the present study we describe the selective synthesis of amphiphilic chlorins starting from the readily accessible red blood pigment heme. The photophysical properties of the well defined synthetic chlorins are characterized by photophysical investigations. The kinetic of cell uptake, the localization in the cell and the photodynamic behavior of the amphiphilic sensitizers are demonstrated by incubation of A 375 cancer cell lines with structurally different chlorins.
Karoyo, Abdalla H.; Wilson, Lee D.
2015-01-01
Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties. PMID:28347047
López-Castejón, María Luisa; Bengoechea, Carlos; García-Morales, Moisés; Martínez, Inmaculada
2016-11-05
This study aims to extend the range of applications of tragacanth gum by studying its incorporation into bioplastics formulation, exploring the influence that different gum contents (0-20wt.%) exert over the thermomechanical and water uptake properties of bioplastics based on egg white albumen protein (EW). The effect of plasticizer nature was also evaluated through the modification of the water/glycerol ratio within the plasticizer fraction (fixed at 40wt.%). The addition of tragacanth gum generally yielded an enhancement of the water uptake capacity, being doubled at the highest content. Conversely, presence of tragacanth gum resulted in a considerable decrease in the bioplastic mechanical properties: both tensile strength and maximum elongation were reduced up to 75% approximately when compared to the gum-free system. Ageing of selected samples was also studied, revealing an important effect of storage time when tragacanth gum is present, possibly due to its hydrophilic character. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.
Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K{sup +}-induced ({sup 3}H)5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K{sup +} used to depolarize the synaptosomes and the concentration of external Ca{sup 2+}. Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of ({sup 3}H)5-HT releasemore » induced by the Ca{sup 2+}-ionophore A 23187 or Ca{sup 2+}-independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K{sup +}-induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca{sup 2+} channels and Ca{sup 2+} entry.« less
Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon
NASA Astrophysics Data System (ADS)
Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.
2008-03-01
The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.
Yamada, Nana; Sakakibara, Shota; Tsutsumi, Koichi; Waditee, Rungaroon; Tanaka, Yoshito; Takabe, Teruhiro
2011-09-15
Proline transporters (ProTs) originally described as highly selective transporters for proline, have been shown to also transport glycinebetaine (betaine). Here we examined and compared the transport properties of Bet/ProTs from betaine accumulating (sugar beet, Amaranthus, and Atriplex,) and non-accumulating (Arabidopsis) plants. Using a yeast mutant deficient for uptake of proline and betaine, it was shown that all these transporters exhibited higher affinity for betaine than proline. The uptake of betaine and proline was pH-dependent and inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). We also investigated choline transport by using a choline transport-deficient yeast mutant. Results revealed that these transporters exhibited a higher affinity for choline uptake rather than betaine. Uptake of choline by sugar beet BvBet/ProT1 was independent of the proton gradient and the inhibition by CCCP was reduced compared with that for uptake of betaine, suggesting different proton binding properties between the transport of choline and betaine. Additionally, in situ hybridization experiments revealed the localization of sugar beet BvBet/ProT1 in phloem and xylem parenchyma cells. Copyright © 2011 Elsevier GmbH. All rights reserved.
Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe
2015-06-01
Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.
Absorbate-induced piezochromism in a porous molecular crystal
Hendon, Christopher H.; Wittering, Kate E.; Chen, Teng -Hao; ...
2015-02-23
Atmospherically stable porous frameworks and materials are interesting for heterogeneous solid–gas applications. One motivation is the direct and selective uptake of pollutant/hazardous gases, where the material produces a measurable response in the presence of the analyte. In this report, we present a combined experimental and theoretical rationalization for the piezochromic response of a robust and porous molecular crystal built from an extensively fluorinated trispyrazole. The electronic response of the material is directly determined by analyte uptake, which provokes a subtle lattice contraction and an observable bathochromic shift in the optical absorption onset. Selectivity for fluorinated absorbates is demonstrated, and toluenemore » is also found to crystallize within the pore. Lastly, we demonstrate the application of electronic structure calculations to predict a physicochemical response, providing the foundations for the design of electronically tunable porous solids with the chemical properties required for development of novel gas-uptake media.« less
Assumma, Luca; Nguyen, Huu-Dat; Iojoiu, Cristina; Lyonnard, Sandrine; Mercier, Régis; Espuche, Eliane
2015-07-01
Perfluorosulfonated poly(arylene ether sulfone) multiblock copolymers have been shown to be promising as proton exchange membranes. The commonly used approach for preparation of the membrane is solvent casting; the properties of the resulting membranes are very dependent on the membrane processing conditions. In this paper, we study the effects of block length, selectivity of the solvent, and thermal treatment on the membrane properties such as morphology, water uptake, and ionic conductivity. DiMethylSulfOxide (DMSO), and DiMethylAcetamide (DMAc) were selected as casting solvents based on the Flory-Huggins parameter calculated by inversion gas chromatography (IGC). It was found that the solvent selectivity has a mild impact on the mean size of the ionic domains and the expansion upon swelling, while it dramatically affects the supramolecular ordering of the blocks. The membranes cast from DMSO exhibit more interconnected ionic clusters yielding higher conductivities and water uptake as compared to membranes cast from DMAc. A 10-fold increase in proton conductivity was achieved after thermal annealing of membranes at 150 °C, and the ionomers with longer block lengths show conductivities similar to Nafion at 80 °C and low relative humidity (30%).
Developing a Suitable Model for Water Uptake for Biodegradable Polymers Using Small Training Sets.
Valenzuela, Loreto M; Knight, Doyle D; Kohn, Joachim
2016-01-01
Prediction of the dynamic properties of water uptake across polymer libraries can accelerate polymer selection for a specific application. We first built semiempirical models using Artificial Neural Networks and all water uptake data, as individual input. These models give very good correlations (R (2) > 0.78 for test set) but very low accuracy on cross-validation sets (less than 19% of experimental points within experimental error). Instead, using consolidated parameters like equilibrium water uptake a good model is obtained (R (2) = 0.78 for test set), with accurate predictions for 50% of tested polymers. The semiempirical model was applied to the 56-polymer library of L-tyrosine-derived polyarylates, identifying groups of polymers that are likely to satisfy design criteria for water uptake. This research demonstrates that a surrogate modeling effort can reduce the number of polymers that must be synthesized and characterized to identify an appropriate polymer that meets certain performance criteria.
Incorporation of nanoparticles into polymersomes: size and concentration effects.
Jaskiewicz, Karmena; Larsen, Antje; Schaeffel, David; Koynov, Kaloian; Lieberwirth, Ingo; Fytas, George; Landfester, Katharina; Kroeger, Anja
2012-08-28
Because of the rapidly growing field of nanoparticles in therapeutic applications, understanding and controlling the interaction between nanoparticles and membranes is of great importance. While a membrane is exposed to nanoparticles its behavior is mediated by both their biological and physical properties. Constant interplay of these biological and physicochemical factors makes selective studies of nanoparticles uptake demanding. Artificial model membranes can serve as a platform to investigate physical parameters of the process in the absence of any biofunctional molecules and/or supplementary energy. Here we report on photon- and fluorescence-correlation spectroscopic studies of the uptake of nanosized SiO(2) nanoparticles by poly(dimethylsiloxane)-block-poly(2-methyloxazoline) vesicles allowing species selectivity. Analogous to the cell membrane, polymeric membrane incorporates particles using membrane fission and particles wrapping as suggested by cryo-TEM imaging. It is revealed that the incorporation process can be controlled to a significant extent by changing nanoparticles size and concentration. Conditions for nanoparticle uptake and controlled filling of polymersomes are presented.
Min, Kyoung Ah; Talattof, Arjang; Tsume, Yasuhiro; Stringer, Kathleen A; Yu, Jing-Yu; Lim, Dong Hyun; Rosania, Gus R
2013-08-01
We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types. Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types. Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in the extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells. Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types.
Min, Kyoung Ah; Talattof, Arjang; Tsume, Yasuhiro; Stringer, Kathleen A.; Yu, Jing-yu; Lim, Dong Hyun; Rosania, Gus R.
2013-01-01
Purpose We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types. Methods Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types. Results Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells. Conclusion Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types. PMID:23708857
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piechowicz, Marek; Abney, Carter W.; Thacker, Nathan C.
The amidoxime group (-RNH2NOH) has long been used to extract uranium from seawater on account of its high affinity toward uranium. The development of tunable sorbent materials for uranium sequestration remains a research priority as well as a significant challenge. Herein, we report the design, synthesis, and uranium sorption properties of bis-amidoxime-functionalized polymeric materials (BAP 1–3). Bifunctional amidoxime monomers were copolymerized with an acrylamide cross-linker to obtain bis-amidoxime incorporation as high as 2 mmol g–1 after five synthetic steps. The resulting sorbents were able to uptake nearly 600 mg of uranium per gram of polymer after 37 days of contactmore » with a seawater simulant containing 8 ppm uranium. Moreover, the polymeric materials exhibited low vanadium uptake with a maximum capacity of 128 mg of vanadium per gram of polymer. This computationally predicted and experimentally realized selectivity of uranium over vanadium, nearly 5 to 1 w/w, is one of the highest reported to date and represents an advancement in the rational design of sorbent materials with high uptake capacity and selectivity.« less
Mesoporous Silica Chips for Selective Enrichment and Stabilization of Low Molecular Weight Proteome
Bouamrani, Ali; Hu, Ye; Tasciotti, Ennio; Li, Li; Chiappini, Ciro; Liu, Xuewu; Ferrari, Mauro
2010-01-01
The advanced properties of mesoporous silica have been demonstrated in applications which include chemical sensing, filtration, catalysis, drug-delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation-induced self-assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on Mesoporous Silica Chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we established the correlation between the harvesting specificity and the physico-chemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery. PMID:20013801
Mesoporous silica chips for selective enrichment and stabilization of low molecular weight proteome.
Bouamrani, Ali; Hu, Ye; Tasciotti, Ennio; Li, Li; Chiappini, Ciro; Liu, Xuewu; Ferrari, Mauro
2010-02-01
The advanced properties of mesoporous silica have been demonstrated in applications, which include chemical sensing, filtration, catalysis, drug delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation-induced self-assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on mesoporous silica chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using MALDI-TOF-MS, we established the correlation between the harvesting specificity and the physicochemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery.
Molecular Sensing by Nanoporous Crystalline Polymers
Pilla, Pierluigi; Cusano, Andrea; Cutolo, Antonello; Giordano, Michele; Mensitieri, Giuseppe; Rizzo, Paola; Sanguigno, Luigi; Venditto, Vincenzo; Guerra, Gaetano
2009-01-01
Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10–15 wt%), and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds. PMID:22303150
Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration.
Karaoglu Hanzatian, Denise; Schwartz, Annette; Gizatullin, Farid; Erickson, Jamie; Deng, Kangwen; Villanueva, Ruth; Stedman, Christopher; Harris, Cristina; Ghayur, Tariq; Goodearl, Andrew
2018-05-17
Therapeutic monoclonal antibodies and endogenous IgG antibodies show limited uptake into the central nervous system (CNS) due to the blood-brain barrier (BBB), which regulates and controls the selective and specific transport of both exogenous and endogenous materials to the brain. The use of natural transport mechanisms, such as receptor-mediated transcytosis (RMT), to deliver antibody therapeutics into the brain have been studied in rodents and monkeys. Recent successful examples include monovalent bispecific antibodies and mono- or bivalent fusion proteins; however, these formats do not have the capability to bind to both the CNS target and the BBB transport receptor in a bivalent fashion as a canonical antibody would. Dual-variable-domain immunoglobulin (DVD-Ig) proteins offer a bispecific format where monoclonal antibody-like bivalency to both the BBB receptor and the therapeutic target is preserved, enabling independent engineering of binding affinity, potency, valency, epitope and conformation, essential for successful generation of clinical candidates for CNS applications with desired drug-like properties. Each of these parameters can affect the binding and transcytosis ability mediated by different receptors on the brain endothelium differentially, allowing exploration of diverse properties. Here, we describe generation and characterization of several different DVD-Ig proteins, specific for four different CNS targets, capable of crossing the BBB through transcytosis mediated by the transferrin receptor 1 (TfR1). After systemic administration of each DVD-Ig, we used two independent methods in parallel to observe specific uptake into the brain. An electrochemiluminescent-based sensitive quantitative assay and a semi-quantitative immunohistochemistry technique were used for brain concentration determination and biodistribution/localization in brain, respectively. Significantly enhanced brain uptake and retention was observed for all TfR1 DVD-Ig proteins regardless of the CNS target or the systemic administration route selected.
Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, C.L.
2002-10-28
Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence onmore » chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.« less
Control of abusive water addition to Octopus vulgaris with non-destructive methods.
Mendes, Rogério; Schimmer, Ove; Vieira, Helena; Pereira, João; Teixeira, Bárbara
2018-01-01
Abusive water addition to octopus has evidenced the need for quick non-destructive methods for product qualification in the industry and control of fresh commercial products in markets. Electric conductivity (EC)/pH and dielectric property measurements were selected to detect water uptake in octopus. A significant EC decrease was determined after soaking octopus in freshwater for 4 h. EC reflected the water uptake of octopus and the correspondent concentration decrease of available ions in the interstitial fluid. Significant correlations were determined between octopus water uptake, EC (R = -0.940) and moisture/protein (M/P) ratio (R = 0.923) changes. Seasonal and spatial variation in proximate composition did not introduce any uncertainty in EC discrimination of freshwater tampering. Immersion in 5 g L -1 sodium tripolyphosphate (STPP) increased EC to a value similar to control octopus. EC false negatives resulting from the use of additives (STPP and citric acid) were eliminated with the additional determination of pH. Octopus soaked in freshwater, STPP and citric acid can also be clearly discriminated from untreated samples (control) and also from frozen (thawed) ones using the dielectric properties. No significant differences in the dielectric property scores were found between octopus sizes or geographical locations. Simultaneous EC/pH or dielectric property measurements can be used in a handheld device for non-destructive water addition detection in octopus. M/P ratio can be used as a reference destructive method. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O(2) uptake.
Carreras, M C; Peralta, J G; Converso, D P; Finocchietto, P V; Rebagliati, I; Zaninovich, A A; Poderoso, J J
2001-12-01
Changes in O(2) uptake at different thyroid status have been explained on the basis of the modulation of mitochondrial enzymes and membrane biophysical properties. Regarding the nitric oxide (NO) effects, we tested whether liver mitochondrial nitric oxide synthase (mtNOS) participates in the modulation of O(2) uptake in thyroid disorders. Wistar rats were inoculated with 400 microCi (131)I (hypothyroid group), 20 microg thyroxine (T(4))/100 g body wt administered daily for 2 wk (hyperthyroid group) or vehicle (control). Basal metabolic rate, mitochondrial function, and mtNOS activity were analyzed. Systemic and liver mitochondrial O(2) uptake and cytochrome oxidase activity were lower in hypothyroid rats with respect to controls; mitochondrial parameters were further decreased by L-arginine (-42 and -34%, P < 0.05), consistent with 5- to 10-fold increases in matrix NO concentration. Accordingly, mtNOS expression (75%) and activity (260%) were selectively increased in hypothyroidism and reverted by hormone replacement without changes in other nitric oxide isoforms. Moreover, mtNOS activity correlated with serum 3,5,3'-triiodothyronine (T(3)) and O(2) uptake. Increased mtNOS activity was also observed in skeletal muscle mitochondria from hypothyroid rats. Therefore, we suggest that modulation of mtNOS is a substantial part of thyroid effects on mitochondrial O(2) uptake.
Characterization and Application of Passive Samplers for Monitoring of Pesticides in Water.
Ahrens, Lutz; Daneshvar, Atlasi; Lau, Anna E; Kreuger, Jenny
2016-08-03
Five different water passive samplers were calibrated under laboratory conditions for measurement of 124 legacy and current used pesticides. This study provides a protocol for the passive sampler preparation, calibration, extraction method and instrumental analysis. Sampling rates (RS) and passive sampler-water partition coefficients (KPW) were calculated for silicone rubber, polar organic chemical integrative sampler POCIS-A, POCIS-B, SDB-RPS and C18 disk. The uptake of the selected compounds depended on their physicochemical properties, i.e., silicone rubber showed a better uptake for more hydrophobic compounds (log octanol-water partition coefficient (KOW) > 5.3), whereas POCIS-A, POCIS-B and SDB-RPS disk were more suitable for hydrophilic compounds (log KOW < 0.70).
The disaccharide moiety of bleomycin facilitates uptake by cancer cells.
Schroeder, Benjamin R; Ghare, M Imran; Bhattacharya, Chandrabali; Paul, Rakesh; Yu, Zhiqiang; Zaleski, Paul A; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M
2014-10-01
The disaccharide moiety is responsible for the tumor cell targeting properties of bleomycin (BLM). While the aglycon (deglycobleomycin) mediates DNA cleavage in much the same fashion as bleomycin, it exhibits diminished cytotoxicity in comparison to BLM. These findings suggested that BLM might be modular in nature, composed of tumor-seeking and tumoricidal domains. To explore this possibility, BLM analogues were prepared in which the disaccharide moiety was attached to deglycobleomycin at novel positions, namely, via the threonine moiety or C-terminal substituent. The analogues were compared with BLM and deglycoBLM for DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more potent than deglycoBLM in supercoiled plasmid DNA relaxation, while the analogue having the disaccharide on threonine was less active than deglycoBLM and the analogue containing the C-terminal disaccharide was slightly more potent. While having unexceptional DNA cleavage potencies, both glycosylated analogues were more cytotoxic to cultured DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates of the cytotoxic BLM aglycons were used in imaging experiments to determine the extent of cell uptake. The rank order of internalization efficiencies was the same as their order of cytotoxicities toward DU145 cells. These findings establish a role for the BLM disaccharide in tumor targeting/uptake and suggest that the disaccharide moiety may be capable of delivering other cytotoxins to cancer cells. While the mechanism responsible for uptake of the BLM disaccharide selectively by tumor cells has not yet been established, data are presented which suggest that the metabolic shift to glycolysis in cancer cells may provide the vehicle for selective internalization.
Cystatin C Properties Crucial for Uptake and Inhibition of Intracellular Target Enzymes*
Wallin, Hanna; Abrahamson, Magnus; Ekström, Ulf
2013-01-01
To elucidate the molecular requirements for cancer cell internalization of the extracellular cysteine protease inhibitor cystatin C, 12 variants of the protein were produced and used for uptake experiments in MCF-7 cells. Variants with alterations in the cysteine cathepsin binding region ((Δ1–10)-, K5A-, R8G-, (R8G,L9G,V10G)-, (R8G,L9G,V10G,W106G)-, and W106G-cystatin C) were internalized to a very low extent compared with the wild-type inhibitor. Substitutions of N39 in the legumain binding region (N39K- and N39A-cystatin C) decreased the internalization and (R24A,R25A)-cystatin C, with substitutions of charged residues not involved in enzyme inhibition, was not taken up at all. Two variants, W106F- and K75A-cystatin C, showed that the internalization can be positively affected by engineering of the cystatin molecule. Microscopy revealed vesicular co-localization of internalized cystatin C with the lysosomal marker proteins cathepsin D and legumain. Activities of both cysteine cathepsins and legumain, possible target enzymes associated with cancer cell invasion and metastasis, were down-regulated in cell homogenates following cystatin C uptake. A positive effect on regulation of intracellular enzyme activity by a cystatin variant selected from uptake properties was illustrated by incubating cells with W106F-cystatin C. This resulted in more efficient down-regulation of intracellular legumain activity than when cells were incubated with wild-type cystatin C. Uptake experiments in prostate cancer cells corroborated that the cystatin C internalization is generally relevant and confirmed an increased uptake of W106F-cystatin C, in PC3 cells. Thus, intracellular cysteine proteases involved in cancer-promoting processes might be controled by cystatin uptake. PMID:23629651
Recent Advances in Chemical Modification of Peptide Nucleic Acids
Rozners, Eriks
2012-01-01
Peptide nucleic acid (PNA) has become an extremely powerful tool in chemistry and biology. Although PNA recognizes single-stranded nucleic acids with exceptionally high affinity and sequence selectivity, there is considerable ongoing effort to further improve properties of PNA for both fundamental science and practical applications. The present paper discusses selected recent studies that improve on cellular uptake and binding of PNA to double-stranded DNA and RNA. The focus is on chemical modifications of PNA's backbone and heterocyclic nucleobases. The paper selects representative recent studies and does not attempt to provide comprehensive coverage of the broad and vibrant field of PNA modification. PMID:22991652
Telò, Isabella; Favero, Elena Del; Cantù, Laura; Frattini, Noemi; Pescina, Silvia; Padula, Cristina; Santi, Patrizia; Sonvico, Fabio; Nicoli, Sara
2017-10-02
The aim of this work was to develop an innovative microemulsion with gel-like properties for the cutaneous delivery of imiquimod, an immunostimulant drug employed for the treatment of cutaneous infections and neoplastic conditions. A pseudoternary phase diagram was built using a 1/1 TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate)/Transcutol mixture as surfactant system, and oleic acid as oil phase. Eight microemulsions-selected from the 1.25/8.75 oil/surfactants ratio, along the water dilution line (from 20 to 56% w/w)-were characterized in terms of rheological behavior, optical properties via polarized microscopy, and supramolecular structure using X-ray scattering. Then, these formulations were loaded with imiquimod and the uptake and distribution into the skin was evaluated on full-thickness porcine skin. X-ray scattering experiments revealed the presence of disconnected drops in the case of microemulsion with 20% water content. Diluting the system up to 48% water content, the structure turned into an interconnected lamellar microemulsion, reaching a proper disconnected lamellar structure for the highest water percentages (52-56%). Upon water addition, also the rheological properties changed from nearly Newtonian fluids to gel-like structures, displaying the maximum of viscosity for the 48% water content. Skin uptake experiments demonstrated that formulation viscosity, drug loading, and surfactant concentration did not play an important role on imiquimod uptake into the skin, while the skin penetration was related instead to the microemulsion mesostructure. In fact, drug uptake became enhanced by locally lamellar interconnected structures, while it was reduced in the presence of disconnected structures, either drops or proper lamellae. Finally, the data demonstrated that mesostructure also affects the drug distribution between the epidermis and dermis. In particular, a significantly higher dermal accumulation was found when disconnected lamellar structures are present, suggesting the possibility of tuning both drug delivery and localization into the skin by modifying microemulsions composition.
Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela
2015-03-12
Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1+MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (∼1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.
Adsorption of phosphate from seawater on calcined MgMn-layered double hydroxides.
Chitrakar, Ramesh; Tezuka, Satoko; Sonoda, Akinari; Sakane, Kohji; Ooi, Kenta; Hirotsu, Takahiro
2005-10-01
Adsorptive properties of MgMn-3-300 (MgMn-type layered double hydroxide with Mg/Mn mole ratio of 3, calcined at 300 degrees C) for phosphate were investigated in phosphate-enriched seawater with a concentration of 0.30 mg-P/dm3. It showed the highest phosphate uptake from the seawater among the inorganic adsorbents studied (hydrotalcite, calcined hydrotalcite, activated magnesia, hydrous aluminum oxide, manganese oxide (delta-MnO2)). The phosphate uptake by MgMn-3-300 reached 7.3 mg-P/g at an adsorbent/solution ratio of 0.05 g/2 dm3. The analyses of the uptakes of other constituents (Na+, K+, Ca(+, Cl-, and SO(2-)4) of seawater showed that the adsorbent had a markedly high selectivity for the adsorption of phosphate ions. Effects of initial phosphate concentration, temperature, pH, and salinity on phosphate uptake were investigated in detail by a batch method. The phosphate uptake increased slightly with an increase in the adsorption temperature. The adsorption isotherm followed Freundlich's equation with constants of logK(F)=1.25 and 1/n=0.65, indicating that it could effectively remove phosphate even from a solution of markedly low phosphate concentration as well as with large numbers of coexisting ions. The pH dependence showed a maximum phosphate uptake around pH 8.5. The pH dependence curve suggested that selective phosphate adsorption progresses mainly by the ion exchange of HPO(2-)4. The study on the effect of salinity suggested the presence of two kinds of adsorption sites in the adsorbent: one nonspecific site with weak interaction and one specific site with strong interaction. The effective desorption of phosphate could be achieved using a mixed solution of 5 M NaCl + 0.1 M NaOH (1 M = 1 mol/dm3), with negligible dissolution of adsorbent. The adsorbent had high chemical stability against the adsorption/desorption cycle; it kept a good phosphate uptake even after the repetition of the seventh cycle.
NASA Astrophysics Data System (ADS)
Rocco, Claudia; Agrelli, Diana; Gonzalez, Maria Isabel; Mingo, Antonio; Motti, Riccardo; Stinca, Adriano; Coppola, Ida; Adamo, Paola
2017-04-01
This work was done on brownfield soil and sludges from a dismantled steel plant, moderately polluted by heavy metals (mainly Pb and Zn), 1) to analyzed the effects of substrate properties and environmental conditions on spontaneous vegetation; 2) to assess changes in the chemical properties of soils and sludges, with particular reference to the mobility and bioavailability of pollutants, induced by spontaneous plants revegetation. From 2006 to 2011, spontaneous plant colonization was monitored in the presence or absence of acidic peat both inside the degraded brownfield site and after transferal into a nearby Oak Park environment. During the five experimental years the vegetation growth was monitored using phytosociological method and data analyzed statistically. Both substrates, before and after plant growth, were analyzed for main chemical properties. Metals mobility and bioavailability was assessed using single (H2O; DTPA) and sequential extractions (EU-BCR). At the end of the experiment, plant ability to uptake metal was evaluated on selected species. Overall, 57 plant species grew healthily on the substrates. The combination of soil and sludges with peat resulted in an effective revegetation with a sensible increasing of plants biomass. Most of the species were found in the park (91%), showing plant colonization was mainly affected by the immediate environment rather than by substrate properties. Furthermore, after the five years, the substrate properties (pH, O.C.) were slightly affected by plant growth and, although metal pollutants in both substrates are characterized by low water solubility and DTPA availability, after plants growth an increase (even if not significant) of rhizospheric Cu, Fe, Mn and Zn solubility in H2O was detected. Metals speciation indicated a low risk of Pb and Zn mobility being either largely trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. Restricted metal uptake and tissue accumulation by selected plants were measured, with only Daucus carota showing a higher ability to translocate metals to shoots (shoot/root metal concentration quotient >1 with peat). Water always underestimated plant uptake, while DTPA and sequential extractions better predicted Pb and Zn uptake. Phytostabilization with native plant species can be an efficient, environmentally appropriate and low cost technology for rehabilitation of industrial sites. The addition of organic matter may help the spontaneous re-vegetation and could facilitate the recovery of degraded environment. However, the changing induced by peat and plants might induced a solubilization of metal pollutants. A continuous monitoring of the potential changes of pollutants mobility-bioavailability by plants is crucial to prevent risks to the environment and human health. Key words: Heavy metals, phytoremediation, Peat addition, bioavailability, sequential extractions
Díaz, Yenisleidy de Las Mercedes Zulueta; Mottola, Milagro; Vico, Raquel V; Wilke, Natalia; Fanani, María Laura
2016-01-19
In this work, we tested the hypothesis that the incorporation of amphiphilic drugs into lipid membranes may be regulated by their rheological properties. For this purpose, two members of the l-ascorbic acid alkyl esters family (ASCn) were selected, ASC16 and ASC14, which have different rheological properties when organized at the air/water interface. They are lipophilic forms of vitamin C used in topical pharmacological preparations. The effect of the phase state of the host lipid membranes on ASCn incorporation was explored using Langmuir monolayers. Films of pure lipids with known phase states have been selected, showing liquid-expanded, liquid-condensed, and solid phases as well as pure cholesterol films in liquid-ordered state. We also tested ternary and quaternary mixed films that mimic the properties of cholesterol containing membranes and of the stratum corneum. The compressibility and shear properties of those monolayers were assessed in order to define its phase character. We found that the length of the acyl chain of the ASCn compounds induces differential changes in the rheological properties of the host membrane and subtly regulates the kinetics and extent of the penetration process. The capacity for ASCn uptake was found to depend on the phase state of the host film. The increase in surface pressure resultant after amphiphile incorporation appears to be a function of the capacity of the host membrane to incorporate such amphiphile as well as the rheological response of the film. Hence, monolayers that show a solid phase state responded with a larger surface pressure increase to the incorporation of a comparable amount of amphiphile than liquid-expanded ones. The cholesterol-containing films, including the mixture that mimics stratum corneum, allowed a very scarce ASCn uptake independently of the membrane diffusional properties. This suggests an important contribution of Cho on the maintenance of the barrier function of stratum corneum.
Bayly, Simon R; King, Robert C; Honess, Davina J; Barnard, Peter J; Betts, Helen M; Holland, Jason P; Hueting, Rebekka; Bonnitcha, Paul D; Dilworth, Jonathan R; Aigbirhio, Franklin I; Christlieb, Martin
2008-11-01
A water-soluble glucose conjugate of the hypoxia tracer 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM) was synthesized and radiolabeled (64Cu-ATSE/A-G). Here we report our initial biological experiments with 64Cu-ATSE/A-G and compare the results with those obtained for 64Cu-ATSM and 18F-FDG. The uptake of 64Cu-ATSE/A-G and 64Cu-ATSM into HeLa cells in vitro was investigated at a range of dissolved oxygen concentrations representing normoxia, hypoxia, and anoxia. Small-animal PET with 64Cu-ATSE/A-G was performed in male BDIX rats implanted with P22 syngeneic carcinosarcomas. Images of 64Cu-ATSM and 18F-FDG were obtained in the same model for comparison. 64CuATSE/A-G showed oxygen concentration-dependent uptake in vitro and, under anoxic conditions, showed slightly lower levels of cellular uptake than 64Cu-ATSM; uptake levels under hypoxic conditions were also lower. Whereas the normoxic uptake of 64Cu-ATSM increased linearly over time, 64Cu-ATSE/A-G uptake remained at low levels over the entire time course. In the PET study, 64CuATSE/A-G showed good tumor uptake and a biodistribution pattern substantially different from that of each of the controls. In marked contrast to the findings for 64Cu-ATSM, renal clearance and accumulation in the bladder were observed. 64Cu-ATSE/A-G did not display the characteristic brain and heart uptake of 18F-FDG. The in vitro cell uptake studies demonstrated that 64Cu-ATSE/A-G retained hypoxia selectivity and had improved characteristics when compared with 64Cu-ATSM. The in vivo PET results indicated a difference in the excretion pathways, with a shift from primarily hepatointestinal for 64Cu-ATSM to partially renal with 64Cu-ATSE/A-G. This finding is consistent with the hydrophilic nature of the glucose conjugate. A comparison with 18F-FDG PET results revealed that 64Cu-ATSE/A-G was not a surrogate for glucose metabolism. We have demonstrated that our method for the modification of Cu-bis(thiosemicarbazonato) complexes allows their biodistribution to be modified without negating their hypoxia selectivity or tumor uptake properties.
Comparative Evaluation of Anti-HER2 Affibody Molecules Labeled with 64Cu Using NOTA and NODAGA
Yim, Cheng-Bin; Rajander, Johan; Perols, Anna; Karlström, Amelie Eriksson; Haaparanta-Solin, Merja; Grönroos, Tove J.; Solin, Olof; Orlova, Anna
2017-01-01
Imaging using affibody molecules enables discrimination between breast cancer metastases with high and low expression of HER2, making appropriate therapy selection possible. This study aimed to evaluate if the longer half-life of 64Cu (T1/2 = 12.7 h) would make 64Cu a superior nuclide compared to 68Ga for PET imaging of HER2 expression using affibody molecules. The synthetic ZHER2:S1 affibody molecule was conjugated with the chelators NOTA or NODAGA and labeled with 64Cu. The tumor-targeting properties of 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 were evaluated and compared with the targeting properties of 68Ga-NODAGA-ZHER2:S1 in mice. Both 64Cu-NOTA-ZHER2:S1 and 64Cu-NODAGA-ZHER2:S1 demonstrated specific targeting of HER2-expressing xenografts. At 2 h after injection of 64Cu-NOTA-ZHER2:S1, 64Cu-NODAGA-ZHER2:S1, and 68Ga-NODAGA-ZHER2:S1, tumor uptakes did not differ significantly. Renal uptake of 64Cu-labeled conjugates was dramatically reduced at 6 and 24 h after injection. Notably, radioactivity uptake concomitantly increased in blood, lung, liver, spleen, and intestines, which resulted in decreased tumor-to-organ ratios compared to 2 h postinjection. Organ uptake was lower for 64Cu-NODAGA-ZHER2:S1. The most probable explanation for this biodistribution pattern was the release and redistribution of renal radiometabolites. In conclusion, monoamide derivatives of NOTA and NODAGA may be suboptimal chelators for radiocopper labeling of anti-HER2 affibody molecules and, possibly, other scaffold proteins with high renal uptake. PMID:29097939
Gas Sorption and Storage Properties of Calixarenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Rahul S.; Banerjee, Debasis; Atwood, Jerry L.
2016-12-01
Calixarenes, a class of organic macrocyclic molecules have shown interesting gas sorption properties towards industrially important gases such as carbon di-oxide, hydrogen, methane and acetylene. These macrocycles are involved in weak van der Waals interaction to form multidimensional supramolecular frameworks. The gas-diffusion and subsequent sorption occurs due to a cooperative behavior between neighboring macrocycles. Furthermore, the flexibility at the upper rim functional group also plays a key role in the overall gas uptake of calixarene. In this book chapter, we give a brief account of interaction and diffusion of gases in calixarene and selected derivatives.
Fiorentino, Ilaria; Gualtieri, Roberto; Barbato, Vincenza; Mollo, Valentina; Braun, Sabrina; Angrisani, Alberto; Turano, Mimmo; Furia, Maria; Netti, Paolo A; Guarnieri, Daniela; Fusco, Sabato; Talevi, Riccardo
2015-01-15
Nanoparticle (NPs) delivery systems in vivo promises to overcome many obstacles associated with the administration of drugs, vaccines, plasmid DNA and RNA materials, making the study of their cellular uptake a central issue in nanomedicine. The uptake of NPs may be influenced by the cell culture stage and the NPs physical-chemical properties. So far, controversial data on NPs uptake have been derived owing to the heterogeneity of NPs and the general use of immortalized cancer cell lines that often behave differently from each other and from primary mammalian cell cultures. Main aims of the present study were to investigate the uptake, endocytosis pathways, intracellular fate and release of well standardized model particles, i.e. fluorescent 44 nm polystyrene NPs (PS-NPs), on two primary mammalian cell cultures, i.e. bovine oviductal epithelial cells (BOEC) and human colon fibroblasts (HCF) by confocal microscopy and spectrofluorimetric analysis. Different drugs and conditions that inhibit specific internalization routes were used to understand the mechanisms that mediate PS-NP uptake. Our data showed that PS-NPs are rapidly internalized by both cell types 1) with similar saturation kinetics; 2) through ATP-independent processes, and 3) quickly released in the culture medium. Our results suggest that PS-NPs are able to rapidly cross the cell membrane through passive translocation during both uptake and release, and emphasize the need to carefully design NPs for drug delivery, to ensure their selective uptake and to optimize their retainment in the targeted cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Vignali, Debora; Cantarelli, Elisa; Bordignon, Carlotta; Canu, Adriana; Citro, Antonio; Annoni, Andrea; Piemonti, Lorenzo; Monti, Paolo
2018-05-01
Stem memory T cells (Tscm) constitute the earliest developmental stage of memory T cells, displaying stem cell-like properties, such as self-renewal capacity. Their superior immune reconstitution potential has sparked interest in cancer immune therapy, vaccine development, and immune reconstitution, whereas their role in autoimmunity is largely unexplored. Here we show that autoreactive CD8 + Tscm specific for β-cell antigens GAD65, insulin, and IGRP are present in patients with type 1 diabetes (T1D). In vitro, the generation of autoreactive Tscm from naive precursors required the presence of the homeostatic cytokine interleukin-7 (IL-7). IL-7 promotes glucose uptake via overexpression of GLUT1 and upregulation of the glycolytic enzyme hexokinase 2. Even though metabolism depends on glucose uptake, the subsequent oxidation of pyruvate in the mitochondria was necessary for Tscm generation from naive precursors. In patients with T1D, high expression of GLUT1 was a hallmark of circulating Tscm, and targeting glucose uptake via GLUT1 using the selective inhibitor WZB117 resulted in inhibition of Tscm generation and expansion. Our results suggest that autoreactive Tscm are present in patients with T1D and can be selectively targeted by inhibition of glucose metabolism. © 2018 by the American Diabetes Association.
NASA Astrophysics Data System (ADS)
Patino, Tania; Mahajan, Ujjwal; Palankar, Raghavendra; Medvedev, Nikolay; Walowski, Jakob; Münzenberg, Markus; Mayerle, Julia; Delcea, Mihaela
2015-03-01
Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1 + MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (~1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy.Gold nanorods (AuNRs) have attracted considerable attention in plasmonic photothermal therapy for cancer treatment by exploiting their selective and localized heating effect due to their unique photophysical properties. Here we describe a strategy to design a novel multifunctional platform based on AuNRs to: (i) specifically target the adenocarcinoma MUC-1 marker through the use of the EPPT-1 peptide, (ii) enhance cellular uptake through a myristoylated polyarginine peptide (MPAP) and (iii) selectively induce cell death by ultra-short near infrared laser pulses. We used a biotin-avidin based approach to conjugate EPPT-1 and MPAP to AuNRs. Dual-peptide (EPPT-1 + MPAP) labelled AuNRs showed a significantly higher uptake by pancreatic ductal adenocarcinoma cells when compared to their single peptide or avidin conjugated counterparts. In addition, we selectively induced cell death by ultra-short near infrared laser pulses in small target volumes (~1 μm3), through the creation of plasmonic nanobubbles that lead to the destruction of a local cell environment. Our approach opens new avenues for conjugation of multiple ligands on AuNRs targeting cancer cells and tumors and it is relevant for plasmonic photothermal therapy. Electronic supplementary information (ESI) available: Size distribution histograms of the hydrodynamic diameter and ζ-potential of functionalized and CTAB stabilized AuNRs. Characterization of TR-AV functionalized AuNRs after 48 h at 4 °C. The ζ-potential of TR-AV functionalized AuNRs and CTAB stabilized AuNRs. The ζ-potential of peptide-conjugated AuNRs in water. See DOI: 10.1039/c5nr00114e
Ródenas, Reyes; Nieves-Cordones, Manuel; Rivero, Rosa M; Martinez, Vicente; Rubio, Francisco
2018-04-01
Potassium (K + ) and cesium (Cs + ) are chemically similar but while K + is an essential nutrient, Cs + can be toxic for living organisms, plants included. Two different situations could lead to problems derived from the presence of Cs + in agricultural systems: (1) presence of Cs + at high concentrations that could produce toxic effects on plants, (2) presence of micromolar concentrations of radiocesium, which can be accumulated in the plant and affect animal and human health through the food chain. While K + uptake has been well described in tomato plants, information on molecular mechanisms involved in Cs + accumulation in this species is absent. Here, we show that in tomato plants, high concentrations of Cs + produce deficiency of K + but do not induce high-affinity K + uptake or the gene encoding the high-affinity K + transporter SlHAK5. At these concentrations, Cs + uptake takes place through a Ca 2+ -sensitive pathway, probably a non-selective cation channel. At micromolar concentrations, Cs + is accumulated by a high-affinity uptake system upregulated in K + -starved plants. This high-affinity Cs + uptake shares features with high-affinity K + uptake. It is sensitive to NH 4 + and insensitive to Ba 2+ and Ca 2+ and its presence parallels the pattern of SlHAK5 expression. Moreover, blockers of reactive oxygen species and ethylene action repress SlHAK5 and negatively regulate both high-affinity K + and Cs + uptake. Thus, we propose that SlHAK5 contributes to Cs + uptake from micromolar concentrations in tomato plants and can constitute a pathway for radiocesium transfer from contaminated areas to the food chain. © 2017 Scandinavian Plant Physiology Society.
Amri, Ahmed; Le Clanche, Solenn; Thérond, Patrice; Bonnefont-Rousselot, Dominique; Borderie, Didier; Lai-Kuen, René; Chaumeil, Jean-Claude; Sfar, Souad; Charrueau, Christine
2014-04-01
The aim of the present study was to develop and characterize a resveratrol self-emulsifying drug delivery system (Res-SEDDS), and to compare the uptake of resveratrol by bovine aortic endothelial cells (BAECs), and the protection of these cells against hydrogen peroxide-mediated cell death, versus a control resveratrol ethanolic solution. Three Res-SEDDSs were prepared and evaluated. The in vitro self-emulsification properties of these formulations, the droplet size and the zeta potential of the nanoemulsions formed on adding them to water under mild agitation conditions were studied, together with their toxicity on BAECs. An optimal atoxic formulation (20% Miglyol® 812, 70% Montanox® 80, 10% ethanol 96% v/v) was selected and further studied. Pre-incubation of BAECs for 180 min with 25 μM resveratrol in the nanoemulsion obtained from the selected SEDDS significantly increased the membrane and intracellular concentrations of resveratrol (for example, 0.076±0.015 vs. ethanolic solution 0.041±0.016 nmol/mg of protein after 60 min incubation, p<0.05). Resveratrol intracellular localization was confirmed by fluorescence confocal microscopy. Resveratrol nanoemulsion significantly improved the endothelial cell protection from H2O2-induced injury (750, 1000 and 1500 μM H2O2) in comparison with incubation with the control resveratrol ethanolic solution (for example, 55±6% vs. 38±5% viability after 1500 μM H2O2 challenge, p<0.05). In conclusion, formulation of resveratrol as a SEDDS significantly improved its cellular uptake and potentiated its antioxidant properties on BAECs. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of Tumor Microenvironment on Selective Uptake of Boric Acid in HepG2 Human Hepatoma Cells.
Bai, Yu-Chi; Hsia, Yu-Chun; Lin, Yu-Ting; Chen, Kuan-Hao; Chou, Fong-In; Yang, Chia-Min; Chuang, Yung-Jen
2017-11-01
Feasibility and efficacy of boric acid (BA)-mediated boron neutron capture therapy (BNCT) was first demonstrated by eliminating hepatocellular carcinoma (HCC) in a rat model. Furthermore, selective uptake of BA by liver tumor cells was shown in a rabbit model. To gain further insight, this study aimed to investigate the mechanisms of transportation and selective uptake of BA in HepG2 liver tumor cells. Transportation of BA in HepG2 cells was analyzed by time-course assays and by analyzing the rate of diffusion versus the concentration of BA. The effect of different tumor conditions on BA uptake was studied by treating HepG2 cells with 25 μg 10 B/ml BA under different concentrations of glucose, at different pH and in the presence of water-soluble cholesterol. HepG2 cells mainly uptake BA by simple diffusion. Cell membrane permeability may also contribute to tumor-specific uptake of BA. The selective uptake of BA was achieved primarily by diffusion, while other factors, such as low pH and increased membrane fluidity, which are hallmarks of HCC, might further enhance BA uptake. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Faklaris, Orestis; Joshi, Vandana; Irinopoulou, Theano; Tauc, Patrick; Sennour, Mohamed; Girard, Hugues; Gesset, Céline; Arnault, Jean-Charles; Thorel, Alain; Boudou, Jean-Paul; Curmi, Patrick A; Treussart, François
2009-12-22
Diamond nanoparticles (nanodiamonds) have been recently proposed as new labels for cellular imaging. For small nanodiamonds (size <40 nm), resonant laser scattering and Raman scattering cross sections are too small to allow single nanoparticle observation. Nanodiamonds can, however, be rendered photoluminescent with a perfect photostability at room temperature. Such a remarkable property allows easier single-particle tracking over long time scales. In this work, we use photoluminescent nanodiamonds of size <50 nm for intracellular labeling and investigate the mechanism of their uptake by living cells. By blocking selectively different uptake processes, we show that nanodiamonds enter cells mainly by endocytosis, and converging data indicate that it is clathrin-mediated. We also examine nanodiamond intracellular localization in endocytic vesicles using immunofluorescence and transmission electron microscopy. We find a high degree of colocalization between vesicles and the biggest nanoparticles or aggregates, while the smallest particles appear free in the cytosol. Our results pave the way for the use of photoluminescent nanodiamonds in targeted intracellular labeling or biomolecule delivery.
SS, Negus; NK, Mello; HL, Kimmel; LL, Howell; FI, Carroll
2009-01-01
Cocaine blocks uptake of the monoamines dopamine, serotonin and norepinephrine, and monoamine uptake inhibitors constitute one class of drugs under consideration as candidate “agonist” medications for the treatment of cocaine abuse and dependence. The pharmacological selectivity of monoamine uptake inhibitors to block uptake of dopamine, serotonin and norepinephrine is one factor that may influence the efficacy and/or safety of these compounds as drug abuse treatment medications. To address this issue, the present study compared the effects of 7-day treatment with a non-selective monoamine uptake inhibitor (RTI-112) and a dopamine-selective uptake inhibitor (RTI-113) on cocaine- and food-maintained responding in rhesus monkeys. Monkeys (N=3) were trained to respond for cocaine injections (0.01 mg/kg/inj) and food pellets under a second-order schedule [FR2(VR16:S)] during alternating daily components of cocaine and food availability. Both RTI-112 (0.0032–0.01 mg/kg/hr) and RTI-113 (0.01–0.056 mg/kg/hr) produced dose-dependent, sustained and nearly complete elimination of cocaine self-administration. However, for both drugs, the potency to reduce cocaine self-administration was similar to the potency to reduce food-maintained responding. These findings do not support the hypothesis that pharmacological selectivity to block dopamine uptake is associated with behavioral selectivity to decrease cocaine- vs. food-maintained responding in rhesus monkeys. PMID:18755212
Mume, Eskender; Lynch, Daniel E; Uedono, Akira; Smith, Suzanne V
2011-06-21
Understanding how the size, charge and number of available pores in porous material influences the uptake and release properties is important for optimising their design and ultimately their application. Unfortunately there are no standard methods for screening porous materials in solution and therefore formulations must be developed for each encapsulated agent. This study investigates the potential of a library of radiotracers (nuclear sensors) for assessing the binding properties of hollow silica shell materials. Uptake and release of Cu(2+) and Co(2+) and their respective complexes with polyazacarboxylate macrocycles (dota and teta) and a series of hexa aza cages (diamsar, sarar and bis-(p-aminobenzyl)-diamsar) from the hollow silica shells was monitored using their radioisotopic analogues. Coordination chemistry of the metal (M) species, subtle alterations in the molecular architecture of ligands (Ligand) and their resultant complexes (M-Ligand) were found to significantly influence their uptake over pH 3 to 9 at room temperature. Positively charged species were selectively and rapidly (within 10 min) absorbed at pH 7 to 9. Negatively charged species were preferentially absorbed at low pH (3 to 5). Rates of release varied for each nuclear sensor, and time to establish equilibrium varied from minutes to days. The subtle changes in design of the nuclear sensors proved to be a valuable tool for determining the binding properties of porous materials. The data support the development of a library of nuclear sensors for screening porous materials for use in optimising the design of porous materials and the potential of nuclear sensors for high through-put screening of materials.
McQuade, Paul; Martin, Katherine E; Castle, Thomas C; Went, Michael J; Blower, Philip J; Welch, Michael J; Lewis, Jason S
2005-02-01
Cu-diacetyl-bis(N4-methylthiosemicarbazone) [Cu-ATSM], although excellent for oncology applications, may not be suitable for delineating cardiovascular or neurological hypoxia. For this reason, new Cu hypoxia positron emission tomography (PET) imaging agents are being examined to search for a higher selectivity for hypoxic or ischemic tissue at higher oxygen concentrations found in these tissues. Two approaches are to increase alkylation or to replace the sulfur atoms with selenium, resulting in the formation of selenosemicarbazones. Three 64Cu-labeled selenosemicarbazone complexes were synthesized and one was screened for hypoxia selectivity in vitro using EMT-6 mouse mammary carcinoma cells. Rodent biodistribution and small animal PET images were obtained from BALB/c mice implanted with EMT-6 tumors. One alkylated thiosemicarbazone was synthesized and examined. Of the three bis(selenosemicarbazone) ligands synthesized and examined, only 64Cu-diacetyl-bis(selenosemicarbazone) [64Cu-ASSM] was isolated in high-enough radiochemical purity to undertake cell uptake experiments where uptake was shown to be independent of oxygen concentration. The bis(thiosemicarbazone) complex synthesized, 64Cu-diacetyl-bis(N4-ethylthiosemicarbazone) [64Cu-ATSE], showed hypoxia selectivity similar to 64Cu-ATSM although at a higher oxygen concentration. Biodistribution studies for 64Cu-ASSM and 64Cu-ATSE showed high tumor uptake at 20 min (64Cu-ASSM, 10.33+/-0.78% ID/g; 64Cu-ATSE, 7.71+/-0.46% ID/g). PET images of EMT-6 tumor-bearing mice visualized the tumor with 64Cu-ATSE and revealed hypoxia selectivity consistent with the in vitro data. Of the compounds synthesized, only 64Cu-ASSM and 64Cu-ATSE could be examined in vitro and in vivo. Although the stability of bis(selenosemicarbazone) complexes increased upon addition of methyl groups to the diimine backbone, the fully alkylated species, 64Cu-ASSM, demonstrated no hypoxia selectivity. However, the additional alkylation present in Cu-ATSE modifies the hypoxia selectivity and in vivo properties when compared with Cu-ATSM.
Ethnic differences in diabetes prevalence and ICT use.
Umeh, Kanayo; Mackay, Michael; Le-Brun, Stephanie Davis
Uptake of information and communication technology (ICT) by individuals with diabetes can assist nursing care delivery, and improve patient outcomes. However, it is unclear how such uptake relates to ethnic differences in diabetes risk. To assess the moderating effects of ICT uptake on South Asian excess diabetes prevalence over a specific elapsed timeframe, accounting for selected environmental, socio-economic, and behavioural risk factors. Archived data from a UK Office for National Statistics household survey 2006-2011 (120 621 partly non-orthogonal participant records) were analysed using hierarchical binary logistic regression analyses. ICT uptake qualified ethnic differences in diabetes prevalence. Non-smoking diabetes cases living in terraced housing with a home computer were more likely to be South Asian than Caucasian. By contrast, such cases were more likely to be Caucasian if a computer was unavailable (OR: 0.61; CI: 0.43-0.86; P=0.005). Furthermore, diabetes cases from low-income, mobile-dependent homes were probably South Asian (OR: 0.05; CI: 0.00-0.50; P=0.012). Home computing was linked to better tobacco control among South Asians with diabetes living in terraced properties. Mobile phone dependence was pronounced in those that received income support. Implications for nursing care are considered.
Ibarra, Ilich A; Mace, Amber; Yang, Sihai; Sun, Junliang; Lee, Sukyung; Chang, Jong-San; Laaksonen, Aatto; Schröder, Martin; Zou, Xiaodong
2016-08-01
([Sc2(OH)2(BPTC)]) (H4BPTC = biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-400 (MFM = Manchester Framework Material, previously designated NOTT), and ([Sc(OH)(TDA)]) (H2TDA = thiophene-2,5-dicarboxylic acid), MFM-401, both show selective and reversible capture of CO2. In particular, MFM-400 exhibits a reasonably high CO2 uptake at low pressures and competitive CO2/N2 selectivity coupled to a moderate isosteric heat of adsorption (Qst) for CO2 (29.5 kJ mol(-1)) at zero coverage, thus affording a facile uptake-release process. Grand canonical Monte Carlo (GCMC) and density functional theory (DFT) computational analyses of CO2 uptake in both materials confirmed preferential adsorption sites consistent with the higher CO2 uptake observed experimentally for MFM-400 over MFM-401 at low pressures. For MFM-400, the Sc-OH group participates in moderate interactions with CO2 (Qst = 33.5 kJ mol(-1)), and these are complemented by weak hydrogen-bonding interactions (O···H-C = 3.10-3.22 Å) from four surrounding aromatic -CH groups. In the case of MFM-401, adsorption is provided by cooperative interactions of CO2 with the Sc-OH group and one C-H group. The binding energies obtained by DFT analysis for the adsorption sites for both materials correlate well with the observed moderate isosteric heats of adsorption for CO2. GCMC simulations for both materials confirmed higher uptake of EtOH compared with nonpolar vapors of toluene and cyclohexane. This is in good correlation with the experimental data, and DFT analysis confirmed the formation of a strong hydrogen bond between EtOH and the hydrogen atom of the hydroxyl group of the MFM-400 and MFM-401 framework (FW) with H-OEtOH···H-OFW distances of 1.77 and 1.75 Å, respectively. In addition, the accessible regeneration of MFM-400 and MFM-401 and release of CO2 potentially provide minimal economic and environmental penalties.
ApoA-II modulates the association of HDL with class B scavenger receptors SR-BI and CD36.
de Beer, Maria C; Castellani, Lawrence W; Cai, Lei; Stromberg, Arnold J; de Beer, Frederick C; van der Westhuyzen, Deneys R
2004-04-01
The class B scavenger receptors SR-BI and CD36 exhibit a broad ligand binding specificity. SR-BI is well characterized as a HDL receptor that mediates selective cholesteryl ester uptake from HDL. CD36, a receptor for oxidized LDL, also binds HDL and mediates selective cholesteryl ester uptake, although much less efficiently than SR-BI. Apolipoprotein A-II (apoA-II), the second most abundant HDL protein, is considered to be proatherogenic, but the underlying mechanisms are unclear. We previously showed that apoA-II modulates SR-BI-dependent binding and selective uptake of cholesteryl ester from reconstituted HDL. To investigate the effect of apoA-II in naturally occurring HDL on these processes, we compared HDL without apoA-II (from apoA-II null mice) with HDLs containing differing amounts of apoA-II (from C57BL/6 mice and transgenic mice expressing a mouse apoA-II transgene). The level of apoA-II in HDL was inversely correlated with HDL binding and selective cholesteryl ester uptake by both scavenger receptors, particularly CD36. Interestingly, for HDL lacking apoA-II, the efficiency with which CD36 mediated selective uptake reached a level similar to that of SR-BI. These results demonstrate that apoA-II exerts a marked effect on HDL binding and selective lipid uptake by the class B scavenger receptors and establishes a potentially important relationship between apoA-II and CD36.
Landsman, T L; Touchet, T; Hasan, S M; Smith, C; Russell, B; Rivera, J; Maitland, D J; Cosgriff-Hernandez, E
2017-01-01
Uncontrolled hemorrhage accounts for more than 30% of trauma deaths worldwide. Current hemostatic devices focus primarily on time to hemostasis, but prevention of bacterial infection is also critical for improving survival rates. In this study, we sought to improve on current devices used for hemorrhage control by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device. The focus of this work was to verify that the advantages of each respective material (SMP foam and hydrogel) are retained when combined in a composite device. The iodine-doped hydrogel demonstrated an 80% reduction in bacteria viability when cultured with a high bioburden of Staphylococcus aureus. Hydrogel coating of the SMP foam increased fluid uptake by 19× over the uncoated SMP foam. The composite device retained the shape memory behavior of the foam with more than 15× volume expansion after being submerged in 37°C water for 15 min. Finally, the expansion force of the composite was tested to assess potential tissue damage within the wound during device expansion. Expansion forces did not exceed 0.6N, making tissue damage during device expansion unlikely, even when the expanded device diameter is substantially larger than the target wound site. Overall, the enhanced fluid uptake and bactericidal properties of the shape memory foam composite indicate its strong potential as a hemostatic agent to treat non-compressible wounds. No hemostatic device currently used in civilian and combat trauma situations satisfies all the desired criteria for an optimal hemostatic wound dressing. The research presented here sought to improve on current devices by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device. The focus of this work was to verify that the advantages of each respective material are retained when combined into a composite device. This research opens the door to generating novel composites with a focus on both hemostasis, as well as wound healing and microbial prevention. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Köfalvi, Attila; Lemos, Cristina; Martín-Moreno, Ana M; Pinheiro, Bárbara S; García-García, Luis; Pozo, Miguel A; Valério-Fernandes, Ângela; Beleza, Rui O; Agostinho, Paula; Rodrigues, Ricardo J; Pasquaré, Susana J; Cunha, Rodrigo A; de Ceballos, María L
2016-11-01
Cannabinoid CB2 receptors (CB2Rs) are emerging as important therapeutic targets in brain disorders that typically involve neurometabolic alterations. We here addressed the possible role of CB2Rs in the regulation of glucose uptake in the mouse brain. To that aim, we have undertaken 1) measurement of (3)H-deoxyglucose uptake in cultured cortical astrocytes and neurons and in acute hippocampal slices; 2) real-time visualization of fluorescently labeled deoxyglucose uptake in superfused hippocampal slices; and 3) in vivo PET imaging of cerebral (18)F-fluorodeoxyglucose uptake. We now show that both selective (JWH133 and GP1a) as well as non-selective (WIN55212-2) CB2R agonists, but not the CB1R-selective agonist, ACEA, stimulate glucose uptake, in a manner that is sensitive to the CB2R-selective antagonist, AM630. Glucose uptake is stimulated in astrocytes and neurons in culture, in acute hippocampal slices, in different brain areas of young adult male C57Bl/6j and CD-1 mice, as well as in middle-aged C57Bl/6j mice. Among the endocannabinoid metabolizing enzymes, the selective inhibition of COX-2, rather than that of FAAH, MAGL or α,βDH6/12, also stimulates the uptake of glucose in hippocampal slices of middle-aged mice, an effect that was again prevented by AM630. However, we found the levels of the endocannabinoid, anandamide reduced in the hippocampus of TgAPP-2576 mice (a model of β-amyloidosis), and likely as a consequence, COX-2 inhibition failed to stimulate glucose uptake in these mice. Together, these results reveal a novel general glucoregulatory role for CB2Rs in the brain, raising therapeutic interest in CB2R agonists as nootropic agents. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
2009-09-01
tissues of beans grown in hydroponic solutions that were amended with 1-25 mg/L (ppm) 14C-RDX. Lachance et al. (2003) investigated bioaccumulation of non...1991) studied plant uptake of RDX into selected agronomic species, bush beans and wheat in 1- and 7-day hydroponic solutions amended with 10 ppm (mg/kg...properties of RDX do not suggest widespread dispersion in the environment; RDX has low water solubility, slow dissolution in aqueous solution , low vapor
Sorption, plant uptake and metabolism of benzodiazepines.
Carter, Laura J; Williams, Mike; Martin, Sheridan; Kamaludeen, Sara P B; Kookana, Rai S
2018-07-01
Reuse of treated wastewater for irrigation of crops is growing in arid and semi-arid regions, whilst increasing amounts of biosolids are being applied to fields to improve agricultural outputs. Due to incomplete removal in the wastewater treatment processes, pharmaceuticals present in treated wastewater and biosolids can contaminate soil systems. Benzodiazepines are a widely used class of pharmaceuticals that are released following wastewater treatment. Benzodiazepines are represented by a class of compounds with a range of physicochemical properties and this study was therefore designed to evaluate the influence of soil properties on the sorption behaviour and subsequent uptake of seven benzodiazepines (chlordiazepoxide, clonazepam, diazepam, flurazepam, oxazepam, temazepam and triazolam) in two plant species. The sorption and desorption behaviour of benzodiazepines was strongly influenced by soil type and hydrophobicity of the chemical. The partitioning behaviour of these chemicals in soil was a key controller of the uptake and accumulation of benzodiazepines by radish (Raphanus sativus) and silverbeet (Beta vulgaris). Benzodiazepines such as oxazepam that were neutral, had low sorption coefficients (K d ) or had pH-adjusted log octanol-water partition coefficients (log D ow , pH6.3) values close to 2 had the greatest extent of uptake. Conversely, benzodiazepines such as flurazepam that had an ionised functional groups and greater K d values had comparatively limited accumulation in the selected plant species. Results also revealed active in-plant metabolism of benzodiazepines, potentially analogous to the known metabolic transformation pathway of benzodiazepines in humans. Along with this observed biological transformation of benzodiazepines in exposed plants, previously work has established the widespread presence of the plant signalling molecule γ-amino butyric acid (GABA), which is specifically modulated by benzodiazepines in humans. This highlights the need for further assessment of the potential for biological activity of benzodiazepines following their plant uptake. Copyright © 2018. Published by Elsevier B.V.
Phosphate uptake studies of cross-linked chitosan bead materials.
Mahaninia, Mohammad H; Wilson, Lee D
2017-01-01
A systematic experimental study is reported that provides a molecular based understanding of cross-linked chitosan beads and their adsorption properties in aqueous solution containing phosphate dianion (HPO 4 2- ) species. Synthetically modified chitosan using epichlorohydrin and glutaraldehyde cross-linkers result in surface modified beads with variable hydrophile-lipophile character and tunable HPO 4 2- uptake properties. The kinetic and thermodynamic adsorption properties of cross-linked chitosan beads with HPO 4 2- species were studied in aqueous solution. Complementary structure and physicochemical characterization of chitosan beads via potentiometry, Raman spectroscopy, DSC, and dye adsorption measurements was carried out to establish structure-property relationships. The maximum uptake (Q m ) of bead systems with HPO 4 2- at equilibrium was 52.1mgg -1 ; whereas, kinetic uptake results for chitosan bead/phosphate systems are relatively rapid (0.111-0.113min -1 ) with an intraparticle diffusion rate-limiting step. The adsorption process follows a multi-step pathway involving inner- and outer-sphere complexes with significant changes in hydration. Phosphate uptake strongly depends on the composition and type of cross-linker used for preparation of chitosan beads. The adsorption isotherms and structural characterization of bead systems illustrate the role of surface charge, hydrophile-lipophile balance, adsorption site accessibility, and hydration properties of the chitosan bead surface. Copyright © 2016 Elsevier Inc. All rights reserved.
Škarohlíd, Jan; Ashcheulov, Petr; Škoda, Radek; Taylor, Andrew; Čtvrtlík, Radim; Tomáštík, Jan; Fendrych, František; Kopeček, Jaromír; Cháb, Vladimír; Cichoň, Stanislav; Sajdl, Petr; Macák, Jan; Xu, Peng; Partezana, Jonna M; Lorinčík, Jan; Prehradná, Jana; Steinbrück, Martin; Kratochvílová, Irena
2017-07-25
In this work, we demonstrate and describe an effective method of protecting zirconium fuel cladding against oxygen and hydrogen uptake at both accident and working temperatures in water-cooled nuclear reactor environments. Zr alloy samples were coated with nanocrystalline diamond (NCD) layers of different thicknesses, grown in a microwave plasma chemical vapor deposition apparatus. In addition to showing that such an NCD layer prevents the Zr alloy from directly interacting with water, we show that carbon released from the NCD film enters the underlying Zr material and changes its properties, such that uptake of oxygen and hydrogen is significantly decreased. After 100-170 days of exposure to hot water at 360 °C, the oxidation of the NCD-coated Zr plates was typically decreased by 40%. Protective NCD layers may prolong the lifetime of nuclear cladding and consequently enhance nuclear fuel burnup. NCD may also serve as a passive element for nuclear safety. NCD-coated ZIRLO claddings have been selected as a candidate for Accident Tolerant Fuel in commercially operated reactors in 2020.
Scherzer, Sönke; Krol, Elzbieta; Kreuzer, Ines; Kruse, Jörg; Karl, Franziska; von Rüden, Martin; Escalante-Perez, Maria; Müller, Thomas; Rennenberg, Heinz; Al-Rasheid, Khaled A S; Neher, Erwin; Hedrich, Rainer
2013-09-09
Ammonium transporter (AMT/MEP/Rh) superfamily members mediate ammonium uptake and retrieval. This pivotal transport system is conserved among all living organisms. For plants, nitrogen represents a macronutrient available in the soil as ammonium, nitrate, and organic nitrogen compounds. Plants living on extremely nutrient-poor soils have developed a number of adaptation mechanisms, including a carnivorous lifestyle. This study addresses the molecular nature, function, and regulation of prey-derived ammonium uptake in the Venus flytrap, Dionaea muscipula, one of the fastest active carnivores. The Dionaea muscipula ammonium transporter DmAMT1 was localized in gland complexes where its expression was upregulated upon secretion. These clusters of cells decorating the inner trap surface are engaged in (1) secretion of an acidic digestive enzyme cocktail and (2) uptake of prey-derived nutrients. Voltage clamp of Xenopus oocytes expressing DmAMT1 and membrane potential recordings with DmAMT1-expressing Dionaea glands were used to monitor and compare electrophysiological properties of DmAMT1 in vitro and in planta. DmAMT1 exhibited the hallmark biophysical properties of a NH4(+)-selective channel. At depolarized membrane potentials (Vm = 0), the Km (3.2 ± 0.3 mM) indicated a low affinity of DmAMT1 for ammonium that increased systematically with negative going voltages. Upon hyperpolarization to, e.g., -200 mV, a Km of 0.14 ± 0.015 mM documents the voltage-dependent shift of DmAMT1 into a NH4(+) transport system of high affinity. We suggest that regulation of glandular DmAMT1 and membrane potential readjustments of the endocrine cells provide for effective adaptation to varying, prey-derived ammonium sources. Copyright © 2013 Elsevier Ltd. All rights reserved.
wyffels, Leonie; Gray, Brian D.; Barber, Christy; Pak, Koon Y.; Forbes, Safiyyah; Mattis, Jeffrey A.; Woolfenden, James M.; Liu, Zhonglin
2012-01-01
A fluorescent zinc 2,2′-dipicolylamine coordination complex PSVue®794 (probe 1) is known to selectively bind to phosphatidylserine exposed on the surface of apoptotic and necrotic cells. In this study, we investigated the cell death targeting properties of probe 1 in myocardial ischemia-reperfusion injury. A rat heart model of ischemia-reperfusion was used. Probe 1, control dye, or 99mTc glucarate was intravenously injected in rats subjected to 30-minute and 5-minute myocardial ischemia followed by 2-hour reperfusion. At 90 minutes or 20 hours postinjection, myocardial uptake was evaluated ex vivo by fluorescence imaging and autoradiography. Hematoxylin-eosin and cleaved caspase-3 staining was performed on myocardial sections to demonstrate the presence of ischemiareperfusion injury and apoptosis. Selective accumulation of probe 1 could be detected in the area at risk up to 20 hours postinjection. Similar topography and extent of uptake of probe 1 and 99mTc glucarate were observed at 90 minutes postinjection. Histologic analysis demonstrated the presence of necrosis, but only a few apoptotic cells could be detected. Probe 1 selectively accumulates in myocardial ischemia-reperfusion injury and is a promising cell death imaging tool. PMID:22554483
Jha, Vinay Kumar; Matsuda, Motohide; Miyake, Michihiro
2008-12-15
Composite materials of activated carbon and zeolite have been prepared successfully by activating coal fly ash (CFA) by fusion with NaOH at 750 degrees C in N(2) followed by hydrothermal treatments under various conditions. Uptake experiments for Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were performed with the materials thus obtained from CFA. Of the various composite materials, that were obtained by hydrothermal treatment with NaOH solution (ca. 4M) at 80 degrees C (a composite of activated carbon and zeolite X/faujasite) proved to be the most suitable for the uptake of toxic metal ions. The relative selectivity of the present sorbents for the various ions was Pb(2+)>Cu(2+)>Cd(2+)>Ni(2+), with equilibrium uptake capacities of 2.65, 1.72, 1.44 and 1.20mmol/g, respectively. The sorption isotherm was a good fit to the Langmuir isotherm and the sorption is thought to progress mainly by ion exchange with Na(+). The overall reaction is pseudo-second order with rate constants of 0.14, 0.17, 0.21 and 0.20Lg/mmol min for the uptake of Pb(2+), Cu(2+), Cd(2+) and Ni(2+), respectively.
Hyperforin--a key constituent of St. John's wort specifically activates TRPC6 channels.
Leuner, Kristina; Kazanski, Victor; Müller, Margarethe; Essin, Kirill; Henke, Bettina; Gollasch, Maik; Harteneck, Christian; Müller, Walter E
2007-12-01
Hyperforin, a bicyclic polyprenylated acylphloroglucinol derivative, is the main active principle of St. John's wort extract responsible for its antidepressive profile. Hyperforin inhibits the neuronal serotonin and norepinephrine uptake comparable to synthetic antidepressants. In contrast to synthetic antidepressants directly blocking neuronal amine uptake, hyperforin increases synaptic serotonin and norepinephrine concentrations by an indirect and yet unknown mechanism. Our attempts to identify the molecular target of hyperforin resulted in the identification of TRPC6. Hyperforin induced sodium and calcium entry as well as currents in TRPC6-expressing cells. Sodium currents and the subsequent breakdown of the membrane sodium gradients may be the rationale for the inhibition of neuronal amine uptake. The hyperforin-induced cation entry was highly specific and related to TRPC6 and was suppressed in cells expressing a dominant negative mutant of TRPC6, whereas phylogenetically related channels, i.e., TRPC3 remained unaffected. Furthermore, hyperforin induces neuronal axonal sprouting like nerve growth factor in a TRPC6-dependent manner. These findings support the role of TRPC channels in neurite extension and identify hyperforin as the first selective pharmacological tool to study TRPC6 function. Hyperforin integrates inhibition of neurotransmitter uptake and neurotrophic property by specific activation of TRPC6 and represents an interesting lead-structure for a new class of antidepressants.
Singh, Varinder; Bedi, Gurleen Kaur; Shri, Richa
2017-01-01
Management of type 2 diabetes by delaying or preventing glucose absorption using natural products is gaining significant attention. Edible mushrooms are well documented for their nutritional and medicinal properties. This investigation was designed to evaluate the antidiabetic activity of aqueous extracts of selected culinary-medicinal mushrooms, namely, Pleurotus ostreatus, Calocybe indica, and Volvariella volvacea, using in vitro models (α-amylase inhibition assay, glucose uptake by yeast cells, and glucose adsorption capacity). The most active extract was subsequently examined in vivo using the oral starch tolerance test in mice. All prepared extracts showed dose-dependent inhibition of α-amylase and an increase in glucose transport across yeast cells. C. indica extract was the most active α-amylase inhibitor (half-maximal inhibitory concentration, 18.07 ± 0.75 mg/mL) and exhibited maximum glucose uptake by yeast cells (77.53 ± 0.97% at 35 mg/mL). All extracts demonstrated weak glucose adsorption ability. The positive in vitro tests for C. indica paved the way for in vivo studies. C. indica extract (200 and 400 mg/kg) significantly (P < 0.05) reduced postprandial blood glucose peaks in mice challenged with starch. The extract (400 mg/kg) and acarbose normalized blood glucose levels at 180 minutes, when they were statistically similar to values in normal mice. Thus, it may be concluded that the antidiabetic effect of C. indica is mediated by inhibition of starch metabolism (α-amylase inhibition), increased glucose uptake by peripheral cells (promotion of glucose uptake by yeast cells), and mild entrapment (adsorption) of glucose. Hence, C. indica can be developed as antidiabetic drug after detailed pharmacological studies.
Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad
2013-01-01
Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353
Uptake and elimination kinetics of metals in soil invertebrates: a review.
Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M
2014-10-01
Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassett, J.M.
1988-01-01
Metal-aquatic biota interactions are important in both natural and engineered systems. In this study, the uptake of cadmium, strontium and lead by the unicellular green alga Chlorella (UTEX 252) was investigated. Variables included metal concentration, pH, and ionic strength. Data gathered included dry weights (mg/l), cell counts (cells/ml), electrophoretic mobilities (EPMs, {mu}m/sec/V/cm) of metal-free and metal-exposed cells, and metal uptake - difference in concentration in filtrate of cell-metal and cell-free metal solutions. Derived data included cell volumes and surface area, uptake on a {mu}M/m{sup 2} basis, {zeta}-potentials, diffuse layer potentials and charge densities. Typical uptake values were 1.1, 5.2, andmore » 6 {mu}M/m{sup 2} for Cd, Pb, and Sr, respectively, from solutions of pH 6, ionic strength 0.02M, and metal concentration 10{sup {minus}4} M. Cell EPMs were insensitive to metal; under certain conditions, however, (pM > 4, pH > 8), cadmium exposed cells exhibited a reversal in surface charge from negative to positive. The chemical equilibrium model MINEQL1 + STANFORD was used to model algal surface properties and metal uptake. Input data included site pK, density, and {Delta}pK, estimated from EPM-pH data. The model described surface properties of Chlorella (UTEX 252) as judged by a close fit of {zeta}-potentials and model-derived diffuse layer potentials. Metal uptake was modelled by adjusting site density and/or metal-surface site equilibrium constants. Attempts to model surface properties and metal uptake simultaneously were not successful.« less
Adiredjo, Afifuddin Latif; Navaud, Olivier; Grieu, Philippe; Lamaze, Thierry
2014-12-01
This article evaluates the potential of intraspecific variation for whole-root hydraulic properties in sunflower. We investigated genotypic differences related to root water transport in four genotypes selected because of their differing water use efficiency (JAC doi: 10.1111/jac.12079. 2014). We used a pressure-flux approach to characterize hydraulic conductance (L 0 ) which reflects the overall water uptake capacity of the roots and hydraulic conductivity (Lp r ) which represents the root intrinsic water permeability on an area basis. The contribution of aquaporins (AQPs) to water uptake was explored using mercuric chloride (HgCl 2 ), a general AQP blocker. There were considerable variations in root morphology between genotypes. Mean values of L 0 and Lp r showed significant variation (above 60% in both cases) between recombinant inbred lines in control plants. Pressure-induced sap flow was strongly inhibited by HgCl 2 treatment in all genotypes (more than 50%) and contribution of AQPs to hydraulic conductivity varied between genotypes. Treated root systems displayed markedly different L 0 values between genotypes whereas Lp r values were similar. Our analysis points to marked differences between genotypes in the intrinsic aquaporin-dependent path (Lp r in control plants) but not in the intrinsic AQP-independent paths (Lp r in HgCl 2 treated plants). Overall, root anatomy was a major determinant of water transport properties of the whole organ and can compensate for a low AQP contribution. Hydraulic properties of root tissues and organs might have to be taken into account for plant breeding since they appear to play a key role in sunflower water balance and water use efficiency.
Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smectite
Lee, J.; Mortland, M.M.; Boyd, S.A.; Chiou, C.T.
1989-01-01
The adsorption of aromatic compounds by smectite exchanged with tetramethylammonium (TMA) has been studied. Aromatic compounds adsorbed by TMA-smectite are assumed to adopt a tilted orientation in a face-to-face arrangment with the TMA tetrahedra. The sorptive characteristics of TMA-smectite were influenced strongly by the presence of water. The dry TMA-smectite showed little selectivity in the uptake of benzen, toluene and xylene. In the presence of water, TMA-smectite showed a high degree of selectivity based on molecular size/shape, resulting in high uptake of benzene and progressively lower uptake of larger aromatic molecules. This selectivity appeared to result from the shrinkage of interlamellar cavities by water.
Nayak, Tapan K.; Ramesh, Chinnasamy; Hathaway, Helen J.; Norenberg, Jeffrey P.; Arterburn, Jeffrey B.; Prossnitz, Eric R.
2014-01-01
Our understanding of estrogen (E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER1/GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial and ovarian cancers, establishing the importance of non-invasive methods to evaluate GPER expression in vivo. Herein, we developed 99mTc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor and for GPER visualization in whole animals. A series of 99mTc(I)-labeled non-steroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10–30 nM range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4–1.1 %ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, mammary tissue) as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first generation 99mTc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/ image-guided drug delivery. PMID:25030373
Material properties that predict preservative uptake for silicone hydrogel contact lenses.
Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B
2012-11-01
To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.
Giudicianni, Paola; Pindozzi, Stefania; Grottola, Corinna Maria; Stanzione, Fernando; Faugno, Salvatore; Fagnano, Massimo; Fiorentino, Nunzio; Ragucci, Raffaele
2017-03-01
Biomasses to be used in the phytoremediation process are generally selected to match agronomic parameters and heavy metals uptake ability. A proper selection can be made greatly effective if knowledge of the properties of the residual char from pyrolysis is available to identify possible valorization routes. In this study a comparative analysis of the yields and characteristics of char obtained from slow pyrolysis of five uncontaminated biomasses (Populus nigra, Salix alba, Fraxinus oxyphylla, Eucalyptus occidentalis and Arundo donax) was carried out under steam atmosphere to better develop char porosity. Moreover, the dependence of the properties of solid residue on the process final temperature was studied for E. occidentalis in the temperature range of 688-967K. The results demonstrate that, among the studied biomasses, chars from P. nigra and E. occidentalis have to be preferred for applications regulated by surface phenomena given their highest surface area (270-300m 2 /g), whereas char from E. occidentalis is the best choice when the goal is to maximize energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles.
Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun
2016-05-06
Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 10(8) particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.
Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles
NASA Astrophysics Data System (ADS)
Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun
2016-05-01
Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.
Self-assembled Targeting of Cancer Cells by Iron(III)-doped, Silica Nanoparticles.
Mitchell, K K Pohaku; Sandoval, S; Cortes-Mateos, M J; Alfaro, J G; Kummel, A C; Trogler, W C
2014-12-07
Iron(III)-doped silica nanoshells are shown to possess an in vitro cell-receptor mediated targeting functionality for endocytosis. Compared to plain silica nanoparticles, iron enriched ones are shown to be target-specific, a property that makes them potentially better vehicles for applications, such as drug delivery and tumor imaging, by making them more selective and thereby reducing the nanoparticle dose. Iron(III) in the nanoshells can interact with endogenous transferrin, a serum protein found in mammalian cell culture media, which subsequently promotes transport of the nanoshells into cells by the transferrin receptor-mediated endocytosis pathway. The enhanced uptake of the iron(III)-doped nanoshells relative to undoped silica nanoshells by a transferrin receptor-mediated pathway was established using fluorescence and confocal microscopy in an epithelial breast cancer cell line. This process was also confirmed using fluorescence activated cell sorting (FACS) measurements that show competitive blocking of nanoparticle uptake by added holo-transferrin.
Hamilton, Terry F.; Martinelli, Roger E.; Kehl, Steven R.; ...
2015-10-19
A series of K d tracer batch experiments were conducted in this paper to assess the absorptive-desorption properties of Biochar as a potential agent to selectively sequester labile soil Cs or otherwise help reduce the uptake of Cs isotopes into plants. A parallel experiment was conducted for strontium. Fine-grained fractionated Woodlands tree Biochar was found to have a relatively high affinity for Cs ions (K d > 100) relative to coral soil (K d < 10) collected from the Marshall Islands. The Biochar material also contains an abundance of K (and Mg). Finally, these findings support a hypothesis that themore » addition of Biochar as a soil amendment may provide a simple yet effective method for reducing soil-to-plant transfer of Cs isotopes in contaminated environments.« less
Birch, Ditlev; Christensen, Malene Vinther; Staerk, Dan; Franzyk, Henrik; Nielsen, Hanne Mørck
2017-12-01
Cell-penetrating peptides constitute efficient delivery vectors, and studies of their uptake and mechanism of translocation typically involve fluorophore-labeled conjugates. In the present study, the influence of a number of specific fluorophores on the physico-chemical properties and uptake-related characteristics of penetratin were studied. An array of seven fluorophores belonging to distinct structural classes was examined, and the impact of fluorophore labeling on intracellular distribution and cytotoxicity was correlated to the physico-chemical properties of the conjugates. Exposure of several mammalian cell types to fluorophore-penetratin conjugates revealed a strong structure-dependent reduction in viability (1.5- to 20-fold lower IC 50 values as compared to those of non-labeled penetratin). Also, the degree of less severe effects on membrane integrity, as well as intracellular distribution patterns differed among the conjugates. Overall, neutral hydrophobic fluorophores or negatively charged fluorophores conferred less cytotoxicity as compared to the effect exerted by positively charged, hydrophobic fluorophores. The latter conjugates, however, exhibited less membrane association and more clearly defined intracellular distribution patterns. Thus, selection of the appropriate flurophore is critical. Copyright © 2017 Elsevier B.V. All rights reserved.
Bigucci, Federica; Abruzzo, Angela; Vitali, Beatrice; Saladini, Bruno; Cerchiara, Teresa; Gallucci, Maria Caterina; Luppi, Barbara
2015-01-30
The aim of this work was to prepare vaginal inserts based on chitosan/carboxymethylcellulose polyelectrolyte complexes for local delivery of chlorhexidine digluconate. Complexes were prepared with different chitosan/carboxymethylcellulose molar ratios at a pH value close to pKa interval of the polymers and were characterized in terms of physico-chemical properties, complexation yield and drug loading. Then complexes were used to prepare inserts as vaginal dosage forms and their physical handling, morphology, water-uptake ability and drug release properties as well as antimicrobial activity toward Candida albicans and Escherichia coli were evaluated. Results confirmed the ionic interaction between chitosan and carboxymethylcellulose and the influence of the charge amount on the complexation yield. Complexes were characterized by high values of drug loading and showed increasing water-uptake ability with the increase of carboxymethylcellulose amount. The selection of appropriate chitosan/carboxymethylcellulose molar ratios allowed to obtain cone-like shaped solid inserts, easy to handle and able to hydrate releasing the drug over time. Finally, the formulated inserts showed antimicrobial activity against common pathogens responsible for vaginal infections. Copyright © 2014 Elsevier B.V. All rights reserved.
Plant Water Uptake in Drying Soils1
Lobet, Guillaume; Couvreur, Valentin; Meunier, Félicien; Javaux, Mathieu; Draye, Xavier
2014-01-01
Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches. PMID:24515834
Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells.
Miyanokoshi, Miki; Yokosawa, Takumi; Wakasugi, Keisuke
2018-06-01
The tryptophan (Trp) transport system has a high affinity and selectivity toward Trp, and has been reported to exist in both human and mouse macrophages. Although this system is highly expressed in interferon-γ (IFN-γ)-treated cells and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells, its identity remains incompletely understood. Tryptophanyl-tRNA synthetase (TrpRS) is also highly expressed in IFN-γ-treated cells and also has high affinity and selectivity for Trp. Here, we investigated the effects of human TrpRS expression on Trp uptake into IFN-γ-treated human THP-1 monocytes or HeLa cells. Inhibition of human TrpRS expression by TrpRS-specific siRNAs decreased and overexpression of TrpRS increased Trp uptake into the cells. Of note, the TrpRS-mediated uptake system had more than hundred-fold higher affinity for Trp than the known System L amino acid transporter, promoted uptake of low Trp concentrations, and had very high Trp selectivity. Moreover, site-directed mutagenesis experiments indicated that Trp- and ATP-binding sites, but not tRNA-binding sites, in TrpRS are essential for TrpRS-mediated Trp uptake into the human cells. We further demonstrate that the addition of purified TrpRS to cell culture medium increases Trp uptake into cells. Taken together, our results reveal that TrpRS plays an important role in high-affinity Trp uptake into human cells. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Céspedes, Carlos L; Uchoa, Adjaci; Salazar, Juan R; Perich, Fernando; Pardo, Fernando
2002-04-10
Plant growth inhibitory effects of acetophenones 1-6, tremetones 7-12, and MeOH and CH(2)Cl(2) extracts from the aerial parts of Baccharis linnearis, Baccharis magellanica, and Baccharis umbelliformis collected in Chile were assayed as growth inhibitory activity in ranges of 10-500 microM and 0.1-150 ppm, respectively. The effects on seedling growth, germination, and respiration of ryegrass, lettuce, green tomato, and red clover weedy target species were measured. In addition to the inhibitory activity on bleaching of crocin induced by alkoxyl radicals, these compounds also demonstrated scavenging properties toward 2,2-diphenyl-1-picrylhydrazyl in thin-layer chromatography autographic and spectrophotometric assays. In addition, acetophenones and tremetones also showed inhibition of H(+) uptake and oxygen uptake respiration in isolated chloroplasts and mitochondria, respectively. Our results indicate that 1, 4, 7-12, and CH(2)Cl(2) extracts interfere with the dicot preemergence properties, mainly energy metabolism of the seeds at the level of respiration. These compounds appear to have selective effects on the radicle more than shoot growth of dicot seeds. Also, the levels of radicle inhibition obtained with some compounds on Physalis ixocarpa and Trifolium pratense are totally comparable to those of ovatifolin, a known natural growth inhibitor. This behavior might be responsible for its plant growth inhibitory properties and its possible role as an allelopathic agent.
Uptake mechanism for iodine species to black carbon.
Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu
2013-09-17
Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.
Prodrugs for Improving Tumor Targetability and Efficiency
Mahato, Rubi; Tai, Wanyi; Cheng, Kun
2011-01-01
As the mainstay in the treatment of various cancers for several decades, chemotherapy is successful but still faces challenges including non-selectivity and high toxicity. Improving the selectivity is therefore a critical step to improve the therapeutic efficacy of chemotherapy. Prodrug is one of the most promising approaches to increase the selectivity and efficacy of a chemotherapy drug. The classical prodrug approach is to improve the pharmaceutical properties (solubility, stability, permeability, irritation, distribution, etc.) via a simple chemical modification. This review will focus on various targeted prodrug designs that have been developed to increase the selectivity of chemotherapy drugs. Various tumor-targeting ligands, transporter-associated ligands, and polymers can be incorporated in a prodrug to enhance the tumor uptake. Prodrugs can also be activated by enzymes that are specifically expressed at a higher level in tumors, leading to a selective anti-tumor effect. This can be achieved by conjugating the enzyme to a tumor-specific antibody, or delivering a vector expressing the enzyme into tumor cells. PMID:21333700
NASA Astrophysics Data System (ADS)
Liu, Qing; Wen, Dafen; Yang, Yanran; Fei, Zhaoyang; Zhang, Zhuxiu; Chen, Xian; Tang, Jihai; Cui, Mifen; Qiao, Xu
2018-03-01
Hierarchical porous ZSM-5 (HP-ZSM-5) zeolites were synthesized by hydrothermal crystallization method adding triethoxyvinylsilane as the growth-inhibitor at different hydrothermal crystallized temperatures. The properties of the obtained samples were characterized by XRD, SEM, N2-sorption, uptake of ethylene, 27Al MAS NMR, NH3-TPD, and Py-IR. It was found that the mesopore was introduced and the acidity was adjusted over HP-ZSM-5 samples successfully. The hydrothermal crystallized temperature had an important influence on the porous structure and surface properties. The catalytic performance for chloromethane to light-olefins (CMTO) were also investigated. Compared with ZSM-5 samples, HP-ZSM-5 samples exhibited enhanced stability and increased selectivity of light-olefins for CMTO reaction because of the introduction of the abundant mesopore and appropriate acidity. The lifetime (the duration of chloromethane conversion >98%) and selectivity of light-olefins reached 115 h and 69.3%, respectively.
Uptake coefficients for biosolids-amended dryland winter wheat
USDA-ARS?s Scientific Manuscript database
Biosolids regulations developed in the United States employed risk assessment impacts of trace element additions on plant uptake. The US Environmental Protection Agency adapted the uptake coefficient (ratio of plant concentration to quantity of element added) when developing limitations on selected...
Lin, Shu-Fei; Bois, Frederic; Holden, Daniel; Nabulsi, Nabeel; Pracitto, Richard; Gao, Hong; Kapinos, Michael; Teng, Jo-Ku; Shirali, Anupama; Ropchan, Jim; Carson, Richard E; Elmore, Charles S; Vasdev, Neil; Huang, Yiyun
2017-01-01
The myriad physiological functions of γ-amino butyric acid (GABA) are mediated by the GABA-benzodiazepine receptor complex comprising of the GABA A , GABA B , and GABA C groups. The various GABA A subunits with region-specific distributions in the brain subserve different functional and physiological roles. For example, the sedative and anticonvulsive effects of classical benzodiazepines are attributed to the α 1 subunit, and the α 2 and α 3 subunits mediate the anxiolytic effect. To optimize pharmacotherapies with improved efficacy and devoid of undesirable side effects for the treatment of anxiety disorders, subtype-selective imaging radiotracers are required to assess target engagement at GABA sites and determine the dose-receptor occupancy relationships. The goal of this work was to characterize, in nonhuman primates, the in vivo binding profile of a novel positron emission tomography (PET) radiotracer, [ 11 C]ADO, which has been indicated to have functional selectivity for the GABA A α 2 /α 3 subunits. High specific activity [ 11 C]ADO was administrated to 3 rhesus monkeys, and PET scans of 120-minute duration were performed on the Focus-220 scanner. In the blood, [ 11 C]ADO metabolized at a fairly rapid rate, with ∼36% of the parent tracer remaining at 30 minutes postinjection. Uptake levels of [ 11 C]ADO in the brain were high (peak standardized uptake value of ∼3.0) and consistent with GABA A distribution, with highest activity levels in cortical areas, intermediate levels in cerebellum and thalamus, and lowest uptake in striatal regions and amygdala. Tissue kinetics was fast, with peak uptake in all brain regions within 20 minutes of tracer injection. The one-tissue compartment model provided good fits to regional time-activity curves and reliable measurement of kinetic parameters. The absolute test-retest variability of regional distribution volumes ( V T ) was low, ranging from 4.5% to 8.7%. Pretreatment with flumazenil (a subtype nonselective ligand, 0.2 mg/kg, intravenous [IV], n = 1), Ro15-4513 (an α 5 -selective ligand, 0.03 mg/kg, IV, n = 2), and zolpidem (an α 1 -selective ligand, 1.7 mg/kg, IV, n = 1) led to blockade of [ 11 C]ADO binding by 96.5%, 52.5%, and 76.5%, respectively, indicating the in vivo binding specificity of the radiotracer. Using the nondisplaceable volume of distribution ( V ND ) determined from the blocking studies, specific binding signals, as measured by values of regional binding potential ( BP ND ), ranged from 0.6 to 4.4, which are comparable to those of [ 11 C]flumazenil. In conclusion, [ 11 C]ADO was demonstrated to be a specific radiotracer for the GABA A receptors with several favorable properties: high brain uptake, fast tissue kinetics, and high levels of specific binding in nonhuman primates. However, subtype selectivity in vivo is not obvious for the radiotracer, and thus, the search for subtype-selective GABA A radiotracers continues.
The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa.
Wylie, J L; Worobec, E A
1995-01-01
Using interposon mutagenesis, we have generated strains of Pseudomonas aeruginosa which lack or overexpress the substrate-selective OprB porin of this species. A marked decrease or increase in the initial uptake of glucose by these strains verified the role of OprB in facilitating the diffusion of glucose across the outer membrane of P. aeruginosa. However, we also demonstrated that the loss or overexpression of OprB had a similar effect on the uptake of three other sugars able to support the growth of this bacterium (mannitol, glycerol, and fructose). This effect was restricted to carbohydrate transport; arginine uptake was identical in mutant and wild-type strains. These results indicated that OprB cannot be considered strictly a glucose-selective porin; rather, it acts as a central component of carbohydrate transport and is more accurately described as a carbohydrate-selective porin. PMID:7768797
The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa.
Wylie, J L; Worobec, E A
1995-06-01
Using interposon mutagenesis, we have generated strains of Pseudomonas aeruginosa which lack or overexpress the substrate-selective OprB porin of this species. A marked decrease or increase in the initial uptake of glucose by these strains verified the role of OprB in facilitating the diffusion of glucose across the outer membrane of P. aeruginosa. However, we also demonstrated that the loss or overexpression of OprB had a similar effect on the uptake of three other sugars able to support the growth of this bacterium (mannitol, glycerol, and fructose). This effect was restricted to carbohydrate transport; arginine uptake was identical in mutant and wild-type strains. These results indicated that OprB cannot be considered strictly a glucose-selective porin; rather, it acts as a central component of carbohydrate transport and is more accurately described as a carbohydrate-selective porin.
Biometric approach in selecting plants for phytoaccumulation of uranium.
Stojanović, Mirjana; Pezo, Lato; Lačnjevac, Časlav; Mihajlović, Marija; Petrović, Jelena; Milojković, Jelena; Stanojević, Marija
2016-01-01
This paper promotes the biometric classification system of plant cultivars, unique characteristics, in terms of the uranium (U) uptake, primarily in the function of the application for phytoremediation. It is known that the degree of adoption of U depends on the plant species and its morphological and physiological properties, but it is less known what impact have plants cultivars, sorts, and hybrids. Therefore, we investigated the U adoption in four cultivars of three plant species (corn, sunflower and soy bean). "Vegetation experiments were carried out in a plastic-house filled with soil (0.66 mgU) and with tailing (15.3 mgU kg(-1)) from closed uranium mine Gabrovnica-Kalna southeast of Serbia". Principal Component Analysis (PCA), Cluster Analysis (CA) and analysis of variance (ANOVA) were used for assessing the effect of different substrates cultivars, plant species and plant organs (root or shoot) on U uptake. Obtained results showed that a difference in U uptake by three investigated plant species depends not only of the type of substrate types and plant organs but also of their cultivars. Biometrics techniques provide a good opportunity for a better understanding the behavior of plants and obtaining much more useful information from the original data.
The effect of water uptake on the mechanical properties of low-k organosilica glass
X. Guo; J.E. Jakes; M.T. Nichols; S. Banna; Y. Nishi; J.L. Shohet
2013-01-01
Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of line integration and circuit reliability. The influence of absorbed water on the mechanical properties of plasma-enhanced chemical-vapor-deposited organosilicate glasses (SiCOH) was investigated with nanoindentation. The roles of physisorbed (α-...
Guo, Haixun; Gallazzi, Fabio; Miao, Yubin
2013-01-01
The purpose of this study was to examine the melanoma targeting and imaging properties of new 99mTc-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (α-MSH) peptides using bifunctional chelating agents. MAG3-GGNle-CycMSHhex, AcCG3-GGNle-CycMSHhex and HYNIC-GGNle-CycMSHhex peptides were synthesized and their melanocortin-1 (MC1) receptor binding affinities were determined in B16/F1 melanoma cells. The biodistribution of 99mTc-MAG3-GGNle-CycMSHhex, 99mTc-AcCG3-GGNle-CycMSHhex, 99mTc(CO)3-HYNIC-GGNle-CycMSHhex and 99mTc(EDDA)-HYNIC-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice at 2 h post-injection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of 99mTc(EDDA)-HYNIC-GGNle-CycMSHhex were further examined because of its high melanoma uptake and fast urinary clearance. The IC50 values of MAG3-GGNle-CycMSHhex, AcCG3-GGNle-CycMSHhex and HYNIC-GGNle-CycMSHhex were 1.0 ± 0.05, 1.2 ± 0.19 and 0.6 ± 0.04 nM in B16/F1 melanoma cells, respectively. Among these four 99mTc-peptides, 99mTc(EDDA)-HYNIC-GGNle-CycMSHhex exhibited the highest melanoma uptake (14.14 ± 4.90% ID/g) and fastest urinary clearance (91.26 ± 1.96% ID) at 2 h post-injection. 99mTc(EDDA)-HYNIC-GGNle-CycMSHhex showed high tumor to normal organ uptake ratios except for the kidneys. The tumor/kidney uptake ratios of 99mTc(EDDA)-HYNIC-GGNle-CycMSHhex were 2.50 and 3.55 at 4 and 24 h post-injection. The melanoma lesions were clearly visualized by SPECT/CT using 99mTc(EDDA)-HYNIC-GGNle-CycMSHhex as an imaging probe at 2 h post-injection. Overall, high melanoma uptake coupled with fast urinary clearance of 99mTc(EDDA)-HYNIC-GGNle-CycMSHhex highlighted its potential for metastatic melanoma detection in the future. PMID:23418722
Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system.
Ali, Imran; Alharbi, Omar M L; Alothman, Zeid A; Alwarthan, Abdulrahman
2018-01-01
Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system is described. Both uptake and degradation processes of (-)-o,p-DDT were slightly higher than (+)-o,p-DDT enantiomer. The optimized parameters for uptake were 7.0μgL -1 concentration of o,p-DDT, 60min contact time, 5.0pH, 6.0gL -1 amount of reverine sediment and 25°C temperature. The maximum degradation of both (-)- and (+)-o,p-DDT was obtained with 16 days, 0.4μgL -1 concentration of o,p-DDT, pH 7 and 35°C temperature. Both uptake and degraded process followed first order rate reaction. Thermodynamic parameters indicated exothermic nature of uptake and degradation processes. Both uptake and degradation were slightly higher for (-)-enantiomer in comparison to (+)-enantiomer of o,p-DDT. It was concluded that both uptake and degradation processes are responsible for the removal of o,p-DDT from nature but uptake plays a crucial role. The percentage degradations of (-)- and (+)-o,p-DDT were 30.1 and 29.5, respectively. This study may be useful to manage o,p-DDT contamination of our earth's ecosystem. Copyright © 2017. Published by Elsevier Inc.
Lima, Isabel; Marshall, Wayne E
2005-01-01
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.
Kindred, John H; Ketelhut, Nathaniel B; Rudroff, Thorsten
2015-02-01
Difficulties in ambulation are one of the main problems reported by patients with multiple sclerosis. A previous study by our research group showed increased recruitment of muscle groups during walking, but the influence of skeletal muscle properties, such as muscle fiber activity, has not been fully elucidated. The purpose of this investigation was to use the novel method of calculating glucose uptake heterogeneity in the leg muscles of patients with multiple sclerosis and compare these results to healthy controls. Eight patients with multiple sclerosis (4 men) and 8 healthy controls (4 men) performed 15 min of treadmill walking at a comfortable self-selected speed following muscle strength tests. Participants were injected with ≈ 8 mCi of [(18)F]-fluorodeoxyglucose during walking after which positron emission tomography/computed tomography imaging was performed. No differences in muscle strength were detected between multiple sclerosis and control groups (P>0.27). Within the multiple sclerosis, group differences in muscle volume existed between the stronger and weaker legs in the vastus lateralis, semitendinosus, and semimembranosus (P<0.03). Glucose uptake heterogeneity between the groups was not different for any muscle group or individual muscle of the legs (P>0.16, P≥0.05). Patients with multiple sclerosis and healthy controls showed similar muscle fiber activity during walking. Interpretations of these results, with respect to our previous study, suggest that walking difficulties in patients with multiple sclerosis may be more associated with altered central nervous system motor patterns rather than alterations in skeletal muscle properties. Published by Elsevier Ltd.
Rodriguez-Lorenzo, Laura; Fytianos, Kleanthis; Blank, Fabian; von Garnier, Christophe; Rothen-Rutishauser, Barbara; Petri-Fink, Alke
2014-04-09
In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
García, Mónica C; Manzo, Rubén H; Jimenez-Kairuz, Alvaro
2018-07-10
Polysaccharides-based delivery systems and interpolyelectrolyte complexes (IPECs) are interesting alternatives to control the release of drugs, thereby improving therapies. Benznidazole (BZ) is the selected drug for Chagas disease pharmacotherapy. However, its side effects limit its efficacy and safety. We developed novel multiparticulated BZ-loaded IPECs based on chitosan and alginic acid, and investigated their physicochemical and pharmacotechnical properties. IPECs were obtained using the casting solvent method, followed by wet granulation. They presented ionic interaction between the biopolymers, revealed that free BZ was uniformly distributed and showed adequate flow properties for hard gelatin-capsule formulation. The multiparticles exhibited mucoadhesion properties and revealed modulation of BZ release, depending on the release media, in accordance with the fluid uptake. The IPECs developed possess interesting properties that are promising for the design of novel alternatives to improve Chagas disease pharmacotherapy, which would diminish BZ's adverse effects and/or allow a reduction in the frequency of BZ administration. Copyright © 2018 Elsevier B.V. All rights reserved.
M. A. Tshabalala; C. Starr; N. R. Sutherland
2010-01-01
In this study, wood specimens were coated with water-borne silsesquioxane oligomers by an in situ sol-gel deposition process. The effect of these water-borne sol-gel thin films on weathering characteristics and moisture-uptake properties of the wood specimens were investigated. The weathering characteristics were investigated by exposure of the specimens to artificial...
Cisplatin carbonato complexes. Implications for uptake, antitumor properties, and toxicity.
Centerwall, Corey R; Goodisman, Jerry; Kerwood, Deborah J; Dabrowiak, James C
2005-09-21
The reaction of aquated cisplatin with carbonate which is present in culture media and blood is described. The first formed complex is a monochloro monocarbonato species, which upon continued exposure to carbonate slowly forms a biscarbonato complex. The formation of carbonato species under conditions that simulate therapy may have important implications for uptake, antitumor properties, and toxicity of cisplatin.
2016-03-28
PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS ANTHONY B. POLITO III, Maj, USAF, BSC, PhD, MT(ASCP)SBB March 2016 Final Report for March...HIGH CELLULAR UPTAKE IN VITRO WHILE PRESERVING OPTICAL PROPERTIES FOR BIO -IMAGING AND PHOTO-THERMAL APPLICATIONS. 5a. CONTRACT NUMBER 5b...These findings identify MTAB-TA GNRs as prime candidates for use in nano-based bio -imaging and photo-thermal applications. 15. SUBJECT TERMS
Groot, Joost; Cepress-Mclean, Sidney C; Robbins-Pianka, Adam; Knight, Rob; Gill, Ryan T
2017-04-01
Engineering the simultaneous consumption of glucose and xylose sugars is critical to enable the sustainable production of biofuels from lignocellulosic biomass. In most major industrial microorganisms glucose completely inhibits the uptake of xylose, limiting efficient sugar mixture conversion. In E. coli removal of the major glucose transporter PTS allows for glucose and xylose co-consumption but only after prolonged adaptation, which is an effective process but hard to control and prone to co-evolving undesired traits. Here we synthetically engineer mutants to target sugar co-consumption properties; we subject a PTS - mutant to a short adaptive step and subsequently either delete or overexpress key genes previously suggested to affect sugar consumption. Screening the co-consumption properties of these mutants individually is very laborious. We show we can evaluate sugar co-consumption properties in parallel by culturing the mutants in selection and applying a novel approach that computes mutant growth rates in selection using chromosomal barcode counts obtained from Next-Generation Sequencing. We validate this multiplex growth rate phenotyping approach with individual mutant pure cultures, identify new instances of mutants cross-feeding on metabolic byproducts, and, importantly, find that the rates of glucose and xylose co-consumption can be tuned by altering glucokinase expression in our PTS - background. Biotechnol. Bioeng. 2017;114: 885-893. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Fan, Y K; Croom, W J; Eisen, E J; Daniel, L R; Black, B L; McBride, B W
1996-11-01
Five-wk-old male mice from high growth (M16) and randomly bred control (ICR) lines, plus their reciprocal crosses, ICR x M16 and M16 x ICR, were used to investigate whether whole-body O2 consumption, jejunal respiration, jejunal glucose absorption and the apparent energetic efficiency of jejunal active glucose uptake in mice are altered by genetic selection for growth as well as by heterosis and maternal effects. Whole-body O2 consumption was measured in 12 mice from each line or cross. The mice were later killed for measurement of jejunal O2, using tissue respiration chambers and jejunal glucose transport determined by 3H-3-O-methylglucose accumulation. No heterosis or maternal effects were detected in jejunal glucose active transport and active glucose uptake. Selection for growth (M16 vs. ICR) increased daily gain (1.54 vs. 1.09 g, P < 0.001), small intestinal length and weight, but did not enhance jejunal glucose transport. The apparent energetic efficiency of jejunal active glucose uptake among lines was not different (54.0, 50.4, 51.6 and 47.1 nmol ATP expended/nmol glucose uptake for M16, ICR, M16 x ICR and ICR x M16, respectively, P > 0.63). Selection for growth in mice did not result in more energetically efficient jejunal glucose absorption.
NASA Astrophysics Data System (ADS)
Cooksey, Tyler; Singh, Avantika; Mai Le, Kim; Wang, Shu; Kelley, Elizabeth; He, Lilin; Vajjala Kesava, Sameer; Gomez, Enrique; Kidd, Bryce; Madsen, Louis; Robertson, Megan
The self-assembly of block copolymers into micelles when introduced to selective solvents enables a wide array of applications, ranging from drug delivery to personal care products to nanoreactors. In order to probe the assembly and dynamics of micellar systems, the structural properties and solvent uptake of biocompatible poly(ethylene oxide-b- ɛ-caprolactone) (PEO-PCL) diblock copolymers in deuterated water (D2O) / tetrahydrofuran (THFd8) mixtures were investigated using small-angle neutron scattering in combination with nuclear magnetic resonance. PEO-PCL block copolymers, of varying molecular weight yet constant block ratio, formed spherical micelles through a wide range of solvent compositions. Varying the composition from 10 to 60 % by volume THFd8\\ in D2O / THFd8 mixtures was a means of varying the core-corona interfacial tension in the micelle system. An increase in THFd8 content in the bulk solvent increased the solvent uptake within the micelle core, which was comparable for the two series, irrespective of the polymer molecular weight. Differences in the behaviors of the micelle size parameters as the solvent composition varied originated from the differing trends in aggregation number for the two micelle series. Incorporation of the known unimer content determined from NMR allowed refinement of extracted micelle parameters.
Mandla A. Tshabalala; Ryan Libert; Christian M. Schaller
2011-01-01
In recent years, there has been increased interest in the use of inorganic UV blocking nanoparticles for photostabilization of wood surfaces. Photostability and moisture uptake properties of wood veneers coated with a combination of hybrid inorganic-organic thin sol-gel films and organic light stabilizers was investigated. The light stabilizers were applied by brushing...
Crane, R A; Sapsford, D J
2018-07-01
This paper introduces the concept of 'Precision Mining' of metals which can be defined as a process for the selective in situ uptake of a metal from a material or media, with subsequent retrieval and recovery of the target metal. In order to demonstrate this concept nanoscale zerovalent iron (nZVI) was loaded onto diatomaceous earth (DE) and tested for the selective uptake of Cu from acid mine drainage (AMD) and subsequent release. Batch experiments were conducted using the AMD and nZVI-DE at 4.0-16.0 g/L. Results demonstrate nZVI-DE as highly selective for Cu removal with >99% uptake recorded after 0.25 h when using nZVI-DE concentrations ≥12.0 g/L, despite appreciable concentrations of numerous other metals in the AMD, namely: Co, Ni, Mn and Zn. Cu uptake was maintained in excess of 4 and 24 h when using nZVI-DE concentrations of 12.0 and 16.0 g/L respectively. Near-total Cu release from the nZVI-DE was then recorded and attributed to the depletion of the nZVI component and the subsequent Eh, DO and pH recovery. This novel Cu uptake and release mechanism, once appropriately engineered, holds great promise as a novel 'Precision Mining' process for the rapid and selective Cu recovery from acidic wastewater, process effluents and leach liquors. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.
2002-01-01
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.
Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing.
Rouet, Romain; Thuma, Benjamin A; Roy, Marc D; Lintner, Nathanael G; Rubitski, David M; Finley, James E; Wisniewska, Hanna M; Mendonsa, Rima; Hirsh, Ariana; de Oñate, Lorena; Compte Barrón, Joan; McLellan, Thomas J; Bellenger, Justin; Feng, Xidong; Varghese, Alison; Chrunyk, Boris A; Borzilleri, Kris; Hesp, Kevin D; Zhou, Kaihong; Ma, Nannan; Tu, Meihua; Dullea, Robert; McClure, Kim F; Wilson, Ross C; Liras, Spiros; Mascitti, Vincent; Doudna, Jennifer A
2018-05-30
CRISPR-Cas RNA-guided endonucleases hold great promise for disrupting or correcting genomic sequences through site-specific DNA cleavage and repair. However, the lack of methods for cell- and tissue-selective delivery currently limits both research and clinical uses of these enzymes. We report the design and in vitro evaluation of S. pyogenes Cas9 proteins harboring asialoglycoprotein receptor ligands (ASGPrL). In particular, we demonstrate that the resulting ribonucleoproteins (Cas9-ASGPrL RNP) can be engineered to be preferentially internalized into cells expressing the corresponding receptor on their surface. Uptake of such fluorescently labeled proteins in liver-derived cell lines HEPG2 (ASGPr+) and SKHEP (control; diminished ASGPr) was studied by live cell imaging and demonstrates increased accumulation of Cas9-ASGPrL RNP in HEPG2 cells as a result of effective ASGPr-mediated endocytosis. When uptake occurred in the presence of a peptide with endosomolytic properties, we observed receptor-facilitated and cell-type specific gene editing that did not rely on electroporation or the use of transfection reagents. Overall, these in vitro results validate the receptor-mediated delivery of genome-editing enzymes as an approach for cell-selective gene editing and provide a framework for future potential applications to hepatoselective gene editing in vivo.
Saha, Dipendu; Orkoulas, Gerassimos; Chen, Jihua; ...
2017-03-01
In this research, we have synthesized two sulfur functionalized nanoporous carbons by post-synthesis modifications with sulfur bearing activating agents that simultaneously enhanced the surface area and introduced sulfur functionalities on the carbon surface. The Brunauer–Emmett–Teller (BET) surface areas of these materials were 2865 and 837 m 2/g with total sulfur contents of 8.2 and 12.9 %, respectively. The sulfur-functionalized carbons were characterized with pore textural properties, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electron microscopy (SEM and TEM). In both the carbons, CO 2 adsorption isotherms and kinetics were measured in three different temperatures of 298, 288 and 278more » K and pressures up to 760 torr. The gravimetric CO 2 uptake followed the trend with BET surface area but the surface area-based uptake was reversed and it followed the trend of sulfur content. The heat of adsorption of CO 2 in low uptake was 60-65 kJ/mol, which is the highest for CO 2 adsorption in porous carbons. In order to investigate the adsorptive separation of CO 2, N 2 and CH 4 adsorption isotherms were also measured at 298 K and 760 torr. The selectivity of separation for CO 2/N 2 and CO 2/CH 4 was calculated based on the Ideal Adsorbed Solution Theory (IAST) and all the results demonstrated the high CO 2 selectivity for the carbon with higher sulfur content. The adsorption isotherms were combined with mass balances to calculate the breakthrough behavior of the binary mixtures of CO 2/N 2 and CO 2/CH 4. The simulation results demonstrated that the dimensionless breakthrough time is a decreasing function of the mole fraction of CO 2 in the feed stream. The overall results suggest that the sulfurfunctionalized carbons can be employed as potential adsorbents for CO 2 separation.« less
Nayak, Tapan K; Ramesh, Chinnasamy; Hathaway, Helen J; Norenberg, Jeffrey P; Arterburn, Jeffrey B; Prossnitz, Eric R
2014-11-01
Our understanding of estrogen (17β-estradiol, E2) receptor biology has evolved in recent years with the discovery and characterization of a 7-transmembrane-spanning G protein-coupled estrogen receptor (GPER/GPR30) and the development of GPER-selective functional chemical probes. GPER is highly expressed in certain breast, endometrial, and ovarian cancers, establishing the importance of noninvasive methods to evaluate GPER expression in vivo. Here, we developed (99m)Tc-labeled GPER ligands to demonstrate the in vivo status of GPER as an estrogen receptor (ER) and for GPER visualization in whole animals. A series of (99m)Tc(I)-labeled nonsteroidal tetrahydro-3H-cyclopenta[c]quinolone derivatives was synthesized utilizing pyridin-2-yl hydrazine and picolylamine chelates. Radioligand receptor binding studies revealed binding affinities in the 10 to 30 nmol/L range. Cell signaling assays previously demonstrated that derivatives retaining a ketone functionality displayed agonist properties, whereas those lacking such a hydrogen bond acceptor were antagonists. In vivo biodistribution and imaging studies performed on mice bearing human endometrial and breast cancer cell xenografts yielded significant tumor uptake (0.4-1.1%ID/g). Blocking studies revealed specific uptake in multiple organs (adrenals, uterus, and mammary tissue), as well as tumor uptake with similar levels of competition by E2 and G-1, a GPER-selective agonist. In conclusion, we synthesized and evaluated a series of first-generation (99m)Tc-labeled GPER-specific radioligands, demonstrating GPER as an estrogen-binding receptor for the first time in vivo using competitive binding principles, and establishing the utility of such ligands as tumor imaging agents. These results warrant further investigation into the role of GPER in estrogen-mediated carcinogenesis and as a target for diagnostic/therapeutic/image-guided drug delivery. These studies provide a molecular basis to evaluate GPER expression and function as an ER through in vivo imaging. ©2014 American Association for Cancer Research.
Cerenkov Luminescence Imaging as a Modality to Evaluate Antibody-Based PET Radiotracers
D’Souza, Jimson W.; Hensley, Harvey; Doss, Mohan; Beigarten, Charles; Torgov, Michael; Olafsen, Tove; Yu, Jian Q.
2017-01-01
Antibodies, and engineered antibody fragments, labeled with radioisotopes are being developed as radiotracers for the detection and phenotyping of diseases such as cancer. The development of antibody-based radiotracers requires extensive characterization of their in vitro and in vivo properties, including their ability to target tumors in an antigen-selective manner. In this study, we investigated the use of Cerenkov luminescence imaging (CLI) as compared with PET as a modality for evaluating the in vivo behavior of antibody-based radiotracers. Methods: The anti–prostate-specific membrane antigen (PSMA) huJ591 antibody (IgG; 150 kDa) and its minibody (Mb; 80 kDa) format were functionalized with the chelator 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA) and radiolabeled with the positron-emitting radionuclide 64Cu (half-life, 12.7 h). Immunoreactive preparations of the radiolabeled antibodies were injected into NCr nu/nu mice harboring PSMA-positive CWR22Rv1 and PSMA-negative PC-3 tumor xenografts. Tumor targeting was evaluated by both PET and CLI. Results: 64Cu-NODAGA-PSMA-IgG and 64Cu-NODAGA-PSMA-Mb retained the ability to bind cell surface PSMA, and both radiotracers exhibited selective uptake into PSMA-positive tumors. Under the experimental conditions used, PSMA-selective uptake of 64Cu-NODAGA-PSMA-IgG and 64Cu-NODAGA-PSMA-Mb was observed by CLI as early as 3 h after injection, with tumor-to-background ratios peaking at 24 (IgG) and 16 (Mb) h after injection. Targeting data generated by CLI correlated with that generated by PET and necropsy. Conclusion: CLI provided a rapid and simple assessment of the targeting specificity and pharmacokinetics of the antibody-based PET radiotracers that correlated well with the behavior observed by standard PET imaging. Moreover, CLI provided clear discrimination between uptake kinetics of an intact IgG and its small-molecular-weight derivative Mb. These data support the use of CLI for the evaluation of radiotracer performance. PMID:27539844
Miyazawa, Taiki; Kamiyoshihara, Reina; Shimizu, Naoki; Harigae, Takahiro; Otoki, Yurika; Ito, Junya; Kato, Shunji; Miyazawa, Teruo
2018-01-01
Liposomes consisting of 100% phosphatidylcholine exhibit poor membrane fusion, cellular uptake and selective targeting capacities. To overcome these limitations, we used Amadori-glycated phosphatidylethanolamine, which is universally present in animals and commonly consumed in foods. We found that liposomes containing Amadori-glycated phosphatidylethanolamine exhibited significantly reduced negative membrane potential and demonstrated high cellular uptake. PMID:29515844
A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte.
Jordan, Fiona L; Robin-Abbott, Molly; Maier, Raina M; Glenn, Edward P
2002-12-01
Phytoextraction is the use of plants to remove contaminants, in particular metals, from soil via root uptake and translocation to the shoots. Efficient phytoextraction requires high-biomass plants with efficient translocating properties. Halophytes characteristically accumulate large quantities of salts in above ground tissue material and can have high biomass production. It has been speculated that salt-tolerant plants may also be heavy metal tolerant and, further, may be able to accumulate metals. This study compared growth and metal uptake by a halophyte, Atriplex nummularia, and a common glycophyte, Zea mays, in a mine-tailing contaminated soil:mulch mixture. Two chelators, ethylenediaminetetraacetic acid (EDTA) and rhamnolipid, were used to facilitate plant metal uptake. Despite a lower growth rate (2% growth/d) in the contaminated soil, the halophyte accumulated roughly the same amount of metals as the glycophyte on a mass basis (30-40 mg/kg dry wt). Neither plant, however, hyperaccumulated any of the metals tested. When treated with EDTA, specific differences in patterns of metal uptake between the two plants emerged. The halophyte accumulated significantly more Cu (2x) and Pb (1x) in the shoots than the glycophyte, but root metal concentrations were generally higher for the glycophyte, indicating that the halophyte translocated more metal from the root to the shoot than the glycophyte. For example, Zn shoot-to-root ratios ranged from 1.4 to 2.1 for Atriplex and from 0.5 to 0.6 for Z. mays. The biodegradable chelator rhamnolipid was not effective at enhancing shoot metal concentrations, even though radiolabeled chelator was found in the shoot material of both plants. Our results suggest that halophytes, despite their slower growth rates, may have greater potential to selectively phytoextract metals from contaminated soils than glycophytes.
NASA Astrophysics Data System (ADS)
Marmorato, P.; Simonelli, F.; Abbas, K.; Kozempel, J.; Holzwarth, U.; Franchini, F.; Ponti, J.; Gibson, N.; Rossi, F.
2011-12-01
Magnetite nanoparticles (Fe3O4 NPs) are manufactured nanomaterials increasingly used in healthcare for different medical applications ranging from diagnosis to therapy. This study deals with the irradiation of Fe3O4 NPs with a proton beam in order to produce 56Co as radiolabel and also with the possible use of nuclear techniques for the quantification of Fe3O4 NPs in biological systems. Particular attention has been focused on the size distribution (in the range of 100 nm) and the surface charge of the NPs characterizing them before and after the irradiation process in order to verify if these essential properties would be preserved during irradiation. Moreover, X-ray diffraction studies have been performed on radioactive and non-radioactive NPs, to assess if major changes in NPs structure might occur due to thermal and/or radiation effects. The radiation emitted from the radiolabels has been used to quantify the cellular uptake of the NPs in in vitro studies. As for the biological applications two cell lines have been selected: immortalized mouse fibroblast cell line (Balb/3T3) and human epithelial colorectal adenocarcinoma cell line (Caco-2). The cell uptake has been quantified by radioactivity measurements of the 56Co radioisotope performed with high resolution γ-ray spectrometry equipment. This study has showed that, under well-established irradiation conditions, Fe3O4 NPs do not undergo significant structural modifications and thus the obtained results are in line with the uptake studies carried out with the same non-radioactive nanomaterials (NMs). Therefore, the radiolabelling method can be fruitfully applied to uptake studies because of the low-level exposure where higher sensitivity is required.
64Cu-Labeled Phosphonium Cations as PET Radiotracers for Tumor Imaging
Zhou, Yang; Liu, Shuang
2011-01-01
Alteration in mitochondrial transmembrane potential (ΔΨm) is an important characteristic of cancer. The observation that the enhanced negative mitochondrial potential is prevalent in tumor cell phenotype provides a conceptual basis for development of mitochondrion-targeting therapeutic drugs and molecular imaging probes. Since plasma and mitochondrial potentials are negative, many delocalized organic cations, such as rhodamine-123 and 3H-tetraphenylphosphonium, are electrophoretically driven through these membranes, and able to localize in the energized mitochondria of tumor cells. Cationic radiotracers, such as 99mTc-Sestamibi and 99mTc-Tetrofosmin, have been clinically used for diagnosis of cancer by single photon emission computed tomography (SPECT) and noninvasive monitoring of the multidrug resistance (MDR) transport function in tumors of different origin. However, their diagnostic and prognostic values are often limited due to their insufficient tumor localization (low radiotracer tumor uptake) and high radioactivity accumulation in the chest and abdominal regions (low tumor selectivity). In contrast, the 64Cu-labeled phosphonium cations represent a new class of PET (positron emission tomography) radiotracers with good tumor uptake and high tumor selectivity. This review article will focus on our recent experiences in evaluation of 64Cu-labeled phosphonium cations as potential PET radiotracers. The main objective is to illustrate the impact of radiometal chelate on physical, chemical and biological properties of 64Cu radiotracers. It will also discuss some important issues related to their tumor selectivity and possible tumor localization mechanism. PMID:21696200
Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.
Lee, Yurim; Lim, Yeni; Kwon, Oran
2015-09-18
This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition.
Harmane: an atypical neurotransmitter?
Abu Ghazaleh, Haya; Lalies, Maggie D; Nutt, David J; Hudson, Alan L
2015-03-17
Harmane is an active component of clonidine displacing substance and a candidate endogenous ligand for imidazoline binding sites. The neurochemistry of tritiated harmane was investigated in the present study examining its uptake and release properties in the rat brain central nervous system (CNS) in vitro. At physiological temperature, [(3)H]harmane was shown to be taken up in rat brain cortex. Further investigations demonstrated that treatment with monoamine uptake blockers (citalopram, nomifensine and nisoxetine) did not alter [(3)H]harmane uptake implicating that the route of [(3)H]harmane transport was distinct from the monoamine uptake systems. Furthermore, imidazoline ligands (rilmenidine, efaroxan, 2-BFI and idazoxan) showed no prominent effect on [(3)H]harmane uptake suggesting the lack of involvement of imidazoline binding sites. Subsequent analyses showed that disruption of the Na(+) gradient using ouabain or choline chloride did not block [(3)H]harmane uptake suggesting a Na(+)-independent transport mechanism. Moreover, higher temperatures (50°C) failed to impede [(3)H]harmane uptake implying a non-physiological transporter. The failure of potassium to evoke the release of preloaded [(3)H]harmane from rat brain cortex indicates that the properties of this putative endogenous ligand for imidazoline binding sites do not resemble that of a conventional neurotransmitter. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sholichah, Enny; Purwono, Bambang; Nugroho, Pramono
2017-12-01
This research studied the effect of PVA as organic polymer and citric acid as crosslinker agent in the arrowroot starch/PVA blend films. The properties of films were investigated by water uptake, water vapor permeability, mechanical properties, thermal stability, spectra of FTIR and XRD patterns. PVA used in this research influenced the film properties at the highest concentration. The cross-linkingsinter or intra molecules of arrowroot and PVA were developed as ester bonds which are formed from the reaction of hydroxyl groups consisting of starch and PVA with citric acid. The ester bond was confirmed by FTIR spectra. The increase of the amount of citric acid affected significantly on physical, chemical and mechanical properties, water uptake, WVP and crystallinity. Water barrier level was reduced by decreasing of water uptake and WVP succeeded significantly with increased crosslinking. Cross-linking impact the thermal stability of the films. The elasticity of the films also increases the production of citric acid as a plasticizer in the making of the films as a food packaging material.
Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara
2017-05-01
In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.
Kralova, Jarmila; Synytsya, Alla; Pouckova, Pavla; Koc, Michal; Dvorak, Michal; Kral, Vladimir
2006-01-01
In the present study we investigated the photosensitizing properties of two novel mono- and bis-cyclodextrin tetrakis (pentafluorophenyl) porphyrin derivatives in several tumor cell lines and in BALB/c mice bearing subcutaneously transplanted syngeneic mouse mammary carcinoma 4T1. Both studied sensitizers were localized mainly in lysosomes and were found to induce cell death by triggering apoptosis in human leukemic cells HL-60. In 4T1 and other cell lines both apoptotic and necrotic modes of cell death occurred depending on drug and light doses. Mono-cyclodextrin porphyrin derivative P(beta-CD)1 exhibited stronger in vitro phototoxic effect than bis-cyclodextrin derivative P(beta-CD)2. However, in vivo P(beta-CD)2 displayed faster tumor uptake with maximal accumulation 6 h after application, leading to complete and prolonged elimination of subcutaneous tumors within 3 days after irradiation (100 J cm(-2)). In contrast, P(beta-CD)1 uptake was slower (48 h) and the reduction of tumor mass was only transient, reaching the maximum at the 12 h interval when a favorable tumor-to-skin ratio appeared. Thus, P(beta-CD)2 represents a new photosensitizing drug displaying fast and selective tumor uptake, strong antitumor activity and fast elimination from the body.
NASA Astrophysics Data System (ADS)
Flores-Tavizón, Edith; Mokgalaka-Matlala, Ntebogeng S.; Elizalde Galindo, José T.; Castillo-Michelle, Hiram; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.
2012-04-01
Magnetic field is closely related to the cell metabolism of plants [N. A. Belyavskaya, Adv. Space Res. 34, 1566 (2004)]. In order to see the effect of magnetic field on the plant growth, arsenic uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina) seeds, ten sets of 80 seeds were selected to be oriented with the long axis parallel or randomly oriented to an external magnetic field. The external magnetic field magnitude was 1 T, and the exposition time t = 30 min. Then, the seeds were stored for three days in a plastic bag and then sown on paper towels in a modified Hoagland's nutrient solution. After three days of germination in the dark and three days in light, seedlings were grown hydroponically in modified Hoagland's nutrient solution (high PO42-) containing 0, 10, or 20 ppm of arsenic as As (III) and (V). The results show that the germination ratios, growth, elongation, arsenic uptake, and total amylolytic activity of the long axis oriented mesquite seeds were much higher than those of the randomly oriented seeds. Also, these two sets of seeds showed higher properties than the ones that were not exposed to external magnetic field.
Palocci, Cleofe; Valletta, Alessio; Chronopoulou, Laura; Donati, Livia; Bramosanti, Marco; Brasili, Elisa; Baldan, Barbara; Pasqua, Gabriella
2017-12-01
PLGA NPs' cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs' size selection. In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500-600 nm.
Influence of physicochemical properties of rice flour on oil uptake of tempura frying batter.
Nakamura, Sumiko; Ohtsubo, Ken'ichi
2010-01-01
The physicochemical properties of rice flour and wheat flour influenced the oil uptake of tempura frying batter. Rice flour was better than wheat flour in the overall quality and crispness of the fried tempura batter. Rice flour resisted oil absorption more than wheat flour, and a higher level of apparent starch amylose and higher consistency/breakdown ratio of the pasting properties led to a lower oil uptake of the batter. Super hard EM10 rice showed the highest apparent amylose content and higher consistency/breakdown ratio than the other flour samples, the batter from EM10 revealing the lowest oil content after frying among all the batters examined. The apparent amylose content, consistency/breakdown ratio and oil absorption index are proposed as useful guides for oil absorption when frying from among the physicochemical properties that influence the oil content of fried batter. Our proposal for the "oil absorption index" could be a simple, although not perfect method for estimating the oil content of batter flour.
Predicting potentially plant-available lead in contaminated residential sites.
Andra, Syam S; Sarkar, Dibyendu; Saminathan, Sumathi K M; Datta, Rupali
2011-04-01
Lead (Pb)-based paints pose a serious health problem to people living in residential settings constructed prior to 1978. Children are at a greater risk to Pb exposure resulting from hand-to-mouth activity in Pb-contaminated residential soils. For soil Pb, the most environmentally friendly, potentially cheap, and visually unobtrusive in situ technology is phytoremediation. However, the limiting factor in a successful phytoremediation strategy is the availability of Pb for plant uptake. The purpose of this study was to establish a relationship between soil properties and the plant-available/exchangeable Pb fraction in the selected Pb-based paint-contaminated residential sites. We selected 20 such sites from two different locations (San Antonio, Texas and Baltimore, Maryland) with varying soil properties and total soil Pb concentrations ranging between 256 and 4,182 mg kg(-1). Despite higher Pb levels in these soils that exceeds US EPA permissible limit of 400 mg kg(-1), it is known that the plant-available Pb pools are significantly lower because of their sorption to soil components such as organic matter, Fe-Mn oxides, and clays, and their precipitation in the form of carbonates, hydroxides, and phosphates. Principal component analysis and hierarchical clustering showed that the potentially plant-available Pb fraction is controlled by soil pH in the case of acidic Baltimore soils, while soil organic matter plays a major role in alkaline San Antonio soils. Statistical models developed suggest that Pb is likely to be more available for plant uptake in Baltimore soils and a chelant-assisted phytoextraction strategy will be potentially necessary for San Antonio soils in mobilizing Pb from complexed pool to the plant-available pool. A thorough knowledge of site-specific factors is therefore essential in developing a suitable and successful phytoremediation model.
Bertram, Timothy H; Cochran, Richard E; Grassian, Vicki H; Stone, Elizabeth A
2018-04-03
Sea spray aerosol particles (SSA), formed through wave breaking at the ocean surface, contribute to natural aerosol particle concentrations in remote regions of Earth's atmosphere, and alter the direct and indirect effects of aerosol particles on Earth's radiation budget. In addition, sea spray aerosol serves as suspended surface area that can catalyze trace gas reactions. It has been shown repeatedly that sea spray aerosol is heavily enriched in organic material compared to the surface ocean. The selective enrichment of organic material complicates the selection of representative molecular mimics of SSA for laboratory or computational studies. In this review, we first provide a short introduction to SSA formation processes and discuss chemical transformations of SSA that occur in polluted coastal regions and remote pristine air. We then focus on existing literature of the chemical composition of nascent SSA generated in controlled laboratory experiments and field investigations. We combine the evidence on the chemical properties of nascent SSA with literature measurements of SSA water uptake to assess SSA molecular composition and liquid water content. Efforts to speciate SSA organic material into molecular classes and specific molecules have led to the identification of saccharides, alkanes, free fatty acids, anionic surfactants, dicarboxylic acids, amino acids, proteinaceous matter, and other large macromolecules. However to date, less than 25% of the organic mass of nascent SSA has been quantified at a molecular level. As discussed here, quantitative measurements of size resolved elemental ratios, combined with determinations of water uptake properties, provides unique insight on the concentration of ions within SSA as a function of particle size, pointing to a controlling role for relative humidity and the hygroscopicity of SSA organic material at small particle diameters.
Kramer, Gerbrand Maria; Frings, Virginie; Hoetjes, Nikie; Hoekstra, Otto S; Smit, Egbert F; de Langen, Adrianus Johannes; Boellaard, Ronald
2016-09-01
Change in (18)F-FDG uptake may predict response to anticancer treatment. The PERCIST suggest a threshold of 30% change in SUV to define partial response and progressive disease. Evidence underlying these thresholds consists of mixed stand-alone PET and PET/CT data with variable uptake intervals and no consensus on the number of lesions to be assessed. Additionally, there is increasing interest in alternative (18)F-FDG uptake measures such as metabolically active tumor volume and total lesion glycolysis (TLG). The aim of this study was to comprehensively investigate the repeatability of various quantitative whole-body (18)F-FDG metrics in non-small cell lung cancer (NSCLC) patients as a function of tracer uptake interval and lesion selection strategies. Eleven NSCLC patients, with at least 1 intrathoracic lesion 3 cm or greater, underwent double baseline whole-body (18)F-FDG PET/CT scans at 60 and 90 min after injection within 3 d. All (18)F-FDG-avid tumors were delineated with an 50% threshold of SUVpeak adapted for local background. SUVmax, SUVmean, SUVpeak, TLG, metabolically active tumor volume, and tumor-to-blood and -liver ratios were evaluated, as well as the influence of lesion selection and 2 methods for correction of uptake time differences. The best repeatability was found using the SUV metrics of the averaged PERCIST target lesions (repeatability coefficients < 10%). The correlation between test and retest scans was strong for all uptake measures at either uptake interval (intraclass correlation coefficient > 0.97 and R(2) > 0.98). There were no significant differences in repeatability between data obtained 60 and 90 min after injection. When only PERCIST-defined target lesions were included (n = 34), repeatability improved for all uptake values. Normalization to liver or blood uptake or glucose correction did not improve repeatability. However, after correction for uptake time the correlation of SUV measures and TLG between the 60- and 90-min data significantly improved without affecting test-retest performance. This study suggests that a 15% change of SUVmean/SUVpeak at 60 min after injection can be used to assess response in advanced NSCLC patients if up to 5 PERCIST target lesions are assessed. Lower thresholds could be used in averaged PERCIST target lesions (<10%). © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Turgut, Cafer; Pepe, M Katie; Cutright, Teresa J
2005-02-01
The use of two EDTA concentrations for enhancing the bioavailability of cadmium, chromium, and nickel in three natural soils (Ohio, New Mexico and Colombia) was investigated. The resulting uptake, translocation and selectivity with Helianthus annuus after mobilization were also examined. In general, plants grown in the sandy-loam Ohio soil had a higher uptake that resulted in a selectivity and total metal content of Cd>Cr>Ni and 0.73 mg and Cr>Cd>Ni and 0.32 mg for 0.1 and 0.3 g kg-1 EDTA, respectively. With the silty-loam New Mexico soil, although the total metal uptake was not statistically different the EDTA level did alter the selectivity; Cd>Cr>Ni (0.1 g kg-1 EDTA) and Cd>Cr>Ni (0.3 g kg-1 EDTA). Conversely, with the Colombian (sandy clay loam) soil increasing the EDTA level resulted in a higher total metal uptake (0.62 mg) than the 0.1 g kg-1 (0.59 mg) treatment. For all three soils, the translocation of Cd was limited. Evaluating the mobile metal fraction with and without EDTA determined that the chelator was capable of overcoming mass transfer limitations associated with the expandable clay fraction in the soils. Root wash results and root biomass concentrations indicated that Cd sorption was occurring. Therefore limited Cd translocation was attributed to insufficient phytochelatin levels.
K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms.
Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente; Rubio, Francisco
2014-05-15
Potassium (K(+)) is an essential macronutrient for plants. It is taken into the plant by the transport systems present in the plasma membranes of root epidermal and cortical cells. The identity of these systems and their regulation is beginning to be understood and the systems of K(+) transport in the model species Arabidopsis thaliana remain far better characterized than in any other plant species. Roots can activate different K(+) uptake systems to adapt to their environment, important to a sessile organism that needs to cope with a highly variable environment. The mechanisms of K(+) acquisition in the model species A. thaliana are the best characterized at the molecular level so far. According to the current model, non-selective channels are probably the main pathways for K(+) uptake at high concentrations (>10mM), while at intermediate concentrations (1mM), the inward rectifying channel AKT1 dominates K(+) uptake. Under lower concentrations of external K(+) (100μM), AKT1 channels, together with the high-affinity K(+) uptake system HAK5 contribute to K(+) acquisition, and at extremely low concentrations (<10μM) the only system capable of taking up K(+) is HAK5. Depending on the species the high-affinity system has been named HAK5 or HAK1, but in all cases it fulfills the same functions. The activation of these systems as a function of the K(+) availability is achieved by different mechanisms that include phosphorylation of AKT1 or induction of HAK5 transcription. Some of the characteristics of the systems for root K(+) uptake are shared by other organisms, whilst others are specific to plants. This indicates that some crucial properties of the ancestral of K(+) transport systems have been conserved through evolution while others have diverged among different kingdoms. Copyright © 2013 Elsevier GmbH. All rights reserved.
USDA-ARS?s Scientific Manuscript database
This study aims to understand the enhancing effect of glycosaminoglycans (GAGs), such as chondroitin/dermatan structures, on Fe uptake to Caco-2 cells. High sulfated GAGs were selectively purified from cooked haddock. An in vitro digestion/Caco-2 cell culture model was used to evaluate Fe uptake (ce...
Antihistamine effect on synaptosomal uptake of serotonin, norepinephrine and dopamine
NASA Technical Reports Server (NTRS)
Brown, P. A.; Vernikos, J.
1980-01-01
A study on the effects of five H1 and H2 antihistamines on the synaptosomal uptake of serotonin (5HT), norepinephrine (NE), and dopamine (DA) is presented. Brain homogenates from female rats were incubated in Krebs-Ringer phosphate buffer solution in the presence of one of three radioactive neurotransmitters, and one of the five antihistamines. Low concentrations of pyrilamine competitively inhibited 5HT uptake, had little effect on NE uptake, and no effect on DA uptake. Promethazine, diphenhydramine, metiamide, and cimetidine had no effect on 5HT or DA uptake at the same concentration. Diphenhydramine had a small inhibitory effect on NE uptake. It is concluded that pyrilamine is a selective and potent competitive inhibitor of 5HT uptake at concentrations between .05 and .5 micromolars.
NASA Astrophysics Data System (ADS)
Vincent, Abhilash
Due to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface properties (surface charges and surface chemistry) on their interactions with biomolecules (Cells, protein and DNA) could enhance the current understanding of NP cytotoxicity. Hence, it is highly beneficial to the nanotechnology community to bring more attention towards the enhancement of surface properties of NPs to make them more biocompatible and less toxic to biological systems. Surface functionalization of NPs using specific ligand biomolecules have shown to enhance the protein adsorption and cellular uptake through more favorable interaction pathways. Cerium oxide NPs (CNPs also known as nanoceria) are potential antioxidants in cell culture models and understanding the nature of interaction between cerium oxide NPs and biological proteins and cells are important due to their therapeutic application (especially in site specific drug delivery systems). The surface charges and surface chemistry of CNPs play a major role in protein adsorption and cellular uptake. Hence, by tuning the surface charges and by selecting proper functional molecules on the surface, CNPs exhibiting strong adhesion to biological materials can be prepared. By probing the nanoscale interaction forces acting between CNPs and protein molecules using Atomic Force Microscopy (AFM) based force-distance (F-D) spectroscopy, the mechanism of CNP-protein adsorption and CNP cellular uptake can be understood more quantitatively. The work presented in this dissertation is based on the application of AFM in studying the interaction forces as well as the mechanical properties of nanobiomaterials. The research protocol employed in the earlier part of the dissertation is specifically aimed to understand the operation of F-D spectroscopy technique. The elastic properties of thin films of silicon dioxide NPs were investigated using F-D spectroscopy in the high force regime of few 100 nN to 1 microN. Here, sol-gel derived porous nanosilica thin films of varying surface morphology, particle size and porosity were prepared through acid and base catalyzed process. AFM nanoindentation experiments were conducted on these films using the F-D spectroscopy mode and the nanoscale elastic properties of these films were evaluated. The major contribution of this dissertation is a study exploring the interaction forces acting between CNPs and transferrin proteins in picoNewton scale regime using the force-distance spectroscopy technique. This study projects the importance of obtaining appropriate surface charges and surface chemistry so that the NP can exhibit enhanced protein adsorption and NP cellular uptake.
Tortorella, Stephanie; Karagiannis, Tom C
2014-01-01
Anticancer therapeutic research aims to improve clinical management of the disease through the development of strategies that involve currently-relevant treatment options and targeted delivery. Tumour-specific and -targeted delivery of compounds to the site of malignancy allows for enhanced cellular uptake, increased therapeutic benefit with high intratumoural drug concentrations, and decreased systemic exposure. Due to the upregulation of transferrin receptor expression in a wide variety of cancers, its function and its highly efficient recycling pathway, strategies involving the selective targeting of the receptor are well documented. Direct conjugation and immunotoxin studies using the transferrin peptide or anti-transferrin receptor antibodies as the targeting moiety have established the capacity to enhance cellular uptake, cross the blood brain barrier, limit systemic toxicity and reverse multi-drug resistance. Limitations in direct conjugation, including the difficulty in linking an adequate amount of therapeutic compound to the ligand or antibody have identified the requirement to develop novel delivery methods. The application of nanoparticulate theory in the development of functional drug delivery systems has proven to be most promising, with the ability to selectively modify size-dependent properties and surface chemistry. The transferrin modification on a range of nanoparticle formulations enhances selective cellular uptake through transferrin-mediated processes, and increases therapeutic benefit through the ability to encapsulate high concentrations of relevant drug to the tumour site. Although ineffective in crossing the blood brain barrier in its free form, chemotherapeutic compounds including doxorubicin, may be loaded into transferrin-conjugated nanocarriers and impart cytotoxic effects in glioma cells in vitro and in vivo. Additionally, transferrin-targeted nanoparticles may be used in selective diagnostic applications with enhanced selectivity and sensitivity. Four transferrin-modified nano-based drug delivery systems are currently in early phases of human clinical trials. Despite the collective promise, inconsistencies in some studies have exposed some limitations in current formulations and the difficulty in translating preliminary studies into clinically-relevant therapeutic options. The main objective of this review is to investigate the development of transferrin targeted nano-based drug delivery systems in order to establish the use of transferrin as a cancer-targeted moiety, and to ultimately evaluate the progression of cancer therapeutic strategies for future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gobbi, M.; Taddei, C.; Mennini, T.
1988-01-01
In the present paper, the authors confirm and extend previous studies showing heterogeneous /sup 3/H-imipramine (/sup 3/H-IMI) binding sites. Inhibition curves of various drugs (serotonin, imipramine, desmethyl-imipramine, d-fenfluramine, d-norfenfluramine and indalpine, a potent serotonin uptake inhibitor) obtained using 2 nM /sup 3/H-IMI and in presence of 120 mM NaCl, confirmed the presence of at least three /sup 3/H-IMI binding sites: two of these were serotonin-insensitive while the third one was selectively inhibited by serotonin and indalpine with nanomolar affinities. Moreover this last component was found to be selectively modulated by chronic imipramine treatment thus suggesting a close relation to serontoninmore » uptake mechanism. These data indicate that the use of a more selective inhibitors of the serotonin-sensitive component (like indalpine or serotonin itself) to define non specific /sup 3/H-IMI, may be of help in understanding its relation with serotonin uptake system. 22 references, 2 figures, 2 tables.« less
Guo, Haixun; Miao, Yubin
2014-12-01
The purpose of this study was to examine the effects of amino acid, hydrocarbon, and polyethylene glycol (PEG) linkers on the melanoma targeting and imaging properties of (99m)Tc-labeled lactam bridge-cyclized HYNIC-linker-Nle-CycMSHhex (hydrazinonicotinamide-linker-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2) peptides. Four novel peptides (HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex) were designed and synthesized. The melanocortin-1 receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The biodistribution of (99m)Tc(ethylenediaminediacetic acid [EDDA])-HYNIC-GGGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-GSGNle-CycMSHhex, (99m)Tc(EDDA)-HYNIC-PEG2Nle-CycMSHhex, and (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice at 2 h after injection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were further examined because of its high melanoma uptake. The inhibitory concentrations of 50% (IC50) for HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex were 0.7 ± 0.1, 0.8 ± 0.09, 0.4 ± 0.08, and 0.3 ± 0.06 nM, respectively, in B16/F1 melanoma cells. Among these four (99m)Tc-labeled peptides, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex displayed the highest melanoma uptake (22.3 ± 1.72 percentage injected dose/g) at 2 h after injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited high tumor-to-normal-organ uptake ratios except for the kidneys. The tumor-to-kidney uptake ratios of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex were 3.29, 3.63, and 6.78 at 2, 4, and 24 h, respectively, after injection. The melanoma lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2 h after injection. High melanoma uptake and fast urinary clearance of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex highlighted its potential for metastatic melanoma detection in the future. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Guo, Haixun; Miao, Yubin
2015-01-01
The purpose of this study was to examine the effects of amino acid, hydrocarbon and polyethylene glycol (PEG) linkers on melanoma targeting and imaging properties of 99mTc-labeled lactam bridge-cyclized HYNIC-linker-Nle-CycMSHhex {hydrazinonicotinamide-linker-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} peptides. Methods four novel peptides {HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex and HYNIC-AocNle-CycMSHhex} were designed and synthesized. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The biodistribution of 99mTc(EDDA)-HYNIC-GGGNle-CycMSHhex, 99mTc(EDDA)-HYNIC-GSGNle-CycMSHhex, 99mTc(EDDA)-HYNIC-PEG2Nle-CycMSHhex and 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice at 2 h post-injection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex were further examined because of its high melanoma uptake. Results The IC50 values of HYNIC-GGGNle-CycMSHhex, HYNIC-GSGNle-CycMSHhex, HYNIC-PEG2Nle-CycMSHhex, and HYNIC-AocNle-CycMSHhex were 0.7 ± 0.1, 0.8 ± 0.09, 0.4 ± 0.08, and 0.3 ± 0.06 nM in B16/F1 melanoma cells, respectively. Among these four 99mTc-labeled peptides, 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex displayed the highest melanoma uptake (22.3 ± 1.72% ID/g) at 2 h post-injection. 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited high tumor to normal organ uptake ratios except for the kidneys. The tumor/kidney uptake ratios of 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex were 3.29, 3.63 and 6.78 at 2, 4 and 24 h post-injection. The melanoma lesions were clearly visualized by single photon emission computed tomography (SPECT)/CT using 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2 h post-injection. Conclusion High melanoma uptake and fast urinary clearance of 99mTc(EDDA)-HYNIC-AocNle-CycMSHhex highlighted its potential for metastatic melanoma detection in the future. PMID:25453052
Xu, Leyuan; Kittrell, Shannon; Yeudall, W Andrew; Yang, Hu
2016-11-01
Folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) was synthesized and studied for targeted delivery of genes to head and neck cancer cells expressing high levels of folate receptors (FRs). Cellular uptake, targeting specificity, cytocompatibility and transfection efficiency were evaluated. G4-FA competes with free FA for the same binding site. G4-FA facilitates the cellular uptake of DNA plasmids in a FR-dependent manner and selectively delivers plasmids to FR-high cells, leading to enhanced gene expression. G4-FA is a suitable vector to deliver genes selectively to head and neck cancer cells. The fundamental understandings of G4-FA as a vector and its encouraging transfection results for head and neck cancer cells provided support for its further testing in vivo.
NASA Astrophysics Data System (ADS)
Maiseyeu, Andrei; Bagalkot, Vaishali
2014-04-01
A new quantum dot (QD) PEGylated micelle laced with phosphatidylserine (PS) for specific scavenger receptor-mediated uptake by macrophages is reported. The size and surface chemistry of PS-QD micelles were characterized by standard methods and the effects of their physicochemical properties on specific targeting and uptake were comprehensively studied in a monocytic cell line (J774A.1).
Hankosky, Emily R; Joolakanti, Shyam R; Nickell, Justin R; Janganati, Venumadhav; Dwoskin, Linda P; Crooks, Peter A
2017-12-15
A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [ 3 H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [ 3 H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [ 3 H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [ 3 H]DA uptake at VMAT2, Ki changes in the nanomolar range (K i = 0.014-0.073 µM). Compound 15d exhibited the highest affinity (K i = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (K i = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulholland, G.K.; Zheng, Q.H.; Zhou, F.C.
1996-05-01
There is considerable interest in measuring serotonin (5HT) and dopamine (DA) function in the human brain. Altered levels of 5HT and DA are recognized in drug abuse, neurotoxicities, psychiatric disorders, and neurodegenerative conditions including Alzheimer`s and Parkinson`s disease. Several phenyltropane analogs of cocaine bind tightly to both DA and 5HT uptake proteins. We have made a new agent from this class called {beta}CNT, 2{beta}-carboxymethyl-3{beta}-(2-naphthyl)-tropane, the isosteric O-for-CH{sub 2} analog of a compound reported to have among the highest measured affinities for DA and 5HT transporters and studied its in vivo brain distributions in animals for the first time. Optically puremore » {beta}CNT was made from cocaine, and labeled at the O-methyl position by esterification of {beta}CNT-acid with [C-11]CH{sub 3}OTfl under conditions similar to Wilson`s. HPLC-purified (99+%) final products (15-50% eob yield from CO{sub 2}, 40 min synth) had specific activities 0.1-1.2 Ci/{mu}mol at the time of injection. Preliminary [C-11]{beta}{beta}CNT rodent distribution showed very high brain uptake (3% ID at 60 min) and localization (striat: fr cort: hypo: cer: blood, 11: 5: 4: 1: 06). {beta}CNT-PET studies in juvenile pigs (5-20 mCi, 20-35 kg) found rapid brain uptake, and prominent retention (85 min) in midbrain, anterior brainstem and striatum, followed by cortex and olfactory bulb. Paroxetine pretreatment (5HT uptake blocker, 2mg/kg), diminished retention in most brain areas; nomifensine (DA/NE uptake blocker, 6 mg/kg) reduced striatum selectively. Direct comparisons of [C-11]{beta}CNT with other PET transporter radioligands {beta}CFT, {beta}CIT, and {beta}CTT (RTI-32) in the same pig found {beta}CNT had highest overall brain uptake among the agents. These initial results suggest {beta}CNT has favorable properties for imaging both 5HT and DA transporters in vivo, and further evaluation of its potential as a human PET agent is warranted.« less
Guo, Haixun; Gallazzi, Fabio; Miao, Yubin
2013-04-01
The purpose of this study was to examine the melanoma targeting and imaging properties of new (99m)Tc-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (α-MSH) peptides using bifunctional chelating agents. MAG3-GGNle-CycMSH(hex), AcCG3-GGNle-CycMSH(hex), and HYNIC-GGNle-CycMSH(hex) peptides were synthesized, and their melanocortin-1 (MC1) receptor binding affinities were determined in B16/F1 melanoma cells. The biodistribution of (99m)Tc-MAG3-GGNle-CycMSH(hex), (99m)Tc-AcCG3-GGNle-CycMSH(hex), (99m)Tc(CO)3-HYNIC-GGNle-CycMSH(hex), and (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice at 2 h postinjection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) were further examined because of its high melanoma uptake and fast urinary clearance. The IC50 values of MAG3-GGNle-CycMSH(hex), AcCG3-GGNle-CycMSH(hex), and HYNIC-GGNle-CycMSH(hex) were 1.0 ± 0.05, 1.2 ± 0.19, and 0.6 ± 0.04 nM in B16/F1 melanoma cells, respectively. Among these four (99m)Tc-peptides, (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) exhibited the highest melanoma uptake (14.14 ± 4.90% ID/g) and fastest urinary clearance (91.26 ± 1.96% ID) at 2 h postinjection. (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) showed high tumor to normal organ uptake ratios except for the kidneys. The tumor/kidney uptake ratios of (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) were 2.50 and 3.55 at 4 and 24 h postinjection. The melanoma lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) as an imaging probe at 2 h postinjection. Overall, high melanoma uptake coupled with fast urinary clearance of (99m)Tc(EDDA)-HYNIC-GGNle-CycMSH(hex) highlighted its potential for metastatic melanoma detection in the future.
Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review.
Ali, Shafaqat; Rizwan, Muhammad; Qayyum, Muhammad Farooq; Ok, Yong Sik; Ibrahim, Muhammad; Riaz, Muhammad; Arif, Muhammad Saleem; Hafeez, Farhan; Al-Wabel, Mohammad I; Shahzad, Ahmad Naeem
2017-05-01
Drought and salt stress negatively affect soil fertility and plant growth. Application of biochar, carbon-rich material developed from combustion of biomass under no or limited oxygen supply, ameliorates the negative effects of drought and salt stress on plants. The biochar application increased the plant growth, biomass, and yield under either drought and/or salt stress and also increased photosynthesis, nutrient uptake, and modified gas exchange characteristics in drought and salt-stressed plants. Under drought stress, biochar increased the water holding capacity of soil and improved the physical and biological properties of soils. Under salt stress, biochar decreased Na + uptake, while increased K + uptake by plants. Biochar-mediated increase in salt tolerance of plants is primarily associated with improvement in soil properties, thus increasing plant water status, reduction of Na + uptake, increasing uptake of minerals, and regulation of stomatal conductance and phytohormones. This review highlights both the potential of biochar in alleviating drought and salt stress in plants and future prospect of the role of biochar under drought and salt stress in plants.
The structure-activity relationship of inhibitors of serotonin uptake and receptor binding
NASA Astrophysics Data System (ADS)
Hansch, Corwin; Caldwell, Jonathan
1991-10-01
An analysis of five different datasets of inhibitors of serotonin uptake has yielded quantitative structure/ activity relationships (QSARs) which delineate the role of steric and hydrophobic properties essential for inhibition by phenylethylamine-type analogues.
Discovery of a new function of curcumin which enhances its anticancer therapeutic potency
NASA Astrophysics Data System (ADS)
Nagahama, Koji; Utsumi, Tomoya; Kumano, Takayuki; Maekawa, Saeko; Oyama, Naho; Kawakami, Junji
2016-08-01
Curcumin has received immense attention over the past decades because of its diverse biological activities and recognized as a promising drug candidate in a large number of diseases. However, its clinical application has been hindered due to extremely low aqueous solubility, chemical stability, and cellular uptake. In this study, we discovered quite a new function of curcumin, i.e. pH-responsive endosomal disrupting activity, derived from curcumin’s self-assembly. We selected anticancer activity as an example of biological activities of curcumin, and investigated the contribution of pH-responsive property to its anticancer activity. As a result, we demonstrated that the pH-responsive property significantly enhances the anticancer activity of curcumin. Furthermore, we demonstrated a utility of the pH-responsive property of curcumin as delivery nanocarriers for doxorubicin toward combination cancer therapy. These results clearly indicate that the smart curcumin assemblies act as promising nanoplatform for development of curcumin-based therapeutics.
Conde, Artur; Diallinas, George; Chaumont, François; Chaves, Manuela; Gerós, Hernâni
2010-06-01
The recent breakthrough discoveries of transport systems assigned with atypical functions provide evidence for complexity in membrane transport biochemistry. Some channels are far from being simple pores creating hydrophilic passages for solutes and can, unexpectedly, act as enzymes, or mediate high-affinity uptake, and some transporters are surprisingly able to function as sensors, channels or even enzymes. Furthermore, numerous transport studies have demonstrated complex multiphasic uptake kinetics for organic and mineral nutrients. The biphasic kinetics of glucose uptake in Saccharomyces cerevisiae, a result of several genetically distinct uptake systems operating simultaneously, is a classical example that is a subject of continuous debate. In contrast, some transporters display biphasic kinetics, being bona fidae dual-affinity transporters, their kinetic properties often modulated by post-translational regulation. Also, aquaporins have recently been reported to exhibit diverse transport properties and can behave as highly adapted, multifunctional channels, transporting solutes such as CO(2), hydrogen peroxide, urea, ammonia, glycerol, polyols, carbamides, purines and pyrimidines, metalloids, glycine, and lactic acid, rather than being simple water pores. The present review provides an overview on some atypical functions displayed by transporter proteins and discusses how this novel knowledge on cellular uptake systems may be related to complex multiphasic uptake kinetics often seen in a wide variety of living organisms and the intriguing diffusive uptake of sugars and other solutes. Copyright 2009 Elsevier Ltd. All rights reserved.
Nanocellulose-Based Materials for Water Purification
Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P.
2017-01-01
Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted. PMID:28336891
The cytotoxicity of 3-bromopyruvate in breast cancer cells depends on extracellular pH.
Azevedo-Silva, João; Queirós, Odília; Ribeiro, Ana; Baltazar, Fátima; Young, Ko H; Pedersen, Peter L; Preto, Ana; Casal, Margarida
2015-04-15
Although the anti-cancer properties of 3BP (3-bromopyruvate) have been described previously, its selectivity for cancer cells still needs to be explained [Ko et al. (2001) Cancer Lett. 173, 83-91]. In the present study, we characterized the kinetic parameters of radiolabelled [14C] 3BP uptake in three breast cancer cell lines that display different levels of resistance to 3BP: ZR-75-1 < MCF-7 < SK-BR-3. At pH 6.0, the affinity of cancer cells for 3BP transport correlates with their sensitivity, a pattern that does not occur at pH 7.4. In the three cell lines, the uptake of 3BP is dependent on the protonmotive force and is decreased by MCTs (monocarboxylate transporters) inhibitors. In the SK-BR-3 cell line, a sodium-dependent transport also occurs. Butyrate promotes the localization of MCT-1 at the plasma membrane and increases the level of MCT-4 expression, leading to a higher sensitivity for 3BP. In the present study, we demonstrate that this phenotype is accompanied by an increase in affinity for 3BP uptake. Our results confirm the role of MCTs, especially MCT-1, in 3BP uptake and the importance of cluster of differentiation (CD) 147 glycosylation in this process. We find that the affinity for 3BP transport is higher when the extracellular milieu is acidic. This is a typical phenotype of tumour microenvironment and explains the lack of secondary effects of 3BP already described in in vivo studies [Ko et al. (2004) Biochem. Biophys. Res. Commun. 324, 269-275].
Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs.
Cozzi, Nicholas V; Brandt, Simon D; Daley, Paul F; Partilla, John S; Rothman, Richard B; Tulzer, Andreas; Sitte, Harald H; Baumann, Michael H
2013-01-15
Cathinones are a class of drugs used to treat various medical conditions including depression, obesity, substance abuse, and muscle spasms. Some "designer" cathinones, such as methcathinone, mephedrone, and methylone, are used nonclinically for their stimulant or entactogenic properties. Given the recent rise in nonmedical use of designer cathinones, we aimed to improve understanding of cathinone pharmacology by investigating analogs of methcathinone with a CF(3) substituent at the 2-, 3-, or 4-position of the phenyl ring (TFMAPs). We compared the TFMAPs with methcathinone for effects on monoamine uptake transporter function in vitro and in vivo, and for effects on locomotor activity in rats. At the serotonin transporter (SERT), 3-TFMAP and 4-TFMAP were 10-fold more potent than methcathinone as uptake inhibitors and as releasing agents, but 2-TFMAP was both a weak uptake inhibitor and releaser. At the norepinephrine and dopamine transporters (NET and DAT), all TFMAP isomers were less potent than methcathinone as uptake inhibitors and releasers. In vivo, 4-TFMAP released 5-HT, but not dopamine, in rat nucleus accumbens and did not affect locomotor activity, whereas methcathinone increased both 5-HT and dopamine and produced locomotor stimulation. These experiments reveal that TFMAPs are substrates for the monoamine transporters and that phenyl ring substitution at the 3- or 4-position increases potency at SERT but decreases potency at NET and DAT, resulting in selectivity for SERT. The TFMAPs might have a therapeutic value for a variety of medical and psychiatric conditions and may have lower abuse liability compared to methcathinone due to their decreased DAT activity. Copyright © 2012 Elsevier B.V. All rights reserved.
Longitudinal observation of [11C]4DST uptake in turpentine-induced inflammatory tissue.
Toyohara, Jun; Sakata, Muneyuki; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi
2013-02-01
Longitudinal changes of 4'-[methyl-(11)C]thiothymidine ([(11)C]4DST) uptake were evaluated in turpentine-induced inflammation. Turpentine (0.1 ml) was injected intramuscularly into the right hind leg of male Wistar rats. Longitudinal [(11)C]4DST uptake was evaluated by the tissue dissection method at 1, 2, 4, 7, and 14 days after turpentine injection (n=5). The tumor selectivity index was calculated using the previously published biodistribution data in C6 glioma-bearing rats. Dynamic PET scan was performed on day 4 when maximum [(11)C]4DST uptake was observed during the longitudinal study. Histopathological analysis and Ki-67 immunostaining were also performed. The uptake of [(11)C]4DST in inflammatory tissue was significantly increased on days 2-4 after turpentine injection, and then decreased. On day 14, tracer uptake returned to the day 1 level. The maximum SUV of inflamed muscle was 0.6 and was 3 times higher than that of the contralateral healthy muscle on days 2-4 after turpentine injection. However, tumor selectivity index remains very high (>10) because of the low inflammation uptake. A dynamic PET scan showed that the radioactivity in inflammatory tissues peaked at 5 min after [(11)C]4DST injection, and then washed out until 20 min. At intervals >20 min, radioactivity levels were constant and double that of healthy muscle. The changes in Ki-67 index were paralleled with those of [(11)C]4DST uptake, indicating cell proliferation-dependent uptake of [(11)C]4DST in inflammatory tissues. In our animal model, low but significant levels of [(11)C]4DST uptake were observed in subacute inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.
Takahashi, Yu; Nishimura, Tomohiro; Maruyama, Tetsuo; Tomi, Masatoshi; Nakashima, Emi
2017-04-01
System A consists of three subtypes, sodium-coupled neutral amino acid transporter 1 (SNAT1), SNAT2, and SNAT4, which are all expressed in the placenta. The aim of this study was to evaluate the contributions of each of the three subtypes to total system A-mediated uptake in placental MVM of human and rat, using betaine and L-arginine as subtype-selective inhibitors of SNAT2 and SNAT4, respectively. Appropriate concentrations of betaine and L-arginine for subtype-selective inhibition in SNAT-overexpressing cells were identified. It was found that 10 mM betaine specifically and almost completely inhibited human and rat SNAT2-mediated [ 14 C]α-methylaminoisobutyric acid ([ 14 C]MeAIB) uptake, while 5 mM L-arginine specifically and completely inhibited [ 3 H]glycine uptake via human SNAT4, as well as [ 14 C]MeAIB uptake via rat SNAT4. In both human and rat placental MVM vesicles, sodium-dependent uptake of [ 14 C]MeAIB was almost completely inhibited by 20 mM unlabeled MeAIB. L-Arginine (5 mM) partly inhibited the uptake in humans, but hardly affected that in rats. Betaine (10 mM) partly inhibited the uptake in rats, but hardly affected it in humans. These results suggest that SNAT1 is most likely the major contributor to system A-mediated MeAIB uptake by human and rat MVM vesicles and that the remaining uptake is mainly mediated by SNAT4 in humans and SNAT2 in rats. Thus, inhibition studies using betaine and L-arginine are useful to characterize the molecular mechanisms of system A-mediated transport.
Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.
2015-01-01
Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985
Adenosine uptake by the isolated epithelium of guine pig jejunum.
Kolassa, N; Stengg, R; Turnheim, K
1977-10-01
The uptake of [8-14C]adenosine by the isolated epithelium of guinea pig jejunum was faster than that of inosine, hypoxanthine, or adenine. The initial velocity of adenosine uptake from both the luminal and the antiluminal side of the epithelium exhibited saturation kinetics. The apparent Km, V, and passive permeability of luminal adenosine uptake were all lower than the corresponding values of antiluminal uptake. p-Nitrobenzyl-thioguanosine inhibited adenosine uptake from both the luminal and the antiluminal side, whilst hexobendine decreased the uptake only from the antiluminal side of the epithelium. The results suggest that adenosine enters the intestinal epithelium by a carrier-mediated process in addition to passive diffusion. The antiluminal transport system for adenosine seems similar to that of other tissues with respect to hexobendine inhibition; the luminal transport mechanism, however, exhibits different properties, being insensitive to hexobendine.
Li, Xiuhua; Nie, Guanghui; Tao, Jinxiong; Wu, Wenjun; Wang, Liuchan; Liao, Shijun
2014-05-28
3,3'-Di(4″-methyl-phenyl)-4,4'-difluorodiphenyl sulfone (DMPDFPS), a new monomer with two pendent benzyl groups, was easily prepared by Suzuki coupling reaction in high yield. A series of side-chain type ionomers (PAES-Qs) containing pendant side-chain benzyltrimethylammonium groups, which linked to the backbone by alkaline resisting conjugated C-C bonds, were synthesized via polycondensation, bromination, followed by quaternization and alkalization. To assess the influence of side-chain and main-chain aromatic benzyltrimethylammonium on anion exchange membranes (AEMs), the main-chain type ionomers (MPAES-Qs) with the same backbone were synthesized following the similar procedure. GPC and (1)H NMR results indicate that the bromination shows no reaction selectivity of polymer configurations and ionizations of the side-chain type polymers display higher conversions than that of the main-chain type ones do. These two kinds of AEMs were evaluated in terms of ion exchange capacity (IEC), water uptake, swelling ratio, λ, volumetric ion exchange capacity (IECVwet), hydroxide conductivity, mechanical and thermal properties, and chemical stability, respectively. The side-chain type structure endows AEMs with lower water uptake, swelling ratio and λ, higher IECVwet, much higher hydroxide conductivity, more robust dimensional stability, mechanical and thermal properties, and higher stability in hot alkaline solution. The side-chain type cationic groups containing molecular configurations have the distinction of being practical AEMs and membrane electrode assemblies of AEMFCs.
Deng, Gaoyang; Wang, Zhonggang
2017-11-29
Triptycene-based cyanate monomers 2,6,14-tricyanatotriptycene (TPC) and 2,6,14-tris(4-cyanatophenyl)triptycene (TPPC) that contain different numbers of benzene rings per molecule were synthesized, from which two microporous cyanate resins PCN-TPC and PCN-TPPC were prepared. Of interest is the observation that the two polymers have very similar porosity parameters, but PCN-TPPC uptakes considerably higher benzene (77.8 wt %) than PCN-TPC (17.6 wt %) at room temperature since the higher concentration of phenyl groups in PCN-TPPC enhances the π-π interaction with benzene molecules. Besides, the adsorption capacity of benzene in PCN-TPPC is dramatically 7 times as high as that of cyclohexane. Contrary to the adsorption of organic vapors, at 273 K and 1.0 bar, PCN-TPC with more heteroatoms in the network skeleton displays larger uptake of CO 2 and higher CO 2 /N 2 selectivity (16.4 wt %, 60) than those of PCN-TPPC (14.0 wt %, 39). The excellent and unique adsorption properties exhibit potential applications in the purification of small molecular organic hydrocarbons, e.g., separation of benzene from benzene/cyclohexane mixture as well as CO 2 capture from flue gas. Moreover, the results are helpful for deeply understanding the effect of porous and chemical structures on the adsorption properties of organic hydrocarbons and CO 2 gas.
Hassan, Hatem A.F.M.; Smyth, Lesley; Rubio, Noelia; Ratnasothy, Kulachelvy; Wang, Julie T.-W.; Bansal, Sukhvinder S.; Summers, Huw D.; Diebold, Sandra S.; Lombardi, Giovanna; Al-Jamal, Khuloud T.
2016-01-01
Carbon nanotubes (CNTs) have shown marked capabilities in enhancing antigen delivery to antigen presenting cells. However, proper understanding of how altering the physical properties of CNTs may influence antigen uptake by antigen presenting cells, such as dendritic cells (DCs), has not been established yet. We hypothesized that altering the physical properties of multi-walled CNTs (MWNTs)-antigen conjugates, e.g. length and surface charge, can affect the internalization of MWNT-antigen by DCs, hence the induced immune response potency. For this purpose, pristine MWNTs (p-MWNTs) were exposed to various chemical reactions to modify their physical properties then conjugated to ovalbumin (OVA), a model antigen. The yielded MWNTs-OVA conjugates were long MWNT-OVA (~ 386 nm), bearing net positive charge (5.8 mV), or short MWNTs-OVA (~ 122 nm) of increasing negative charges (− 23.4, − 35.8 or − 39 mV). Compared to the short MWNTs-OVA bearing high negative charges, short MWNT-OVA with the lowest negative charge demonstrated better cellular uptake and OVA-specific immune response both in vitro and in vivo. However, long positively-charged MWNT-OVA showed limited cellular uptake and OVA specific immune response in contrast to short MWNT-OVA displaying the least negative charge. We suggest that reduction in charge negativity of MWNT-antigen conjugate enhances cellular uptake and thus the elicited immune response intensity. Nevertheless, length of MWNT-antigen conjugate might also affect the cellular uptake and immune response potency; highlighting the importance of physical properties as a consideration in designing a MWNT-based vaccine delivery system. PMID:26802552
NASA Astrophysics Data System (ADS)
Wiche, Oliver; Székely, Balázs
2016-04-01
A field experiment was conducted to investigate the uptake of Ge and selected REEs in functional groups of selected crop species. Five species belonging to the functional group of grasses (Hordeum vulgare, Zea mays, Avena sativa, Panicum miliaceum and Phalaris arundinacea) and four species from the group of herbs (Lupinus albus, Lupinus angustifolius, Fagopyrum esculentum and Brassica napus) were cultivated in parallel on two soils with slightly alkaline (soil A: pH = 7.8) and slightly acidic (soil B: pH = 6.8) conditions. After harvest, concentrations of Ge, La, Nd, Gd, Er, P, Fe, Mn and Si in shoot tissues were determined with ICP-MS. Concentrations of Ge were significantly higher in grasses than in herbs. Conversely, concentrations of La and Nd were significantly higher in herbs, than in grasses. Highest concentrations were measured in Brassica napus (REEs) and Zea mays (Ge). Concentrations of Ge significantly correlated with that of Si in the shoots showing low concentrations in herbs and high concentrations in grasses, indicating a common mechanism during the uptake in grasses. Concentrations of REEs correlated significantly with that of Fe, indicating increasing concentrations of REEs with increasing concentrations of Fe. Cultivation of species on the slightly acidic soil significantly increased the uptake Ge in Lupinus albus and Phalaris arundinacea and the uptake of La and Nd in all species except of Phalaris arundinacea. This study demonstrated that commonly used field crops could be regarded as suitable candidates for a phytomining of Ge and REEs, since these species develop high yields of shoots, high concentrations of elements and are widely used in agricultural practice. Under soil conditions where bioavailability of Ge and REEs is expected to be low (soil A) accumulation can be estimated at 1.8 g/ha Ge in Z. mays and 3.7 g/ha REEs (1.5 g/ha La, 1.4 g/ha Nd, 0.6 g/ha Gd, 0.3 g/ha Er), respectively, in B. napus, assuming a constant high efficiency of phytoextraction in closed stands. Slight changes in soil properties like soil pH and fractions of REEs bound to organic matter significantly enhanced the uptake of Ge, La and Nd in plants. Thus, measures in soil management hold promise for enhanced phytoextraction of Ge and predominantly light REEs from soils, however, the impact of acidifying fertilizers and other soil amendments on the phytoextraction of Ge and REEs remain a field for further investigations. These studies have been carried out in the framework of the PhytoGerm project financed by the Federal Ministry of Education and Research, Germany.
The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.
Tandy, Susan; Schulin, Rainer; Nowack, Bernd
2006-03-01
Phytoextraction is an environmentally friendly in situ technique for cleaning up metal contaminated land. Unfortunately, efficient metal uptake by remediation plants is often limited by low phytoavailability of the targeted metals. Chelant assisted phytoextraction has been proposed to improve the efficiency of phytoextraction. Phytoremediation involves several subsequent steps: transfer of metals from the bulk soil to the root surfaces, uptake into the roots and translocation to the shoots. Nutrient solution experiments address the latter two steps. In this context we investigated the influence of the biodegradable chelating agent SS-EDDS on uptake of essential (Cu and Zn) and non-essential (Pb) metals by sunflowers from nutrient solution. EDDS was detected in shoots and xylem sap for the first time, proving that it is taken up into the above ground biomass of plants. The essential metals Cu and Zn were decreased in shoots in the presence of EDDS whereas uptake of the non-essential Pb was enhanced. We suggest that in the presence of EDDS all three metals were taken up by the non-selective apoplastic pathway as the EDDS complexes, whereas in the absence of EDDS essential metal uptake was primarily selective along the symplastic pathway. This shows that synthetic chelating agents do not necessarily increase uptake of heavy metals, when soluble concentrations are equal in the presence and absence of chelates.
Selective 2-( sup 18 F)fluorodopa uptake for melanogenesis in murine metastatic melanomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiwata, K.; Kubota, K.; Kubota, R.
The relationship between 3,4-dihydroxy-2-({sup 18}F)fluoro-L-phenylalanine (2-({sup 18}F)FDOPA) uptake and melanogenesis was studied using mice bearing two B16 melanomas: B16-F1 has a higher melanin synthesis ability and a slower growing rate than the higher metastatic B16-F10. A significantly higher 2-({sup 18}F)FDOPA uptake by B16-F1 than by B16-F10 and a reverse relationship for the uptake of ({sup 14}C) 2-deoxy-2-fluoro-D-glucose and ({sup 3}H)thymidine were observed 1 hr postinjection. F1-to-F10 ratios of both the 2-({sup 18}F)FDOPA uptake and the acid-insoluble radioactivity increased to about 5 at 6 hr, which paralleled the melanin content. FM3A mammary carcinoma showed a 2-({sup 18}F)FDOPA uptake similar to themore » B16-F10 but without the acid-insoluble radioactivity. With D,L-DOPA loading, a 55% decreased uptake by FM3A 1 hr postinjection was significantly greater than the 20% reduction in both melanomas. O-Methylated 2-({sup 18}F)FDOPA was a predominant acid-soluble metabolite in all tumors. Whole-body autoradiography discriminated the two melanomas clearly. 2-({sup 18}F)FDOPA may be a promising tracer for the selective imaging of melanogenesis.« less
Serotonin uptake inhibitors: uses in clinical therapy and in laboratory research.
Fuller, R W
1995-01-01
Fluoxetine, zimelidine, sertraline, paroxetine, fluvoxamine, indalpine and citalopram are the selective inhibitors of serotonin uptake that have been most widely studied. Some of these compounds are or have been used clinically in the treatment of mental depression, obsessive-compulsive disorder and bulimia, and therapeutic benefit has been claimed in additional diseases as well. By blocking the membrane uptake carrier which transports serotonin from the extracellular space to inside the serotonin nerve terminals, these compounds increase extracellular concentrations of serotonin and amplify signals sent by serotonin neurons. Because serotonin neurons are widespread in the central nervous system, the functional consequences of blocking serotonin uptake are diverse, but are generally subtle. Animals treated with serotonin uptake inhibitors look normal in gross appearance, but effects such as reduced aggressive behavior, decreased food intake and altered food selection, analgesia, anticonvulsant activity, endocrine changes and neurochemical changes have been demonstrated and characterized. Serotonin uptake inhibitors have helped in revealing some dynamics of serotonin neurons; for example, when uptake is inhibited and extracellular serotonin concentration increases, presynaptic as well as postsynaptic receptors for serotonin are activated to a greater degree. A consequence of increased activation of autoreceptors on serotonin cell bodies and nerve terminals is a reduction in firing of serotonin neurons and a decrease in serotonin synthesis and release. The result is a limit on the degree to which extracellular serotonin and serotonergic neurotransmission are increased.(ABSTRACT TRUNCATED AT 250 WORDS)
The effects of tianeptine or paroxetine on 35% CO2 provoked panic in panic disorder.
Schruers, Koen; Griez, Eric
2004-12-01
Antidepressants that inhibit the reuptake of serotonin (5-HT) are particularly effective in the treatment of panic disorder. Evidence suggests that increased 5-HT availability is important for the anti-panic effect of serotonergic drugs and in maintaining the response to selective serotonin reuptake inhibitors (SSRIs). Tianeptine is an antidepressant with 5-HT reuptake enhancing properties (i.e. the opposite pharmacological profile to that of SSRIs). Therefore, no effect would be expected in panic disorder. The aim of the present study was to compare the effect of tianeptine with that of paroxetine, a selective 5-HT reuptake inhibitor with demonstrated efficacy in panic disorder, on the vulnerability to a laboratory panic challenge in panic disorder patients. Twenty panic disorder patients were treated with either tianeptine or paroxetine for a period of 6 weeks, in a randomized, double-blind, separate group design. The reaction to a 35% CO(2) panic challenge was assessed at baseline and after treatment. Improvement on several clinical scales was also monitored. Tianeptine, as well as paroxetine, showed a significant reduction in vulnerability to the 35% CO(2) panic challenge. In spite of their opposite influence on 5-HT uptake, both tianeptine and paroxetine appeared to reduce the reaction to the panic challenge. These results raise questions about the necessity of 5-HT uptake for the therapeutic efficacy of anti-panic drugs.
Benezra, Miriam; Hambardzumyan, Dolores; Penate-Medina, Oula; Veach, Darren R; Pillarsetty, Nagavarakishore; Smith-Jones, Peter; Phillips, Evan; Ozawa, Tatsuya; Zanzonico, Pat B; Longo, Valerie; Holland, Eric C; Larson, Steven M; Bradbury, Michelle S
2012-01-01
Dasatinib, a new-generation Src and platelet-derived growth factor receptor (PDGFR) inhibitor, is currently under evaluation in high-grade glioma clinical trials. To achieve optimum physicochemical and/or biologic properties, alternative drug delivery vehicles may be needed. We used a novel fluorinated dasatinib derivative (F-SKI249380), in combination with nanocarrier vehicles and metabolic imaging tools (microPET) to evaluate drug delivery and uptake in a platelet-derived growth factor B (PDGFB)-driven genetically engineered mouse model (GEMM) of high-grade glioma. We assessed dasatinib survival benefit on the basis of measured tumor volumes. Using brain tumor cells derived from PDGFB-driven gliomas, dose-dependent uptake and time-dependent inhibitory effects of F-SKI249380 on biologic activity were investigated and compared with the parent drug. PDGFR receptor status and tumor-specific targeting were non-invasively evaluated in vivo using 18F-SKI249380 and 18F-SKI249380-containing micellar and liposomal nanoformulations. A statistically significant survival benefit was found using dasatinib (95 mg/kg) versus saline vehicle (P < .001) in tumor volume-matched GEMM pairs. Competitive binding and treatment assays revealed comparable biologic properties for F-SKI249380 and the parent drug. In vivo, Significantly higher tumor uptake was observed for 18F-SKI249380-containing micelle formulations [4.9 percentage of the injected dose per gram tissue (%ID/g); P = .002] compared to control values (1.6%ID/g). Saturation studies using excess cold dasatinib showed marked reduction of tumor uptake values to levels in normal brain (1.5%ID/g), consistent with in vivo binding specificity. Using 18F-SKI249380-containing micelles as radiotracers to estimate therapeutic dosing requirements, we calculated intratumoral drug concentrations (24–60 nM) that were comparable to in vitro 50% inhibitory concentration values. 18F-SKI249380 is a PDGFR-selective tracer, which demonstrates improved delivery to PDGFB-driven high-grade gliomas and facilitates treatment planning when coupled with nanoformulations and quantitative PET imaging approaches. PMID:23308046
Anawar, Hossain M; Rengel, Zed; Damon, Paul; Tibbett, Mark
2018-02-01
High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Foveal analysis and peripheral selection during active visual sampling
Ludwig, Casimir J. H.; Davies, J. Rhys; Eckstein, Miguel P.
2014-01-01
Human vision is an active process in which information is sampled during brief periods of stable fixation in between gaze shifts. Foveal analysis serves to identify the currently fixated object and has to be coordinated with a peripheral selection process of the next fixation location. Models of visual search and scene perception typically focus on the latter, without considering foveal processing requirements. We developed a dual-task noise classification technique that enables identification of the information uptake for foveal analysis and peripheral selection within a single fixation. Human observers had to use foveal vision to extract visual feature information (orientation) from different locations for a psychophysical comparison. The selection of to-be-fixated locations was guided by a different feature (luminance contrast). We inserted noise in both visual features and identified the uptake of information by looking at correlations between the noise at different points in time and behavior. Our data show that foveal analysis and peripheral selection proceeded completely in parallel. Peripheral processing stopped some time before the onset of an eye movement, but foveal analysis continued during this period. Variations in the difficulty of foveal processing did not influence the uptake of peripheral information and the efficacy of peripheral selection, suggesting that foveal analysis and peripheral selection operated independently. These results provide important theoretical constraints on how to model target selection in conjunction with foveal object identification: in parallel and independently. PMID:24385588
Scoparia dulcis (SDF7) endowed with glucose uptake properties on L6 myotubes compared insulin.
Beh, Joo Ee; Latip, Jalifah; Abdullah, Mohd Puad; Ismail, Amin; Hamid, Muhajir
2010-05-04
Insulin stimulates glucose uptake and promotes the translocation of glucose transporter 4 (Glut 4) to the plasma membrane on L6 myotubes. The aim of this study is to investigate affect of Scoparia dulcis Linn water extracts on glucose uptake activity and the Glut 4 translocation components (i.e., IRS-1, PI 3-kinase, PKB/Akt2, PKC and TC 10) in L6 myotubes compared to insulin. Extract from TLC fraction-7 (SDF7) was used in this study. The L6 myotubes were treated by various concentrations of SDF7 (1 to 50 microg/ml) and insulin (1 to 100 nM). The glucose uptake activities of L6 myotubes were evaluated using 2-Deoxy-D-glucose uptake assay in with or without fatty acid-induced medium. The Glut 4 translocation components in SDF7-treated L6 myotubes were detected using immunoblotting and quantified by densitometry compared to insulin. Plasma membrane lawn assay and glycogen colorimetry assay were carried out in SDF7- and insulin-treated L6 myotubes in this study. Here, our data clearly shows that SDF7 possesses glucose uptake properties on L6 myotubes that are dose-dependent, time-dependent and plasma membrane Glut 4 expression-dependent. SDF7 successfully stimulates glucose uptake activity as potent as insulin at a maximum concentration of 50 microg/ml at 480 min on L6 myotubes. Furthermore, SDF7 stimulates increased Glut 4 expression and translocation to plasma membranes at equivalent times. Even in the insulin resistance stage (free fatty acids-induced), SDF7-treated L6 myotubes were found to be more capable at glucose transport than insulin treatment. Thus, we suggested that Scoparia dulcis has the potential to be categorized as a hypoglycemic medicinal plant based on its good glucose transport properties. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Li, Qing; Chen, Yu; Rowlett, Jarrett R; McGrath, James E; Mack, Nathan H; Kim, Yu Seung
2014-04-23
Structure-property-performance relationships of disulfonated poly(arylene ether sulfone) multiblock copolymer membranes were investigated for their use in direct methanol fuel cell (DMFC) applications. Multiple series of reactive polysulfone, polyketone, and polynitrile hydrophobic block segments having different block lengths and molecular composition were synthesized and reacted with a disulfonated poly(arylene ether sulfone) hydrophilic block segment by a coupling reaction. Large-scale morphological order of the multiblock copolymers evolved with the increase of block size that gave notable influence on mechanical toughness, water uptake, and proton/methanol transport. Chemical structural changes of the hydrophobic blocks through polar group, fluorination, and bisphenol type allowed further control of the specific properties. DMFC performance was analyzed to elicit the impact of structural variations of the multiblock copolymers. Finally, DMFC performances of selected multiblock copolymers were compared against that of the industrial standard Nafion in the DMFC system.
A review of curcumin as a biological stain and as a self-visualizing pharmaceutical agent.
Hope-Roberts, M; Horobin, R W
2017-01-01
Curcumin has been widely used to color textiles but, unlike other natural dyes such as hematoxylin or saffron, it rarely has been discussed as a biological stain. Aspects of the physicochemistry of curcumin relevant to biological staining and self-visualization, i.e., its acidic properties, lipophilicity, metal and pseudometal complexes, and optical properties, are summarized briefly here. Reports of staining of non-living biological specimens in sections and smears, both fixed and unfixed, including specimens embedded in resin, are summarized here. Staining of amyloid, boron and chromatin are outlined and possible reaction mechanisms discussed. Use of curcumin as a vital stain also is described, both in cultured monolayers and in whole organisms. Staining mechanisms are considered especially for the selective uptake of curcumin into cancer cells. Staining with curcumin labeled nanoparticles is discussed. Toxicity and safety issues associated with the dye also are presented.
NASA Astrophysics Data System (ADS)
Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Zarebanadkouki, Mohsen; Vanderborght, Jan; Javaux, Mathieu
2017-12-01
In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil-root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact of root maturation versus root growth on water uptake. Very diverse uptake strategies arise from the analysis. These solutions open new avenues to investigate for optimal genotype-environment-management interactions by optimization, for example, of plant-scale macroscopic hydraulic parameters used in ecohydrogolocial models.
Plant-uptake of uranium: Hydroponic and soil system studies
Ramaswami, A.; Carr, P.; Burkhardt, M.
2001-01-01
Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.
Calzada, Victoria; Moreno, María; Newton, Jessica; González, Joel; Fernández, Marcelo; Gambini, Juan Pablo; Ibarra, Manuel; Chabalgoity, Alejandro; Deutscher, Susan; Quinn, Thomas; Cabral, Pablo; Cerecetto, Hugo
2017-02-01
Aptamers are single-stranded oligonucleotides that recognize molecular targets with high affinity and specificity. Aptamer that selectively bind to the protein tyrosine kinase-7 (PTK7) receptor, overexpressed on many cancers, has been labelled as probes for molecular imaging of cancer. Two new PTK7-targeting aptamer probes were developed by coupling frameworks from the fluorescent dye AlexaFluor647 or the 6-hydrazinonicotinamide (HYNIC) chelator-labelled to 99m Tc. The derivatizations via a 5'-aminohexyl terminal linker were done at room temperature and under mild buffer conditions. Physicochemical and biological controls for both imaging agents were performed verifying the integrity of the aptamer-conjugates by HPLC. Recognition of melanoma (B16F1) and lymphoma (A20) mouse cell lines by the aptamer was studied using cell binding, flow cytometry and confocal microscopy. Finally, in vivo imaging studies in tumour-bearing mice were performed. The new probes were able to bind to melanoma and lymphoma cell lines in vitro, the in vivo imaging in tumour-bearing mice showed different uptake behaviours showing for the fluorescent conjugate good uptake by B cell lymphoma while the radiolabelled conjugate did not display tumour uptake due to its high extravascular distribution, and both showed rapid clearance properties in tumour-bearing mice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tel-Vered, Ran; Kahn, Jason S; Willner, Itamar
2016-01-06
Layered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals. The crosslinking of the metal NP composites with molecular receptors, or the imprinting of molecular recognition sites into the electropolymerized NP matrices lead to selective and chiroselective sensing interfaces. Furthermore, the electrosynthesis of redox-active, imprinted, bis-aniline bridged Au NP composites yields electrochemically triggered "sponges" for the switchable uptake and release of electron-acceptor substrates, and results in conductive surfaces of electrochemically controlled wettability. Also, photosensitizer-relay-crosslinked Au NP composites, or electrochemically polymerized layered semiconductor quantum dot/metal NP matrices on electrodes, are demonstrated as functional nanostructures for photoelectrochemical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Supramolecular structures on silica surfaces and their adsorptive properties.
Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F
2005-05-01
The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.
Pancreatic tumor detection using hypericin-based fluorescence spectroscopy and cytology
NASA Astrophysics Data System (ADS)
Lavu, Harish; Geary, Kevin; Fetterman, Harold R.; Saxton, Romaine E.
2005-04-01
Hypericin is a novel, highly fluorescent photosensitizer that exhibits selective tumor cell uptake properties and is particularly resistant to photobleaching. In this study, we have characterized hypericin uptake in human pancreatic tumor cells with relation to incubation time, cell number, and drug concentration. Ex vivo hypericin based fluorescence spectroscopy was performed to detect the presence of MIA PaCa-2 pancreatic tumor cells in the peritoneal cavity of BALB/c nude mice, as well as to quantify gross tumor burden. Hypericin based cytology of peritoneal lavage samples, using both one and two photon laser confocal microscopy, demonstrated more than a two-fold increase in fluorescence emission of pancreatic tumor cells as compared to control samples. In vitro treatment of pancreatic cancer cells with hypericin based photodynamic therapy showed tumor cell cytotoxicity in a drug dose, incident laser power, and time dependent manner. For these experiments, a continuous wavelength solid-state laser source (532 nm) was operated at power levels in the range of 100-400 mW. Potential applications of hypericin in tumor diagnosis, staging, and therapy will be presented.
Preparation and performance evaluation of novel alkaline stable anion exchange membranes
NASA Astrophysics Data System (ADS)
Irfan, Muhammad; Bakangura, Erigene; Afsar, Noor Ul; Hossain, Md. Masem; Ran, Jin; Xu, Tongwen
2017-07-01
Novel alkaline stable anion exchange membranes are prepared from various amounts of N-methyl dipicolylamine (MDPA) and brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO). The dipicolylamine and MDPA are synthesized through condensation reaction and confirmed by 1H NMR spectroscopy. The morphologies of prepared membranes are investigated by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy and scanning electron microscopy (SEM). The electrochemical and physical properties of AEMs are tested comprising water uptake (WU), ion exchange capacity (IEC), alkaline stability, linear expansion ratio (LER), thermal stability and mechanical stability. The obtained hydroxide conductivity of MDPA-4 is 66.5 mS/cm at 80 °C. The MDPA-4 membrane shows good alkaline stability, high hydroxide conductivity, low methanol permeability (3.43 × 10-7 cm2/s), higher selectivity (8.26 × 107 mS s/cm3), less water uptake (41.1%) and lower linear expansion (11.1%) despite of high IEC value (1.62 mmol/g). The results prove that MDPA membranes have great potential application in anion exchange membrane fuel cell.
Poree, Dawanne E; Zablocki, Kyle; Faig, Allison; Moghe, Prabhas V; Uhrich, Kathryn E
2013-08-12
Amphiphilic macromolecules (AMs) based on carbohydrate domains functionalized with poly(ethylene glycol) can inhibit the uptake of oxidized low density lipoprotein (oxLDL) and counteract foam cell formation, a key characteristic of early atherogenesis. To investigate the influence of lipophilicity and stereochemistry on the AMs' physicochemical and biological properties, mucic acid-based AMs bearing four aliphatic chains (2a) and tartaric acid-based AMs bearing two (2b and 2l) and four aliphatic chains (2g and 2k) were synthesized and evaluated. Solution aggregation studies suggested that both the number of hydrophobic arms and the length of the hydrophobic domain impact AM micelle sizes, whereas stereochemistry impacts micelle stability. 2l, the meso analogue of 2b, elicited the highest reported oxLDL uptake inhibition values (89%), highlighting the crucial effect of stereochemistry on biological properties. This study suggests that stereochemistry plays a critical role in modulating oxLDL uptake and must be considered when designing biomaterials for potential cardiovascular therapies.
Selective Sampling with Direct Ion Mobility Spectrometric Detection for Explosives Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Scott D; Ewing, Robert G; Waltman, Melanie J
2009-06-29
This study investigates the potential and limitations of a streamlined, field-deployable analytical approach that involves selective capture of explosive materials with direct analysis by ion mobility spectrometry (IMS). Selective capture of explosives was performed on deactivated quartz fiber filters impregnated with metal β-diketonate polymers. These Lewis acidic polymers selectively interact with Lewis base analytes such as explosives. The filter coupons could be directly inserted into an IMS instrument for analysis. The uptake kinetics of 2,4,6-trinitrotoluene (TNT) from a saturated atmosphere were characterized, and based on these studies, passive equilibrium sampling was applied to estimate the TNT concentration within an ammunitionmore » magazine that contained bulk TNT. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) uptake from a saturated environment also was examined over a one-month period. Each incremental sampling period showed increasing quantities of RDX culminating with collection of approximately 5 ng of RDX on the coupon at the end of one month. This is the first time that gas-phase uptake of RDX has been demonstrated.« less
Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim
2015-01-01
High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.
Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim
2015-01-01
High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938
Layet, Clément; Auffan, Mélanie; Santaella, Catherine; Chevassus-Rosset, Claire; Montes, Mélanie; Ortet, Philippe; Barakat, Mohamed; Collin, Blanche; Legros, Samuel; Bravin, Matthieu N; Angeletti, Bernard; Kieffer, Isabelle; Proux, Olivier; Hazemann, Jean-Louis; Doelsch, Emmanuel
2017-09-05
The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical-chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg·kg -1 of dissolved Ce 2 (SO 4 ) 3 , bare and citrate-coated CeO 2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO 2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil-plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.
Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin
2011-01-01
The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma targeting and pharmacokinetic properties of novel 111In-labeled lactam bridge-cyclized DOTA-[X]-CycMSHhex {1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2, X=GlyGlyNle, GlyGluNle or NleGlyGlu} peptides. Methods Three novel DOTA-GGNle-CycMSHhex, DOTA-GENle-CycMSHhex and DOTA-NleGE-CycMSHhex peptides were designed and synthesized. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma targeting and pharmacokinetic properties of 111In-DOTA-GGNle-CycMSHhex and 111In-DOTA-GENle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. Results DOTA-GGNle-CycMSHhex and DOTA-GENle-CycMSHhex displayed 2.1 and 11.5 nM MC1 receptor binding affinities, whereas DOTA-NleGE-CycMSHhex showed 873.4 nM MC1 receptor binding affinity. The introduction of the -GlyGly- linker maintained high melanoma uptake while decreased the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex. The tumor uptake values of 111In-DOTA-GGNle-CycMSHhex were 19.05 ± 5.04 and 18.6 ± 3.56 % injected dose/gram (%ID/g) at 2 and 4 h post-injection. 111In-DOTA-GGNle-CycMSHhex exhibited 28, 32 and 42% less renal uptake values than 111In-DOTA-Nle-CycMSHhex we reported previously, and 61, 65 and 68% less liver uptake values than 111In-DOTA-Nle-CycMSHhex at 2, 4 and 24 h post-injection, respectively. Conclusion The amino acid linkers exhibited the profound effects on the melanoma targeting and pharmacokinetic properties of the 111In-labeled lactam bridge-cyclized α-MSH peptides. Introduction of the -GlyGly- linker maintained high melanoma uptake while reducing the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex, highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide for melanoma treatment when labeled with a therapeutic radionuclide. PMID:21421725
Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin
2011-04-01
The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of (111)In-labeled lactam bridge-cyclized DOTA-[X]-CycMSH(hex) {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH(2); X = GGNle, GENle, or NleGE; GG = -Gly-Gly- and GE = -Gly-Glu-} peptides. Three novel peptides (DOTA-GGNle-CycMSH(hex), DOTA-GENle-CycMSH(hex), and DOTA-NleGE-CycMSH(hex)) were designed and synthesized. The melanocortin-1 (MC1) receptor-binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma-targeting and pharmacokinetic properties of (111)In-DOTA-GGNle-CycMSH(hex) and (111)In-DOTA-GENle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. DOTA-GGNle-CycMSH(hex) and DOTA-GENle-CycMSH(hex) displayed 2.1 and 11.5 nM MC1 receptor-binding affinities, whereas DOTA-NleGE-CycMSH(hex) showed 873.4 nM MC1 receptor-binding affinity. The introduction of the -GG- linker maintained high melanoma uptake while decreasing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex). The tumor uptake of (111)In-DOTA-GGNle-CycMSH(hex) was 19.05 ± 5.04 and 18.6 ± 3.56 percentage injected dose per gram at 2 and 4 h after injection, respectively. (111)In-DOTA-GGNle-CycMSH(hex) exhibited 28%, 32%, and 42% less kidney uptake than (111)In-DOTA-Nle-CycMSH(hex) we reported previously, and 61%, 65%, and 68% less liver uptake than (111)In-DOTA-Nle-CycMSH(hex) at 2, 4, and 24 h after injection, respectively. The amino acid linkers exhibited profound effects on the melanoma-targeting and pharmacokinetic properties of the (111)In-labeled lactam bridge-cyclized α-melanocyte-stimulating hormone peptides. Introduction of the -GG- linker maintained high melanoma uptake while reducing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex), highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide for melanoma treatment when labeled with a therapeutic radionuclide.
Ghosh, Sukhen C.; Rodriguez, Melissa; Carmon, Kendra S.; Voss, Julie; Wilganowski, Nathaniel L.; Schonbrunn, Agnes
2017-01-01
Fluorescence-guided surgery is an emerging imaging technique that can enhance the ability of surgeons to detect tumors when compared with visual observation. To facilitate characterization, fluorescently labeled probes have been dual-labeled with a radionuclide to enable cross-validation with nuclear imaging. In this study, we selected the somatostatin receptor imaging agent DOTATOC as the foundation for developing a dual-labeled analog. We hypothesized that a customized dual-labeling approach with a multimodality chelation (MMC) scaffold would minimize steric effects of dye conjugation and retain agonist properties. Methods: An MMC conjugate (MMC-TOC) was synthesized on solid-phase and compared with an analog prepared using conventional methods (DA-TOC). Both analogs were conjugated to IRDye 800 using copper-free click chemistry. The resulting compounds, MMC(IR800)-TOC and DA(IR800)-TOC, were labeled with Cu and 64Cu and tested in vitro in somatostatin receptor subtype 2–overexpressing HEK-293 cells to assess agonist properties, and in AR42J rat pancreatic cancer cells to determine receptor binding characteristics. Multimodality imaging was performed in AR42J xenografts. Results: Cu-MMC(IR800)-TOC demonstrated higher potency for cyclic adenosine monophosphate inhibition (half maximal effective concentration [EC50]: 0.21 ± 0.18 vs. 1.38 ± 0.54 nM) and receptor internalization (EC50: 41.9 ± 29.8 vs. 455 ± 299 nM) than Cu-DA(IR800)-TOC. Radioactive uptake studies showed that blocking with octreotide caused a dose-dependent reduction in 64Cu-MMC(IR800)-TOC uptake whereas 64Cu-DA(IR800)-TOC was not affected. In vivo studies revealed higher tumor uptake for 64Cu-MMC(IR800)-TOC than 64Cu-DA(IR800)-TOC (5.2 ± 0.2 vs. 3.6 ± 0.4 percentage injected dose per gram). In vivo blocking studies with octreotide reduced tumor uptake of 64Cu-MMC(IR800)-TOC by 66%. Excretion of 64Cu-MMC(IR800)-TOC was primarily through the liver and spleen whereas 64Cu-DA(IR800)-TOC was cleared through the kidneys. Ex vivo analysis at 24 h confirmed PET/CT data by showing near-infrared fluorescence signal in tumors and a tumor-to-muscle ratio of 5.3 ± 0.8 as determined by γ-counting. Conclusion: The findings demonstrate that drug design affected receptor pharmacology and suggest that the MMC scaffold is a useful tool for the development of dual-labeled imaging agents. PMID:28572490
Cell uptake survey of pegylated nanographene oxide.
Vila, M; Portolés, M T; Marques, P A A P; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Gonçalves, G; Cruz, S M A; Nieto, A; Vallet-Regi, M
2012-11-23
Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml(-1) pegylated GO solutions. GO uptake kinetics revealed differences in the agent's uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.
Polyphenol-rich beverages enhance zinc uptake and metallothionein expression in Caco-2 cells.
Sreenivasulu, Kilari; Raghu, Pullakhandam; Nair, K Madhavan
2010-05-01
The effect of red wine (RW), red grape juice (RGJ), green tea (GT), and representative polyphenols on Caco-2 cell (65)Zn uptake was explored. RW, RGJ, and GT enhanced the uptake of zinc from rice matrix. Fractionation of RW revealed that enhancing activity of zinc uptake was exclusively resided in the polyphenol fraction. Among the polyphenols tested, only tannic acid and quercitin stimulated the uptake of zinc while others did not influence the uptake. In tune with these results, only tannic acid and quercitin competed with zinquin (a zinc selective fluorophore) for zinc in vitro. Although all the polyphenols tested appear to enhance the expression of metallothionein (MT), the induction was higher with tannic acid, quercitin, and RW extract. Furthermore, phytic acid abrogated the tannic acid-induced MT expression. These results suggest that polyphenol-rich beverages, tannic acid, and quercitin bind and stimulate the zinc uptake and MT expression in Caco-2 cells.
A Cobalt Supramolecular Triple-Stranded Helicate-based Discrete Molecular Cage
Mai, Hien Duy; Kang, Philjae; Kim, Jin Kyung; Yoo, Hyojong
2017-01-01
We report a strategy to achieve a discrete cage molecule featuring a high level of structural hierarchy through a multiple-assembly process. A cobalt (Co) supramolecular triple-stranded helicate (Co-TSH)-based discrete molecular cage (1) is successfully synthesized and fully characterized. The solid-state structure of 1 shows that it is composed of six triple-stranded helicates interconnected by four linking cobalt species. This is an unusual example of a highly symmetric cage architecture resulting from the coordination-driven assembly of metallosupramolecular modules. The molecular cage 1 shows much higher CO2 uptake properties and selectivity compared with the separate supramolecular modules (Co-TSH, complex 2) and other molecular platforms. PMID:28262690
Compatibility of Medical-Grade Polymers with Dense CO2
Jiménez, A; Thompson, G L; Matthews, M A; Davis, T A; Crocker, K; Lyons, J S; Trapotsis, A
2009-01-01
This study reports the effect of exposure to liquid carbon dioxide on the mechanical properties of selected medical polymers. The tensile strengths and moduli of fourteen polymers are reported. Materials were exposed to liquid CO2, or CO2 + trace amounts of aqueous H2O2, at 6.5 MPa and ambient temperature. Carbon dioxide uptake, swelling, and distortion were observed for the more amorphous polymers while polymers with higher crystallinity showed little effect from CO2 exposure. Changes in tensile strength were not statistically significant for most plastics, and most indicated good tolerance to liquid CO2. These results are relevant to evaluating the potential of liquid CO2-based sterilization technology. PMID:19756235
Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo
2011-04-01
It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.
Clark, M A; Jepson, M A; Simmons, N L; Hirst, B H
1995-12-01
The in vivo interaction of the lectin Ulex europaeus agglutinin 1 with mouse Peyer's patch follicle-associated epithelial cells was studied in the mouse Peyer's patch gut loop model by immunofluorescence and electron microscopy. The lectin targets to mouse Peyer's patch M-cells and is rapidly endocytosed and transcytosed. These processes are accompanied by morphological changes in the M-cell microvilli and by redistribution of polymerised actin. The demonstration of selective binding and uptake of a lectin by intestinal M-cells in vivo suggests that M-cell-specific surface glycoconjugates might act as receptors for the selective adhesion/uptake of microorganisms.
NASA Astrophysics Data System (ADS)
Koch, Axelle; Schröder, Natalie; Pohlmeier, Andreas; Garré, Sarah; Vanderborght, Jan; Javaux, Mathieu
2017-04-01
Measuring water extraction by plant would allow us to better understand root water uptake processes and how soil and plant properties affect them. Yet, direct measurement of root water uptake is still challenging and determining its distribution requires coupling experimentation and modelling. In this study, we investigated how the 3D monitoring of a tracer movement in a sand container with a lupine plant could inform us about root water uptake process. A sand column (10 cm height, 5 cm inner diameter) planted with an 18-day-old white lupine was subject to a tracer experiment with a chemically inert tracer (1 mmol/L Gd-DTPA2-) applied for 6 days. Then the tracer and water fluxes were stopped. The plume was monitored in 3-D for 7 days by Magnetic Resonance Imaging (Haber-Pohlmeier et al, unp). In addition the breakthrough curve at the outlet was also measured. We used a biophysical 3-D soil-plant model: R-SWMS (Javaux et al, 2008) to extract information from this experiment. First, we ran a virtual experiment to check the assumption that Gd concentration increase around roots is proportional to the extracted soil water during the same period. We also investigated whether this type of experiment helps discriminate different root hydraulic properties with a sensitivity analysis. Then, we compared the experimental and simulated Gd concentration patterns. A preliminary (qualitative) assessment showed that measured Gd distribution patterns were better represented by the model at day 7, where the main driver of the concentration distribution was root and not soil heterogeneity (which is not taken into account in the model). The main spatial and temporal features of the transport where adequately reproduced by the model in particular during the last day. The distribution of the tracer was shown to be sensitive to the root hydraulic properties. To conclude, information about root water uptake distributions and so about root hydraulic properties could be deduced from Gd concentration maps. Keywords: R-SWMS; Modelling; MRI; Root Water Uptake; Gadolinium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koivula, Risto; Harjula, Risto; Tusa, Esko
2012-07-01
The synthesised cryptomelane-type α-MnO{sub 2} was tested for its Co-57 uptake properties in UV-photo-reactor filled with 10 μM Co-EDTA solution with a background of 10 mM NaNO{sub 3}. High cobalt uptake of 96% was observed after 1 hour of UV irradiation. As for comparison, a well-known TiO{sub 2} (Degussa P25) was tested as reference material that showed about 92% cobalt uptake after six hours of irradiation in identical experiment conditions. It was also noted that the cobalt uptake on cryptomelane with out UV irradiation was modest, only about 10%. Decreasing the pH of the Co-EDTA solution had severe effects onmore » the cobalt uptake mainly due to the rather high point of zero charge of the MnO{sub 2} surface (pzc at pH ∼4.5). Modifying the synthesis procedure we were able to produce a material that functioned well even in solution of pH 3 giving cobalt uptake of almost 99%. The known properties, catalytic and ion exchange, of manganese oxides were simultaneously used for the separation of EDTA complexed Co-57. Tunnel structured cryptomelane -type showed very fast and efficient Co uptake properties outperforming the well known and widely used Degussa P25 TiO{sub 2} in both counts. The layered structured manganese oxide, birnessite, reached also as high Co removal level as the reference material Degussa did but the reaction rate was considerably faster. Since the decontamination solutions are typically slightly acidic and the point of zero charge of the manganese oxides are rather high > pH 4.5 the material had to be modified. This modified material had tolerance to acidic solutions and it's Co uptake performance remained high in the solutions of lower pH (pH 3). Increasing the ion concentration of test solutions, background concentration, didn't affect the final Co uptake level; however, some changes in the uptake kinetics could be seen. The increase in EDTA/MoMO ratio was clearly reflected in the Co uptake curves. The obtained results of manganese oxide were very promising for the treatment of EDTA complexed Co solutions. The better performance values and cheaper production cost of manganese oxide, compared to titanium dioxide, is so big driving force that further studies on the material are evident. The possibilities for continuous treatment, instead of the fluidized bed -type batch experiment are investigated and the effects of other compounds affecting the de-complexation of Co-EDTA are further studied. (authors)« less
MEDIA SERUM LEVELS AND IN VITRO HEPATIC ABSORPTION OF LINDANE
High plasma protein binding is known to reduce the tissue uptake of chemicals in vivo, but the extent of its importance in vitro is less clear. Experiments were conducted to determine the cellular uptake of lindane in vitro under different conditions. Lindane was selected because...
Dioxin uptake by Indian plant species.
Pandey, J S; Kumar, R; Wate, S R
2008-08-01
Dioxins like various gaseous pollutants and aerosols can be scavenged by appropriate vegetative greenbelts. Based on their stomatal properties and the models for contaminant uptake, uptake of dioxin (2,3,7,8-TCDD) by three important Indian plant species, viz. Eugenia jambolana (Jamun), Azadirachta indica (Neem) and Ficus religiosa (Peepal), has been estimated. 2,3,7,8-TCDD is a contaminant with severe harmful ecological ramifications. Computations show that Ficus religiosa has highest uptake capacity. The present exercise has its utility in designing appropriate green-belts for mitigating adverse environmental and human health impacts due to dioxins. This can be an effective management option for mitigating the damages caused by dioxins.
Rabsch, Wolfgang; Voigt, Wolfgang; Reissbrodt, Rolf; Tsolis, Renée M.; Bäumler, Andreas J.
1999-01-01
Salmonella typhimurium possesses two outer membrane receptor proteins, IroN and FepA, which have been implicated in the uptake of enterobactin. To determine whether both receptors have identical substrate specificities, fepA and iroN mutants and a double mutant were characterized. While both receptors transported enterobactin, the uptake of corynebactin and myxochelin C was selectively mediated by IroN and FepA, respectively. PMID:10348879
Millecamps, Stéphanie; Nicolle, Delphine; Ceballos-Picot, Irène; Mallet, Jacques; Barkats, Martine
2001-01-01
Using adenoviruses encoding reporter genes as retrograde tracers, we assessed the capacity of motoneurons to take up and retrogradely transport adenoviral particles injected into the muscles of transgenic mice expressing the G93A human superoxide dismutase mutation, a model of amyotrophic lateral sclerosis. Surprisingly, transgene expression in the motoneurons was significantly higher in symptomatic mice than in control or presymptomatic mice. Using botulinum toxin to induce nerve sprouting at neuromuscular junctions, we showed that the unexpectedly high level of motoneurons retrograde transduction results, at least in part, from newly acquired uptake properties of the sprouts. These findings demonstrate the remarkable uptake properties of amyotrophic lateral sclerosis motoneurons in response to denervation and the rationale of using intramuscular injections of adenoviruses to overexpress therapeutic proteins in motor neuron diseases. PMID:11404466
Koike, Yoichi; Sano, Hirotaka; Kita, Atushi; Itoi, Eiji
2013-09-01
Some patients with rotator cuff tears complain of pain, whereas others are asymptomatic. Previous studies have pointed out the presence of active bone metabolism in the painful shoulder, identified with increased radioisotope uptake during bone scintigraphy. Shoulders with symptomatic rotator cuff tears will demonstrate higher radioisotope uptake than shoulders with asymptomatic tears with bone scintigraphy, reflecting active bone metabolism in symptomatic tears. Cross-sectional study; Level of evidence, 3. The study consisted of 3 groups: patients with symptomatic tears (symptomatic group), patients with asymptomatic tears (asymptomatic group), and controls (no tear group). The symptomatic group consisted of 28 shoulders from 28 patients with symptomatic rotator cuff tears (pain score ≤4 on the University of California, Los Angeles [UCLA] shoulder evaluation form) who underwent bone scintigraphy followed by rotator cuff repair. Of 70 volunteers who had previously undergone bone scintigraphy for diseases unrelated to their shoulder, 34 were selected for the asymptomatic group (pain score ≥8 on the UCLA shoulder form), and 32 were selected for the no tear group. The mean radioisotope uptake in the symptomatic group was significantly higher than that in the asymptomatic group (P = .02) and the no tear group (P = .02). Ten of 28 shoulders (36%) in the symptomatic group showed increased radioisotope uptake exceeding 2 standard deviations from the mean of the no tear group. This percentage was significantly higher when compared with the asymptomatic group (0%) (P < .01). Shoulders with a symptomatic rotator cuff tear showed higher radioisotope uptake on bone scintigraphy than those with an asymptomatic tear. The radioisotope uptake in shoulders with an asymptomatic tear was comparable with that in shoulders without a tear. Positive radioisotope uptake may be associated with pain in a subgroup of patients with rotator cuff tears.
Mantareva, Vanya; Durmuş, Mahmut; Aliosman, Meliha; Stoineva, Ivanka; Angelov, Ivan
2016-06-01
The development of new water-soluble photosensitizers for photodynamic therapy (PDT) applications is a very active research topic. Efforts have been made to obtain the far-red absorbing phthalocyanine complexes with molecular design that facilitates the uptake and selectivity for a high PDT efficiency. The monomolecular lutetium(III) acetate phthalocyanines (LuPcs) substituted with methylpyridyloxy groups at non-peripheral (5) and peripheral (6) positions were synthesized by following the modification of the well-known synthetical routes. The photo-physicochemical properties of the both quaternized LuPcs were evaluated by the steady-state and time-resolved spectroscopy. The photochemical technique was applied to study the generation of the singlet oxygen. Two water-soluble and cationic LuPcs were synthesized and chemically characterized. The photo-physicochemical properties of absorption (675 and 685nm) and the red shifted fluorescence (704 and 721nm) as well as the fluorescence lifetimes (2.24 and 3.27ns) were studied. The promising values of singlet oxygen quantum yields (0.32 for 5 and 0.35 for 6) were determined. Lutetium(III) acetate phthalocyanine complexes were synthesized and evaluated with physicochemical properties suitable for future photodynamic therapy applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Tekabe, Yared; Johnson, Lynne L; Rodriquez, Krissy; Li, Qing; Backer, Marina; Backer, Joseph M
2018-02-01
Plaque vulnerability is associated with inflammation and angiogenesis, processes that rely on vascular endothelial growth factor (VEGF) signaling via two receptors, VEGFR-1 and VEGFR-2. We have recently reported that enhanced uptake of scVEGF-PEG-DOTA/Tc-99m (scV/Tc) single photon emission computed tomography (SPECT) tracer that targets both VEGFR-1 and VEGFR-2, identifies accelerated atherosclerosis in diabetic relative to non-diabetic ApoE -/- mice. Since VEGFR-1 and VEGFR-2 may play different roles in atherosclerotic plaques, we reasoned that selective imaging of each receptor can provide more detailed information on plaque biology. Recently described VEGFR-1 and VEGFR-2 selective mutants of scVEGF, named scVR1 and scVR2, were site-specifically derivatized with Tc-99m chelator DOTA via 3.4 kDa PEG linker, and their selectivity to the cognate receptors was confirmed in vitro. scVR1 and scVR2 conjugates were radiolabeled with Tc-99m to specific activity of 110 ± 11 MBq/nmol, yielding tracers named scVR1/Tc and scVR2/Tc. 34-40 week old diabetic and age-matched non-diabetic ApoE -/- mice were injected with tracers, 2-3 h later injected with x-ray computed tomography (CT) contrast agent and underwent hybrid SPECT/CT imaging. Tracer uptake, localized to proximal aorta and brachiocephalic vessels, was quantified as %ID from. Tracer uptake was also quantified as %ID/g from gamma counting of harvested plaques. Harvested atherosclerotic arterial tissue was used for immunofluorescent analyses of VEGFR-1 and VEGFR-2 and various lineage-specific markers. Focal, receptor-mediated uptake in proximal aorta and brachiocephalic vessels was detected for both scVR1/Tc and scVR2/Tc tracers. Uptake of scVR1/Tc and scVR2/Tc was efficiently inhibited only by "cold" proteins of the same receptor selectivity. Tracer uptake in this area, expressed as %ID, was higher in diabetic vs. non- diabetic mice for scVR1/Tc (p = 0.01) but not for scVR2/Tc. Immunofluorescent analysis revealed enhanced VEGFR-1 prevalence in and around plaque area in diabetic mice. Selective VEGFR-1 and VEGFR-2 imaging of atherosclerotic lesions may be useful to explore plaque biology and identify vulnerability.
Pan, Jie; Liu, Wei-Jiao; Hua, Chao; Wang, Li-Li; Wan, Dong; Gong, Jun-Bo
2015-01-01
Objective To fabricate polymeric nanocomposites with excellent photoluminescence, magnetic properties, and stability in aqueous solutions, in order to improve specificity and sensitivity of cellular imaging under a magnetic field. Methods Fluoridated Ln3+-doped HAP (Ln3+-HAP) NPs and iron oxides (IOs) can be encapsulated with biocompatible polymers via a modified solvent exaction/evaporation technique to prepare polymeric nanocomposites with fluoridated Ln3+-HAP/iron oxide. The nanocomposites were characterized for surface morphology, fluorescence spectra, magnetic properties and in vitro cytotoxicity. Magnetic targeted cellular imaging of such nanocomposites was also evaluated with confocal laser scanning microscope using A549 cells with or without magnetic field. Results The fabricated nanocomposites showed good stability and excellent luminescent properties, as well as low in vitro cytotoxicity, indicating that the nanocomposites are suitable for biological applications. Nanocomposites under magnetic field achieved much higher cellular uptake via an energy-dependent pathway than those without magnetic field. Conclusion The nanocomposites fabricated in this study will be a promising tool for magnetic targeted cellular imaging with improved specificity and enhanced selection. PMID:26487962
NASA Astrophysics Data System (ADS)
Andra, S. P.; Datta, R.; Sarkar, D.; Saminathan, S. K.
2006-05-01
Lead (Pb) is a toxic non-essential metal that can cause permanent learning disabilities, retardation, mental and behavioral problems in children. Lead accumulation in soils result from weathering, chipping, scraping, sanding and sand blasting of housing structures constructed prior to 1978, bearing lead-based paint. The primary objective of this study is to develop a cost-effective, chelate-assisted phytoremediation for cleaning up lead contaminated soils. Soils are a unique environment of diverse physical and chemical characteristics that influence the extent of phytoavailable (labile) Pb forms. The success of phytoremediation strategy depends on the physiological/ biochemical tolerance of the plants to lipid peroxidation induced by Pb at sub-lethal levels. Oxidative challenge is alleviated by antioxidant compounds, but more importantly by the induction of antioxidant enzymes, which are crucial for scavenging reactive oxygen species (ROS) and terminating lipid peroxidation chain reaction. A column study was conducted in a temperature and humidity-controlled greenhouse setting to assess the extent of Pb phytoextraction and antioxidant response in a lead accumulator, vetiver grass (Vetiveria zizanioides). Treatments consisted of a randomized block arrangement of 4 soil types (Immokalee, Pahokee Muck, Tobosa, and Millhopper) and 3 soil Pb concentrations [normal - 400 mg/kg lead (following federal soil standards for lead), moderate - 800 mg/kg lead, and excessive - 1200 mg/kg lead] in 4 replicates. At the end of 6 months, selected columns were amended with a biodegradable chelating agent, ethylenediamene disuccinate (10 mmol/ kg EDDS), to mobilize Pb and enhance Pb uptake by vetiver. Total and exchangeable (labile) Pb were correlated with phytoextracted Pb, and levels of antioxidant enzymes viz., superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the root and shoot tissues of vetiver grass. Results indicate that Pb uptake and antioxidant enzymes activity in vetiver grass is dependent on soil physico-chemical properties and phytoavailable Pb concentrations.
Soler, Marta; González-Bártulos, Marta; Figueras, Eduard; Ribas, Xavi; Costas, Miquel; Massaguer, Anna; Planas, Marta; Feliu, Lidia
2015-02-07
The undecapeptide KKLFKKILKKL-NH2 (BP16) is a non-toxic cell-penetrating peptide (CPP) that is mainly internalized into cancer cells through a clathrin dependent endocytic mechanism and localizes in late endosomes. Moreover, this CPP is able to enhance the cellular uptake of chlorambucil (CLB) improving its cytotoxicity. In this work, we further explored the cell-penetrating properties of BP16 and those of its arginine analogue BP308. We investigated the influence on the cytotoxicity and on the cellular uptake of conjugating CLB at the N- or the C-terminal end of these undecapeptides. The effect of incorporating the cathepsin B-cleavable sequence Gly-Phe-Leu-Gly in CLB-BP16 and CLB-BP308 conjugates was also evaluated. The activity of CLB was significantly improved when conjugated at the N- or the C-terminus of BP16, or at the N-terminus of BP308. While CLB alone was not active (IC50 of 73.7 to >100 μM), the resulting conjugates displayed cytotoxic activity against CAPAN-1, MCF-7, PC-3, 1BR3G and SKMEL-28 cell lines with IC50 values ranging from 8.7 to 25.5 μM. These results were consistent with the internalization properties observed for the corresponding 5(6)-carboxyfluorescein-labeled conjugates. The presence of the tetrapeptide Gly-Phe-Leu-Gly at either the N- or the C-terminus of CLB-BP16 conjugates further increased the efficacy of CLB (IC50 of 3.6 to 16.2 μM), which could be attributed to its selective release in the lysosomal compartment. Enzymatic assays with cathepsin B showed the release of CLB-Gly-OH from these sequences within a short time. Therefore, the combination of BP16 with an enzymatic cleavable sequence can be used as a drug delivery system for the effective uptake and release of drugs in cancer cells.
Strobykina, Irina; Semenov, Victor V.; Semenova, Marina; Martelli, Alma; Citi, Valentina; Breschi, Maria C.; Kataev, Vladimir E.; Calderone, Vincenzo
2017-01-01
Mitochondria play a crucial role in the cell fate; in particular, reducing the accumulation of calcium in the mitochondrial matrix offers cardioprotection. This affect is achieved by a mild depolarization of the mitochondrial membrane potential, which prevents the assembly and opening of the mitochondrial permeability transition pore. For this reason, mitochondria are an attractive target for pharmacological interventions that prevent ischaemia/reperfusion injury. Isosteviol is a diterpenoid created from the acid hydrolysis of Stevia rebaudiana Bertoni (fam. Asteraceae) glycosides that has shown protective effects against ischaemia/reperfusion injury, which are likely mediated through the activation of mitochondrial adenosine tri-phosphate (ATP)-sensitive potassium (mitoKATP) channels. Some triphenylphosphonium (triPP)-conjugated derivatives of isosteviol have been developed, and to evaluate the possible pharmacological benefits that result from these synthetic modifications, in this study, the mitochondriotropic properties of isosteviol and several triPP-conjugates were investigated in rat cardiac mitochondria and in the rat heart cell line H9c2. This study’s main findings highlight the ability of isosteviol to depolarize the mitochondrial membrane potential and reduce calcium uptake by the mitochondria, which are typical functions of mitochondrial potassium channel openings. Moreover, triPP-conjugated derivatives showed a similar behavior to isosteviol but at lower concentrations, indicative of their improved uptake into the mitochondrial matrix. Finally, the cardioprotective property of a selected triPP-conjugated derivative was demonstrated in an in vivo model of acute myocardial infarct. PMID:28954424
Observed relationships between wood density and solution uptake during pressure treatment
Steve Halverson; Stan Lebow
2011-01-01
A better understanding of the relationship between wood properties and solution uptake during pressure treatment could lead to improvements in treatment quality and more efficient use of preservatives. In this study several years of treatment data representing a range of wood species, charge conditions and preservative formulations were analyzed to evaluate the...
Root water uptake and lateral interactions among root systems in a temperate forest
NASA Astrophysics Data System (ADS)
Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.
2016-12-01
A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.
Effects of soil properties on the uptake of pharmaceuticals into earthworms.
Carter, Laura J; Ryan, Jim J; Boxall, Alistair B A
2016-06-01
Pharmaceuticals can enter the soil environment when animal slurries and sewage sludge are applied to land as a fertiliser or during irrigation with contaminated water. These pharmaceuticals may then be taken up by soil organisms possibly resulting in toxic effects and/or exposure of organisms higher up the food chain. This study investigated the influence of soil properties on the uptake and depuration of pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in the earthworm Eisenia fetida. The uptake and accumulation of pharmaceuticals into E. fetida changed depending on soil type. Orlistat exhibited the highest pore water based bioconcentration factors (BCFs) and displayed the largest differences between soil types with BCFs ranging between 30.5 and 115.9. For carbamazepine, diclofenac and fluoxetine BCFs ranged between 1.1 and 1.6, 7.0 and 69.6 and 14.1 and 20.4 respectively. Additional analysis demonstrated that in certain treatments the presence of these chemicals in the soil matrices changed the soil pH over time, with a statistically significant pH difference to control samples. The internal pH of E. fetida also changed as a result of incubation in pharmaceutically spiked soil, in comparison to the control earthworms. These results demonstrate that a combination of soil properties and pharmaceutical physico-chemical properties are important in terms of predicting pharmaceutical uptake in terrestrial systems and that pharmaceuticals can modify soil and internal earthworm chemistry which may hold wider implications for risk assessment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ali, Akhtar; Raddatz, Natalia; Aman, Rashid; Kim, Songmi; Park, Hyeong Cheol; Jan, Masood; Baek, Dongwon; Khan, Irfan Ullah; Oh, Dong-Ha; Lee, Sang Yeol; Bressan, Ray A; Lee, Keun Woo; Maggio, Albino; Pardo, Jose M; Bohnert, Hans J; Yun, Dae-Jin
2016-07-01
A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats. © 2016 American Society of Plant Biologists. All Rights Reserved.
Fariello, Ruggero G
2007-01-01
Safinamide (SAF) ((S)-(+)-2-(4-(3-fluorobenzyloxy) benzylamino)propanamide) was initially synthetized by Farmitalia Carlo Erba (Italy). Following initial anticonvulsant screening, safinamide was selected for its potency, broad spectrum of action, and good safety margin. Pharmacodynamic properties probably relevant to its antiepileptic activity are use- and frequency-dependent block of voltage sensitive Na+ channels, block of Ca++ channels, and glutamate release inhibition. Possibly contributing mechanism are also selective and reversible monoamide oxidase B inhibition and dopamine and noradrenaline uptake inhibition. The high selectivity for the sigma-1 receptor site does not entail psychotomimetic or behavioral changes. In several experimental in vitro and in vivo conditions, SAF exerts neurorescuing and neuroprotectant effects. Safinamide is water soluble and suitable for 1 times a day oral administration in humans. In a pilot phase II study in 38 refractory epilepsy patients affected by multiple types of seizures, 41% of subjects obtained > or =50% seizure reduction during a 12-week escalating dose up to 300 mg 1 times day compared with perspective baseline. Safinamide is being developed in phase III for treatment of Parkinson's disease, whereas the development in epilepsy relates to the industrial strategy of the company.
Transport Studies and Modeling in PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittelsteadt, Cortney K.; Xu, Hui; Brawn, Shelly
2014-07-30
This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalentmore » weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties was not achieved. We have simulated fuel cell performance, current distribution and water distribution at various values of the water uptake, membrane diffusivity, and electro-osmotic drag coefficient (EODC) and compared modeling results with segmented-cell data for both serpentine and parallel flow-fields. We have developed iterations of fuel cell flow fields to achieve specific water transport and thermal management targets. This work demonstrated the importance of membrane diffusivity on fuel cell performance, the necessity of a high membrane diffusion coefficient, and the desirability of a low EODC at low levels of relative humidity.« less
Chalcogenide Aerogels as Sorbents for Noble Gases (Xe, Kr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subrahmanyam, Kota S.; Spanopoulos, Ioannis; Chun, Jaehun
High surface MoSx and SbSx chalcogels were studied for Xe/Kr gas separation. The intrinsic soft character of the chalcogel framework is a unique property among the large family of porous materials and offers a potential new approach towards the selective separation of Xe over Kr. Among these chalcogels, MoSx shows the highest Xe and Kr uptake, reaching 0.69 mmol g-1 (1.05 mmol cm-3) and 0.28 mmol g-1 (0.42 mmol cm-3) respectively, at 273 K and 1 bar. The corresponding isosteric heat of adsorption at zero coverage (Qst0) is 22.8 and 18.6 kJ mol-1 and both are the highest among themore » selected chalcogels. The IAST (10:90) Xe/Kr selectivity at 273 K for MoSx is 6.0 while for SbSx chalcogels varies in the range 2.0-2.8. The higher formal charge of molybdenum, Mo4+, in MoSx versus that of antimony, Sb3+, in SbSx coupled with its larger atomic size could induce higher polarizability in the MoSx framework and therefore higher Xe/Kr selectivity.« less
Cheung, Ocean; Wardecki, Dariusz; Bacsik, Zoltán; Vasiliev, Petr; McCusker, Lynne B; Hedin, Niklas
2016-06-28
The|Na10.2KCs0.8|8[Al12Si12O48]8(Fm3[combining macron]c)-LTA zeolite adsorbs CO2-over-CH4 with a high selectivity (over 1500). The uptake of carbon dioxide is also high (3.31 mmol g(-1), 293 K, 101 kPa). This form of zeolite A is a very promising adsorbent for applications such as biogas upgrading, where keeping the adsorption of methane to a minimum is crucial.
Nahar, Kamrun; Absar, Shahriar; Patel, Brijeshkumar; Ahsan, Fakhrul
2014-04-10
In this study, we tested the feasibility of magnetic liposomes as a carrier for pulmonary preferential accumulation of fasudil, an investigational drug for the treatment of pulmonary arterial hypertension (PAH). To develop an optimal inhalable formulation, various magnetic liposomes were prepared and characterized for physicochemical properties, storage stability and in vitro release profiles. Select formulations were evaluated for uptake by pulmonary arterial smooth muscle cells (PASMCs) - target cells - using fluorescence microscopy and HPLC. The efficacy of the magnetic liposomes in reducing hyperplasia was tested in 5-HT-induced proliferated PASMCs. The drug absorption profiles upon intratracheal administration were monitored in healthy rats. Optimized spherical liposomes - with mean size of 170 nm, zeta potential of -35mV and entrapment efficiency of 85% - exhibited an 80% cumulative drug release over 120 h. Fluorescence microscopic study revealed an enhanced uptake of liposomes by PASMCs under an applied magnetic field: the uptake was 3-fold greater compared with that observed in the absence of magnetic field. PASMC proliferation was reduced by 40% under the influence of the magnetic field. Optimized liposomes appeared to be safe when incubated with PASMCs and bronchial epithelial cells. Compared with plain fasudil, intratracheal magnetic liposomes containing fasudil extended the half-life and area under the curve by 27- and 14-fold, respectively. Magnetic-liposomes could be a viable delivery system for site-specific treatment of PAH. Copyright © 2014 Elsevier B.V. All rights reserved.
Hu, Jie; Zhang, Zhonghua; Shen, Wen-Jun; Nomoto, Ann; Azhar, Salman
2011-01-01
The scavenger receptor, class B, type I (SR-BI) binds high-density lipoprotein (HDL) and mediates selective delivery of cholesteryl esters (CEs) to the liver and steroidogenic cells of the adrenal and gonads. Although it is clear that the large extracellular domain (ECD) of SR-BI binds HDL, the role of ECD in the selective HDL-CE transport remains poorly understood. In this study, we used a combination of mutational and chemical approaches to systematically evaluate the contribution of cysteine residues, especially six cysteine residues of ECD, in SR-BI-mediated selective HDL-CE uptake, intracellular trafficking and SR-BI dimerization. Pretreatment of SR-BI overexpressing COS-7 cells with disulfide (S-S) bond reducing agent, β-mercaptoethanol (100 mM) or dithiothreitol (DTT) (10 mM) modestly, but significantly impaired the SR-BI mediated selective HDL-CE uptake. Treatment of SR-BI overexpressing COS-7 cells with the optimum doses of membrane permeant alkyl methanethiosulfonate (MTS) reagents, positively charged MTSEA or neutral MMTS that specifically react with the free sulfhydryl group of cysteine reduced the SR-BI-mediated selective HDL-CE uptake, indicating that certain intracellular free cysteine residues may also be critically involved in the selective cholesterol transport process. In contrast, use of membrane impermeant MTS reagent, positively charged MTSET and negatively charged MTSES showed no such effect. Next, the importance of eight cysteine residues in SR-BI expression, cell surface expression, dimer formation and selective HDL-derived CE transport was evaluated. These cysteine residues were replaced either singly or in pairs with serine and the mutant SR-BIs expressed in either COS-7 or CHO cells. Four mutations, C280S, C321S, C323S or C334S of the ECD, either singly or in various pair combinations, resulted in significant decreases in SR-BI (HDL) binding activity, selective-CE uptake, and trafficking to cell surface. Surprisingly, we found that mutation of the two remaining cysteine residues, C251 and C384 of the ECD, had no effect on either SR-BI expression or function. Other cysteine mutations and substitutions were also without any effect. Western blot data indicated that single and double mutants of C280, C321, C323 and C334 residues strongly favor dimer formation. However, they are rendered non-functional presumably due to mutation-induced formation of aberrant disulfide linkages resulting in inhibition of optimal HDL binding and, thus, selective HDL-CE uptake. These results provide novel insights about the functional role of four cysteine residues, C280, C321, C323 and C334 of SR-BI ECD domain in SR-BI expression and trafficking to cell surface, its dimerization, and associated selective CE transport function. PMID:22097902
Tannen, Bradford L; Kolomeyer, Anton M; Turbin, Roger E; Frohman, Larry; Langer, Paul D; Oh, Cheongeun; Ghesani, Nasrin V; Zuckier, Lionel S; Chu, David S
2014-02-01
To investigate whether lacrimal gland uptake on (67)Ga-gallium citrate scintigraphy correlates with histopathologic evidence of sarcoidosis. A retrospective, pilot study of 31 patients with suspected sarcoidosis who underwent gallium scintigraphy and lacrimal gland biopsy. Lacrimal gland gallium uptake was assessed by subjective visual scoring (SVS) and lacrimal uptake ratio (LUR). Eleven (36%) patients had lacrimal gland biopsies containing noncaseating granulomas. A statistically significant correlation was found between lacrimal gland gallium uptake and biopsy positivity using SVS (p = 0.03) or LUR (p = 0.01). Using SVS, biopsy positivity rate increased from 0 to 50% in patients with mild to intense uptake. Using LUR, biopsy positivity rate increased linearly as the ratio increased from 13% (LUR < 4) to 100% (LUR > 8). Lacrimal biopsy positivity rate significantly correlated with gallium uptake on scintigraphy. Both SVS and LUR methods appear to correlate with histologic results and may potentially aid in patient selection for biopsy.
Thrombin-induced glucose transport via Src–p38 MAPK pathway in vascular smooth muscle cells
Kanda, Yasunari; Watanabe, Yasuhiro
2005-01-01
Thrombin is a mitogen for vascular smooth muscle cells (VSMC) and has been implicated in the development in atherosclerosis. However, little is known about the role of thrombin in glucose transport in VSMC. In this study, we examined the effect of thrombin on glucose uptake in rat A10 VSMC. We found that thrombin induced glucose uptake in a dose-dependent manner while hirudin, a potent thrombin inhibitor, prevented glucose uptake in the cells. PP2, a selective inhibitor of Src, prevented the thrombin-induced glucose uptake, but did not affect insulin-induced uptake. We also examined whether mitogen-activated protein kinase (MAPK) inhibitors influenced thrombin-induced glucose uptake. The p38 MAPK inhibitor (SB203580) inhibited thrombin-induced glucose uptake, but the MEK inhibitor (PD98059) did not. In contrast to thrombin, SB203580 did not affect insulin-induced glucose uptake. Furthermore, thrombin failed to translocate the insulin-sensitive glucose transporter GLUT4. These findings suggest that thrombin stimulates glucose transport via Src and subsequent p38 MAPK activation in VSMC. PMID:15951827
Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen
2017-01-01
The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.
Water uptake, ionic conductivity and swelling properties of anion-exchange membrane
NASA Astrophysics Data System (ADS)
Duan, Qiongjuan; Ge, Shanhai; Wang, Chao-Yang
2013-12-01
Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krall, J.F.; Morin, A.
Cells growing in culture with previously described properties of rat uterine smooth muscle accumulated /sup 45/Ca/sup 2 +/ from the medium. Ca/sup 2 +/ uptake by these cells was stimulated by the addition to the medium of 8-bromo-cGMP but not by 8-bromo-cAMP. Ca/sup 2 +/ uptake was also stimulated by carbachol and by the nitro-vasodilator nitroprusside. Although cholinergic agonists have been shown previously to stimulate contraction but not cGMP synthesis in the rat myometrium, both carbachol and nitroprusside stimulated cGMP production by the cultured cells. These results suggested the cells had cholinergic receptor-medicated functions that reflected some neurotransmitter-sensitive properties ofmore » uterine smooth muscle in situ. When determined by a specific radioligand binding assay, subcellular fractions of the cultured cells bound muscarinic cholinergic agonists and antagonists with affinities expected of the muscarinic receptor. The cells were also sensitive to the ..beta..-adrenergic catecholamine agonist isoproterenol, which stimulated cAMP production but not Ca/sup 2 +/ uptake. Carbachol failed to inhibit isoproterenol-dependent cAMP production, which is an important property of the cholinergic receptor in uterine smooth muscle in situ. These results suggest some but not all acetylcholine-sensitive properties of uterine smooth muscle may be retained in cell culture.« less
Bombyx mori silk: From mechanical properties to functionalities
NASA Astrophysics Data System (ADS)
Koh, Leng Duei
Bombyx mori silkworms are the main producer of silk worldwide. It has been used as high-end textile fibers and as surgical sutures, and is being further developed for various emerging biomedical applications including drug delivery, tissue engineering, sensing, and imaging. The silk fibroin features a hierarchical architecture consisting of beta-sheet crystallites embedded in a less ordered amorphous matrix, which accounts for its unique combination of lustre appearance, soft-to-touch texture, and impressive mechanical properties. Notably, many applications of silk take advantage of its impressive mechanical properties, which by nature surpass many natural and synthetic materials. Interestingly, both the silkworm silk and spider dragline silk share similar hierarchical architecture but possess great disparity in mechanical properties. Inspired by spider dragline silk with much superior strength and toughness, there is an ever growing interest to enhance the mechanical properties of Bombyx mori silk. Here, we design a green and facile feeding method to modulate the structures of silk fibroin at the nanoscale using citric acid (CA), and achieved greatly enhanced mechanical properties. The silk obtained (i.e., CA silk) emerges to be the intrinsically toughest silkworm silk, with mechanical properties that exceed those of the previously reported natural and enhanced silkworm silk, and compare well with those of naturally produced spider silk (including those from spiders Araneus diadematus, Nephila clavipes, etc.).The underlying interactions of CA with fibroin structures are revealed by both advanced characterizations and simulations. It is found that CA interacts with fibroin, resulted in remarkably shorter crystallites, and thus giving the outstanding strength and toughness of the CA silk. The greatly enhanced mechanical properties are expected to lead to better functionalities and wider applications of the Bombyx mori silkworm silk. Silkworms usually produce white silk with normal feed containing no xenobiotics. Here, through introducing fluorescent xenobiotics into silkworm's diet and monitoring the resulting color and fluorescence in the silkworm's body, we established an understanding on the in vivo uptake of xenobiotics in silkworms that leads to direct production of intrinsically colored and/or luminescent silk by the silkworms. The molecular properties-directed absorption, distribution and excretion of xenobiotics were investigated using a series of fluorescent molecules as model compounds in a silkworm model. The efficient uptake of xenobiotics into silk is further studied through quantitative analysis of the intrinsically colored and highly luminescent silk secreted by silkworm. Criteria for effective uptake have been established based on the relationship between the structure-dependent hydrophobicity of various dyes vs. the amount selectively absorbed into the silk. The biological incorporation of dyes into silk, in particular its fibroin is a greener method of producing the functional silk because it eliminates the need of an external dyeing process, along with the resources (water, energy and additional chemicals) associated with conventional dyeing of silk. Beyond the absorption of dyes to produce color and luminescence in the silk, this feeding concept can also be expanded to incorporate other functional molecules (e.g., drugs, antibacterial agents, perfumes and nutrients) into silk with therapeutic or nutritional value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modak, Arindam; Bhaumik, Asim, E-mail: msab@iacs.res.in
2015-12-15
Microporous carbon having Brunauer-Emmett-Teller (BET) surface area of 2186 m{sup 2} g{sup −1} and micropore volume of 0.85 cm{sup 3} g{sup −1} has been synthesized via KOH induced high temperature carbonization of a non-conjugated hypercrosslinked organic polymer. Owing to the templating and activation by KOH, we have succeeded in making a microporous carbon from this porous polymer and the resultant carbon material showed high uptake for CO{sub 2} (7.6 mmol g{sup −1}) and CH{sub 4} (2.4 mmol g{sup −1}) at 1 atm, 273 K together with very good selectivity for the CO{sub 2}/N{sub 2} (30.2) separation. Furthermore, low pressure (1more » atm) H{sub 2} (2.6 wt%, 77 K) and water uptake (57.4 wt%, 298 K) ability of this polymer derived porous activated carbon is noteworthy. - Graphical abstract: Microporous carbon with BET surface area of 2186 m{sup 2} g{sup −1} has been synthesized via KOH activation of a porous organic polymer and it showed high uptake for CO{sub 2} (7.6 mmol g{sup −1}), CH{sub 4} (2.4 mmol g{sup −1}) and H{sub 2} (2.6 wt%) at 1 atm together with very good selectivity for CO{sub 2}. - Highlights: • Porous carbon from hypercrosslinked organic polymer. • KOH activated carbon with BET surface area 2186 m{sup 2} g{sup −1}. • High CO2 uptake (7.6 mmol g{sup −1}) and CO{sub 2}/N{sub 2} selectivity (30.2). • Porous carbon also showed high H{sub 2} (2.6 wt%) and H{sub 2}O (57.4 wt%) uptakes.« less
Enantioselective cellular uptake of chiral semiconductor nanocrystals
NASA Astrophysics Data System (ADS)
Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.
2016-02-01
The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.
Hakeem Said, Inamullah; Gencer, Selin; Ullrich, Matthias S; Kuhnert, Nikolai
2018-06-01
Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modulate their biological activities. Many fundamental questions still need to be addressed to understand how the gut microbiota-diet interactions affect human health. Herein, a UHPLC-QTOF mass spectrometry-based method for the quantification of uptake and determination of intracellular bacterial concentrations of dietary phenolics from coffee and tea was developed. Quantitative uptake data for selected single purified phenolics were determined. The specific uptake from mixtures containing up to four dietary relevant compounds was investigated to assess changes of uptake parameters in a mixture model system. Indeed, perturbation of bacteria by several compounds alters uptake parameter in particular t max . Finally, model bacteria were dosed with complex dietary mixtures such as diluted tea or coffee extracts. The uptake kinetics of the twenty most abundant phenolics was quantified and the findings are discussed. For the first time, quantitative data on in-vitro uptake of dietary phenolics from food matrices were obtained indicating a time-dependent differential uptake of nutritional compounds. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Terry F.; Martinelli, Roger E.; Kehl, Steven R.
A series of K d tracer batch experiments were conducted in this paper to assess the absorptive-desorption properties of Biochar as a potential agent to selectively sequester labile soil Cs or otherwise help reduce the uptake of Cs isotopes into plants. A parallel experiment was conducted for strontium. Fine-grained fractionated Woodlands tree Biochar was found to have a relatively high affinity for Cs ions (K d > 100) relative to coral soil (K d < 10) collected from the Marshall Islands. The Biochar material also contains an abundance of K (and Mg). Finally, these findings support a hypothesis that themore » addition of Biochar as a soil amendment may provide a simple yet effective method for reducing soil-to-plant transfer of Cs isotopes in contaminated environments.« less
Khomenko, Tetyana; Kolodney, Joanna; Pinto, John T; McLaren, Gordon D; Deng, Xiaoming; Chen, Longchuan; Tolstanova, Ganna; Paunovic, Brankica; Krasnikov, Boris F; Hoa, Neil; Cooper, Arthur J L; Szabo, Sandor
2012-09-01
Cysteamine, a coenzyme A metabolite, induces duodenal ulcers in rodents. Our recent studies showed that ulcer formation was aggravated by iron overload and diminished in iron deficiency. We hypothesized that cysteamine is selectively taken up in the duodenal mucosa, where iron absorption primarily occurs, and is transported by a carrier-mediated process. Here we report that cysteamine administration in rats leads to cysteamine accumulation in the proximal duodenum, where the highest concentration of iron in the gastrointestinal tract is found. In vitro, iron loading of intestinal epithelial cells (IEC-6) accelerated reactive oxygen species (ROS) production and increased [(14)C]cysteamine uptake. [(14)C]Cysteamine uptake by isolated gastrointestinal mucosal cells and by IEC-6 was pH-dependent and inhibited by unlabeled cysteamine. The uptake of [(14)C]cysteamine by IEC-6 was Na(+)-independent, saturable, inhibited by structural analogs, H(2)-histamine receptor antagonists, and organic cation transporter (OCT) inhibitors. OCT1 mRNA was markedly expressed in the rat duodenum and in IEC-6, and transfection of IEC-6 with OCT1 siRNA decreased OCT1 mRNA expression and inhibited [(14)C]cysteamine uptake. Cysteamine-induced duodenal ulcers were decreased in OCT1/2 knockout mice. These studies provide new insights into the mechanism of cysteamine absorption and demonstrate that intracellular iron plays a critical role in cysteamine uptake and in experimental duodenal ulcerogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Sachdev, Abhay; Gopinath, P
2015-06-21
In the present study, a facile one-step hydrothermal treatment of coriander leaves for preparing carbon dots (CDs) has been reported. Optical and structural properties of the CDs have been extensively studied by UV-visible and fluorescence spectroscopic, microscopic (transmission electron microscopy, scanning electron microscopy) and X-ray diffraction techniques. Surface functionality and composition of the CDs have been illustrated by elemental analysis and Fourier transform infrared spectroscopy (FTIR). Quenching of the fluorescence of the CDs in the presence of metal ions is of prime significance, hence CDs have been used as a fluorescence probe for sensitive and selective detection of Fe(3+) ions. Eventually, biocompatibility and bioimaging aspects of CDs have been evaluated on lung normal (L-132) and cancer (A549) cell lines. Qualitative analysis of cellular uptake of CDs has been pursued through fluorescence microscopy, while quantitative analysis using a flow cytometer provided an insight into the concentration and cell-type dependent uptake of CDs. The article further investigates the antioxidant activity of CDs. Therefore, we have validated the practicality of CDs obtained from a herbal carbon source for versatile applications.
Liu, Jian-Yong; Wang, Chen; Zhu, Chun-Hui; Zhang, Zhi-Hong; Xue, Jin-Ping
2017-05-19
Two novel glucosylated zinc(ІІ) phthalocyanines 7a-7b, as well as the acetyl-protected counterparts 6a-6b, have been synthesized by the Cu(I)-catalyzed 1,3-dipolar cycloaddition between the propargylated phthalocyanine and azide-substituted glucoses. All of these phthalocyanines were characterized with various spectroscopic methods and studied for their photo-physical, photo-chemical, and photo-biological properties. With glucose as the targeting unit, phthalocyanines 7a-7b exhibit a specific affinity to MCF-7 breast cancer cells over human embryonic lung fibroblast (HELF) cells, showing higher cellular uptake. Upon illumination, both photosensitizers show high cytotoxicity with IC 50 as low as 0.032 µM toward MCF-7 cells, which are attributed to their high cellular uptake and low aggregation tendency in the biological media, promoting the generation of intracellular reactive oxygen species (ROS). Confocal laser fluorescence microscopic studies have also revealed that they have high and selective affinities to the lysosomes, but not the mitochondria, of MCF-7 cells. The results show that these two glucosylated zinc(II) phthalocyanines are potential anticancer agents for targeting photodynamic therapy.
Domain Independent Assessment of Dialogic Properties of Classroom Discourse
ERIC Educational Resources Information Center
Samei, Borhan; Olney, Andrew M.; Kelly, Sean; Nystrand, Martin; D'Mello, Sidney; Blanchard, Nathan; Sun, Xiaoyi; Glaus, Marcy; Graesser, Art
2014-01-01
We present a machine learning model that uses particular attributes of individual questions asked by teachers and students to predict two properties of classroom discourse that have previously been linked to improved student achievement. These properties, uptake and authenticity, have previously been studied by using trained observers to live-code…
Matthaeus, Friederike; Schloss, Patrick; Lau, Thorsten
2015-12-16
The actions of the neurotransmitters serotonin, dopamine, and norepinephrine are partly terminated by diffusion and in part by their uptake into neurons via the selective, high-affinity transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET), respectively. There is also growing evidence that all three monoamines are taken up into neurons by low-affinity, high-capacity organic cation transporters (OCT) and the plasma membrane monoamine transporter (PMAT). Pharmacological characterization of these low-affinity recombinant transporter proteins in heterologous expression systems has revealed that they are not antagonized by classical inhibitors of SERT, DAT, or NET but that decynium-22 (D22) antagonizes OCT3 and PMAT, whereas corticosterone and progesterone selectively inhibit OCT3. Here, we show that SERT, PMAT, and OCT3, but not OCT1 and OCT2, are coexpressed in murine stem cell-derived serotonergic neurons. Using selective antagonists, we provide evidence that uptake of the fluorescent substrates FFN511, ASP+, and 5-HT into stem cell-derived serotonergic neurons is mediated differentially by these transporters and also involves an as yet unknown transport mechanism.
Apell, Jennifer N; Tcaciuc, A Patricia; Gschwend, Philip M
2016-07-01
Polymeric passive samplers have become a common method for estimating freely dissolved concentrations in environmental media. However, this approach has not yet been adopted by investigators conducting remedial investigations of contaminated environmental sites. Successful adoption of this sampling methodology relies on an understanding of how passive samplers accumulate chemical mass as well as developing guidance for the design and deployment of passive samplers. Herein, we outline the development of a simple mathematical relationship of the environmental, polymer, and chemical properties that control the uptake rate. This relationship, called a timescale, is then used to illustrate how each property controls the rate of equilibration in samplers deployed in the water or in the sediment. Guidance is also given on how to use the timescales to select an appropriate polymer, deployment time, and suite of performance reference compounds. Integr Environ Assess Manag 2016;12:486-492. © 2015 SETAC. © 2015 SETAC.
Baranski, Ann-Christin; Schäfer, Martin; Bauder-Wüst, Ulrike; Wacker, Anja; Schmidt, Jana; Liolios, Christos; Mier, Walter; Haberkorn, Uwe; Eisenhut, Michael; Kopka, Klaus; Eder, Matthias
2017-09-20
68 Ga-Glu-urea-Lys-(Ahx)-HBED-CC ( 68 Ga-PSMA-11) represents a successful radiopharmaceutical for PET/CT imaging of prostate cancer. Further optimization of the tumor-to-background contrast might significantly enhance the sensitivity of PET/CT imaging and the probability of detecting recurrent prostate cancer at low PSA values. This study describes the advantage of histidine (H)/glutamic acid (E) and tryptophan (W)/glutamic acid (E) containing linkers on the pharmacokinetic properties of 68 Ga-PSMA-11. The tracers were obtained by a combination of standard Fmoc-based solid-phase synthesis and copper(I)-catalyzed azide-alkyne cycloaddition. Their 68 Ga complexes were compared to the clinical reference 68 Ga-PSMA-11 with respect to cell binding, effective internalization, and tumor targeting properties in LNCaP-bearing balb/c nu/nu mice. The introduction of (HE) i (i = 1-3) or (WE) i (i = 1-3) into PSMA-11 resulted in a significantly changed biodistribution profile. The uptake values in kidneys, spleen, liver, and other background organs were reduced for (HE) 3 while the tumor uptake was not affected. For (HE) 1 the tumor uptake was significantly increased. The introduction of tryptophan-containing linkers also modulated the organ distribution profile. The results clearly indicate that histidine is of essential impact in order to improve the tumor-to-organ contrast. Hence, the histidine/glutamic acid linker modifications considerably improved the pharmacokinetic properties of 68 Ga-PSMA-11 leading to a reduced uptake in dose limiting organs and a significantly enhanced tumor-to-background contrast. Glu-urea-Lys-(HE) 3 -HBED-CC represents a promising 68 Ga complex ligand for PET/CT-imaging of prostate cancer.
Cervo, Luigi; Mennini, Tiziana; Rozio, Marco; Ekalle-Soppo, Charlotte Blanche; Canetta, Alessandro; Burbassi, Silvia; Guiso, Giovanna; Pirona, Lorenza; Riva, Antonella; Morazzoni, Paolo; Caccia, Silvio; Gobbi, Marco
2005-03-01
Hyperforin is one of the possible active principles mediating the antidepressant activity of Hypericum perforatum L. extracts. The ester derivative IDN 5491 (hyperforin-trimethoxybenzoate) showed antidepressant-like properties in the forced swimming test (FST) in rats, with no effect on open-field activity, when given as three intraperitoneal injections in 24 h at 3.125 and 6.25 mg/kg. The plasma concentrations of IDN 5491 were 30-50 microM, and those of hyperforin much lower but still close to those after effective doses of hyperforin-dicyclohexylammonium and Hypericum extract. This suggests that hyperforin plays a role in the antidepressant-like effect of the ester and of Hypericum extract. In vitro binding and uptake data showed that IDN 5491 is inactive on a wide panel of CNS targets at a concentration (14 microM) much higher than that measured in the brain of treated rats (0.3 microM). Like the extract, the antidepressant-like effect of IDN 5491 was blocked by (-)-sulpiride, a selective D2 receptor antagonist and by BD-1047, a selective sigma1 antagonist. Ex-vivo binding studies showed that brain sigma1 receptors are occupied after in vivo treatment with IDN 5491, possibly by an unknown metabolite or by endogenous ligand induced by hyperforin.
Madikizela, Lawrence Mzukisi; Ncube, Somandla; Chimuka, Luke
2018-04-27
Sizeable amount of research has been conducted on the possible uptake of pharmaceuticals by plants from contaminated soil and water used for irrigation of crops. In most cases, pharmaceuticals are taken by roots and translocated into various tissues by transpiration and diffusion. Due to the plant uptake, the occurrence of pharmaceuticals in food sources such as vegetables is a public concern. Few review papers focusing on the uptake of pharmaceuticals, in particular antibiotics, and their translocation in plant tissues have been published. In the current review paper, the work conducted on the uptake of pharmaceuticals belonging to different therapeutic groups such as antibiotics, non-steroidal anti-inflammatory drugs, β-blockers and antiepileptics is reviewed. Such work includes the occurrence of pharmaceuticals in plants, translocation once taken by plants, toxicity studies as well as implications and future studies. Furthermore, the advantages and drawbacks associated with the detection and uptake of these pharmaceuticals by plants are discussed. In addition, the physico-chemical properties that could influence the plant uptake of pharmaceuticals are deliberated. Copyright © 2018 Elsevier B.V. All rights reserved.
Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver
2017-01-01
Background Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Materials and methods Six different N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. Results The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. Conclusion The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO2) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient. PMID:28831253
Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver
2017-01-01
Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Six different N -(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO 2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO 2 ) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient.
Lee, Jaechul; Chuah, Chong Yang; Kim, Jaheon; Kim, Youngsuk; Ko, Nakeun; Seo, Younggyu; Kim, Kimoon; Bae, Tae Hyun; Lee, Eunsung
2018-04-24
Separation of acetylene from carbon dioxide and ethylene is challenging in view of their similar sizes and physical properties. Metal-organic frameworks (MOFs) in general are strong candidates for these separations owing to the presence of functional pore surfaces that can selectively capture a specific target molecule. Here, we report a novel 3D microporous cationic framework named JCM-1. This structure possesses imidazolium functional groups on the pore surfaces and pyrazolate as a metal binding group, which is well known to form strong metal-to-ligand bonds. The selective sorption of acetylene over carbon dioxide and ethylene in JCM-1 was successfully demonstrated by equilibrium gas adsorption analysis as well as dynamic breakthrough measurement. Furthermore, its excellent hydrolytic stability makes the separation processes highly recyclable without a substantial loss in acetylene uptake capacity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeon, Jeong Yong; Lee, Misu; Whang, Sang Hyun; Kim, Jung-Whan; Cho, Arthur; Yun, Mijin
2018-01-19
Altered energy metabolism is a biochemical fingerprint of cancer cells. Hepatocellular carcinoma (HCC) shows reciprocal [18F]fluorodeoxyglucose (FDG) and [11C]acetate uptake, as revealed by positron emission tomography/computed tomography (PET/CT). Previous studies have focused on the role of FDG uptake in cancer cells. In this study, we evaluated the mechanism and roles of [11C]acetate uptake in human HCCs and cell lines. The expression of monocarboxylate transporters (MCTs) was assessed to determine the transporters of [11C]acetate uptake in HCC cell lines and human HCCs with different [11C]acetate uptake. Using two representative cell lines with widely different [11C]acetate uptake (HepG2 for high uptake and Hep3B for low uptake), changes in [11C]acetate uptake were measured after treatment with an MCT1 inhibitor or MCT1-targeted siRNA. To verify the roles of MCT1 in cells, oxygen consumption rate and the amount of lipid synthesis were measured. HepG2 cells with high [11C]acetate uptake showed higher MCT1 expression than other HCC cell lines with low [11C]acetate uptake. MCT1 expression was elevated in human HCCs with high [11C]acetate uptake compared to those with low [11C]acetate uptake. After blocking MCT1 with AR-C155858 or MCT1 knockdown, [11C]acetate uptake in HepG2 cells was significantly reduced. Additionally, inhibition of MCT1 suppressed mitochondrial oxidative phosphorylation, lipid synthesis, and cellular proliferation in HCC cells with high [11C]acetate uptake. MCT1 may be a new therapeutic target for acetate-dependent HCCs with high [11C]acetate uptake, which can be selected by [11C]acetate PET/CT imaging in clinical practice.
Ahmad, Suhana; Zamry, Anes Ateqah; Tan, Hern-Tze Tina; Wong, Kah Keng; Lim, JitKang; Mohamud, Rohimah
2017-11-01
Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Selection of plants for phytoremediation of soils contaminated with radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Entry J.A.; Vance, N.C.; Watrud, L.S.
1996-12-31
Remediation of soil contaminated with radionuclides typically requires that soil be removed from the site and treated with various dispersing and chelating chemicals. Numerous studies have shown that radionuclides are generally not leached from the top 0.4 meters of soil, where plant roots actively accumulate elements. Restoration of large areas of land contaminated with low levels of radionuclides may be feasible using phytoremediation. Criteria for the selection of plants for phytoremediation, molecular approaches to increase radio nuclide uptake, effects of cultural practices on uptake and assessment of environmental effects of phytoremediation will be discussed.
Stamati, Ioanna; Kuimova, Marina K; Lion, Mattia; Yahioglu, Gokhan; Phillips, David; Deonarain, Mahendra P
2010-07-30
Photodynamic Therapy (PDT) is a minimally invasive procedure used for treating a range of neoplastic diseases, which utilises combined action of light and a PDT drug called a photosensitiser. The efficiency of this treatment depends crucially on the properties of the photosensitiser used, namely on its efficient uptake by cells or by the surrounding vasculature, intracellular localisation, minimal dark toxicity and substantial phototoxicity. In this report we compare the spectroscopic properties, cell uptake and in vitro phototoxicity of two novel hydrophilic photosensitisers derived from pyropheophorbide-a (PPa). Both new photosensitisers have the potential to form bioconjugates with antibody fragments for targeted PDT. We find that the photophysical properties of both new photosensitisers are favourable compared to the parent PPa, including enhanced absorption in the red spectral region and substantial singlet oxygen quantum yields. Both molecules show efficient cellular uptake, but display a different intracellular localisation. Both new photosensitisers exhibit no significant dark-toxicity at concentrations of up to 100 microM. The phototoxicity of the two photosensitisers is strikingly different, with one derivative being 13 times more efficient than the parent PPa and another derivative being 18 times less efficient in SKOV3 ovarian cancer cells. We investigate the reasons behind such drastic differences in phototoxicity using confocal fluorescence microscopy and conclude that intracellular localisation is a crucial factor in the photodynamic efficiency of pheophorbide derivatives. These studies highlight the underlying factors behind creating more potent photosensitisers through synthetic manipulation.
USDA-ARS?s Scientific Manuscript database
A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...
NASA Astrophysics Data System (ADS)
Ahmad, Z.; Ansell, M. P.; Smedley, D.
2011-02-01
For in-situ bonding of pultruded rod into timber structural members, such as in the construction of bonded-in timber connection, strengthening and repair of timber structures, the adhesive used must be thixotropic, room temperature cure, environmentally stable and friendly and applied at without pressure. This study investigates the moisture absorption characteristics of three adhesives specially formulated for bonded-in timber connections where the adhesives are reinforced with nano- and micro-particles denoted as CB10TSS (standard adhesive), Albipox (CB10TSS/CTBN) and Timberset (ceramics filled adhesive) with the aim to improve mechanical properties and raise glass transition temperature. The effect of high temperatures and high humidity on the properties of adhesives were determined following conditioning at different temperatures (20°C, 30°C and 50°C) and relative humidities (65%, 75% and 95%) and soaking in water at 20°C In all cases the properties of Albipox were least affected by environment but Timberset exhibited the lowest moisture uptake. Exposure to humid environments at temperatures 20°C and 30°C for CB10TSS and Albipox and 50°C for Timberset resulted in water uptake characterized as Fickian which had only a modest effect on properties. However, exposure to humid environments at temperature (50°C) which is higher than Tg resulted in non-Fickian uptake of water for CB10TSS and Albipox and a more adverse effect on properties.
Baselga-Cervera, Beatriz; Romero-López, Julia; García-Balboa, Camino; Costas, Eduardo; López-Rodas, Victoria
2018-01-01
The extraction and processing of uranium (U) have polluted large areas worldwide, rendering anthropogenic extreme environments inhospitable to most species. Noticeably, these sites are of great interest for taxonomical and applied bioprospection of extremotolerant species successfully adapted to U tailings contamination. As an example, in this work we have studied a microalgae species that inhabits extreme U tailings ponds at the Saelices mining site (Salamanca, Spain), characterized as acidic (pH between 3 and 4), radioactive (around 4 μSv h -1 ) and contaminated with metals, mainly U (from 25 to 48 mg L -1 ) and zinc (from 17 to 87 mg L -1 ). After isolation of the extremotolerant ChlSP strain, morphological characterization and internal transcribed spacer (ITS)-5.8S gene sequences placed it in the Chlamydomonadaceae , but BLAST analyses identity values, against the nucleotide datasets at the NCBI database, were very low (<92%). We subjected the ChlSP strain to an artificial selection protocol to increase the U uptake and investigated its response to selection. The ancestral strain ChlSP showed a U-uptake capacity of ≈4.30 mg U g -1 of dry biomass (DB). However, the artificially selected strain ChlSG was able to take up a total of ≈6.34 mg U g -1 DB, close to the theoretical maximum response (≈7.9 mg U g -1 DB). The selected ChlSG strain showed two possible U-uptake mechanisms: the greatest proportion by biosorption onto cell walls (ca. 90%), and only a very small quantity, ~0.46 mg g -1 DB, irreversibly bound by bioaccumulation. Additionally, the kinetics of the U-uptake process were characterized during a microalgae growth curve; ChlSG cells removed close to 4 mg L -1 of U in 24 days. These findings open up promising prospects for sustainable management of U tailings waters based on newly evolved extremotolerants and outline the potential of artificial selection in the improvement of desired features in microalgae by experimental adaptation and selection.
Baselga-Cervera, Beatriz; Romero-López, Julia; García-Balboa, Camino; Costas, Eduardo; López-Rodas, Victoria
2018-01-01
The extraction and processing of uranium (U) have polluted large areas worldwide, rendering anthropogenic extreme environments inhospitable to most species. Noticeably, these sites are of great interest for taxonomical and applied bioprospection of extremotolerant species successfully adapted to U tailings contamination. As an example, in this work we have studied a microalgae species that inhabits extreme U tailings ponds at the Saelices mining site (Salamanca, Spain), characterized as acidic (pH between 3 and 4), radioactive (around 4 μSv h−1) and contaminated with metals, mainly U (from 25 to 48 mg L−1) and zinc (from 17 to 87 mg L−1). After isolation of the extremotolerant ChlSP strain, morphological characterization and internal transcribed spacer (ITS)-5.8S gene sequences placed it in the Chlamydomonadaceae, but BLAST analyses identity values, against the nucleotide datasets at the NCBI database, were very low (<92%). We subjected the ChlSP strain to an artificial selection protocol to increase the U uptake and investigated its response to selection. The ancestral strain ChlSP showed a U-uptake capacity of ≈4.30 mg U g−1 of dry biomass (DB). However, the artificially selected strain ChlSG was able to take up a total of ≈6.34 mg U g−1 DB, close to the theoretical maximum response (≈7.9 mg U g−1 DB). The selected ChlSG strain showed two possible U-uptake mechanisms: the greatest proportion by biosorption onto cell walls (ca. 90%), and only a very small quantity, ~0.46 mg g−1 DB, irreversibly bound by bioaccumulation. Additionally, the kinetics of the U-uptake process were characterized during a microalgae growth curve; ChlSG cells removed close to 4 mg L−1 of U in 24 days. These findings open up promising prospects for sustainable management of U tailings waters based on newly evolved extremotolerants and outline the potential of artificial selection in the improvement of desired features in microalgae by experimental adaptation and selection. PMID:29662476
Ibogaine alters synaptosomal and glial glutamate release and uptake.
Leal, M B; Emanuelli, T; Porciúncula, L D; Souza, D O; Elisabetsky, E
2001-02-12
Ibogaine has aroused expectations as a potentially innovative medication for drug addiction. It has been proposed that antagonism of the NMDA receptor by ibogaine may be one of the mechanisms underlying its antiaddictive properties; glutamate has also been implicated in ibogaine-induced neurotoxicity. We here report the effects of ibogaine on [3H]glutamate release and uptake in cortical and cerebellar synaptosomes, as well as in cortical astrocyte cultures, from mice and rats. Ibogaine (2-1000 microM) had no effects on glutamate uptake or release by rat synaptosomes. However, ibogaine (500-1000 microM) significantly inhibited the glutamate uptake and stimulated the release of glutamate by cortical (but not cerebellar) synaptosomes of mice. In addition, ibogaine (1000 microM) nearly abolished glutamate uptake by cortical astrocyte cultures from rats and mice. The data provide direct evidence of glutamate involvement in ibogaine-induced neurotoxicity.
Wang, R; Crawford, N M
1996-01-01
Two mutations have been found in a gene (NRT2) of Arabidopsis thaliana that specifically impair constitutive, high-affinity nitrate uptake. These mutants were selected for resistance to 0.1 mM chlorate in the absence of nitrate. Progency from one of the backcrossed mutants showed no constitutive uptake of nitrate below 0.5 mM at pH 7.0 in liquid culture (that is, within 30 min of initial exposure to nitrate). All other uptake activities measured (high-affinity phosphate and sulfate uptake, inducible high-affinity nitrate uptake, and constitutive low-affinity nitrate uptake) were present or nearly normal in the backcrossed mutant. Electrophysiological analysis of individual root cells showed that the nrt2 mutant showed little response to 0.25 mM of nitrate, whereas NRT2 wild-type cells showed an initial depolarization followed by recovery. At 10 mM of nitrate both the mutant and wild-type cells displayed similar, strong electrical responses. These results indicate that NRT2 is a critical and perhaps necessary gene for constitutive, high-affinity nitrate uptake in Arabidopsis, but not for inducible, high-affinity nor constitutive, low-affinity nitrate uptake. Thus, these systems are genetically distinct. PMID:8799195
Abdelmoaty, Yomna H; Tessema, Tsemre-Dingel; Norouzi, Nazgol; El-Kadri, Oussama M; Turner, Joseph B McGee; El-Kaderi, Hani M
2017-10-18
Development of efficient sorbents for carbon dioxide (CO 2 ) capture from flue gas or its removal from natural gas and landfill gas is very important for environmental protection. A new series of heteroatom-doped porous carbon was synthesized directly from pyrazole/KOH by thermolysis. The resulting pyrazole-derived carbons (PYDCs) are highly doped with nitrogen (14.9-15.5 wt %) as a result of the high nitrogen-to-carbon ratio in pyrazole (43 wt %) and also have a high oxygen content (16.4-18.4 wt %). PYDCs have a high surface area (SA BET = 1266-2013 m 2 g -1 ), high CO 2 Q st (33.2-37.1 kJ mol -1 ), and a combination of mesoporous and microporous pores. PYDCs exhibit significantly high CO 2 uptakes that reach 2.15 and 6.06 mmol g -1 at 0.15 and 1 bar, respectively, at 298 K. At 273 K, the CO 2 uptake improves to 3.7 and 8.59 mmol g -1 at 0.15 and 1 bar, respectively. The reported porous carbons also show significantly high adsorption selectivity for CO 2 /N 2 (128) and CO 2 /CH 4 (13.4) according to ideal adsorbed solution theory calculations at 298 K. Gas breakthrough studies of CO 2 /N 2 (10:90) at 298 K showed that PYDCs display excellent separation properties. The ability to tailor the physical properties of PYDCs as well as their chemical composition provides an effective strategy for designing efficient CO 2 sorbents.
Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evanylo, G.K.; Abaye, A.O.; Dundas, C.
The selection of plant species is critical for the successful establishment and long-term maintenance of vegetation on reclaimed surface mined soils. A study was conducted to assess the capability of 16 forage grass and legume species in monocultures and mixes to establish and thrive on a reclaimed Appalachian surface mine amended with biosolids. The 0.15-ha coarse-textured, rocky, non-acid forming mined site was prepared for planting by grading to a 2% slope and amending sandstone overburden materials with a mixture of composted and dewatered, anaerobically digested biosolids at a rate of 368 Mg ha{sup -1} (dry weight). The high rate ofmore » biosolids applied provided favorable soil chemical properties but could not overcome physical property limitations due to shallow undeveloped soil perched atop a compacted soil layer at 25 cm depth. The plant species whose persistence and biomass production were the greatest after a decade or more of establishment (i.e., switchgrass, sericea lespedeza, reed canarygrass, tall fescue, and crownvetch) shared the physiological and reproductive characteristics of low fertility requirements, drought and moisture tolerance, and propagation by rhizome and/or stolons. Of these five species, two (tall fescue and sericea lespedeza) are or have been seeded commonly on Appalachian coal surface mines, and often dominate abandoned pasture sites. Despite the high rates of heavy metal-bearing biosolids applied to the soil, plant uptake of Cd, Cu, Ni, and Zn were well within critical concentrations more than a decade after establishment of the vegetation.« less
Li, Yang; Monteiro-Riviere, Nancy A
2016-12-01
To assess inflammation, cellular uptake and endocytic mechanisms of gold nanoparticles (AuNP) in human epidermal keratinocytes with and without a protein corona. Human epidermal keratinocytes were exposed to 40 and 80 nm AuNP with lipoic acid, polyethylene glycol (PEG) and branched polyethyleneimine (BPEI) coatings with and without a protein corona up to 48 h. Inhibitors were selected to characterize endocytosis. BPEI-AuNP showed the greatest uptake, while PEG-AuNP had the least. Protein coronas decreased uptake and affected their mechanism. AuNP uptake was energy-dependent, except for 40 nm lipoic-AuNP. Most AuNP were internalized by clathrin and lipid raft-mediated endocytosis, except for 40 nm PEG was by raft/noncaveolae mediated endocytosis. Coronas inhibited caveolae-mediated-endocytosis with lipoic acid and BPEI-AuNP and altered 40 nm PEG-AuNP from raft/noncaveolae to clathrin. Inflammatory responses decreased with a plasma corona. Results suggest protein coronas significantly affect cellular uptake and inflammatory responses of AuNP.
Modification of meta-iodobenzylguanidine uptake in neuroblastoma cells by elevated temperature.
Armour, A.; Mairs, R. J.; Gaze, M. N.; Wheldon, T. E.
1994-01-01
Successful imaging or treatment of neuroblastoma with 131I-meta-iodobenzylguanidine (131I-mIBG) depends on the selectivity of active (type 1) uptake of mIBG in neuroblastoma cells relative to passive (type 2) uptake present in most normal tissues. This study investigates the effects of moderately elevated temperature (39-41 degrees C) on the cellular uptake of 131I-mIBG in two neuroblastoma cell lines [SK-N-BE(2c) and IMR-32] and in a non-neuronal (ovarian carcinoma) cell line (A2780). In SK-N-BE(2c), a cell line with high active uptake capacity, the specific (type 1) uptake was reduced by 75% (P < 0.001) at 39 degrees C. Both IMR-32 and A2780 have a low capacity for accumulation of mIBG by active uptake. These cell lines demonstrated a statistically significant increase in accumulation at 39 degrees C, mainly as a result of increased non-specific transport. At 41 degrees C uptake of 131I-mIBG was reduced in all cell lines. Thus, the active component of mIBG uptake is more vulnerable to increased temperature than the passive component. It seems probable that moderately increased temperature will have an unfavourable effect on the therapeutic differential for targeted radiotherapy of neuroblastoma using radiolabelled mIBG. PMID:8080728
Phosphorus dynamics in biogeochemically distinct regions of the southeast subtropical Pacific Ocean
NASA Astrophysics Data System (ADS)
Duhamel, Solange; Björkman, Karin M.; Repeta, Daniel J.; Karl, David M.
2017-02-01
The southeast subtropical Pacific Ocean was sampled along a zonal transect between the coasts of Chile and Easter Island. This remote area of the world's ocean presents strong gradients in physical (e.g., temperature, density and light), chemical (e.g., salinity and nutrient concentrations) and microbiological (e.g., cell abundances, biomass and specific growth rates) properties. The goal of this study was to describe the phosphorus (P) dynamics in three main ecosystems along this transect: the upwelling regime off the northern Chilean coast, the oligotrophic area associated with the southeast subtropical Pacific gyre and the transitional area in between these two biomes. We found that inorganic phosphate (Pi) concentrations were high and turnover times were long (>210 nmol l-1 and >31 d, respectively) in the upper water column, along the entire transect. Pi uptake rates in the gyre were low (euphotic layer integrated rates were 0.26 mmol m-2 d-1 in the gyre and 1.28 mmol m-2 d-1 in the upwelling region), yet not only driven by decreases in particle mass or cell abundance (particulate P- and cell- normalized Pi uptake rates in the euphotic layer were ∼1-4 times and ∼3-15 times lower in the gyre than in the upwelling, respectively). However these Pi uptake rates were at or near the maximum Pi uptake velocity (i.e., uptake rates in Pi amended samples were not significantly different from those at ambient concentration: 1.5 and 23.7 nmol l-1 d-1 at 50% PAR in the gyre and upwelling, respectively). Despite the apparent Pi replete conditions, selected dissolved organic P (DOP) compounds were readily hydrolyzed. Nucleotides were the most bioavailable of the DOP substrates tested. Microbes actively assimilated adenosine-5‧-triphosphate (ATP) leading to Pi and adenosine incorporation as well as Pi release to the environment. The southeast subtropical Pacific Ocean is a Pi-sufficient environment, yet DOP hydrolytic processes are maintained and contribute to P-cycling across the wide range of environmental conditions present in this ecosystem.
Pourcho, Roberta G; Qin, Pu; Goebel, Dennis J; Fyk-Kolodziej, Bozena
2002-12-16
Fast-acting excitatory neurotransmission in the retina is mediated primarily by glutamate, acting at alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) -selective and kainate-selective receptors. To localize these sites of action, cat retinas were stimulated with either AMPA or kainate and processed for histochemical visualization of cobalt uptake through calcium-permeable channels. Treatment with both agonists resulted in staining of A- and B-type horizontal cells and several types of OFF cone bipolar cells; there was no evidence for staining of ON cone bipolar cells or rod bipolar cells. The subpopulations of OFF cone bipolar cells differed in their responses with two distinct types that stained heavily with cobalt after exposure to AMPA and three different types that were preferentially labeled after exposure to kainate. Although many amacrine and ganglion cells appeared to respond to both agonists, AII amacrine cells were stained after stimulation by AMPA but not by kainate. The OFF cone bipolar cells that exhibit AMPA-stimulated cobalt uptake were found to have a high level of correspondence with cells that show immunocytochemical staining for the AMPA-selective glutamate receptor subunits GluR1 and GluR2/3. Similarly, the cone bipolar cells exhibiting kainate-stimulated cobalt uptake resemble those that are immunoreactive for the kainate subunit GluR5. The results indicate that, whereas many retinal neurons express both AMPA and kainate receptors, AII amacrine cells and subpopulations of OFF cone bipolar cells are limited to the expression of either AMPA or kainate receptors. This differential expression may contribute to the unique character of transmission by these cell types. Copyright 2002 Wiley-Liss, Inc.
Carrageenans as a new source of drugs with metal binding properties.
Khotimchenko, Yuri S; Khozhaenko, Elena V; Khotimchenko, Maxim Y; Kolenchenko, Elena A; Kovalev, Valeri V
2010-04-01
Carrageenans are abundant and safe non-starch polysaccharides exerting their biological effects in living organisms. Apart from their known pro-inflammation properties and some pharmacological activity, carrageenans can also strongly bind and hold metal ions. This property can be used for creation of the new drugs for elimination of metals from the body or targeted delivery of these metal ions for healing purposes. Metal binding activity of different carrageenans in aqueous solutions containing Y(3+) or Pb(2+) ions was studied in a batch sorption system. The metal uptake by carrageenans is not affected by the change of the pH within the range from 2.0 to 6.0. The rates and binding capacities of carrageenans regarding metal ions were evaluated. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants, and the sorption isothermal data could be explained well by the Langmuir equation. The results obtained through the study suggest that kappa-, iota-, and lambda-carrageenans are favorable sorbents. The largest amount of Y(3+) and Pb(2+) ions are bound by iota-carrageenan. Therefore, it can be concluded that this type of polysaccharide is the more appropriate substance for elaboration of the drugs with high selective metal binding properties.
NASA Astrophysics Data System (ADS)
Rupiasih, N. N.; Sumadiyasa, M.; Putra, I. K.
2018-04-01
The present study, we report about the effect of UVC irradiation on the mechanical properties of chitosan membrane in the sterilization process. The membrane used was chitosan membrane 2% which prepared by a casting method using chitosan as matrix and acetic acid 1% as a solvent. The UVC source used was germicidal ultraviolet (UVG) which widely used for sterilization purposes. Variation doses were done by the varying time of irradiation, e.g. 5 min, 15 min, 30 min, and 60 min. Those samples are named as S1, S2, S3, and S4, respectively. Chitosan membrane before irradiation namely S0 also used for comparative study. The effect of UVC irradiation on the mechanical properties of membranes has been examined by different techniques including FTIR, DMA, and the water uptake capability. The results showed that ultimate tensile strength (UTS) and moduli of elasticity (E) were increased by increasing the irradiation time. From FTIR analysis obtained that no new molecules were formed in irradiated membranes. The water uptakes capability of the membranes after irradiation was smaller compared with before irradiation, and among the irradiated membranes, the water uptake capabilities were increased by increasing the exposure time. These observations suggested that more care should be taken during the sterilization process and outdoor used of the membrane. The other side, the UVC irradiation can improve the mechanical properties of the membranes.
NASA Astrophysics Data System (ADS)
Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng
2015-01-01
Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.
Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Zhai, Quan-Guo
2017-01-17
The synthetic design of new porous open-framework materials with pre-designed pore properties for desired applications such as gas adsorption and separation remains challenging. We proposed one such class of materials, rod metal-organic frameworks (rod MOFs), which can be tuned by using rod secondary building units (rod SBUs) with different geometrical and chemical features. Our approach takes advantage of the readily accessible metal-triazolate 1-D motifs as rod SBUs to combine with dicarboxylate ligands to prepare target rod MOFs. Herein we report three such metal-triazolate-dicarboxylate frameworks (SNNU-21, -22 and -23). During the formation of these three MOFs, Cd or Zn ions are firstly connected by 1,2,4-triazole through the N1,N2,N4-mode to form 1-D metal-organic ribbon-like rod SBUs, which further joint four adjacent rod SBUs via eight BDC linkers to give 3-D microporous frameworks. However, tuned by the different NH 2 groups from metal-triazolate rod SBUs, different space groups, pore sizes and shapes are observed for SNNU-21-23. All of these rod MOFs show not only remarkable CO 2 uptake capacity, but also high CO 2 over CH 4 and C 2 -hydrocarbons over CH 4 selectivity under ambient conditions. Specially, SNNU-23 exhibits a very high isosteric heat of adsorption (Q st ) for C 2 H 2 (62.2 kJ mol -1 ), which outperforms the values of all MOF materials reported to date including the famous MOF-74-Co.
Barton D. Clinton; James M. Vose; Don A. Vroblesky; Gregory J. Harvey
2004-01-01
The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation...
Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data
ERIC Educational Resources Information Center
George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2009-01-01
This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…
Xu, Hesheng Victor; Zheng, Xin Ting; Zhao, Yanli; Tan, Yen Nee
2018-06-13
Natural amino acids possess side chains with different functional groups (R groups), which make them excellent precursors for programmable synthesis of biomolecule-derived nanodots (biodots) with desired properties. Herein, we report the first systematic study to uncover the material design rules of biodot synthesis from 20 natural α-amino acids via a green hydrothermal approach. The as-synthesized amino acid biodots (AA dots) are comprehensively characterized to establish a structure-property relationship between the amino acid precursors and the corresponding photoluminescent properties of AA dots. It was found that the amino acids with reactive R groups, including amine, hydroxyl, and carboxyl functional groups form unique C-O-C/C-OH and N-H bonds in the AA dots which stabilize the surface defects, giving rise to brightly luminescent AA dots. Furthermore, the AA dots were found to be amorphous and the length of the R group was observed to affect the final morphology (e.g., disclike nanostructure, nanowire, or nanomesh) of the AA dots, which in turn influence their photoluminescent properties. It is noteworthy to highlight that the hydroxyl-containing amino acids, that is, Ser and Thr, form the brightest AA dots with a quantum yield of 30.44% and 23.07%, respectively, and possess high photostability with negligible photobleaching upon continuous UV exposure for 3 h. Intriguingly, by selective mixing of Ser or Thr with another amino acid precursor, the resulting mixed AA dots could inherit unique properties such as improved photostability and significant red shift in their emission wavelength, producing enhanced green and red fluorescent intensity. Moreover, our cellular studies demonstrate that the as-synthesized AA dots display outstanding biocompatibility and excellent intracellular uptake, which are highly desirable for imaging applications. We envision that the material design rules discovered in this study will be broadly applicable for the rational selection of amino acid precursors in the tailored synthesis of biodots.
USDA-ARS?s Scientific Manuscript database
Medicinal plants are a rich source of ligands for nuclear receptors. The present study was aimed to screen a collection of plant extracts for PPAR-alpha/gamma activating properties and identify the active extract that can stimulate cellular glucose uptake without enhancing the adipogenesis. A report...
Altai, Mohamed; Honarvar, Hadis; Wållberg, Helena; Strand, Joanna; Varasteh, Zohreh; Rosestedt, Maria; Orlova, Anna; Dunås, Finn; Sandström, Mattias; Löfblom, John; Tolmachev, Vladimir; Ståhl, Stefan
2014-11-24
Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all (188)Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The (188)Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of (188)Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental (188)Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of (188)Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs. Copyright © 2014 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Toward hypoxia-selective rhenium and technetium tricarbonyl complexes.
North, Andrea J; Hayne, David J; Schieber, Christine; Price, Katherine; White, Anthony R; Crouch, Peter J; Rigopoulos, Angela; O'Keefe, Graeme J; Tochon-Danguy, Henri; Scott, Andrew M; White, Jonathan M; Ackermann, Uwe; Donnelly, Paul S
2015-10-05
With the aim of preparing hypoxia-selective imaging and therapeutic agents, technetium(I) and rhenium(I) tricarbonyl complexes with pyridylhydrazone, dipyridylamine, and pyridylaminocarboxylate ligands containing nitrobenzyl or nitroimidazole functional groups have been prepared. The rhenium tricarbonyl complexes were synthesized with short reaction times using microwave irradiation. Rhenium tricarbonyl complexes with deprotonated p-nitrophenyl pyridylhydrazone ligands are luminescent, and this has been used to track their uptake in HeLa cells using confocal fluorescent microscopy. Selected rhenium tricarbonyl complexes displayed higher uptake in hypoxic cells when compared to normoxic cells. A (99m)Tc tricarbonyl complex with a dipyridylamine ligand bearing a nitroimidazole functional group is stable in human serum and was shown to localize in a human renal cell carcinoma (RCC; SK-RC-52) tumor in a mouse.
Peles, Zachi; Zilberman, Meital
2012-01-01
Naturally derived materials are becoming widely used in the biomedical field. Soy protein has advantages over various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the current study soy protein isolate (SPI) was investigated as a matrix for wound dressing applications. The antibiotic drug gentamicin was incorporated into the matrix for local controlled release and, thus, protection against bacterial infection. Homogeneous yellowish films were cast from aqueous solutions. After cross-linking they combined high tensile strength and Young's modulus with the desired ductility. The plasticizer type, cross-linking agent and method of cross-linking were found to strongly affect the tensile properties of the SPI films. Selected SPI films were tested for relevant physical properties and the gentamicin release profile. The cross-linking method affected the degree of water uptake and the weight loss profile. The water vapor transmission rate of the films was in the desired range for wound dressings (∼2300 g m(-2) day(-1)) and was not affected by the cross-linking method. The gentamicin release profile exhibited a moderate burst effect followed by a decreasing release rate which was maintained for at least 4 weeks. Diffusion was the dominant release mechanism of gentamicin from cross-linked SPI films. Appropriate selection of the process parameters yielded SPI wound dressings with the desired mechanical and physical properties and drug release behavior to protect against bacterial infection. These unique structures are thus potentially useful as burn and ulcer dressings. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1978-01-01
A series of specific macromolecules (tetanus toxin, cholera toxin, nerve growth factor [NGF], and several lectins) have been shown to be transported retrogradely with high selectivity from terminals to cell bodies in various types of neurons. Under identical experimental conditions (low protein concentrations injected), most other macromolecules, e.g. horseradish peroxidase (HRP), albumin, ferritin, are not transported in detectable amounts. In the present EM study, we demonstrate selective binding of tetanus toxin to the surface membrane of nerve terminals, followed by uptake and subsequent retorgrade axonal transport. Tetanus toxin or albumin was adsorbed to colloidal gold particles (diam 200 A). The complex was shown to be stable and well suited as an EM tracer. 1-4 h after injection into the anterior eye chamber of adult rats, tetanus toxin-gold particles were found to be selectively associated with membranes of nerve terminals and preterminal axons. Inside terminals and axons, the tracer was localized mainly in smooth endoplasmic reticulum (SER)-like membrane compartments. In contrast, association of albumin-gold complexes with nervous structures was never observed, in spite of extensive uptake into fibroblasts. Electron microscope and biochemical experiments showed selective retrograde transport of tetanus toxin-gold complexes to the superior cervical ganglion. Specific binding to membrane components at nerve terminals and subsequent internalization and retrograde transport may represent an important pathway for macromolecules carrying information from target organs to the perikarya of their innervating neurons. PMID:659508
2015-01-01
The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal–organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure–property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions. PMID:26364990
Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung
2014-10-01
Discharging untreated highly acidic (pH<4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH>10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances. Copyright © 2014. Published by Elsevier Ltd.
Alezi, Dalal; Belmabkhout, Youssef; Suyetin, Mikhail; Bhatt, Prashant M; Weseliński, Łukasz J; Solovyeva, Vera; Adil, Karim; Spanopoulos, Ioannis; Trikalitis, Pantelis N; Emwas, Abdul-Hamid; Eddaoudi, Mohamed
2015-10-21
The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal-organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm(3) (STP)/cm(3) (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions.
The contribution of spray formulation component variables to foliar uptake of agrichemicals.
Forster, W Alison; Kimberley, Mark O
2015-09-01
The objective of the present study was to determine the contribution of the active ingredient (AI) and surfactant, and their concentrations, to the foliar uptake of agrichemicals, and to examine the physical properties that would need to be included in a model for foliar uptake. All spray formulation component variables significantly affected uptake, explaining 73% of the deviance. The deviance explained by each factor ranged from 43% (AI concentration nested within AI) to 5.6% (surfactant). The only significant interaction was between AI and surfactant, explaining 15.8% of the deviance. Overall, 90% of the deviance could be explained by the variables and their first-order interactions. Uptake increased with increasing lipophilicity of the AI at concentrations below those causing precipitation on the leaf surface. AI concentration had a far greater (negative) effect on the uptake of the lipophilic molecule epoxiconazole. The uptake of 2-deoxy-D-glucose (DOG) and 2,4-dichlorophenoxyacetic acid (2,4-D) increased with increasing hydrophile-lipophile balance (HLB) of the surfactant, the effect of HLB being far greater on the hydrophilic molecule DOG. However, the differences observed in epoxiconazole uptake owing to the surfactant were strongly positively related to the spread area of the formulation on the leaf surface. For all AIs, uptake increased in a similar manner with increasing molar surfactant concentration. © 2014 Society of Chemical Industry.
Soil and plant factors influencing the accumulation of heavy metals by plants.
Cataldo, D A; Wildung, R E
1978-01-01
The use of plants to monitor heavy metal pollution in the terrestrial environment must be based on a cognizance of the complicated, integrated effects of pollutant source and soil-plant variables. To be detectable in plants, pollutant sources must significantly increase the plant available metal concentration in soil. The major factor governing metal availability to plants in soils is the solubility of the metal associated with the solid phase, since in order for root uptake to occur, a soluble species must exist adjacent to the root membrane for some finite period. The rate of release and form of this soluble species will have a strong influence on the rate and extent of uptake and, perhaps, mobility and toxicity in the plant and consuming animals. The factors influencing solubility and form of available metal species in soil vary widely geographically and include the concentration and chemical form of the element entering soil, soil properties (endogenous metal concentration, mineralogy, particle size distribution), and soil processes (e.g., mineral weathering, microbial activity), as these influence the kinetics of sorption reactions, metal concentration in solution and the form of soluble and insoluble chemical species. The plant root represents the first barrier to the selective accumulation of ions present in soil solution. Uptake and kinetic data for nutrient ions and chemically related nonnutrient analogs suggest that metabolic processes associated with root absorption of nutrients regulate both the affinity and rate of absorption of specific nonnutrient ions. Detailed kinetic studies of Ni, Cd, and Tl uptake by intact plants demonstrate multiphasic root absorption processes over a broad concentration range, and the use of transport mechanisms in place for the nutrient ions Cu, Zn, and K. Advantages and limitations of higher plants as indicators of increased levels of metal pollution are discussed in terms of these soil and plant phenomena. PMID:367766
Cyphert, Erika L; von Recum, Horst A; Yamato, Masayuki; Nakayama, Masamichi
2018-06-01
Two different surface sulfonamide-functionalized poly(N-isopropylacrylamide)-based polymeric micelles were designed as pH-/temperature-responsive vehicles. Both sulfadimethoxine- and sulfamethazine-surface functionalized micelles were characterized to determine physicochemical properties, hydrodynamic diameters, zeta potentials, temperature-dependent size changes, and lower critical solution temperatures (LCST) in both pH 7.4 and 6.8 solutions (simulating both physiological and mild low pH conditions), and tested in the incorporation of a proof-of-concept hydrophobic antiproliferative drug, paclitaxel. Cellular uptake studies were conducted using bovine carotid endothelial cells and fluorescently labeled micelles to evaluate if there was enhanced cellular uptake of the micelles in a low pH environment. Both variations of micelles showed enhanced intracellular uptake under mildly acidic (pH 6.8) conditions at temperatures slightly above their LCST and minimal uptake at physiological (pH 7.4) conditions. Due to the less negative zeta potential of the sulfamethazine-surface micelles compared to sulfadimethoxine-surface micelles, and the proximity of their LCST to physiological temperature (37°C), the sulfamethazine variation was deemed more amenable for clinically relevant temperature and pH-stimulated applications. Nevertheless, we believe both polymeric micelle variations have the capacity to be implemented as an intracellular drug or gene delivery system in response to mildly acidic conditions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1552-1560, 2018. © 2018 Wiley Periodicals, Inc.
Qi, Sheng; Belton, Peter; McAuley, William; Codoni, Doroty; Darji, Neerav
2013-04-01
Gelucire 50/13, a polyoxyethylene glycol glyceride mixture, has been widely used in drug delivery, but its moisture uptake behaviour is still poorly understood. In this study, the effects of relative humidity, temperature, and drug incorporation on the moisture uptake of Gelucire are reported in relation to their practical implications for preparation of solid dispersions using this material. DVS combined with kinetics modelling was used as the main experimental method to study the moisture uptake behaviour of Gelucire. Thermal and microscopic methods were employed to investigate the effect of moisture uptake on the physical properties of the material and drug loaded solid dispersions. The moisture uptake by Gelucire 50/13 is temperature and relative humidity dependent. At low temperatures and low relative humidities, moisture sorption follows a GAB model. The model fitting indicated that at high relative humidities the sorption is a complex process, potentially involving PEG being dissolved and the PEG solution acting as solvent to dissolve other components. Careful control of the storage and processing environmental conditions are required when using Gelucire 50/13. The incorporation of model drugs not only influences the moisture uptake capacity of Gelucire 50/13 but also the solidification behaviour.
Non-toxic fluorescent phosphonium probes to detect mitochondrial potential.
Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X
2017-03-22
We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry-xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe's limitations.
Charge-switching amino acids-based cationic lipids for efficient gene delivery.
Zheng, Li-Ting; Yi, Wen-Jing; Liu, Qiang; Su, Rong-Chuan; Zhao, Zhi-Gang
2015-12-15
A series of charge-switching amino acids-based cationic lipids 4a-4e bearing a benzyl ester at the terminus of the acyl chain, but differing in the polar-head group were prepared. The physicochemical properties of these lipids, including size, zeta potential and cellular uptake of the lipoplexes formed from with DNA, as well as the transfection efficiency (TE), were investigated. The results showed that the chemical structure of the cationic head-group clearly affects the physicochemical parameters of the amino acid-based lipids and especially the TE. The selected lipid, 4c gave 2.1 times higher TE than bPEI 25k in the presence of 10% serum in HeLa cells, with little toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Non-toxic fluorescent phosphonium probes to detect mitochondrial potential
NASA Astrophysics Data System (ADS)
Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X.
2017-03-01
We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry—xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe’s limitations.
Ge, Huacai; Hua, Tingting
2016-11-20
Chitosan-poly(maleic acid) nanomaterial (PMACS) with the size of 400-900nm was synthesized by grafting poly(maleic acid) onto chitosan and then crosslinking with glutaraldehyde. The synthesis conditions were optimized. The structure and morphology of PMACS were characterized by FT-IR, XRD, SEM and TGA. PMACS was used to adsorb some heavy metal ions such as Hg(II), Pb(II), Cu(II), Cd(II), Co(II), and Zn(II). The results indicated that PMACS had selectivity for Hg(II) sorption. The effects of various variables for sorption of Hg(II) were further explored. The maximum capacity for Hg(II) sorption was found to be 1044mgg(-1) at pH 6.0, which could compare with the maximal value of the recently reported other sorbents. The sorption followed the pseudo-second-order kinetics and Langmuir isotherm models. The rising of temperature benefited the uptake and the sorption was a spontaneous chemical process. The sorbent could be reused with EDTA. Hence, the nanomaterial would be used as a selective and high uptake sorbent in the removal of Hg(II) from effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Holland, Jason P; Giansiracusa, Jeffrey H; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R
2009-04-07
The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [(60/62/64)Cu(II)ATSM] and [(60/62/64)Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO(2)-dependent in vitro cellular uptake and retention of [(64)Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k(1) = 9.8 +/- 0.59 x 10(-4) s(-1) and k(2) = 2.9 +/- 0.17 x 10(-3) s(-1)), intracellular reduction (k(3) = 5.2 +/- 0.31 x 10(-2) s(-1)), reoxidation (k(4) = 2.2 +/- 0.13 mol(-1) dm(3) s(-1)) and proton-mediated ligand dissociation (k(5) = 9.0 +/- 0.54 x 10(-5) s(-1)). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have also been conducted. NADH turnover frequencies are found to be dependent on the structure of the ligand and the results confirm that the proposed reduction step in the mechanism of hypoxia selectivity is likely to be mediated by NADH-dependent enzymes. Further understanding of the mechanism of hypoxia selectivity may facilitate the development of new imaging and radiotherapeutic agents with increased specificity for tumour hypoxia.
NASA Astrophysics Data System (ADS)
Holland, Jason P.; Giansiracusa, Jeffrey H.; Bell, Stephen G.; Wong, Luet-Lok; Dilworth, Jonathan R.
2009-04-01
The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [60/62/64Cu(II)ATSM] and [60/62/64Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO2-dependent in vitro cellular uptake and retention of [64Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k1 = 9.8 ± 0.59 × 10-4 s-1 and k2 = 2.9 ± 0.17 × 10-3 s-1), intracellular reduction (k3 = 5.2 ± 0.31 × 10-2 s-1), reoxidation (k4 = 2.2 ± 0.13 mol-1 dm3 s-1) and proton-mediated ligand dissociation (k5 = 9.0 ± 0.54 × 10-5 s-1). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have also been conducted. NADH turnover frequencies are found to be dependent on the structure of the ligand and the results confirm that the proposed reduction step in the mechanism of hypoxia selectivity is likely to be mediated by NADH-dependent enzymes. Further understanding of the mechanism of hypoxia selectivity may facilitate the development of new imaging and radiotherapeutic agents with increased specificity for tumour hypoxia.
NASA Astrophysics Data System (ADS)
Nebipasagil, Ali
Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamideterminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDELRTM foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly(arylene ether sulfone) copolymers with controlled molecular weights were synthesized and chemically modified to obtain poly(arylene ether sulfone) polyols with aliphatic hydroxyethyl terminal functionality. The hydroxyethyl-terminated oligomers and a,u-hydroxy-terminated PEO were chain extended with a diisocyanate to obtain polyurethanes. Compositions with high poly(arylene ether sulfone) content relative to the hydrophilic PEO blocks were of interest due to their mechanical integrity. The membranes were characterized to analyze their compositions, thermal and mechanical properties, water uptake, and molecular weights. These membranes were also evaluated by collaborators at the University of Texas at Austin to explore single gas transport properties. The results showed that both polymer and transport properties closely related to PEO-content. The CO2/CH4 gas selectivity of our membranes were improved from 25 to 34 and the CO2/N2 gas selectivity nearly doubled from 25 to 46 by increasing PEO-content from 0 to 30 wt.% in polyurethanes. Chapter four also focuses on polymers for gas separation membranes. Disulfonated poly(arylene ether sulfone) and poly(ethylene oxide)-containing polyurethanes were synthesized for potential applications as gas separation membranes. Disulfonated polyols containing 20 and 40 mole percent of disulfonated repeat units with controlled molecular weights were synthesized. Poly(arylene ether sulfone) polyols and alpha,o-hydroxy-terminated poly(ethylene oxide) were subsequently chain extended with a diisocyanate to obtain polyurethanes. Thermal and mechanical characterization revealed that the polyurethanes had a phase-mixed complex morphology.
Interplay of drug metabolizing enzymes with cellular transporters.
Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter
2014-11-01
Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.
Majumdar, Anupam; Mondal, Subhendu; Daniliuc, Constantin G; Sahu, Debashis; Ganguly, Bishwajit; Ghosh, Sourav; Ghosh, Utpal; Ghosh, Kumaresh
2017-08-07
α-Amino acid derived benzimidazole-linked rhodamines have been synthesized, and their metal ion sensing properties have been evaluated. Experimentally, l-valine- and l-phenylglycine-derived benzimidazole-based rhodamines 1 and 2 selectively recognize Al 3+ ion in aqueous CH 3 CN (CH 3 CN/H 2 O 4/1 v/v, 10 mM tris HCl buffer, pH 7.0) over the other cations by exhibiting color and "turn-on" emission changes. In contrast, glycine-derived benzimidazole 3 remains silent in the recognition event and emphasizes the role of α-substitution of amino acid undertaken in the design. The fact has been addressed on the basis of the single-crystal X-ray structures and theoretical calculations. Moreover, pink 1·Al 3+ and 2·Al 3+ ensembles selectively sensed F - ions over other halides through a discharge of color. Importantly, compounds 1 and 2 are cell permeable and have been used as imaging reagents for the detection of Al 3+ uptake in human lung carcinoma cell line A549.
A spin transition mechanism for cooperative adsorption in metal-organic frameworks
NASA Astrophysics Data System (ADS)
Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia; Mason, Jarad A.; Runčevski, Tomče; Xiao, Dianne J.; Darago, Lucy E.; Crocellà, Valentina; Bordiga, Silvia; Long, Jeffrey R.
2017-10-01
Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(II) sites. Functioning via a mechanism by which neighbouring iron(II) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.
Chen, Di-Ming; Tian, Jia-Yue; Chen, Min; Liu, Chun-Sen; Du, Miao
2016-07-20
A moisture-stable three-dimensional (3D) metal-organic framework (MOF), {(Me2NH2)[Zn2(bpydb)2(ATZ)](DMA)(NMF)2}n (1, where bpydb = 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoate, ATZ = deprotonated 5-aminotetrazole, DMA = N,N-dimethylacetamide, and NMF = N-methylformamide), with uncoordinated N-donor sites and charged framework skeleton was fabricated. This MOF exhibits interesting structural dynamic upon CO2 sorption at 195 K and high CO2/N2 (127) and CO2/CH4 (131) sorption selectivity at 298 K and 1 bar. Particularly, its CO2/CH4 selectivity is among the highest MOFs for selective CO2 separation. The results of Grand Canonical Monte Carlo (GCMC) simulation indicate that the polar framework contributes to the strong framework-CO2 binding at zero loading, and the tetrazole pillar contributes to the high CO2 uptake capacity at high loading. Furthermore, the solvent-responsive luminescent properties of 1 indicate that it could be utilized as a fluorescent sensor to detect trace amounts of nitrobenzene in both solvent and vapor systems.
Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A
2013-06-21
The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.
Guo, Haixun; Gallazzi, Fabio; Miao, Yubin
2012-06-20
The purpose of this study was to examine the melanoma targeting and pharmacokinetic properties of (67)Ga-DOTA-GGNle-CycMSHhex {(67)Ga-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and (67)Ga-NOTA-GGNle-CycMSHhex {(67)Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and compare with (67)Ga-DOTA-GlyGlu-CycMSH {(67)Ga-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]} we previously reported. DOTA-GGNle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and pharmacokinetic properties of (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs 2.1 nM) in B16/F1 melanoma cells. Both (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex exhibited dramatically enhanced melanoma uptake and reduced renal uptake than (67)Ga-DOTA-GlyGlu-CycMSH in B16/F1 melanoma-bearing C57 mice. Furthermore, (67)Ga-NOTA-GGNle-CycMSHhex exhibited more favorable radiolabeling conditions (>85% radiolabeling yields started at 37 °C), as well as higher tumor/kidney uptake ratios than (67)Ga-DOTA-GGNle-CycMSHhex at 0.5, 2, and 24 h postinjection. High melanoma uptake coupled with low renal uptake highlighted the potential of (67)Ga-NOTA-GGNle-CycMSHhex for melanoma imaging and therapy.
Guo, Haixun; Gallazzi, Fabio; Miao, Yubin
2012-01-01
The purpose of this study was to examine the melanoma targeting and pharmacokinetic properties of 67Ga-DOTA-GGNle-CycMSHhex {67Ga-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-Gly-Gly-Nle-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2} and 67Ga-NOTA-GGNle-CycMSHhex {67Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2} and compare with 67Ga-DOTA-GlyGlu-CycMSH {67Ga-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-dPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]} we previously reported. DOTA-GGNle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and pharmacokinetic properties of 67Ga-NOTA-GGNle-CycMSHhex and 67Ga-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs. 2.1 nM) in B16/F1 melanoma cells. Both 67Ga-NOTA-GGNle-CycMSHhex and 67Ga-DOTA-GGNle-CycMSHhex exhibited dramatically enhanced melanoma uptake and reduced renal uptake than 67Ga-DOTA-GlyGlu-CycMSH in B16/F1 melanoma-bearing C57 mice. Furthermore, 67Ga-NOTA-GGNle-CycMSHhexexhibited more favorable radiolabeling conditions (> 85% radiolabeling yields started at 37°C), as well as higher tumor/kidney uptake ratios than 67Ga-DOTA-GGNle-CycMSHhex at 0.5, 2 and 24 h post-injection. High melanoma uptake coupled with low renal uptake highlighted the potential of 67Ga-NOTA-GGNle-CycMSHhexfor melanoma imaging and therapy. PMID:22621181
Zotta, T; Ianniello, R G; Guidone, A; Parente, E; Ricciardi, A
2014-03-01
Lactobacillus plantarum is a lactic acid bacterium involved in the production of many fermented foods. Recently, several studies have demonstrated that aerobic or respiratory metabolism in this species leads to improved technological and stress response properties. We investigated respiratory growth, metabolite production and stress resistance of Lact. plantarum C17 during batch, fed-batch and chemostat cultivations under respiratory conditions. Sixty mutants were selected for their ability to tolerate oxidative stress using H2 O2 and menadione as selective agents and further screened for their capability to growth under anaerobic, respiratory and oxidative stress conditions. Dilution rate clearly affected the physiological state of cells and, generally, slow-growing cultures had improved survival to stresses, catalase production and oxygen uptake. Most mutants were more competitive in terms of biomass production and ROS degradation compared with wild-type strain (wt) C17 and two of these (C17-m19 and C17-m58) were selected for further experiments. This work confirms that, in Lact. plantarum, respiration and low growth rates confer physiological and metabolic advantages compared with anaerobic cultivation. Our strategy of natural selection successfully provides a rapid and inexpensive screening for a large number of strains and represents a food-grade approach of practical relevance in the production of starter and probiotic cultures. © 2013 The Society for Applied Microbiology.
Frison, Nicola; Katsou, Evina; Malamis, Simos; Oehmen, Adrian; Fatone, Francesco
2015-09-15
Polyhydroxyalkanoates (PHAs) from activated sludge and renewable organic material can become an alternative product to traditional plastics since they are biodegradable and are produced from renewable sources. In this work, the selection of PHA storing bacteria was integrated with the side stream treatment of nitrogen removal via nitrite from sewage sludge reject water. A novel process was developed and applied where the alternation of aerobic-feast and anoxic-famine conditions accomplished the selection of PHA storing biomass and nitrogen removal via nitrite. Two configurations were examined: in configuration 1 the ammonium conversion to nitrite occurred in the same reactor in which the PHA selection process occurred, while in configuration 2 two separate reactors were used. The results showed that the selection of PHA storing biomass was successful in both configurations, while the nitrogen removal efficiency was much higher (almost 90%) in configuration 2. The PHA selection degree was evaluated by the volatile fatty acid (VFA) uptake rate (-qVFAs) and the PHA production rate (qPHA), which were 239 ± 74 and 89 ± 7 mg of COD per gram of active biomass (Xa) per hour, respectively. The characterization of the biopolymer recovered after the accumulation step, showed that it was composed of 3-hydroxybutyrate (3HB) (60%) and 3-hydroxyvalerate (3HV) (40%). The properties associated with the produced PHA suggest that they are suitable for thermoplastic processing.
Uptake of (/sup 3/H)serotonin into plasma membrane vesicles from mouse cerebral cortex
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Reilly, C.A.; Reith, M.E.A.
1988-05-05
Preparations of plasma membrane vesicles were used as a tool to study the properties of the serotonin transporter in the central nervous system. The vesicles were obtained after hypotonic shock of synaptosomes purified from mouse cerebral cortex. Uptake of (/sup 3/H)serotonin had a Na/sup +/-dependent and Na/sup +/-independent component. The Na/sup +/-dependent uptake was inhibited by classical blockers of serotonin uptake and had a K/sub m/ of 63-180 nM, and a V/sub max/ of 0.1-0.3 pmol mg/sup -1/ s/sup -1/ at 77 mM Na/sup +/. The uptake required the presence of external Na/sup +/ and internal K/sup +/. Replacement ofmore » Cl/sup -/ by other anions (NO/sub 2//sup -/, S/sub 2/O/sub 3//sup 2 -/) reduced uptake appreciably. Gramicidin prevented uptake. Although valinomycin increased uptake somewhat, the membrane potential per se could not drive uptake because no uptake was observed when a membrane potential was generated by the SCN/sup -/ ion in the absence of internal K/sup +/ and with equal (Na/sup +/) inside and outside. The increase of uptake as a function of (Na/sup +/) indicated a K/sub m/ for Na/sup +/ of 118 mM and a Hill number of 2.0, suggesting a requirement of two sodium ions for serotonin transport. The present results are accommodated very well by the model developed for porcine platelet serotonin transport except for the number of sodium ions that are required for transport.« less
Enhanced Cellular Uptake of Short Polyarginine Peptides through Fatty Acylation and Cyclization
2015-01-01
Many of the reported arginine-rich cell-penetrating peptides (CPPs) for the enhanced delivery of drugs are linear peptides composed of more than seven arginine residues to retain the cell penetration properties. Herein, we synthesized a class of nine polyarginine peptides containing 5 and 6 arginines, namely, R5 and R6. We further explored the effect of acylation with long chain fatty acids (i.e., octanoic acid, dodecanoic acid, and hexadecanoic acid) and cyclization on the cell penetrating properties of the peptides. The fluorescence-labeled acylated cyclic peptide dodecanoyl-[R5] and linear peptide dodecanoyl-(R5) showed approximately 13.7- and 10.2-fold higher cellular uptake than that of control 5,6-carboxyfluorescein, respectively. The mechanism of the peptide internalization into cells was found to be energy-dependent endocytosis. Dodecanoyl-[R5] and dodecanoyl-[R6] enhanced the intracellular uptake of a fluorescence-labeled cell-impermeable negatively charged phosphopeptide (F′-GpYEEI) in human ovarian cancer cells (SK-OV-3) by 3.4-fold and 5.5-fold, respectively, as shown by flow cytometry. The cellular uptake of F′-GpYEEI in the presence of hexadecanoyl-[R5] was 9.3- and 6.0-fold higher than that in the presence of octanoyl-[R5] and dodecanoyl-[R5], respectively. Dodecanoyl-[R5] enhanced the cellular uptake of the phosphopeptide by 1.4–2.5-fold higher than the corresponding linear peptide dodecanoyl-(R5) and those of representative CPPs, such as hepta-arginine (CR7) and TAT peptide. These results showed that a combination of acylation by long chain fatty acids and cyclization on short arginine-containing peptides can improve their cell-penetrating property, possibly through efficient interaction of rigid positively charged R and hydrophobic dodecanoyl moiety with the corresponding residues in the cell membrane phospholipids. PMID:24978295
Fabrication of chemically cross-linked porous gelatin matrices.
Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina
2009-01-01
The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.
Modeling aerosol water uptake in the arctic based on the κ-Kohler theory
NASA Astrophysics Data System (ADS)
Rastak, N.; Ekman, A.; Silvergren, S.; Zieger, P.; Wideqvist, U.; Ström, J.; Svenningsson, B.; Tunved, P.; Riipinen, I.
2013-05-01
Water uptake or hygroscopicity is one of the most fundamental properties of atmospheric aerosols. Aerosol particles containing soluble materials can grow in size by absorbing water in ambient atmosphere. This property is measured by a parameter known as growth factor (GF), which is defined as the ratio of the wet diameter to the dry diameter. Hygroscopicity controls the size of an aerosol particle and therefore its optical properties in the atmosphere. Hygroscopic growth depends on the dry size of the particle, its chemical composition and the relative humidity in the ambient air (Fitzgerald, 1975; Pilinis et al., 1995). One of the typical problems in aerosol studies is the lack of measurements of aerosol size distributions and optical properties in ambient conditions. The gap between dry measurements and the real humid atmosphere is filled in this study by utilizing a hygroscopic model which calculates the hygroscopic growth of aerosol particles at Mt Zeppelin station, Ny Ålesund, Svalbard during 2008.
ERIC Educational Resources Information Center
Figoni, Stephen F.
The purpose of this study was to assess selected central cardiovascular functions of spinal cord injured, quadriplegic subjects at varying levels of oxygen uptake (VO sub 2). Subjects included 11 untrained, male college students with C5, C6, or C7 complete quadriplegia and 11 able-bodied reference subjects. Exercise was performed on a Monark cycle…
Microbial utilization of low molecular weight organics in soil depends on the substances properties
NASA Astrophysics Data System (ADS)
Gunina, Anna
2016-04-01
Utilization of low molecular weight organic substances (LMWOS) in soil is regulated by microbial uptake from solution and following incorporation of into specific cell cycles. Various chemical properties of LMWOS, namely oxidation state, number of carbon (C) atoms, number of carboxylic (-COOH) groups, can affect their uptake from soil solution and further microbial utilization. The aim of the study was to trace the initial fate (including the uptake from soil solution and utilization by microorganisms) of three main classes of LMWOS, having contrast properties - sugars, carboxylic and amino acids. Top 10 cm of mineral soil were collected under Silver birch stands within the Bangor DIVERSE experiment, UK. Soil solution was extracted by centrifugation at 4000 rpm during 15 min. Soil was spiked with 14C glucose or fructose; malic, succinic or formic acids; alanine or glycine. No additional non-labeled LMWOS were added. 14C was traced in the dissolved organic matter (DOM), CO2, cytosol and soil organic matter (SOM) during one day. To estimate half-life times (T1 /2)of LMWOS in soil solution and in SOM pools, the single and double first order kinetic equations were fitted to the uptake and mineralization dynamics, respectively. The LMWOS T1 /2in DOM pool varied between 0.6-5 min, with the highest T1 /2for sugars (3.7 min) and the lowest for carboxylic acids (0.6-1.4 min). Thus, initial uptake of LMWOS is not a limiting step of microbial utilization. The T1 /2 of carboxylic and amino acids in DOM were closely related with oxidation state, showing that reduced substances remain in soil solution longer, than oxidized. The initial T1 /2 of LMWOS in SOM ranged between 30-80 min, with the longest T1 /2 for amino acids (50-80 min) and the shortest for carboxylic acids (30-48 min). These T1 /2values were in one-two orders of magnitude higher than LMWOS T1 /2 in soil solution, pointing that LMWOS mineralization occur with a delay after the uptake. Absence of correlations between LMWOS T1 /2 in SOM with C oxidation state, number of C atoms or number of -COOH groups in LMWOS demonstrates that intercellular metabolic pathways are more important. Mineralization of LMWOS amounted for 20-90% of total applied amount. Maximum mineralization was found for carboxylic acids and minimum for sugars, whereas 14C incorporation into cytosol and SOM pools followed the opposite trend. There were close positive correlation between the portion of mineralized C and substance oxidation state, but negative with the amount of C incorporated into the cytosol and SOM pools. This shows that substance properties affect the final partitioning of LMWOS-C between mineralized and utilized pools. Thus, initial uptake of LMWOS from soil solution and final partitioning of LMWOS-C between the mineralized and microbially utilized pools are related to their chemical properties. In contrast, LMWOS mineralization dynamics is regulated by intercellular metabolization pathways.
Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate-Sucrose Mixed Particles.
Chu, Yangxi; Chan, Chak K
2017-01-12
Short-chain alkyl amines can undergo gas-to-particle partitioning via reactive uptake by ammonium salts, whose phases have been thought to largely influence the extent of amine uptake. Previous studies mainly focused on particles of single ammonium salt at either dry or wet conditions without any addition of organic compounds. Here we report the uptake of dimethylamine (DMA) by ammonium sulfate (AS) and AS-sucrose mixed particles at different relative humidities (RHs) using an electrodynamic balance coupled with in situ Raman spectroscopy. DMA is selected as a representative of short-chain alkyl amines, and sucrose is used as a surrogate of viscous and hydrophilic organics. Effective DMA uptake was observed for most cases, except for the water-limiting scenario at <5% RH and the formation of an ultraviscous sucrose coating at 10% RH and below. DMA uptake coefficients (γ) were estimated using the particle mass measurements during DMA uptake. Addition of sucrose can increase γ by absorbing water or inhibiting AS crystallization and decrease γ by elevating the particle viscosity and forming a coating layer. DMA uptake can be facilitated for crystalline AS or retarded for aqueous AS with hydrophilic viscous organics (e.g., secondary organic material formed via the oxidation of biogenic volatile organic compounds) present in aerosol particles.
NASA Astrophysics Data System (ADS)
Bennett, Judith; Lubben, Fred; Hampden-Thompson, Gillian
2013-03-01
This paper presents the findings of the qualitative component of a combined methods research study that explores a range of individual and school factors that influence the uptake of chemistry and physics in post-compulsory study in England. The first phase involves using the National Pupil Database to provide a sampling frame to identify four matched pairs of high-uptake and low-uptake schools by salient school factors. Case studies of these eight schools indicate that students employ selection strategies related to their career aspirations, their sense of identity and tactics, and their prior experience. The school factors influencing subject choice relate to school management, student support and guidance, and student empowerment. The most notable differences between students in high-uptake and low-uptake schools are that students in high-uptake schools appear to make a proactive choice in relation to career aspirations, rather than a reactive choice on the basis of past experience. Schools with a high uptake offer a diverse science curriculum in the final two years of compulsory study, set higher examination entry requirements for further study and, crucially, provide a range of opportunities for students to interact with the world of work and to gain knowledge and experience of science-related careers.
NASA Astrophysics Data System (ADS)
Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; de Stefano, Luca; Santos, Hélder A.
2015-11-01
Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05173h
NASA Astrophysics Data System (ADS)
Smith, Bryan Ronain; Ghosn, Eliver Eid Bou; Rallapalli, Harikrishna; Prescher, Jennifer A.; Larson, Timothy; Herzenberg, Leonore A.; Gambhir, Sanjiv Sam
2014-06-01
In cancer imaging, nanoparticle biodistribution is typically visualized in living subjects using `bulk' imaging modalities such as magnetic resonance imaging, computerized tomography and whole-body fluorescence. Accordingly, nanoparticle influx is observed only macroscopically, and the mechanisms by which they target cancer remain elusive. Nanoparticles are assumed to accumulate via several targeting mechanisms, particularly extravasation (leakage into tumour). Here, we show that, in addition to conventional nanoparticle-uptake mechanisms, single-walled carbon nanotubes are almost exclusively taken up by a single immune cell subset, Ly-6Chi monocytes (almost 100% uptake in Ly-6Chi monocytes, below 3% in all other circulating cells), and delivered to the tumour in mice. We also demonstrate that a targeting ligand (RGD) conjugated to nanotubes significantly enhances the number of single-walled carbon nanotube-loaded monocytes reaching the tumour (P < 0.001, day 7 post-injection). The remarkable selectivity of this tumour-targeting mechanism demonstrates an advanced immune-based delivery strategy for enhancing specific tumour delivery with substantial penetration.
Lundgren, J D; Amsterdam, J; Newberg, A; Allison, K C; Wintering, N; Stunkard, A J
2009-03-01
We examined serotonin transporter (SERT) binding affinity using single photon emission computed tomography (SPECT) in patients with major depressive disorder (MDD) and night eating syndrome (NES). There are similarities between MDD and NES in affective symptoms, appetite disturbance, nighttime awakenings, and, particularly, response to selective serotonin reuptake inhibitors (SSRIs). Six non-depressed patients with NES and seven patients with MDD underwent SPECT brain imaging with 123I-ADAM, a radiopharmaceutical agent selective for SERT sites. Uptake ratios of 123I-ADAM SERT binding were obtained for the midbrain, basal ganglia, and temporal lobe regions compared to the cerebellum reference region. Patients with NES had significantly greater SERT uptake ratios (effect size range 0.64-0.84) in the midbrain, right temporal lobe, and left temporal lobe regions than those with MDD whom we had previously studied. Pathophysiological differences in SERT uptake between patients with NES and MDD suggest these are distinct clinical syndromes.
Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio
2018-05-31
Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.
Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Fang, Min; Czajkowski, Kevin P
2010-08-15
Many pharmaceuticals and personal care products (PPCPs) are commonly found in biosolids and effluents from wastewater treatment plants. Land application of these biosolids and the reclamation of treated wastewater can transfer those PPCPs into the terrestrial and aquatic environments, giving rise to potential accumulation in plants. In this work, a greenhouse experiment was used to study the uptake of three pharmaceuticals (carbamazepine, diphenhydramine, and fluoxetine) and two personal care products (triclosan and triclocarban) by an agriculturally important species, soybean (Glycine max (L.) Merr.). Two treatments simulating biosolids application and wastewater irrigation were investigated. After growing for 60 and 110 days, plant tissues and soils were analyzed for target compounds. Carbamazepine, triclosan, and triclocarban were found to be concentrated in root tissues and translocated into above ground parts including beans, whereas accumulation and translocation for diphenhydramine and fluoxetine was limited. The uptake of selected compounds differed by treatment, with biosolids application resulting in higher plant concentrations, likely due to higher loading. However, compounds introduced by irrigation appeared to be more available for uptake and translocation. Degradation is the main mechanism for the dissipation of selected compounds in biosolids applied soils, and the presence of soybean plants had no significant effect on sorption. Data from two different harvests suggest that the uptake from soil to root and translocation from root to leaf may be rate limited for triclosan and triclocarban and metabolism may occur within the plant for carbamazepine.
Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.
Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M
2016-05-05
Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.
Rübenhagen, R; Rönsch, H; Jung, H; Krämer, R; Morbach, S
2000-01-14
The secondary glycine betaine uptake system BetP of Corynebacterium glutamicum was purified from Escherichia coli membranes in strep-tagged form after heterologous expression of the betP gene and was reconstituted in E. coli lipids. BetP retained its kinetic properties (V(max) and K(m) for betaine and Na(+)) as compared with intact cells. The influence of driving forces (Na(+) gradient and/or electrical potential) on betaine uptake was quantified in proteoliposomes. BetP was effectively regulated by the external osmolality and was stimulated by the local anesthetic tetracaine. A shift of the optimum of osmotic stimulation to higher osmolalities was linearly correlated with an increasing share of phosphatidyl glycerol, the major lipid of the C. glutamicum plasma membrane in the E. coli lipid proteoliposomes. This finding correlates with results demonstrating an identical shift when betP was expressed in E. coli instead of C. glutamicum. These data indicate that (i) BetP comprises all elements of osmosensing and osmoregulatory mechanisms of betaine uptake, (ii) osmoregulation of BetP is directly related to protein/membrane interactions, (iii) the turgor pressure presumably plays no major role in osmoregulation of BetP, and (iv) the regulatory properties of BetP may be related to the physical state of the surrounding membrane.
Effect of reductive treatments on Pt behavior and NOx storage in lean NOx trap catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xianqin; Kim, Do Heui; Kwak, Ja Hun
2011-10-01
Lean NOx trap (LNT) catalysts represent a promising approach to meet increasingly stringent NOx emission regulations on diesel and other lean-burn engines. Pt material properties, including dispersion and particle size, are known to be important factors in determining NOx uptake performance, since Pt provides active sites for NO oxidation to NO2 necessary for storing NOx as nitrates, and for the reduction of nitrates to N2. In this work, the physicochemical properties of Pt in Pt-BaO/Al2O3 LNT catalysts, such as the Pt accessible surface area and particle size, were investigated by using various tools, such as irreversible volumetric H2 chemisorption, highmore » resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD), following successive reductive treatments at elevated temperatures. NOx uptake activities were also measured to establish a relationship between the properties of Pt and NOx storage following identical high-temperature reductive treatments. We find that the reductive treatments of Pt-BaO/Al2O3 lean NOx trap catalysts at temperatures up to 500 ºC promote a significant increase in NOx uptake explained, in part, by an induced close interaction between Pt and BaO phases in the catalyst, thus enabling facilitation of the NOx storage process.« less
Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO 2) Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecke, Joan; Degnan, Thomas; McCready, Mark
Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 μm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO 2-permeable polymer shells. Here wemore » report on the synthesis of the IL and PCIL materials, measurements of thermophysical properties including CO 2 capacity and reprotonation equilibrium and kinetics, encapsulation of the ILs and PCILs, mechanical and thermodynamic testing of the encapsulated materials, development of a rate based model of the absorber, and the design of a laboratory scale unit to test the encapsulated particles for CO 2 capture ability and efficiency. We show that the IL/PCIL materials can be successfully encapsulated, that they retain CO 2 uptake capacity, and that the uptake rates are increased relative to a stagnant sample of IL liquid or PCIL powder.« less
Köhr, G; Heinemann, U
1989-01-01
The anticonvulsant properties of ketamine and 2-APV were compared on 3 types of convulsant activity in hippocampal area CA1: the 'picrotoxin-epilepsy,' the 'low magnesium epilepsy' and the 'low calcium epilepsy.' In particular the spontaneous activity, the synaptically evoked responses and the changes in [Ca2+]0 were examined, since in many cases of epilepsy, Ca2+ uptake into cells is enhanced. In normal medium, ketamine and 2-APV have nearly no effect on stimulus evoked decreases in [Ca2+]0, although they clearly depress NMDA-induced ionic changes. However, ketamine and 2-APV prevent to some extent the augmentation of stimulus-induced changes in [Ca2+]0, observed after treating slices with picrotoxin or Mg2+-free medium. This extra Ca2+ uptake is probably mediated by NMDA operated channels. Our findings also show that ketamine, like 2-APV, has a stronger anticonvulsant effect on the low Mg-than on the picrotoxin-induced epileptiform activity. Responses to iontophoretically applied NMDA are facilitated in the 'low calcium epilepsy' and can be selectively blocked by ketamine. Spontaneous epileptiform activity occurring in low calcium can be blocked by ketamine only when some synaptic transmission is still present.
Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging
NASA Astrophysics Data System (ADS)
Jung, Suk Hyun; Na, Kyunga; Lee, Seul A.; Cho, Sun Hang; Seong, Hasoo; Shin, Byung Cheol
2012-08-01
Ultrasound-sensitive (sonosensitive) liposomes for tumor targeting have been studied in order to increase the antitumor efficacy of drugs and decrease the associated severe side effects. Liposomal contrast agents having Gd(III) are known as a nano-contrast agent system for the efficient and selective delivery of contrast agents into pathological sites. The objective of this study was to prepare Gd(III)-DOTA-modified sonosensitive liposomes (GdSL), which could deliver a model drug, doxorubicin (DOX), to a specific site and, at the same time, be capable of magnetic resonance (MR) imaging. The GdSL was prepared using synthesized Gd(III)-DOTA-1,2-distearoyl- sn-glycero-3-phosphoethanolamine lipid. Sonosensitivity of GdSL to 20-kHz ultrasound induced 33% to 40% of DOX release. The relaxivities ( r 1) of GdSL were 6.6 to 7.8 mM-1 s-1, which were higher than that of MR-bester®. Intracellular uptake properties of GdSL were evaluated according to the intensity of ultrasound. Intracellular uptake of DOX for ultrasound-triggered GdSL was higher than that for non-ultrasound-triggered GdSL. The results of our study suggest that the paramagnetic and sonosensitive liposomes, GdSL, may provide a versatile platform for molecular imaging and targeted drug delivery.
Synthesis and evaluation of (99m)Tc chelate-conjugated bevacizumab.
Camacho, Ximena; García, María Fernanda; Calzada, Victoria; Fernández, Marcelo; Porcal, Williams; Alonso, Omar; Gambini, Juan Pablo; Cabral, Pablo
2013-03-01
Vascular endothelial growth factor (VEGF) is one of the classic factors involved in tumor-induced angiognesis in several solid tumors. Bevacizumab, a monoclonal antibody against VEGF, can be used as an imaging tool in preclinical studies. The aim of this study was to radiolabel Bevacizumab with (99m)Tc and to evaluate in vivo its imaging properties in an adenocarcinoma animal model. For this purpose, Bevacizumab was derivatized with Suc-HYNIC as a bifunctional coupling agent. A mixture of Tricine/SnCl(2).2H(2)O was added to Bevacizumab-HYNIC and radiolabeled with (99m)TcO(4)(-). The radiochemical stability of the radiolabeled antibody was assessed. Biodistribution and scintigraphy imaging were performed in normal CD1 female mice and in spontaneous adenocarcinoma tumor bearing CD1 mice (n = 5). We demonstrated that 99mTc-HYNIC-Bevacizumab was stable. In vivo biodistribution studies revealed that tumor uptake of (99m)Tc-HYNIC-Bevacizumab was 1.37 ± 0.51% and 5.33 ± 2.13% at 4 and 24 h postinjection, respectively. Scintigraphy image studies showed tumor selective uptake of (99m)Tc-HYNIC-Bevacizumab in the tumor-bearing mice. We conclude that (99m)Tc-HYNIC-Bevacizumb has the potential to be used as a tracer for tumor imaging in preclinical studies.
Yessine, Marie-Andrée; Meier, Christian; Petereit, Hans-Ulrich; Leroux, Jean-Christophe
2006-05-01
The delivery of active biomacromolecules to the cytoplasm is a major challenge as it is generally hindered by the endosomal/lysosomal barrier. Synthetic titratable polyanions can overcome this barrier by destabilizing membrane bilayers at pH values typically found in endosomes. This study investigates how anionic polyelectrolytes can enhance the cytoplasmic delivery of an antisense oligonucleotide (ODN). Novel methacrylic acid (MAA) copolymers were examined for their pH-sensitive properties and ability to destabilize cell membranes in a pH-dependent manner. Ternary complex formulations prepared with the ODN, a cationic lipid and a MAA copolymer were systematically characterized with respect to their size, zeta potential, antisense activity, cytotoxicity and cellular uptake using the A549 human lung carcinoma cell line. The MAA copolymer substantially increased the activity of the antisense ODN in inhibiting the expression of protein kinase C-alpha. Uptake, cytotoxicity and antisense activity were strongly dependent on copolymer concentration. Metabolic inhibitors demonstrated that endocytosis was the major internalization pathway of the complexes, and that endosomal acidification was essential for ODN activity. Confocal microscopy analysis of cells incubated with fluorescently-labeled complexes revealed selective delivery of the ODN, but not of the copolymer, to the cytoplasm/nucleus. This study provides new insight into the mechanisms of intracellular delivery of macromolecular drugs, using synthetic anionic polyelectrolytes.
Kulkarni, Chethana; Finley, James E; Bessire, Andrew J; Zhong, Xiaotian; Musto, Sylvia; Graziani, Edmund I
2017-04-19
As the antibody-drug conjugate (ADC) field grows increasingly important for cancer treatment, it is vital for researchers to establish a firm understanding of how ADCs function at the molecular level. To gain insight into ADC uptake, trafficking, and catabolism-processes that are critical to ADC efficacy and toxicity-imaging studies have been performed with fluorophore-labeled conjugates. However, such labels may alter the properties and behavior of the ADC under investigation. As an alternative approach, we present here the development of a "clickable" ADC bearing an azide-functionalized linker-payload (LP) poised for "click" reaction with alkyne fluorophores; the azide group represents a significantly smaller structural perturbation to the LP than most fluorophores. Notably, the clickable ADC shows excellent potency in target-expressing cells, whereas the fluorophore-labeled product ADC suffers from a significant loss of activity, underscoring the impact of the label itself on the payload. Live-cell confocal microscopy reveals robust uptake of the clickable ADC, which reacts selectively in situ with a derivatized fluorescent label. Time-course trafficking studies show greater and more rapid net internalization of the ADCs than the parent antibody. More generally, the application of chemical biology tools to the study of ADCs should improve our understanding of how ADCs are processed in biological systems.
Copper transport into the secretory pathway is regulated by oxygen in macrophages
White, Carine; Kambe, Taiho; Fulcher, Yan G.; Sachdev, Sherri W.; Bush, Ashley I.; Fritsche, Kevin; Lee, Jaekwon; Quinn, Thomas P.; Petris, Michael J.
2009-01-01
Summary Copper is an essential nutrient for a variety of biochemical processes; however, the redox properties of copper also make it potentially toxic in the free form. Consequently, the uptake and intracellular distribution of this metal is strictly regulated. This raises the issue of whether specific pathophysiological conditions can promote adaptive changes in intracellular copper distribution. In this study, we demonstrate that oxygen limitation promotes a series of striking alterations in copper homeostasis in RAW264.7 macrophage cells. Hypoxia was found to stimulate copper uptake and to increase the expression of the copper importer, CTR1. This resulted in increased copper delivery to the ATP7A copper transporter and copper-dependent trafficking of ATP7A to cytoplasmic vesicles. Significantly, the ATP7A protein was required to deliver copper into the secretory pathway to ceruloplasmin, a secreted copperdependent enzyme, the expression and activity of which were stimulated by hypoxia. However, the activities of the alternative targets of intracellular copper delivery, superoxide dismutase and cytochrome c oxidase, were markedly reduced in response to hypoxia. Collectively, these findings demonstrate that copper delivery into the biosynthetic secretory pathway is regulated by oxygen availability in macrophages by a selective increase in copper transport involving ATP7A. PMID:19351718
Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells
NASA Astrophysics Data System (ADS)
Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.
2014-02-01
Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05042d
The surface chemical reactivity of particles and its impact on human health
NASA Astrophysics Data System (ADS)
Setyan, A.; Sauvain, J. J.; Riediker, M.; Guillemin, M.; Rossi, M. J.
2017-12-01
The chemical composition of the particle-air interface is the gateway to chemical reactions of gases with condensed phase particles. It is of prime importance to understand the reactivity of particles and their interaction with surrounding gases, biological membranes, and solid supports. We used a Knudsen flow reactor to quantify functional groups on the surface of a few selected particle types. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. Six probe gases have been selected for the identification and quantification of important functional groups: N(CH3)3 for the titration of acidic sites, NH2OH for the detection of carbonyl functions (aldehydes and ketones) and/or oxidized sites owing to its strong reducing properties, CF3COOH and HCl for basic sites of different strength, O3 and NO2 for oxidizable groups. We also studied the kinetics of the reactions between particles and probe gases (uptake coefficient γ0). We tested the surface chemical composition and oxidation states of laboratory-generated aerosols (3 amorphous carbons, 2 flame soots, 2 Diesel particles, 2 secondary organic aerosols [SOA], 4 multiwall carbon nanotubes [MWCNT], 3 TiO2, and 2 metal salts) and of aerosols sampled in several bus depots. The sampling of particles in the bus depots was accompanied by the collection of urine samples of mechanics working full-time in these bus depots, and the quantification of 8-hydroxy-2'-deoxyguanosine, a biomarker of oxidative stress. The increase in oxidative stress biomarker levels over a working day was correlated (p<0.05) with the number of olefinic and/or PAH sites on the surface of particles sampled at the bus depots, obtained from O3 uptakes, as well as with the initial uptake coefficient (γ0) of five probe gases used in the field. This correlation with γ0 suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.
Duangjai, Acharaporn; Ingkaninan, Kornkanok; Praputbut, Sakonwun; Limpeanchob, Nanteetip
2013-04-01
Black pepper (Piper nigrum L.) lowers blood lipids in vivo and inhibits cholesterol uptake in vitro, and piperine may mediate these effects. To test this, the present study aimed to compare actions of black pepper extract and piperine on (1) cholesterol uptake and efflux in Caco-2 cells, (2) the membrane/cytosol distribution of cholesterol transport proteins in these cells, and (3) the physicochemical properties of cholesterol micelles. Piperine or black pepper extract (containing the same amount of piperine) dose-dependently reduced cholesterol uptake into Caco-2 cells in a similar manner. Both preparations reduced the membrane levels of NPC1L1 and SR-BI proteins but not their overall cellular expression. Micellar cholesterol solubility of lipid micelles was unaffected except by 1 mg/mL concentration of black pepper extract. These data suggest that piperine is the active compound in black pepper and reduces cholesterol uptake by internalizing the cholesterol transporter proteins.
Radiosynthesis and ex vivo evaluation of (R)-(-)-2-chloro-N-[1-11C-propyl]n-propylnorapomorphine.
Palner, Mikael; McCormick, Patrick; Gillings, Nic; Begtrup, Mikael; Wilson, Alan A; Knudsen, Gitte M
2010-01-01
Several dopamine D(2) agonist radioligands have been used with positron emission tomography (PET), including [(11)C-]-(-)-MNPA, [(11)C-]-(-)-NPA and [(11)C]-(+)-PHNO. These radioligands are considered particularly powerful for detection of endogenous dopamine release, but they either provide PET brain images with limited contrast or have affinity for both D(2) and D(3) receptors. We here present the carbon-11 radiolabeling and ex vivo evaluation of 2-Cl-(-)-NPA, a novel PET-tracer candidate with high in vitro D(2)/D(3) selectivity. 2-Cl-[(11)C]-(-)-NPA and [(11)C]-(-)-NPA were synthesized by a two step N-acylation-reduction process using [(11)C]-propionyl chloride. Awake rats were injected with either tracer, via the tail vein. The rats were decapitated at various times, the brains were removed and quickly dissected, and plasma metabolites were measured. Radioligand specificity, and P-glycoprotein involvement in brain uptake, was also assessed. 2-Cl-[(11)C]-(-)-NPA and [(11)C]-(-)-NPA were produced in high specific activity and purity. 2-Cl-[(11)C]-(-)-NPA accumulated slower in the striatum than [(11)C]-(-)-NPA, reaching maximum concentrations after 30 min. The maximal striatal uptake of 2-Cl-[(11)C]-(-)-NPA (standard uptake value 0.72+/-0.24) was approximately half that of [(11)C]-(-)-NPA (standard uptake value 1.37+/-0.18). Nonspecific uptake was similar for the two compounds. 2-Cl-[(11)C]-(-)-NPA was metabolized quickly, leaving only 17% of the parent compound in the plasma after 30 min. The specific binding of 2-Cl-[(11)C]-(-)-NPA was completely blocked and inhibition of P-glycoprotein did not alter the brain uptake. Ex vivo experiments showed, despite a favorable D(2)/D(3) selectivity, that 2-Cl-[(11)C]-(-)-NPA is inferior to [(11)C]-(-)-NPA as a PET tracer in rat, because of slower brain uptake and lower specific to nonspecific binding ratio. Copyright 2010 Elsevier Inc. All rights reserved.
Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate.
Battegazzore, Daniele; Bocchini, Sergio; Nicola, Gabriele; Martini, Eligio; Frache, Alberto
2015-03-30
Isosorbide is a non-toxic biodegradable diol derived from bio-based feedstock. It can be used for preparing thermoplastic starch through a semi-industrial process of extrusion. Isosorbide allows some technological advantages with respect to classical plasticizers: namely, direct mixing with starch, energy savings for the low processing temperature required and lower water uptake. Indeed, maize starch was directly mixed with the solid plasticizer and direct fed in the main hopper of a co-rotating twin screw extruder. Starch plasticization was assessed by X-ray diffraction (XRD) and dynamic-mechanical analysis (DMTA). Oxygen permeability, water uptake and mechanical properties were measured at different relative humidity (R.H.) values. These three properties turned out to be highly depending on the R.H. No retrogradation and changing of the material properties were occurred from XRD and DMTA after 9 months. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nirogi, Ramakrishna; Kandikere, Vishwottam; Bhyrapuneni, Gopinadh; Saralaya, Ramanatha; Muddana, Nageswararao; Komarneni, Prashanth
2012-07-01
Reduction of cerebral cortical and hippocampal α7 neuronal nicotinic acetylcholine receptor (nAChR) density was observed in the Alzheimer's disease (AD) and other neurodegenerative diseases. Mapping the subtypes of nAChRs with selective ligand by viable, quick and consistent method in preclinical drug discovery may lead to rapid development of more effective therapeutic agents. The objective of this study was to evaluate the use of methyllycaconitine (MLA) in non-radiolabeled form for mapping α7 nAChRs in rat brain. MLA pharmacokinetic and brain penetration properties were assessed in male Wistar rats. The tracer properties of MLA were evaluated in rat brain by dose and time dependent differential regional distribution studies. Target specificity was validated after blocking with potent α7 nAChR agonists ABBF, PNU282987 and nicotine. High performance liquid chromatography combined with triple quad mass spectral detector (LC-MS/MS) was used to measure the plasma and brain tissue concentrations of MLA. MLA has shown rapid brain uptake followed by a 3-5 fold higher specific binding in regions containing the α7 nAChRs (hypothalamus - 1.60 ng/g), when compared to non-specific regions (striatum - 0.53 ng/g, hippocampus - 0.46 ng/g, midbrain - 0.37 ng/g, frontal cortex - 0.35 ng/g and cerebellum - 0.30 ng/g). Pretreatment with potent α7 nAChR agonists significantly blocked the MLA uptake in hypothalamus. The non-radiolabeled MLA binding to brain region was comparable with the α7 mRNA localization and receptor distribution reported for [(3)H] MLA in rat brain. The rat pharmacokinetic, brain penetration and differential brain regional distribution features favor that MLA is suitable to use in preclinical stage for mapping α7 nAChRs. Hence, this approach can be employed as an essential tool for quicker development of novel selective ligand to map variation in the α7 receptor densities, as well as to evaluate potential new chemical entities targeting neurodegenerative diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
Navrátilová, Jarmila; Karasová, Martina; Kohutková Lánová, Martina; Jiráková, Ludmila; Budková, Zuzana; Pacherník, Jiří; Šmarda, Jan; Beneš, Petr
2017-09-01
Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Rényi, L.
1986-01-01
The ejaculatory response and the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) (3 mg kg-1 i.p.) were studied following acute and repeated treatment of rats with the selective uptake inhibitors of 5-HT, fluoxetine, zimeldine, alaproclate, and citalopram. The oral doses used were based on the respective ED50 values for uptake inhibition. Acute doses of fluoxetine and zimeldine significantly reduced the ejaculatory response when given 48 h before 5-MeODMT. This blockade was prevented by treatment of the rats with the postsynaptic 5-HT receptor antagonist methergoline. An acute dose of fluoxetine given 7 and 14 days before 5-MeODMT significantly enhanced the ejaculatory response. On day 24, the response returned to the control level. Repeated treatment every second day (5 times over 9 days and 10 times over 19 days) with fluoxetine caused a longer blockade of the ejaculatory response and the sensitization of the response came later than after an acute dose. Parallel with the ejaculatory response three other components of the 5-HT behavioural syndrome also decreased significantly. Acute doses of alaproclate and citalopram significantly blocked the ejaculatory response at 1 h, but they failed to affect the response at any other time point after either acute or repeated treatment. Neither did these drugs attentuate the 5-HT syndrome. It is concluded that acute and repeated treatment of rats with different selective 5-HT uptake inhibitors does not produce a common alteration in 5-HT2-receptor functions. PMID:2939912
Liming effects on cadmium stabilization in upland soil affected by gold mining activity.
Hong, Chang Oh; Lee, Do Kyoung; Chung, Doug Young; Kim, Pil Joo
2007-05-01
To reduce cadmium (Cd) uptake of plants cultivated in heavy metal-contaminated soil, the best liming material was selected in the incubation test. The effect of the selected material was evaluated in the field. In the incubation experimentation, CaCO(3), Ca(OH)(2), CaSO(4).2H(2)O, and oyster shell meal were mixed with soil at rates corresponding to 0, 400, 800, 1600, 3200 mg Ca kg(-1). The limed soil was moistened to 70% of field moisture capacity, and incubated at 25 degrees C for 4 weeks. Ca(OH)(2) was found to be more efficient on reducing soil NH(4)OAc extractable Cd concentration, due to pH increase induced net negative charge. The selected Ca(OH)(2) was applied at rates 0, 2, 4, 8 Mg ha(-1) and then cultivated radish (Raphanus sativa L.) in the field. NH(4)OAc extractable Cd concentration of soil and plant Cd concentration decreased significantly with increasing Ca(OH)(2) rate, since alkaline-liming material markedly increased net negative charge of soil induced by pH increase, and decreased bioavailable Cd fractions (exchangeable + acidic and reducible Cd fraction) during radish cultivation. Cadmium uptake of radish could be reduced by about 50% by amending with about 5 Mg ha(-1) Ca(OH)(2) without adverse effect on radish yield and growth. The increase of net negative charge of soil by Ca(OH)(2) application may suppress Cd uptake and the competition between Ca(2+) and Cd(2+) may additionally affect the suppression of Cd uptake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Yoshitaka; Zhu, Hong; Xu, Wanpeng
Oxidation of low density lipoprotein (LDL) is a critical step for airtightness, and the role of the 12/15-lipoxygenase (12/15-Lox) as well as LDL receptor-related protein (Lp) expressed in macrophages in this process has been suggested. The oxygenation of cholesteryl linoleate in LDL by mouse macrophage-like Joe.1 cells over expressing 12/15-Lox was inhibited by an anti-Lp antibody but not by an anti-LDL receptor antibody. When the cells were incubated with LDL double-labeled by [{sup 3}H]cholesteryl linoleate and [{sup 125}I]apo B, association with the cells of [{sup 3}H]cholesteryl linoleate expressed as LDL protein equivalent exceeded that of [{sup 125}I]apo B, indicating selectivemore » uptake of [{sup 3}H]cholesteryl linoleate from LDL to these cells. An anti-Lp antibody inhibited the selective uptake of [{sup 3}H]cholesteryl ester by 62% and 81% with the 12/15-Lox-expressing cells and macrophages, respectively. Furthermore, addition of LDL to the culture medium of the [{sup 3}H]cholesteryl linoleate-labeled 12/15-Lox-expressing cells increased the release of [{sup 3}H]cholesteryl linoleate to the medium in LDL concentration- and time-dependent manners. The transport of [{sup 3}H]cholesteryl linoleate from the cells to LDL was also inhibited by an anti-Lp antibody by 75%. These results strongly suggest that Lp contributes to the LDL oxidation by 12/15-Lox in macrophages by selective uptake and efflux of cholesteryl ester in the LDL particle.« less
Genotyping analysis and ¹⁸FDG uptake in breast cancer patients: a preliminary research.
Bravatà, Valentina; Stefano, Alessandro; Cammarata, Francesco P; Minafra, Luigi; Russo, Giorgio; Nicolosi, Stefania; Pulizzi, Sabina; Gelfi, Cecilia; Gilardi, Maria C; Messa, Cristina
2013-04-30
Diagnostic imaging plays a relevant role in the care of patients with breast cancer (BC). Positron Emission Tomography (PET) with 18F-fluoro-2-deoxy-D-glucose (FDG) has been widely proven to be a clinical tool suitable for BC detection and staging in which the glucose analog supplies metabolic information about the tumor. A limited number of studies, sometimes controversial, describe possible associations between FDG uptake and single nucleotide polymorphisms (SNPs). For this reason this field has to be explored and clarified. We investigated the association of SNPs in GLUT1, HIF-1a, EPAS1, APEX1, VEGFA and MTHFR genes with the FDG uptake in BC. In 26 caucasian individuals with primary BC, whole-body PET-CT scans were obtained and quantitative analysis was performed by calculating the maximum Standardized Uptake Value normalized to body-weight (SUVmax) and the mean SUV normalized to body-weight corrected for partial volume effect (SUVpvc). Human Gene Mutation Database and dbSNP Short Genetic Variations database were used to analyze gene regions containing the selected SNPs. Patient genotypes were obtained using Sanger DNA sequencing analysis performed by Capillary Electrophoresis. BC patients were genotyped for the following nine SNPs: GLUT1: rs841853 and rs710218; HIF-1a: rs11549465 and rs11549467; EPAS1: rs137853037 and rs137853036; APEX1: rs1130409; VEGFA: rs3025039 and MTHFR: rs1801133. In this work correlations between the nine potentially useful polymorphisms selected and previously suggested with tracer uptake (using both SUVmax and SUVpvc) were not found. The possible functional influence of specific SNPs on FDG uptake needs further studies in human cancer. In summary, this is the first pilot study, to our knowledge, which investigates the association between a large panel of SNPs and FDG uptake specifically in BC patients. This work represents a multidisciplinary and translational medicine approach to study BC where, the possible correlation between SNPs and tracer uptake, may be considered to improve personalized cancer treatment and care.
Jenkins, William S. A.; Irkle, Agnese; Moss, Alastair; Sng, Greg; Forsythe, Rachael O.; Clark, Tim; Roberts, Gemma; Fletcher, Alison; Lucatelli, Christophe; Rudd, James H. F.; Davenport, Anthony P.; Mills, Nicholas L.; Al-Shahi Salman, Rustam; Dennis, Martin; Whiteley, William N.; van Beek, Edwin J. R.; Dweck, Marc R.; Newby, David E.
2017-01-01
Background— Combined positron emission tomography (PET) and computed tomography (CT) can assess both anatomy and biology of carotid atherosclerosis. We sought to assess whether 18F-fluoride or 18F-fluorodeoxyglucose can identify culprit and high-risk carotid plaque. Methods and Results— We performed 18F-fluoride and 18F-fluorodeoxyglucose PET/CT in 26 patients after recent transient ischemic attack or minor ischemic stroke: 18 patients with culprit carotid stenosis awaiting carotid endarterectomy and 8 controls without culprit carotid atheroma. We compared standardized uptake values in the clinically adjudicated culprit to the contralateral asymptomatic artery, and assessed the relationship between radiotracer uptake and plaque phenotype or predicted cardiovascular risk (ASSIGN score [Assessing Cardiovascular Risk Using SIGN Guidelines to Assign Preventive Treatment]). We also performed micro PET/CT and histological analysis of excised plaque. On histological and micro PET/CT analysis, 18F-fluoride selectively highlighted microcalcification. Carotid 18F-fluoride uptake was increased in clinically adjudicated culprit plaques compared with asymptomatic contralateral plaques (log10standardized uptake valuemean 0.29±0.10 versus 0.23±0.11, P=0.001) and compared with control patients (log10standardized uptake valuemean 0.29±0.10 versus 0.12±0.11, P=0.001). 18F-Fluoride uptake correlated with high-risk plaque features (remodeling index [r=0.53, P=0.003], plaque burden [r=0.51, P=0.004]), and predicted cardiovascular risk [r=0.65, P=0.002]). Carotid 18F-fluorodeoxyglucose uptake appeared to be increased in 7 of 16 culprit plaques, but no overall differences in uptake were observed in culprit versus contralateral plaques or control patients. However, 18F-fluorodeoxyglucose did correlate with predicted cardiovascular risk (r=0.53, P=0.019), but not with plaque phenotype. Conclusions— 18F-Fluoride PET/CT highlights culprit and phenotypically high-risk carotid plaque. This has the potential to improve risk stratification and selection of patients who may benefit from intervention. PMID:28292859
Bradshaw, Tyler J.; Bowen, Stephen R.; Jallow, Ngoneh; Forrest, Lisa J.; Jeraj, Robert
2014-01-01
Intratumor heterogeneity in biologic properties and in relationships between various phenotypes may present a challenge for biologically targeted therapies. Understanding the relationships between different phenotypes in individual tumor types could help inform treatment selection. The goal of this study was to characterize spatial correlations of glucose metabolism, proliferation, and hypoxia in 2 histologic types of tumors. Methods Twenty canine veterinary patients with spontaneously occurring sinonasal tumors (13 carcinomas and 7 sarcomas) were imaged with 18F-FDG, 18F-labeled 39-deoxy-39-fluorothymidine (18F-FLT), and 61Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone) (61Cu-ATSM) PET/CT on 3 consecutive days. Precise positioning and immobilization techniques coupled with anesthesia enabled motionless scans with repeatable positioning. Standardized uptake values (SUVs) of gross sarcoma and carcinoma volumes were compared by use of Mann– Whitney U tests. Patient images were rigidly registered together, and intratumor tracer uptake distributions were compared. Voxel-based Spearman correlation coefficients were used to quantify intertracer correlations, and the correlation coefficients of sarcomas and carcinomas were compared. The relative overlap of the highest uptake volumes of the 3 tracers was quantified, and the values were compared for sarcomas and carcinomas. Results Large degrees of heterogeneity in SUV measures and phenotype correlations were observed. Carcinoma and sarcoma tumors differed significantly in SUV measures, with carcinoma tumors having significantly higher 18F-FDG maximum SUVs than sarcoma tumors (11.1 vs. 5.0; P = 0.01) as well as higher 61Cu-ATSM mean SUVs (2.6 vs. 1.2; P = 0.02). Carcinomas had significantly higher population-averaged Spearman correlation coefficients than sarcomas in comparisons of 18F-FDG and 18F-FLT (0.80 vs. 0.61; P = 0.02), 18F-FLT and 61Cu-ATSM (0.83 vs. 0.38; P < 0.0001), and 18F-FDG and 61Cu-ATSM (0.82 vs. 0.69; P = 0.04). Additionally, the highest uptake volumes of the 3 tracers had significantly greater overlap in carcinomas than in sarcomas. Conclusion The relationships of glucose metabolism, proliferation, and hypoxia were heterogeneous across different tumors, with carcinomas tending to have high correlations and sarcomas having low correlations. Consequently, canine carcinoma tumors are robust targets for therapies that target a single biologic property, whereas sarcoma tumors may not be well suited for such therapies. Histology-specific PET correlations have far-reaching implications for the robustness of biologic target definition. PMID:24042031
Kucuk, Ozlem N; Soydal, Cigdem; Araz, Mine; Ozkan, Elgin; Aras, Gulseren
2013-04-01
The aim of the study was to evaluate if there is a prognostic importance of pretreatment Tc-MAA uptake of liver lesion of patients who received Y selective internal radiation therapy (SIRT) treatment for hepatocellular cancer (HCC) or not. Nineteen patients (5 female and 14 male patients; mean age, 64.5 ± 14.7 years; range, 57-73 years) who received SIRT treatment in our department for HCC between June 2008 and May 2011 were included in the study. All the patients have undergone Tc-MAA scintigraphy within 2 weeks' period before treatment for evaluation of presence of extrahepatic uptake. Patients were evaluated according to their lesions' Tc-MAA uptake patterns. Response to the treatment, presence of progression after treatment, and progression-free survival of all the patients were calculated. Treatment has been administered on the right and left lobes of the liver in 18 and 1 patient, respectively. The mean treatment dose was estimated as 1.4 + 1.0 GBq. In the pretreatment Tc-MAA scintigraphy, liver lesions of 5 patients were hypoactive, and 14 patients were hyperactive. In the hypoactive group, whereas 2 patients (40%) were responders to treatment, 3 were nonresponders (60%). In the hyperactive group, 8 (58%) and 6 (42%) patients were responders and nonresponders, respectively (P = 0.51). Disease progression was seen in 4 (80%) and 8 patients (58%) in the hypoactive group and hyperactive groups, respectively (P = 0.36). Progression-free survival of the hypoactive group was calculated as 8 ± 4.3 months and of the hyperactive group 11 ± 4.7 months (P = 0.22). Despite the small number of patients, this study revealed that there is no significance between tumor response and progression rates of patients who received SIRT for HCC with or without pretreatment Tc-MAA uptake in liver lesions. Selective internal radiation therapy could be safely performed in patients who have hypoactive lesions in Tc-MAA scintigraphy.
Factors Influencing the Diversity of Iron Uptake Systems in Aquatic Microorganisms
Desai, Dhwani K.; Desai, Falguni D.; LaRoche, Julie
2012-01-01
Iron (Fe) is an essential micronutrient for many processes in all living cells. Dissolved Fe (dFe) concentrations in the ocean are of the order of a few nM, and Fe is often a factor limiting primary production. Bioavailability of Fe in aquatic environments is believed to be primarily controlled through chelation by Fe-binding ligands. Marine microbes have evolved different mechanisms to cope with the scarcity of bioavailable dFe. Gradients in dFe concentrations and diversity of the Fe-ligand pool from coastal to open ocean waters have presumably imposed selection pressures that should be reflected in the genomes of microbial communities inhabiting the pelagic realm. We applied a hidden Markov model (HMM)-based search for proteins related to cellular iron metabolism, and in particular those involved in Fe uptake mechanisms in 164 microbial genomes belonging to diverse taxa and occupying different aquatic niches. A multivariate statistical approach demonstrated that in phototrophic organisms, there is a clear influence of the ecological niche on the diversity of Fe uptake systems. Extending the analyses to the metagenome database from the Global Ocean Sampling expedition, we demonstrated that the Fe uptake and homeostasis mechanisms differed significantly across marine niches defined by temperatures and dFe concentrations, and that this difference was linked to the distribution of microbial taxa in these niches. Using the dN/dS ratios (which signify the rate of non-synonymous mutations) of the nucleotide sequences, we identified that genes encoding for TonB, Ferritin, Ferric reductase, IdiA, ZupT, and Fe2+ transport proteins FeoA and FeoB were evolving at a faster rate (positive selection pressure) while genes encoding ferrisiderophore, heme and Vitamin B12 uptake systems, siderophore biosynthesis, and IsiA and IsiB were under purifying selection pressure (evolving slowly). PMID:23087680
Inoue, A; Nakata, Y; Yajima, H; Segawa, T
1984-10-01
In the present study, we demonstrated the existence of an active uptake system for substance P carboxy-terminal heptapeptide, (5-11)SP. When a fraction from rabbit brain enriched in glial cells was incubated with [3H] (5-11)SP, an uptake of [3H](5-11)SP was observed. The uptake system has the properties of an active transport mechanism. Kinetic analysis indicated two components of [3H](5-11)SP uptake, one representing a high and the other a low affinity transport system. After unilateral ablation of the striatum, approximately 30% of the high affinity [3H](5-11)SP uptake capacity of substantia nigra slices disappeared. The subcellular distribution of the high affinity uptake indicated that [3H] 5-hydroxytryptamine was taken up mostly into the P2B fraction (synaptosomal fraction), whereas [3H](5-11)SP was taken up into the P2A fraction (myelin fraction) to the same extent as into the P2B fraction. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP, which is in turn accumulated into glial cells as well as nerve terminals and that this high affinity uptake mechanism may play an important role in terminating the synaptic action of SP.
Lindberg, Pia; Devine, Ellenor; Stensjö, Karin
2012-01-01
The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium. PMID:22020512
Pelletizing properties of torrefied spruce
Wolfgang Stelte; Craig Clemons; Jens K. Holm; Anand R. Sanadi; Jesper Ahrenfeldt; Lei Shang; Ulrik B. Henriksen
2011-01-01
Torrefaction is a thermo-chemical conversion process improving the handling, storage and combustion properties of wood. To save storage space and transportation costs, it can be compressed into fuel pellets of high physical and energetic density. The resulting pellets are relatively resistant to moisture uptake, microbiological decay and easy to comminute into small...
Ase, Ariel R; Honson, Nicolette S; Zaghdane, Helmi; Pfeifer, Tom A; Séguéla, Philippe
2015-04-01
P2X4 is an ATP-gated nonselective cation channel highly permeable to calcium. There is increasing evidence that this homomeric purinoceptor, which is expressed in several neuronal and immune cell types, is involved in chronic pain and inflammation. The current paucity of unambiguous pharmacological tools available to interrogate or modulate P2X4 function led us to pursue the search for selective antagonists. In the high-throughput screen of a compound library, we identified the phenylurea BX430 (1-(2,6-dibromo-4-isopropyl-phenyl)-3-(3-pyridyl)urea, molecular weight = 413), with antagonist properties on human P2X4-mediated calcium uptake. Patch-clamp electrophysiology confirmed direct inhibition of P2X4 currents by extracellular BX430, with submicromolar potency (IC50 = 0.54 µM). BX430 is highly selective, having virtually no functional impact on all other P2X subtypes, namely, P2X1-P2X3, P2X5, and P2X7, at 10-100 times its IC50. Unexpected species differences were noticed, as BX430 is a potent antagonist of zebrafish P2X4 but has no effect on rat and mouse P2X4 orthologs. The concentration-response curve for ATP on human P2X4 in the presence of BX430 shows an insurmountable blockade, indicating a noncompetitive allosteric mechanism of action. Using a fluorescent dye uptake assay, we observed that BX430 also effectively suppresses ATP-evoked and ivermectin-potentiated membrane permeabilization induced by P2X4 pore dilation. Finally, in single-cell calcium imaging, we validated its selective inhibitory effects on native P2X4 channels at the surface of human THP-1 cells that were differentiated into macrophages. In summary, this ligand provides a novel molecular probe to assess the specific role of P2X4 in inflammatory and neuropathic conditions, where ATP signaling has been shown to be dysfunctional. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Designing Superoxide-Generating Quantum Dots for Selective Light-Activated Nanotherapy
NASA Astrophysics Data System (ADS)
Goodman, Samuel M.; Levy, Max; Li, Fei-Fei; Ding, Yuchen; Courtney, Colleen M.; Chowdhury, Partha P.; Erbse, Annette; Chatterjee, Anushree; Nagpal, Prashant
2018-03-01
The rapid emergence of superbugs or multi-drug resistant (MDR) organisms has prompted a search for novel antibiotics, beyond traditional small-molecule therapies. Nanotherapeutics are being investigated as alternatives, and recently superoxide-generating quantum dots (QDs) have been shown as important candidates for selective light-activated therapy and potentiating existing antibiotics against MDR superbugs. Their therapeutic action is selective, can be tailored by simply changing their quantum-confined conduction-valence bands and their alignment with different redox half-reactions, and hence their ability to generate specific radical species in biological media. Here, we show the design of superoxide-generating QDs using optimal QD material and size well matched to superoxide redox potential, charged ligands to modulate their uptake in cells and selective redox interventions, and core/shell structures to improve their stability for therapeutic action. We show that cadmium telluride (CdTe) QDs with conduction band position at -0.5V with respect to Normal Hydrogen Electron (NHE) and visible 2.4 eV bandgap generate a large flux of selective superoxide radicals, thereby demonstrating the most effective light-activated therapy. Although the positively charged QDs demonstrate large cellular uptake, they bind indiscriminately to cell surfaces and cause non-selective cell death, while negatively charged and zwitterionic QD ligands reduce the uptake and allow selective therapeutic action via interaction with redox species. The stability of designed QDs in biologically-relevant media increases with the formation of core-shell QD structures, but an appropriate design of core-shell structures is needed to minimize any reduction in charge injection efficiency to adsorbed oxygen molecules (to form superoxide) and maintain similar quantitative generation of tailored redox species, as measured using electron paramagnetic resonance (EPR) spectroscopy and electrochemical impedance spectroscopy. Using these findings, we demonstrate the rational design of QDs as selective therapeutic kills more than 99% of priority class I pathogens, thus providing an effective therapy against MDR superbugs.
Designing Superoxide-Generating Quantum Dots for Selective Light-Activated Nanotherapy.
Goodman, Samuel M; Levy, Max; Li, Fei-Fei; Ding, Yuchen; Courtney, Colleen M; Chowdhury, Partha P; Erbse, Annette; Chatterjee, Anushree; Nagpal, Prashant
2018-01-01
The rapid emergence of superbugs, or multi-drug resistant (MDR) organisms, has prompted a search for novel antibiotics, beyond traditional small-molecule therapies. Nanotherapeutics are being investigated as alternatives, and recently superoxide-generating quantum dots (QDs) have been shown as important candidates for selective light-activated therapy, while also potentiating existing antibiotics against MDR superbugs. Their therapeutic action is selective, can be tailored by simply changing their quantum-confined conduction-valence band (CB-VB) positions and alignment with different redox half-reactions-and hence their ability to generate specific radical species in biological media. Here, we show the design of superoxide-generating QDs using optimal QD material and size well-matched to superoxide redox potential, charged ligands to modulate their uptake in cells and selective redox interventions, and core/shell structures to improve their stability for therapeutic action. We show that cadmium telluride (CdTe) QDs with conduction band (CB) position at -0.5 V with respect to Normal Hydrogen Electron (NHE) and visible 2.4 eV bandgap generate a large flux of selective superoxide radicals, thereby demonstrating the effective light-activated therapy. Although the positively charged QDs demonstrate large cellular uptake, they bind indiscriminately to cell surfaces and cause non-selective cell death, while negatively charged and zwitterionic QD ligands reduce the uptake and allow selective therapeutic action via interaction with redox species. The stability of designed QDs in biologically-relevant media increases with the formation of core-shell QD structures, but an appropriate design of core-shell structures is needed to minimize any reduction in charge injection efficiency to adsorbed oxygen molecules (to form superoxide) and maintain similar quantitative generation of tailored redox species, as measured using electron paramagnetic resonance (EPR) spectroscopy and electrochemical impedance spectroscopy (EIS). Using these findings, we demonstrate the rational design of QDs as selective therapeutic to kill more than 99% of a priority class I pathogen, thus providing an effective therapy against MDR superbugs.
Colombi, Tino; Torres, Lorena Chagas; Walter, Achim; Keller, Thomas
2018-06-01
Water is the most limiting resource for global crop production. The projected increase of dry spells due to climate change will further increase the problem of water limited crop yields. Besides low water abundance and availability, water limitations also occur due to restricted water accessibility. Soil penetration resistance, which is largely influenced by soil moisture, is the major soil property regulating root elongation and water accessibility. Until now the interactions between soil penetration resistance, root system properties, water uptake and crop productivity are rarely investigated. In the current study we quantified how interactive effects between soil penetration resistance, root architecture and water uptake affect water accessibility and crop productivity in the field. Maize was grown on compacted and uncompacted soil that was either tilled or remained untilled after compaction, which resulted in four treatments with different topsoil penetration resistance. Higher topsoil penetration resistance caused root systems to be shallower. This resulted in increased water uptake from the topsoil and hence topsoil drying, which further increased the penetration resistance in the uppermost soil layer. As a consequence of this feedback, root growth into deeper soil layers, where water would have been available, was reduced and plant growth decreased. Our results demonstrate that soil penetration resistance, root architecture and water uptake are closely interrelated and thereby determine the potential of plants to access soil water pools. Hence, these interactions and their feedbacks on water accessibility and crop productivity have to be accounted for when developing strategies to alleviate water limitations in cropping systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Hart, Hannah R; Evans, Andrew N; Gelsleichter, James; Ahearn, Gregory A
2016-10-01
Elasmobranchs are considered to be top marine predators, and in general play important roles in the transfer of energy within marine ecosystems. Despite this, little is known regarding the physiological processes of digestion and nutrient absorption in these fishes. One topic that is particularly understudied is the process of nutrient uptake across the elasmobranch gastrointestinal tract. Given their carnivorous diet, the present study sought to expand knowledge on dietary nutrient uptake in elasmobranchs by focusing on the uptake of products of protein digestion. To accomplish this, a full-length cDNA encoding peptide transporter 1 (PepT1), a protein previously identified within the brush border membrane of vertebrates that is responsible for the translocation of peptides released during digestion by luminal and membrane-bound proteases, was isolated from the bonnethead shark (Sphyrna tiburo). A cDNA encoding the related peptide transporter PepT2 was also isolated from S. tiburo using the same methodology. The presence of PepT1 was then localized in multiple components of the bonnethead digestive tract (esophagus, stomach, duodenum, intestine, rectum, and pancreas) using immunohistochemistry. Vesicle studies were used to identify the apparent affinity of PepT1 and to quantify the rate of dipeptide uptake by its H(+)-dependent cotransporter properties. The results of this study provide insight into the properties of peptide uptake within the bonnethead gut, and can facilitate future work on physiological regulation of protein metabolism and absorption including how these processes may vary in elasmobranchs that exhibit different feeding strategies.
Ebihara, T; Takeuchi, T; Moriya, Y; Tagawa, Y; Kondo, T; Moriwaki, T; Asahi, S
2016-06-01
TAK-475 (lapaquistat acetate) is a squalene synthase inhibitor and M-I is a pharmacologically active metabolite of TAK-475. Preclinical pharmacokinetic studies have demonstrated that most of the dosed TAK-475 was hydrolyzed to M-I during the absorption process and the concentrations of M-I in the liver, the main organ of cholesterol biosynthesis, were much higher than those in the plasma after oral administration to rats. In the present study, the mechanism of the hepatic uptake of M-I was investigated.The uptake studies of (14)C-labeled M-I into rat and human hepatocytes indicated that the uptakes of M-I were concentrative, temperature-dependent and saturable in both species with Km values of 4.7 and 2.8 μmol/L, respectively. M-I uptake was also inhibited by cyclosporin A, an inhibitor for hepatic uptake transporters including organic anion transporting polypeptide (OATP). In the human hepatocytes, M-I uptake was hardly inhibited by estrone 3-sulfate as an inhibitor for OATP1B1, and most of the M-I uptake was Na(+)-independent. Uptake studies using human transporter-expressing cells revealed the saturable uptake of M-I for OATP1B3 with a Km of 2.13 μmol/L. No obvious uptake of M-I was observed in the OATP1B1-expressing cells.These results indicated that M-I was taken up into hepatocytes via transporters in both rats and humans. OATP1B3 would be mainly involved in the hepatic uptake of M-I in humans. These findings suggested that hepatic uptake transporters might contribute to the liver-selective inhibition of cholesterol synthesis by TAK-475. This is the first to clarify a carrier-mediated hepatic uptake mechanism for squalene synthase inhibitors. © Georg Thieme Verlag KG Stuttgart · New York.
Modelling the Transport of Nanoparticles under Blood Flow using an Agent-based Approach.
Fullstone, Gavin; Wood, Jonathan; Holcombe, Mike; Battaglia, Giuseppe
2015-06-10
Blood-mediated nanoparticle delivery is a new and growing field in the development of therapeutics and diagnostics. Nanoparticle properties such as size, shape and surface chemistry can be controlled to improve their performance in biological systems. This enables modulation of immune system interactions, blood clearance profile and interaction with target cells, thereby aiding effective delivery of cargo within cells or tissues. Their ability to target and enter tissues from the blood is highly dependent on their behaviour under blood flow. Here we have produced an agent-based model of nanoparticle behaviour under blood flow in capillaries. We demonstrate that red blood cells are highly important for effective nanoparticle distribution within capillaries. Furthermore, we use this model to demonstrate how nanoparticle size can selectively target tumour tissue over normal tissue. We demonstrate that the polydispersity of nanoparticle populations is an important consideration in achieving optimal specificity and to avoid off-target effects. In future this model could be used for informing new nanoparticle design and to predict general and specific uptake properties under blood flow.
The carbohydrate maintenance properties of an experimental sports drink.
White, J. A.; Ford, M. A.
1984-01-01
The effects of an experimental sports drink (Q) were compared with a commercial sports drink (D) of proven ergogenic efficacy. Seven highly trained subjects performed two hours of cycle ergometry exercise at approximately 65% maximal aerobic power (VO2 max) while receiving levels of Q and D in quantities designed to supply approximately 28% of the total energy requirement of the exercise task. Both Q and D formulations were supplied at 15 minute intervals at 16 degrees C, in volumes required to provide equivalent carbohydrate loads from two products of differing concentrations and compositions. Q was equally as effective as D in terms of the maintenance of plasma glucose concentrations during exercise, while selected physiological indices of work performance favoured Q. However, the time course of plasma glucose concentration changes during and after exercise indicated a trend towards more rapid uptake and assimilation of carbohydrate in the case of Q. The findings suggest that Q may provide a more readily available carbohydrate source during exercise and may enhance work performance through its ergogenic properties. Images p64-a p64-b PMID:6466932
NASA Astrophysics Data System (ADS)
Beyer, Frederick; Bain, Erich; Long, Tyler; Mrozek, Randy; Savage, Alice; Martin, Halie; Dadmun, Mark; Lenhart, Joseph
Between 2001 and 2009, uncontrolled hemorrhaging from major trauma accounted for the deaths of roughly 80% of wounded soldiers with potentially survivable injuries. Modern hemostatic materials are limited in their ability to deliver therapeutic agents, causing tissue damage themselves, or being difficult to remove intact. The goal of this study is to create a mechanically robust polymer that takes up as much as 1000 wt% water in seconds while maintaining sufficient toughness to be removed intact from the wound intact. A thermoplastic elastomer scaffold in which physical crosslinks provide mechanical toughness might provide an appropriate combination of fast swelling and excellent toughness if the matrix material can be engineered to be strongly hydrophilic and swell rapidly. In this work, a commercial SBS triblock copolymer has been modified with poly(acrylic acid) side chains, resulting in materials that are superabsorbent but retain good mechanical properties when saturated. Although SAXS experiments failed to show any significant changes in morphology, even with 800 wt% water uptake, preliminary SANS experiments using selectively deuterated materials and swelling with D2O show significant changes in morphology. Our most recent findings will be presented.
Ohtsuki, Shozo; Takahashi, Yuki; Inoue, Takao; Takakura, Yoshinobu; Nishikawa, Makiya
2017-10-20
We used human Toll-like receptor 9 (hTLR9)-expressing HEK-Blue hTLR9 cells, which release secreted embryonic alkaline phosphatase (SEAP) upon response to CpG DNA, to evaluate the immunological properties of nucleic acid drug candidates. Our preliminary studies showed that phosphodiester CpG DNA hardly induced any SEAP secretion in HEK-Blue hTLR9 cells. In the current study, therefore, we developed HEK-Blue hTLR9 cells transduced with human macrophage scavenger receptor-1 (hMSR1), a cell-surface DNA receptor, and determined whether HEK-Blue hTLR9/hMSR1 cells respond to phosphorothioate (PS) CpG DNA and phosphodiester (PO) CpG DNA. We selected PS CpG2006, a single-stranded PO CpG DNA (ssCpG), and a tetrapod-like structured DNA (tetrapodna) containing ssCpG (tetraCpG) as model TLR9 ligands. Alexa Fluor 488-labeled ligands were used for flow cytometry. Unlike the mock-transfected HEK-Blue hTLR9 cells, the HEK-Blue hTLR9/hMSR1 cells efficiently took up all three CpG DNAs. SEAP release was almost proportional to the uptake. Treatment of HEK-Blue hTLR9/hMSR1 cells with an anti-hMSR1 antibody significantly reduced the uptake of ssCpG and tetraCpG. Collectively, reconstruction of TLR9-mediated responses to CpG DNA in HEK-Blue hTLR9 cells can be used to evaluate the toxicity of nucleic acid drug candidates with diverse physicochemical properties.
Pollock, Ross D; O'Brien, Katie A; Daniels, Lorna J; Nielsen, Kathrine B; Rowlerson, Anthea; Duggal, Niharika A; Lazarus, Norman R; Lord, Janet M; Philp, Andrew; Harridge, Stephen D R
2018-04-01
In this study, results are reported from the analyses of vastus lateralis muscle biopsy samples obtained from a subset (n = 90) of 125 previously phenotyped, highly active male and female cyclists aged 55-79 years in regard to age. We then subsequently attempted to uncover associations between the findings in muscle and in vivo physiological functions. Muscle fibre type and composition (ATPase histochemistry), size (morphometry), capillary density (immunohistochemistry) and mitochondrial protein content (Western blot) in relation to age were determined in the biopsy specimens. Aside from an age-related change in capillary density in males (r = -.299; p = .02), no other parameter measured in the muscle samples showed an association with age. However, in males type I fibres and capillarity (p < .05) were significantly associated with training volume, maximal oxygen uptake, oxygen uptake kinetics and ventilatory threshold. In females, the only association observed was between capillarity and training volume (p < .05). In males, both type II fibre proportion and area (p < .05) were associated with peak power during sprint cycling and with maximal rate of torque development during a maximal voluntary isometric contraction. Mitochondrial protein content was not associated with any cardiorespiratory parameter in either males or females (p > .05). We conclude in this highly active cohort, selected to mitigate most of the effects of inactivity, that there is little evidence of age-related changes in the properties of VL muscle across the age range studied. By contrast, some of these muscle characteristics were correlated with in vivo physiological indices. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Vogel, G; Thilo, L; Schwarz, H; Steinhart, R
1980-01-01
The recognition step in the phagocytotic process of the unicellular amoeba dictyostelium discoideum was examined by analysis of mutants defective in phagocytosis, Reliable and simple assays were developed to measure endocytotic uptake. For pinocytosis, FITC-dextran was found to be a suitable fluid-phase marker; FITC-bacteria, latex beads, and erythrocytes were used as phagocytotic substrates. Ingested material was isolated in one step by centrifuging through highly viscous poly(ethyleneglycol) solutions and was analyzed optically. A selection procedure for isolating mutants defective in phagocytosis was devised using tungsten beads as particulate prey. Nonphagocytosing cells were isolated on the basis of their lower density. Three mutant strains were found exhibiting a clear-cut phenotype directly related to the phagocytotic event. In contrast to the situation in wild-type cells, uptake of E. coli B/r by mutant cells is specifically and competitively inhibited by glucose. Mutant amoeba phagocytose latex beads normally but not protein-coated latex, nonglucosylated bacteria, or erythrocytes. Cohesive properties of mutant cells are altered: they do not form EDTA-sensitive aggregates, and adhesiveness to glass or plastic surfaces is greatly reduced. Based upon these findings, a model for recognition in phagocytosis is proposed: (a) A lectin-type receptor specifically mediates binding of particles containing terminal glucose (E. coli B/r). (b) A second class of "nonspecific" receptors mediate binding of a variety of particles by hydrophobic interaction. Nonspecific binding is affected by mutation in such a way that only strongly hydrophobic (latex) but not more hydrophilic particles (e.g., protein-coated latex, bacteria, erythrocytes) can be phagocytosed by mutant amoebae. PMID:6995464
Romero-Calderón, Rafael; Krantz, David E.
2005-01-01
Polyamine transport activities have been described in diverse multicellular systems, but their bioenergetic mechanisms and molecular identity remain unclear. In the present paper, we describe a high-affinity spermine/spermidine transport activity expressed in Drosophila S2 cells. Ion-replacement experiments indicate that polyamine uptake across the cell membrane is Na+-, K+-, Cl−- and Ca2+-independent, but pH-sensitive. Additional experiments using ionophores suggest that polyamine uptake may be H+-coupled. Pharmacological experiments show that polyamine uptake in S2 cells is selectively blocked by MGBG {methylglyoxal bis(guanylhydrazone) or 1,1′-[(methylethanediylidine)-dinitrilo]diguanidine} and paraquat (N,N-dimethyl-4,4′-bipyridylium), two known inhibitors of polyamine uptake in mammalian cells. In addition, inhibitors known to block the Slc22 (solute carrier 22) family of organic anion/cation transporters inhibit spermine uptake in S2 cells. These data and the genetic tools available in Drosophila will facilitate the molecular identification and further characterization of this activity. PMID:16248856
Romero-Calderón, Rafael; Krantz, David E
2006-01-15
Polyamine transport activities have been described in diverse multicellular systems, but their bioenergetic mechanisms and molecular identity remain unclear. In the present paper, we describe a high-affinity spermine/spermidine transport activity expressed in Drosophila S2 cells. Ion-replacement experiments indicate that polyamine uptake across the cell membrane is Na+-, K+-, Cl-- and Ca2+-independent, but pH-sensitive. Additional experiments using ionophores suggest that polyamine uptake may be H+-coupled. Pharmacological experiments show that polyamine uptake in S2 cells is selectively blocked by MGBG {methylglyoxal bis(guanylhydrazone) or 1,1'-[(methylethanediylidine)-dinitrilo]diguanidine} and paraquat (N,N-dimethyl-4,4'-bipyridylium), two known inhibitors of polyamine uptake in mammalian cells. In addition, inhibitors known to block the Slc22 (solute carrier 22) family of organic anion/cation transporters inhibit spermine uptake in S2 cells. These data and the genetic tools available in Drosophila will facilitate the molecular identification and further characterization of this activity.
2012-01-01
Background CuO-TiO2 nanosheets (NSs), a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR) and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III) ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III) ion. The static adsorption capacity for Fe(III) was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites. PMID:23244218
Burgen, A.S.V.; Hiley, C.R.; Young, J.M.
1974-01-01
1 The synthesis of tritium labelled propylbenzilylcholine mustard ([3H]-PrBCM; N-2′-chloroethyl-N-[2″, 3″-3H2] propyl-2-aminoethyl benzilate) is described. 2 The uptake by muscle strips was measured and shown to be considerably increased by previous immersion of the muscle in distilled water. 3 A considerable part of the uptake is inhibited selectively by atropine, but not by nicotinic antagonists. A number of muscarinic agonists also inhibit uptake and their apparent affinity constants have been determined. 4 The uptake by atropine-sensitive sites is temperature-insensitive, whereas the other sites are temperature-sensitive. Recovery is highly temperature-sensitive and there is good agreement between recovery of sensitivity to agonists and loss of radioactivity from the muscle. PMID:4150888
Gao, Ruixia; Su, Xiaoqian; He, Xiwen; Chen, Langxing; Zhang, Yukui
2011-01-15
This paper reports the preparation of carbon nanotubes (CNTs) functionalized with molecularly imprinted polymers (MIPs) for advanced removal of estrone. CNTs@Est-MIPs nanocomposites with a well-defined core-shell structure were obtained using a semi-covalent imprinting strategy, which employed a thermally reversible covalent bond at the surface of silica-coated CNTs for a large-scale production. The morphology and structure of the products were characterised by transmission electron microscopy and Fourier transform infrared spectroscopy. The adsorption properties were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The results demonstrate that the imprinted nanocomposites possess favourable selectivity, high capacity and fast kinetics for template molecule uptake, yielding an adsorption capacity of 113.5 μmol/g. The synthetic process is quite simple, and the different batches of synthesized CNTs@Est-MIPs nanocomposites showed good reproducibility in template binding. The feasibility of removing estrogenic compounds from environmental water using the CNTs@Est-MIPs nanocomposites was demonstrated using water samples spiked with estrone. Copyright © 2010 Elsevier B.V. All rights reserved.
Cation-Exchanged Zeolitic Chalcogenides for CO2 Adsorption.
Yang, Huajun; Luo, Min; Chen, Xitong; Zhao, Xiang; Lin, Jian; Hu, Dandan; Li, Dongsheng; Bu, Xianhui; Feng, Pingyun; Wu, Tao
2017-12-18
We report here the intrinsic advantages of a special family of porous chalcogenides for CO 2 adsorption in terms of high selectivity of CO 2 /N 2 , large uptake capacity, and robust structure due to their first-ever unique integration of the chalcogen-soft surface, high porosity, all-inorganic crystalline framework, and the tunable charge-to-volume ratio of exchangeable cations. Although tuning the CO 2 adsorption properties via the type of exchangeable cations has been well-studied in oxides and MOFs, little is known about the effects of inorganic exchangeable cations in porous chalcogenides, in part because ion exchange in chalcogenides can be very sluggish and incomplete due to their soft character. We have demonstrated that, through a methodological change to progressively tune the host-guest interactions, both facile and nearly complete ion exchange can be accomplished. Herein, a series of cation-exchanged zeolitic chalcogenides (denoted as M@RWY) were studied for the first time for CO 2 adsorption. Samples were prepared through a sequential ion-exchange strategy, and Cs + -, Rb + -, and K + -exchanged samples demonstrated excellent CO 2 adsorption performance. Particularly, K@RWY has the superior CO 2 /N 2 selectivity with the N 2 adsorption even undetected at either 298 or 273 K. It also has the large uptake of 6.3 mmol/g (141 cm 3 /g) at 273 K and 1 atm with an isosteric heat of 35-41 kJ mol -1 , the best among known porous chalcogenides. Moreover, it permits a facile regeneration and exhibits an excellent recyclability, as shown by the multicycling adsorption experiments. Notably, K@RWY also demonstrates a strong tolerance toward water.
NASA Astrophysics Data System (ADS)
Rachuri, Yadagiri; Bisht, Kamal Kumar; Parmar, Bhavesh; Suresh, Eringathodi
2015-03-01
Two CPs {[Cd3(BTC)2(TIB)2(H2O)4].(H2O)2}n (1) and {[Zn3(BTC)2(TIB)2].(H2O)6}n (2) composed of tripodal linkers BTC (1,3,5-benzenetricarboxylate) and TIB (1,3,5-tris(imidazol-1-ylmethyl)benzene) were synthesized via solvothermal route and structurally characterized. Single crystal structural analysis reveals 1 possesses a novel 3D framework structure, whereas 2 represents a previously established compound. Owing to the d10 configuration of metal nodes and robust 3D frameworks, 1 and 2 exhibit excellent fluorescence properties which have been exploited to sense organic nitro compounds in vapor phase. Compound 1 demonstrates selective sensing of nitromethane over structurally similar methanol with ca. 70 and 43% fluorescence quenching in case of former and later. Similarly, 58% fluorescence quenching was observed in case of nitrobenzene over the structurally resembling toluene for which 30% quenching was observed. Compound 2 did not show any preference for nitro compounds and exhibited comparable fluorescence quenching when exposed to the vapors of nitro or other geometrically resembling organic molecules. Furthermore, adsorption experiments revealed that 1 and 2 can uptake 2.74 and 14.14 wt% molecular iodine respectively in vapor phase which can be released in organic solvents such as hexane and acetonitrile. The maximal iodine uptake in case of 1 and 2 corresponds to 0.15 and 0.80 molecules of iodine per formula unit of respective frameworks. Comprehensive structural description, thermal stability and luminescence behavior for both CPs has also been presented.
Odeh, Ahmad M; Craik, James D; Ezzeddine, Rima; Tovmasyan, Artak; Batinic-Haberle, Ines; Benov, Ludmil T
2014-01-01
Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.
McLaughlin, Gavin; Morris, Noreen; Kavanagh, Pierce V.; Power, John D.; Dowling, Geraldine; Twamley, Brendan; O'Brien, John; Talbot, Brian; Walther, Donna; Partilla, John S.; Baumann, Michael H.; Brandt, Simon D.
2017-01-01
3-Methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one (mexedrone) appeared in 2015 and was advertised by UK Internet retailers as a non-controlled mephedrone derivative (2-(methylamino)-1-(4-methylphenyl)propan-1-one), which was of particular interest to countries who operate generic drugs legislation. This study describes the synthesis and analytical characterization of mexedrone and the differentiation from its isomer, N-methoxymephedrone, which was predicted to be a suitable candidate before the identity of mexedrone was revealed. A full analytical characterization is described using various chromatographic, spectroscopic and mass spectrometric platforms and X-ray crystal structure analysis. The analytical data obtained for a vendor sample were consistent with the synthesized mexedrone reference standard and analytical differentiation between the mexedrone and N-methoxymephedrone positional isomers was achieved. Furthermore, α-chloromethylmephedrone was identified as a by-product during mexedrone synthesis. All three substances were also studied for their uptake and releasing properties at dopamine transporters (DAT), norepinephrine transporters (NET) and serotonin transporters (SERT) using in vitro monoamine transporter assays in rat brain synaptosomes and compared to mephedrone. Mexedrone was a weak non-selective uptake blocker with IC50 values in the low μM range. It was also devoid of releasing activity at DAT and NET but displayed weak releasing activity at SERT (EC50= 2.5 μM). The isomer N-methoxymephedrone was found to be a weak uptake blocker at DAT, NET and SERT, as well as a fully efficacious substrate-type releasing agent across all three transporters with EC50 values in the low micromolar range. The synthesis by-product α-chloromethylmephedrone was inactive in all assays. PMID:27524685
Chelant-assisted phytoextraction and accumulation of Zn by Zea mays.
Gheju, M; Stelescu, I
2013-10-15
Zea mays plants were exposed to soils with concentrations of Zn ranging from 64 to 1800 mg kg(-1) dw, and the efficiency of three selected chelating agents (trisodium citrate (CI), disodium oxalate (OX) and disodium dihydrogen ethylene-diamine-tetraacetate (EDTA)) in enhancing metal phytoextraction was compared. Zn concentration in plant tissues increased in conjunction with the metal concentration of the soil. EDTA was found to be the most efficient chelating amendment, increasing concentrations of Zn in shoots from 88 mg kg(-1) dw, at 64 mg kg(-1) dw soil, to 8026 mg kg(-1) dw at 1800 mg kg(-1) dw soil. The overall orders of BCFs and TFs which resulted from this study are: EDTA > H2O > OX > CI, and EDTANa2 > OX > CI > H2O, respectively. The more effective uptake of Zn by plants for the control treatment (distilled water only) than for CI and OX was attributed to the neutral or slightly alkaline pH of the two chelant irrigation solutions. Instead, EDTA had a favorable effect on Zn uptake from soil due to its additive chelating and acidifying properties. Among the three chelants, only EDTA significantly increased the Zn phytoextraction potential of Z. mays, while CI and OX induced a low metal uptake from soil by plants. Although Z. mays has a lower Zn accumulation capacity than the hyperaccumulator Thlaspi caerulescens, it could be considered as a potential phytoremediator of soils with elevated Zn concentrations, especially when metal pollution extends to depths greater than 20 cm. Copyright © 2013 Elsevier Ltd. All rights reserved.
(124)I-iodopyridopyrimidinone for PET of Abl kinase-expressing tumors in vivo.
Doubrovin, Mikhail; Kochetkova, Tatiana; Santos, Elmer; Veach, Darren R; Smith-Jones, Peter; Pillarsetty, Nagavarakishore; Balatoni, Julius; Bornmann, William; Gelovani, Juri; Larson, Steven M
2010-01-01
Because of the recent development of an iodopyridopyrimidinone Abl protein kinase inhibitor (PKI), (124)I-SKI-212230 ((124)I-SKI230), we investigated the feasibility of a PET-based molecular imaging method for the direct visualization of Abl kinase expression and PKI treatment. In vitro pharmacokinetic properties, including specific and nonspecific binding of (124)I-SKI230 to its Abl kinase target and interaction with other PKIs, were assessed in cell-free medium and chronic myelogenous leukemia (CML) cells overexpressing BCR-Abl (K562), in comparison with BT-474 cells that are low in Abl expression. In a xenograft tumor model, we assessed the in vivo pharmacokinetics of (124)I-SKI230 using PET and postmortem tissue sampling. We also tested a paradigm of (124)I-SKI230 PET after treatment of the animal with a dose of Abl-specific PKI for the monitoring of the tumor response. In vitro studies confirmed that SKI230 binds to Abl kinase with nanomolar affinity, that selective uptake occurs in cell lines known to express Abl kinase, that RNAi knock-down supports specificity of cellular uptake due to Abl kinase, and that imatinib, an archetype Abl PKI, completely displaces SKI230. With SKI230, we obtained successful in vivo PET of Abl-expressing human tumors in a nude rat. We were also able to demonstrate evidence of substrate inhibition of in vivo radiotracer uptake in the xenograft tumor after treatment of the animal as a model of PKI treatment monitoring. These results support the hypothesis that molecular imaging using PET will be useful for the study of in vivo pharmacodynamics of Abl PKI molecular therapy in humans.
McLaughlin, Gavin; Morris, Noreen; Kavanagh, Pierce V; Power, John D; Dowling, Geraldine; Twamley, Brendan; O'Brien, John; Talbot, Brian; Walther, Donna; Partilla, John S; Baumann, Michael H; Brandt, Simon D
2017-03-01
3-Methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one (mexedrone) appeared in 2015 and was advertised by UK Internet retailers as a non-controlled mephedrone derivative (2-(methylamino)-1-(4-methylphenyl)propan-1-one), which was of particular interest to countries who operate generic drugs legislation. This study describes the synthesis and analytical characterization of mexedrone and the differentiation from its isomer, N-methoxymephedrone, which was predicted to be a suitable candidate before the identity of mexedrone was revealed. A full analytical characterization is described using various chromatographic, spectroscopic and mass spectrometric platforms and X-ray crystal structure analysis. The analytical data obtained for a vendor sample were consistent with the synthesized mexedrone reference standard and analytical differentiation between the mexedrone and N-methoxymephedrone positional isomers was achieved. Furthermore, α-chloromethylmephedrone was identified as a by-product during mexedrone synthesis. All three substances were also studied for their uptake and releasing properties at dopamine transporters (DAT), norepinephrine transporters (NET) and serotonin transporters (SERT) using in vitro monoamine transporter assays in rat brain synaptosomes and compared to mephedrone. Mexedrone was a weak non-selective uptake blocker with IC 50 values in the low μM range. It was also devoid of releasing activity at DAT and NET but displayed weak releasing activity at SERT (EC 50 = 2.5 μM). The isomer N-methoxymephedrone was found to be a weak uptake blocker at DAT, NET and SERT, as well as a fully efficacious substrate-type releasing agent across all three transporters with EC 50 values in the low micromolar range. The synthesis by-product α-chloromethylmephedrone was inactive in all assays. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Water uptake efficiency of a maize plant - A simulation case study
NASA Astrophysics Data System (ADS)
Meunier, Félicien; Leitner, Daniel; Bodner, Gernot; Javaux, Mathieu; Schnepf, Andrea
2014-05-01
Water uptake by plant roots is a complex mechanism controlled by biological and physical properties of the soil-plant-atmosphere system and affects a major component of the water cycle, transpiration. This uptake of water by plants is one of the major factors of plant development. Since water uptake occurs at the roots, root architecture and hydraulic properties both play a crucial role in plant productivity. A fundamental understanding of the main processes of water uptake will enable better breeding of drought resistant plants and the improvement of irrigation strategies. In this work we analyzed the differences of root water uptake between idealized genotypes of a plant using mathematical modelling The numerical simulations were performed by the R-SWMS software (Javaux et al., 2008). The model describes 3-D water movement in soil by solving Richard's equation with a sink term representing root uptake. Water flow within the root xylem network and between soil and root is modelled based on water pressure gradients and calculated according to Doussan's model. The sink term is calculated by integration of local uptakes within rooted representative elementary volumes of soil. The plant water demand is described by a boundary condition at the base of the shoot. We compare the water uptake efficiency of three types of root system architectures of a maize plant. Two are actual architectures from genotypes showing significant differences regarding the internodal distance, the root growth rate and the insertion angle of their primary roots. The third one is an ideotype according to Lynch of the maize plant designed to perform better in one dry environment. We generated with RootBox five repetitions of these three root systems with the same total root volume and simulated two drought scenarios at the flowering stage (lack of water at the top or at the bottom of the soil domain). We did these simulations for two distinct distributions of local conductivities of root segments based on literature values. This numerical experiment shows significantly different behaviors of the root systems in terms of dynamics of the water uptake, duration of the water stress or cumulative transpiration. The ranking of the maize architectures varied according to the considered drought scenario. The performance of a root system depends on the environment and on its hydraulic architecture suggesting that we always need to take the genotype-environment interaction into account for recommending breeding options. This study also shows that an ideotype must be built for one specific environment: the one we created experienced difficulties to transpire when placed in different conditions it has been designed for. By mathematical simulation we increased the understanding of the most important underlying processes governing water uptake in a root system.
Models for root water uptake under deficit irrigation
NASA Astrophysics Data System (ADS)
Lazarovitch, Naftali; Krounbi, Leilah; Simunek, Jirka
2010-05-01
Modern agriculture, with its dependence on irrigation, fertilizers, and pesticide application, contributes significantly to the water and solute influx through the soil into the groundwater, specifically in arid areas. The quality and quantity of this water as it passes through the vadose zone is influenced primarily by plant roots. Root water uptake is a function of both a physical root parameter, commonly referred to as the root length density, and the soil water status. The location of maximum water uptake in a homogenous soil profile of uniform water content and hydraulic conductivity occurs in the soil layer containing the largest root length density. Under field conditions, in a drying soil, plants are both subject to, and the source of, great spatial variability in the soil water content. The upper soil layers containing the bulk of the root zone are usually the most water depleted, while the deeper regions of the soil profile containing fewer roots are wetter. Changes in the physiological functioning of plants have been shown to result from extended periods of water stress, but the short term effects of water stress on root water uptake are less well understood. While plants can minimize transpiration and the resulting growth rates under limiting conditions to conserve water, many plants maintain a constant potential transpiration rate long after the commencement of the drying process. Compensatory uptake, whereby plants respond to non-uniform, limiting conditions by increasing water uptake from areas in the root zone characterized by more favorable conditions, is one such mechanism by which plants sustain potential transpiration rates in drying soils. The development of models which accurately characterize temporal and spatial root water uptake patterns is important for agricultural resource optimization, upon which subsequent management decisions affecting resource conservation and environmental pollution are based. Numerical simulations of root water uptake in various irrigation and fertilization regimes provide a much-needed alternative to tiring and expensive field work. These simulations can aid in raising agricultural water use efficiency while preserving soil and water resources. In this research, controlled lab experiments were carried out in soil-packed lysimeters designed for plant cultivation. Both the water balance of the growing plants as well as the temporary matric head distribution in the soil profile were calculated and measured. The experiment was conducted with sweet sorghum grown in two different soil profiles with different hydraulic properties. The experiment provided the data necessary to calculate the parameters of various models used to simulate root water uptake, by using an inverse solution method imbedded in the HYDRUS-1D code. The observed increase in uptake from the wetter soil regions under drying conditions, as measured and calculated, sheds light on the dominant role of soil hydraulic properties over the root distribution, and consequently root water uptake.
Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.
2013-01-01
Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948
The tripeptide aldehyde, Boc-DPhe-Phe-Lysinal, is a novel Ca2+ channel inhibitor in pituitary cells.
Makara, G B; Rappay, G; Garamvölgyi, V; Nagy, I; Dankó, S; Bajusz, S
1988-06-22
The effect of Boc-DPhe-Phe-Lysinal (Boc-DPPL) on the 45Ca2+ uptake of rat anterior pituitary monolayer cultures was investigated. The compound decreased the basal Ca2+ uptake at 3 x 10(-4) mol/l. The 45Ca2+ uptake stimulated by potassium-induced depolarization was more sensitive to Boc-DPPL inhibition, a slight decrease was seen with 3 x 10(-6) mol/l and there was a half maximal inhibition at 3 x 10(-5) mol/l. Boc-DPPL is known to inhibit pituitary hormone release in similar concentrations, an effect might also be due to its calcium antagonist property.
Numerical model for the uptake of groundwater contaminants by phreatophytes
Widdowson, M.A.; El-Sayed, A.; Landmeyer, J.E.
2008-01-01
Conventional solute transport models do not adequately account for the effects of phreatophytic plant systems on contaminant concentrations in shallow groundwater systems. A numerical model was developed and tested to simulate threedimensional reactive solute transport in a heterogeneous porous medium. Advective-dispersive transport is coupled to biodegradation, sorption, and plantbased attenuation processes including plant uptake and sorption by plant roots. The latter effects are a function of the physical-chemical properties of the individual solutes and plant species. Models for plant uptake were tested and evaluated using the experimental data collected at a field site comprised of hybrid poplar trees. A non-linear equilibrium isotherm model best represented site conditions.
NASA Technical Reports Server (NTRS)
Whiting, Gary J.
1994-01-01
Net ecosystem CO2 exchange was measured during the 1990 growing season (June to August) along a transect starting 10 km inland from James Bay and extending 100 km interior to Kinosheo Lake, Ontario. Sites were chosen in three distinct areas: a coastal fen, an interior fen, and a bog. For the most productive sites in the bog, net daily uptake rates reached a maximum of 2.5 g C-CO2 m(exp -2)/d with an area-weighted exchange of 0.3 g C-CO2 m(exp -2)/d near midsummer. This site was estimated to be a net carbon source of 9 g C-CO2 m(exp -2) to the atmosphere over a 153-day growing season. The interior fen was less productive on a daily basis with a net maximum uptake of 0.5 g C-CO2 m(exp -2)/d and with corresponding area-weighted uptake of 0.1 g C-CO2 m(exp -2)/d during midsummer. Early and late season release of carbon to the atmosphere resulted in a net loss of 21 g C-CO2 m(exp -2) over the growing season from this site. The coastal fen was the most productive site with uptake rates peaking near 1.7 g C-CO2 m(exp -2)/d which corresponded to an area-weighted uptake of 0.8 g C-CO2 m(exp -2)/d during midsummer and an estimated net uptake of 6 g C-CO2 m(exp -2) for the growing season. Associated with net CO2 exchange measurements, multispectral reflectance properties of the sites were measured over the growing season using portable radiometers. These properties were related to exchange rates with the goal of examining the potential for satellite remote sensing to monitor biosphere/atmosphere CO2 exchange in this biome. The normalized difference vegetation index (NDVI) computed from surface reflectance was correlated with net CO2 exchange for all sites with the exception of areas with large proportions of Sphagnum moss cover. These mosses have greater near-infrared reflectance than typical surrounding vegetation and may require special adjustment for regional exchange/remote sensing applications.
Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai
Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood.more » Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.« less
NASA Astrophysics Data System (ADS)
Liang, Yu; Gong, Chenliang; Qi, Zhigang; Li, Hui; Wu, Zhongying; Zhang, Yakui; Zhang, Shujiang; Li, Yanfeng
2015-06-01
A series of novel ionic cross-linking sulfonated poly(ether ether ketone) (SPEEK) membranes containing the diazafluorene functional group are synthesized to reduce the swelling ratio and methanol permeability for direct methanol fuel cell (DMFC) applications. The ionic cross-linking is realized by the interaction between sulfonic acid groups and pyridyl in diazafluorene. The prepared membranes exhibit good mechanical properties, adequate thermal stability, good oxidative stability, appropriate water uptake and low swelling ratio. Moreover, the ionic cross-linked membranes exhibit lower methanol permeability in the range between 0.56 × 10-7 cm2 s-1 and 1.8 × 10-7 cm2 s-1, which is lower than Nafion 117, and they exhibit higher selectivity than Nafion 117 at 30 °C on the basis of applicable proton conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Xiu-Liang; Tong, Minman; Huang, Hongliang
2015-03-15
Exploitation of new metal–organic framework (MOF) materials with high surface areas has been attracting great attention in related research communities due to their broad potential applications. In this work, a new Zr(IV)-based MOF, [Zr{sub 6}O{sub 4}(OH){sub 4}(eddb){sub 6}] (BUT-30, H{sub 2}eddb=4,4′-(ethyne-1,2-diyl)dibenzoic acid) has been solvothermally synthesized, characterized, and explored for gases and dyes adsorptions. Single-crystal X-ray diffraction analysis demonstrates a three-dimensional cubic framework structure of this MOF, in which each Zr{sub 6}O{sub 4}(OH){sub 4} building unit is linked by 12 linear eddb ligands. BUT-30 has been found stable up to 400 °C and has a Brunauer–Emmett–Teller (BET) surface area asmore » high as 3940.6 m{sup 2} g{sup −1} (based on the N{sub 2} adsorption at 77 K) and total pore volume of 1.55 cm{sup 3} g{sup −1}. It is more interesting that this MOF exhibits stepwise adsorption behaviors for Ar, N{sub 2}, and CO{sub 2} at low temperatures, and selective uptakes towards different ionic dyes. - Graphical abstract: A new Zr(IV)-based MOF with high surface area has been synthesized and structurally characterized, which shows stepwise gas adsorption at low temperature and selective dye uptake from solution. - Highlights: • A new Zr-based MOF was synthesized and structurally characterized. • This MOF shows a higher surface area compared with its analogous UiO-67 and 68. • This MOF shows a rare stepwise adsorption towards light gases at low temperature. • This MOF performs selective uptakes towards cationic dyes over anionic ones. • Using triple-bond spacer is confirmed feasible in enhancing MOF surface areas.« less
Jansen, Mickel L. A.; Daran-Lapujade, Pascale; de Winde, Johannes H.; Piper, Matthew D. W.; Pronk, Jack T.
2004-01-01
Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport. PMID:15066785
Kukoamine B promotes TLR4-independent lipopolysaccharide uptake in murine hepatocytes.
Yang, Dong; Zheng, Xinchuan; Wang, Ning; Fan, Shijun; Yang, Yongjun; Lu, Yongling; Chen, Qian; Liu, Xin; Zheng, Jiang
2016-09-06
Free bacterial lipopolysaccharide (LPS) is generally removed from the bloodstream through hepatic uptake via TLR4, the LPS pattern recognition receptor, but mechanisms for internalization and clearance of conjugated LPS are less clear. Kukoamine B (KB) is a novel cationic alkaloid that interferes with LPS binding to TLR4. In this study, KB accelerated blood clearance of LPS. KB also enhanced LPS distribution in the hepatic tissues of C57 BL/6 mice, along with LPS uptake in primary hepatocytes and HepG2 cells. By contrast, KB inhibited LPS internalization in Kupffer and RAW 264.7 cells. Loss of TLR4 did not affect LPS uptake into KB-treated hepatocytes. We also detected selective upregulation of the asialoglycoprotein receptor (ASGPR) upon KB treatment, and ASGPR colocalized with KB in cultured hepatocytes. Molecular docking showed that KB bound to ASGPR in a manner similar to GalNAc, a known ASGPR agonist. GalNAc dose-dependently reduced KB internalization, suggesting it competes with KB for ASGPR binding, and ASGPR knockdown also impaired LPS uptake into hepatocytes. Finally, while KB enhanced LPS uptake, it was protective against LPS-induced inflammation and hepatocyte injury. Our study provides a new mechanism for conjugated LPS hepatic uptake induced by the LPS neutralizer KB and mediated by membrane ASGPR binding.
NASA Astrophysics Data System (ADS)
Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.
2015-04-01
In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by immunofluorescence, Fig. S2. See DOI: 10.1039/c5nr00352k
Quantifying root water extraction after drought recovery using sub-mm in situ empirical data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhiman, Indu; Bilheux, Hassina Z.; DeCarlo, Keito F.
Root-specific responses to stress are not well-known, and have been largely based on indirect measurements of bulk soil water extraction, which limits mechanistic modeling of root function. Here, we used neutron radiography to examine in situ root-soil water dynamics of a previously droughted black cottonwood ( Populus trichocarpa) seedling, contrasting water uptake by younger, thinner or older, thicker parts of the fine root system. The smaller diameter roots had greater water uptake capacity per unit surface area than the larger diameter roots, but they had less total surface area leading to less total water extraction; rates ranged from 0.0027 –more » 0.0116 g cm -2 hr -1. The finest most-active roots were not visible in the radiographs, indicating the need to include destructive sampling. Analysis based on bulk soil hydraulic properties indicated substantial redistribution of water via saturated/unsaturated flow, capillary wicking, and root hydraulic redistribution across the layers - suggesting water uptake dynamics following an infiltration event may be more complex than approximated by common soil hydraulic or root surface area modeling approaches. Lastly, our results highlight the need for continued exploration of root-trait specific water uptake rates in situ, and impacts of roots on soil hydraulic properties – both critical components for mechanistic modeling of root function.« less
Quantifying root water extraction after drought recovery using sub-mm in situ empirical data
Dhiman, Indu; Bilheux, Hassina Z.; DeCarlo, Keito F.; ...
2017-09-09
Root-specific responses to stress are not well-known, and have been largely based on indirect measurements of bulk soil water extraction, which limits mechanistic modeling of root function. Here, we used neutron radiography to examine in situ root-soil water dynamics of a previously droughted black cottonwood ( Populus trichocarpa) seedling, contrasting water uptake by younger, thinner or older, thicker parts of the fine root system. The smaller diameter roots had greater water uptake capacity per unit surface area than the larger diameter roots, but they had less total surface area leading to less total water extraction; rates ranged from 0.0027 –more » 0.0116 g cm -2 hr -1. The finest most-active roots were not visible in the radiographs, indicating the need to include destructive sampling. Analysis based on bulk soil hydraulic properties indicated substantial redistribution of water via saturated/unsaturated flow, capillary wicking, and root hydraulic redistribution across the layers - suggesting water uptake dynamics following an infiltration event may be more complex than approximated by common soil hydraulic or root surface area modeling approaches. Lastly, our results highlight the need for continued exploration of root-trait specific water uptake rates in situ, and impacts of roots on soil hydraulic properties – both critical components for mechanistic modeling of root function.« less
NASA Astrophysics Data System (ADS)
Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher
2014-03-01
In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.
Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra
2017-08-01
Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Price, Eric W; Carnazza, Kathryn E; Carlin, Sean D; Cho, Andrew; Edwards, Kimberly J; Sevak, Kuntal K; Glaser, Jonathan M; de Stanchina, Elisa; Janjigian, Yelena Y; Lewis, Jason S
2017-09-01
The hepatocyte growth factor (HGF) binding antibody rilotumumab (AMG102) was modified for use as a 89 Zr-based immuno-PET imaging agent to noninvasively determine the local levels of HGF protein in tumors. Because recent clinical trials of HGF-targeting therapies have been largely unsuccessful in several different cancers (e.g., gastric, brain, lung), we have synthesized and validated 89 Zr-DFO-AMG102 as a companion diagnostic for improved identification and selection of patients having high local levels of HGF in tumors. To date, patient selection has not been performed using the local levels of HGF protein in tumors. Methods: The chelator p -SCN-Bn-DFO was conjugated to AMG102, radiolabeling with 89 Zr was performed in high radiochemical yields and purity (>99%), and binding affinity of the modified antibody was confirmed using an enzyme-linked immunosorbent assay (ELISA)-type binding assay. PET imaging, biodistribution, autoradiography and immunohistochemistry, and ex vivo HGF ELISA experiments were performed on murine xenografts of U87MG (HGF-positive, MET-positive) and MKN45 (HGF-negative, MET-positive) and 4 patient-derived xenografts (MET-positive, HGF unknown). Results: Tumor uptake of 89 Zr-DFO-AMG102 at 120 h after injection in U87MG xenografts (HGF-positive) was high (36.8 ± 7.8 percentage injected dose per gram [%ID/g]), whereas uptake in MKN45 xenografts (HGF-negative) was 5.0 ± 1.3 %ID/g and a control of nonspecific human IgG 89 Zr-DFO-IgG in U87MG tumors was 11.5 ± 3.3 %ID/g, demonstrating selective uptake in HGF-positive tumors. Similar experiments performed in 4 different gastric cancer patient-derived xenograft models showed low uptake of 89 Zr-DFO-AMG102 (∼4-7 %ID/g), which corresponded with low HGF levels in these tumors (ex vivo ELISA). Autoradiography, immunohistochemical staining, and HGF ELISA assays confirmed that elevated levels of HGF protein were present only in U87MG tumors and that 89 Zr-DFO-AMG102 uptake was closely correlated with HGF protein levels in tumors. Conclusion: The new immuno-PET imaging agent 89 Zr-DFO-AMG102 was successfully synthesized, radiolabeled, and validated in vitro and in vivo to selectively accumulate in tumors with high local levels of HGF protein. These results suggest that 89 Zr-DFO-AMG102 would be a valuable companion diagnostic tool for the noninvasive selection of patients with elevated local concentrations of HGF in tumors for planning any HGF-targeted therapy, with the potential to improve clinical outcomes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Cartee, Gregory D; Arias, Edward B; Yu, Carmen S; Pataky, Mark W
2016-11-01
One exercise session can induce subsequently elevated insulin sensitivity that is largely attributable to greater insulin-stimulated glucose uptake by skeletal muscle. Because skeletal muscle is a heterogeneous tissue comprised of diverse fiber types, our primary aim was to determine exercise effects on insulin-independent and insulin-dependent glucose uptake by single fibers of different fiber types. We hypothesized that each fiber type featuring elevated insulin-independent glucose uptake immediately postexercise (IPEX) would be characterized by increased insulin-dependent glucose uptake at 3.5 h postexercise (3.5hPEX). Rat epitrochlearis muscles were isolated and incubated with 2-[ 3 H]deoxyglucose. Muscles from IPEX and sedentary (SED) controls were incubated without insulin. Muscles from 3.5hPEX and SED controls were incubated ± insulin. Glucose uptake (2-[ 3 H]deoxyglucose accumulation) and fiber type (myosin heavy chain isoform expression) were determined for single fibers dissected from the muscles. Major new findings included the following: 1) insulin-independent glucose uptake was increased IPEX in single fibers of each fiber type (types I, IIA, IIB, IIBX, and IIX), 2) glucose uptake values from insulin-stimulated type I and IIA fibers exceeded the values for the other fiber types, 3) insulin-stimulated glucose uptake for type IIX exceeded IIB fibers, and 4) the 3.5hPEX group vs. SED had greater insulin-stimulated glucose uptake in type I, IIA, IIB, and IIBX but not type IIX fibers. Insulin-dependent glucose uptake was increased at 3.5hPEX in each fiber type except for IIX fibers, although insulin-independent glucose uptake was increased IPEX in all fiber types (including type IIX). Single fiber analysis enabled the discovery of this fiber type-related difference for postexercise, insulin-stimulated glucose uptake. Copyright © 2016 the American Physiological Society.
Combined Effect of Cameo2 and CBP on the Cellular Uptake of Lutein in the Silkworm, Bombyx mori
Dong, Xiao-Long; Chai, Chun-Li; Pan, Cai-Xia; Tang, Hui; Chen, Yan-Hong; Dai, Fang-Yin; Pan, Min-Hui; Lu, Cheng
2014-01-01
Formation of yellow-red color cocoons in the silkworm, Bombyx mori, occurs as the result of the selective delivery of carotenoids from the midgut to the silk gland via the hemolymph. This process of pigment transport is thought to be mediated by specific cellular carotenoids carrier proteins. Previous studies indicated that two proteins, Cameo2 and CBP, are associated with the selective transport of lutein from the midgut into the silk gland in Bombyx mori. However, the exact roles of Cameo2 and CBP during the uptake and transport of carotenoids are still unknown. In this study, we investigated the respective contributions of these two proteins to lutein and β-carotene transport in Bombyx mori as well as commercial cell-line. We found that tissues, expressed both Cameo2 and CBP, accumulate lutein. Cells, co-expressed Cameo2 and CBP, absorb 2 fold more lutein (P<0.01) than any other transfected cells, and the rate of cellular uptake of lutein was concentration-dependent and reached saturation. From immunofluorescence staining, confocal microscopy observation and western blot analysis, Cameo2 was localized at the membrane and CBP was expressed in the cytosol. What’s more, bimolecular fluorescence complementation analysis showed that these two proteins directly interacted at cellular level. Therefore, Cameo2 and CBP are necessarily expressed in midguts and silk glands for lutein uptake in Bombyx mori. Cameo2 and CBP, as the membrane protein and the cytosol protein, respectively, have the combined effect to facilitate the cellular uptake of lutein. PMID:24475153
Zhang, Wenzhong; Hietala, Sami; Khriachtchev, Leonid; Hatanpää, Timo; Doshi, Bhairavi; Koivula, Risto
2018-06-21
The lanthanides (Ln) are an essential part of many advanced technologies. Our societal transformation toward renewable energy drives their ever-growing demand. The similar chemical properties of the Ln pose fundamental difficulties in separating them from each other, yet high purity elements are crucial for specific applications. Here, we propose an intralanthanide separation method utilizing a group of titanium(IV) butyl phosphate coordination polymers as solid-phase extractants. These materials are characterized, and they contain layered structures directed by the hydrophobic interaction of the alkyl chains. The selective Ln uptake results from the transmetalation reaction (framework metal cation exchange), where the titanium(IV) serves as sacrificial coordination centers. The "tetrad effect" is observed from a dilute Ln 3+ mixture. However, smaller Ln 3+ ions are preferentially extracted in competitive binary separation models between adjacent Ln pairs. The intralanthanide ion-exchange selectivity arises synergistically from the coordination and steric strain preferences, both of which follow the reversed Ln contraction order. A one-step aqueous separation of neodymium (Nd) and dysprosium (Dy) is quantitatively achievable by simply controlling the solution pH in a batch mode, translating into a separation factor of greater than 2000 and 99.1% molar purity of Dy in the solid phase. Coordination polymers provide a versatile platform for further exploring selective Ln separation processes via the transmetalation process.
Synthesis and optical properties of water-soluble biperylene-based dendrimers.
Shao, Pin; Jia, Ningyang; Zhang, Shaojuan; Bai, Mingfeng
2014-05-30
We report the synthesis and photophysical properties of three biperylene-based dendrimers, which show red fluorescence in water. A fluorescence microscopy study demonstrated uptake of biperylene-based dendrimers in living cells. Our results indicate that these biperylene-based dendrimers are promising candidates in fluorescence imaging applications with the potential as therapeutic carriers.
1985-06-01
and have similar properties and texture. Differences exist in the macro- and micronutrient status. The common origin and corresponding properties of...Mineral Nutrition, The Hague, 1973. Tracing and treating mineral disorders in dairy cattle. Centre for Agricultural Publishing and Documentation
Delivery Rate Affects Uptake of a Fluorescent Glucose Analog in Murine Metastatic Breast Cancer
Rajaram, Narasimhan; Frees, Amy E.; Fontanella, Andrew N.; Zhong, Jim; Hansen, Katherine; Dewhirst, Mark W.; Ramanujam, Nirmala
2013-01-01
We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO2 was imaged using the differential absorption properties of oxygenated [HbO2] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor. PMID:24204635
Kinetics and equilibrium of solute diffusion into human hair.
Wang, Liming; Chen, Longjian; Han, Lujia; Lian, Guoping
2012-12-01
The uptake kinetics of five molecules by hair has been measured and the effects of pH and physical chemical properties of molecules were investigated. A theoretical model is proposed to analyze the experimental data. The results indicate that the binding affinity of solute to hair, as characterized by hair-water partition coefficient, scales to the hydrophobicity of the solute and decreases dramatically as the pH increases to the dissociation constant. The effective diffusion coefficient of solute depended not only on the molecular size as most previous studies suggested, but also on the binding affinity as well as solute dissociation. It appears that the uptake of molecules by hair is due to both hydrophobic interaction and ionic charge interaction. Based on theoretical considerations of the cellular structure, composition and physical chemical properties of hair, quantitative-structure-property-relationships (QSPR) have been proposed to predict the hair-water partition coefficient (PC) and the effective diffusion coefficient (D (e)) of solute. The proposed QSPR models fit well with the experimental data. This paper could be taken as a reference for investigating the adsorption properties for polymeric materials, fibres, and biomaterials.
The effect of water uptake on the mechanical properties of low-k organosilicate glass
NASA Astrophysics Data System (ADS)
Guo, X.; Jakes, J. E.; Nichols, M. T.; Banna, S.; Nishi, Y.; Shohet, J. L.
2013-08-01
Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of-line integration and circuit reliability. The influence of absorbed water on the mechanical properties of plasma-enhanced chemical-vapor-deposited organosilicate glasses (SiCOH) was investigated with nanoindentation. The roles of physisorbed (α-bonded) and chemisorbed (β-bonded) water were examined separately through annealing at different temperatures. Nanoindentation measurements were performed on dehydrated organosilicate glass during exposure to varying humidity conditions. The elastic modulus and hardness for as-deposited SiCOH are intimately linked to the nature and concentration of the absorbed water in the dielectric. Under mild-annealing conditions, the water-related film mechanical property changes were shown to be reversible. The mechanical properties of UV-cured SiCOH were also shown to depend on absorbed water, but to a lesser extent because UV curing depopulates the hydrophilic chemical groups in SiCOH. High-load indentation tests showed that in-diffusion of water in the film/substrate interface can degrade the hardness of SiCOH/Si film stacks significantly, while not significantly changing the elastic modulus.
Pan, Zhicheng; Fang, Danxuan; Song, Yuanqing; Song, Nijia; Ding, Mingming; Li, Jiehua; Luo, Feng; Li, Jianshu; Tan, Hong; Fu, Qiang
2018-06-06
Cationic gemini quaternary ammonium (GQA) has been used as a cell internalization promoter to improve the permeability of the cell membrane and enhance the cellular uptake. However, the effect of the alkyl chain length on the cellular properties of nanocarriers has not been elucidated yet. In this study, we developed a series of polyurethane micelles containing GQAs with various alkyl chain lengths. The alteration of the gemini alkyl chain length was found to change the distribution of GQA surfactants in the micellar structure and affect the surface charge exposure, stability, and the protein absorption properties of nanocarriers. Moreover, we also clarified the role of the alkyl chain length in tumor cell internalization and macrophage uptake of polyurethane micelles. This work provides a new understanding on the effect of the GQA alkyl chain length on the physicochemical and biological properties of nanomedicines, and offers guidance on the rational design of effective drug delivery systems where the issue of functional group exposure at the micellar surface should be considered.
The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake
NASA Astrophysics Data System (ADS)
Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu
2015-04-01
For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes affect the spatial distribution of root water uptake. This suggests that rhizosphere processes effect root water uptake at the plant scale. Overall, these preliminary results demonstrate the impact of rhizosphere on water flow and root water uptake, and the ability of the Rhizo-RSWMS to simulate these processes. References Javaux, M., Schröder, T., Vanderborght, J., & Vereecken, H. (2008). Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone Journal, 7(3), 1079-1088. Kroener, E., Zarebanadkouki, M., Kaestner, A., & Carminati, A. (2014). Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils. Water Resources Research, 50(8), 6479-6495.
Quental, Letícia; Raposinho, Paula; Mendes, Filipa; Santos, Isabel; Navarro-Ranninger, Carmen; Alvarez-Valdes, Amparo; Huang, Huaiyi; Chao, Hui; Rubbiani, Riccardo; Gasser, Gilles; Quiroga, Adoración G; Paulo, António
2017-10-31
In this article, we report on the development of new metal-based anticancer agents with imaging, chemotherapeutic and photosensitizing properties. Hence, a new heterobimetallic complex (Pt-LQ-Re) was prepared by connecting a non-conventional trans-chlorido Pt(ii) complex to a photoactive Re tricarbonyl unit (LQ-Re), which can be replaced by 99m Tc to allow for in vivo imaging. We describe the photophysical and biological properties of the new complexes, in the dark and upon light irradiation (DNA interaction, cellular localization and uptake, and cytotoxicity). Furthermore, planar scintigraphic images of mice injected with Pt-LQ-Tc clearly showed that the radioactive compound is taken up by the excretory system organs, namely liver and kidneys, without significant retention in other tissues. All in all, the strategy of conjugating a chemotherapeutic compound with a PDT photosensitizer endows the resulting complexes with an intrinsic cytotoxic activity in the dark, driven by the non-classical platinum core, and a selective activity upon light irradiation. Most importantly, the possibility of integrating a SPECT imaging radiometal ( 99m Tc) in the structure of these new heterobimetallic complexes might allow for in vivo non-invasive visualization of their tumoral accumulation, a crucial issue to predict therapeutic outcomes.
Edlund, U; Albertsson, A C; Singh, S K; Fogelberg, I; Lundgren, B O
2000-05-01
Biodegradable blends of poly(trimethylene carbonate) (PTMC) and poly(adipic anhydride) (PAA) have been proven to be strong candidates for controlled drug delivery polymers in vitro. We now report on the stability, sterilizability and in vivo local tissue response of these matrices. Blend matrices were sterilized by beta-radiation or ethylene oxide gas treatment, stored at different times and temperatures, and analyzed for changes in physicochemical properties. Moisture uptake at different relative humidities and storage times was determined. Sterilization procedures induced hydrolysis of the matrices. Ethylene oxide gas sterilization had a significantly more marked effect upon the matrix properties than radiation treatment. The onset of degradation was reflected in a decrease of crystallinity and molecular weight along with a change of blend composition. A similar onset of matrix degradation was observed upon storage in air. The physicochemical properties of the blends were well preserved upon storage under argon atmosphere. Biocompatibility of PTMC/PAA implants was assessed in the anterior chamber of rabbits eyes for 1 month. At selected post-operative time points, aqueous humor was analyzed for white blood cells and the corneal thickness was measured. The results suggest good biocompatability of PTMC-rich matrices, whereas fast eroding PAA-rich matrices caused inflammatory responses, due to a burst release of degradation products.
Złoch, Michał; Kowalkowski, Tomasz; Tyburski, Jarosław; Hrynkiewicz, Katarzyna
2017-12-02
Bioaugmentation of soils with selected microorganisms during phytoextraction can be the key solution for successful bioremediation and should be accurately calculated for different physicochemical soil properties and heavy metal availability to guarantee the universality of this method. Equally important is the development of an accurate prediction tool to manage phytoremediation process. The main objective of this study was to evaluate the role of three metallotolerant siderophore-producing Streptomyces sp. B1-B3 strains in the phytoremediation of heavy metals with the use of S. dasyclados L. growing in four metalliferrous soils as well as modeling the efficiency of this process based on physicochemical and microbiological properties of the soils using artificial neural network (ANN) analysis. The bacterial inoculation of plants significantly stimulated plant biomass and reduced oxidative stress. Moreover, the bacteria affected the speciation of heavy metals and finally their mobility, thereby enhancing the uptake and bioaccumulation of Zn, Cd, and Pb in the biomass. The best capacity for phytoextraction was noted for strain B1, which had the highest siderophore secretion ability. Finally, ANN model permitted to predict efficiency of phytoextraction based on both the physicochemical properties of the soils and the activity of the soil microbiota with high precision.
Cooper, B R; Hester, T J; Maxwell, R A
1980-10-01
Bupropion (BW 323U; Wellbutrin), a novel compound with antidepressant effects in man, was found to reduce immobility in an "experimental helplessness" forced swimming antidepressant test in rats as did imipramine and amitriptyline. Higher doses produced elevated locomotor activity in an automated open field and produced stereotyped sniffing which was contrasted with apomorphine. When bupropion or desmethylimipramine was given before intracisternal injections of 6-hydroxydopamine, bupropion produced a dose-related selective antagonism of the destruction of dopamine neurons, while under the same conditions, desmethylimipramine produced a dose-related selective antagonism of the destruction of noradrenergic neurons. Studies in which the dose of bupropion and the dose of 6-hydroxydopamine were varied revealed that a dose-related selective antagonism of dopamine depletion by 6-hydroxydopamine occurred when doses up to and including 50 mg/kg i.p. to bupropion were administered. Some antagonism of norepinephrine depletion also occurred at 100 mg/kg of bupropion i.p. Bupropion also selectively reversed the dopamine depletion produced by alpha-methyl-m-tyrosine, a finding which is consistent with the view that bupropion is a dopamine uptake inhibitor in vivo. The importance of dopamine systems for the behavioral effects of bupropion were also studied. When the locomotor stimulant effects of bupropion were tested in rats with chronic destruction of dopamine neurons produced by 6-hydroxydopamine, bupropion failed to elevate locomotor activity. Rats treated with procedures using 6-hydroxydopamine to produce relatively selective norepinephrine depletions responded to bupropion with locomotor activity stimulation like controls. Rats with similar depletions of either dopamine or norepinephrine were also tested for the ability of low doses of bupropion to reduce immobility in the "experimental helplessness" forced swim antidepressant test. Prior destruction of dopamine neurons prevented activity of bupropion in this test. Results indicate that bupropion is a selective dopamine uptake inhibitor in vivo and that dopaminergic systems play an important role in its central nervous system pharmacology.
Afuwape, Olusoji A. T.; Wasser, Catherine R.; Schikorski, Thomas
2016-01-01
Key points Synaptic transmission is mediated by the release of neurotransmitters from synaptic vesicles in response to stimulation or through the spontaneous fusion of a synaptic vesicle with the presynaptic plasma membrane.There is growing evidence that synaptic vesicles undergoing spontaneous fusion versus those fusing in response to stimuli are functionally distinct.In this study, we acutely probe the effects of intravesicular free radical generation on synaptic vesicles that fuse spontaneously or in response to stimuli.By targeting vesicles that preferentially release spontaneously, we can dissociate the effects of intravesicular free radical generation on spontaneous neurotransmission from evoked neurotransmission and vice versa.Taken together, these results further advance our knowledge of the synapse and the nature of the different synaptic vesicle pools mediating neurotransmission. Abstract Earlier studies suggest that spontaneous and evoked neurotransmitter release processes are maintained by synaptic vesicles which are segregated into functionally distinct pools. However, direct interrogation of the link between this putative synaptic vesicle pool heterogeneity and neurotransmission has been difficult. To examine this link, we tagged vesicles with horseradish peroxidase (HRP) – a haem‐containing plant enzyme – or antibodies against synaptotagmin‐1 (syt1). Filling recycling vesicles in hippocampal neurons with HRP and subsequent treatment with hydrogen peroxide (H2O2) modified the properties of neurotransmitter release depending on the route of HRP uptake. While strong depolarization‐induced uptake of HRP suppressed evoked release and augmented spontaneous release, HRP uptake during mild activity selectively impaired evoked release, whereas HRP uptake at rest solely potentiated spontaneous release. Expression of a luminal HRP‐tagged syt1 construct and subsequent H2O2 application resulted in a similar increase in spontaneous release and suppression as well as desynchronization of evoked release, recapitulating the canonical syt1 loss‐of‐function phenotype. An antibody targeting the luminal domain of syt1, on the other hand, showed that augmentation of spontaneous release and suppression of evoked release phenotypes are dissociable depending on whether the antibody uptake occurred at rest or during depolarization. Taken together, these findings indicate that vesicles that maintain spontaneous and evoked neurotransmitter release preserve their identity during recycling and syt1 function in suppression of spontaneous neurotransmission can be acutely dissociated from syt1 function to synchronize synaptic vesicle exocytosis upon stimulation. PMID:27723113
High-throughput high-volume nuclear imaging for preclinical in vivo compound screening§.
Macholl, Sven; Finucane, Ciara M; Hesterman, Jacob; Mather, Stephen J; Pauplis, Rachel; Scully, Deirdre; Sosabowski, Jane K; Jouannot, Erwan
2017-12-01
Preclinical single-photon emission computed tomography (SPECT)/CT imaging studies are hampered by low throughput, hence are found typically within small volume feasibility studies. Here, imaging and image analysis procedures are presented that allow profiling of a large volume of radiolabelled compounds within a reasonably short total study time. Particular emphasis was put on quality control (QC) and on fast and unbiased image analysis. 2-3 His-tagged proteins were simultaneously radiolabelled by 99m Tc-tricarbonyl methodology and injected intravenously (20 nmol/kg; 100 MBq; n = 3) into patient-derived xenograft (PDX) mouse models. Whole-body SPECT/CT images of 3 mice simultaneously were acquired 1, 4, and 24 h post-injection, extended to 48 h and/or by 0-2 h dynamic SPECT for pre-selected compounds. Organ uptake was quantified by automated multi-atlas and manual segmentations. Data were plotted automatically, quality controlled and stored on a collaborative image management platform. Ex vivo uptake data were collected semi-automatically and analysis performed as for imaging data. >500 single animal SPECT images were acquired for 25 proteins over 5 weeks, eventually generating >3500 ROI and >1000 items of tissue data. SPECT/CT images clearly visualized uptake in tumour and other tissues even at 48 h post-injection. Intersubject uptake variability was typically 13% (coefficient of variation, COV). Imaging results correlated well with ex vivo data. The large data set of tumour, background and systemic uptake/clearance data from 75 mice for 25 compounds allows identification of compounds of interest. The number of animals required was reduced considerably by longitudinal imaging compared to dissection experiments. All experimental work and analyses were accomplished within 3 months expected to be compatible with drug development programmes. QC along all workflow steps, blinding of the imaging contract research organization to compound properties and automation provide confidence in the data set. Additional ex vivo data were useful as a control but could be omitted from future studies in the same centre. For even larger compound libraries, radiolabelling could be expedited and the number of imaging time points adapted to increase weekly throughput. Multi-atlas segmentation could be expanded via SPECT/MRI; however, this would require an MRI-compatible mouse hotel. Finally, analysis of nuclear images of radiopharmaceuticals in clinical trials may benefit from the automated analysis procedures developed.
USDA-ARS?s Scientific Manuscript database
Lutein, a dietary carotenoid, selectively accumulates in human retina and brain. While many epidemiological studies show evidence of a relationship between lutein status and cognitive health, lutein's selective uptake in human brain tissue and its potential function in early neural development and c...
Roz, Netta; Rehavi, Moshe
2003-06-13
Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.
Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K
2017-07-01
18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
2017-01-01
The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully synthesized via a novel single-micelle epitaxial growth approach in a low-concentration-surfactant oil/water biphase system. The virus-like nanoparticles’ rough surface morphology results mainly from the mesoporous silica nanotubes spontaneously grown via an epitaxial growth process. The obtained nanoparticles show uniform particle size and excellent monodispersity. The structural parameters of the nanoparticles can be well tuned with controllable core diameter (∼60–160 nm), tubular length (∼6–70 nm), and outer diameter (∼6–10 nm). Thanks to the biomimetic morphology, the virus-like nanoparticles show greatly superior cellular uptake property (invading living cells in large quantities within few minutes, <5 min), unique internalization pathways, and extended blood circulation duration (t1/2 = 2.16 h), which is much longer than that of conventional mesoporous silica nanoparticles (0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate various virus-like mesoporous core–shell structures, paving the way toward designed synthesis of virus-like nanocomposites for biomedicine applications. PMID:28852697
Bao, Quan-Ying; Liu, Ai-Yun; Ma, Yu; Chen, Huan; Hong, Jin; Shen, Wen-Bin; Zhang, Can; Ding, Ya
2016-10-01
The shape, size, and surface features of nanoparticles greatly influence the structure and properties of resulting hybrid nanosystems. In this work, gold nanoparticles (GNPs) were modified via S-Au covalent bonding by glycol monomethyl ether thioctate with poly(ethylene glycol) methyl ether of different molecular weights (i.e., 350, 550, and 750Da). These modified GNPs (i.e., GNP350, GNP550, and GNP750) showed different oil-water partition coefficients (Kp), as detected using inductively coupled plasma-atomic emission spectroscopy. The different Kp values of the gold conjugates (i.e., 13.98, 2.11, and 0.036 for GNP350, GNP550, and GNP750, respectively) resulted in different conjugate localization within liposomes, as observed by transmission electron microscopy. In addition, the cellular uptake of hybrid liposomes co-encapsulating gold conjugates and Nile red was evaluated using intracellular fluorescence intensity. The results indicated that precise GNP localization in the hydrophilic or hydrophobic liposome cavity could be achieved by regulating the GNP oil-water partition coefficient via surface modification; such localization could further affect the properties and functions of hybrid liposomes, including their cellular uptake profiles. This study furthers the understanding not only of the interaction between liposomes and inorganic nanoparticles but also of adjusting liposome-gold hybrid nanostructure properties via the surface chemistry of gold materials. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angel, I.; Taranger, M.A.; Claustre, Y.
1988-01-01
The mechanism of anorectic action of several serotonin uptake inhibitors was investigated by comparing their anorectic potencies with several biochemical and pharmacological properties and in reference to the novel compound SL 81.0385. The anorectic effect of the potent serotonin uptake inhibitor SL 81.0385 was potentiated by pretreatment with 5-hydroxytryptophan and blocked by the serotonin receptor antagonist metergoline. A good correlation was obtained between the ED/sub 50/ values of anorectic action and the ED/sub 50/ values of serotonin uptake inhibition in vivo (but not in vitro) for several specific serotonin uptake inhibitors. Most of the drugs tested displaced (/sup 3/H)-mazindol frommore » its binding to the anorectic recognition site in the hypothalamus, except the pro-drug zimelidine which was inactive. Excluding zimelidine, a good correlation was obtained between the affinities of these drugs for (/sup 3/H)-mazindol binding and their anorectic action indicating that their anorectic activity may be associated with an effect mediated through this site. Taken together these results suggest that the anorectic action of serotonin uptake inhibitors is directly associated to their ability to inhibit serotonin uptake and thus increasing the synaptic levels of serotonin. The interactions of these drugs with the anorectic recognition site labelled with (/sup 3/H)-mazindol is discussed in connection with the serotonergic regulation of carbohydrate intake.« less
Muñoz, Alexandra; Costa, Max
2012-01-01
Nickel (Ni) is a worldwide pollutant and contaminant that humans are exposed to through various avenues resulting in multiple toxic responses - most alarming is its clear carcinogenic nature. A variety of particulate Ni compounds persist in the environment and can be distinguished by characteristics such as solubility, structure, and surface charge. These characteristics influence cellular uptake and toxicity. Some particulate forms of Ni are carcinogenic and are directly and rapidly endocytized by cells. A series of studies conducted in the 1980’s observed this process, and we have reanalyzed the results of these studies to help elucidate the molecular mechanism of particulate Ni uptake. Originally the process of uptake observed was described as phagocytosis, however in the context of recent research we hypothesize that the process is macropinocytosis and/or clathrin mediated endocytosis. Primary considerations in determining the route of uptake here include calcium dependence, particle size, and inhibition through temperature and pharmacological approaches. Particle characteristics that influenced uptake include size, charge, surface characteristics, and structure. This discussion is relevant in the context of nanoparticle studies and the emerging interest in nano-nickel (nano-Ni), where toxicity assessments require a clear understanding of the parameters of particulate uptake and where establishment of such parameters is often obscured through inconsistencies across experimental systems. In this regard, this review aims to carefully document one system (particulate nickel compound uptake) and characterize its properties. PMID:22206756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz, Alexandra; Costa, Max, E-mail: Max.Costa@nyumc.org
Nickel (Ni) is a worldwide pollutant and contaminant that humans are exposed to through various avenues resulting in multiple toxic responses — most alarming is its clear carcinogenic nature. A variety of particulate Ni compounds persist in the environment and can be distinguished by characteristics such as solubility, structure, and surface charge. These characteristics influence cellular uptake and toxicity. Some particulate forms of Ni are carcinogenic and are directly and rapidly endocytized by cells. A series of studies conducted in the 1980s observed this process, and we have reanalyzed the results of these studies to help elucidate the molecular mechanismmore » of particulate Ni uptake. Originally the process of uptake observed was described as phagocytosis, however in the context of recent research we hypothesize that the process is macropinocytosis and/or clathrin mediated endocytosis. Primary considerations in determining the route of uptake here include calcium dependence, particle size, and inhibition through temperature and pharmacological approaches. Particle characteristics that influenced uptake include size, charge, surface characteristics, and structure. This discussion is relevant in the context of nanoparticle studies and the emerging interest in nano-nickel (nano-Ni), where toxicity assessments require a clear understanding of the parameters of particulate uptake and where establishment of such parameters is often obscured through inconsistencies across experimental systems. In this regard, this review aims to carefully document one system (particulate nickel compound uptake) and characterize its properties.« less
Lesion-induced plasticity of high affinity choline uptake in the developing rat fascia dentata.
Nadler, J V; Shelton, D L; Cotman, C W
1979-03-23
After removal of the perforant path input to the rat fascia dentata at the age of 11 days, cholinergic septohippocampal fibers invade the denervated area. We have examined the effect of this lesion on hemicholinium-sensitive, high affinity choline uptake and its coupling to acetylcholine synthesis, specific properties of the septohippocampal input. Removal of the ipsilateral perforant path fibers increased the velocity of high affinity choline uptake by dentate particulate preparations, usually within 1 day. Studies conducted 5--104 days after operation showed a consistent 50--65% elevation in the molecular (denervated) layer. In contrast, the choline uptake rate in the granular layer eventually decreased slightly. Calculation of choline uptake rates independently of protein (per whole region) revealed that fasciae dentatae from operated and control sides accumulated choline at approximately equal rates, but on the operated side a greater percentage was transported by structures from the molecular layer and a lesser percentage by those from the granular layer. The rate of acetylcholine synthesis from exogenous choline increased to the same extent as high affinity choline uptake from 3 days after operation onwards. The changes in high affinity choline uptake and acetylcholine synthesis coincided spatially and temporally with the reactive growth of septohippocampal fibers. Our results support the view that a perforant path lesion during development permanently alters the distribution of functional septohippocampal boutons in the fascia dentata. Acetylcholine synthesis is regulated to the same extent by high affinity choline uptake in the anomalous boutons as in normally located boutons.
Lamboley, C R; Murphy, R M; McKenna, M J; Lamb, G D
2014-03-15
The Ca(2+) uptake properties of the sarcoplasmic reticulum (SR) were compared between type I and type II fibres of vastus lateralis muscle of young healthy adults. Individual mechanically skinned muscle fibres were exposed to solutions with the free [Ca(2+)] heavily buffered in the pCa range (-log10[Ca(2+)]) 7.3-6.0 for set times and the amount of net SR Ca(2+) accumulation determined from the force response elicited upon emptying the SR of all Ca(2+). Western blotting was used to determine fibre type and the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoform present in every fibre examined. Type I fibres contained only SERCA2 and displayed half-maximal Ca(2+) uptake rate at ∼pCa 6.8, whereas type II fibres contained only SERCA1 and displayed half-maximal Ca(2+) uptake rate at ∼pCa 6.6. Maximal Ca(2+) uptake rate was ∼0.18 and ∼0.21 mmol Ca(2+) (l fibre)(-1) s(-1) in type I and type II fibres, respectively, in good accord with previously measured SR ATPase activity. Increasing free [Mg(2+)] from 1 to 3 mM had no significant effect on the net Ca(2+) uptake rate at pCa 6.0, indicating that there was little or no calcium-induced calcium release occurring through the Ca(2+) release channels during uptake in either fibre type. Ca(2+) leakage from the SR at pCa 8.5, which is thought to occur at least in part through the SERCA, was ∼2-fold lower in type II fibres than in type I fibres, and was little affected by the presence of ADP, in marked contrast to the larger SR Ca(2+) leak observed in rat muscle fibres under the same conditions. The higher affinity of Ca(2+) uptake in the type I human fibres can account for the higher relative level of SR Ca(2+) loading observed in type I compared to type II fibres, and the SR Ca(2+) leakage characteristics of the human fibres suggest that the SERCAs are regulated differently from those in rat and contribute comparatively less to resting metabolic rate.
Terrell, Kimberly A; Wildt, David E; Anthony, Nicola M; Bavister, Barry D; Leibo, S P; Penfold, Linda M; Marker, Laurie L; Crosier, Adrienne E
2012-04-01
Felid spermatozoa are sensitive to cryopreservation-induced damage, but functional losses can be mitigated by post-thaw swim-up or density gradient processing methods that selectively recover motile or structurally-normal spermatozoa, respectively. Despite the importance of sperm energy production to achieving fertilization, there is little knowledge about the influence of cryopreservation or post-thaw processing on felid sperm metabolism. We conducted a comparative study of domestic cat and cheetah sperm metabolism after cryopreservation and post-thaw processing. We hypothesized that freezing/thawing impairs sperm metabolism and that swim-up, but not density gradient centrifugation, recovers metabolically-normal spermatozoa. Ejaculates were cryopreserved, thawed, and processed by swim-up, Accudenz gradient centrifugation, or conventional washing (representing the 'control'). Sperm glucose and pyruvate uptake, lactate production, motility, and acrosomal integrity were assessed. Mitochondrial membrane potential (MMP) was measured in cat spermatozoa. In both species, lactate production, motility, and acrosomal integrity were reduced in post-thaw, washed samples compared to freshly-collected ejaculates. Glucose uptake was minimal pre- and post-cryopreservation, whereas pyruvate uptake was similar between treatments due to high coefficients of variation. In the cat, swim-up, but not Accudenz processing, recovered spermatozoa with increased lactate production, pyruvate uptake, and motility compared to controls. Although confounded by differences in non-specific fluorescence among processing methods, MMP values within treatments were positively correlated to sperm motility and acrosomal integrity. Cheetah spermatozoa isolated by either selection method exhibited improved motility and/or acrosomal integrity, but remained metabolically compromised. Collectively, findings revealed a metabolically-robust subpopulation of cryopreserved cat, but not cheetah, spermatozoa, recovered by selecting for motility rather than morphology. Published by Elsevier Inc.
Kutchukian, Peter S; Warren, Lee; Magliaro, Brian C; Amoss, Adam; Cassaday, Jason A; O'Donnell, Gregory; Squadroni, Brian; Zuck, Paul; Pascarella, Danette; Culberson, J Chris; Cooke, Andrew J; Hurzy, Danielle; Schlegel, Kelly-Ann Sondra; Thomson, Fiona; Johnson, Eric N; Uebele, Victor N; Hermes, Jeffrey D; Parmentier-Batteur, Sophie; Finley, Michael
2017-02-17
N-methyl-d-aspartate receptors (NMDARs) mediate glutamatergic signaling that is critical to cognitive processes in the central nervous system, and NMDAR hypofunction is thought to contribute to cognitive impairment observed in both schizophrenia and Alzheimer's disease. One approach to enhance the function of NMDAR is to increase the concentration of an NMDAR coagonist, such as glycine or d-serine, in the synaptic cleft. Inhibition of alanine-serine-cysteine transporter-1 (Asc-1), the primary transporter of d-serine, is attractive because the transporter is localized to neurons in brain regions critical to cognitive function, including the hippocampus and cortical layers III and IV, and is colocalized with d-serine and NMDARs. To identify novel Asc-1 inhibitors, two different screening approaches were performed with whole-cell amino acid uptake in heterologous cells stably expressing human Asc-1: (1) a high-throughput screen (HTS) of 3 M compounds measuring 35 S l-cysteine uptake into cells attached to scintillation proximity assay beads in a 1536 well format and (2) an iterative focused screen (IFS) of a 45 000 compound diversity set using a 3 H d-serine uptake assay with a liquid scintillation plate reader in a 384 well format. Critically important for both screening approaches was the implementation of counter screens to remove nonspecific inhibitors of radioactive amino acid uptake. Furthermore, a 15 000 compound expansion step incorporating both on- and off-target data into chemical and biological fingerprint-based models for selection of additional hits enabled the identification of novel Asc-1-selective chemical matter from the IFS that was not identified in the full-collection HTS.
Pybus, Marc; Andrews, Glen K.; Lalueza-Fox, Carles; Comas, David; Sekler, Israel; de la Rasilla, Marco; Rosas, Antonio; Stoneking, Mark; Valverde, Miguel A.; Vicente, Rubén; Bosch, Elena
2014-01-01
Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk. PMID:24586184
Shrestha, Stal; Singh, Prachi; Cortes-Salva, Michelle Y; Jenko, Kimberly J; Ikawa, Masamichi; Kim, Min-Jeong; Kobayashi, Masato; Morse, Cheryl L; Gladding, Robert L; Liow, Jeih-San; Zoghbi, Sami S; Fujita, Masahiro; Innis, Robert B; Pike, Victor W
2018-06-13
In our preceding paper (Part 1), we identified three 1,5-bis-diaryl-1,2,4-triazole-based compounds that merited evaluation as potential positron emission tomography (PET) radioligands for selectively imaging cyclooxygenase-1 (COX-1) in monkey and human brain, namely, 1,5-bis(4-methoxyphenyl)-3-(alkoxy)-1 H-1,2,4-triazoles bearing a 3-methoxy (PS1), a 3-(2,2,2-trifluoroethoxy) (PS13), or a 3-fluoromethoxy substituent (PS2). PS1 and PS13 were labeled from phenol precursors by O- 11 C-methylation with [ 11 C]iodomethane and PS2 by O- 18 F-fluoroalkylation with [ 2 H 2 , 18 F]fluorobromomethane. Here, we evaluated these PET radioligands in monkey. All three radioligands gave moderately high uptake in brain, although [ 2 H 2 , 18 F]PS2 also showed undesirable radioactivity uptake in skull. [ 11 C]PS13 was selected for further evaluation, mainly based on more favorable brain kinetics than [ 11 C]PS1. Pharmacological preblock experiments showed that about 55% of the radioactivity uptake in brain was specifically bound to COX-1. An index of enzyme density, V T , was well identified from serial brain scans and from the concentrations of parent radioligand in arterial plasma. In addition, V T values were stable within 80 min, suggesting that brain uptake was not contaminated by radiometabolites. [ 11 C]PS13 successfully images and quantifies COX-1 in monkey brain, and merits further investigation for imaging COX-1 in monkey models of neuroinflammation and in healthy human subjects.
Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Sridhar, B B Maruthi
2012-11-01
The plant uptake of emerging organic contaminants such as pharmaceuticals and personal care products (PPCPs) is receiving increased attention. Biosolids from municipal wastewater treatment have been previously identified as a major source for PPCPs. Thus, plant uptake of PPCPs from biosolids applied soils needs to be understood. In the present study, the uptake of carbamazepine, diphenhydramine, and triclocarban by five vegetable crop plants was examined in a field experiment. At the time of harvest, three compounds were detected in all plants grown in biosolids-treated soils. Calculated root concentration factor (RCF) and shoot concentration factor (SCF) are the highest for carbamazepine followed by triclocarban and diphenhydramine. Positive correlation between RCF and root lipid content was observed for carbamazepine but not for diphenhydramine and triclocarban. The results demonstrate the ability of crop plants to accumulate PPCPs from contaminated soils. The plant uptake processes of PPCPs are likely affected by their physico-chemical properties, and their interaction with soil. The difference uptake behavior between plant species could not solely be attributed to the root lipid content. Copyright © 2012 Elsevier Inc. All rights reserved.
[Cellular uptake of TPS-L-carnitine synthesised as transporter-based renal targeting prodrug].
Li, Li; Zhu, Di; Sun, Xun
2012-11-01
To synthesize transporter-based renal targeting prodrug TPS-L-Carnitine and to determine its cellular uptake in vitro. Triptolide (TP) was conjugated with L-carnitine using succinate as the linker to form TPS-L-Carnitine, which could be specifically recognized by OCTN2, a cationic transporter with high affinity to L-Carnitine and is highly expressed on the apical membrane of renal proximal tubule cells. Cellular uptake assays of the prodrug and its parent drug were performed on HK-2 cells, a human proximal tubule cell line, in different temperature, concentration and in the presence of competitive inhibitors. TPS-L-Carnitine was taken up into HK-2 cells in a saturable and temperature- and concentration-dependent manner. The uptake process could be inhibited by the competitive inhibitors. The uptake of TPS-L-Carnitine was significantly higher than that of TP at 37 degrees C in the same drug concentration. TPS-L-Carnitine was taken through endocytosis mediated by transporter. TPS-L-Carnitine provides a good renal targeting property and lays the foundation for further studies in vivo.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Beusen, Arthur H. W.; Van Apeldoorn, Dirk F.; Mogollón, José M.; Yu, Chaoqing; Bouwman, Alexander F.
2017-04-01
Phosphorus (P) plays a vital role in global crop production and food security. In this study, we investigate the changes in soil P pool inventories calibrated from historical countrywide crop P uptake, using a 0.5-by-0.5° spatially explicit model for the period 1900-2010. Globally, the total P pool per hectare increased rapidly between 1900 and 2010 in soils of Europe (+31 %), South America (+2 %), North America (+15 %), Asia (+17 %), and Oceania (+17 %), while it has been stable in Africa. Simulated crop P uptake is influenced by both soil properties (available P and the P retention potential) and crop characteristics (maximum uptake). Until 1950, P fertilizer application had a negligible influence on crop uptake, but recently it has become a driving factor for food production in industrialized countries and a number of transition countries like Brazil, Korea, and China. This comprehensive and spatially explicit model can be used to assess how long surplus P fertilization is needed or how long depletions of built-up surplus P can continue without affecting crop yield.
Kramer, G M; Liu, Y; de Langen, A J; Jansma, E P; Trigonis, I; Asselin, M-C; Jackson, A; Kenny, L; Aboagye, E O; Hoekstra, O S; Boellaard, R
2018-06-01
3'-deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) positron emission tomography (PET) provides a non-invasive method to assess cellular proliferation and response to antitumor therapy. Quantitative 18 F-FLT uptake metrics are being used for evaluation of proliferative response in investigational setting, however multi-center repeatability needs to be established. The aim of this study was to determine the repeatability of 18 F-FLT tumor uptake metrics by re-analyzing individual patient data from previously published reports using the same tumor segmentation method and repeatability metrics across cohorts. A systematic search in PubMed, EMBASE.com and the Cochrane Library from inception-October 2016 yielded five 18 F-FLT repeatability cohorts in solid tumors. 18 F-FLT avid lesions were delineated using a 50% isocontour adapted for local background on test and retest scans. SUV max , SUV mean , SUV peak , proliferative volume and total lesion uptake (TLU) were calculated. Repeatability was assessed using the repeatability coefficient (RC = 1.96 × SD of test-retest differences), linear regression analysis, and the intra-class correlation coefficient (ICC). The impact of different lesion selection criteria was also evaluated. Images from four cohorts containing 30 patients with 52 lesions were obtained and analyzed (ten in breast cancer, nine in head and neck squamous cell carcinoma, and 33 in non-small cell lung cancer patients). A good correlation was found between test-retest data for all 18 F-FLT uptake metrics (R 2 ≥ 0.93; ICC ≥ 0.96). Best repeatability was found for SUV peak (RC: 23.1%), without significant differences in RC between different SUV metrics. Repeatability of proliferative volume (RC: 36.0%) and TLU (RC: 36.4%) was worse than SUV. Lesion selection methods based on SUV max ≥ 4.0 improved the repeatability of volumetric metrics (RC: 26-28%), but did not affect the repeatability of SUV metrics. In multi-center studies, differences ≥ 25% in 18 F-FLT SUV metrics likely represent a true change in tumor uptake. Larger differences are required for FLT metrics comprising volume estimates when no lesion selection criteria are applied.
Selective capture of iodide from solutions by microrosette-like δ-Bi₂O₃.
Liu, Long; Liu, Wei; Zhao, Xiaoliang; Chen, Daimei; Cai, Rongsheng; Yang, Weiyou; Komarneni, Sridhar; Yang, Dongjiang
2014-09-24
Radioactive iodine isotopes that are produced in nuclear power plants and used in medical research institutes could be a serious threat to the health of many people if accidentally released to the environment because the thyroid gland can absorb and concentrate them from a liquid. For this reason, uptake of iodide anions was investigated on microrosette-like δ-Bi2O3 (MR-δ-Bi2O3). The MR-δ-Bi2O3 adsorbent showed a very high uptake capacity of 1.44 mmol g(-1) by forming insoluble Bi4I2O5 phase. The MR-δ-Bi2O3 also displayed fast uptake kinetics and could be easily separated from a liquid after use because of its novel morphology. In addition, the adsorbent showed excellent selectivity for I(-) anions in the presence of large concentrations of competitive anions such as Cl(-) and CO3(2-), and could work in a wide pH range of 4-11. This study led to a new and highly efficient Bi-based adsorbent for iodide capture from solutions.
Drug-Loaded Nanoemulsions/Microbubbles for Combined Tumor Imaging and Therapy
NASA Astrophysics Data System (ADS)
Rapoport, Natalya; Gao, Zhonggao; Kennedy, Ann
2007-05-01
A new class of multifunctional nanoparticles that combine properties of polymeric drug carriers, ultrasound imaging contrast agents, and enhancers of ultrasound-mediated intracellular drug delivery was developed. At room temperature, the developed systems comprise perfluorocarbon nanodroplets stabilized by the walls made of biodegradable block copolymers. The nanodroplets convert into microbubbles upon heating to physiological temperatures. The phase state of the systems and nanodroplet size may be controlled by the copolymer/perfluorocarbon volume ratio. Three areas observed in phase diagrams correspond to micelles; micelle/microbubble coexistence; and nano/microbubble coexistence. These systems manifest a relatively high drug loading capacity (about 15 % wt/wt). As indicated by biodistribution measurements and ultrasound imaging, the micelles and nanobubbles extravasate selectively into the tumor interstitia. Microbubble cavitate and collapse under the action of tumor-directed ultrasound, resulting in a dramatically enhanced intracellular drug uptake by the tumor cells. Upon intravenous injections, a long-lasting, strong and selective ultrasound contrast is observed in the tumor volume confirming nanobubble extravasation through the defected tumor microvasculature and suggesting their coalescence into larger, highly echogenic microbubbles in the tumor tissue. This effect is tumor-selective; no accumulation of echogenic microbubbles is observed in other organs. Tumor contrast increases in time confirming gradual accumulation of echogenic microbubbles in the tumor tissue, presumably via the enhanced penetration and retention (EPR) effect.
Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; De Stefano, Luca; Santos, Hélder A
2015-12-21
Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.
Petrova, Natalya S; Chernikov, Ivan V; Meschaninova, Mariya I; Dovydenko, Iiya S; Venyaminova, Aliya G; Zenkova, Marina A; Vlassov, Valentin V; Chernolovskaya, Elena L
2012-03-01
The conjugation of siRNA to molecules, which can be internalized into the cell via natural transport mechanisms, can result in the enhancement of siRNA cellular uptake. Herein, the carrier-free cellular uptake of nuclease-resistant anti-MDR1 siRNA equipped with lipophilic residues (cholesterol, lithocholic acid, oleyl alcohol and litocholic acid oleylamide) attached to the 5'-end of the sense strand via oligomethylene linker of various length was investigated. A convenient combination of H-phosphonate and phosphoramidite methods was developed for the synthesis of 5'-lipophilic conjugates of siRNAs. It was found that lipophilic siRNA are able to effectively penetrate into HEK293, HepG2 and KB-8-5 cancer cells when used in a micromolar concentration range. The efficiency of the uptake is dependent upon the type of lipophilic moiety, the length of the linker between the moiety and the siRNA and cell type. Among all the conjugates tested, the cholesterol-conjugated siRNAs with linkers containing from 6 to 10 carbon atoms demonstrate the optimal uptake and gene silencing properties: the shortening of the linker reduces the efficiency of the cellular uptake of siRNA conjugates, whereas the lengthening of the linker facilitates the uptake but retards the gene silencing effect and decreases the efficiency of the silencing.
Li, Xiuying; Chen, Dan; Le, Chaoyi; Zhu, Chunliu; Gan, Yong; Hovgaard, Lars; Yang, Mingshi
2011-01-01
Background The aim of this study was to investigate the intestinal mucus-penetrating properties and intestinal cellular uptake of two types of liposomes modified by Pluronic F127 (PF127). Methods The two types of liposomes, ie, PF127-inlaid liposomes and PF127-adsorbed liposomes, were prepared by a thin-film hydration method followed by extrusion, in which coumarin 6 was loaded as a fluorescence marker. A modified Franz diffusion cell mounted with the intestinal mucus of rats was used to study the diffusion characteristics of the two types of PF127 liposomes. Cell uptake studies were conducted in Caco-2 cells and analyzed using confocal laser scanning microcopy as well as flow cytometry. Results The diffusion efficiency of the two types of PF127-modified liposomes through intestinal rat mucus was 5–7-fold higher than that of unmodified liposomes. Compared with unmodified liposomes, PF127-inlaid liposomes showed significantly higher cellular uptake of courmarin 6. PF127-adsorbed liposomes showed a lower cellular uptake. Moreover, and interestingly, the two types of PF127-modified liposomes showed different cellular uptake mechanisms in Caco-2 cells. Conclusion PF127-inlaid liposomes with improved intestinal mucus-penetrating ability and enhanced cellular uptake might be a potential carrier candidate for oral drug delivery. PMID:22163166
Hoffman, Alexander F.; Spivak, Charles E.; Lupica, Carl R.
2016-01-01
Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple, 5 parameter, two compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using non-linear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altered Ca2+/Mg2+ ratio or tetrodotoxin (TTX), reduced the release parameter with no effect on the uptake parameter. The DAT inhibitors methylenedioxypyrovalerone (MDPV), cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa-opioid receptor (KOR) agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data. PMID:27018734
Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R
2016-06-15
Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data.
Liu, Bing; Yao, Shuo; Shi, Chao; Li, Guanghua; Huo, Qisheng; Liu, Yunling
2016-02-21
Two new isomorphous polyhedron-based MOFs ( and ), with dual functionalities of OMSs and LBSs, have been synthesized by using the SBB strategy. By judiciously avoiding the DABCO axial ligand, possesses more OMSs than , and exhibits a significant enhancement of CO2 uptake capacity 210 versus 162 cm(3) g(-1) for at 273 K under 1 bar.
El-Kamel, Amal Hassan; Ashri, Lubna Y; Alsarra, Ibrahim A
2007-09-14
The main objective of this study was to develop a local, oral mucoadhesive metronidazole benzoate (MET) delivery system that can be applied and removed by the patient for the treatment of periodontal diseases. Mucoadhesive micromatricial chitosan/poly(epsilon-caprolactone) (CH/PCL) films and chitosan films were prepared. Thermal behavior, morphology, and particle size measurements were used to evaluate the prepared films. The effect of different molar masses of CH and different ratios of medium Mwt molar mass chitosan (MCH):PCL on water absorption, in vitro bioadhesion, mechanical properties, and in vitro drug release was examined. In vivo performance of the selected formulation was also evaluated. Differential scanning calorimetry examination revealed that MET existed mainly in amorphous form. Under microscopic examination, PCL microparticles were homogeneously dispersed in the films. The use of different molar masses of CH and different ratios of (MCH):PCL affected the size of the entrapped particles. Addition of PCL significantly decreased percentage water uptake and bioadhesion force compared with pure CH film. With regard to mechanical properties, the 2-layered film containing 1:0.625 MCH:PCL had the best tensile properties. At fixed CH:PCL ratio (1:1.25), the slowest drug release was obtained from films containing high molar mass CH. On the other hand, the 2-layered film that consisted of 1:0.625 MCH:PCL had the slowest MET release. In vivo evaluation of the selected film revealed that metronidazole concentration in saliva over 6 hours ranged from 5 to 15 microg/mL, which was within and higher than the reported range of minimum inhibitory concentration for metronidazole. A significant in vitro/in vivo correlation under the adopted experimental conditions was obtained.
2010-01-01
Background Polycyclic aromatic hydrocarbons (PAHs) are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE), a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L.) seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP) could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM). The contribution of active uptake to total absorption was almost 40% within PHE water solubility. PHE uptake by wheat roots caused an increase in external solution pH, implying that wheat roots take up PHE via a PHE/nH+ symport system. Conclusion It is concluded that an active, carrier-mediated and energy-consuming influx process is involved in the uptake of PHE by plant roots. PMID:20307286
Perumal, Sathiamurthi; Ramadass, Satiesh Kumar; Gopinath, Arun; Madhan, Balaraman; Shanmugam, Ganesh; Rajadas, Jayakumar; Mandal, Asit Baran
2015-12-01
The success of a tissue engineering scaffold depends on a fine balance being achieved between the physicochemical and biological properties. This study attempts to understand the influence of silica concentration on the functional properties of collagen-silica (CS) composite scaffolds for soft tissue engineering applications. Increasing the ratio of silica to collagen (0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0 w/w) gave a marked advantage in terms of improving the water uptake and compressive modulus of the CS scaffolds, while also enhancing the biological stability and the turnover time. With increase in silica concentration the water uptake and compressive modulus increased concurrently, whereas it was not so for surface porous architecture and biocompatibility which are crucial for cell adhesion and infiltration. Silica:collagen ratio of ≤1 exhibits favourable surface biocompatibility, and any further increase in silica concentration has a detrimental effect. Copyright © 2015 Elsevier Ltd. All rights reserved.
Uptake of Cadmium by Flue-Cured Tobacco Plants: Exploring Bioavailability
NASA Astrophysics Data System (ADS)
Holzer, I.; Robarge, W. P.; Vann, M. C.
2015-12-01
Scientific understanding of cadmium (Cd) cycling in North Carolina tobacco plants and soils has lagged, even as production of flue-cured tobacco remains an important part of the NC economy ($903 million in 2014). Cd is considered a tobacco contaminant. When tobacco is burned, Cd can exist as a fine aerosol and subsequent inhalation is linked to cancer. Tobacco root exudates enhance Cd uptake, even though the Cd concentration in NC soils is <0.1 mg/kg. Quantifying Cd concentrations in tobacco plants is crucial to understanding Cd bioavailability and implementing soil remediation efforts. The objective of this study was to develop a Cd mass balance for flue-cured tobacco grown under field conditions in NC. Whole plant samples were collected at transplanting and every 2 weeks thereafter until harvest. Individual plants were segregated into root, stalk and individual leaves (n = 15 whole plants/sampling date; composite samples were taken early in the growing season). After recording dry mass, samples were analyzed using ion-coupled plasma optical emission spectrometry or ion-coupled plasma mass spectrometry. Lower leaves contained the highest Cd concentrations ( 7-10 mg/kg). Leaves occupying the upper 50% of the plant had Cd concentrations of 2 mg/kg. Uptake rate was greatest from day 27 to 66 ( 21.5 μg Cd/day). Selective Cd uptake appears evident between day 27 and 43, but overall the relative rate of Cd uptake was similar to other trace metals and micronutrients. Cd distribution within the plants mirrored the distribution of calcium, a macronutrient. Of the 8 mg of soil extractable Cd (0.075 mg/kg) in the rooting zone, 15.0% (1203 μg) is removed by uptake. Of this 15%, 64.2% (772.2 μg) is exported at harvest, and 35.8% (430.8 μg; lower leaves, roots, stalks) is returned to the soil. This study must be replicated to account for seasonal and soil variations. These results do inform selection of tobacco strains that limit uptake of trace metals, particularly Cd.
Wallace, John; Nwosu, Bosah; Clarke, Mike
2012-01-01
Objective To review the barriers to the uptake of research evidence from systematic reviews by decision makers. Search strategy We searched 19 databases covering the full range of publication years, utilised three search engines and also personally contacted investigators. Reference lists of primary studies and related reviews were also consulted. Selection criteria Studies were included if they reported on the views and perceptions of decision makers on the uptake of evidence from systematic reviews, meta-analyses and the databases associated with them. All study designs, settings and decision makers were included. One investigator screened titles to identify candidate articles then two reviewers independently assessed the quality and the relevance of retrieved reports. Data extraction Two reviewers described the methods of included studies and extracted data that were summarised in tables and then analysed. Using a pre-established taxonomy, the barriers were organised into a framework according to their effect on knowledge, attitudes or behaviour. Results Of 1726 articles initially identified, we selected 27 unique published studies describing at least one barrier to the uptake of evidence from systematic reviews. These studies included a total of 25 surveys and 2 qualitative studies. Overall, the majority of participants (n=10 218) were physicians (64%). The most commonly investigated barriers were lack of use (14/25), lack of awareness (12/25), lack of access (11/25), lack of familiarity (7/25), lack of usefulness (7/25), lack of motivation (4/25) and external barriers (5/25). Conclusions This systematic review reveals that strategies to improve the uptake of evidence from reviews and meta-analyses will need to overcome a wide variety of obstacles. Our review describes the reasons why knowledge users, especially physicians, do not call on systematic reviews. This study can inform future approaches to enhancing systematic review uptake and also suggests potential avenues for future investigation. PMID:22942232
Design of ligand-targeted nanoparticles for enhanced cancer targeting
NASA Astrophysics Data System (ADS)
Stefanick, Jared F.
Ligand-targeted nanoparticles are increasingly used as drug delivery vehicles for cancer therapy, yet have not consistently produced successful clinical outcomes. Although these inconsistencies may arise from differences in disease models and target receptors, nanoparticle design parameters can significantly influence therapeutic efficacy. By employing a multifaceted synthetic strategy to prepare peptide-targeted nanoparticles with high purity, reproducibility, and precisely controlled stoichiometry of functionalities, this work evaluates the roles of polyethylene glycol (PEG) coating, ethylene glycol (EG) peptide-linker length, peptide hydrophilicity, peptide density, and nanoparticle size on tumor targeting in a systematic manner. These parameters were analyzed in multiple disease models by targeting human epidermal growth factor receptor 2 (HER2) in breast cancer and very late antigen-4 (VLA-4) in multiple myeloma to demonstrate the widespread applicability of this approach. By increasing the hydrophilicity of the targeting peptide sequence and simultaneously optimizing the EG peptide-linker length, the in vitro cellular uptake of targeted liposomes was significantly enhanced. Specifically, including a short oligolysine chain adjacent to the targeting peptide sequence effectively increased cellular uptake ~80-fold using an EG6 peptide-linker compared to ~10-fold using an EG45 linker. In vivo, targeted liposomes prepared in a traditional manner lacking the oligolysine chain demonstrated similar biodistribution and tumor uptake to non-targeted liposomes. However, by including the oligolysine chain, targeted liposomes using an EG45 linker significantly improved tumor uptake ~8-fold over non-targeted liposomes, while the use of an EG6 linker decreased tumor accumulation and uptake, owing to differences in cellular uptake kinetics, clearance mechanisms, and binding site barrier effects. To further improve tumor targeting and enhance the selectivity of targeted nanoparticles, a dual-receptor targeted approach was evaluated by targeting multiple cell surface receptors simultaneously. Liposomes functionalized with two distinct peptide antagonists to target VLA-4 and Leukocyte Peyer's Patch Adhesion Molecule-1 (LPAM-1) demonstrated synergistically enhanced cellular uptake by cells overexpressing both target receptors and negligible uptake by cells that do not simultaneously express both receptors, providing a strategy to improve selectivity over conventional single receptor-targeted designs. Taken together, this process of systematic optimization of well-defined nanoparticle drug delivery systems has the potential to improve cancer therapy for a broader patient population.
NASA Astrophysics Data System (ADS)
Soriano-Disla, J. M.; Speir, T. W.; Gómez, I.; Clucas, L. M.; McLaren, R. G.; Navarro-Pedreño, J.
2009-04-01
The accumulation of heavy metals in soil from different sources (atmospheric deposition, agricultural practices, urban-industrial activities, etc.) is of a great environmental concern because of metal persistence and toxicity. In this sense, there is a consensus in the literature that the estimation of the bioavailable heavy metals in soil is a preferable tool to determine potential risks from soil contamination than the total contents. However, controversy exists around the definition of an accurate and universal bioavailability estimator that is useful for soils with different properties, since many factors control this parameter. Thus, the main objective of this work was to compare the effectiveness of different methods to predict heavy metals plant uptake from soils with different properties and heavy metal contents. For the development of the present work, 30 contrasting soils from New Zealand and Spain were selected. Apart from the analysis of the basic soil properties, different methods to estimate heavy metal bioavailability were performed: total heavy metals, DTPA-extractable soil metals, diffusive gradient technique (DGT), and total heavy metals in soil solution. In these soils, a bioassay using wheat (Triticum aestivum) was carried out in a constant environment room for 25 days (12 hours photoperiod, day and night temperature of 20°C and 15°C respectively). After this time, the plants were divided in roots and shoots and heavy metal content was analysed in each part. Simple correlations were performed comparing the phytoavailable contents with the bioavailability estimated by the different methods. As expected, higher heavy metal concentrations were found in roots compared with shoots. Comparing the theoretical available heavy metals estimated by the different methods with the root and shoot uptake, better correlations were found with the root contents, thus, the discussion is based in the comparisons with the uptake by this part of the plant. According to the results, DTPA seemed to be the extractant that best estimated plant uptake (except for Cd, not estimated by any of the methods used). Similar good results were found using the total heavy metal contents, except for Ni and Zn. DGT also worked well, but its use for Pb is not advisable, since many values were below the detection level. The heavy metals in soil solution were less successful for predicting plant uptake. In general, the good results obtained for Cr and Zn seemed to be influenced by a few high values found in some soils. Taking this point into account, the soils with very high levels of these heavy metals were removed from the analysis and simple correlations were done again with the remaining soils having a lower range of these metals. For the case of Cr, four soils were removed (soils with ten times or more total Cr than the average of the others 26 samples) and three for the case of Zn (soils with two times or more total Zn than the average of the others 27 samples). After this, the correlations with total heavy metals and DTPA became very weak, being the heavy metals in soil solution for Cr, and DGT for Zn, the methods that best estimated the plant uptake of these metals. This work has proved the importance of careful revision of the data distribution, since good results can be influenced by just few samples with high values. In this sense and as a conclusion, DTPA and total heavy metals followed similar patterns and were good predictors of Cu and Pb uptake, and useful to distinguish between low and high values for Cr and Zn. On the other hand, DGT and heavy metals in soil solution showed a similar effectiveness to estimate Cu, Ni, Pb, Zn and Cr, but DGT presented, in general, higher correlation levels (except for Cr). Taking all of the results together, it seems that the most robust and efficient estimator for all metals studied (except Cd, impossible to predict with any of the methods used) was the DGT. Acknowledgements: Jose. M. Soriano-Disla gratefully acknowledges the Spanish Ministry of Innovation and Culture for a research fellowship (AP2005-0320).
Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline
2013-01-01
Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle–cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine–silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33–45 nm. Surface charge of carboxymethyl-substituted dextran-coated nano-particles ranged from −50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle–cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions. PMID:24470787
[Regional blood flow and bone uptake of methylene-diphosphonate-technetium-99m].
Vattimo, A; Martini, G; Pisani, M
1983-05-30
Sudeck's atrophy of the foot is an acute, patchy osteoporosis that, on bone scan, shows an increase in both bone blood flow and local bone uptake of bone-seeking radionuclides. The purpose of this study was to evaluate the relationship between bone uptake of 99mTc-MDP and local bone blood flow. In some patients with Sudeck's atrophy of one foot we measured local bone blood flow and bone uptake of 99mTc-MDP. External counting of radioactivity, with a count-rate of 1 second was performed for 60 minutes after i.v. injection of a known dose of 99mTc-MDP in some patients with Sudeck's atrophy of the foot. The regions of interest (ROI) were selected on the basis of a bone scan performed 24 hours earlier. We assumed that the data recorded during the first seconds (7-10) reflect local blood flow and the data at 60 minutes reflect the bone uptake. The ratio between the local blood flow in the involved and healthy foot was higher than the local bone uptake ratio. The ratio between bone uptake and local bone blood flow was higher in the normal foot than in the affected one. These results suggest that the bone avidity for bone-seeking radionuclides is lower in Sudeck's atrophy than in normal bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decho, A.W.; Luoma, S.N.
1994-12-31
Bivalves possess two major digestion pathways for processing food particles: a rapid ``intestinal`` pathway where digestion is largely extracellular; and a slower ``glandular`` pathway where digestion is largely intracellular. The slower glandular pathway often results in more efficient absorption of carbon but also more efficient uptake of certain metals (e.g. Cr associated with bacteria). In the bivalve Potamocorbula amurensis, large portions (> 90%) of bacteria are selectively routed to the glandular pathway. This results in efficient C uptake but also efficient uptake of associated Cr. The authors further determined if prolonged exposure to Cr-contaminated bacteria would result in high Crmore » uptake by animals or whether mechanisms exist to reduce Cr exposure and uptake. Bivalves were exposed to natural food + added bacteria (with or without added Cr) for a 6-day period, then pulse-chase experiments were conducted to quantify digestive processing and % absorption efficiencies (%AE) of bacterial Cr. Bivalves compensate at low (2--5 ug/g sed) Cr by reducing overall food ingestion, while digestive processing of food remains statistically similar to controls. At high Cr (200--500 ug/g sed) there are marked decreases in % bacteria processed by glandular digestion. This results in lower overall %AE of Cr. The results suggest that bivalves under natural conditions might balance efficient carbon sequestration against avoiding uptake of potentially toxic metals associated the food.« less
Cordero-Herrera, Isabel; Martín, María Angeles; Goya, Luis; Ramos, Sonia
2015-04-01
Oxidative stress plays a main role in the pathogenesis of type 2 diabetes mellitus. Cocoa and (-)-epicatechin (EC), a main cocoa flavanol, have been suggested to exert beneficial effects in type 2 diabetes mellitus because of their protective effects against oxidative stress and insulin-like properties. In this study, the protective effect of EC and a cocoa phenolic extract (CPE) against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser)-IRS-1 expression, and glucose uptake were evaluated. EC and CPE regulated antioxidant enzymes and activated extracellular-regulated kinase and Nrf2. EC and CPE pre-treatment prevented high-glucose-induced antioxidant defences and p-MAPKs, and maintained Nrf2 stimulation. The presence of selective MAPK inhibitors induced changes in redox status, glucose uptake, p-(Ser)- and total IRS-1 levels that were observed in CPE-mediated protection. EC and CPE recovered redox status of insulin-resistant HepG2 cells, suggesting that the functionality in EC- and CPE-treated cells was protected against high-glucose-induced oxidative insult. CPE beneficial effects on redox balance and insulin resistance were mediated by targeting MAPKs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of five passive sampling devices for monitoring of pesticides in water.
Ahrens, Lutz; Daneshvar, Atlasi; Lau, Anna E; Kreuger, Jenny
2015-07-31
Five different passive sampler devices were characterized under laboratory conditions for measurement of 124 legacy and current used pesticides in water. In addition, passive sampler derived time-weighted average (TWA) concentrations were compared to time-integrated active sampling in the field. Sampling rates (RS) and passive sampler-water partition coefficients (KPW) were calculated for individual pesticides using silicone rubber (SR), polar organic chemical integrative sampler (POCIS)-A, POCIS-B, Chemcatcher(®) SDB-RPS and Chemcatcher(®) C18. The median RS (Lday(-1)) decreased as follows: SR (0.86)>POCIS-B (0.22)>POCIS-A (0.18)>Chemcatcher(®) SDB-RPS (0.05)>Chemcatcher(®) C18 (0.02), while the median logKPW (Lkg(-1)) decreased as follows: POCIS-B (4.78)>POCIS-A (4.56)>Chemcatcher(®) SDB-RPS (3.17)>SR (3.14)>Chemcatcher(®)C18 (2.71). The uptake of the selected compounds depended on their physicochemical properties, i.e. SR showed a better uptake for more hydrophobic compounds (log octanol-water partition coefficient (KOW)>5.3), whereas POCIS-A, POCIS-B and Chemcatcher(®) SDB-RPS were more suitable for hydrophilic compounds (logKOW<0.70). Overall, the comparison between passive sampler and time-integrated active sampler concentrations showed a good agreement and the tested passive samplers were suitable for capturing compounds with a wide range of KOW's in water. Copyright © 2015 Elsevier B.V. All rights reserved.
Rancan, Fiorenza; Helmreich, Matthias; Mölich, Andreas; Jux, Norbert; Hirsch, Andreas; Röder, Beate; Witt, Christian; Böhm, Fritz
2005-07-01
The main challenge in searching for new photosensitizers is to improve their specificity for target cells to avoid toxicity towards normal cells. New modular drug delivery systems were proposed consisting of a multiplying unit with the property of carrying several drug moieties and an addressing unity with high selectivity for target cells. Following this concept, two new fullerene-bis-pyropheophorbide a derivatives were synthesized: a mono-(FP1) and a hexa-adduct (FHP1). The photophysical characterization of the compounds revealed significantly different parameters related to the number of addends at the fullerene core. In this study, the derivatives were tested with regard to their intracellular uptake and photosensitizing activity towards human leukemia T-lymphocytes (Jurkat cells) in comparison with the free sensitizer, pyropheophorbide a. The C(60)-hexa-adduct FHP1 resulted to have a significative phototoxic activity (58% dead cell, after a dose of 400 mJ/cm(2), 688 nm) while the mono-adduct FP1 had a very low phototoxicity and only at higher light doses. The photosensitizing activity of the fullerene hexa-adduct, FHP1, resulted to be lower than that of pyropheophorbide a. The lesser intracellular concentration reached by the C(60)-hexa-adduct FHP1 is probably the reason for its lower phototoxicity with respect to pyropheophorbide a.
Smith, Aaron L.; Freeman, Sara M.; Stehouwer, Jeffery S.; Inoue, Kiyoshi; Voll, Ronald J.; Young, Larry J.; Goodman, Mark M.
2013-01-01
Compounds 1–4 were synthesized and investigated for selectivity and potency for the oxytocin receptor (OTR) to determine their viability as radioactive ligands. Binding assays determined 1–4 to have high binding affinity for both the human and rodent OTR and also have high selectivity for the human OTR over human vasopressin V1a receptors (V1aR). Inadequate selectivity for OTR over V1aR was found for rodent receptors in all four compounds. The radioactive (C-11, F-18, and I-125) derivatives of 1–4 were synthesized and investigated for use as autoradiography and positron emission tomography (PET) ligands. Receptor autoradiography performed with [125I]1 and [125I]2 on rodent brain slices provided the first small molecule radioligand images of the OTR and V1aR. Biodistribution studies determined [125I]1 and [125I]2 were adequate for in vivo peripheral investigations, but not for central investigations due to low uptake within the brain. A biodistribution study with [18F]3 suggested brain uptake occurred slowly over time. PET imaging studies with [18F]3 and [11C]4 using a rat model provided insufficient uptake in the brain over a 90 and 45 min scan times respectively to merit further investigations in non-human primates. PMID:22425346
Blomeyer, Christoph A; Bazil, Jason N; Stowe, David F; Dash, Ranjan K; Camara, Amadou K S
2016-06-01
The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.
NASA Astrophysics Data System (ADS)
Shenker, Moshe; Einhoren, Hana
2016-04-01
Wastewater treatment, whether for water reusing or for releasing into the environment, results in sewage sludge rich in organic matter and nutrients. If free of pathogens and pollutants, this waste material is a widely used as soil amendment and source of valuable nutrients for agronomic use. Nevertheless, its P/N ratio largely exceeds plant P/N demand. Limiting its application rates according to the P demand of crops will largely limit its application rates and its beneficial effect as a soil amendment and as a source for other nutrients. An alternative approach, in which P is stabilized before application, was evaluated in this study. Anaerobically digested fresh sewage sludge (FSS) was stabilized by aluminum sulfate, ferrous sulfate, and calcium oxide (CaO), as well as by composting with shredded woody yard-waste to produce Al-FSS, Fe-FSS, CaO-FSS, and FSS-compost, respectively. Defined organic-P sources (glucose-1-phosphate and inositol-hexa-phosphate) and a P fertilizer (KH2PO4) were included as well and a control with no P amendments was included as a reference. Each material was applied at a fixed P load of 50 mg kg-1 to each of three soils and P speciation and plants P uptake were tested along 112 days of incubation at moderate (near field capacity) water content. Tomato seedlings were used for the P uptake test. The large set of data was used to evaluate the effect of each treatment on P reactions and mechanisms of retention in the tested soils and to correlate various P indices to P availability for plants. Plant P uptake was highly correlated to Olsen-P as well as to water-soluble inorganic-P, but not to water-soluble organic-P and not to total P or other experimentally-defined stable P fractions. We conclude that the P stabilization in the sludge will allow beneficial and sustainable use of sewage sludge as a soil amendment and source of nutrients, but the stabilization method should be selected in accordance with the target soil properties.
Allan, A M; Spuhler, K P; Harris, R A
1988-03-01
We demonstrated recently that low concentrations of ethanol enhanced the muscimol-stimulated chloride influx in cerebellar membranes from long sleep (LS-ethanol sensitive) mice, but had no effect on membranes from short sleep (SS-ethanol resistant) mice. The LS and SS were selected from a heterogeneous stock (HS) of mice for differential sensitivity to the hypnotic effects of ethanol as measured by the duration of the loss of the righting reflex (sleep time). In the present study, we tested 100 HS for ethanol sleep time. The mice with the shortest sleep time (HS-SS) and the mice with the longest sleep time (HS-LS) were selected and tested for the effect of ethanol and muscimol on chloride flux in cerebellum. The effects of ethanol and muscimol on both cerebellar and cortical chloride flux were also examined in rats from the 7th generation selected for differential sensitivity to the hypnotic effects of ethanol (high acute ethanol sensitive rats-HAS and low acute ethanol sensitive rats-LAS). Low concentrations of ethanol (10-30 mM) potentiated muscimol stimulation of 36Cl- uptake in both cortical and cerebellar membranes prepared from ethanol-sensitive animals (HS-LS and HAS). None of the ethanol concentrations tested altered stimulated chloride uptake in ethanol-resistant animals (HS-SS and LAS). No differences in muscimol stimulation of chloride uptake were observed between the pairs of selected lines. These findings strongly suggest that genetic differences in ethanol hypnosis are related to differences in the sensitivity of gamma-aminobutyric acid-operated chloride channels to ethanol.
Kelvin, Elizabeth A; George, Gavin; Mwai, Eva; Nyaga, Eston; Mantell, Joanne E; Romo, Matthew L; Odhiambo, Jacob O; Starbuck, Lila; Govender, Kaymarlin
2018-01-01
We conducted a randomized controlled trial among 305 truck drivers from two North Star Alliance roadside wellness clinics in Kenya to see if offering HIV testing choices would increase HIV testing uptake. Participants were randomized to be offered (1) a provider-administered rapid blood (finger-prick) HIV test (i.e., standard of care [SOC]) or (2) a Choice between SOC or a self-administered oral rapid HIV test with provider supervision in the clinic. Participants in the Choice arm who refused HIV testing in the clinic were offered a test kit for home use with phone-based posttest counseling. We compared HIV test uptake using the Mantel Haenszel odds ratio (OR) adjusting for clinic. Those in the Choice arm had higher odds of HIV test uptake than those in the SOC arm (OR = 1.5), but the difference was not statistically significant (p = 0.189). When adding the option to take an HIV test kit for home use, the Choice arm had significantly greater odds of testing uptake (OR = 2.8, p = 0.002). Of those in the Choice arm who tested, 26.9% selected the SOC test, 64.6% chose supervised self-testing in the clinic, and 8.5% took a test kit for home use. Participants varied in the HIV test they selected when given choices. Importantly, when participants who refused HIV testing in the clinic were offered a test kit for home use, an additional 8.5% tested. Offering truck drivers a variety of HIV testing choices may increase HIV testing uptake in this key population.
Impa, Somayanda M.; Morete, Mark J.; Ismail, Abdelbagi M.; Schulin, Rainer; Johnson-Beebout, Sarah E.
2013-01-01
Zn deficiency is a widespread problem in rice (Oryza sativa L.) grown under flooded conditions, limiting growth and grain Zn accumulation. Genotypes with Zn deficiency tolerance or high grain Zn have been identified in breeding programmes, but little is known about the physiological mechanisms conferring these traits. A protocol was developed for growing rice to maturity in agar nutrient solution (ANS), with optimum Zn-sufficient growth achieved at 1.5 μM ZnSO4.7H2O. The redox potential in ANS showed a decrease from +350 mV to −200 mV, mimicking the reduced conditions of flooded paddy soils. In subsequent experiments, rice genotypes contrasting for Zn deficiency tolerance and grain Zn were grown in ANS with sufficient and deficient Zn to assess differences in root uptake of Zn, root-to-shoot Zn translocation, and in the predominant sources of Zn accumulation in the grain. Zn efficiency of a genotype was highly influenced by root-to-shoot translocation of Zn and total Zn uptake. Translocation of Zn from root to shoot was more limiting at later growth stages than at the vegetative stage. Under Zn-sufficient conditions, continued root uptake during the grain-filling stage was the predominant source of grain Zn loading in rice, whereas, under Zn-deficient conditions, some genotypes demonstrated remobilization of Zn from shoot and root to grain in addition to root uptake. Understanding the mechanisms of grain Zn loading in rice is crucial in selecting high grain Zn donors for target-specific breeding and also to establish fertilizer and water management strategies for achieving high grain Zn. PMID:23698631
Zalesny, Ronald S; Bauer, Edmund O
2007-01-01
There is a need for the identification and selection of specific tree genotypes that can sequester elements from contaminated soils, with elevated rates of uptake. We irrigated Populus (DN17, DN182, DN34, NM2, NM6) and Salix (94003, 94012, S287, S566, SX61) genotypes planted in large soil-filled containers with landfill leachate or municipal water and tested for differences in inorganic element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, Na, and Cl) in the leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Genotype-specific uptake existed. For genera, tissue concentrations exhibited four responses. First, Populus had the greatest uptake of P, K, S, Cu, and Cl. Second, Salix exhibited the greatest uptake of Zn, B, Fe, and Al. Third, Salix had greater concentrations of Ca and Mg in leaves, while Populus had greater concentrations in stems and roots. Fourth, Populus had greater concentrations of Mn and Na in leaves and stems, while Salix had greater concentrations in roots. Populus deltoides x P. nigra clones exhibited better overall phytoremediation than the P. nigra x P. maximowiczii genotypes tested. Phytoremediation for S. purpurea clones 94003 and 94012 was generally less than for other Salix genotypes. Overall, concentrations of elements in the leaves, stems, and roots corroborated those in the plant-sciences literature. Uptake was dependent upon the specific genotype for most elements. Our results corroborated the need for further testing and selecting of specific clones for various phytoremediation needs, while providing a baseline for future researchers developing additional studies and resource managers conducting on-site remediation.
Schultz, Melissa M.; Painter, Meghan M.; Bartell, Stephen E.; Logue, Amanda; Furlong, Edward T.; Werner, Stephen L.; Schoenfuss, Heiko L.
2011-01-01
Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimeplwles promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305 ng/L and 1104 ng/L) and SER (5.2 ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28 ng/L induced vitellogenin in male fish—a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies.
Schultz, M.M.; Painter, M.M.; Bartell, S.E.; Logue, A.; Furlong, E.T.; Werner, S.L.; Schoenfuss, H.L.
2011-01-01
Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimephales promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305. ng/L and 1104. ng/L) and SER (5.2. ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28. ng/L induced vitellogenin in male fish-a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies. ?? 2011 Elsevier B.V.
Saleh, Muhammad; Tiwari, Jitendra N; Kemp, K Christain; Yousuf, Muhammad; Kim, Kwang S
2013-05-21
Adsorption with solid sorbents is considered to be one of the most promising methods for the capture of carbon dioxide (CO₂) from power plant flue gases. In this study, microporous carbon materials used for CO₂ capture were synthesized by the chemical activation of polyindole nanofibers (PIF) at temperatures from 500 to 800 °C using KOH, which resulted in nitrogen (N)-doped carbon materials. The N-doped carbon materials were found to be microporous with an optimal adsorption pore size for CO₂ of 0.6 nm and a maximum (Brunauer-Emmett-Teller) BET surface area of 1185 m(2) g(-1). The PIF activated at 600 °C (PIF6) has a surface area of 527 m(2) g(-1) and a maximum CO₂ storage capacity of 3.2 mmol g(-1) at 25 °C and 1 bar. This high CO₂ uptake is attributed to its highly microporous character and optimum N content. Additionally, PIF6 material displays a high CO₂ uptake at low pressure (1.81 mmol g(-1) at 0.2 bar and 25 °C), which is the best low pressure CO₂ uptake reported for carbon-based materials. The adsorption capacity of this material remained remarkably stable even after 10 cycles. The isosteric heat of adsorption was calculated to be in the range of 42.7-24.1 kJ mol(-1). Besides the excellent CO₂ uptake and stability, PIF6 also exhibits high selectivity values for CO₂ over N₂, CH₄, and H₂ of 58.9, 12.3, and 101.1 at 25 °C, respectively, and these values are significantly higher than reported values.
NASA Astrophysics Data System (ADS)
Zhang, W.; Liu, C. H.; Bhalsod, G.; Zhang, Y.; Chuang, Y. H.; Boyd, S. A.; Teppen, B. J.; Tiedje, J. M.; Li, H.
2015-12-01
Pharmaceuticals are contaminants of emerging concern frequently detected in soil and water environments, raising serious questions on their potential impact on human and ecosystem health. Overuse and environmental release of antibiotics (i.e., a group of pharmaceuticals extensively used in human medicine and animal agriculture) pose enormous threats to the health of human, animal, and the environment, due to proliferation of antibiotic resistant bacteria. Recently, we have examined interactions of pharmaceuticals with soil geosorbents, bacteria, and vegetable crops in order to elucidate pathways of sorption, uptake, and translocation of pharmaceuticals across the multiple interfaces in soils. Sorption of pharmaceuticals by biochars was studied to assess the potential of biochar soil amendment for reducing the transport and bioavailability of antibiotics. Our preliminary results show that carbonaceous materials such as biochars and activated carbon had strong sorption capacities for antibiotics, and consequently decreased the uptake and antibiotic resistance gene expression by an Escherichia coli bioreporter. Thus, biochar soil amendment showed the potential for reducing selection pressure on antibiotic resistant bacteria. Additionally, since consumption of pharmaceutical-tainted food is a direct exposure pathway for humans, it is important to assess the uptake and accumulation of pharmaceuticals in food crops grown in contaminated soils or irrigated with reclaimed water. Therefore, we have investigated the uptake and accumulations of pharmaceuticals in greenhouse-grown lettuce under contrasting irrigation practices (i.e., overhead or surface irrigations). Preliminary results indicate that greater pharmaceutical concentrations were measured in overhead irrigated lettuce than in surface irrigated lettuce. This could have important implications when selecting irrigation scheme to use the reclaimed water for crop irrigation. In summary, proper soil and water management is needed to minimize the transfer of pharmaceuticals from soil and water to biota.
Estradiol-induced regulation of GLUT4 in 3T3-L1 cells: involvement of ESR1 and AKT activation.
Campello, Raquel S; Fátima, Luciana A; Barreto-Andrade, João Nilton; Lucas, Thais F; Mori, Rosana C; Porto, Catarina S; Machado, Ubiratan F
2017-10-01
Impaired insulin-stimulated glucose uptake involves reduced expression of the GLUT4 (solute carrier family 2 facilitated glucose transporter member 4, SLC2A4 gene). 17β-estradiol (E 2 ) modulates SLC2A4 /GLUT4 expression, but the involved mechanisms are unclear. Although E 2 exerts biological effects by binding to estrogen receptors 1/2 (ESR1/2), which are nuclear transcriptional factors; extranuclear effects have also been proposed. We hypothesize that E 2 regulates GLUT4 through an extranuclear ESR1 mechanism. Thus, we investigated the effects of E 2 upon (1) subcellular distribution of ESRs and the proto-oncogene tyrosine-protein kinases (SRC) involvement; (2) serine/threonine-protein kinase (AKT) activation; (3) Slc2a4 /GLUT4 expression and (4) GLUT4 subcellular distribution and glucose uptake in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were cultivated or not with E 2 for 24 h, and additionally treated or not with ESR1-selective agonist (PPT), ESR1-selective antagonist (MPP) or selective SRC inhibitor (PP2). Subcellular distribution of ESR1, ESR2 and GLUT4 was analyzed by immunocytochemistry; Slc2a4 mRNA and GLUT4 were quantified by qPCR and Western blotting, respectively; plasma membrane GLUT4 translocation and glucose uptake were analyzed under insulin stimulus for 20 min or not. E 2 induced (1) translocation of ESR1, but not of ESR2, from nucleus to plasma membrane and AKT phosphorylation, effects mimicked by PPT and blocked by MPP and PP2; (2) increased Slc2a4 /GLUT4 expression and (3) increased insulin-stimulated GLUT4 translocation and glucose uptake. In conclusion, E 2 treatment promoted a SRC-mediated nucleus-plasma membrane shuttle of ESR1, and increased AKT phosphorylation, Slc2a4 /GLUT4 expression and plasma membrane GLUT4 translocation; consequently, improving insulin-stimulated glucose uptake. These results unravel mechanisms through which estrogen improves insulin sensitivity. © 2017 Society for Endocrinology.
Makama, Sunday; Kloet, Samantha K; Piella, Jordi; van den Berg, Hans; de Ruijter, Norbert C A; Puntes, Victor F; Rietjens, Ivonne M C M; van den Brink, Nico W
2018-03-01
In literature, varying and sometimes conflicting effects of physicochemical properties of nanoparticles (NPs) are reported on their uptake and effects in organisms. To address this, small- and medium-sized (20 and 50 nm) silver nanoparticles (AgNPs) with specified different surface coating/charges were synthesized and used to systematically assess effects of NP-properties on their uptake and effects in vitro. Silver nanoparticles were fully characterized for charge and size distribution in both water and test media. Macrophage cells (RAW 264.7) were exposed to these AgNPs at different concentrations (0-200 µg/ml). Uptake dynamics, cell viability, induction of tumor necrosis factor (TNF)-α, ATP production, and reactive oxygen species (ROS) generation were assessed. Microscopic imaging of living exposed cells showed rapid uptake and subcellular cytoplasmic accumulation of AgNPs. Exposure to the tested AgNPs resulted in reduced overall viability. Influence of both size and surface coating (charge) was demonstrated, with the 20-nm-sized AgNPs and bovine serum albumin (BSA)-coated (negatively charged) AgNPs being slightly more toxic. On specific mechanisms of toxicity (TNF-α and ROS production) however, the AgNPs differed to a larger extent. The highest induction of TNF-α was found in cells exposed to the negatively charged AgNP_BSA, both sizes (80× higher than control). Reactive oxygen species induction was only significant with the 20 nm positively charged AgNP_Chit.
Hu, Weiwei; Fang, Lei; Hua, Wuyang; Gou, Shaohua
2017-10-01
A Pt(IV) prodrug (2) composed of cancer-targeting biotin and nonsteroidal anti-inflammatory drug indomethacin in the axial positions of the six-coordinated octahedral geometry derived from cisplatin was developed, which could be highly accumulated in cancer cells more than normal ones and activated by endogenous reducing molecules to release cisplatin and indomethacin moieties simultaneously to inhibit tumor progression synergistically. In vitro assays revealed that 2 exhibited significantly selective inhibition to the tested cancer cell lines and sensitivity to cisplatin resistant cancer cells. Moreover, 2 presented cyclooxygenases inhibition properties to reduce tumor-associated inflammation, reduced the invasiveness of the highly aggressive PC-3 cells, and disrupted capillary-like tube formation in EA.hy926 cells. In all, this study offers a new strategy to enhance sensitivity and reduce toxicity of cisplatin. Copyright © 2017 Elsevier Inc. All rights reserved.
Biocompatible inorganic nanoparticles for [18F]-fluoride binding with applications in PET imaging
Jauregui-Osoro, Maite; Williamson, Peter A.; Glaria, Arnaud; Sunassee, Kavitha; Charoenphun, Putthiporn; Green, Mark A.; Mullen, Gregory E. D.; Blower, Philip J.
2014-01-01
A wide selection of insoluble nanoparticulate metal salts was screened for avid binding of [18F]-fluoride. Hydroxyapatite and aluminium hydroxide nanoparticles showed particularly avid and stable binding of [18F]-fluoride in various biological media. The in vivo behaviour of the [18F]-labelled hydroxyapatite and aluminium hydroxide particles was determined by PET-CT imaging in mice. [18F]-labelled hydroxyapatite was stable in circulation and when trapped in various tissues (lung embolisation, subcutaneous and intramuscular), but accumulation in liver via reticuloendothelial clearance was followed by gradual degradation and release of [18F]-fluoride (over a period of 4 h) which accumulated in bone. [18F]-labelled aluminium hydroxide was also cleared to liver and spleen but degraded slightly even without liver uptake (subcutanenous and intramuscular). Both materials have properties that are an attractive basis for the design of molecular targeted PET imaging agents labelled with 18F. PMID:21394352
Wu, Bo; Lu, Shu-Ting; Deng, Kai; Yu, Hui; Cui, Can; Zhang, Yang; Wu, Ming; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen
2017-01-01
In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP) for tumor-targeted magnetic resonance imaging and therapy. Gd-FLPNPs can simultaneously accomplish diagnostic imaging, and specific targeting and controlled release of doxorubicin (DOX). They exhibit good monodispersity, excellent size stability, and a well-defined core-shell structure. Paramagnetic nanoparticles based on gadolinium-diethylenetriaminepentaacetic acid-bis-cetylamine have paramagnetic properties with an approximately two-fold enhancement in the longitudinal relaxivity compared to clinical used Magnevist. For targeted and reduction-sensitive drug delivery, Gd-FLPNPs released DOX faster and enhanced cell uptake in vitro, and exhibited better antitumor effect both in vitro and in vivo.
Galhoum, Ahmed A.; Mafhouz, Mohammad G.; Abdel-Rehem, Sayed T.; Gomaa, Nabawia A.; Atia, Asem A.; Vincent, Thierry; Guibal, Eric
2015-01-01
Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea. PMID:28347004
Kulén, Martina; Lindgren, Marie; Hansen, Sabine; Cairns, Andrew G; Grundström, Christin; Begum, Afshan; van der Lingen, Ingeborg; Brännström, Kristoffer; Hall, Michael; Sauer, Uwe H; Johansson, Jörgen; Sauer-Eriksson, A Elisabeth; Almqvist, Fredrik
2018-05-10
Listeria monocytogenes is a bacterial pathogen that controls much of its virulence through the transcriptional regulator PrfA. In this study, we describe structure-guided design and synthesis of a set of PrfA inhibitors based on ring-fused 2-pyridone heterocycles. Our most effective compound decreased virulence factor expression, reduced bacterial uptake into eukaryotic cells, and improved survival of chicken embryos infected with L. monocytogenes compared to previously identified compounds. Crystal structures identified an intraprotein "tunnel" as the main inhibitor binding site (A I ), where the compounds participate in an extensive hydrophobic network that restricts the protein's ability to form functional DNA-binding helix-turn-helix (HTH) motifs. Our studies also revealed a hitherto unsuspected structural plasticity of the HTH motif. In conclusion, we have designed 2-pyridone analogues that function as site-A I selective PrfA inhibitors with potent antivirulence properties.
Nakata, Y; Kusaka, Y; Yajima, H; Segawa, T
1981-12-01
We previously reported that nerve terminals and glial cells lack an active uptake system capable of terminating transmitter action of substance P (SP). In the present study, we demonstrated the existence of an active uptake system for SP carboxy-terminal heptapeptide, (5-11)SP. When the slices from either rat brain or rabbit spinal cord were incubated with [3H](5-11)SP, the uptake of (5-11)SP into slices was observed. The uptake system has the properties of an active transport mechanism: it is dependent on temperature and sensitive to hypoosmotic treatment and is inhibited by ouabain and dinitrophenol (DNP). In the brain, (5-11)SP was accumulated by means of a high-affinity and a low-affinity uptake system. The Km and the Vmax values for the high-affinity system were 4.20 x 10(-8) M and 7.59 fmol/10 mg wet weight/min, respectively, whereas these values for the low-affinity system were 1.00 x 10(-6) M and 100 fmol/10 mg wet weight/min, respectively. In the spinal cord, there was only one uptake system, with a Km value of 2.16 x 10(-7) M and Vmax value of 26.2 fmol/10 mg wet weight/min. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP before or after acting as a neurotransmitter, which is in turn accumulated into nerve terminals. Therefore, the uptake system may represent a possible mechanism for the inactivation of SP.
Mohankumar, Suresh K; O'Shea, Tim; McFarlane, James R
2012-05-07
Pterocarpus marsupium Roxb. (PM) is an Ayurvedic traditional medicine well known for its antidiabetic potential. To fractionate the antidiabetic constituent(s) of the aqueous of extract of PM hardwood (PME). Bio-assay methods including, insulin secretion from mouse pancreas and glucose uptake by mouse skeletal muscle, were used to determine and fractionate the antidiabetic activity of PME. Results obtained from the in vitro experiments were then verified by examining the effect of PME on glucose clearance in normoglycemic, non-diabetic sheep in vivo. Exposure of mouse pancreatic and muscle tissues to PME stimulated the insulin secretion and glucose uptake, respectively, in a concentration-dependent manner. PME-mediated muscle glucose uptake was not potentiated in the presence of insulin indicating that PME acts via pathways which are utilized by insulin. Bio-assay-guided fractionation of PME yielded a high molecular weight fraction which had potent antidiabetic properties in vitro, and in in vivo. Our findings, we believe for the first time, provide novel insights for the antidiabetic constituents of PM and demonstrate that a high molecular weight constituent(s) of PM has potent insulinotrophic and insulin-like properties. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Antidiabetic effects of Justicia spicigera Schltdl (Acanthaceae).
Ortiz-Andrade, Rolffy; Cabañas-Wuan, Angel; Arana-Argáez, Víctor E; Alonso-Castro, Angel Josabad; Zapata-Bustos, Rocio; Salazar-Olivo, Luis A; Domínguez, Fabiola; Chávez, Marco; Carranza-Álvarez, Candy; García-Carrancá, Alejandro
2012-09-28
Justicia spicigera is a plant species used for the Teenak (Huesteca Potosina) and Mayan (Yucatan peninsula) indigenous for the empirical treatment of diabetes, infections and as stimulant. To evaluate the cytotoxicity, antioxidant and antidiabetic properties of J. spicigera. The effects of ethanolic extracts of J. spicigera (JSE) on the glucose uptake in insulin-sensitive and insulin-resistant murine 3T3-F442A and human subcutaneous adipocytes was evaluated. The antioxidant activities of the extract of JSE was determined by ABTS and DPPH methods. Additionally, it was evaluated the antidiabetic properties of JSE on T2DM model. JSE stimulated 2-NBDG uptake by insulin-sensitive and insulin-resistant human and murine adipocytes in a concentration-dependent manner with higher potency than rosiglitazone 1mM. JSE showed antioxidant effects in vitro and induced glucose lowering effects in normoglycemic and STZ-induced diabetic rats. The antidiabetic effects of administration of J. spicigera are related to the stimulation of glucose uptake in both insulin-sensitive and insulin-resistant murine and human adipocytes and this evidence justify its empirical use in Traditional Medicine. In addition, J. spicigera exerts glucose lowering effects in normoglycemic and STZ-induced diabetic rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Hseu, Zeng-Yei; Zehetner, Franz
2014-01-01
This study compared the extractability of Cd, Cu, Ni, Pb, and Zn by 8 extraction protocols for 22 representative rural soils in Taiwan and correlated the extractable amounts of the metals with their uptake by Chinese cabbage for developing an empirical model to predict metal phytoavailability based on soil properties. Chemical agents in these protocols included dilute acids, neutral salts, and chelating agents, in addition to water and the Rhizon soil solution sampler. The highest concentrations of extractable metals were observed in the HCl extraction and the lowest in the Rhizon sampling method. The linear correlation coefficients between extractable metals in soil pools and metals in shoots were higher than those in roots. Correlations between extractable metal concentrations and soil properties were variable; soil pH, clay content, total metal content, and extractable metal concentration were considered together to simulate their combined effects on crop uptake by an empirical model. This combination improved the correlations to different extents for different extraction methods, particularly for Pb, for which the extractable amounts with any extraction protocol did not correlate with crop uptake by simple correlation analysis. PMID:25295297
Parallel pathways of potassium transport in the alga Hydrodictyon reticulatum. Effects of calcium.
Nespůrková, L; Rybová, R; Janácek, K
1987-06-01
Inflow of potassium ions into the alga Hydrodictyon reticulatum is reduced in the dark, the reduction being accompanied by a change in the selectivity pattern with respect to alkali metal ions, observed in competition experiments and evaluated by the gnostic analysis as described by Kovanic. This suggests that in the light a special mechanism of potassium uptake with a characteristic selectivity is switched on. This mechanism can be also suppressed by too high (2 mmol/l) or too low (EGTA) concentration of calcium ions in the medium. Since the same applies to the light-induced alkalinization of the algal surroundings it seems that the light-induced potassium uptake is related to the light-induced alkalinization, e.g., via exchange of external potassium cations for intracellular protons.
Yoles-Frenkel, Michal; Kahan, Anat; Ben-Shaul, Yoram
2018-05-23
The vomeronasal system (VNS) is a major vertebrate chemosensory system that functions in parallel to the main olfactory system (MOS). Despite many similarities, the two systems dramatically differ in the temporal domain. While MOS responses are governed by breathing and follow a subsecond temporal scale, VNS responses are uncoupled from breathing and evolve over seconds. This suggests that the contribution of response dynamics to stimulus information will differ between these systems. While temporal dynamics in the MOS are widely investigated, similar analyses in the accessory olfactory bulb (AOB) are lacking. Here, we have addressed this issue using controlled stimulus delivery to the vomeronasal organ of male and female mice. We first analyzed the temporal properties of AOB projection neurons and demonstrated that neurons display prolonged, variable, and neuron-specific characteristics. We then analyzed various decoding schemes using AOB population responses. We showed that compared with the simplest scheme (i.e., integration of spike counts over the entire response period), the division of this period into smaller temporal bins actually yields poorer decoding accuracy. However, optimal classification accuracy can be achieved well before the end of the response period by integrating spike counts within temporally defined windows. Since VNS stimulus uptake is variable, we analyzed decoding using limited information about stimulus uptake time, and showed that with enough neurons, such time-invariant decoding is feasible. Finally, we conducted simulations that demonstrated that, unlike the main olfactory bulb, the temporal features of AOB neurons disfavor decoding with high temporal accuracy, and, rather, support decoding without precise knowledge of stimulus uptake time. SIGNIFICANCE STATEMENT A key goal in sensory system research is to identify which metrics of neuronal activity are relevant for decoding stimulus features. Here, we describe the first systematic analysis of temporal coding in the vomeronasal system (VNS), a chemosensory system devoted to socially relevant cues. Compared with the main olfactory system, timescales of VNS function are inherently slower and variable. Using various analyses of real and simulated data, we show that the consideration of response times relative to stimulus uptake can aid the decoding of stimulus information from neuronal activity. However, response properties of accessory olfactory bulb neurons favor decoding schemes that do not rely on the precise timing of stimulus uptake. Such schemes are consistent with the variable nature of VNS stimulus uptake. Copyright © 2018 the authors 0270-6474/18/384957-20$15.00/0.
Sarkar, Swarbhanu; Bhatt, Nikunj; Ha, Yeong Su; Huynh, Phuong Tu; Soni, Nisarg; Lee, Woonghee; Lee, Yong Jin; Kim, Jung Young; Pandya, Darpan N; An, Gwang Il; Lee, Kyo Chul; Chang, Yongmin; Yoo, Jeongsoo
2018-01-11
Although the importance of bifunctional chelators (BFCs) is well recognized, the chemophysical parameters of chelators that govern the biological behavior of the corresponding bioconjugates have not been clearly elucidated. Here, five BFCs closely related in structure were conjugated with a cyclic RGD peptide and radiolabeled with Cu-64 ions. Various biophysical and chemical properties of the Cu(II) complexes were analyzed with the aim of identifying correlations between individual factors and the biological behavior of the conjugates. Tumor uptake and body clearance of the 64 Cu-labeled bioconjugates were directly compared by animal PET imaging in animal models, which was further supported by biodistribution studies. Conjugates containing propylene cross-bridged chelators showed higher tumor uptake, while a closely related ethylene cross-bridged analogue exhibited rapid body clearance. High in vivo stability of the copper-chelator complex was strongly correlated with high tumor uptake, while the overall lipophilicity of the bioconjugate affected both tumor uptake and body clearance.
NASA Astrophysics Data System (ADS)
Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong
2016-02-01
Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle ‘stealth’. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications.
Biosorption of cadmium by biomass of marine algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holan, Z.R.; Volesky, B.; Prasetyo, I.
Biomass of nonliving, dried brown marine algae Sargassum natans, Fucus vesiculosus, and Ascophyllum nodosum demonstrated high equilibrium uptake of cadmium from aqueous solutions. The metal uptake by these materials was quantitatively evaluated using sorption isotherms. Biomass of A. nodosum accumulated the highest amount of cadmium exceeding 100 mg Cd[sup 2+]/g (at the residual concentration of 100 mg Cd/L and pH 3.5), outperforming a commercial ion exchange resin DUOLITE GT-73. A new biosorbent material based on A. nodosum biomass was obtained by reinforcing the algal biomass by formaldehyde cross-linking. The prepared sorbent possessed good mechanical properties, chemical stability of the cellmore » wall polysaccharides and low swelling volume. Desorption of deposited cadmium with 0.1-0.5 M HCl resulted in no changes of the biosorbent metal uptake capacity through five subsequent adsorption/desorption cycles. There was no damage to the biosorbent which retained its macroscopic appearance and performance in repeated metal uptake/elution cycles.« less
Perry, Steve F.
2016-01-01
The effects of acute exposure to acidic water on Na+ and Cl− homeostasis, and the mechanisms underlying their compensatory regulation, were investigated in the larval zebrafish Danio rerio. Exposure to acidic water (pH 4.0; control pH 7.6) for 2 h significantly reduced Na+ uptake and whole body Na+ content. Nevertheless, the capacity for Na+ uptake was substantially increased in fish preexposed to acidic water but measured in control water. Based on the accumulation of the Na+-selective dye, Sodium Green, two ionocyte subtypes exhibited intracellular Na+ enrichment after preexposure to acidic water: H+-ATPase rich (HR) cells, which coexpress the Na+/H+ exchanger isoform 3b (NHE3b), and a non-HR cell population. In fish experiencing Na+-Cl− cotransporter (NCC) knockdown, we observed no Sodium Green accumulation in the latter cell type, suggesting the non-HR cells were NCC cells. Elimination of NHE3b-expressing HR cells did not prevent the increased Na+ uptake following acid exposure. On the other hand, the increased Na+ uptake was abolished when the acidic water was enriched with Na+ and Cl−, but not with Na+ only, indicating that the elevated Na+ uptake after acid exposure was associated with the compensatory regulation of Cl−. Further examinations demonstrated that acute acid exposure also reduced whole body Cl− levels and increased the capacity for Cl− uptake. Moreover, knockdown of NCC prevented the increased uptake of both Na+ and Cl− after exposure to acidic water. Together, the results of the present study revealed a novel role of NCC in the compensatory regulation of Na+ and Cl− uptake following acute acidosis. PMID:27784676
Rifaximin suppresses background intestinal 18F-FDG uptake on PET/CT scans.
Franquet, Elisa; Palmer, Mathew R; Gifford, Anne E; Selen, Daryl J; Chen, Yih-Chieh S; Sedora-Roman, Neda; Joyce, Robin M; Kolodny, Gerald M; Moss, Alan C
2014-10-01
Identification of cancer or inflammatory bowel disease in the intestinal tract by PET/computed tomography (CT) imaging can be hampered by physiological uptake of F-fluorodeoxyglucose (F-FDG) in the normal colon. Previous work has localized this F-FDG uptake to the intestinal lumen, predominantly occupied by bacteria. We sought to determine whether pretreatment with an antibiotic could reduce F-FDG uptake in the healthy colon. Thirty patients undergoing restaging PET/CT for nongastrointestinal lymphoma were randomly selected to receive rifaximin 550 mg twice daily for 2 days before their scan (post-rifaximin). Their PET/CT images were compared with those from their prior study (pre-rifaximin). Cecal maximum standard uptake value (SUVmax) and overall colonic F-FDG uptake were compared between scans. All PET/CT images were blindly scored by a radiologist. The same comparison of sequential scans was also undertaken in 30 patients who did not receive antibiotics. Thirty post-rifaximin scans were compared with 30 pre-rifaximin scans in the same patients. SUVmax in the cecum was significantly lower in the patient's post-rifaximin scans than in their pre-rifaximin scans (P=0.002). The percentage of scans with greater than grade 1 colonic F-FDG uptake was significantly lower in the post-rifaximin scans than in the pre-rifaximin scans (P<0.05). In contrast, there was no significant difference in the paired sequential scans from control patients, nor a reduction in the percentage of scans with greater than grade 1 colonic F-FDG uptake. This pilot study shows that treatment with rifaximin for 2 days before PET/CT scanning can significantly reduce physiological F-FDG uptake in the normal colonic lumen.
Interventions targeted at women to encourage the uptake of cervical screening
Everett, Thomas; Bryant, Andrew; Griffin, Michelle F; Martin-Hirsch, Pierre PL; Forbes, Carol A; Jepson, Ruth G
2014-01-01
Background World-wide, cervical cancer is the second most common cancer in women. Increasing the uptake of screening, alongside increasing informed choice is of great importance in controlling this disease through prevention and early detection. Objectives To assess the effectiveness of interventions aimed at women, to increase the uptake, including informed uptake, of cervical cancer screening. Search methods We searched the Cochrane Gynaecological Cancer Group Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), Issue 1, 2009. MEDLINE, EMBASE and LILACS databases up to March 2009. We also searched registers of clinical trials, abstracts of scientific meetings, reference lists of included studies and contacted experts in the field. Selection criteria Randomised controlled trials (RCTs) of interventions to increase uptake/informed uptake of cervical cancer screening. Data collection and analysis Two review authors independently abstracted data and assessed risk of bias. Where possible the data were synthesised in a meta-analysis. Main results Thirty-eight trials met our inclusion criteria. These trials assessed the effectiveness of invitational and educational interventions, counselling, risk factor assessment and procedural interventions. Heterogeneity between trials limited statistical pooling of data. Overall, however, invitations appear to be effective methods of increasing uptake. In addition, there is limited evidence to support the use of educational materials. Secondary outcomes including cost data were incompletely documented so evidence was limited. Most trials were at moderate risk of bias. Informed uptake of cervical screening was not reported in any trials. Authors’ conclusions There is evidence to support the use of invitation letters to increase the uptake of cervical screening. There is limited evidence to support educational interventions but it is unclear what format is most effective. The majority of the studies are from developed countries and so the relevance to developing countries is unclear. PMID:21563135
Okura, Takashi; Higuchi, Kei; Kitamura, Atsushi; Deguchi, Yoshiharu
2014-01-01
R(-)-Apomorphine is a dopamine agonist used for rescue management of motor function impairment associated with levodopa therapy in Parkinson's disease patients. The aim of this study was to examine the role of proton-coupled organic cation antiporter in uptake of R(-)-apomorphine and its S-enantiomer in human brain, using human endothelial cell line hCMEC/D3 as a model. Uptake of R(-)- or S(+)-apomorphine into hCMEC/D3 cells was measured under various conditions to evaluate its time-, concentration-, energy- and ion-dependency. Inhibition by selected organic cations was also examined. Uptakes of both R(-)- and S(+)-apomorphine increased with time. The initial uptake velocities of R(-)- and S(+)-apomorphine were concentration-dependent, with similar Km and Vmax values. The cell-to-medium (C/M) ratio of R(-)-apomorphine was significantly reduced by pretreatment with sodium azide, but was not affected by replacement of extracellular sodium ion with N-methylglucamine or potassium. Intracellular alkalization markedly reduced the uptake, while intracellular acidification increased it, suggesting that the uptake is driven by an oppositely directed proton gradient. The C/M ratio was significantly decreased by amantadine, verapamil, pyrilamine and diphenhydramine (substrates or inhibitors of proton-coupled organic cation antiporter), while tetraethylammonium (substrate of organic cation transporters (OCTs)) and carnitine (substrate of carnitine/organic cation transporter 2; (OCTN2)) had no effect. R(-)-Apomorphine uptake was competitively inhibited by diphenhydramine. Our results indicate that R(-)-apomorphine transport in human blood-brain barrier (BBB) model cells is similar to S(+)-apomorphine uptake. The transport was dependent on an oppositely directed proton gradient, but was sodium- or membrane potential-independent. The transport characteristics were consistent with involvement of the previously reported proton-coupled organic cation antiporter.
Cellulose nanocrystals with tunable surface charge for nanomedicine
NASA Astrophysics Data System (ADS)
Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.
2015-10-01
Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge. Electronic supplementary information (ESI) available: Additional results are presented in the ESI in Fig. S1 through S4. See DOI: 10.1039/c5nr02506k
Engineering rhizosphere hydraulics: pathways to improve plant adaptation to drought
NASA Astrophysics Data System (ADS)
Ahmed, Mutez; Zarebanadkouki, Mohsen; Ahmadi, Katayoun; Kroener, Eva; Kostka, Stanley; Carminati, Andrea
2017-04-01
Developing new technologies to optimize the use of water in irrigated croplands is of increasing importance. Recent studies have drawn attention to the role of mucilage in shaping rhizosphere hydraulic properties and regulating root water uptake. During drying mucilage keeps the rhizosphere wet and conductive, but upon drying it turns hydrophobic limiting root water uptake. Here we introduced the concept of rhizoligands, defined as additives that 1) rewet the rhizosphere and 2) reduce mucilage swelling hereby reducing the rhizosphere conductivity. We then tested its effect on rhizosphere water dynamics and transpiration. The following experiments were carried out to test if selected surfactants behave as a rhizoligand. We used neutron radiography to monitor water redistribution in the rhizosphere of lupine and maize irrigated with water and rhizoligand solution. In a parallel experiment, we tested the effect of rhizoligand on the transpiration rate of lupine and maize subjected to repeated drying and wetting cycles. We also measured the effect of rhizoligand on the maximum swelling of mucilage and the saturated hydraulic conductivity of soil mixed with various mucilage concentrations. The results were then simulated using a root water uptake model. Rhizoligand treatment quickly and uniformly rewetted the rhizosphere of maize and lupine. Interestingly, rhizoligand also reduced transpiration during drying/wetting cycles. Evaporation from the bare soil was of minor importance. Our hypothesis is that the reduction in transpiration was triggered by the interaction between rhizoligand and mucilage exuded by roots. This hypothesis is supported by the fact that rhizoligand reduced the maximum swelling of mucilage, increased its viscosity, and decreased the hydraulic conductivity of soil-mucilage mixtures. The reduced conductivity of the rhizosphere induced a moderate stress to the plants reducing transpiration. Simulation with a reduced hydraulic conductivity of the rhizosphere reproduced well the experimental observations. Rhizoligands increase the rhizosphere wetting kinetics and decrease the maximum swelling of mucilage. As a consequence, root rehydration upon irrigation is faster, a larger volume of water is available to the plant and this water is used more slowly. This slower water consumption would allow the plant to stay turgid over a prolonged dying period. We propose that by managing the hydraulic properties of the rhizosphere, we can improve plants adaptation to drought.
Chatalic, Kristell L S; Veldhoven-Zweistra, Joke; Bolkestein, Michiel; Hoeben, Sander; Koning, Gerben A; Boerman, Otto C; de Jong, Marion; van Weerden, Wytske M
2015-07-01
Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer (PCa) and a promising target for molecular imaging and therapy. Nanobodies (single-domain antibodies, VHH) are the smallest antibody-based fragments possessing ideal molecular imaging properties, such as high target specificity and rapid background clearance. We developed a novel anti-PSMA Nanobody (JVZ-007) for targeted imaging and therapy of PCa. Here, we report on the application of the (111)In-radiolabeled Nanobody for SPECT/CT imaging of PCa. A Nanobody library was generated by immunization of a llama with 4 human PCa cell lines. Anti-PSMA Nanobodies were captured by biopanning on PSMA-overexpressing cells. JVZ-007 was selected for evaluation as an imaging probe. JVZ-007 was initially produced with a c-myc-hexahistidine (his) tag allowing purification and detection. The c-myc-his tag was subsequently replaced by a single cysteine at the C terminus, allowing site-specific conjugation of chelates for radiolabeling. JVZ-007-c-myc-his was conjugated to 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-DTPA) via the lysines, whereas JVZ-007-cys was conjugated to maleimide-DTPA via the C-terminal cysteine. PSMA targeting was analyzed in vitro by cell-binding experiments using flow cytometry, autoradiography, and internalization assays with various PCa cell lines and patient-derived xenografts (PDXs). The targeting properties of radiolabeled Nanobodies were evaluated in vivo in biodistribution and SPECT/CT imaging experiments, using nude mice bearing PSMA-positive PC-310 and PSMA-negative PC-3 tumors. JVZ-007 was successfully conjugated to DTPA for radiolabeling with (111)In at room temperature. (111)In-JVZ007-c-myc-his and (111)In-JVZ007-cys internalized in LNCaP cells and bound to PSMA-expressing PDXs and, importantly, not to PSMA-negative PDXs and human kidneys. Good tumor targeting and fast blood clearance were observed for (111)In-JVZ-007-c-myc-his and (111)In-JVZ-007-cys. Renal uptake of (111)In-JVZ-007-c-myc-his was initially high but was efficiently reduced by coinjection of gelofusine and lysine. The replacement of the c-myc-his tag by the cysteine contributed to a further reduction of renal uptake without loss of targeting. PC-310 tumors were clearly visualized by SPECT/CT with both tracers, with low renal uptake (<4 percentage injected dose per gram) for (111)In-JVZ-007-cys already at 3 h after injection. We developed an (111)In-radiolabeled anti-PSMA Nanobody, showing good tumor targeting, low uptake in nontarget tissues, and low renal retention, allowing excellent SPECT/CT imaging of PCa within a few hours after injection. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.; Fu, D.; Chai, J.
2010-12-10
All living cells need zinc ions to support cell growth. Zrt-, Irt-like proteins (ZIPs) represent a major route for entry of zinc ions into cells, but how ZIPs promote zinc uptake has been unclear. Here we report the molecular characterization of ZIPB from Bordetella bronchiseptica, the first ZIP homolog to be purified and functionally reconstituted into proteoliposomes. Zinc flux through ZIPB was found to be nonsaturable and electrogenic, yielding membrane potentials as predicted by the Nernst equation. Conversely, membrane potentials drove zinc fluxes with a linear voltage-flux relationship. Direct measurements of metal uptake by inductively coupled plasma mass spectroscopy demonstratedmore » that ZIPB is selective for two group 12 transition metal ions, Zn{sup 2+} and Cd{sup 2+}, whereas rejecting transition metal ions in groups 7 through 11. Our results provide the molecular basis for cellular zinc acquisition by a zinc-selective channel that exploits in vivo zinc concentration gradients to move zinc ions into the cytoplasm.« less
Crystal structure of the epithelial calcium channel TRPV6.
Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I
2016-06-23
Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.
NASA Astrophysics Data System (ADS)
Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo
2016-04-01
The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c
Gulia, Neelam; Khatkar, B S
2014-04-01
Instant noodles were prepared from fifteen diverse wheat cultivars varying widely in their flour quality and dough rheology. Dough thermomechanical parameters obtained by Mixolab and flour analytical properties were correlated with the quality of instant noodles including oil uptake, cooking quality and textural attributes. The Mixolab parameters dough development time and dough stability showed significant positive correlation with cooking time, cooked weight, overall acceptability, hardness, springiness, cohesiveness and chewiness of noodles, while negatively correlated with oil uptake and cooking loss, therefore, exhibiting a marked positive effect on quality of instant noodles. Lower protein breakdown represented by C2 torque was also positively related with overall acceptability, hardness, springiness, cohesiveness and chewiness of noodles. Stickiness/adhesiveness of noodles was revealed to be mainly conferred by falling number values (R (2 )= 0.671) and damaged starch (R (2 )= 0.523) content of wheat flour samples. Flour samples with lesser values of protein content, sodium dodecyl sulphate sedimentation volume, thermal stability of proteins, dough stability and dough development time were found to be linked with poor noodle quality. Medium strong flours performed better in noodle making, while weaker flours demonstrated poor noodle quality. Dough rheology of good noodle making flours was characterized with higher dough development time, dough stability, C2, C3, C4 as well as C5 values. Noodles with higher overall acceptability showed a more continuous and uniform protein starch matrix in comparison to the poor counterparts.
NASA Astrophysics Data System (ADS)
Sheng, Li; Xu, Hongjie; Guo, Xiaoxia; Fang, Jianhua; Fang, Liang; Yin, Jie
2011-03-01
A series of sulfonated polybenzimidazoles (SPBIs) with varied ion exchange capacities (IECs) have been synthesized by random condensation copolymerization of a new sulfonated dicarboxylic acid monomer 4,6-bis(4-carboxyphenoxy)benzene-1,3-disulfonate (BCPOBDS-Na), 4,4‧-dicarboxydiphenyl ether (DCDPE) and 3,3‧-diaminobenzidine (DAB) in Eaton's reagent at 140 °C. Most of the SPBIs show good solubility in polar aprotic organic solvents such as dimethylsulfoxide (DMSO) and N,N-dimethylacetamide (DMAc). Thermogravimetric analysis (TGA) reveals that the SPBIs have excellent thermal stability (desulfonation temperatures (on-set) > 370 °C). The SPBI membranes show good mechanical properties of which tensile strength, elongation at break, and storage modulus are in the range of 89-96 MPa, 12-42%, and 2.4-3.1 GPa, respectively. Moreover, the SPBI membranes exhibit phosphoric acid (PA) uptake in the range of 180-240% (w/w) in 85 wt% PA at 50 °C, while high mechanical properties (13-20 MPa) are maintained. The SPBI membrane with 240% (w/w) PA uptake displays fairly high proton conductivity (37.3 mS cm-1) at 0% relative humidity at 170 °C. The fuel cell fabricated with the PA-doped SPBI membrane (PA uptake = 240% (w/w)) displays good performance with the highest output power density of 0.58 W cm-2 at 170 °C with hydrogen-oxygen gases under ambient pressure without external humidification.
NASA Astrophysics Data System (ADS)
Dong, Chenbo
Carbon nanotubes (CNTs) are used for a variety of applications from nanocircuits, to hydrogen storage devices, and from designing optical fibers to forming conductive plastics. Recently, their functionalization with biomolecules led to exciting biological and biomedical applications in drug delivery or bioimaging. However, because of CNTs interactions with biological systems and their ability to translocate and persist into the circulatory and lymphatic systems and biological tissues, concerns about CNTs intrinsic toxicity have risen. It is thus necessary to develop and implement sensitive analysis technologies that allow investigation of CNTs toxicity upon uptake into a biological system. This thesis provides a comprehensive guide of experiments that have been performed during my Ph.D. tenure at West Virginia University in the Department of Chemical Engineering, in the group of Prof. Cerasela Zoica Dinu. Briefly: Chapter one presents a systematic study of the CNTs physical and chemical properties and how these properties are changed upon exposure to chemical agents normally used during their cleaning and purification processes. Also, this chapter shows how acid oxidation treatment leads to improved CNTs biocompatibility. Specifically, by incubating CNTs in a strong acid mixture we created a user-defined library of CNTs samples with different characteristics as recorded using Raman energy dispersive x-ray spectroscopy, atomic force microscopy, or solubility tests. Systematically characterized CNTs were subsequently tested for their biocompatibility in relation to human epithelial cells or enzymes. Such selected examples are building pertinent relationships between CNTs biocompatibility and their intrinsic properties by showing that acid oxidation treatment lowers CNTs toxicity making CNTs feasible platforms to be used for biomedical applications or the next generation of biosensors. (Publication: Chenbo Dong, Alan S Campell, Reem Eldawud, Gabriela Perhinschi, and Cerasela Zoica Dinu, Effects of acid treatment on structure, properties and biocompatibility of carbon nanotubes, Applied Surface Science, 2013, 268, 261-268.) Chapter two shows how exposure to CNTs changes the biomechanical properties of fixed human lung epithelial cells (BEAS-2B cells). Specifically, by using Atomic Force Microscopy (AFM) nanoindentation technology, we demonstrated that cellular exposure to multi-walled carbon nanotubes (MWCNTs) for 24h induces significant changes in cellular biomechanics leading to increased cellular stiffness. The MWCNTs incubation also seemed to alter the surface area of the cells. Consequently, measures of the mechanical properties of the exposed cell could be used as indicators of its biological state and could offer valuable insights into the mechanisms associated with CNTs-induced genetic instability. (Publication: Chenbo Dong, Linda Sargent, Michael L Kashon, David Lowry, Jonathan S. Dordick, Steven H. Reynolds, Yon Rojanasakul and Cerasela Zoica Dinu, Expose to carbon nanotubes leads to change in cellular biomechanics, Advanced Healthcare Materials, 2013, 7, 945-951.) Chapter three links together the MWCNTs exposure duration, internalization and induced biomechanical changes in fixed cells. Our findings indicated that changes in biomechanical properties of the fixed cells are a function of the uptake and internalization of the MWCNTs as well as their uptake time. Specifically, short exposure time did not seem to lead to considerable changes in the elastic properties in the cellular system. However, longer cellular exposure to CNTs leads to a higher uptake and internalization of the nanotubes and a larger effect on the cell mechanics. Such changes could be related to CNTs interactions with cellular elements and could bring information on the CNT intrinsic toxicity. Chapter four talks about the potential of purified forms of CNTs with increased hydrophilicity to affect live human lung epithelial cells when used at occupational relevant exposure doses for particles not otherwise regulated. Specifically, our results showed that exposure to MWCNTs affects the dynamics and the biomechanical properties of live cells by reducing the activity of the mitochondria and inducing cell cycle arrest. Our analysis emphasized that cellular toxicity observed upon exposure to MWCNTs is a synergism resulting from multiple types of interactions that could be analyzed by means of intracellular mechanical changes. This thesis contains Appendices of additional projects/publications for which I served as the first author: (1) Chenbo Dong, and Cerasela Zoica Dinu, Molecular trucks and complementary tracks for bionanotechnological applications, Current Opinion in Biotechnology, 2013, 24, 612-619. (2) Chenbo Dong, Zijie Yan, Jacklyn Kokx, Douglas B. Chrisey and Cerasela Zoica Dinu, Antibacterial and surface-enhanced Raman scattering (SERS) activities of AgCl cubes synthesized by pulsed laser ablation in liquid, Applied Surface Science, 2012, 258(10), 9218-9222.
The effect of hydrate promoters on gas uptake.
Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen
2017-08-16
Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.
Vera Steckel; Craig Merrill Clemons; Heiko Thoemen
2007-01-01
Composites of wood in a thermoplastic matrix (woodâplastic composites) are considered a low maintenance solution to using wood in outdoor applications. Knowledge of moisture uptake and transport properties would be useful in estimating moisture-related effects such as fungal attack and loss of mechanical strength. Our objectives were to determine how material...
Properties enhancement of cassava starch based bioplastics with addition of graphene oxide
NASA Astrophysics Data System (ADS)
Amri, A.; Ekawati, L.; Herman, S.; Yenti, S. R.; Zultiniar; Aziz, Y.; Utami, S. P.; Bahruddin
2018-04-01
The properties of cassava starch based bioplastic have been successfully enhanced by additioning of graphene oxide (GO) filler. The composite was synthesized via starch intercalation method using glycerol plasticizer with variation of 5 – 15 % v/v GO filler and mixing time of 30 and 60 minutes. The effects of GO content and the mixing time to the mechanical, water uptake and biodegradation were studied. The synthesis of GO and its integration in the bioplastic composite were also elucidated. The increasing of the GO content and mixing time improved the mechanical properties of composite mainly due to of good homogeneity among the constituents in the composite as indicated by scanning electron microscopy (SEM) and Fourier Transfom Infrared (FTIR) spectroscopy. The bioplastic produced using 15% of GO and 60 minutes mixing time had the highest mechanical properties with tensile strenght of 3,92 Mpa, elongation of 13,22% and modulus young of 29,66 MPa. The water uptake and biodegradation increased as the increase of GO content and decreased as the increase of the mixing time. Graphene oxide is the promissing filler for further development of cassava starch based bioplastics.
NASA Astrophysics Data System (ADS)
Sproll, Véronique; Schmidt, Thomas J.; Gubler, Lorenz
2018-03-01
The aim of this work was to investigate how hygroscopic moieties like hydrolyzed glycidyl methacrylate (GMA) influence the properties of sulfonated polysytrene based proton exchange membranes (PEM). Therefore, several membranes were synthesized by electron beam treatment of the ETFE (ethylene-alt-tetrafluoroethylene) base film with a subsequent co-grafting of styrene and GMA at different ratios. The obtained membranes were sulfonated to introduce proton conducting groups and the epoxide moiety of the GMA unit was hydrolyzed for a better water absorption. The PEM was investigated regarding its structural composition, water uptake and through-plane conductivity. It could be shown that the density of sulfonic acid groups has a higher influence on the proton conductivity of the PEM than an increased water uptake.
NASA Astrophysics Data System (ADS)
Hashimoto, Akiko; Yamanaka, Takehiro; Takamura-Enya, Takeji
2017-12-01
Fullerene is a well-known carbon nanomaterial, which can be potentially used for drug manufacture or delivery. Despite several successful examples of utilizing fullerene derivatives as drug candidate materials, their low water solubility under physiological conditions negatively affects the cell penetration efficiency after treatment. In this work, we successfully synthesized two fullerene derivatives with covalently attached fluorescein and boron dipyrromethene (BODIPY) fluorophore moieties, which exhibited cellular uptake and intracellular localization. While both fluorophores decreased their fluorescence intensity in the vicinity of fullerene, the cellar uptake of the fluorescein-modified fullerene was detected via fluorescence microscopy observations. Moreover, decreases in the fluorescence intensities of the intact fluorescein and BODIPY species were observed when both fluorophores and fullerene coexisted in aqueous media.
Hsieh, En-Jung; Waters, Brian M.
2016-01-01
Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. PMID:27605716
Toward development of an in vitro model of methamphetamine-induced dopamine nerve terminal toxicity.
Kim, S; Westphalen, R; Callahan, B; Hatzidimitriou, G; Yuan, J; Ricaurte, G A
2000-05-01
To develop an in vitro model of methamphetamine (METH)-induced dopamine (DA) neurotoxicity, striatal synaptosomes were incubated at 37 degrees C with METH for different periods of time (10-80 min), washed once, then tested for DA transporter function at 37 degrees C. METH produced time- and dose-dependent reductions in the V(max) of DA uptake, without producing any change in K(m). Incubation of synaptosomes with the DA neurotoxins 1-methyl-4-phenyl-pyridinium ion, 6-hydroxydopamine, and amphetamine under similar conditions produced comparable effects. In contrast, incubation with fenfluramine, a serotonin neurotoxin, did not. METH-induced decreases in DA uptake were selective, insofar as striatal glutamate uptake was unaffected. Various DA transporter blockers (cocaine, methylphenidate, and bupropion) afforded complete protection against METH-induced decreases in DA uptake, without producing any effect themselves. METH's effects were also temperature dependent, with greater decreases in DA uptake occurring at higher temperatures. Tests for residual drug revealed small amounts (0.1-0.2 microM) of remaining METH, but kinetic studies indicated that decreases in DA uptake were not likely to be due to METH acting as a competitive inhibitor of DA uptake. Decreases in the V(max) of DA uptake were not accompanied by decreases in B(max) of [(3)H]WIN 35,428 binding, possibly because there is no mechanism for removing damaged DA nerve endings from the in vitro preparation Collectively, these results give good support to the development of a valid in vitro model that may prove helpful for elucidating the mechanisms underlying METH-induced DA neurotoxicity.
Relationship between root water uptake and soil respiration: A modeling perspective
NASA Astrophysics Data System (ADS)
Teodosio, Bertrand; Pauwels, Valentijn R. N.; Loheide, Steven P.; Daly, Edoardo
2017-08-01
Soil moisture affects and is affected by root water uptake and at the same time drives soil CO2 dynamics. Selecting root water uptake formulations in models is important since this affects the estimation of actual transpiration and soil CO2 efflux. This study aims to compare different models combining the Richards equation for soil water flow to equations describing heat transfer and air-phase CO2 production and flow. A root water uptake model (RWC), accounting only for root water compensation by rescaling water uptake rates across the vertical profile, was compared to a model (XWP) estimating water uptake as a function of the difference between soil and root xylem water potential; the latter model can account for both compensation (XWPRWC) and hydraulic redistribution (XWPHR). Models were compared in a scenario with a shallow water table, where the formulation of root water uptake plays an important role in modeling daily patterns and magnitudes of transpiration rates and CO2 efflux. Model simulations for this scenario indicated up to 20% difference in the estimated water that transpired over 50 days and up to 14% difference in carbon emitted from the soil. The models showed reduction of transpiration rates associated with water stress affecting soil CO2 efflux, with magnitudes of soil CO2 efflux being larger for the XWPHR model in wet conditions and for the RWC model as the soil dried down. The study shows the importance of choosing root water uptake models not only for estimating transpiration but also for other processes controlled by soil water content.
Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism
NASA Astrophysics Data System (ADS)
Zielinski, Daniel C.; Jamshidi, Neema; Corbett, Austin J.; Bordbar, Aarash; Thomas, Alex; Palsson, Bernhard O.
2017-01-01
Malignant transformation is often accompanied by significant metabolic changes. To identify drivers underlying these changes, we calculated metabolic flux states for the NCI60 cell line collection and correlated the variance between metabolic states of these lines with their other properties. The analysis revealed a remarkably consistent structure underlying high flux metabolism. The three primary uptake pathways, glucose, glutamine and serine, are each characterized by three features: (1) metabolite uptake sufficient for the stoichiometric requirement to sustain observed growth, (2) overflow metabolism, which scales with excess nutrient uptake over the basal growth requirement, and (3) redox production, which also scales with nutrient uptake but greatly exceeds the requirement for growth. We discovered that resistance to chemotherapeutic drugs in these lines broadly correlates with the amount of glucose uptake. These results support an interpretation of the Warburg effect and glutamine addiction as features of a growth state that provides resistance to metabolic stress through excess redox and energy production. Furthermore, overflow metabolism observed may indicate that mitochondrial catabolic capacity is a key constraint setting an upper limit on the rate of cofactor production possible. These results provide a greater context within which the metabolic alterations in cancer can be understood.
Ngala, Robert A; O'Dowd, Jacqueline; Wang, Steven J; Stocker, Claire; Cawthorne, Michael A; Arch, Jonathan RS
2009-01-01
Background and purpose: In previous work, 10 pM BRL37344 and 10 pM clenbuterol stimulated glucose uptake in mouse soleus muscle. Ten nM BRL37344 also stimulated uptake but 100 nM clenbuterol inhibited uptake. Antagonist studies suggested that the opposite effects of 10 nM BRL37344 and 100 nM clenbuterol are mediated by the β2-adrenoceptor. BRL37344 and clenbuterol have been studied in muscles that lack β3-, β2- or all three β-adrenoceptors. Effects of β-adrenoceptor antagonists on responses to the agonists have been studied further using muscles from wild-type mice. Experimental approach: Soleus muscles of wild-type or β-adrenoceptor knockout mice were incubated with 2-deoxy[1-14C]-glucose, and β-adrenoceptor ligands. Formation of 2-deoxy[1-14C]-glucose-6-phosphate was measured. Key results: Concentration–response relationships were similar for BRL37344 and clenbuterol in normal muscle and muscle lacking β3-adrenoceptors. Ten pM BRL37344 and clenbuterol stimulated glucose uptake in muscle lacking β2-adrenoceptors or all three β-adrenoceptors, but 10 nM BRL37344 did not stimulate uptake in either case, and 100 nM clenbuterol stimulated, rather than inhibited, uptake in muscle lacking β2-adrenoceptors. One hundred nM clenbuterol also stimulated glucose uptake in normal muscle when β2-adrenoceptors were blocked with ICI118551, and this was not prevented by antagonism of β1- or β3-adrenoceptors. Conclusions and implications: Ten nM BRL37344 and 100 nM clenbuterol have opposite effects on glucose uptake but both effects are mediated by the β2-adrenoceptor – apparently an example of agonist-directed signalling. Ten pM BRL37344, 10 pM clenbuterol and 100 nM clenbuterol in the presence of ICI118551 stimulate glucose uptake via β-adrenoceptor-independent mechanisms, demonstrating unknown properties for the agonists. PMID:19912225
Jones, Charles H.; Gollakota, Akhila; Chen, Mingfu; Chung, Tai-Chun; Ravikrishnan, Anitha; Zhang, Guojian; Pfeifer, Blaine A.
2015-01-01
Given the rise of antibiotic resistant microbes, genetic vaccination is a promising prophylactic strategy that enables rapid design and manufacture. Facilitating this process is the choice of vector, which is often situationally-specific and limited in engineering capacity. Furthermore, these shortcomings are usually tied to an incomplete understanding of the structure-function relationships driving vector-mediated gene delivery. Building upon our initial report of a hybrid bacterial-biomaterial gene delivery vector, a comprehensive structure-function assessment was completed using a class of mannosylated poly(beta-amino esters). Through a top-down screening methodology, an ideal polymer was selected on the basis of gene delivery efficacy and then used for the synthesis of a stratified molecular weight polymer library. By eliminating contributions of polymer chemical background, we were able to complete an in-depth assessment of gene delivery as a function of (1) polymer molecular weight, (2) relative mannose content, (3) polymer-membrane biophysical properties, (4) APC uptake specificity, and (5) serum inhibition. In summary, the flexibility and potential of the hybrid design featured in this work highlights the ability to systematically probe vector-associated properties for the development of translational gene delivery candidates. PMID:25941787
Lim, Siang Hui; Yam, Mun Li; Lam, May Lynn; Kamarulzaman, Fadzly Azhar; Samat, Norazwana; Kiew, Lik Voon; Chung, Lip Yong; Lee, Hong Boon
2014-09-02
This study aims to improve the photodynamic properties and biological effectiveness of 15(1)-hydroxypurpurin-7-lactone dimethyl ester (G2), a semisynthetic photosensitizer, for the PDT treatment of cancer. The strategy we undertook was by conjugating G2 with aspartic acid and lysine amino acid moieties. The photophysical properties, singlet oxygen generation, distribution coefficiency (Log D in octanol/PBS pH 7.4), and photostability of these analogues and their in vitro bioactivities such as cellular uptake, intracellular localization, and photoinduced cytotoxicity were evaluated. In addition, selected analogues were also investigated for their PDT-induced vasculature occlusion in the chick chorioallantoic membrane model and for their antitumor efficacies in Balb/C mice bearing 4T1 mouse mammary tumor. From the study, conjugation with aspartic acid improved the aqueous solubility of G2 without affecting its photophysical characteristics. G2-Asp showed similar in vitro and in vivo antitumor efficacies compared to the parent compound. Given the hydrophilic nature of G2-Asp, the photosensitizer is a pharmaceutically advantageous candidate as it can be formulated easily for systemic administration and has reduced risk of aggregation in vascular system.
Speirs, M; Van Hooreweder, B; Van Humbeeck, J; Kruth, J-P
2017-06-01
Selective laser melting (SLM) is an additive manufacturing technique able to produce complex functional parts via successively melting layers of metal powder. This process grants the freedom to design highly complex scaffold components to allow bone ingrowth and aid mechanical anchorage. This paper investigates the compression fatigue behaviour of three different unit cells (octahedron, cellular gyroid and sheet gyroid) of SLM nitinol scaffolds. It was found that triply periodic minimal surfaces display superior static mechanical properties in comparison to conventional octahedron beam lattice structures at identical volume fractions. Fatigue resistance was also found to be highly geometry dependent due to the effects of AM processing techniques on the surface topography and notch sensitivity. Geometries minimising nodal points and the staircase effect displayed the greatest fatigue resistance when normalized to yield strength. Furthermore oxygen analysis showed a large oxygen uptake during SLM processing which must be altered to meet ASTM medical grade standards and may significantly reduce fatigue life. These achieved fatigue properties indicate that NiTi scaffolds produced via SLM can provide sufficient mechanical support over an implants lifetime within stress range values experienced in real life. Copyright © 2017 Elsevier Ltd. All rights reserved.
Krause-Heuer, Anwen M; Fraser-Spears, Rheaclare; Dobrowolski, Jeremy C; Ashford, Mark E; Wyatt, Naomi A; Roberts, Maxine P; Gould, Georgianna G; Cheah, Wai-Ching; Ng, Clarissa K L; Bhadbhade, Mohan; Zhang, Bo; Greguric, Ivan; Wheate, Nial J; Kumar, Naresh; Koek, Wouter; Callaghan, Paul D; Daws, Lynette C; Fraser, Benjamin H
2017-09-08
Herein we describe the synthesis and evaluation of antidepressant properties of seven analogues (1-7) of the low affinity/high capacity transporter blocker decynium-22 (D-22). All analogues (1-7) were synthesized via base promoted coupling reactions between N-alkylated-2-methylquinolinium iodides or N-alkylated-4-methylquinolinium iodides and electrophilic N-alkylated-2-iodoquinolinium iodides. All final compounds were purified by re-crystallization or preparative HPLC and initial evaluation studies included; 1) screening for in vitro α1-adrenoceptor activity (a property that can lead to unwanted side-effects), 2) measuring antidepressant-like activity in a mouse tail suspension test (TST), and 3) measuring effects upon mouse locomotion. The results showed some analogues have lower affinities at α1-adrenoceptors compared to D-22 and showed antidepressant-like activity without the need for co-administration of SSRIs. Additionally, many analogues did not affect mouse locomotion to the same extent as D-22. Plans for additional evaluations of these promising analogues, including measurement of antidepressant-like activity with co-administration of selective serotonin re-uptake inhibitors (SSRIs), are outlined. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
2011-05-03
effect of residual silanol content on the moisture uptake properties of the modified silica particles was determined by measuring the water uptake of...procedure). The surface functionalization of silica particles was performed using Schlenk line techniques, taking great care to minimize moisture ...conditions, causing condensation of silanols in and around pores, as well as in between particle intersections. This “closing off” of pores, greatly reduces
Wen, Jian; Jiang, Shulian; Chen, Zhiqiang; Zhao, Wei; Yi, Yongxiang; Yang, Ruili; Chen, Baoan
2014-01-01
Objective To explore the effect of folic acid-modified magnetic nanoparticles (FA-MNPs) combined with a 100 Hz extremely low-frequency electromagnetic field (ELF-EMF) on the apoptosis of liver cancer BEL-7402 cells. Materials and methods MNPs (20 nm) were prepared by coprecipitation, and then folic acid was coated onto MNPs to prepare FA-MNPs. BEL-7402 cells and HL7702 cells were selected as liver cancer cells and normal liver cells, respectively. The ELF-EMF was generated from a solenoid coil. Cellular uptake of NPs was determined by inductively coupled plasma atomic emission spectroscopy. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to evaluate cell inhibition. Apoptosis was analyzed by flow cytometry. Statistical analyses were performed using two-way analysis of variance. Results FA-MNPs combined with a 100 Hz magnetic field significantly inhibited cell proliferation and induced higher apoptosis compared to either the ELF-EMF alone or FA-MNPs alone. FA-MNPs showed a better apoptosis effect and higher iron uptake in BEL-7402 cells compared to in HL7702 cells. On the basis of the ELF-EMF, higher doses of FA-MNPs brought higher apoptosis and higher iron uptake in either BEL-7402 cells or HL7702 cells. Conclusion These results suggest that FA-MNPs may induce apoptosis in a cellular iron uptake-dependent manner when combined with an ELF-EMF in BEL-7402 cells. PMID:24790442
A Cell-targeted Photodynamic Nanomedicine Strategy for Head & Neck Cancers
Master, Alyssa; Malamas, Anthony; Solanki, Rachna; Clausen, Dana M.; Eiseman, Julie L.; Gupta, Anirban Sen
2013-01-01
Photodynamic Therapy (PDT) holds great promise for the treatment of head and neck (H&N) carcinomas where repeated loco-regional therapy often becomes necessary due to the highly aggressive and recurrent nature of the cancers. While interstitial light delivery technologies are being refined for PDT of H&N and other cancers, a parallel clinically relevant research area is the formulation of photosensitizers in nanovehicles that allow systemic administration yet preferential enhanced uptake in the tumor. This approach can render dual-selectivity of PDT, by harnessing both the drug and the light delivery within the tumor. To this end, we report on a cell-targeted nanomedicine approach for the photosensitizer silicon phthalocyanine-4 (Pc 4), by packaging it within polymeric micelles that are surface-decorated with GE11-peptides to promote enhanced cell-selective binding and receptor-mediated internalization in EGFR-overexpressing H&N cancer cells. Using fluorescence spectroscopy and confocal microscopy, we demonstrate in vitro that the EGFR-targeted Pc 4-nanoformulation undergoes faster and higher uptake in EGFR-overexpressing H&N SCC-15 cells. We further demonstrate that this enhanced Pc 4 uptake results in significant cell-killing and drastically reduced post-PDT clonogenicity. Building on this in vitro data, we demonstrate that the EGFR-targeted Pc 4-nanoformulation results in significant intra-tumoral drug uptake and subsequent enhanced PDT response, in vivo, in SCC-15 xenografts in mice. Altogether our results show significant promise towards a cell-targeted photodynamic nanomedicine for effective treatment of H&N carcinomas. PMID:23531079
Cu-64-labeled lactam bridge-cyclized α-MSH peptides for PET imaging of melanoma.
Guo, Haixun; Miao, Yubin
2012-08-06
The purpose of this study was to examine and compare the melanoma targeting and imaging properties of (64)Cu-NOTA-GGNle-CycMSH(hex) {(64)Cu-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and (64)Cu-DOTA-GGNle-CycMSH(hex) {(64)Cu-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-GGNle-CycMSH(hex)}. Two lactam bridge-cyclized peptides, NOTA-GGNle-CycMSH(hex) and DOTA-GGNle-CycMSH(hex), were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSH(hex) was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSH(hex). The melanoma targeting and imaging properties of (64)Cu-NOTA-GGNle-CycMSH(hex) and (64)Cu-DOTA-GGNle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSH(hex) and DOTA-GGNle-CycMSH(hex) displayed comparable MC1 receptor binding affinities (1.6 vs 2.1 nM). The substitution of DOTA with NOTA dramatically increased the melanoma uptake and decreased the renal and liver uptake of (64)Cu-NOTA-GGNle-CycMSH(hex). The tumor uptake of (64)Cu-NOTA-GGNle-CycMSH(hex) was between 12.39 ± 1.61 and 12.71 ± 2.68% ID/g at 0.5, 2, and 4 h postinjection. The accumulation of (64)Cu-NOTA-GGNle-CycMSH(hex) activity in normal organs was lower than 1.02% ID/g except for the kidneys 2, 4, and 24 h postinjection. The tumor/liver uptake ratios of (64)Cu-NOTA-GGNle-CycMSHhex were 17.96, 16.95, and 8.02, whereas the tumor/kidney uptake ratios of (64)Cu-NOTA-GGNle-CycMSH(hex) were 2.52, 3.60, and 5.74 at 2, 4, and 24 h postinjection, respectively. Greater than 91% of the injected radioactivity cleared through the urinary system by 2 h postinjection. The substitution of DOTA with NOTA resulted in a dramatic increase in melanoma uptake and decrease in renal and liver uptake of (64)Cu-NOTA-GGNle-CycMSH(hex) as compared to (64)Cu-DOTA-GGNle-CycMSH(hex). High melanoma uptake coupled with low accumulation in nontarget organs suggested (64)Cu-NOTA-GGNle-CycMSH(hex) as a lead radiolabeled peptide for melanoma imaging and therapy.
Cu-64-Labeled Lactam Bridge-Cyclized α-MSH Peptides for PET Imaging of Melanoma
Guo, Haixun; Miao, Yubin
2012-01-01
The purpose of this study was to examine and compare the melanoma targeting and imaging properties of 64Cu-NOTA-GGNle-CycMSHhex {64Cu-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and 64Cu-DOTA-GGNle-CycMSHhex {64Cu-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-GGNle-CycMSHhex}. Two lactam bridge-cyclized peptides, NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex, were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and imaging properties of 64Cu-NOTA-GGNle-CycMSHhex and 64Cu-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs. 2.1 nM). The substitution of DOTA with NOTA dramatically increased the melanoma uptake and decreased the renal and liver uptake of 64Cu-NOTA-GGNle-CycMSHhex. The tumor uptake of 64Cu-NOTA-GGNle-CycMSHhex was between 12.39 ± 1.61 and 12.71 ± 2.68 % ID/g at 0.5, 2 and 4 h post-injection. The accumulation of 64Cu-NOTA-GGNle-CycMSHhex activity in normal organs was lower than 1.02 % ID/g except for the kidneys 2, 4 and 24 h post-injection. The tumor/liver uptake ratios of 64Cu-NOTA-GGNle-CycMSHhex were 17.96, 16.95 and 8.02, whereas the tumor/kidney uptake ratios of 64Cu-NOTA-GGNle-CycMSHhex were 2.52, 3.60 and 5.74 at 2, 4 and 24 h post-injection, respectively. Greater than 91% of the injected radioactivity cleared through the urinary system by 2 h post-injection. The substitution of DOTA with NOTA resulted in a dramatic increase in melanoma uptake and decrease in renal and liver uptake of 64Cu-NOTA-GGNle-CycMSHhex compared to 64Cu-DOTA-GGNle-CycMSHhex. High melanoma uptake coupled with low accumulation in non-target organs suggested 64Cu-NOTA-GGNle-CycMSHhex as a lead radiolabeled peptide for melanoma imaging and therapy. PMID:22780870
Khamehchian, Sedigheh; Nikkhah, Maryam; Madani, Rasool; Hosseinkhani, Saman
2016-11-01
Functionalization of gold nanoparticles (GNPs) is suitable for many applications such as biomedical imaging, clinical diagnosis, and targeted delivery by conjugating cell-penetrating peptides (CPPs). Here, we investigated intracellular uptake of GNP conjugated to MCaUF1-9(Ala) , a CPP derived from maurocalcine (MCa) animal toxin, and compared it with TAT functionalized GNP. Peptide conjugated GNP was characterized using UV-Visible spectroscopy, dynamic light scattering, zeta potential, and transmission electron microscopy. Uptake of MCaUF1-9(Ala) and TAT functionalized GNPs was evaluated in three cell lines, HeLa, MDA-MB-231, and A431, using dark field imaging and atomic absorption spectroscopy. According to peptide sequences and type of cells different cell penetrating activity was observed. Peptide functionalized GNP had little effect on cell viability and respect to net charge difference between peptide, showed interesting selectivity against three cell types. Peptide conjugated to GNPs displayed higher uptake than bare GNPs in the all cell lines except HeLa cell with lowest internalization. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2693-2700, 2016. © 2016 Wiley Periodicals, Inc.
Uptake of clostridium botulinum C3 exoenzyme into intact HT22 and J774A.1 cells.
Rohrbeck, Astrid; von Elsner, Leonie; Hagemann, Sandra; Just, Ingo
2015-02-02
The Clostridium botulinum C3 exoenzyme selectively ADP-ribosylates low molecular weight GTP-binding proteins RhoA, B and C. This covalent modification inhibits Rho signaling activity, resulting in distinct actin cytoskeleton changes. Although C3 exoenzyme has no binding, the translocation domain assures that C3 enters cells and acts intracellularly. C3 uptake is thought to occur due to the high concentration of the C3 enzyme. However, recent work indicates that C3 is selectively endocytosed, suggesting a specific endocytotic pathway, which is not yet understood. In this study, we show that the C3 exoenzyme binds to cell surfaces and is internalized in a time-dependent manner. We show that the intermediate filament, vimentin, is involved in C3 uptake, as indicated by the inhibition of C3 internalization by acrylamide, a known vimentin disruption agent. Inhibition of C3 internalization was not observed by chemical inhibitors, like bafilomycin A, methyl-β-cyclodextrin, nocodazole or latrunculin B. Furthermore, the internalization of C3 exoenzyme was markedly inhibited in dynasore-treated HT22 cells. Our results indicate that C3 internalization depends on vimentin and does not depend strictly on both clathrin and caveolae.
Uwai, Yuichi; Honjo, Hiroaki; Iwamoto, Kikuo
2010-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.
Ekberg, Jukka; Rautio, Jari; Mattinen, Laura; Vidgren, Virve; Londesborough, John; Gibson, Brian R
2013-05-01
An adaptive evolution method to obtain stable Saccharomyces pastorianus brewing yeast variants with improved fermentation capacity is described. The procedure involved selection for rapid growth resumption at high osmotic strength. It was applied to a lager strain and to a previously isolated ethanol-tolerant strain. Fermentation performance of strains was compared at 15 °P wort strength. A selected osmotolerant variant of the ethanol-tolerant strain showed significantly shorter fermentation time than the parent strain, producing 6.45% alcohol by volume beer in 4-5 days with mostly similar organoleptic properties to the original strain. Diacetyl and pentanedione contents were 50-75% and 3-methylbutyl acetate and 2-phenylethyl acetate 50% higher than with the original strain, leading to a small flavour change. The variant contained significantly less intracellular trehalose and glycogen than the parent. Transcriptional analysis of selected genes at 24 h revealed reduced transcription of hexose transport genes and increased transcription of the MALx1 and MALx2 genes, responsible for α-glucoside uptake and metabolism. It is suggested that an attenuated stress response contributes to the improved fermentation performance. Results show that sequential selection for both ethanol tolerance and rapid growth at high osmotic strength can provide strains with enhanced fermentation speed with acceptable product quality. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Bacterial uptake of antibiotics in model unsaturated systems
NASA Astrophysics Data System (ADS)
Zhang, W.; Chen, Z.; Zhang, Y.; Zhao, Z.; Wang, G.; Gao, Y.; Boyd, S. A.; Zhu, D.; Li, H.
2016-12-01
Anthropogenic antibiotics are ubiquitously present in the environment due to large uses in human medicine and animal agriculture, and are causing unintended consequence to human and ecosystem health. Bacterial uptake of antibiotics could exert selection pressure on antibiotic resistance development among bacteria population. Therefore, understanding environmental factors controlling bioavailability of antibiotics to bacteria is critical to better assessing exposure risks and developing mitigation strategies. Nonetheless, conventional bioavailability assays are often performed in water-saturated systems that do not represent unsaturated soils where most bacteria live, therefore neglecting soil water as a controlling factor in determining the extent of antibiotic bacterial uptake. Therefore, we propose to study bacterial uptake of antibiotics in model unsaturated systems using GFP-tagged Escherichia coli bioreporter for tetracyclines. Our preliminary studies demonstrated the important role of water content (or water matric potential) in determining the bioavailability of antibiotics, and complex interactions of water potential, tetracycline diffusion, and E. coli growth. Therefore, unsaturated processes are important for understanding antibiotic resistance development and developing mitigation strategies.
Studies of Inhibition of Intestinal Absorption of Radioactive Strontium
Skoryna, Stanley C.; Paul, T. M.; Waldron-Edward, Deirdre
1965-01-01
A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, allowing calcium to be available to the body. Studies were carried out on the inhibitory effect of various amounts of sodium alginate and the dose-response relationship of Sr89 and bone uptake. The results obtained indicated that under laboratory conditions sodium alginate effectively reduces Sr89 uptake in a constant proportion. This effect was observed at the three levels of administration of 1.4%, 12% and 24% of sodium alginate. The linear relationship between the dosage of the radioisotope and the bone uptake in the presence of sodium alginate suggests that the same proportion is maintained at the lower levels of intake of radioactive strontium. Previous studies with small constant doses of sodium alginate were extended in rats to a period corresponding approximately to three years of human life span. Low doses were sufficient to reduce appreciably bone uptake of radiostrontium. PMID:14341649
Hossain, Md Iqbal; Paparini, Andrea; Cord-Ruwisch, Ralf
2017-03-01
Glycogen accumulating organisms (GAO) are known to allow anaerobic uptake of biological oxygen demand (BOD) in activated sludge wastewater treatment systems. In this study, we report a rapid transition of suspended activated sludge biomass to a GAO dominated biofilm by selective enrichment using sequences of anaerobic loading followed by aerobic exposure of the biofilm to air. The study showed that within eight weeks, a fully operational, GAO dominated biofilm had developed, enabling complete anaerobic BOD uptake at a rate of 256mg/L/h. The oxygen uptake by the biofilm directly from the atmosphere had been calculated to provide significant energy savings. This study suggests that wastewater treatment plant operators can convert activated sludge systems readily into a "passive aeration" biofilm that avoids costly oxygen transfer to bulk wastewater solution. The described energy efficient BOD removal system provides an opportunity to be coupled with novel nitrogen removal processes such as anammox. Copyright © 2016. Published by Elsevier Ltd.
Fatty Acids as Therapeutic Auxiliaries for Oral and Parenteral Formulations
Hackett, Michael J.; Zaro, Jennica L.; Shen, Wei-Chiang; Guley, Patrick C.; Cho, Moo J.
2012-01-01
Many drugs have decreased therapeutic activity due to issues with absorption, distribution, metabolism and excretion. The co-formulation or covalent attachment of drugs with fatty acids has demonstrated some capacity to overcome these issues by improving intestinal permeability, slowing clearance and binding serum proteins for selective tissue uptake and metabolism. For orally administered drugs, albeit at low level of availability, the presence of fatty acids and triglycerides in the intestinal lumen may promote intestinal uptake of small hydrophilic molecules. Small lipophilic drugs or acylated hydrophilic drugs also show increased lymphatic uptake and enhanced passive diffusional uptake. Fatty acid conjugation of small and large proteins or peptides have exhibited protracted plasma half-lives, site-specific delivery and sustained release upon parenteral administration. These improvements are most likely due to associations with lipid-binding serum proteins, namely albumin, LDL and HDL. These molecular interactions, although not fully characterized, could provide the ability of using the endogenous carrier systems for improving therapeutic outcomes. PMID:22921839
Towards novel compact laser sources for non-invasive diagnostics and treatment
NASA Astrophysics Data System (ADS)
Rafailov, Edik U.; Litvinova, Karina S.; Sokolovski, Sergei G.
2015-08-01
An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.
The Biological Fate of Silver Nanoparticles from a Methodological Perspective.
Drobne, Damjana; Novak, Sara; Talaber, Iva; Lynch, Iseult; Kokalj, Anita Jemec
2018-06-05
We analyzed the performance and throughput of currently available analytical techniques for quantifying body burden and cell internalization/distribution of silver nanoparticles (Ag NPs). Our review of Ag NP biological fate data shows that most of the evidence gathered for Ag NPs body burden actually points to total Ag and not only Ag NPs. On the other hand, Ag NPs were found inside the cells and tissues of some organisms, but comprehensive explanation of the mechanism(s) of NP entry and/or in situ formation is usually lacking. In many cases, the methods used to detect NPs inside the cells could not discriminate between ions and particles. There is currently no single technique that would discriminate between the metals species, and at the same time enable localization and quantification of NPs down to the cellular level. This paper serves as an orientation towards selection of the appropriate method for studying the fate of Ag NPs in line with their properties and the specific question to be addressed in the study. Guidance is given for method selection for quantification of NP uptake, biodistribution, precise tissue and cell localization, bioaccumulation, food chain transfer and modeling studies regarding the optimum combination of methods and key factors to consider.
Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M
2014-01-01
Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg-1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results.
Rahman, Mohammed M.; Khan, Sher Bahadar; Marwani, Hadi M.; Asiri, Abdullah M.
2014-01-01
Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results. PMID:25464507
Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain?
Widomska, Justyna; Zareba, Mariusz; Subczynski, Witold Karol
2016-01-01
Epidemiological studies demonstrate that a high dietary intake of carotenoids may offer protection against age-related macular degeneration, cancer and cardiovascular and neurodegenerative diseases. Humans cannot synthesize carotenoids and depend on their dietary intake. Major carotenoids that have been found in human plasma can be divided into two groups, carotenes (nonpolar molecules, such as β-carotene, α-carotene or lycopene) and xanthophylls (polar carotenoids that include an oxygen atom in their structure, such as lutein, zeaxanthin and β-cryptoxanthin). Only two dietary carotenoids, namely lutein and zeaxanthin (macular xanthophylls), are selectively accumulated in the human retina. A third carotenoid, meso-zeaxanthin, is formed directly in the human retina from lutein. Additionally, xanthophylls account for about 70% of total carotenoids in all brain regions. Some specific properties of these polar carotenoids must explain why they, among other available carotenoids, were selected during evolution to protect the retina and brain. It is also likely that the selective uptake and deposition of macular xanthophylls in the retina and brain are enhanced by specific xanthophyll-binding proteins. We hypothesize that the high membrane solubility and preferential transmembrane orientation of macular xanthophylls distinguish them from other dietary carotenoids, enhance their chemical and physical stability in retina and brain membranes and maximize their protective action in these organs. Most importantly, xanthophylls are selectively concentrated in the most vulnerable regions of lipid bilayer membranes enriched in polyunsaturated lipids. This localization is ideal if macular xanthophylls are to act as lipid-soluble antioxidants, which is the most accepted mechanism through which lutein and zeaxanthin protect neural tissue against degenerative diseases. PMID:27030822
Flak, Dorota; Yate, Luis; Nowaczyk, Grzegorz; Jurga, Stefan
2017-09-01
In this study ZnPc@TiO 2 hybrid nanostructures, both nanoparticles and nanotubes, as potential photosensitizers for the photodynamic therapy, fluorescent bioimaging agents, as well as anti-cancer drug nanocarriers, were prepared via zinc phthalocyanine (ZnPc) deposition on TiO 2 . In order to provide the selectivity of prepared hybrid nanostructures towards cancer cells they were modified with folic acid molecules (FA). The efficient attachment of both ZnPc and FA molecules was confirmed with dynamic light scattering (DLS), zeta potential measurements and X-ray photoelectron spectroscopy (XPS). It was presented that ZnPc and FA attachment has a strong effect on fluorescence emission properties of TiO 2 nanostructures, which can be further used for their simultaneous visualization upon cellular uptake. ZnPc@TiO 2 and FA/ZnPc@TiO 2 hybrid nanotubes were then employed as doxorubicin nanocarriers. It was demonstrated that doxorubicin can be easily loaded on these hybrid nanostructures via an electrostatic interaction and then released. In vitro cytotoxicity and photo-cytotoxic activity studies showed that prepared hybrid nanostructures were selectively targeting to cancer cells. Doxorubicin loaded hybrid nanostructures were significantly more cytotoxic than un-loaded ones and their cytotoxic effect was even more severe upon irradiation. The cellular uptake of prepared hybrid nanostructures and their localization in cells was monitored in vitro in 2D cell culture and tumor-like 3D multicellular culture environment with fluorescent confocal microscopy. These hybrid nanostructures preferentially penetrated into human cervical cancer cells (HeLa) than into normal fibroblasts (MSU-1.1) and were mainly localized within the cell cytoplasm. HeLa cells spheroids were also efficiently labelled by prepared hybrid nanostructures. Fluorescent imaging of Hela cells treated with doxorubicin loaded hybrid nanostructures showed that doxorubicin was effectively delivered into cells, released and evenly distributed in the cytoplasm. In conclusion, prepared hybrid nanostructures exhibit high potential as selective bioimaging agents next to their photodynamic activity and drug delivery ability. Copyright © 2017 Elsevier B.V. All rights reserved.
Bioaccumulation of total mercury in the earthworm Eisenia andrei.
Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew
2016-01-01
Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1).
[Effects of soil pH on the competitive uptake of amino acids by maize and microorganisms].
Ma, Qing Xu; Wang, Jun; Cao, Xiao Chuang; Sun, Yan; Sun, Tao; Wu, Liang Huan
2017-07-18
Organic nitrogen can play an important role in plant growth, and soil pH changed greatly due to the over-use of chemical fertilizers, but the effects of soil pH on the competitive uptake of amino acids by plants and rhizosphere microorganisms are lack of detailed research. To study the effects of soil pH on the uptake of amino acids by maize and soil microorganisms, two soils from Hangzhou and Tieling were selected, and the soil pH was changed by the electrokinesis, then the 15 N-labeled glycine was injected to the centrifuge tube with a short-term uptake of 4 h. Soil pH had a significant effect on the shoot and root biomass, and the optimal pH for maize shoot growth was 6.48 for Hangzhou red soil, while it was 7.65 for Tieling brown soil. For Hangzhou soil, the 15 N abundance of maize shoots under pH=6.48 was significantly higher than under other treatments, and the uptake amount of 15 N-glycine was also much higher. However, the 15 N abundance of maize shoots and roots under pH=7.65 Tieling soil was significantly lower than it under pH=5.78, but the uptake amount of 15 N-glycine under pH=7.65 was much higher. The microbial biomass C was much higher in pH=6.48 Hangzhou soil, while it was much lower in pH=7.65 Tieling soil. According to the results of root uptake, root to shoot transportation, and the competition with microorganisms, we suggested that although facing the fierce competition with microorganisms, the maize grown in pH=6.48 Hangzhou soil increased the uptake of glycine by increasing its root uptake and root to shoot transportation. While in pH=7.65 Tieling soil, the activity of microorganisms was decreased, which decreased the competition with maize for glycine, and increased the uptake of glycine by maize.
Bhaskar, Jamuna J; Salimath, Paramahans V; Nandini, Chilkunda D
2011-06-01
Glucose uptake study plays a major role in diabetes research. Impaired glucose uptake has been implicated in the development of hyperglycemia during diabetes. Banana plant is known for its anti-diabetic properties and our earlier report revealed that banana flower and pseudostem of Musa sp. cv. elakki bale is beneficial during diabetes in rat models. The present study was designed to evaluate the potential effect of banana flower and pseudostem extracts on glucose uptake in Ehrlich ascites tumor (EAT) cells using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), a fluorescent analogue of 2-deoxyglucose. Methanol and aqueous extracts of banana flower and pseudostem were more potent in promoting glucose uptake in EAT cells, in comparison to acetone and ethanol extracts. At 20 µg dosage, highest net glucose uptake was observed in aqueous extracts of banana flower (18.17 ± 0.43 nmol L⁻¹) and pseudostem (19.69 ± 0.41 nmol L⁻¹). Total polyphenol content was higher in methanol (9.031 ± 0.036 g kg⁻¹) and aqueous (6.862 ± 0.024 g kg⁻¹) extracts of banana flower compared to pseudostem, which were 0.442 ± 0.006 and 0.811 ± 0.011 g kg⁻¹, respectively. Banana flower and pseudostem extracts are able to promote glucose uptake into the cells, presumably through glucose transporters 1 and 3, which could be beneficial in diabetes. Glucose uptake is likely promoted by phenolic acids besides other bioactives. It can be hypothesized that consumption of nutraceutical-rich extract of banana flower and pseudostem could replace some amount of insulin being taken for diabetes. Copyright © 2011 Society of Chemical Industry.
Uptake of uranium from seawater by amidoxime-based polymeric adsorbent marine testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsouris, C.; Kim, J.; Oyola, Y.
2013-07-01
Amidoxime-based polymer adsorbents in the form of functionalized fibers were prepared at the Oak Ridge National Laboratory (ORNL) and screened in laboratory experiments, in terms of uranium uptake capacity, using spiked uranium solution and seawater samples. Batch laboratory experiments conducted with 5-gallon seawater tanks provided equilibrium information. Based on results from 5-gallon experiments, the best adsorbent was selected for field-testing of uranium adsorption from seawater. Flow-through column tests have been performed at different marine sites to investigate the uranium uptake rate and equilibrium capacity under diverse biogeochemistry. The maximum amount of uranium uptake from seawater tests at Sequim, WA, wasmore » 3.3 mg U/g adsorbent after eight weeks of contact of the adsorbent with seawater. This amount was three times higher than the maximum adsorption capacity achieved in this study by a leading adsorbent developed by the Japan Atomic Energy Agency (JAEA), which was 1.1 mg U/g adsorbent at equilibrium. The initial uranium uptake rate of the ORNL adsorbent was 2.6 times higher than that of the JAEA adsorbent under similar conditions. A mathematical model derived from the mass balance of uranium was employed to describe the data. (authors)« less
Assessment of gallium-67 scanning in pulmonary and extrapulmonary sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Israel, H.L.; Gushue, G.F.; Park, C.H.
1986-01-01
Gallium-67 scans have been widely employed in patients with sarcoidosis as a means of indicating alveolitis and the need for corticosteroid therapy. Observation of 32 patients followed 3 or more years after gallium scans showed no correlation between findings and later course: of 10 patients with pulmonary uptake, 7 recovered with minor residuals; of 18 patients with mediastinal of extrathoracic uptake, 10 had persistent or progressive disease; of 4 patients with negative initial scans, 2 had later progression. The value of gallium-67 scans as an aid to diagnosis was studied in 40 patients with extrapulmonary sarcoidosis. In 12 patients, abnormalmore » lacrimal, nodal, or pulmonary uptake aided in selection of biopsy sites. Gallium-67 scans and serum ACE levels were compared in 97 patients as indices of clinical activity. Abnormal gallium-67 uptake was observed in 96.3% of the tests in active disease, and ACE level elevation occurred in 56.3%. In 24 patients with inactive or recovered disease, abnormal gallium-67 uptake occurred in 62.5% and ACE level elevation in 37.5%. Gallium-67 scans have a limited but valuable role in the diagnosis and management of sarcoidosis.« less
Doktorovova, Slavomira; Souto, Eliana B; Silva, Amélia M
2018-01-01
Curcumin, a phenolic compound from turmeric rhizome (Curcuma longa), has many interesting pharmacological effects, but shows very low aqueous solubility. Consequently, several drug delivery systems based on polymeric and lipid raw materials have been proposed to increase its bioavailability. Solid lipid nanoparticles (SLN), consisting of solid lipid matrix and a surfactant layer can load poorly water-soluble drugs, such as curcumin, deliver them at defined rates and enhance their intracellular uptake. In the present work, we demonstrate that, despite the drug's affinity to lipids frequently used in SLN production, the curcumin amount loaded in most SLN formulations may be too low to exhibit anticancer properties. The predictive curcumin solubility in solid lipids has been thoroughly analyzed by Hansen solubility parameters, in parallel with the lipid-screening solubility tests for a range of selected lipids. We identified the most suitable lipid materials for curcumin-loaded SLN, producing physicochemically stable particles with high encapsulation efficiency (>90%). Loading capacity of curcumin in SLN allowed preventing the cellular damage caused by cationic SLN on MCF-7 and BT-474 cells but was not sufficient to exhibit drug's anticancer properties. But curcumin-loaded SLN exhibited antioxidant properties, substantiating the conclusions that curcumin's effect in cancer cells is highly dose dependent.
Frouin, H; Jackman, P; Dangerfield, N D; Ross, P S
2017-08-01
Shellfish and sediment invertebrates have been widely used to assess pollution trends over space and time in coastal environments around the world. However, few studies have compared the bioaccumulation potential of different test species over a range of sediment-contaminant concentrations and profiles. The bioavailability of sediment-related contaminants was evaluated using sediments collected from sites (n = 12) throughout the Salish Sea, British Columbia, Canada. Two benthic marine invertebrates-the Baltic clam Macoma balthica and the polychaete worm Neanthes arenaceodentata-were exposed for 28 days in a controlled environment to these field-collected coastal sediments. The congener-specific uptake of legacy polychlorinated biphenyls (PCBs) and emergent polybrominated diphenyl ethers (PBDEs) was determined using high-resolution gas chromatography/mass spectrometry in sediments and in invertebrates after the experimental exposure. The polychaete Neanthes accumulated lower concentrations of PCBs but higher concentrations of PBDEs. The present study indicates that differences in bioaccumulation between these two invertebrates shape the accumulation of PCB and PBDE congeners, reflect differences in feeding strategies, and reveal the physicochemical properties of the contaminants and sediment properties. Because biota-sediment accumulation factor values are often calculated for environmental monitoring or site-specific impact assessments, our results provide insight into potentially confounding factors and the need for caution when selecting indicator species for coastal marine pollution.
Butt, Adeel Masood; Mohd Amin, Mohd Cairul Iqbal; Katas, Haliza
2015-01-01
Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay. The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.
Jack, Corin; Hotchkiss, Emily; Sargison, Neil D; Toma, Luiza; Milne, Catherine; Bartley, David J
2017-04-01
Nematode control in sheep, by strategic use of anthelmintics, is threatened by the emergence of roundworms populations that are resistant to one or more of the currently available drugs. In response to growing concerns of Anthelmintic Resistance (AR) development in UK sheep flocks, the Sustainable Control of Parasites in Sheep (SCOPS) initiative was set up in 2003 in order to promote practical guidelines for producers and advisors. To facilitate the uptake of 'best practice' approaches to nematode management, a comprehensive understanding of the various factors influencing sheep farmers' adoption of the SCOPS principles is required. A telephone survey of 400 Scottish sheep farmers was conducted to elicit attitudes regarding roundworm control, AR and 'best practice' recommendations. A quantitative statistical analysis approach using structural equation modelling was chosen to test the relationships between both observed and latent variables relating to general roundworm control beliefs. A model framework was developed to test the influence of socio-psychological factors on the uptake of sustainable (SCOPS) and known unsustainable (AR selective) roundworm control practices. The analysis identified eleven factors with significant influences on the adoption of SCOPS recommended practices and AR selective practices. Two models established a good fit with the observed data with each model explaining 54% and 47% of the variance in SCOPS and AR selective behaviours, respectively. The key influences toward the adoption of best practice parasite management, as well as demonstrating negative influences on employing AR selective practices were farmer's base line understanding about roundworm control and confirmation about lack of anthelmintic efficacy in a flock. The findings suggest that improving farmers' acceptance and uptake of diagnostic testing and improving underlying knowledge and awareness about nematode control may influence adoption of best practice behaviour. Copyright © 2017 Elsevier B.V. All rights reserved.
Butt, Adeel Masood; Mohd Amin, Mohd Cairul Iqbal; Katas, Haliza
2015-01-01
Background Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. Methods FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake. PMID:25709451
Ozone and haze pollution effects on the contemporary land carbon cycle
NASA Astrophysics Data System (ADS)
Unger, N.
2016-12-01
Atmospheric pollutants have both beneficial and detrimental effects on carbon uptake by land ecosystems. Surface ozone damages leaf photosynthesis by oxidizing plant cells, while aerosols promote carbon uptake by increasing diffuse radiation and exert additional influences through concomitant perturbations to meteorology and hydrology. Here, I present new results from three assessment studies that employ Earth system modeling and multiple measurement datasets. First, we quantify the separate and combined effects of anthropogenic ozone and aerosol pollution on the global land carbon uptake. Second, we evaluate benefits to land ecosystem health from selective emission reductions in specific pollution sources and sectors. Finally, I show that the long-term climatic effects of mid-latitude air pollution boosts plant productivity in the Amazon by 10% on the annual average today.
The effect of amino acids on the intestinal absorption of immunoglobulins in the neonatal rat
Bamford, D. R.; Donnelly, H.
1974-01-01
An in vitro preparation of 10-day-old rat intestine was used to examine the absorption of a number of amino acids and immunoglobulins. Evidence was obtained for the active absorption of alanine, leucine, methionine, histidine and lysine, but not for aspartic acid. A selective absorption of the homologous molecule was found in experiments where 131I-labelled rat and bovine IgG were presented to the ileum in 10-minute incubations. The greater uptake of rat IgG was unrelated to the relative rates of catabolism of the two molecules. Although the uptake of rat IgG was unaffected by 100 mM concentrations of neutral and acidic amino acids, the basic amino acids arginine and lysine significantly stimulated uptake. PMID:4854740
Rojas, M; Nuñez, M T; Zambrano, F
1990-01-01
The effect of a soluble toxin purified from the algae bloom of a eutrophic lake dominated by Microcystis on the receptor-mediated endocytosis of ferro-transferrin in rabbit reticulocytes was studied. The toxin was a very effective inhibitor of cell iron uptake. Kinetic studies using 125I, 59Fe-labeled transferrin indicated that the step of ferrotransferrin internalization was selectively inhibited by the toxin while the surface receptor-binding capacity, the externalization of previously internalized transferrin, and the cellular ATP levels were not affected. These findings indicate that the reduction of iron uptake caused by the toxin is due to inhibition of the internalization of surface-located transferrin-transferrin receptor complexes, perhaps due to a disruption of cytoskeleton integrity.
Lo, Kenneth Kam-Wing
2015-12-15
Although the interactions of transition metal complexes with biological molecules have been extensively studied, the use of luminescent transition metal complexes as intracellular sensors and bioimaging reagents has not been a focus of research until recently. The main advantages of luminescent transition metal complexes are their high photostability, long-lived phosphorescence that allows time-resolved detection, and large Stokes shifts that can minimize the possible self-quenching effect. Also, by the use of transition metal complexes, the degree of cellular uptake can be readily determined using inductively coupled plasma mass spectrometry. For more than a decade, we have been interested in the development of luminescent transition metal complexes as covalent labels and noncovalent probes for biological molecules. We argue that many transition metal polypyridine complexes display triplet charge transfer ((3)CT) emission that is highly sensitive to the local environment of the complexes. Hence, the biological labeling and binding interactions can be readily reflected by changes in the photophysical properties of the complexes. In this laboratory, we have modified luminescent tricarbonylrhenium(I) and bis-cyclometalated iridium(III) polypyridine complexes of general formula [Re(bpy-R(1))(CO)3(py-R(2))](+) and [Ir(ppy-R(3))2(bpy-R(4))](+), respectively, with reactive functional groups and used them to label the amine and sulfhydryl groups of biomolecules such as oligonucleotides, amino acids, peptides, and proteins. Additionally, using a range of biological substrates such as biotin, estradiol, and indole, we have designed luminescent rhenium(I) and iridium(III) polypyridine complexes as noncovalent probes for biological receptors. The interesting results generated from these studies have prompted us to investigate the possible applications of luminescent transition metal complexes in intracellular systems. Thus, in the past few years, we have developed an interest in the cytotoxic activity, cellular uptake, and bioimaging applications of these complexes. Additionally, we and other research groups have demonstrated that many transition metal complexes have facile cellular uptake and organelle-localization properties and that their cytotoxic activity can be readily controlled. For example, complexes that can target the nucleus, nucleolus, mitochondria, lysosomes, endoplasmic reticulum, and Golgi apparatus have been identified. We anticipate that this selective localization property can be utilized in the development of intracellular sensors and bioimaging reagents. Thus, we have functionalized luminescent rhenium(I) and iridium(III) polypyridine complexes with various pendants, including molecule-binding moieties, sugar molecules, bioorthogonal functional groups, and polymeric chains such as poly(ethylene glycol) and polyethylenimine, and examined their potentials as biological reagents. This Account describes our design of luminescent rhenium(I) and iridium(III) polypyridine complexes and explains how they can serve as a new generation of biological reagents for diagnostic and therapeutic applications.
Perols, Anna; Honarvar, Hadis; Strand, Joanna; Selvaraju, Ramkumar; Orlova, Anna; Karlström, Amelie Eriksson; Tolmachev, Vladimir
2012-08-15
Affibody molecules are a class of affinity proteins. Their small size (7 kDa) in combination with the high (subnanomolar) affinity for a number of cancer-associated molecular targets makes them suitable for molecular imaging. Earlier studies demonstrated that the selection of radionuclide and chelator may substantially influence the tumor-targeting properties of affibody molecules. Moreover, the placement of chelators for labeling of affibody molecules with (99m)Tc at different positions in affibody molecules influenced both blood clearance rate and uptake in healthy tissues. This introduces an opportunity to improve the contrast of affibody-mediated imaging. In this comparative study, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to the synthetic affibody molecule Z(HER2:S1) at three different positions: DOTA-A1-Z(HER2:S1) (N-terminus), DOTA-K58-Z(HER2:S1) (C-terminus), and DOTA-K50-Z(HER2:S1) (middle of helix 3). The affinity for HER2 differed slightly among the variants and the K(D) values were determined to be 133 pM, 107 pM and 94 pM for DOTA-A1-Z(HER2:S1), DOTA-K50-Z(HER2:S1), and DOTA-K58-Z(HER2:S1), respectively. Z(HER2:S1)-K50-DOTA showed a slightly lower melting point (57 °C) compared to DOTA-A1-Z(HER2:S1) (64 °C) and DOTA-K58-Z(HER2:S1) (62 °C), but all variants showed good refolding properties after heat treatment. All conjugates were successfully labeled with (111)In resulting in a radiochemical yield of 99% with preserved binding capacity. In vitro specificity studies using SKOV-3 and LS174T cell lines showed that the binding of the radiolabeled compounds was HER2 receptor-mediated, which also was verified in vivo using BALB/C nu/nu mice with LS174T and Ramos lymphoma xenografts. The three conjugates all showed specific uptake in LS174T xenografts in nude mice, where DOTA-A1-Z(HER2:S1)and DOTA-K58-Z(HER2:S1) showed the highest uptake. Overall, DOTA-K58-Z(HER2:S1) provided the highest tumor-to-blood ratio, which is important for a high-contrast imaging. In conclusion, the positioning of the DOTA chelator influences the cellular processing and the biodistribution pattern of radiolabeled affibody molecules, creating preconditions for imaging optimization.
de Oliveira, Catiúscia P; Büttenbender, Sabrina L; Prado, Willian A; Beckenkamp, Aline; Asbahr, Ana C; Buffon, Andréia; Guterres, Silvia S; Pohlmann, Adriana R
2018-01-04
Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization) in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT) and in human breast carcinoma cells (MCF-7). Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors), while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7) being promising products for further in vivo pre-clinical evaluations.