Treatment of Pancreatic Cancer with Pharmacological Ascorbate
Cieslak, John A.; Cullen, Joseph J.
2016-01-01
The prognosis for patients diagnosed with pancreatic cancer remains dismal, with less than 3% survival at 5 years. Recent studies have demonstrated that high-dose, intravenous pharmacological ascorbate (ascorbic acid, vitamin C) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells vs. normal cells, suggesting a promising new role of ascorbate as a therapeutic agent. At physiologic concentrations, ascorbate functions as a reducing agent and antioxidant. However, when pharmacological ascorbate is given intravenously, it is possible to achieve millimolar plasma concentration. At these pharmacological levels, and in the presence of catalytic metal ions, ascorbate can induce oxidative stress through the generation of hydrogen peroxide (H2O2). Recent in vitro and in vivo studies have demonstrated ascorbate oxidation occurs extracellularly, generating H2O2 flux into cells resulting in oxidative stress. Pharmacologic ascorbate also inhibits the growth of pancreatic tumor xenografts and displays synergistic cytotoxic effects when combined with gemcitabine in pancreatic cancer. Phase I trials of pharmacological ascorbate in pancreatic cancer patients have demonstrated safety and potential efficacy. In this chapter, we will review the mechanism of ascorbate-induced cytotoxicity, examine the use of pharmacological ascorbate in treatment and assess the current data supporting its potential as an adjuvant in pancreatic cancer. PMID:26201606
Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A.; Hoek, Jan B.
2016-01-01
We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacological dose (5-20 mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1 mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. PMID:27036367
Rouleau, Lauren; Antony, Anil Noronha; Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A; Hoek, Jan B
2016-06-01
We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacologic dose (5-20mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. Copyright © 2016 Elsevier Inc. All rights reserved.
May, James M
2011-01-01
The ascorbate transporters SVCT1 and SVCT2 are crucial for maintaining intracellular ascorbate concentrations in most cell types. Although the two transporter isoforms are highly homologous, they have different physiologic functions. The SVCT1 is located primarily in epithelial cells and has its greatest effect in reabsorbing ascorbate in the renal tubules. The SVCT2 is located in most non-epithelial tissues, with the highest expression in brain and neuroendocrine tissues. These transporters are hydrophobic membrane proteins that have a high affinity and are highly selective for ascorbate. Their ability to concentrate ascorbate inside cells is driven by the sodium gradient across the plasma membrane as generated by Na+/K+ ATPase. They can concentrate ascorbate 20 to 60-fold over plasma ascorbate concentrations. Ascorbate transport on these proteins is regulated at the transcriptional, translational and post-translational levels. Available studies show that transporter function is acutely regulated by protein kinases A and C, whereas transporter expression is increased by low intracellular ascorbate and associated oxidative stress. The knockout of the SVCT2 in mice is lethal on day 1 of life, and almost half of SVCT1 knockout mice do not survive to weaning. These findings confirm the importance both of cellular ascorbate and of the two transport proteins as key to maintaining intracellular ascorbate. PMID:21418192
Wang, Kai; Xiao, Tongfang; Yue, Qingwei; Wu, Fei; Yu, Ping; Mao, Lanqun
2017-09-05
Quantitative description of ascorbate secretion at a single-cell level is of great importance in physiological studies; however, most studies on the ascorbate secretion have so far been performed through analyzing cell extracts with high performance liquid chromatography, which lacks time resolution and analytical performance on a single-cell level. This study demonstrates a single-cell amperometry with carbon fiber microelectrodes (CFEs) to selectively monitor amperometric vesicular secretion of endogenous ascorbate from a single rat adrenal chromaffin cell. The CFEs are electrochemically pretreated in a weakly basic solution (pH 9.5), and such pretreatment essentially enables the oxidation of ascorbate to occur at a relatively low potential (i.e., 0.0 V vs Ag/AgCl), and further a high selectivity for ascorbate measurement over endogenously existing electroactive species such as epinephrine, norepinephrine, and dopamine. The selectivity is ensured by much larger amperometric response at the pretreated CFEs toward ascorbate over those toward other endogenously existing electroactive species added into the solution or ejected to the electrode with a micropuffer pipet, and by the totally suppressed current response by adding ascorbate oxidase into the cell lysate. With the pretreated CFE-based single-cell amperometry developed here, exocytosis of endogenous ascorbate of rat adrenal chromaffin cells is directly observed and ensured with the calcium ion-dependent high K + -induced secretion of endogenous ascorbate from the cells. Moreover, the quantitative information on the exocytosis of endogenous ascorbate is provided.
Pandey, Indu; Kant, Rama
2016-03-15
Clinical manifestations owing to l-ascorbic acid for scurvy as comparison to d-ascorbic acid and challenges of chiral purity are overcome by using chiral selective conductive polymer nanocomposite which mimics antibodies and enzymes. A novel chiral selective imprinted polyaniline-ferrocene-sulfonic acid film has been electrochemically fabricated on C-dots modified pencil graphite electrode. The performance of the obtained l-ascorbic acid or d-ascorbic acid chiral selective sensor was investigated by electrochemical impedance spectroscopy, cyclic and differential pulse voltammetry. The surface characteristics of the C-dots, chiral sensor before and after the de-doping of chiral d- and l-ascorbic acid were characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction spectroscopy. Excellent recognition results were obtained by difference in electron transfer resistance. The proposed chiral sensor is capable of measuring d-ascorbic acid or l-ascorbic acid in aqueous as well as in real and commercial samples within the range of 0.020-0.187 nM and 0.003-0.232 nM with detection limit of 0.00073 nM and 0.00016 nM, respectively. The proposed method has also been examined for the chiral selective recognition of ascorbic acid isomers (d- and l-) quantitatively, in complicated matrices of real samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Hasnat, Mohammad A; Gross, Andrew J; Dale, Sara E C; Barnes, Edward O; Compton, Richard G; Marken, Frank
2014-02-07
Generator-collector electrode systems are based on two independent working electrodes with overlapping diffusion fields where chemically reversible redox processes (oxidation and reduction) are coupled to give amplified current signals. A generator-collector trench electrode system prepared from two tin-doped indium oxide (ITO) electrodes placed vis-à-vis with a 22 μm inter-electrode gap is employed here as a sensor in aqueous media. The reversible 2-electron anthraquinone-2-sulfonate redox system is demonstrated to give well-defined collector responses even in the presence of oxygen due to the irreversible nature of the oxygen reduction. For the oxidation of dopamine on ITO, novel "Piranha-activation" effects are observed and chemically reversible generator-collector feedback conditions are achieved at pH 7, by selecting a more negative collector potential, again eliminating possible oxygen interference. Finally, dopamine oxidation in the presence of ascorbate is demonstrated with the irreversible oxidation of ascorbate at the "mouth" of the trench electrode and chemically reversible oxidation of dopamine in the trench "interior". This spatial separation of chemically reversible and irreversible processes within and outside the trench is discussed as a potential in situ microscale sensing and separation tool.
Degradation of L-Ascorbic Acid in the Amorphous Solid State.
Sanchez, Juan O; Ismail, Yahya; Christina, Belinda; Mauer, Lisa J
2018-03-01
Ascorbic acid degradation in amorphous solid dispersions was compared to its degradation in the crystalline state. Physical blends and lyophiles of ascorbic acid and polymers (pectins and polyvinylpyrrolidone [PVP]) were prepared initially at 50:50 (w/w), with further studies using the polymer that best inhibited ascorbic acid crystallization in the lyophiles in 14 vitamin : PVP ratios. Samples were stored in controlled environments (25 to 60 °C, 0% to 23% RH) for 1 mo and analyzed periodically to track the physical appearance, change in moisture content, physical state (powder x-ray diffraction and polarized light microscopy), and vitamin loss (high performance liquid chromatography) over time. The glass transition temperatures of select samples were determined using differential scanning calorimetry, and moisture sorption profiles were generated. Ascorbic acid in the amorphous form, even in the glassy amorphous state, was more labile than in the crystalline form in some formulations at the highest storage temperature. Lyophiles stored at 25 and 40 °C and those in which ascorbic acid had crystallized at 60 °C (≥70% ascorbic acid : PVP) had no significant difference in vitamin loss (P > 0.05) relative to physical blend controls, and the length of storage had little effect. At 60 °C, amorphous ascorbic acid lyophiles (≤60% ascorbic acid : PVP) lost significantly more vitamin (P < 0.05) relative to physical blend controls after 1 wk, and vitamin loss significantly increased over time. In these lyophiles, vitamin degradation also significantly increased (P < 0.05) at lower proportions of ascorbic acid, a scenario likely encountered in foods wherein vitamins are naturally present or added at low concentrations and production practices may promote amorphization of the vitamin. Vitamin C is one of the most unstable vitamins in foods. This study documents that amorphous ascorbic acid is less stable than crystalline ascorbic acid in some environments (for example, higher temperatures within 1 wk), especially when the vitamin is present at low concentrations in a product. These findings increase the understanding of how material science properties influence the stability of vitamin C. © 2018 Institute of Food Technologists®.
Schoenfeld, Joshua D; Sibenaller, Zita A; Mapuskar, Kranti A; Wagner, Brett A; Cramer-Morales, Kimberly L; Furqan, Muhammad; Sandhu, Sonia; Carlisle, Thomas L; Smith, Mark C; Abu Hejleh, Taher; Berg, Daniel J; Zhang, Jun; Keech, John; Parekh, Kalpaj R; Bhatia, Sudershan; Monga, Varun; Bodeker, Kellie L; Ahmann, Logan; Vollstedt, Sandy; Brown, Heather; Shanahan Kauffman, Erin P; Schall, Mary E; Hohl, Ray J; Clamon, Gerald H; Greenlee, Jeremy D; Howard, Matthew A; Schultz, Michael K; Smith, Brian J; Riley, Dennis P; Domann, Frederick E; Cullen, Joseph J; Buettner, Garry R; Buatti, John M; Spitz, Douglas R; Allen, Bryan G
2017-04-10
Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to increased steady-state levels of H 2 O 2 ; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study shows that alterations in cancer cell mitochondrial oxidative metabolism resulting in increased levels of O 2 ⋅- and H 2 O 2 are capable of disrupting intracellular iron metabolism, thereby selectively sensitizing non-small-cell lung cancer (NSCLC) and glioblastoma (GBM) cells to ascorbate through pro-oxidant chemistry involving redox-active labile iron and H 2 O 2 . In addition, preclinical studies and clinical trials demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in GBM and NSCLC therapy. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günther, T-hat nia Mara Fischer; Kviecinski, Maicon Roberto; Baron, Carla Cristine
2013-01-18
Graphical abstract: -- Abstract: Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na{sub 3}VO{sub 4}) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na{sub 3}VO{sub 4} was cytotoxic against T24 cells (EC{sub 50} = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC{sub 50} fell to 3.3 μM. Na{sub 3}VO{sub 4} plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na{sub 3}VO{sub 4} did notmore » directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na{sub 3}VO{sub 4} and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na{sub 3}VO{sub 4} alone, or combined with ascorbate, increased catalase activity, but only Na{sub 3}VO{sub 4} plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na{sub 3}VO{sub 4} plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na{sub 3}VO{sub 4}. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na{sub 3}VO{sub 4} in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment.« less
Oxalate deposition on asbestos bodies.
Ghio, Andrew J; Roggli, Victor L; Richards, Judy H; Crissman, Kay M; Stonehuerner, Jacqueline D; Piantadosi, Claude A
2003-08-01
We report on a deposition of oxalate crystals on ferruginous bodies after occupational exposure to asbestos demonstrated in 3 patients. We investigated the mechanism and possible significance of this deposition by testing the hypothesis that oxalate generated through nonenzymatic oxidation of ascorbate by asbestos-associated iron accounts for the deposition of the crystal on a ferruginous body. Crocidolite asbestos (1000 microg/mL) was incubated with 500 micromol H(2)O(2) and 500 micromol ascorbate for 24 hours at 22 degrees C. The dependence of oxalate generation on iron-catalyzed oxidant production was tested with the both the metal chelator deferoxamine and the radical scavenger dimethylthiourea. Incubation of crocidolite, H(2)O(2), and ascorbate in vitro generated approximately 42 nmol of oxalate in 24 hours. Oxalate generation was diminished significantly by the inclusion of either deferoxamine or dimethylthiourea in the reaction mixture. Incubation of asbestos bodies and uncoated fibers isolated from human lung with 500 micromol H(2)O(2) and 500 micromol ascorbate for 24 hours at 22 degrees C resulted in the generation of numerous oxalate crystals. We conclude that iron-catalyzed production of oxalate from ascorbate can account for the deposition of this crystal on ferruginous bodies.
Free radicals mediate postshock contractile impairment in cardiomyocytes.
Tsai, Min-Shan; Sun, Shijie; Tang, Wanchun; Ristagno, Giuseppe; Chen, Wen-Jone; Weil, Max Harry
2008-12-01
Previous studies demonstrated myocardial dysfunction after electrical shock and indicated it may be related to free radicals. Whether the free radicals are generated after electrical shock has not been documented at the cellular level. This study was to investigate whether electrical shock generates intracellular free radicals inside cardiomyocytes and to evaluate whether reducing intracellular free radicals by pretreatment of ascorbic acid would reduce the contractile dysfunction after electrical shock. Randomized prospective animal study. University affiliated research laboratory. Sprague-Dawley rats. Cardiomyocytes isolated from adult male rats were divided into four groups: (1) electrical shock alone; (2) electrical shock pretreated with ascorbic acid; (3) pretreated with ascorbic acid alone; and (4) control. Ascorbic acid (0.2 mM) was administrated in the perfusate of the ascorbic acid + electrical shock and ascorbic acid groups. A 2-J electrical shock was delivered to the electrical shock and ascorbic acid + electrical shock groups. DCFH-DA-loaded cardiomyocytes showed increased intracellular free radicals after electrical shock. The contractions and Ca2+ transients were recorded optically with fura-2 loading. Within 4 mins after electrical shock in the electrical shock group, the length shortening decreased from 8.4% +/- 2.5% to 5.6% +/- 3.4% (p = 0.000) and the Ca2+ transient decreased from 1.15 +/- 0.13 au to 1.08 +/- 0.1 au (p = 0.038). Compared with control, a significant difference in length shortening (p = 0.001) but not Ca2+ transient (p = 0.052) was noted. In the presence of ascorbic acid, electrical shock did not affect length shortening and Ca2+ transient. Electrical shock generates free radicals inside the cardiomyocyte, and causes contractile impairment and associated decrease of Ca transient. Administering ascorbic acid may improve such damage by eliminating free radicals.
Oleinick, Alexander; Zhu, Feng; Yan, Jiawei; Mao, Bingwei; Svir, Irina; Amatore, Christian
2013-06-24
Recessed generator-collector assemblies consisting of an array of recessed disks (generator electrodes) with a gold layer (collector electrode) deposited over the top-plane insulator reportedly allow increased selectivity and sensitivity during electrochemical detection of dopamine (DA) in the presence of ascorbic acid (AA), a situation which is frequently encountered. In sensor design, the potential of the disk electrodes is set to the wave plateau of DA, whereas the plane electrode is biased at the irreversible wave plateau of AA before the onset of the DA oxidation wave. Thus, AA is scavenged but DA is allowed to enter the nanocavities to be oxidized at the disk electrodes, and its signal is further amplified by redox cycling between disk and plane electrodes. Several different theoretical approaches are elaborated herein to analyze the behavior of the system, and their conclusions are successfully tested by experiments. This reveals the crucial role of the plane-electrode area which screens access to the recessed disks (i.e. acts as a diffusional Faraday cage) and simultaneously contributes to amplification of the analyte signal through positive feedback, as occurs in interdigitated arrays and scanning electrochemical microscopy. Simulations also allow for the evaluation of the benefits of different geometries inspired by the above design and different operating modes for increasing the sensor performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Avci, Pinar; Freire, Fernanda; Banvolgyi, Andras; Mylonakis, Eleftherios; Wikonkal, Norbert M; Hamblin, Michael R
2016-01-01
Aim: Ascorbate can inhibit growth and even decrease viability of various microbial species including Candida albicans. However the optimum conditions and the mechanism of action are unclear. Materials/methodology: Candida albicans shaken for 90 min in a buffered solution of ascorbate (90 mM) gave a 5-log reduction of cell viability, while there was no killing without shaking, in growth media with different carbon sources or at 4°C. Killing was inhibited by the iron chelator 2,2′-bipyridyl. Hydroxyphenyl fluorescein probe showed the intracellular generation of hydroxyl radicals. Results/conclusion: Ascorbate-mediated killing of C. albicans depends on oxygenation and metabolism, involves iron-catalyzed generation of hydroxyl radicals via Fenton reaction and depletion of intracellular NADH. Ascorbate could serve as a component of a topical antifungal therapy. PMID:27855492
Hadi, S M; Ullah, M F; Shamim, U; Bhatt, S H; Azmi, A S
2010-01-01
Catalytic therapy is a cancer treatment modality based on the generation of reactive oxygen species (ROS) through administration of ascorbate/medicinal herbal extracts and copper. It is known that antioxidants such as ascorbate also exhibit prooxidant activity in the presence of transition metals such as copper. Based on our work and that in the literature, in this review we propose a mechanism for the cytotoxic action of ascorbate against cancer cells. It involves redox cycling of exogenous/endogenous copper ions and the consequent generation of ROS leading to oxidative DNA breakage. Using human peripheral lymphocytes and the Comet assay, we have shown that ascorbic acid is able to cause oxidative breakage in cellular DNA. Such DNA degradation is inhibited by neocuproine (a Cu(I) sequestering agent) and scavengers of ROS indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. Similar results are also obtained with plant polyphenol antioxidants that are important constituents of medicinal herbal extracts. Copper is an essential component of chromatin and can take part in redox reactions. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and ascorbate/plant polyphenols to generate ROS. In this review we cite evidence to indicate that in catalytic therapy cytotoxic action against cancer cells involves redox cycling of exogenous/endogenous copper ions. Copyright © 2010 S. Karger AG, Basel.
Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose
2015-10-14
In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.
Kriaa, Mouna; Ouhibi, Rabeb; Graba, Héla; Besbes, Souhail; Jardak, Mohamed; Kammoun, Radhouane
2016-02-01
The impact of Aspergillus tubingensis glucose oxidase (GOD) in combination with α-amylase and ascorbic acid on dough properties, qualities and shelf life of bread was investigated. Regression models of alveograph and texture parameters of dough and bread were adjusted. Indeed, the mixture of GOD (44 %) and ascorbic acid (56 %) on flour containing basal improver showed its potential as a corrective action to get better functional and rheological properties of dough and bread texture. Furthermore, wheat flour containing basal additives and enriched with GOD (63.8 %), ascorbic acid (32 %) and α- amylase (4.2 %) led to high technological bread making parameters, to decrease the crumb firmness and chewiness and to improve elasticity, adhesion, cohesion and specific volume of bread. In addition to that, the optimized formulation addition significantly reduced water activity and therefore decreased bread susceptibility to microbial spoilage. These findings demonstrated that GOD could partially substitute not only ascorbic acid but also α-amylase. The generated models allowed to predict the behavior of wheat flour containing additives in the range of values tested and to define the additives formula that led to desired rheological and baking qualities of dough. This fact provides new perspectives to compensate flour quality deficiencies at the moment of selecting raw materials and technological parameters reducing the production costs and facilitating gluten free products development. Graphical abstractᅟ.
Xiang, Ling; Yu, Ping; Hao, Jie; Zhang, Meining; Zhu, Lin; Dai, Liming; Mao, Lanqun
2014-04-15
Using as-synthesized vertically aligned carbon nanotube-sheathed carbon fibers (VACNT-CFs) as microelectrodes without any postsynthesis functionalization, we have developed in this study a new method for in vivo monitoring of ascorbate with high selectivity and reproducibility. The VACNT-CFs are formed via pyrolysis of iron phthalocyanine (FePc) on the carbon fiber support. After electrochemical pretreatment in 1.0 M NaOH solution, the pristine VACNT-CF microelectrodes exhibit typical microelectrode behavior with fast electron transfer kinetics for electrochemical oxidation of ascorbate and are useful for selective ascorbate monitoring even with other electroactive species (e.g., dopamine, uric acid, and 5-hydroxytryptamine) coexisting in rat brain. Pristine VACNT-CFs are further demonstrated to be a reliable and stable microelectrode for in vivo recording of the dynamic increase of ascorbate evoked by intracerebral infusion of glutamate. Use of a pristine VACNT-CF microelectrode can effectively avoid any manual electrode modification and is free from person-to-person and/or electrode-to-electrode deviations intrinsically associated with conventional CF electrode fabrication, which often involves electrode surface modification with randomly distributed CNTs or other pretreatments, and hence allows easy fabrication of highly selective, reproducible, and stable microelectrodes even by nonelectrochemists. Thus, this study offers a new and reliable platform for in vivo monitoring of neurochemicals (e.g., ascorbate) to largely facilitate future studies on the neurochemical processes involved in various physiological events.
Mittova, V O; Igamberdiev, A U
2000-01-01
Light-determined activation of ferments of ascorbate-glutation cycle, ascorbate-oxidase in chloroplasts and cytosol is demonstrated as well as ascorbate-peroxidase, monodehydroascorbate-reductase, glutation-reductase and ascorbate-oxydase in mitochondria. On the other hands activity of mitochondrial dehydroascorbate-reductase increased on reduction of light most likely due to function of electron transport from glutation to dehydroascorbate in mitochondria. Glutation metabolism is proved to be endogenic catalytic process where the amount reconstructed glutation changes slowly with a delay and gradually follow light changes. Light dependable changes of glutation content in chloroplasts ensure resistance of ferment system again hydrogen peroxide and superoxide radicals that generate intensively at light.
Capcarova, M; Kolesarova, A; Kalafova, A; Bulla, J; Sirotkin, A V
2015-07-01
The aim of the present study was to determine the activity of superoxide dismutase (SOD), total antioxidant status (TAS) of the hen granulosa cells, and selected biochemical parameters, including calcium, phosphorus, sodium, potassium, glucose, cholesterol, proteins, in the culture medium of granulosa cells after exposing them to ascorbic acid in vitro conditions. Ovarian granulosa cells of hens were incubated with various doses of ascorbic acid (E1 0.09 mg/ml, E2 0.13 mg/ml, E3 0.17 mg/ml, E4 0.33 mg/ml, E5 0.5 mg/ml). Ascorbic acid did not manifest antioxidant potential and higher doses of ascorbic acid (0.17; 0.33 and 0.5 mg/ml) decreased the activity of SOD in granulosa cells. Vitamin application resulted in a significantly (p<0.05) higher accumulation of Na+ and K+ in culture media of granulosa cells and decreased the concentration of glucose and proteins. These results indicate that ascorbic acid might be involved in the regulation of selected biochemical and physiological processes in ovarian granulosa cells.
Torres, P; Galleguillos, P; Lissi, E; López-Alarcón, C
2008-10-15
The oxygen radical absorbance capacity (ORAC) methodology has been employed to estimate the antioxidant capacity of human blood plasma and human urine using pyrogallol red (ORAC-PGR) as target molecule. Uric acid, reduced glutathione, human serum albumin, and ascorbic acid (ASC) inhibited the consumption of pyrogallol red, but only ASC generated an induction time. Human blood plasma and human urine protected efficiently pyrogallol red. In these assays, both biological fluids generated neat induction times that were removed by ascorbate oxidase. From these results, ORAC-PGR method could be proposed as a simple alternative to evaluate an ORAC index and, simultaneously, to estimate the concentration of ascorbic acid in human blood plasma or human urine.
Chapple, Iain Lc; Matthews, John B; Wright, Helen J; Scott, Ann E; Griffiths, Helen R; Grant, Melissa M
2013-01-01
Periodontitis, a ubiquitous chronic inflammatory disease, is associated with reduced antioxidant defences and neutrophil hyperactivity in terms of reactive oxygen species (ROS) generation. Its phenotype is thus characterized by oxidative stress. We have determined the effect of antioxidant micronutrients ascorbate and α-tocopherol on neutrophil ROS generation. Peripheral neutrophils from periodontally-healthy individuals (n = 20) were challenged with phorbol myristate acetate, IgG-opsonised Staphylococcus aureus, Fusobacterium nucleatum or PBS in the presence and absence of micronutrients (50 µM). Total and extracellular ROS were measured by luminol and isoluminol chemiluminescence respectively. Total and extracellular unstimulated, baseline ROS generation was unaffected by α-tocopherol, but inhibited by ascorbate and a combination of both micronutrients. Fcγ-receptor (Fcγ-R)-stimulated total or extracellular ROS generation was not affected by the presence of individual micronutrients. However, the combination significantly reduced extracellular FcγR-stimulated ROS release. Neither micronutrient inhibited TLR-stimulated total ROS, but the combination caused inhibition. Ascorbate and the micronutrient combination, but not α-tocopherol, inhibited extracellular ROS release by TLR-stimulated cells. Such micronutrient effects in vivo could be beneficial in reducing collateral tissue damage in chronic inflammatory diseases, such as periodontitis, while retaining immune-mediated neutrophil function.
ERIC Educational Resources Information Center
Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.
2014-01-01
An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…
Ascorbic Acid Prevents VEGF-induced Increases in Endothelial Barrier Permeability
Ulker, Esad; Parker, William H.; Raj, Amita; Qu, Zhi-chao; May, James M.
2015-01-01
Vascular endothelial growth factor (VEGF) increases endothelial barrier permeability, an effect that may contribute to macular edema in diabetic retinopathy. Since vitamin C, or ascorbic acid, can tighten the endothelial permeability barrier, we examined whether it could prevent the increase in permeability due to VEGF in human umbilical vein endothelial cells (HUVECs). As previously observed, VEGF increased HUVEC permeability to radiolabeled inulin within 60 min in a concentration-dependent manner. Loading the cells with increasing concentrations of ascorbate progressively prevented the leakage caused by 100 ng/ml VEGF, with a significant inhibition at 13 μM and complete inhibition at 50 μM. Loading cells with 100 μM ascorbate also decreased basal generation of reactive oxygen species and prevented the increase caused by both 100 ng/ml VEGF. VEGF treatment decreased intracellular ascorbate by 25%, thus linking ascorbate oxidation to its prevention of VEGF-induced barrier leakage. The latter was blocked by treating the cells with 60 μM L-NAME (but not D-NAME) as well as by 30 μM sepiapterin, a precursor of tetrahydrobiopterin that is required for proper function of endothelial nitric oxide synthase (eNOS). These findings suggest that VEGF-induced barrier leakage uncouples eNOS. Ascorbate inhibition of the VEGF effect could thus be due either to scavenging superoxide or to peroxynitrite generated by the uncoupled eNOS, or more likely to its ability to recycle tetrahydrobiopterin, thus avoiding enzyme uncoupling in the first place. Ascorbate prevention of VEGF-induced increases in endothelial permeability opens the possibility that its repletion could benefit diabetic macular edema. PMID:26590088
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, Kenichi; Nakamura, Nobuhumi; Ohno, Hiroyuki
Steady-state kinetics of Acremonium sp. HI-25 ascorbate oxidase toward p-hydroquinone derivatives have been examined by using an electrochemical analysis based on the theory of steady-state bioelectrocatalysis. The electrochemical technique has enabled one to examine the influence of electronic and chemical properties of substrates on the activity. It was proven that the oxidative activity of ascorbate oxidase was dominated by the highly selective substrate-binding affinity based on electrostatic interaction beyond the one-electron redox potential difference between ascorbate oxidase's type 1 copper site and substrate.
Investigation of antioxidant properties of metal ascorbates and their mixtures by voltammetry
NASA Astrophysics Data System (ADS)
Vtorushina, A. N.; Nikonova, E. D.
2015-04-01
The paper describes modern ways for selection of anti-radical substances. Molding of such components with a carbon-based material decreases the rate of its oxidative destruction. Addition of such a component to a carbon-based material decreases the rate of its oxidative destruction. The purpose of this study is to determine the antioxidant activity of ascorbates metals (Ca, Mg, Li, Co, Fe), used in the practice of medicine, as well as mixtures based on them together with well-known antioxidants. In this article we examine the effect of metals on the process of ascorbate oxygen electroreduction. From these ascorbates lithium and magnesium ascorbate showed the greatest activity toward cathode oxygen reduction process. Also mixtures with well-known examined antioxidants ascorbate (glucose, dihydroquercetin) were investigated at different concentrations of components. It is shown that the multicomponent mixtures exhibit lower activity than the individual drugs. Recommended the creation of drugs on the basis of ascorbate Mg and Li with not more than 3 number of components.
Jawaheer, Shobha; White, S F; Rughooputh, S D D V; Cullen, David C
2003-10-15
Individual enzyme-based biosensors involving three-electrode systems were developed for the detection of analytes comprising markers of the stage of maturity and quality in selected fruits of economic importance to tropical countries. Importantly, a common fabrication format has been developed to simplify manufacture and allow future integration of the individual sensors into a single multi-sensor array. Specifically, sensors for beta-D-glucose, total D-glucose, sucrose and ascorbic acid have been developed. Pectin, a natural polysaccharide present in plant cells, was used as a novel matrix to enhance enzyme entrapment and stabilisation in the sensors. Except for ascorbic acid, all the sensors function via the detection of enzymatically generated H2O2 at rhodinised carbon electrodes. Since ascorbic acid is electrochemically active at the working potential chosen (+350 mV vs. Ag/AgCl), it was measured directly. Enzyme sensors demonstrated expected response with respect to their substrates, typically 0-0.8 microA/20 mm2 electrode area response over analyte ranges of 0-7 mM. Interferences related to electrochemically active compounds present in fruits under study were significantly reduced by inclusion of a suitable cellulose acetate (CA) membrane or by enzymatic inactivation with ascorbate oxidase. Initial development was carried out into production of biosensor arrays. CA membranes were used to improve the linear range of the sensors, producing up to a fivefold improvement in the detection range compared to sensors without an additional diffusion barrier.
Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin*
Parker, William H.; Qu, Zhi-chao; May, James M.
2015-01-01
Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. PMID:26152729
NASA Astrophysics Data System (ADS)
Salkić, M.; Selimović, A.; Pašalić, H.; Keran, H.
2014-03-01
A selective and accurate direct spectrophotometric method was developed for the determination of L-as cor bic acid in dietary supplements. Background correction was based on the oxidation of L-ascorbic acid by potassi um peroxydisulfate in an acidic medium. The molar absorptivity of the proposed method was 1.41 · 104 l/(mol · cm) at 265 nm. The method response was linear up to an L-ascorbic acid concentration of 12.00 μg/ml. The detection limit was 0.11 μg/ml, and the relative standard deviation was 0.9 % (n = 7) for 8.00 μg/ml L-ascorbic acid. Other compounds commonly found in the dietary supplements did not interfere with the detection of L-ascorbic acid. The proposed procedure was successfully applied to the determination of L-ascorbic acid in these supplements, and the results obtained agreed with those obtained by iodine titration.
Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
Cobley, James N; McHardy, Helen; Morton, James P; Nikolaidis, Michalis G; Close, Graeme L
2015-07-01
The exogenous antioxidants vitamin C (ascorbate) and vitamin E (α-tocopherol) often blunt favorable cell signaling responses to exercise, suggesting that redox signaling contributes to exercise adaptations. Current theories posit that this antioxidant paradigm interferes with redox signaling by attenuating exercise-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. The well-documented in vitro antioxidant actions of ascorbate and α-tocopherol and characterization of the type and source of the ROS/RNS produced during exercise theoretically enable identification of redox-dependent mechanisms responsible for the blunting of favorable cell signaling responses to exercise. This review aimed to apply this reasoning to determine how the aforementioned antioxidants might attenuate exercise-induced ROS/RNS production. The principal outcomes of this analysis are (1) neither antioxidant is likely to attenuate nitric oxide signaling either directly (reaction with nitric oxide) or indirectly (reaction with derivatives, e.g., peroxynitrite); (2) neither antioxidant reacts appreciably with hydrogen peroxide, a key effector of redox signaling; (3) ascorbate but not α-tocopherol has the capacity to attenuate exercise-induced superoxide generation; and (4) alternate mechanisms, namely pro-oxidant side reactions and/or reduction of bioactive oxidized macromolecule adducts, are unlikely to interfere with exercise-induced redox signaling. Out of all the possibilities considered, ascorbate-mediated suppression of superoxide generation with attendant implications for hydrogen peroxide signaling is arguably the most cogent explanation for blunting of favorable cell signaling responses to exercise. However, this mechanism is dependent on ascorbate accumulating at sites rich in NADPH oxidases, principal contributors to contraction-mediated superoxide generation, and outcompeting nitric oxide and superoxide dismutase isoforms. The major conclusions of this review are: (1) direct evidence for interference of ascorbate and α-tocopherol with exercise-induced ROS/RNS production is lacking; (2) theoretical analysis reveals that both antioxidants are unlikely to have a major impact on exercise-induced redox signaling; and (3) it is worth considering alternate redox-independent mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Mahapatra, Santanu Kar; Chakraborty, Subhankari Prasad; Roy, Somenath
2011-01-01
The aim of this present study was to evaluate the immune functions and immune responses in nicotine-induced (10 mM) macrophages and concurrently establish the immunomodulatory role of aqueous extract of Ocimum gratissimum (Ae-Og) and ascorbic acid. In this study, nitrite generations and some phenotype functions by macrophages were studied. Beside that, release of Th1 cytokines (TNF-α, IL-12) and Th2 cytokines (IL-10, TGF-β) was measured by ELISA, and the expression of these cytokines at mRNA level was analyzed by real-time PCR. Ae-Og, at a dose of 10 μg/mL, significantly reduced the nicotine-induced NO generation and iNOSII expression. Similar kinds of response were observed with supplementation of ascorbic acid (0.01 mM). The administration of Ae-Og and ascorbic acid increased the decreased adherence, chemotaxis, phagocytosis, and intracellular killing of bacteria in nicotine-treated macrophages. Ae-Og and ascorbic acid were found to protect the murine peritoneal macrophages through downregulation of Th1 cytokines in nicotine-treated macrophages with concurrent activation of Th2 responses. These findings strongly enhanced our understanding of the molecular mechanism leading to nicotine-induced suppression of immune functions and provide additional rationale for application of anti-inflammatory therapeutic approaches by O. gratissimum and ascorbic acid for different inflammatory disease prevention and treatment during nicotine toxicity. PMID:22220218
Vitamin C transport and its role in the central nervous system
May, James M.
2013-01-01
Vitamin C, or ascorbic acid, is important as an antioxidant and participates in numerous cellular functions. Although it circulates in plasma in micromolar concentrations, it reaches millimolar concentrations in most tissues. These high ascorbate cellular concentrations are thought to be generated and maintained by the SVCT2 (Slc23a2), a specific transporter for ascorbate. The vitamin is also readily recycled from its oxidized forms inside cells. Neurons in the central nervous system (CNS) contain some of the highest ascorbic acid concentrations of mammalian tissues. Intracellular ascorbate serves several functions in the CNS, including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. The importance of the SVCT2 for CNS function is supported by the finding that its targeted deletion in mice causes widespread cerebral hemorrhage and death on post-natal day one. Neuronal ascorbate content as maintained by this protein also has relevance for human disease, since ascorbate supplements decrease infarct size in ischemia-reperfusion injury models of stroke, and since ascorbate may protect neurons from the oxidant damage associated with neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis and the extent to which ascorbate affects brain function and antioxidant defenses in the CNS. PMID:22116696
Martinello, Flávia; Luiz da Silva, Edson
2006-11-01
Ascorbic acid interferes negatively in peroxidase-based tests (Trinder method). However, the precise mechanism remains unclear for tests that use peroxide, a phenolic compound and 4-aminophenazone (4-AP). We determined the chemical mechanism of this interference, by examining the effects of ascorbic acid in the reaction kinetics of the production and reduction of the oxidized chromophore in urate, cholesterol, triglyceride and glucose tests. Reaction of ascorbic acid with the Trinder method constituents was also verified. Ascorbic acid interfered stoichiometrically with all tests studied. However, it had two distinct effects on the reaction rate. In the urate test, ascorbic acid decreased the chromophore formation with no change in its production kinetics. In contrast, in cholesterol, triglyceride and glucose tests, an increase in the lag phase of color development occurred. Of all the Trinder constituents, only peroxide reverted the interference. In addition, ascorbic acid did not interfere with oxidase activity nor reduce significantly the chromophore formed. Peroxide depletion was the predominant chemical mechanism of ascorbic acid interference in the Trinder method with phenolics and 4-AP. Distinctive effects of ascorbic acid on the reaction kinetics of urate, cholesterol, glucose and triglyceride might be due to the rate of peroxide production by oxidases.
Long, Lee Hua; Halliwell, Barry
2012-01-06
Several phenolic compounds as well as ascorbate can oxidise in certain cell culture media (especially Dulbecco's modified Eagle's medium (DMEM)) to generate hydrogen peroxide. Addition of oxaloacetate decreased the levels of H(2)O(2) detected and the oxaloacetate was depleted. Oxaloacetate was approximately as effective as pyruvate in decreasing H(2)O(2) levels and more effective than α-ketoglutarate. Our data raise important issues to consider when interpreting the behaviour and metabolism of cells in culture (which are both altered by the oxidative stress of cell culture) and their apparent response to addition of autooxidisable compounds such as ascorbate and epigallocatechin gallate. Copyright © 2011 Elsevier Inc. All rights reserved.
1978-02-01
abatement Ascorbic acid TNT process Purification of dinitrotoluenes Specification grade TNT 20. ABST RACT ( C f~~.. se reverse .f ~~ If nse,ee s’ d...inexpensive carbohydrates, such that the resulting mixture , upon subsequent nitra tion , would yield specification grade TNT. Using ascorbic acid as a... acid solution, the undesired DNT isomers were considerably reduced, whereas the desired 2,4- and 2,6-DNT’s were virtually unaffected . 2 UNCLASSIFIED
Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin.
Parker, William H; Qu, Zhi-chao; May, James M
2015-08-28
Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Ilinoiu, Elida Cristina; Manea, Florica; Serra, Pier Andrea; Pode, Rodica
2013-01-01
The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications. PMID:23736851
Ilinoiu, Elida Cristina; Manea, Florica; Serra, Pier Andrea; Pode, Rodica
2013-06-03
The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications.
Sikora, Małgorzata; Świeca, Michał
2018-01-15
Enzymatic browning limits the postharvest life of minimally processed foods, thus the study selected the optimal inhibitors of polyphenol oxidase (PPO) and evaluated their effect on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. The sprouts treated with 2mM and 20mM ascorbic acid had a lowered PPO activity; compared to the control by 51% and 60%, respectively. The inhibition was reflected in a significant decrease in enzymatic browning. The sprouts treated with 20mM ascorbic acid had 22% and 23% higher phenolic content after 3 and 7days of storage, respectively. Both storage and ascorbic acid treatment increased potential bioaccessibility of phenolics. Generally, there was no effect of the treatments on the antioxidant capacity; however, a significant increase in the reducing potential was determined for the sprouts washed with 20mM ascorbic acid. In conclusion, ascorbic acid treatments may improve consumer quality of stored sprouts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemically differentiating ascorbate-mediated dissolution of quantum dots in cell culture media
NASA Astrophysics Data System (ADS)
Su, Cheng-Kuan; Sun, Yuh-Chang
2013-02-01
To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule.To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule. Electronic supplementary information (ESI) available: The operation sequence, optimized parameters, instrumental operation conditions, and schematic representations for the proposed sequential in-tube PTFE SPE-ICP-MS hyphenated system are provided. See DOI: 10.1039/c2nr33365a
Vitamin C enhances substantially formation of 5-hydroxymethyluracil in cellular DNA.
Modrzejewska, Martyna; Gawronski, Maciej; Skonieczna, Magdalena; Zarakowska, Ewelina; Starczak, Marta; Foksinski, Marek; Rzeszowska-Wolny, Joanna; Gackowski, Daniel; Olinski, Ryszard
2016-12-01
The most plausible mechanism behind active demethylation of 5-methylcytosine involves TET proteins which participate in oxidation of 5-methylcytosine to 5-hydroxymethylcytosine; the latter is further oxidized to 5-formylcytosine and 5-carboxycytosine. 5-Hydroxymethyluracil can be also generated from thymine in a TET-catalyzed process. Ascorbate was previously demonstrated to enhance generation of 5-hydroxymethylcytosine in cultured cells. The aim of this study was to determine the levels of the abovementioned TET-mediated oxidation products of 5-methylcytosine and thymine after addition of ascorbate, using an isotope-dilution automated online two-dimensional ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Intracellular concentration of ascorbate was determined by means of ultra-performance liquid chromatography with UV detection. Irrespective of its concentration in culture medium (10-100µM) and inside the cell, ascorbate stimulated a moderate (2- to 3-fold) albeit persistent (up to 96-h) increase in the level of 5-hydroxymethylcytosine. However, exposure of cells to higher concentrations of ascorbate (100µM or 1mM) stimulated a substantial increase in 5-formylcytosine and 5-carboxycytosine levels. Moreover, for the first time we demonstrated a spectacular (up to 18.5-fold) increase in 5-hydroxymethyluracil content what, in turn, suggests that TET enzymes contributed to the presence of the modification in cellular DNA. These findings suggest that physiological concentrations of ascorbate in human serum (10-100µM) are sufficient to maintain a stable level of 5-hydroxymethylcytosine in cellular DNA. However, markedly higher concentrations of ascorbate (ca. 100µM in the cell milieu or ca. 1mM inside the cell) were needed to obtain a sustained increase in 5-formylcytosine, 5-carboxycytosine and 5-hydroxymethyluracil levels. Such feedback to elevated concentrations of ascorbate may reflect adaptation of the cell to environmental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Manurung, I. R.; Rosmayati; Rahmawati, N.
2018-02-01
Antioxidant applications are expected to reduce the adverse effects of soil saline. This research was conducted in plastic house, Plant Tissue Laboratory Faculty of Agriculture and Plant Physiology Laboratory Faculty of Mathematic and Natural Science, Universitas Sumatera Utara, Medan also in Research Centers and Industry Standardization, Medan from July-December 2016. The objective of the research was to know the effect of various antioxidant treatments with different concentrations (control, ascorbic acid 250, 500 and 750 ppm; salicylic acid 250, 500 and 750 ppm; α-tocopherol 250, 500 and 750 ppm) on fourth generation soybean physiology in saline condition (Electric Conductivity 5-6 dS/m). The results of this research showed that the antioxidant type and concentration affected not significantly to physiology of fourth generation soybean. Descriptively the highest average of superoxide dismutase and peroxide dismutase was showed on ascorbic acid 250 ppm. The highest average of ascorbate peroxidase was showed on α-tocopherol 750 ppm. The highest average of carotenoid content was showed on ascorbic acid 500 ppm. The highest average of chlorophyll content was showed on α-tocopherol 250 ppm. The highest average of ratio of K/Na was showed on salicylic acid 250 ppm.
DNA damage induced by ascorbate in the presence of Cu2+.
Kobayashi, S; Ueda, K; Morita, J; Sakai, H; Komano, T
1988-01-25
DNA damage induced by ascorbate in the presence of Cu2+ was investigated by use of bacteriophage phi X174 double-stranded supercoiled DNA and linear restriction fragments as substrates. Single-strand cleavage was induced when supercoiled DNA was incubated with 5 microM-10 mM ascorbate and 50 microM Cu2+ at 37 degrees C for 10 min. The induced DNA damage was analyzed by sequencing of fragments singly labeled at their 5'- or 3'-end. DNA was cleaved directly and almost uniformly at every nucleotide by ascorbate and Cu2+. Piperidine treatment after the reaction showed that ascorbate and Cu2+ induced another kind of DNA damage different from the direct cleavage. The damage proceeded to DNA cleavage by piperidine treatment and was sequence-specific rather than random. These results indicate that ascorbate induces two classes of DNA damage in the presence of Cu2+, one being direct strand cleavage, probably via damage to the DNA backbone, and the other being a base modification labile to alkali treatment. These two classes of DNA damage were inhibited by potassium iodide, catalase and metal chelaters, suggesting the involvement of radicals generated from ascorbate hydroperoxide.
Modelling and analysis of a direct ascorbic acid fuel cell
NASA Astrophysics Data System (ADS)
Zeng, Yingzhi; Fujiwara, Naoko; Yamazaki, Shin-ichi; Tanimoto, Kazumi; Wu, Ping
L-Ascorbic acid (AA), also known as vitamin C, is an environmentally-benign and biologically-friendly compound that can be used as an alternative fuel for direct oxidation fuel cells. While direct ascorbic acid fuel cells (DAAFCs) have been studied experimentally, modelling and simulation of these devices have been overlooked. In this work, we develop a mathematical model to describe a DAAFC and validate it with experimental data. The model is formulated by integrating the mass and charge balances, and model parameters are estimated by best-fitting to experimental data of current-voltage curves. By comparing the transient voltage curves predicted by dynamic simulation and experiments, the model is further validated. Various parameters that affect the power generation are studied by simulation. The cathodic reaction is found to be the most significant determinant of power generation, followed by fuel feed concentration and the mass-transfer coefficient of ascorbic acid. These studies also reveal that the power density steadily increases with respect to the fuel feed concentration. The results may guide future development and operation of a more efficient DAAFC.
Corpe, Christopher P.; Tu, Hongbin; Eck, Peter; Wang, Jin; Faulhaber-Walter, Robert; Schnermann, Jurgen; Margolis, Sam; Padayatty, Sebastian; Sun, He; Wang, Yaohui; Nussbaum, Robert L.; Espey, Michael Graham; Levine, Mark
2010-01-01
Levels of the necessary nutrient vitamin C (ascorbate) are tightly regulated by intestinal absorption, tissue accumulation, and renal reabsorption and excretion. Ascorbate levels are controlled in part by regulation of transport through at least 2 sodium-dependent transporters: Slc23a1 and Slc23a2 (also known as Svct1 and Svct2, respectively). Previous work indicates that Slc23a2 is essential for viability in mice, but the roles of Slc23a1 for viability and in adult physiology have not been determined. To investigate the contributions of Slc23a1 to plasma and tissue ascorbate concentrations in vivo, we generated Slc23a1–/– mice. Compared with wild-type mice, Slc23a1–/– mice increased ascorbate fractional excretion up to 18-fold. Hepatic portal ascorbate accumulation was nearly abolished, whereas intestinal absorption was marginally affected. Both heterozygous and knockout pups born to Slc23a1–/– dams exhibited approximately 45% perinatal mortality, and this was associated with lower plasma ascorbate concentrations in dams and pups. Perinatal mortality of Slc23a1–/– pups born to Slc23a1–/– dams was prevented by ascorbate supplementation during pregnancy. Taken together, these data indicate that ascorbate provided by the dam influenced perinatal survival. Although Slc23a1–/– mice lost as much as 70% of their ascorbate body stores in urine daily, we observed an unanticipated compensatory increase in ascorbate synthesis. These findings indicate a key role for Slc23a1 in renal ascorbate absorption and perinatal survival and reveal regulation of vitamin C biosynthesis in mice. PMID:20200446
Özel, Rıfat Emrah; Wallace, Kenneth N.; Andreescu, Silvana
2011-01-01
We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/µM, a linear range from 2 to 100 nM and a reproducibility of 6.5 % for n=6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels. PMID:21601035
Yan, Xiuqin; Zhang, Xue; Lu, Min; He, Yong; An, Huaming
2015-04-25
Rosa roxburghii Tratt. is a well-known ornamental rose species native to China. In addition, the fruits of this species are valued for their nutritional and medicinal characteristics, especially their high ascorbic acid (AsA) levels. Nevertheless, AsA biosynthesis in R. roxburghii fruit has not been explored in detail because of a lack of genomic resources for this species. High-throughput transcriptomic sequencing generating large volumes of transcript sequence data can aid in gene discovery and molecular marker development. In this study, we generated more than 53 million clean reads using Illumina paired-end sequencing technology. De novo assembly yielded 106,590 unigenes, with an average length of 343 bp. On the basis of sequence similarity to known proteins, 9301 and 2393 unigenes were classified into Gene Ontology and Clusters of Orthologous Group categories, respectively. There were 7480 unigenes assigned to 124 pathways in the Kyoto Encyclopedia of Gene and Genome pathway database. BLASTx searches identified 498 unique putative transcripts encoding various transcription factors, some known to regulate fruit development. qRT-PCR validated the expressions of most of the genes encoding the main enzymes involved in ascorbate biosynthesis. In addition, 9131 potential simple sequence repeat (SSR) loci were identified among the unigenes. One hundred and two primer pairs were synthesized and 71 pairs produced an amplification product during initial screening. Among the amplified products, 30 were polymorphic in the 16 R. roxburghii germplasms tested. Our study was the first to produce a large volume of transcriptome data from R. roxburghii. The resulting sequence collection is a valuable resource for gene discovery and marker-assisted selective breeding in this rose species. Copyright © 2015 Elsevier B.V. All rights reserved.
Nelson, Michael T; Joksovic, Pavle M; Su, Peihan; Kang, Ho-Won; Van Deusen, Amy; Baumgart, Joel P; David, Laurence S; Snutch, Terrance P; Barrett, Paula Q; Lee, Jung-Ha; Zorumski, Charles F; Perez-Reyes, Edward; Todorovic, Slobodan M
2007-11-14
T-type Ca2+ channels (T-channels) are involved in the control of neuronal excitability and their gating can be modulated by a variety of redox agents. Ascorbate is an endogenous redox agent that can function as both an anti- and pro-oxidant. Here, we show that ascorbate selectively inhibits native Ca(v)3.2 T-channels in peripheral and central neurons, as well as recombinant Ca(v)3.2 channels heterologously expressed in human embryonic kidney 293 cells, by initiating the metal-catalyzed oxidation of a specific, metal-binding histidine residue in domain 1 of the channel. Our biophysical experiments indicate that ascorbate reduces the availability of Ca(v)3.2 channels over a wide range of membrane potentials, and inhibits Ca(v)3.2-dependent low-threshold-Ca2+ spikes as well as burst-firing in reticular thalamic neurons at physiologically relevant concentrations. This study represents the first mechanistic demonstration of ion channel modulation by ascorbate, and suggests that ascorbate may function as an endogenous modulator of neuronal excitability.
Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng
2014-11-01
GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.
Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements.
Rabovsky, Alexander B; Komarov, Andrei M; Ivie, Jeremy S; Buettner, Garry R
2010-11-23
Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present.
Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias
2016-01-01
Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth muscle cells, assayed by measuring intracellular collagen content. We observed increased intracellular levels of ascorbate under supplementation with elevated doses of ascorbic acid, as well as its lipid soluble derivative ascorbyl palmitate. Nifedipine reduced ascorbic acid intracellular influx in cultured aortic smooth muscle cells with nifedipine (50 µM) compared to control. Adverse effects of nifedipine were neutralized either by an increased level of cell supplementation with ascorbic acid or by substituting it with ascorbyl palmitate. These studies suggest that adverse effects of channel blockers could be caused by their weakening the arterial wall integrity by interfering with proper extracellular matrix formation. In conclusion, these studies confirm the adverse effects of channel blockers on collagen type l and lV deposition, the key ECM components essential for maintaining optimal structural integrity of the arterial walls. Ascorbate supplementation reversed channel blocker inhibition of these collagen types synthesis and deposition. The results of this study imply the benefits of ascorbate and ascorbate palmitate supplementation in medical management of cardiovascular disease in order to compensate for adverse effects of channel blockers. PMID:27335688
Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias
2016-01-01
Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth muscle cells, assayed by measuring intracellular collagen content. We observed increased intracellular levels of ascorbate under supplementation with elevated doses of ascorbic acid, as well as its lipid soluble derivative ascorbyl palmitate. Nifedipine reduced ascorbic acid intracellular influx in cultured aortic smooth muscle cells with nifedipine (50 µM) compared to control. Adverse effects of nifedipine were neutralized either by an increased level of cell supplementation with ascorbic acid or by substituting it with ascorbyl palmitate. These studies suggest that adverse effects of channel blockers could be caused by their weakening the arterial wall integrity by interfering with proper extracellular matrix formation. In conclusion, these studies confirm the adverse effects of channel blockers on collagen type l and lV deposition, the key ECM components essential for maintaining optimal structural integrity of the arterial walls. Ascorbate supplementation reversed channel blocker inhibition of these collagen types synthesis and deposition. The results of this study imply the benefits of ascorbate and ascorbate palmitate supplementation in medical management of cardiovascular disease in order to compensate for adverse effects of channel blockers.
Reduction of protein radicals by GSH and ascorbate: potential biological significance.
Gebicki, Janusz M; Nauser, Thomas; Domazou, Anastasia; Steinmann, Daniel; Bounds, Patricia L; Koppenol, Willem H
2010-11-01
The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05±0.05)×10(5) M(-1) s(-1), while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stress.
Jimenez, A.; Hernandez, J. A.; Del Rio, L. A.; Sevilla, F.
1997-01-01
The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles. PMID:12223704
Performance of structured lipids incorporating selected phenolic and ascorbic acids.
Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix
2015-04-15
Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mitochondria, Energy and Cancer: The Relationship with Ascorbic Acid
González, Michael J.; Rosario-Pérez, Glorivee; Guzmán, Angélica M.; Miranda-Massari, Jorge R.; Duconge, Jorge; Lavergne, Julio; Fernandez, Nadia; Ortiz, Norma; Quintero, Ana; Mikirova, Nina; Riordan, Neil H.; Ricart, Carlos M.
2012-01-01
Ascorbic Acid (AA) has been used in the prevention and treatment of cancer with reported effectiveness. Mitochondria may be one of the principal targets of ascorbate's cellular activity and it may play an important role in the development and progression of cancer. Mitochondria, besides generating adenosine triphosphate (ATP), has a role in apoptosis regulation and in the production of regulatory oxidative species that may be relevant in gene expression. At higher concentrations AA may increase ATP production by increasing mitochondrial electron flux, also may induce apoptotic cell death in tumor cell lines, probably via its pro-oxidant action In contrast, at lower concentrations AA displays antioxidant properties that may prevent the activation of oxidant-induced apoptosis. These concentration dependent activities of ascorbate may explain in part the seemingly contradictory results that have been reported previously. PMID:23565030
Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development
Ni, Zhiyou; Lin, Lijin; Tang, Yi; Wang, Zhihui; Wang, Xun; Wang, Jin; Lv, Xiulan; Xia, Hui
2017-01-01
To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium ‘Hongdeng’), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit. PMID:28245268
Kumar, Ajay; Chelvam, Venkatesh; Sakkarapalayam, Mahalingam; Li, Guo; Sanchez-Cruz, Pedro; Piñero, Natasha S.; Low, Philip S.; Alegria, Antonio E.
2016-01-01
Almost all cells are easily killed by exposure to potent oxidants. Indeed, major pathogen defense mechanisms in both animal and plant kingdoms involve production of an oxidative burst, where host defense cells show an invading pathogen with reactive oxygen species (ROS). Although cancer cells can be similarly killed by ROS, development of oxidant-producing chemotherapies has been limited by their inherent nonspecificity and potential toxicity to healthy cells. In this paper, we describe the targeting of an ROS-generating molecule selectively to tumor cells using folate as the tumor-targeting ligand. For this purpose, we exploit the ability of 9,10-phenanthraquinone (PHQ) to enhance the continuous generation of H2O2 in the presence of ascorbic acid to establish a constitutive source of ROS within the tumor mass. We report here that incubation of folate receptor-expressing KB cells in culture with folate-PHQ plus ascorbate results in the death of the cancer cells with an IC50 of ~10 nM (folate-PHQ). We also demonstrate that a cleavable spacer linking folate to PHQ is significantly inferior to a noncleavable spacer, in contrast to most other folate-targeted therapeutic agents. Unfortunately, no evidence for folate-PHQ mediated tumor regression in murine tumor models is obtained, suggesting that unanticipated impediments to generation of cytotoxic quantities of ROS in vivo are encountered. Possible mechanisms and potential solutions to these unanticipated results are offered. PMID:27066312
Naumann, Robert; Kerzig, Christoph; Goez, Martin
2017-11-01
The ruthenium-tris-bipyridyl dication as catalyst combined with the ascorbate dianion as bioavailable sacrificial donor provides the first regenerative source of hydrated electrons for chemical syntheses on millimolar scales. This electron generator is operated simply by illumination with a frequency-doubled Nd:YAG laser (532 nm) running at its normal repetition rate. Much more detailed information than by product studies alone was obtained by photokinetical characterization from submicroseconds (time-resolved laser flash photolysis) up to one hour (preparative photolysis). The experiments on short timescales established a reaction mechanism more complex than previously thought, and proved the catalytic action by unchanged concentration traces of the key transients over a number of flashes so large that the accumulated electron total surpassed the catalyst concentration many times. Preparative photolyses revealed that the sacrificial donor greatly enhances the catalyst stability through quenching the initial metal-to-ligand charge-transfer state before destructive dd states can be populated from it, such that the efficiency of this electron generator is no longer limited by catalyst decomposition but by electron scavenging by the accumulating oxidation products of the ascorbate. Applications covered dechlorinations of selected aliphatic and aromatic chlorides and the reduction of a model ketone. All these substrates are impervious to photoredox catalysts exhibiting lower reducing power than the hydrated electron, but the combination of an extremely negative standard potential and a long unquenched life allowed turnover numbers up to 1400 with our method.
NASA Astrophysics Data System (ADS)
Kwak, Kyuju; Kumar, S. Senthil; Lee, Dongil
2012-06-01
We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid.We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid. Electronic supplementary information (ESI) available: TEM image of GS-Au25, SWV of GS-Au25 in solution, effect of scan rate on the CV of GS-Au25ME, CVs of DA and AA at the bare GCE and CVs of GS-Au25ME at different pHs. See DOI: 10.1039/c2nr30481c
Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A
2008-11-01
We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.
Industrial production of L-ascorbic Acid (vitamin C) and D-isoascorbic acid.
Pappenberger, Günter; Hohmann, Hans-Peter
2014-01-01
L-ascorbic acid (vitamin C) was first isolated in 1928 and subsequently identified as the long-sought antiscorbutic factor. Industrially produced L-ascorbic acid is widely used in the feed, food, and pharmaceutical sector as nutritional supplement and preservative, making use of its antioxidative properties. Until recently, the Reichstein-Grüssner process, designed in 1933, was the main industrial route. Here, D-sorbitol is converted to L-ascorbic acid via 2-keto-L-gulonic acid (2KGA) as key intermediate, using a bio-oxidation with Gluconobacter oxydans and several chemical steps. Today, industrial production processes use additional bio-oxidation steps with Ketogulonicigenium vulgare as biocatalyst to convert D-sorbitol to the intermediate 2KGA without chemical steps. The enzymes involved are characterized by a broad substrate range, but remarkable regiospecificity. This puzzling specificity pattern can be understood from the preferences of these enyzmes for certain of the many isomeric structures which the carbohydrate substrates adopt in aqueous solution. Recently, novel enzymes were identified that generate L-ascorbic acid directly via oxidation of L-sorbosone, an intermediate of the bio-oxidation of D-sorbitol to 2KGA. This opens the possibility for a direct route from D-sorbitol to L-ascorbic acid, obviating the need for chemical rearrangement of 2KGA. Similar concepts for industrial processes apply for the production of D-isoascorbic acid, the C5 epimer of L-ascorbic acid. D-isoascorbic acid has the same conformation at C5 as D-glucose and can be derived more directly than L-ascorbic acid from this common carbohydrate feed stock.
Maniyar, Shaheen A; Jargar, Jameel G; Das, Swastika N; Dhundasi, Salim A; Das, Kusal K
2012-01-01
Objective To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29 °C was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively. Conclusions Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc + Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal nickel. PMID:23569901
A simple 2D composite image analysis technique for the crystal growth study of L-ascorbic acid.
Kumar, Krishan; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir
2017-06-01
This work was destined for 2D crystal growth studies of L-ascorbic acid using the composite image analysis technique. Growth experiments on the L-ascorbic acid crystals were carried out by standard (optical) microscopy, laser diffraction analysis, and composite image analysis. For image analysis, the growth of L-ascorbic acid crystals was captured as digital 2D RGB images, which were then processed to composite images. After processing, the crystal boundaries emerged as white lines against the black (cancelled) background. The crystal boundaries were well differentiated by peaks in the intensity graphs generated for the composite images. The lengths of crystal boundaries measured from the intensity graphs of composite images were in good agreement (correlation coefficient "r" = 0.99) with the lengths measured by standard microscopy. On the contrary, the lengths measured by laser diffraction were poorly correlated with both techniques. Therefore, the composite image analysis can replace the standard microscopy technique for the crystal growth studies of L-ascorbic acid. © 2017 Wiley Periodicals, Inc.
Dowdle, John; Ishikawa, Takahiro; Gatzek, Stephan; Rolinski, Susanne; Smirnoff, Nicholas
2007-11-01
Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.
Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements
2010-01-01
Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present. PMID:21092298
Inhalation exposure of rats to metal aerosol. I. Effects on pulmonary surfactant and ascorbic acid.
Kováciková, Z; Chorvatovicová, D
1992-02-01
Female albino Wistar rats were exposed to less than 5 microns particles separated from nickel refinery waste. The generated aerosol of 50 mg m-3 mainly consisted of metal oxides, the most toxic being NiO and Cr2O3. The exposure of 5 h per day, 5 days per week, lasted for 4 weeks or 4 months. At the end of the exposure period the amounts of pulmonary surfactant and ascorbic acid were estimated in both exposed and control rats. The amount of pulmonary surfactant was elevated after both exposure times, while ascorbic acid increased significantly (P less than 0.02) only after 4 weeks of exposure.
Reversible Reduction of Nitroxides to Hydroxylamines: the Roles for Ascorbate and Glutathione
Bobko, Andrey A.; Kirilyuk, Igor A.; Grigor'ev, Igor A.; Zweier, Jay L.; Khramtsov, Valery V.
2007-01-01
Biological applications of stable nitroxyl radicals, NR, include their use as contrast agents for magnetic resonance imaging, spin labels, superoxide dismutase mimics, and antioxidants. The rapid reduction of NR in biological samples into hydroxylamines, HA, significantly limits their application. In its turn, reoxidation of HA back to the NR has been used for detection of reactive oxygen species, ROS. In this work comparative studies of the reduction of pyrrolidine, imidazoline and imidazolidine NR by ascorbate were performed taking advantage of recently synthesized tetraethyl substituted NR with much higher stability towards reduction both in vitro and in vivo. Surprisingly, these NR kept 10-50% of initial intensity of electron paramagnetic resonance signal for about 1 h in the presence of hundred fold excess of ascorbate. To explain this data, reoxidation of the corresponding HA by ascorbate radical and dehydroascorbic acid back to the NR was proposed. This hypothesis was supported by direct measurement of the NR appearance from the HA upon ascorbate radical generation by ascorbate oxidase, or in the presence of the dehydroascorbic acid. The reversible reaction between NR and ascorbate was observed for the various types of the NR, and the rate constants for direct and reverse reactions were determined. The equilibrium constants for one-electron reduction of the tetraethyl substituted NR by ascorbate were found to be in the range from 2.65×10−6 to 10−5 which is significantly lower than corresponding values for the tetramethyl substituted NR (less or about 10−4). This explains an establishment of EPR-detectable quasi-equilibrium level of tetraethyl substituted NR in the presence of excess of ascorbate. The redox reactions of the NR-HA couple in ascorbate containing medium was found to be significantly affected by glutathione, GSH. This effect was attributed to the reduction of ascorbate radical by GSH, and the rate constant of this reaction was found to be equal to 10 M−1s−1. In summary, the data provide new insight into the redox chemistry of NR and HA, and significantly affect interpretation and strategy of their use as redox- and ROS-sensitive probes, or as antioxidants. PMID:17210453
Kataoka, M; Nishimura, K; Kambara, T
1983-12-01
A trace amount of molybdenum(VI) can be determined by using its catalytic effect on the oxidation of iodide to iodine by hydrogen peroxide in acidic medium. Addition of ascorbic acid added to the reaction mixture produces the Landolt effect, i.e., the iodine produced by the indicator reaction is reduced immediately by the ascorbic add. Hence the concentration of iodide begins to decrease once all the ascorbic acid has been consumed. The induction period is measured by monitoring the concentration of iodide ion with an iodide ion-selective electrode. The reciprocal of the induction period varies linearly with the concentration of molybdenum(VI). The most suitable pH and concentrations of hydrogen peroxide and potassium iodide are found to be 1.5, 5 and 10mM, respectively. An appropriate amount of ascorbic acid is added to the reaction mixture according to the concentration of molybdenum(VI) in the sample solution. A calibration graph with good proportionality is obtained for the molybdenum(VI) concentration range from 0.1 to 160 muM. Iron(III), vanadium(IV), zirconium(IV), tungsten(VI), copper(II) and chromium(VI) interfere, but iron(III) and copper(II) can be masked with EDTA.
2013-01-01
Background Excess light conditions induce the generation of reactive oxygen species (ROS) directly in the chloroplasts but also cause an accumulation and production of ROS in peroxisomes, cytosol and vacuoles. Antioxidants such as ascorbate and glutathione occur in all cell compartments where they detoxify ROS. In this study compartment specific changes in antioxidant levels and related enzymes were monitored among Arabidopsis wildtype plants and ascorbate and glutathione deficient mutants (vtc2-1 and pad2-1, respectively) exposed to different light intensities (50, 150 which was considered as control condition, 300, 700 and 1,500 μmol m-2 s-1) for 4 h and 14 d. Results The results revealed that wildtype plants reacted to short term exposure to excess light conditions with the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol and an increased activity of catalase in the leaves. Long term exposure led to an accumulation of ascorbate and glutathione mainly in chloroplasts. In wildtype plants an accumulation of ascorbate and hydrogen peroxide (H2O2) could be observed in vacuoles when exposed to high light conditions. The pad2-1 mutant reacted to long term excess light exposure with an accumulation of ascorbate in peroxisomes whereas the vtc2-1 mutant reacted with an accumulation of glutathione in the chloroplasts (relative to the wildtype) and nuclei during long term high light conditions indicating an important role of these antioxidants in these cell compartments for the protection of the mutants against high light stress. Conclusion The results obtained in this study demonstrate that the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol is an important reaction of plants to short term high light stress. The accumulation of ascorbate and H2O2 along the tonoplast and in vacuoles during these conditions indicates an important route for H2O2 detoxification under these conditions. PMID:23865417
Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.
Rao, M V; Paliyath, G; Ormrod, D P
1996-01-01
Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. PMID:8587977
Aortic wall damage in mice unable to synthesize ascorbic acid
Maeda, Nobuyo; Hagihara, Hiroyuki; Nakata, Yukiko; Hiller, Sylvia; Wilder, Jennifer; Reddick, Robert
2000-01-01
By inactivating the gene for l-gulono-γ-lactone oxidase, a key enzyme in ascorbic acid synthesis, we have generated mice that, like humans, depend on dietary vitamin C. Regular chow, containing about 110 mg/kg of vitamin C, is unable to support the growth of the mutant mice, which require l-ascorbic acid supplemented in their drinking water (330 mg/liter). Upon withdrawal of supplementation, plasma and tissue ascorbic acid levels decreased to 10–15% of normal within 2 weeks, and after 5 weeks the mutants became anemic, began to lose weight, and die. Plasma total antioxidative capacities were approximately 37% normal in homozygotes after feeding the unsupplemented diet for 3–5 weeks. As plasma ascorbic acid decreased, small, but significant, increases in total cholesterol and decreases in high density lipoprotein cholesterol were observed. The most striking effects of the marginal dietary vitamin C were alterations in the wall of aorta, evidenced by the disruption of elastic laminae, smooth muscle cell proliferation, and focal endothelial desquamation of the luminal surface. Thus, marginal vitamin C deficiency affects the vascular integrity of mice unable to synthesize ascorbic acid, with potentially profound effects on the pathogenesis of vascular diseases. Breeding the vitamin C-dependent mice with mice carrying defined genetic mutations will provide numerous opportunities for systematic studies of the role of antioxidants in health and disease. PMID:10639167
Trommer, Hagen; Böttcher, Rolf; Huschka, Christoph; Wohlrab, Wolfgang; Neubert, Reinhard H H
2005-08-01
This study is the continuation of our research into vitamin C and its possible effects on human skin after topical administration. The effects of ascorbic acid, iron ions and UV irradiation on stratum corneum lipid models were investigated. The lipid models used were: a simple system (linolenic acid dispersion), a complex system (liposomes consisting of dipalmitoylphosphatidylcholine, cholesterol and linolenic acid) and complex systems with additionally incorporated ceramides (types III and IV). The lipid peroxidation was quantified by the thiobarbituric acid assay. A human adult low-calcium high-temperature (HaCaT) keratinocytes cell culture was used as a second in-vitro model. The amount of intracellular peroxides was determined by measuring the fluorescence intensity using the dihydrorhodamine 123 assay. Electron paramagnetic resonance spectroscopy was used to study the influence of ascorbic acid and iron ions on the signal intensity of 5-doxylstearic acid during UV exposure. Ascorbic acid showed prooxidative properties in the thiobarbituric acid assay whereas cell protection was measured in the HaCaT keratinocytes experiments. Electron paramagnetic resonance investigations revealed different extents of free radical production generated by iron ions, ascorbic acid and UV irradiation. In evaluating the results from this study new aspects of the mechanism of lipid damage caused by these three factors were suggested, transcending the simple redox behaviour of ascorbic acid.
Aortic wall damage in mice unable to synthesize ascorbic acid.
Maeda, N; Hagihara, H; Nakata, Y; Hiller, S; Wilder, J; Reddick, R
2000-01-18
By inactivating the gene for L-gulono-gamma-lactone oxidase, a key enzyme in ascorbic acid synthesis, we have generated mice that, like humans, depend on dietary vitamin C. Regular chow, containing about 110 mg/kg of vitamin C, is unable to support the growth of the mutant mice, which require L-ascorbic acid supplemented in their drinking water (330 mg/liter). Upon withdrawal of supplementation, plasma and tissue ascorbic acid levels decreased to 10-15% of normal within 2 weeks, and after 5 weeks the mutants became anemic, began to lose weight, and die. Plasma total antioxidative capacities were approximately 37% normal in homozygotes after feeding the unsupplemented diet for 3-5 weeks. As plasma ascorbic acid decreased, small, but significant, increases in total cholesterol and decreases in high density lipoprotein cholesterol were observed. The most striking effects of the marginal dietary vitamin C were alterations in the wall of aorta, evidenced by the disruption of elastic laminae, smooth muscle cell proliferation, and focal endothelial desquamation of the luminal surface. Thus, marginal vitamin C deficiency affects the vascular integrity of mice unable to synthesize ascorbic acid, with potentially profound effects on the pathogenesis of vascular diseases. Breeding the vitamin C-dependent mice with mice carrying defined genetic mutations will provide numerous opportunities for systematic studies of the role of antioxidants in health and disease.
Inoue, H; Hirobe, M
1987-05-29
The interchange reaction of disulfides was caused by the copper(II)/ascorbic acid/O2 system. The incubation of two symmetric disulfides, L-cystinyl-bis-L-phenylalanine (PP) and L-cystinyl-bis-L-tyrosine (TT), with L-ascorbic acid and CuSO4 in potassium phosphate buffer (pH 7.2, 50 mM) resulted in the formation of an asymmetric disulfide, L-cystinyl-L-phenylalanine-L-tyrosine (PT), and the final ratio of PP:PT:TT was 1:2:1. As the reaction was inhibited by catalase and DMSO only at the initial time, hydroxyl radical generated by the copper(II)/ascorbic acid/O2 system seemed to be responsible for the initiation of the reaction. Oxytocin and insulin were denatured by this system, and catalase and DMSO similarly inhibited these denaturations. As the composition of amino acids was unchanged after the reaction, hydroxyl radical was thought to cause the cleavage and/or interchange reaction of disulfides to denature the peptides.
McNeish, Alister J; Nelli, Silvia; Wilson, William S; Dowell, Fiona J; Martin, William
2003-03-01
1. The ability of ascorbate to inhibit endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation was compared in the bovine perfused ciliary vascular bed and isolated rings of coronary artery. 2. Acetylcholine-induced, EDHF-mediated vasodilatation of the ciliary circulation was blocked following inclusion of ascorbate (50 micro M, 120 min) in the perfusion fluid. The blockade was highly selective since ascorbate had no effect on the vasodilator actions of the K(ATP) channel opener, levcromakalim, nor on the tonic vasodepressor action of basally released nitric oxide. 3. The possibility that concentration of ascorbate by the ciliary body was a prerequisite for blockade to occur was ruled out, since EDHF was still blocked when the anterior and posterior chambers were continuously flushed with Krebs solution or when both the aqueous and vitreous humour were drained. 4. Ascorbate at 50 micro M failed to affect bradykinin- or acetylcholine-induced, EDHF-mediated vasodilatation in rings of bovine coronary artery. Raising the concentration to 3 mM did produce blockade of EDHF, but this was nonselective, since vasodilator responses to endothelium-derived nitric oxide were also inhibited. 5. Thus, ascorbate (50 micro M) is not a universal blocker of EDHF. Whether its ability to block in the bovine ciliary circulation, but not in the coronary artery, is due to differences in the nature of EDHF at the two sites, differences in vessel size (resistance arterioles versus conduit artery), the presence or absence of flow, or to some other factor remains to be determined.
Cruces-Sande, Antón; Méndez-Álvarez, Estefanía; Soto-Otero, Ramón
2017-06-01
Copper is an essential metal for the function of many proteins related to important cellular reactions and also involved in the synaptic transmission. Although there are several mechanisms involved in copper homeostasis, a dysregulation in this process can result in serious neurological consequences, including degeneration of dopaminergic neurons. 6-Hydroxydopamine is a dopaminergic neurotoxin mainly used in experimental models of Parkinson's disease, whose neurotoxicity has been related to its ability to generate free radicals. In this study, we examined the effects induced by copper on 6-OHDA autoxidation. Our data show that both Cu + and Cu 2+ caused an increase in • OH production by 6-OHDA autoxidation, which was accompanied by an increase in the rate of both p-quinone formation and H 2 O 2 accumulation. The presence of ascorbate greatly enhanced this process by establishing a redox cycle which regenerates 6-OHDA from its p-quinone. However, the presence of glutathione did not change significantly the copper-induced effects. We observed that copper is able to potentiate the ability of 6-OHDA to cause both lipid peroxidation and protein oxidation, with the latter including a reduction in free-thiol content and an increase in carbonyl content. Ascorbate also increases the lipid peroxidation induced by the action of copper and 6-OHDA. Glutathione protects against the copper-induced lipid peroxidation, but does not reduce its potential to oxidize free thiols. These results clearly demonstrate the potential of copper to increase the capacity of 6-OHDA to generate oxidative stress and the ability of ascorbate to enhance this potential, which may contribute to the destruction of dopaminergic neurons. © 2017 International Society for Neurochemistry.
Nadal, Rebecca C; Rigby, Stephen E J; Viles, John H
2008-11-04
Oxidative stress plays a key role in Alzheimer's disease (AD). In addition, the abnormally high Cu(2+) ion concentrations present in senile plaques has provoked a substantial interest in the relationship between the amyloid beta peptide (Abeta) found within plaques and redox-active copper ions. There have been a number of studies monitoring reactive oxygen species (ROS) generation by copper and ascorbate that suggest that Abeta acts as a prooxidant producing H2O2. However, others have indicated Abeta acts as an antioxidant, but to date most cell-free studies directly monitoring ROS have not supported this hypothesis. We therefore chose to look again at ROS generation by both monomeric and fibrillar forms of Abeta under aerobic conditions in the presence of Cu(2+) with/without the biological reductant ascorbate in a cell-free system. We used a variety of fluorescence and absorption based assays to monitor the production of ROS, as well as Cu(2+) reduction. In contrast to previous studies, we show here that Abeta does not generate any more ROS than controls of Cu(2+) and ascorbate. Abeta does not silence the redox activity of Cu(2+/+) via chelation, but rather hydroxyl radicals produced as a result of Fenton-Haber Weiss reactions of ascorbate and Cu(2+) rapidly react with Abeta; thus the potentially harmful radicals are quenched. In support of this, chemical modification of the Abeta peptide was examined using (1)H NMR, and specific oxidation sites within the peptide were identified at the histidine and methionine residues. Our studies add significant weight to a modified amyloid cascade hypothesis in which sporadic AD is the result of Abeta being upregulated as a response to oxidative stress. However, our results do not preclude the possibility that Abeta in an oligomeric form may concentrate the redox-active copper at neuronal membranes and so cause lipid peroxidation.
EMERGE: Engineered Materials that Create Environments for ReGeneration via Electric Field
2015-10-01
lactic co-‐glycolic acid ) (PLGA) Injury Aminophylline REDD-‐2015-‐424 6 3. Accomplishments...laboratories. Previously, we used specific pharmacological activators (aminophylline, ascorbic acid *) or...electric signal and wound healing (shallow epithelial wounds). Aminophylline and ascorbic acid (10 mM)
Liu, JingJing; Tang, Duosi; Chen, Zhitao; Yan, Xiaomei; Zhong, Zhou; Kang, Longtian; Yao, Jiannian
2017-08-15
Alkaline phosphatase (ALP) as an essential enzyme plays an important role in clinical diagnoses and biomedical researches. Hence, the development of convenient and sensitivity assay for monitoring ALP is extremely important. In this work, on the basis of chemical redox strategy to modulate the fluorescence of nitrogen-doped graphene quantum dots (NGQDs), a novel label-free fluorescent sensing system for the detection of alkaline phosphatase (ALP) activity has been developed. The fluorescence of NGQDs is firstly quenched by ultrathin cobalt oxyhydroxide (CoOOH) nanosheets, and then restored by ascorbic acid (AA), which can reduce CoOOH to Co 2+ , thus the ALP can be monitored based on the enzymatic hydrolysis of L-ascorbic acid-2-phosphate (AAP) by ALP to generate AA. Quantitative evaluation of ALP activity in a range from 0.1 to 5U/L with the detection limit of 0.07U/L can be realized in this sensing system. Endowed with high sensitivity and selectivity, the proposed assay is capable of detecting ALP in biological system with satisfactory results. Meanwhile, this sensing system can be easily extended to the detection of various AA-involved analytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Xiaowen; Sheng, Kaixuan; Shi, Gaoquan
2014-09-21
Electrochemical detection of dopamine plays an important role in medical diagnosis. In this paper, we report a three-dimensional (3D) interpenetrating graphene electrode fabricated by electrochemical reduction of graphene oxide for selective detection of dopamine. This electrochemically reduced graphene oxide (ErGO) electrode was used directly without further functionalization or blending with other functional materials. This electrode can efficiently lower the oxidation potential of ascorbic acid; thus, it is able to selectively detect dopamine in the presence of ascorbic acid and uric acid. The ErGO-based biosensor exhibited a linear response towards dopamine in the concentration range of 0.1-10 μM with a low detection limit of 0.1 μM. Furthermore, this electrode has good reproducibility and environmental stability, and can be used to analyse real samples.
Ankireddy, Seshadri Reddy; Kim, Jongsung
2015-01-01
Dopamine is a neurotransmitter of the catecholamine family and has many important roles, especially in human brain. Several diseases of the nervous system, such as Parkinson's disease, attention deficit hyperactivity disorder, restless legs syndrome, are believed to be related to deficiency of dopamine. Several studies have been performed to detect dopamine by using electrochemical analysis. In this study, quantum dots (QDs) were used as sensing media for the detection of dopamine. The surface of the QDs was modified with l-cysteine by coupling reaction to increase the selectivity of dopamine. The fluorescence of cysteine-capped indium phosphide/zinc sulfide QDs was quenched by dopamine with various concentrations in the presence of ascorbic acid. This method shows good selectivity for dopamine detection, and the detection limit was 5 nM.
Ye, Xiaodong; Fels, Diane; Tovmasyan, Artak; Aird, Katherine M.; Dedeugd, Casey; Allensworth, Jennifer L.; Kos, Ivan; Park, Won; Spasojevic, Ivan; Devi, Gayathri R.; Dewhirst, Mark W.; Leong, Kam W.; Batinic-Haberle, Ines
2012-01-01
Due to the ability to easily accept and donate electrons Mn(III) N-alkylpyridylporphyrins (MnPs) can dismute O2˙−, reduce peroxynitrite, but also generate reactive species and behave as pro-oxidants if conditions favour such action. Herein two ortho isomers, MnTE-2-PyP5+, MnTnHex-2-PyP5+, and a meta isomer MnTnHex-3-PyP5+, which differ greatly with regard to their metal-centered reduction potential, E1/2 (MnIIIP/MnIIP) and lipophilicity, were explored. Employing MnIIIP/MnIIP redox system for coupling with ascorbate, these MnPs catalyze ascorbate oxidation and thus peroxide production. Consequently, cancer oxidative burden may be enhanced, which in turn would suppress its growth. Cytotoxic effects on Caco-2, Hela, 4T1, HCT116 and SUM149 were studied. When combined with ascorbate, MnPs killed cancer cells via peroxide produced outside of the cell. MnTE-2-PyP5+ was the most efficacious catalyst for peroxide production, while MnTnHex-3-PyP5+ is most prone to oxidative degradation with H2, and thus the least efficacious. A 4T1 breast cancer mouse study of limited scope and success was conducted. The tumour oxidative stress was enhanced and its microvessel density reduced when mice were treated either with ascorbate or MnP/ascorbate; the trend towards tumour growth suppression was detected. PMID:21859376
Yang, Ming; Barak, Otto F; Dujic, Zeljko; Madden, Dennis; Bhopale, Veena M; Bhullar, Jasjeet; Thom, Stephen R
2015-08-15
Predicated on evidence that diving-related microparticle generation is an oxidative stress response, this study investigated the role that oxygen plays in augmenting production of annexin V-positive microparticles associated with open-water SCUBA diving and whether elevations can be abrogated by ascorbic acid. Following a cross-over study design, 14 male subjects ingested placebo and 2-3 wk later ascorbic acid (2 g) daily for 6 days prior to performing either a 47-min dive to 18 m of sea water while breathing air (∼222 kPa N2/59 kPa O2) or breathing a mixture of 60% O2/balance N2 from a tight-fitting face mask at atmospheric pressure for 47 min (∼40 kPa N2/59 kPa O2). Within 30 min after the 18-m dive in the placebo group, neutrophil activation, and platelet-neutrophil interactions occurred, and the total number of microparticles, as well as subgroups bearing CD66b, CD41, CD31, CD142 proteins or nitrotyrosine, increased approximately twofold. No significant elevations occurred among divers after ingesting ascorbic acid, nor were elevations identified in either group after breathing 60% O2. Ascorbic acid had no significant effect on post-dive intravascular bubble production quantified by transthoracic echocardiography. We conclude that high-pressure nitrogen plays a key role in neutrophil and microparticle-associated changes with diving and that responses can be abrogated by dietary ascorbic acid supplementation. Copyright © 2015 the American Physiological Society.
Leite, Gabriel Adan Araújo; Figueiredo, Thamiris Moreira; Guerra, Marina Trevizan; Borges, Cibele Dos Santos; Fernandes, Fábio Henrique; Anselmo-Franci, Janete Aparecida; Kempinas, Wilma De Grava
2018-05-18
Obesity during childhood and adolescence is closely related to dysfunctions on lipid profile in children. Rosuvastatin is a statin that decreases serum total cholesterol. Ascorbic acid is an important antioxidant compound for male reproduction. Pre-pubertal male rats were distributed into six experimental groups that received saline solution 0.9% (vehicle), 3 or 10 mg/kg/day of rosuvastatin, 150 mg/day of ascorbic acid, or 3 or 10 mg/kg/day of rosuvastatin co-administered with 150 mg/day of ascorbic acid by gavage from post-natal day (PND)23 until PND53. Rats were maintained until adulthood and mated with nulliparous females to obtain the male offspring, whose animals were evaluated at adulthood in relation to reproductive parameters. This study is a follow up of a previous paper addressing potential effects on F0 generation only (Leite et al., 2017). Male offspring from rosuvastatin-exposed groups showed increased sperm DNA fragmentation, androgen depletion and impairment on the testicular and epididymal structure. Ascorbic acid coadministered to the fathers ameliorated the reproductive damage in the offspring. In summary, paternal exposure to rosuvastatin may affect the reproduction in the male offspring; however, paternal supplementation with ascorbic acid was able to reduce the reproductive impairment in the male offspring caused by statin treatment to the fathers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Protective role of ascorbic acid in the decontamination of cow milk casein by gamma-irradiation.
Kouass Sahbani, Saloua; Klarskov, Klaus; Aloui, Amine; Kouass, Salah; Landoulsi, Ahmed
2013-06-01
The aim of this work was to investigate the protective role of ascorbic acid on irradiation-induced modification of casein. Casein stock solutions were irradiated with increasing doses 2-10 kGy using (60)Co Gamma rays at a dose rate D• = 136.73 Gy/min at room temperature. The total viable microorganism content of cow milk casein was evaluated by Plate Count Agar (PCA) incubation for 48 h at 37°C. Sodium dodecylsulfate gel electrophoresis (SDS-PAGE) and Matrix-Assisted Laser Desorption-Ionization Time-of-Flight mass spectrometry (MALDI-TOF-MS) analysis were used to evaluate the effect of gamma irradiation on casein integrity. Gamma irradiation reduced the bacterial contamination of casein solutions at a lower irradiation dose when performed in the presence of ascorbic acid. The irradiation treatment of casein in the absence of ascorbic acid with a dose of 4 kGy could reduce 99% of the original amount of bacterial colonies. However, in the presence of ascorbic acid the irradiation treatment of casein with a dose lower than 2 kGy could reduce 99% of the original amount of bacterial colonies which suggested that the irradiation dose lower than 2 kGy achieved almost the entire decontamination result. SDS-PAGE and MALDI-TOF-MS analysis showed that ascorbic acid protected cow milk casein from degradation and subsequent aggregation probably by scavenging oxygen and protein radicals produced by the irradiation. It is demonstrated that the combination of gamma irradiation and ascorbic acid produce additive effects, providing acceptable hygienic quality of cow milk casein and protects caseins against Reactive Oxygen Species (ROS) generated, during the irradiation process.
Matsumoto, Shigekiyo; Shingu, Chihiro; Koga, Hironori; Hagiwara, Satoshi; Iwasaka, Hideo; Noguchi, Takayuki; Yokoi, Isao
2010-07-01
Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.
Ali Mirani, Zulfiqar; Khan, Muhammad Naseem; Siddiqui, Anila; Khan, Fouzia; Aziz, Mubashir; Naz, Shagufta; Ahmed, Ayaz; Khan, Seema Ismat
2018-02-01
Staphylococcus aureus is a Gram-positive pathogen, well known for its resistance and versatile lifestyle. Under unfavourable conditions, it adapts biofilm mode of growth. For staphylococcal biofilm formation, production of extracellular polymeric substances (EPS) is a pre-requisite, which is regulated by ica operon-encoded enzymes. This study was designed to know the impact of ascorbic acid on biofilm formation and colony spreading processes of S. aureus and MRSA. The isolates of methicillin-resistant S. aureus (MRSA) used in present study, were recovered from different food samples. Various selective and differential media were used for identification and confirmation of S. aureus . Agar dilution method was used for determination of oxacillin and ascorbic acid resistance level. MRSA isolates were re-confirmed by E-test and by amplification of mecA gene. Tube methods and Congo-Red agar were used to study biofilm formation processes. Gene expression studies were carried on real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results revealed the presence of mecA gene belonging to SCC mecA type IV along with agr type II in the isolates. In vitro studies showed the sub-inhibitory concentration of oxacillin induced biofilm production. However, addition of sub-inhibitory dose of ascorbic acid was found to inhibit EPS production, biofilm formation and augment colony spreading on soft agar plates. The inhibition of biofilm formation and augmentation of colony spreading observed with ascorbic acid alone or in combination with oxacillin. Moreover, gene expression studies showed that ascorbic acid increases agr expression and decreases icaA gene expression. The present study concluded that ascorbic acid inhibits biofilm formation, promotes colony spreading and increases agr gene expression in MRSA.
Boskey, A L; Stiner, D; Doty, S B; Binderman, I
1991-01-01
Mesenchymal cells isolated from stage 21-24 chick limb-buds plated in a micro-mass culture differentiate to form chondrocytes and synthesize a calcifiable matrix. In the presence of inorganic phosphate (4 mM), hydroxyapatite mineral deposits around cartilage nodules. Ascorbic acid is, in general, an essential co-factor for extracellular matrix synthesis in culture, since it is required for collagen synthesis. In this study we demonstrate that in the absence of ascorbic acid supplementation in the mesenchymal cell cultures, mineral deposition (indicated by X-ray diffraction, measurement of Ca:hydroxyproline ratio, and 45Ca uptake) does not occur. Concentrations of 10-50 micrograms/ml ascorbate were compared to find the "optimal" concentration for cell mediated mineralization; 25 micrograms/ml was selected as optimal based on matrix appearance at the EM level and the rate of 45Ca uptake. High concentrations of ascorbic acid (greater than 75 micrograms/ml), while increasing the amount of hydroxyproline in the matrix synthesized, caused some cell death and hence less cell-mediated mineralization. This study demonstrates both the need for viable cells and a proper matrix for in vitro cell-mediated mineralization, and shows that varying the concentration of L-ascorbate (vitamin C) in the medium can have a marked effect on mineralization in vitro.
Beck, Raphaël; Verrax, Julien; Dejeans, Nicolas; Taper, Henryk; Calderon, Pedro Buc
2009-01-01
Oxidative stress generated by ascorbate-driven menadione redox cycling kills MCF7 cells by a concerted mechanism including glycolysis inhibition, loss of calcium homeostasis, DNA damage and changes in mitogen activated protein kinases (MAPK) activities. Cell death is mediated by necrosis rather than apoptosis or macroautophagy. Neither 3-methyladenine nor Z-VAD affects cytotoxicity by ascorbate/menadione (Asc/Men). BAPTA-AM, by restoring cellular capacity to reduce MTT, underlines the role of calcium in the necrotic process. Oxidative stress-mediated cell death is shown by the opposite effects of N-acetylcysteine and 3-aminotriazole. Moreover, oxidative stress induces DNA damage (protein poly-ADP-ribosylation and gamma-H2AX phosphorylation) and inhibits glycolysis. Asc/Men deactivates extracellular signal-regulated kinase (ERK) while activating p38, suggesting an additional mechanism to kill MCF7 cells. Since ascorbate is taken up by cancer cells and, due to their antioxidant enzyme deficiency, oxidative stress should affect cancer cells to a greater extent than normal cells. This differential sensitivity may have clinical applications.
NASA Astrophysics Data System (ADS)
Schulz, Anke; Trage, Claudia; Schwarz, Helmut; Kroh, Lothar W.
2007-05-01
A new method is presented which allows the simultaneous detection of various [alpha]-dicarbonyl compounds generated in the course of the nonenzymatic browning reaction initiated by thermal treatment of l-ascorbic acid, namely: glyoxal, methylglyoxal, diacetyl, 3-deoxy-l-pentosone, and l-threosoneE 3-Deoxy-l-threosone was successfully identified as a new C4-[alpha]-dicarbonyl structure for the first time in the degradation of Vitamin C by application of this non-chromatographic mass spectrometric approach. Moreover, a more detailed elucidation of the mechanistic scenario with respect to the oxidative and nonoxidative pathways is presented by using dehydro-l-ascorbic acid and 2,3-diketo-l-gulonic acid instead of l-ascorbic acid as a starting material. Furthermore, the postulated pathways are corroborated with the aid of 13C-isotopic labeling studies. The investigations were extended to baby food, and the successful detection of [alpha]-dicarbonyl compounds characteristic for Vitamin C degradation proved the matrix tolerance of the introduced method.
Scurvy in the present times: vitamin C allergy leading to strict fast food diet.
Shaath, Tarek; Fischer, Ryan; Goeser, Megan; Rajpara, Anand; Aires, Daniel
2016-01-15
Scurvy results from a deficiency of vitamin C, a nutrient otherwise known as ascorbic acid. Today, scurvy is rare yet emerges in select patients. The patient reported herein developed scurvy secondary to deliberate avoidance of vitamin C-rich foods. Classic cutaneous manifestations of scurvy include follicular hyperkeratosis and perifollicular hemorrhage encompassing coiled "corkscrew" hairs and hairs bent into "swan-neck" deformities. Ecchymoses, purpura, and petechiae are also characteristically prominent. Classic oral abnormalities include erythematous, swollen gingivae that hemorrhage from subtle microtrauma.Subungual linear splinter hemorrhages may also manifest as a sign of the disease. To establish the diagnosis requirements include characteristic physical exam findings, evidence of inadequate dietary intake, and rapid reversal of symptoms upon supplementation. Although unnecessary for diagnosis, histological findings demonstrate perifollicular inflammation and hemorrhage, fibrosis, and hyperkeratosis, amongst dilated hair follicles and keratin plugging. Although citrus fruit allergies have been historically documented, ascorbic acid has not been previously reported as an allergen. Although lacking absolute certainty, this report suggests a presumed case of ascorbic acid allergy based on patient history and favorable response to ascorbic acid desensitization therapy.
Ankireddy, Seshadri Reddy; Kim, Jongsung
2015-01-01
Dopamine is a neurotransmitter of the catecholamine family and has many important roles, especially in human brain. Several diseases of the nervous system, such as Parkinson’s disease, attention deficit hyperactivity disorder, restless legs syndrome, are believed to be related to deficiency of dopamine. Several studies have been performed to detect dopamine by using electrochemical analysis. In this study, quantum dots (QDs) were used as sensing media for the detection of dopamine. The surface of the QDs was modified with l-cysteine by coupling reaction to increase the selectivity of dopamine. The fluorescence of cysteine-capped indium phosphide/zinc sulfide QDs was quenched by dopamine with various concentrations in the presence of ascorbic acid. This method shows good selectivity for dopamine detection, and the detection limit was 5 nM. PMID:26347250
A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells.
Tran, Daniel; Kadono, Takashi; Molas, Maria Lia; Errakhi, Rafik; Briand, Joël; Biligui, Bernadette; Kawano, Tomonori; Bouteau, François
2013-03-01
Ozone (O(3) ) is an air pollutant with an impact increasingly important in our industrialized world. It affects human health and productivity in various crops. We provide the evidences that treatment of Arabidopsis thaliana with O(3) results in ascorbate-derived oxalic acid production. Using cultured cells of A. thaliana as a model, here we further showed that oxalic acid induces activation of anion channels that trigger depolarization of the cell, increase in cytosolic Ca(2+) concentration, generation of reactive oxygen species and cell death. We confirmed that O(3) reacts with ascorbate in the culture, thus resulting in production of oxalic acid and this could be part of the O(3) -induced signalling pathways that trigger programmed cell death. © 2012 Blackwell Publishing Ltd.
Heer, Collin D; Davis, Andrew B; Riffe, David B; Wagner, Brett A; Falls, Kelly C; Allen, Bryan G; Buettner, Garry R; Beardsley, Robert A; Riley, Dennis P; Spitz, Douglas R
2018-01-19
Lung cancer, together with head and neck cancer, accounts for more than one-fourth of cancer deaths worldwide. New, non-toxic therapeutic approaches are needed. High-dose IV vitamin C (aka, pharmacological ascorbate; P-AscH - ) represents a promising adjuvant to radiochemotherapy that exerts its anti-cancer effects via metal-catalyzed oxidation to form H₂O₂. Mn(III)-porphyrins possessing superoxide dismutase (SOD) mimetic activity have been shown to increase the rate of oxidation of AscH - , enhancing the anti-tumor effects of AscH - in several cancer types. The current study demonstrates that the Mn(II)-containing pentaazamacrocyclic selective SOD mimetic GC4419 may serve as an AscH - /O₂ •- oxidoreductase as evidenced by the increased rate of oxygen consumption, steady-state concentrations of ascorbate radical, and H₂O₂ production in complete cell culture media. GC4419, but not CuZnSOD, was shown to significantly enhance the toxicity of AscH - in H1299, SCC25, SQ20B, and Cal27 cancer cell lines. This enhanced cancer cell killing was dependent upon the catalytic activity of the SOD mimetic and the generation of H₂O₂, as determined using conditional overexpression of catalase in H1299T cells. GC4419 combined with AscH - was also capable of enhancing radiation-induced cancer cell killing. Currently, AscH - and GC4419 are each being tested separately in clinical trials in combination with radiation therapy. Data presented here support the hypothesis that the combination of GC4419 and AscH - may provide an effective means by which to further enhance radiation therapy responses.
Plasma and semen ascorbic levels in spermatogenesis.
Ebesunun, M O; Solademi, B A; Shittu, O B; Anetor, J I; Onuegbu, J A; Olisekodiaka, J M; Agbedana, E O; Onyeaghala, A A
2004-01-01
Conflicting reports on the mechanism of action of ascorbic acid level in male reproductive system exist and very little is known about the ascorbic acid status in Nigerian males with weak fertility. Ascorbate that accumulates preferentially in the testis, the lipid and lipoprotein levels were determined in the plasma of Nigerian males. Twenty-seven (27) male with inadequate spermatogenesis (36+/-1.0) years, with mean value of 15.6+/-6.90 million/cm3 sperm count and fourteen (14) controls (34+/-0.6) years, with mean value of 108.0+/-25.42 million/cm3 sperm count were selected for this study. The anthropometric indices were also determined. There were highly significant decreases in sperm cell count, percentage motility and percentage vitality (p<0.001) in each case, while percentage morphologically abnormal sperm cells was significantly elevated (p<0.001) compared with the control values. There were significant decreases in the seminal and plasma ascorbic acid concentrations (p<0.001) in the males who had inadequate spermatogenesis compared with the control values. The plasma total cholesterol (TC) and body mass index (BMI) were not significantly different from the corresponding control values, but the plasma low density lipoprotein (LDLC) (p<0.001) and triglyceride (TG)(p<0.01) concentrations were significantly increased in all the patients. While the plasma high density lipoprotein cholesterol (HDLC)(p<0.001) was significantly decreased compared with the controls. The plasma lipid and lipoprotein levels did not demonstrate any definite pattern with the sperm characteristics. The decreased semen ascorbate level may play a significant role in the reduced sperm characteristics in these patients.
Lai, Wenqiang; Zeng, Qiao; Tang, Juan; Zhang, Maosheng; Tang, Dianping
2018-01-10
The authors describe a colorimetric immunoassay for the model nalyte aflatoxin B 1 (AFB 1 ). It is based on the just-in-time generation of an MnO 2 nanocatalyst. Unlike previously developed immunoassay, the chromogenic reaction relies on the just-in-time formation of an oxidase mimic without the aid of the substrate. Potassium permanganate (KMnO 4 ) is converted into manganese dioxide (MnO 2 ) which acts as an oxidase mimic that catalyzes the oxidation 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen to give a blue colored product. In the presence of ascorbic acid (AA), KMnO 4 is reduced to Mn(II) ions. This results in a decrease in the amount of MnO 2 nanocatalyst. Hence, the oxidation of TMB does not take place. By adding ascorbate oxidase, AA is converted into dehydroascorbic acid which cannot reduce KMnO 4 . Based on these observations, a colorimetric competitive enzyme immunoassay was developed where ascorbate oxidase and gold nanoparticle-labeled antibody against AFB 1 and magnetic beads carrying bovine serum albumin conjugated to AFB 1 are used for the determination of AFB 1 . In presence of AFB 1 , it will compete with the BSA-conjugated AFB 1 (on the magnetic beads) for the labeled antibody against AFB 1 on the gold nanoparticles. This makes the amount of ascorbate oxidase/anti-AFB 1 antibody-labeled gold nanoparticles, which conjugated on magnetic beads, reduce, and resulted in an increase of ascorbic acid. Under optimal conditions, the absorbance (measured at 652 nm) decreases with increasing AFB 1 concentrations in the range from 0.1 to 100 ng mL -1 , with a 0.1 ng mL -1 detection limit (at the 3S blank level). The accuracy of the assay was validated by analyzing spiked peanut samples. The results matched well with those obtained with a commercial ELISA kit. Conceivably, the method is not limited to aflatoxins but has a wide scope in that it may be applied to many other analytes for which respective antibodies are available. Graphical abstract Schematic illustration of ascorbate oxidase (AOx)-mediated potassium permanganate (KMnO 4 )-responsive ascorbic acid (AA) for visual colorimetric immunoassay of aflatoxin B 1 (AFB 1 ) by coupling with hydrolytic reaction of AOx toward AA and the KMnO 4 -Mn(II)-TMB system [note: 3,3',5,5'-tetramethylbenzidine: TMB].
Ferreira, Nuno R; Ledo, Ana; Laranjinha, João; Gerhardt, Greg A; Barbosa, Rui M
2018-06-01
Nanocomposite sensors consisting of carbon fiber microelectrodes modified with Nafion® and carbon nanotubes, and ceramic-based microelectrode biosensor arrays were used to measure ascorbate and glutamate in the brain with high spatial, temporal and chemical resolution. Nanocomposite sensors displayed electrocatalytic properties towards ascorbate oxidation, translated into a negative shift from +0.20V to -0.05V vs. Ag/AgCl, as well as a significant increase (10-fold) of electroactive surface area. The estimated average basal concentration of ascorbate in vivo in the CA1, CA3 and dentate gyrus (DG) sub regions of the hippocampus were 276±60μM (n=10), 183±30μM (n=10) and 133±42μM (n=10), respectively. The glutamate microbiosensor arrays showed a high sensitivity of 5.3±0.8pAμM -1 (n=18), and LOD of 204±32nM (n=10), and t 50% response time of 0.9±0.02s (n=6) and high selectivity against major interferents. The simultaneous and real-time measurements of glutamate and ascorbate in the hippocampus of anesthetized rats following local stimulus with KCl or glutamate revealed a dynamic interaction between the two neurochemicals. Copyright © 2018 Elsevier B.V. All rights reserved.
Vig, Attila; Igloi, Attila; Adanyi, Nora; Gyemant, Gyongyi; Csutoras, Csaba; Kiss, Attila
2010-10-01
An amperometric detector and an enzymatic reaction were combined for the measurement of L-ascorbic acid. The enzyme cell (containing immobilized ascorbate oxidase) was connected to a flow injection analyzer (FIA) system with a glassy carbon electrode as an amperometric detector. During optimization and measurements two sample injectors were used, one before and one after the enzyme cell, thus eliminating the background interferences. Subtraction of the signal area given in the presence of enzyme from the one given in the absence of enzyme was applied for measuring analyte concentrations and calibration at 400 mV. Analysis capacity of system is 25 samples/hour. The relative standard deviation (RSD) was below 5% (5 times repeated, 400 μmol/L conc.), linearity up to 400 μmol/L, limit of detection (LOD) 5 μmol/L, fitting of calibration curve in 25-400 μmol/L range was R (2) = 0.99.
Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo.
Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun; Park, Jeong-Sook; Myung, Chang-Seon
2018-01-01
Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the C max value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their T max values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders.
Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo
Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun
2018-01-01
Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the Cmax value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their Tmax values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders. PMID:29302210
Ebrahimzadeh-Bideskan, Ali-Reza; Hami, Javad; Alipour, Fatemeh; Haghir, Hossein; Fazel, Ali-Reza; Sadeghi, Akram
2016-10-01
Lead exposure has negative effects on developing nervous system and induces apoptosis in newly generated neurons. Natural antioxidants (i.e. Ascorbic acid and Garlic) might protect against lead-induced neuronal cell damage. The aim of the present study was to investigate the protective effects of Ascorbic acid and Garlic administration during pregnancy and lactation on lead-induced apoptosis in rat developing hippocampus. Timed pregnant Wistar rats were administrated with Lead (1500 ppm) via drinking water (Pb group) or lead plus Ascorbic acid (Pb + AA Group, 500 mg/kg, IP), or lead plus Garlic Extract (Pb + G Group, 1 ml garlic juice/100 g BW, via Gavage) from early gestation (GD 0) until postnatal day 50 (PN 50). At the end of experiments, the pups' brains were carefully dissected. To identify neuronal death, the brain sections were stained with TUNEL assay. Mean of blood and brain lead levels increased significantly in Pb group comparing to other studied groups (P < 0.01). There was significant reduction in blood and brain lead level in Pb + AA and Pb + G groups when compared to those of Pb group (P < 0.01). The mean number of TUNEL positive cells in the CA1, CA3, and DG was significantly lower in the groups treated by either Ascorbic acid or Garlic (P < 0.05). Administration of Ascorbic acid and Garlic during pregnancy and lactation protect against lead-induced neuronal cell apoptosis in the hippocampus of rat pups partially via the reduction of Pb concentration in the blood and in the brain.
Ascorbic Acid Efflux from Human Brain Microvascular Pericytes: Role of Re-uptake
May, James M.; Qu, Zhi-chao
2015-01-01
Microvascular pericytes take up ascorbic acid on the ascorbate transporter SVCT2. Intracellular ascorbate then protects the cells against apoptosis induced by culture at diabetic glucose concentrations. To investigate whether pericytes might also provide ascorbate to the underlying endothelial cells, we studied ascorbate efflux from human pericytes. When loaded with ascorbate to intracellular concentrations of 0.8–1.0 mM, almost two-thirds of intracellular ascorbate effluxed from the cells over 2 h. This efflux was opposed by ascorbate re-uptake from the medium, since preventing re-uptake by destroying extracellular ascorbate with ascorbate oxidase increased ascorbate loss even further. Ascorbate re-uptake occurred on the SVCT2, since its blockade by replacing medium sodium with choline, by the SVCT2 inhibitor sulfinpyrazone, or by extracellular ascorbate accelerated ascorbate loss from the cells. This was supported by finding that net efflux of radiolabeled ascorbate was increased by unlabeled extracellular ascorbate with a half-maximal effect in the range of the high affinity Km of the SVCT2. Intracellular ascorbate did not inhibit its efflux. To assess the mechanism of ascorbate efflux, known inhibitors of volume-regulated anion channels (VRACs) were tested. These potently inhibited ascorbate transport into cells on the SVCT2, but not its efflux. An exception was the anion transport inhibitor DIDS, which, despite inhibition of ascorbate uptake, also inhibited net efflux at 25–50 µM. These results suggest that ascorbate efflux from vascular pericytes occurs on a DIDS-inhibitable transporter or channel different from VRACs. Further, ascorbate efflux is opposed by re-uptake of ascorbate on the SVCT2, providing a potential regulatory mechanism. PMID:26340060
Kaur, Balwinder; Pandiyan, Thangarasu; Satpati, Biswarup; Srivastava, Rajendra
2013-11-01
In this paper, we report the synthesis of silver nanoparticle-decorated reduced graphene oxide composite (AgNPs/rGO) by heating the mixture of graphene oxide and silver nitrate aqueous solution in the presence of sodium hydroxide. This material was characterized by means of X-ray diffraction, UV-vis spectroscopy, and transmission electron microscopy. AgNPs/rGO based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Electrochemical studies were carried out by using cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. AgNPs/rGO modified electrode exhibited excellent electrocatalytic activity, stability, sensitivity, and selectivity with well-separated oxidation peaks toward ascorbic acid, dopamine, uric acid, and tryptophan in the simultaneous determination of their quaternary mixture. The analytical performance of this material as a chemical sensor was demonstrated for the determination of ascorbic acid and dopamine in commercial pharmaceutical samples such as vitamin C tablets and dopamine injections, respectively. The applicability of this sensor was also extended in the determination of uric acid in human urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Niosomes of ascorbic acid and α-tocopherol in the cerebral ischemia-reperfusion model in male rats.
Varshosaz, Jaleh; Taymouri, Somayeh; Pardakhty, Abbas; Asadi-Shekaari, Majid; Babaee, Abodolreza
2014-01-01
The objective of the present study was to prepare a stable iv injectable formulation of ascorbic acid and α-tocopherol in preventing the cerebral ischemia. Different niosomal formulations were prepared by Span and Tween mixed with cholesterol. The physicochemical characteristics of niosomal formulations were evaluated in vitro. For in vivo evaluation, the rats were made ischemic by middle cerebral artery occlusion model for 30 min and the selected formulation was used for determining its neuroprotective effect against cerebral ischemia. Neuronal damage was evaluated by optical microscopy and transmission electron microscopy. The encapsulation efficiency of ascorbic acid was increased to more than 84% by remote loading method. The cholesterol content of the niosomes, the hydrophilicity potential of the encapsulated compounds, and the preparation method of niosomes were the main factors affecting the mean volume diameter of the prepared vesicles. High physical stability of the niosomes prepared from Span 40 and Span 60 was demonstrated due to negligible size change of vesicles during 6 months storage at 4-8(°)C. In vivo studies showed that ST60/Chol 35 : 35 : 30 niosomes had more neuroprotective effects against cerebral ischemic injuries in male rats than free ascorbic acid.
Ascorbic Acid Efflux and Re-uptake in Endothelial Cells: Maintenance of Intracellular Ascorbate
May, James M.; Qu, Zhi-chao
2013-01-01
Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70–80% of ascorbate to the medium over several hours at 37 °C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel. PMID:19148707
Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate.
May, James M; Qu, Zhi-chao
2009-05-01
Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70-80% of ascorbate to the medium over several hours at 37 degrees C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel.
Verrax, Julien; Vanbever, Stéphanie; Stockis, Julie; Taper, Henryk; Calderon, Pedro Buc
2007-03-15
Among different features of cancer cells, two of them have retained our interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress. Therefore, we took advantage of these features to develop an experimental approach by selectively exposing cancer cells to an oxidant insult induced by the combination of menadione (vitamin K(3)) and ascorbate (vitamin C). Ascorbate enhances the menadione redox cycling, increases the formation of reactive oxygen species and kills K562 cells as shown by more than 65% of LDH leakage after 24 hr of incubation. Since both lactate formation and ATP content are depressed by about 80% following ascorbate/menadione exposure, we suggest that the major intracellular event involved in such a cytotoxicity is related to the impairment of glycolysis. Indeed, NAD(+) is rapidly and severely depleted, a fact most probably related to a strong Poly(ADP-ribose) polymerase (PARP) activation, as shown by the high amount of poly-ADP-ribosylated proteins. The addition of N-acetylcysteine (NAC) restores most of the ATP content and the production of lactate as well. The PARP inhibitor dihydroxyisoquinoline (DiQ) was able to partially restore both parameters as well as cell death induced by ascorbate/menadione. These results suggest that the PARP activation induced by the oxidative stress is a major but not the only intracellular event involved in cell death by ascorbate/menadione. Due to the high energetic dependence of cancer cells on glycolysis, the impairment of such an essential pathway may explain the effectiveness of this combination to kill cancer cells. (c) 2006 Wiley-Liss, Inc.
Hong, Chang-Young; Park, Se-Yeong; Kim, Seon-Hong; Lee, Su-Yeon; Choi, Won-Sil; Choi, In-Gyu
2016-10-01
This study was carried out to better understand the characteristic modification mechanisms of monolignols by enzyme system of Abortiporus biennis and to induce the degradation of monolignols. Degradation and polymerization of monolignols were simultaneously induced by A. biennis. Whole cells of A. biennis degraded coniferyl alcohol to vanillin and coniferyl aldehyde, and degraded sinapyl alcohol to 2,6-dimethoxybenzene- 1,4-diol, with the production of dimers. The molecular weight of monolignols treated with A. biennis increased drastically. The activities of lignin degrading enzymes were monitored for 24 h to determine whether there was any correlation between monolignol biomodification and ligninolytic enzymes. We concluded that complex enzyme systems were involved in the degradation and polymerization of monolignols. To degrade monolignols, ascorbic acid was added to the culture medium as a reducing agent. In the presence of ascorbic acid, the molecular weight was less increased in the case of coniferyl alcohol, while that of sinapyl alcohol was similar to that of the control. Furthermore, the addition of ascorbic acid led to the production of various degraded compounds: syringaldehyde and acid compounds. Accordingly, these results demonstrated that ascorbic acid prevented the rapid polymerization of monolignols, thus stabilizing radicals generated by enzymes of A. biennis. Thereafter, A. biennis catalyzed the oxidation of stable monolignols. As a result, ascorbic acid facilitated predominantly monolignols degradation by A. biennis through the stabilization of radicals. These findings showed outstanding ability of A. biennis to modify the lignin compounds rapidly and usefully.
Li, Huixiang; Wang, Yi; Ye, Daixin; Luo, Juan; Su, Biquan; Zhang, Song; Kong, Jilie
2014-09-01
A multi-walled carbon nanotubes (MWNTs) bridged mesocellular graphene foam (MGF) nanocomposite (MWNTs/MGF) modified glassy carbon electrode was fabricated and successfully used for simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (TRP). Comparing with pure MGF, MWNTs or MWNTs/GS (graphene sheets), MWNTs/MGF displayed higher catalytic activity and selectivity toward the oxidation of AA, DA, UA and TRP. Under the optimal conditions, MWCNs/MGF/GCE can simultaneously detect AA, DA, UA and TRP with high selectivity and sensitivity. The detection limits were 18.28 µmol L(-1), 0.06 µmol L(-1), 0.93 µmol L(-1) and 0.87 µmol L(-1), respectively. Moreover, the modified electrode exhibited excellent stability and reproducibility. Copyright © 2014. Published by Elsevier B.V.
Wang, Changzheng; Lv, Hongwei; Yang, Wen; Li, Ting; Fang, Tian; Lv, Guishuai; Han, Qin; Dong, Liwei; Jiang, Tianyi; Jiang, Beige; Yang, Guangshun; Wang, Hongyang
2017-07-10
Cholangiocarcinoma (CC) is a devastating malignancy with late diagnosis and poor response to conventional chemotherapy. Recent studies have revealed anti-cancer effect of vitamin C (l-ascorbic acid, ascorbate) in several types of cancer. However, the effect of l-ascorbic acid (AA) in CC remains elusive. Herein, we demonstrated that AA induced cytotoxicity in CC cells by generating intracellular reactive oxygen species (ROS), and subsequently DNA damage, ATP depletion, mTOR pathway inhibition. Moreover, AA worked synergistically with chemotherapeutic agent cisplatin to impair CC cells growth both in vitro and in vivo. Intriguingly, sodium-dependent vitamin C transporter 2 (SVCT-2) expression was inversely correlated with IC50 values of AA. Knockdown of SVCT-2 dramatically alleviated DNA damage, ATP depletion, and inhibition of mTOR pathway induced by AA. Furthermore, SVCT-2 knockdown endowed CC cells with the resistance to AA treatment. Finally, the inhibitory effects of AA were further confirmed in patient-derived CC xenograft models. Thus, our results unravel therapeutic potential of AA alone or in combination with cisplatin for CC. SVCT2 expression level may serve as a positive outcome predictor for AA treatment in CC. Copyright © 2017 Elsevier B.V. All rights reserved.
Ascorbate modulates antibacterial mechanisms in experimental pneumococcal pneumonia.
Esposito, A L
1986-04-01
To evaluate the influence of vitamin C on pulmonary antibacterial mechanisms, normal CD-1 mice were administered sodium ascorbate (200 mg/kg/24 h) and challenged intratracheally with type 3 Streptococcus pneumoniae. Survival rates were similar in ascorbate-treated and control animals. When infected with a high inoculum (1 X 10(6) cfu), animals given vitamin C demonstrated a significant enhancement in their capacity to clear viable pneumococci from the lungs at 24 h after challenge; the augmented pulmonary clearance was associated with an increased influx of granulocytes at 6 and 24 h. After infection with a lower inoculum (1 X 10(5) cfu), animals treated with the vitamin exhibited a significant advantage in pulmonary clearance and granulocyte recruitment but at 6 h only. After a very low inoculum challenge (1 X 10(4) cfu), the clearance of viable pneumococci was retarded in ascorbate-treated mice. In vitro, the pneumococcidal capacity of resident alveolar macrophages from animals given vitamin C was significantly reduced, but the ability of these cells to generate leukocyte chemoattractant activity after stimulation with the calcium ionophore A23187 remained unaltered. We conclude that in the mouse, large doses of vitamin C alter pulmonary defense mechanisms against S. pneumoniae; however, these changes do not appear to convey a substantial advantage to the host.
Combined therapy of Ulmo honey (Eucryphia cordifolia) and ascorbic acid to treat venous ulcers1
Calderon, Mariano del Sol; Figueroa, Carolina Schencke; Arias, Jessica Salvo; Sandoval, Alejandra Hidalgo; Torre, Felipe Ocharan
2015-01-01
OBJECTIVE: to assess the clinical effect of topical treatment using Ulmo honey associated with oral ascorbic acid in patients with venous ulcers. METHOD: longitudinal and descriptive quantitative study. During one year, 18 patients were assessed who were clinically diagnosed with venous ulcer in different stages, male and female, adult, with a mean injury time of 13 months. Ulmo honey was topically applied daily. The dressing was applied in accordance with the technical standard for advanced dressings, combined with the daily oral consumptions of 500 mg of ascorbic acid. The monitoring instrument is the assessment table of venous ulcers. RESULTS: full healing was achieved in 100% of the venous ulcers. No signs of complications were observed, such as allergies or infection. CONCLUSION: the proposed treatment showed excellent clinical results for the healing of venous ulcers. The honey demonstrated debriding and non-adherent properties, was easy to apply and remove and was well accepted by the users. The described results generated a research line on chronic wound treatment. PMID:26039296
In vitro stabilization of a low-tin bone-imaging agent (99mTc-Sn-HEDP) by ascorbic acid.
Tofe, A J; Francis, M D
1976-09-01
The presence of oxidants in the 99mTc-pertechnetate and of oxygen in diagnostic kits containing low concentrations of Sn(II) has a detrimental effect upon in vitro and in vivo stability. Maintaining a nitrogen atmosphere or increasing the Sn(II) concentration inhibits the formation of 99mTcO4-. However, the latter remedy is likely to cause uptake in the reticuloendothelial system and has been associated with false positive or negative brain scans. We used ascorbic acid (an antioxidant) to ensure the in vitro stability with the low-Sn(II) bone agent disodium etidronate. In vitro stability studies by instant thin-layer chromatography, using high-acitivity generators and "instant pertechnetate," yielded less than 2% free pertechnetate at 24 hr after preparation. Distribution studies in guinea pigs show neither altered distribution of the bone agent nor abnormal distribution of ascorbic acid, suggesting its sole function as a noncomplexing stabilizer.
NASA Astrophysics Data System (ADS)
Hoshi, Kazuki; Muramatsu, Kazuo; Sumi, Hisato; Nishioka, Yasushiro
2016-04-01
Ascorbic acid (AA) is a biologically friendly compound and exists in many products such as sports drinks, fruit, and even in human blood. Thus, a miniaturized and flexible ascorbic acid fuel cell (AAFC) is expected be a power source for portable or implantable electric devices. In this study, we fabricated an AAFC with anode and cathode dimensions of 3 × 10 mm2 made of a graphene-coated carbon fiber cloth (GCFC) and found that GCFC electrodes significantly improve the power generated by the AAFC. This is because the GCFC has more than two times the effective surface area of a conventional carbon fiber cloth and it can contain more enzymes. The power density of the AAFC in a phosphate buffer solution containing 100 mM AA at room temperature was 34.1 µW/cm2 at 0.46 V. Technical issues in applying the AAFC to portable devices are also discussed.
NASA Astrophysics Data System (ADS)
Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.
2010-12-01
The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.
García-Molina, María del Mar; Muñoz Muñoz, Jose Luis; Martinez-Ortiz, Francisco; Martinez, José Rodriguez; García-Ruiz, Pedro Antonio; Rodriguez-López, José Neptuno; García-Cánovas, Francisco
2014-07-01
Hydroquinone (HQ) is used as a depigmenting agent. In this work we demonstrate that tyrosinase hydroxylates HQ to 2-hydroxyhydroquinone (HHQ). Oxy-tyrosinase hydroxylates HQ to HHQ forming the complex met-tyrosinase-HHQ, which can evolve in two different ways, forming deoxy-tyrosinase and p-hydroxy-o-quinone, which rapidly isomerizes to 2-hydroxy-p-benzoquinone or on the other way generating met-tyrosinase and HHQ. In the latter case, HHQ is rapidly oxidized by oxygen to generate 2-hydroxy-p-benzoquinone, and therefore, it cannot close the enzyme catalytic cycle for the lack of reductant (HHQ). However, in the presence of hydrogen peroxide, met-tyrosinase (inactive on hydroquinone) is transformed into oxy-tyrosinase, which is active on HQ. Similarly, in the presence of ascorbic acid, HQ is transformed into 2-hydroxy-p-benzoquinone by the action of tyrosinase; however, in this case, ascorbic acid reduces met-tyrosinase to deoxy-tyrosinase, which after binding to oxygen, originates oxy-tyrosinase. This enzymatic form is now capable of reacting with HQ to generate p-hydroxy-o-quinone, which rapidly isomerizes to 2-hydroxy-p-benzoquinone. The formation of HHQ during the action of tyrosinase on HQ is demonstrated by means of high performance liquid chromatography mass spectrometry (HPLC-MS) by using hydrogen peroxide and high ascorbic acid concentrations. We propose a kinetic mechanism for the tyrosinase oxidation of HQ which allows us the kinetic characterization of the process. A possible explanation of the cytotoxic effect of HQ is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Xiaofang; Wei, Shaping; Chen, Shihong; Yuan, Dehua; Zhang, Wen
2014-08-01
In this paper, graphene-multiwall carbon nanotube-gold nanocluster (GP-MWCNT-AuNC) composites were synthesized and used as modifier to fabricate a sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrochemical behavior of the sensor was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The combination of GP, MWCNTs, and AuNCs endowed the electrode with a large surface area, good catalytic activity, and high selectivity and sensitivity. The linear response range for simultaneous detection of AA, DA, and UA at the sensor were 120-1,701, 2-213, and 0.7-88.3 μM, correspondingly, and the detection limits were 40, 0.67, and 0.23 μM (S/N=3), respectively. The proposed method offers a promise for simple, rapid, selective, and cost-effective analysis of small biomolecules.
Evolution of antioxidant capacity during storage of selected fruits and vegetables.
Kevers, Claire; Falkowski, Michael; Tabart, Jessica; Defraigne, Jean-Olivier; Dommes, Jacques; Pincemail, Joël
2007-10-17
Interest in the consumption of fresh fruits and vegetables is, to a large extent, due to its content of bioactive nutrients and their importance as dietary antioxidants. Among all of the selected fruits and vegetables, strawberries and black grapes have relatively high antioxidant capacities associated with high contents of total phenolic compounds, ascorbic acid, and flavonols. More interesting, the results of this study indicated that in most fruits and vegetables storage did not affect negatively the antioxidant capacity. Better, in some cases, an increase of the antioxidant capacity was observed in the days following their purchase, accompanied by an increase in phenolic compounds. In general, fruits and vegetables visually spoil before any significant antioxidant capacity loss occurs except in banana and broccoli. When ascorbic acid or flavonoids (aglycons of flavonols and anthocyanins) were concerned, the conclusions were similar. Their content was generally stable during storage.
Unknown components of the plastidial permeome
Pick, Thea R.; Weber, Andreas P. M.
2014-01-01
Beyond their role in photosynthesis plastids provide a plethora of additional metabolic functions to plant cells. For example, they harbor complete biosynthetic pathways for the de novo synthesis of carotenoids, fatty acids, and amino acids. Furthermore plastids contribute important reactions to multi-compartmentalized pathways, such as photorespiration or plant hormone syntheses, and they depend on the import of essential molecules that they cannot synthesize themselves, such as ascorbic acid. This causes a high traffic of metabolites across the plastid envelope. Although it was recently shown that non-polar substrates could be exchanged between the plastid and the ER without involving transporters, various essential transport processes are mediated by highly selective but still unknown metabolite transporters. This review focuses on selected components of the plastidial permeome that are predicted to exist but that have not yet been identified as molecular entities, such as the transporters for isopentenyl diphosphate (IPP) or ascorbic acid. PMID:25191333
Akram, Nudrat A.; Shafiq, Fahad; Ashraf, Muhammad
2017-01-01
Over-production of reactive oxygen species (ROS) in plants under stress conditions is a common phenomenon. Plants tend to counter this problem through their ability to synthesize ROS neutralizing substances including non-enzymatic and enzymatic antioxidants. In this context, ascorbic acid (AsA) is one of the universal non-enzymatic antioxidants having substantial potential of not only scavenging ROS, but also modulating a number of fundamental functions in plants both under stress and non-stress conditions. In the present review, the role of AsA, its biosynthesis, and cross-talk with different hormones have been discussed comprehensively. Furthermore, the possible involvement of AsA-hormone crosstalk in the regulation of several key physiological and biochemical processes like seed germination, photosynthesis, floral induction, fruit expansion, ROS regulation and senescence has also been described. A simplified and schematic AsA biosynthetic pathway has been drawn, which reflects key intermediates involved therein. This could pave the way for future research to elucidate the modulation of plant AsA biosynthesis and subsequent responses to environmental stresses. Apart from discussing the role of different ascorbate peroxidase isoforms, the comparative role of two key enzymes, ascorbate peroxidase (APX) and ascorbate oxidase (AO) involved in AsA metabolism in plant cell apoplast is also discussed particularly focusing on oxidative stress perception and amplification. Limited progress has been made so far in terms of developing transgenics which could over-produce AsA. The prospects of generation of transgenics overexpressing AsA related genes and exogenous application of AsA have been discussed at length in the review. PMID:28491070
Biomedical silver-109m isotope generator
Wanek, Philip M.; Steinkruger, Frederick J.; Moody, David C.
1987-01-01
A method, composition of matter, and apparatus for producing substantially pure Ag-109m for use in biomedical imaging techniques. Cd-109, which decays with a half-life of 453 days to Ag-109m is loaded onto an ion exchange column consisting of particulate tin phosphate. After secular equilibrium is reached in about ten minutes, Ag-109m may be selectively eluted from the column by means of a physiologically acceptable aqueous buffered eluent solution of sodium thiosulfate, and either ascorbic acid or dextrose. The breakthrough of toxic Cd-109 is on the order of 1.times.10.sup.-7, which is sufficiently low to permit administration of the Ag-109m-containing eluate, with but a minor pH adjustment, directly to a human patient within a matter of seconds.
Biomedical silver-109m isotope generator
Wanek, P.M.; Steinkruger, F.J.; Moody, D.C.
1985-03-05
A method, composition of matter, and apparatus for producing substantially pure Ag-109m for use in biomedical imaging techniques. Cd-109, which decays with a half-life of 453 days to Ag-109m, is loaded onto an ion exchange column consisting of particulate tin phosphate. After secular equilibrium is reached in about ten minutes, Ag-109m may be selectively eluted from the column by means of a physiologically acceptable aqueous buffered eluent solution of sodium thiosulfate, and either ascorbic acid or dextrose. The breakthrough of toxic Cd-109 is on the order of 1 x 10-7, which is sufficiently low to permit administration of the Ag-109m-containing eluate, with but a minor pH adjustment, directly to a human patient within a matter of seconds. 1 fig.
Zhang, Xin; Wei, Youli; Ding, Yaping
2014-07-04
A glassy carbon electrode modified with poly(alizarin red)/electrodeposited graphene (PAR/EGR) composite film was prepared and applied to detect ciprofloxacin (CPFX) in the presence of ascorbic, uric acid and dopamine. The morphology and interface property of PAR/EGR films were examined by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrocatalytic oxidation of CPFX on AR/EGR was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The linearity ranged from 4 × 10(-8) to 1.2 × 10(-4) M with a detection limit (S/N=3) of 0.01 μM. The modified electrode could be applied to the individual determination of CPFX as well as the simultaneous determination of CPFX, ascorbic acid, uric acid and dopamine. This method proved to be a simple, selective and rapid way to determine CPFX in pharmaceutical preparation and biological media. Copyright © 2014. Published by Elsevier B.V.
Kim, Yang-Rae; Bong, Sungyool; Kang, Yeon-Joo; Yang, Yongtak; Mahajan, Rakesh Kumar; Kim, Jong Seung; Kim, Hasuck
2010-06-15
Dopamine plays a significant role in the function of human metabolism. It is important to develop sensitive sensor for the determination of dopamine without the interference by ascorbic acid. This paper reports the synthesis of graphene using a modified Hummer's method and its application for the electrochemical detection of dopamine. Electrochemical measurements were performed at glassy carbon electrode modified with graphene via drop-casting method. Cyclic voltammogram of ferri/ferrocyanide redox couple at graphene modified electrode showed an increased current intensity compared with glassy carbon electrode and graphite modified electrode. The decrease of charge transfer resistance was also analyzed by electrochemical impedance spectroscopy. The capacity of graphene modified electrode for selective detection of dopamine was confirmed in a sufficient amount of ascorbic acid (1 mM). The observed linear range for the determination of dopamine concentration was from 4 microM to 100 microM. The detection limit was estimated to be 2.64 microM. Copyright 2010 Elsevier B.V. All rights reserved.
Zampa, Maysa F.; Araújo, Inês Maria de S.; dos Santos Júnior, José Ribeiro; Zucolotto, Valtencir; Leite, José Roberto de S. A.; Eiras, Carla
2012-01-01
The antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs, was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPc), widely used in electronic devices, using layer-by-layer technique. The films were used as a biosensor to detect the presence of dopamine (DA), a neurotransmitter associated with diseases such as Alzheimer's and Parkinson's, with detection limits in the order of 10−6 mol L−1. The use of DS 01 in LbL film generated selectivity in the detection of DA despite the presence of ascorbic acid found in biological fluids. This work is the first to report that the antimicrobial peptide and NiTsPc LbL film exhibits electroanalytical activity to DA oxidation. The selectivity in the detection of DA is a fundamental aspect for the development of electrochemical sensors with potential applications in the biomedical and pharmaceutical industries. PMID:22287966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ourique, Fabiana; Kviecinski, Maicon R.; Zirbel, Guilherme
The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16more » and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with {sup 14}C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined with ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism. - Highlights: • Ascorbate potentiates the inhibition caused by juglone and Q7on tumor progress in vivo. • Juglone and Q7 with ascorbate caused widespread oxidative stress in tumor tissue. • Treatments inhibited HIF-1 and GLUT1 expression causing reduced glucose uptake. • Treatments induced cell cycle arrest and apoptosis in tumor in vivo.« less
Sadat, Umar; Usman, Ammara; Gillard, Jonathan H; Boyle, Jonathan R
2013-12-10
This study sought to perform a systematic review with meta-analysis of randomized controlled trials comparing the use of ascorbic acid with placebo or other treatment options for the treatment of contrast induced-acute kidney injury (CI-AKI) in patients undergoing coronary angiography. CI-AKI remains the most widely discussed and debated topic in cardiovascular medicine, with its incidence increasing due to an increasing number of contrast media-enhanced radiological procedures being performed. MEDLINE, Embase, and Cochrane central databases were searched from inception to May 2013, without language restrictions. For a study to be selected, it had to report the incidence of CI-AKI as an outcome measure. Studies were excluded if at least 1 study arm did not have ascorbic acid administered alone or with saline solution hydration. Data were extracted by 1 author, and random checks were made by another author. Nine randomized, controlled trials reported data on the incidence of CI-AKI in 1,536 patients who had completed the trial and were included in the final analysis. Patients receiving ascorbic acid had 33% less risk of CI-AKI compared with patients receiving placebo or an alternate pharmacological treatment (risk ratio by random-effects model: 0.672; 95% confidence interval, 0.466 to 0.969; p = 0.034). Ascorbic acid provides effective nephroprotection against CI-AKI and may form a part of effective prophylactic pharmacological regimens. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Ascorbic acid selectively improves large elastic artery compliance in postmenopausal women.
Moreau, Kerrie L; Gavin, Kathleen M; Plum, Angela E; Seals, Douglas R
2005-06-01
The compliance of large elastic arteries in the cardiothoracic region decreases with advancing age/menopause and plays an important role in the increased prevalence of cardiovascular diseases in postmenopausal women. We determined whether oxidative stress contributes to the reduced large elastic artery compliance of postmenopausal women. Carotid artery compliance was measured during acute intravenous infusions of saline (baseline control) and supraphysiological doses of the potent antioxidant ascorbic acid in premenopausal (n=10; 23+/-1; mean+/-SE) and estrogen-deficient postmenopausal (n=21; 55+/-1 years) healthy sedentary women. Carotid artery compliance was 56% lower in postmenopausal compared with premenopausal women during baseline control (P<0.0001). Ascorbic acid infusion increased carotid artery compliance by 26% in postmenopausal women (1.11+/-0.07 to 1.38+/-0.08 mm2/mm Hgx10(-1); P<0.001) but had no effect in premenopausal women (2.50+/-0.25 versus 2.43+/-0.20 mm2/mm Hgx10(-1)). Carotid artery diameter, blood pressure, and heart rate were unaffected by ascorbic acid. In the pooled population, the change in arterial compliance with ascorbic acid correlated with baseline waist-to-hip ratio (r=0.56; P=0.001), plasma norepinephrine (r=0.58; P=0.001), and LDL cholesterol (r=0.54; P=0.001). These results suggest that oxidative stress may be an important mechanism contributing to the reduced large elastic artery compliance of sedentary, estrogen-deficient postmenopausal women. Increased abdominal fat storage, sympathetic nervous system activity, and LDL cholesterol may be mechanistically involved in oxidative stress-associated suppression of arterial compliance in postmenopausal women.
Burkitt, M J; Gilbert, B C
1989-01-01
The reaction of iron (II) with H2O2 is believed to generate highly reactive species (e.g. .OH) capable of initiating biological damage. This study investigates the possibility that the severity of oxidative damage induced by iron in hepatic mitochondria is determined by the level of mitochondrial-H2O2 generation, which is believed to be particularly prominent in state-4 respiration. Iron-induced damage is found to be greater in state-4 than in state-3 respiration. Experiments using uncoupling agents and Ca++ to mimic state-3 conditions indicate that this effect reflects differences in the steady-state oxidation-level of the electron carriers of the respiratory chain (and hence the level of H2O2-generation), rather than changes in redox potential or transportation of the metal-ion. Evidence is also presented for a mechanism in which Fe(II) and H2O2 react inside the mitochondrial matrix. Ascorbate (vitamin C) is shown to be pro-oxidant in this system, except when present at very high concentration when it becomes antioxidant in nature.
Letelier, María Eugenia; Entrala, Paz; López-Alarcón, Camilo; González-Lira, Víctor; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Santander, Paola; Núñez-Vergara, Luis
2007-12-01
1,4-Dihydropyridines (DHPs) used in the treatment of cardiovascular diseases, are calcium channel antagonists and also antioxidant agents. These drugs are metabolized through cytochrome P(450) oxidative system, majority localized in the hepatic endoplasmic reticulum. Several lipophilic drugs generate oxidative stress to be metabolized by this cellular system. Thus, DHP antioxidant properties may prevent the oxidative stress associated with hepatic biotransformation of drugs. In this work, we tested the antioxidant capacity of several synthetic nitro-phenyl-DHPs. These compounds (I-IV) inhibited the microsomal lipid peroxidation, UDPGT oxidative activation and microsomal thiols oxidation; all phenomena induced by Fe(3+)/ascorbate, a generator system of oxygen free radicals. As the same manner, these compounds inhibited the oxygen consumption induced by Cu(2+)/ascorbate in the absence of microsomes. Furthermore, compound III (2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridin-3,5-ethyl-dicarboxylate) and compound V (N-ethyl-2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridin-3,5-methyl-dicarboxylate) inhibited the microsomal lipid peroxidation induced by Nitrofurantoin and naphthalene in the presence of NADPH. Oxidative stress induced on endoplasmic reticulum may alter the biotransformation of drugs, so, modifying their plasmatic concentrations and therapeutic effects. When drugs which are activated by biotransformation are administered together with antioxidant drugs, such as DHPs, oxidative stress induced in situ may be prevented.
High prevalence of ascorbate deficiency in an Australian peritoneal dialysis population.
Singer, Richard; Rhodes, Helen C; Chin, George; Kulkarni, Hemant; Ferrari, Paolo
2008-02-01
An adequate total body pool of ascorbate is essential for optimum health in humans. Requirements for ascorbate are increased in peritoneal dialysis (PD) patients most likely due to a combination of poor nutrition and increased dialysate losses. We measured serum ascorbate levels in 45 clinically stable PD patients to assess the prevalence of ascorbate insufficiency (level between 2 and 4 mg/L) and deficiency (level <2 mg/L). We also assessed the efficacy of subsequent supplementation and patients' adherence to the prescribed supplementation. All patients were advised on commencement of dialysis to take a multivitamin tablet containing 100-120 mg ascorbate. Eighteen (41%) PD patients were regularly taking ascorbate-containing multivitamins, while 27 (59%) patients did not take ascorbate supplements. Serum ascorbate levels ranged from <0.2 to 41 mg/L, with wide variations in serum ascorbate at any given intake level. Ascorbate deficiency was present in 1/3 of the current PD population (44% of patients not taking supplements and in 16% of those on supplements), although none of the patients demonstrated clinical manifestations of scurvy. Targeted supplementation of ascorbate insufficient patients increased the median serum ascorbate level from 1.7 mg/L (IQR 1.2-2.2) to 22.5 mg/L (IQR 16.7-32.9). Our results show that, in PD patients, ascorbate deficiency is common and can readily be identified with serum ascorbate measurements. Oral supplements in the form of inexpensive multivitamin preparations restore adequate serum ascorbate levels in the majority of these patients. We therefore suggest measurement of ascorbate levels in all PD patients at the commencement of dialysis with a target level in the normal range (4-14 mg/L).
Forster, Markus Paul; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos
2002-12-18
The contents of moisture, protein, ash, ascorbic acid, glucose, fructose, total sugars, and total and insoluble fiber were determined in cultivars of bananas (Gran Enana and Pequeña Enana) harvested in Tenerife and in bananas (Gran Enana) from Ecuador. The chemical compositions in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the chemical composition, except for insoluble fiber content. Variations of the chemical composition were observed in the bananas from Tenerife according to cultivation method (greenhouse and outdoors), farming style (conventional and organic), and region of production (north and south). A highly significant (r = 0.995) correlation between glucose and fructose was observed. Correlations of ash and protein contents tend to separate the banana samples according to origin. A higher content of protein, ash, and ascorbic acid was observed as the length of the banana decreased. Applying factor analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife. An almost total differentiation (91.7%) between bananas from Tenerife and bananas from Ecuador was obtained by selecting protein, ash, and ascorbic acid content and applying stepwise discriminant analysis. By selecting the bananas Pequeña Enana and using discriminant analysis, a clear separation of the samples according to the region of production and farming style was observed.
NASA Astrophysics Data System (ADS)
Mozaffari Majd, M.; Dabbagh, H. A.; Farrokhpour, H.; Najafi Chermahini, A.
2017-11-01
The adsorption energies (Eads) and relative stabilities of selected conformers of the most stable tautomer of L-ascorbic acid (vitamin C) on the dehydroxylated γ-alumina (100) surface were calculated in both gas phase and solvent (water) using the density functional theory (DFT) method. The selected conformers were related to the different rotational angles of OH groups of L-ascorbic acid. The conformational analysis of bare tautomer in both gas and water showed that the conformer No.20 (conf. 20) and 13 (conf. 13) with the dihedral angles of H15sbnd O10sbnd C11sbnd C9 (-73°) and H20sbnd O19sbnd C9sbnd C11 (-135°) were the most stable and unstable conformers, respectively. The performed calculations in the presence of surface showed that the interaction of the conformers with the surface changes their relative stabilities and structures in both gas phase and water. The Ead of each conformer was calculated and it was determined that conf. 8 and conf. 16 have the highest value of Ead in the gas phase (-62.56 kcal/mol) and water (-54.44 kcal/mol), respectively. The optimized structure of each conformer on the surface and the number of hydrogen bonds between it and surface along with their bond lengths were determined.
Electrochemical detection of dopamine using porphyrin-functionalized graphene.
Wu, Li; Feng, Lingyan; Ren, Jinsong; Qu, Xiaogang
2012-04-15
A new type of porphyrin-functionalized graphene was synthesized and used for highly selective and sensitive detection of dopamine (DA). The aromatic π-π stacking and electrostatic attraction between positively-charged dopamine and negatively-charged porphyrin-modified graphene can accelerate the electron transfer whereas weakening ascorbic acid (AA) and uric acid (UA) oxidation on the porphyrin-functionalized graphene-modified electrode. Differential pulse voltammetry was used for electrochemical detection, the separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA is about 188 mV, 144 mV and 332 mV, which allows selectively determining DA. The detection limit of DA can be as low as 0.01 μM. More importantly, the sensor we presented can detect DA in the presence of large excess of ascorbic acid and uric acid. With good sensitivity and selectivity, the present method was applied to the determination of DA in real hydrochloride injection sample, human urine and serum samples, respectively, and the results was satisfactory. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of platelets on apparent leucocyte ascorbic acid content.
Evans, R M; Currie, L; Campbell, A
1980-09-01
The leucocyte ascorbic acid content is widely used as a measure of tissue ascorbic acid status. Standard methods of analysis, however, isolate both leucocytes and platelets (buffy layer), with consequent overestimation, since platelet ascorbic acid is attributed to the leucocytes. Fourteen healthy individuals on ascorbic acid supplements and 11 patients on mega dose ascorbic acid therapy were studied. A significant correlation was demonstrated between the 'leucocyte' ascorbic acid content and the platelet: leucocyte ratio (r = 0.70, P < 0.001). It is suggested that changes in the relative distribution of platelets and leucocytes in the blood will result in an apparent change in the 'leucocyte' ascorbic acid content regardless of any actual change in the ascorbic acid content of the cells.
Kim, Won; Bae, Seyeon; Kim, Hyemin; Kim, Yejin; Choi, Jiwon; Lim, Sun Young; Lee, Hei Jin; Lee, Jihyuk; Choi, Jiyea; Jang, Mirim; Lee, Kyoung Eun; Chung, Sun G.; Hwang, Young-il
2013-01-01
The L-gulono-γ-lactone oxidase gene (Gulo) encodes an essential enzyme in the synthesis of ascorbic acid from glucose. On the basis of previous findings of bone abnormalities in Gulo-/- mice under conditions of ascorbic acid insufficiency, we investigated the effect of ascorbic acid insufficiency on factors related to bone metabolism in Gulo-/- mice. Four groups of mice were raised for 4 weeks under differing conditions of ascorbic acid insufficiency, namely, wild type; ascorbic acid-sufficient Gulo-/- mice, 3-week ascorbic acid-insufficient Gulo-/- mice, and 4-week ascorbic acid-insufficient Gulo-/- mice. Four weeks of ascorbic acid insufficiency resulted in significant weight loss in Gulo-/- mice. Interestingly, average plasma osteocalcin levels were significantly decreased in Gulo-/- mice after 3 weeks of ascorbic acid insufficiency. In addition, the tibia weight in ascorbic acid-sufficient Gulo-/- mice was significantly higher than that in the other three groups. Moreover, significant decreases in trabecular bone volume near to the growth plate, as well as in trabecular bone attachment to the growth plate, were evident in 3- or 4-week ascorbic acid-insufficient Gulo-/-. In summary, ascorbic acid insufficiency in Gulo-/- mice results in severe defects in normal bone formation, which are closely related to a decrease in plasma osteocalcin levels. PMID:24386598
2014-01-01
Background Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Results Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H2O2, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H2O2 synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. Conclusions These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress. PMID:25091029
Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng
2014-08-05
Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H₂O₂, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H₂O₂ synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress.
de Freitas-Silva, Larisse; Rodríguez-Ruiz, Marta; Houmani, Hayet; da Silva, Luzimar Campos; Palma, José M; Corpas, Francisco J
2017-11-01
Glyphosate is a broad-spectrum systemic herbicide used worldwide. In susceptible plants, glyphosate affects the shikimate pathway and reduces aromatic amino acid synthesis. Using Arabidopsis seedlings grown in the presence of 20μM glyphosate, we analyzed H 2 O 2 , ascorbate, glutathione (GSH) and protein oxidation content as well as antioxidant catalase, superoxide dismutase (SOD) and ascorbate-glutathione cycle enzyme activity. We also examined the principal NADPH-generating system components, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH). Glyphosate caused a drastic reduction in growth parameters and an increase in protein oxidation. The herbicide also resulted in an overall increase in GSH content, antioxidant enzyme activity (catalase and all enzymatic components of the ascorbate-glutathione cycle) in addition to the two oxidative phase enzymes, G6PDH and 6PGDH, in the pentose phosphate pathway involved in NADPH generation. In this study, we provide new evidence on the participation of G6PDH and 6PGDH in the response to oxidative stress induced by glyphosate in Arabidopsis, in which peroxisomal enzymes, such as catalase and glycolate oxidase, are positively affected. We suggest that the NADPH provided by the oxidative phase of the pentose phosphate pathway (OxPPP) should serve to maintain glutathione reductase (GR) activity, thus preserving and regenerating the intracellular GSH pool under glyphosate-induced stress. It is particularly remarkable that the 6PGDH activity was unaffected by pro-oxidant and nitrating molecules such as H 2 0 2 , nitric oxide or peroxynitrite. Copyright © 2017 Elsevier GmbH. All rights reserved.
Martí, María C; Florez-Sarasa, Igor; Camejo, Daymi; Pallol, Beatriz; Ortiz, Ana; Ribas-Carbó, Miquel; Jiménez, Ana; Sevilla, Francisca
2013-02-01
Nitric oxide (NO) has emerged as an important signaling molecule in plants, but little is known about the effects of reactive nitrogen species in plant mitochondria. In this study, the effects of DETA-NONOate, a pure NO slow generator, and of SIN-1 (3-morpholinosydnonimine), a peroxynitrite producer, on the activities of respiratory pathways, enzymatic and non-enzymatic antioxidants have been investigated in isolated mitochondria from pea leaves. No significant changes in lipid peroxidation, protein oxidation or in ascorbate and glutathione redox state were observed after DETA-NONOate treatments whereas cytochrome pathway (CP) respiration was reversibly inhibited and alternative pathway (AP) respiration showed little inhibition. On the other hand, NO did not affect neither activities of Mn superoxide dismutase (Mn-SOD) nor enzymes involved in the ascorbate and glutathione regeneration in mitochondria except for ascorbate peroxidase (APX), which was reversely inhibited depending on ascorbate concentration. Finally, SIN-1 treatment of mitochondria produced a decrease in CP respiration, an increase in protein oxidation and strongly inhibited APX activity (90%), with glutathione reductase and dehydroascorbate reductase (DHAR) being moderately inhibited (30 and 20%, respectively). This treatment did not affect monodehydroascorbate reductase (MDHAR) and Mn-SOD activities. Results showed that mitochondrial nitrosative stress was not necessarily accompanied by oxidative stress. We suggest that NO-resistant AP and mitochondrial APX may be important components of the H(2) O(2) -signaling pathways under nitrosative stress induced by NO in this organelle. Also, MDHAR and DHAR, via ascorbate regeneration, could constitute an essential antioxidant defense together with Mn-SOD, against NO and ONOO(-) stress in plant mitochondria. Copyright © Physiologia Plantarum 2012.
Vitamin C prophylaxis promotes oxidative lipid damage during surgical ischemia-reperfusion.
Bailey, Damian M; Raman, Sudarsanam; McEneny, Jane; Young, Ian S; Parham, Kelly L; Hullin, David A; Davies, Bruce; McKeeman, Gareth; McCord, Joe M; Lewis, Michael H
2006-02-15
Reactive oxygen species (ROS) have been implicated in the cellular membrane damage and postoperative morbidity associated with obligatory ischemia-reperfusion (I-R) during vascular surgery. Thus, a clinical study was undertaken to evaluate the effects of ascorbate prophylaxis on ROS exchange kinetics in 22 patients scheduled for elective abdominal aortic aneurysm (AAA) or infra-inguinal bypass (IIB) repair. Patients were assigned double-blind to receive intravenous sodium ascorbate (2 g vitamin C, n=10) or placebo (0.9% saline, n=12) administered 2 h prior to surgery. Blood samples were obtained from the arterial and venous circulation proximal to the respective sites of surgical repair (local) and from an antecubital vein (peripheral) during cross-clamping (ischemia) and within 60 s of clamp release (reperfusion). Ascorbate supplementation increased the venoarterial concentration difference (v-adiff) of lipid hydroperoxides (LH), interleukin (IL)-6 and vascular endothelial growth factor (VEGF) protein during ischemia. This increased the peripheral concentration of LH, total creatine phosphokinase (CPK), and VEGF protein during reperfusion (P<0.05 vs placebo). Electron paramagnetic resonance (EPR) spectroscopy confirmed that free iron was available for oxidative catalysis in the local ischemic venous blood of supplemented patients. An increased concentration of the ascorbate radical (A.-) and alpha-phenyl-tert-butylnitrone (PBN) adducts assigned as lipid-derived alkoxyl (LO.) and alkyl (LC.) species were also detected in the peripheral blood of supplemented patients during reperfusion (P<0.05 vs ischemia). In conclusion, these findings suggest that ascorbate prophylaxis may have promoted iron-induced oxidative lipid damage via a Fenton-type reaction initiated during the ischemic phase of surgery. The subsequent release of LH into the systemic circulation may have catalyzed formation of second-generation radicals implicated in the regulation of vascular permeability and angiogenesis.
Vitamin C Function in the Brain: Vital Role of the Ascorbate Transporter (SVCT2)
Harrison, Fiona E.; May, James M.
2009-01-01
Ascorbate (vitamin C) is a vital antioxidant molecule in the brain. However, it also has a number of other important functions, participating as a co-factor in several enzyme reactions including catecholamine synthesis, collagen production and regulation of HIF-1α. Ascorbate is transported into the brain and neurons via the Sodium-dependent Vitamin C Transporter-2 (SVCT2), which causes accumulation of ascorbate within cells against a concentration gradient. Dehydroascorbic acid, the oxidized form of ascorbate, is transported via glucose transporters of the GLUT family. Once in cells, it is rapidly reduced to ascorbate. The highest concentrations of ascorbate in the body are found in the brain and neuroendocrine tissues such as adrenal, although the brain is the most difficult organ to deplete of ascorbate. Combined with regional asymmetry in ascorbate distribution within different brain areas, these facts suggest an important role for ascorbate in the brain. Ascorbate is proposed as a neuromodulator of glutamatergic, dopaminergic, cholinergic and GABAergic transmission and related behaviors. Neurodegenerative diseases typically involve high levels of oxidative stress and thus ascorbate has been posited to have potential therapeutic roles against ischemic stroke, Alzheimer's disease, Parkinson's disease and Huntingdon's disease. PMID:19162177
Vitamin C in human health and disease is still a mystery ? An overview
Naidu, K Akhilender
2003-01-01
Ascorbic acid is one of the important water soluble vitamins. It is essential for collagen, carnitine and neurotransmitters biosynthesis. Most plants and animals synthesize ascorbic acid for their own requirement. However, apes and humans can not synthesize ascorbic acid due to lack of an enzyme gulonolactone oxidase. Hence, ascorbic acid has to be supplemented mainly through fruits, vegetables and tablets. The current US recommended daily allowance (RDA) for ascorbic acid ranges between 100–120 mg/per day for adults. Many health benefits have been attributed to ascorbic acid such as antioxidant, anti-atherogenic, anti-carcinogenic, immunomodulator and prevents cold etc. However, lately the health benefits of ascorbic acid has been the subject of debate and controversies viz., Danger of mega doses of ascorbic acid? Does ascorbic acid act as a antioxidant or pro-oxidant ? Does ascorbic acid cause cancer or may interfere with cancer therapy? However, the Panel on dietary antioxidants and related compounds stated that the in vivo data do not clearly show a relationship between excess ascorbic acid intake and kidney stone formation, pro-oxidant effects, excess iron absorption. A number of clinical and epidemiological studies on anti-carcinogenic effects of ascorbic acid in humans did not show any conclusive beneficial effects on various types of cancer except gastric cancer. Recently, a few derivatives of ascorbic acid were tested on cancer cells, among them ascorbic acid esters showed promising anticancer activity compared to ascorbic acid. Ascorbyl stearate was found to inhibit proliferation of human cancer cells by interfering with cell cycle progression, induced apoptosis by modulation of signal transduction pathways. However, more mechanistic and human in vivo studies are needed to understand and elucidate the molecular mechanism underlying the anti-carcinogenic property of ascorbic acid. Thus, though ascorbic acid was discovered in 17th century, the exact role of this vitamin/nutraceutical in human biology and health is still a mystery in view of many beneficial claims and controversies. PMID:14498993
Horio, Fumihiko; Kiyama, Keiichiro; Kobayashi, Misato; Kawai, Kaori; Tsuda, Takanori
2006-02-01
ODS rat has a hereditary defect in ascorbic acid biosynthesis and is a useful animal model for elucidating the physiological role of ascorbic acid. We previously demonstrated by using ODS rats that ascorbic acid deficiency changes the hepatic gene expression of acute phase proteins, as seen in acute inflammation. In this study, we investigated the effects of ascorbic acid deficiency on the production of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1), in ODS rats. Male ODS rats (6 wk of age) were fed a basal diet containing ascorbic acid (300 mg/kg diet) or a diet without ascorbic acid for 14 d. Obvious symptoms of scurvy were not observed in the ascorbic acid-deficient rats. Ascorbic acid deficiency significantly elevated the serum concentration of CINC-1 on d 14. The liver and spleen CINC-1 concentrations in the ascorbic acid-deficient rats were significantly elevated to 600% and 180% of the respective values in the control rats. However, the lung concentration of CINC-1 was not affected by ascorbic acid deficiency. Ascorbic acid deficiency significantly elevated the hepatic mRNA level of CINC-1 (to 480% of the value in the control rats), but not the lung mRNA level. These results demonstrate that ascorbic acid deficiency elevates the serum, liver and spleen concentrations of CINC-1 as seen in acute inflammation, and suggest that ascorbic acid deficiency stimulate the hepatic CINC-1 gene expression.
Pardo-Andreu, Gilberto Lázaro; Delgado, René; Núñez-Sellés, Alberto J; Vercesi, Anibal E
2006-02-01
Vimang is an aqueous extract of selected species of Mangifera indica L, used in Cuba as a nutritional antioxidant supplement. Many in vitro and in vivo models of oxidative stress have been used to elucidate the antioxidant mechanisms of this extract. To further characterize the mechanism of Vimang action, its effect on the degradation of 2-deoxyribose induced by Fe (III)-EDTA plus ascorbate or plus hypoxanthine/xanthine oxidase was studied. Vimang was shown to be a potent inhibitor of 2-deoxyribose degradation mediated by Fe (III)-EDTA plus ascorbate or superoxide (O2-). The results revealed that Vimang, at concentrations higher than 50 microM mangiferin equivalent, was equally effective in preventing degradation of both 15 mM and 1.5 mM 2-deoxyribose. At a fixed Fe (III) concentration, increasing the concentration of ligands (either EDTA or citrate) caused a significant reduction in the protective effects of Vimang. When ascorbate was replaced by O2- (formed by hypoxanthine and xanthine oxidase) the protective efficiency of Vimang was also inversely related to EDTA concentration. The results strongly indicate that Vimang does not block 2-deoxyribose degradation by simply trapping *OH radicals. Rather, Vimang seems to act as an antioxidant by complexing iron ions, rendering them inactive or poorly active in the Fenton reaction. Copyright 2006 John Wiley & Sons, Ltd.
Healthful and nutritional components in select Florida tropical fruits
USDA-ARS?s Scientific Manuscript database
Fourteen tropical fruits from south Florida (red guava, white guava, carambola, red pitaya (red dragon), white pitaya (white dragon), mamey, sapodilla, lychee, longan, green mango, ripe mango, green papaya and ripe papaya) were evaluated for phenolic compounds, antioxidant activity, ascorbic acid (v...
Dewhirst, Rebecca A; Clarkson, Graham J J; Rothwell, Steve D; Fry, Stephen C
2017-10-15
Post-harvest treatments of pre-packaged salad leaves potentially cause l-ascorbate loss, but the mechanisms of ascorbate degradation remain incompletely understood, especially in planta. We explored the extent and pathways of ascorbate loss in variously washed and stored salad leaves. Ascorbate was assayed by 2,6-dichlorophenolindophenol titration, and pathways were monitored by 14 C-radiolabelling followed by high-voltage electrophoresis. All leaves tested showed ascorbate loss during storage: lettuce showed the greatest percentage loss, wild rocket the least. Spinach leaves were particularly prone to losing ascorbate during washing, especially with simultaneous mechanical agitation; however, washing in the presence of hypochlorite did not significantly increase ascorbate loss. In spinach, [ 14 C]oxalate was the major product of [ 14 C]ascorbate degradation, suggesting that commercial washing causes oxidative stress. This study highlights that ascorbate/dehydroascorbic acid are lost via the oxidative pathway during washing and post-harvest storage of salad leaves. Thus changes to washing procedures could potentially increase the post-harvest retention of ascorbate. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Redox-mediated activation of latent transforming growth factor-beta 1
NASA Technical Reports Server (NTRS)
Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)
1996-01-01
Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during disease mechanisms involving chronic ROS production.
Ramírez-Segovia, A S; Banda-Alemán, J A; Gutiérrez-Granados, S; Rodríguez, A; Rodríguez, F J; Godínez, Luis A; Bustos, E; Manríquez, J
2014-02-17
Glassy carbon electrodes (GCE) were sequentially modified by cysteamine-capped gold nanoparticles (AuNp@cysteamine) and PAMAM dendrimers generation 4.5 bearing 128-COOH peripheral groups (GCE/AuNp@cysteamine/PAMAM), in order to explore their capabilities as electrochemical detectors of uric acid (UA) in human serum samples at pH 2. The results showed that concentrations of UA detected by cyclic voltammetry with GCE/AuNp@cysteamine/PAMAM were comparable (deviation <±10%; limits of detection (LOD) and quantification (LOQ) were 1.7×10(-4) and 5.8×10(-4) mg dL(-1), respectively) to those concentrations obtained using the uricase-based enzymatic-colorimetric method. It was also observed that the presence of dendrimers in the GCE/AuNp@cysteamine/PAMAM system minimizes ascorbic acid (AA) interference during UA oxidation, thus improving the electrocatalytic activity of the gold nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.
Pulmonary bioavailability of ascorbic acid in an ascorbate-synthesising species, the horse.
Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Roberts, Colin A; Harris, Pat A; Kelly, Frank J; Schroter, Robert C
2003-04-01
Vitamin C (ascorbic acid) is a non-enzymatic antioxidant important in protecting the lung against oxidative damage and is decreased in lung lining fluid of horses with airway inflammation. To examine possible therapeutic regimens in a species with ascorbate-synthesising capacity, we studied the effects of oral supplementation of two forms of ascorbic acid, (each equivalent to 20 mg ascorbic acid per kg body weight) on the pulmonary and systemic antioxidant status of six healthy ponies in a 3 x 3 Latin square design. Two weeks supplementation with ascorbyl palmitate significantly increased mean plasma ascorbic acid concentrations compared to control (29 +/- 5 and 18 +/- 7 micromol/l, respectively; p < 0.05). Calcium ascorbyl-2-monophosphate, a more stable form of ascorbic acid, also increased mean plasma ascorbic acid concentrations, but not significantly (23 +/- 1 micromol/l; p = 0.07). The concentration of ascorbic acid in bronchoalveolar lavage fluid increased in five out of six ponies following supplementation with either ascorbyl palmitate or calcium ascorbyl-2-monophosphate compared with control (30 +/- 10, 25 +/- 4 and 18 +/- 8 micromol/l, respectively; p < 0.01). Neither supplement altered the concentration of glutathione, uric acid or alpha-tocopherol in plasma or bronchoalveolar lavage fluid. In conclusion, the concentration of lung lining fluid ascorbic acid is increased following ascorbic acid supplementation (20 mg/kg body weight) in an ascorbate-synthesising species.
Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao
2015-12-01
In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of intracellular Ca2+ signal in the ascorbate-induced apoptosis in a human hepatoma cell line.
Lee, Yong Soo
2004-12-01
Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular Ca2+ concentration. EGTA, an extracellular Ca2+ chelator did not significantly alter the ascorbate-induced intracellular Ca2+ increase and apoptosis, whereas dantrolene, an intracellular Ca2+ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular Ca2+ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular Ca2+ release mechanism may mediate ascorbate-induced apoptosis.
Elmore, Amy R
2005-01-01
L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (<0.01%) or in the 5% to 10% range. Calcium Ascorbate and Magnesium Ascorbate are described as antioxidants and skin conditioning agents--miscellaneous for use in cosmetics, but are not currently used. Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity. Ascorbic Acid and Sodium Ascorbate acted as a nitrosation inhibitor in several food and cosmetic product studies. No compound-related clinical signs or gross or microscopic pathological effects were observed in either mice, rats, or guinea pigs in short-term studies. Male guinea pigs fed a control basal diet and given up to 250 mg Ascorbic Acid orally for 20 weeks had similar hemoglobin, blood glucose, serum iron, liver iron, and liver glycogen levels compared to control values. Male and female F344/N rats and B6C3F(1) mice were fed diets containing up to 100,000 ppm Ascorbic Acid for 13 weeks with little toxicity. Chronic Ascorbic Acid feeding studies showed toxic effects at dosages above 25 mg/kg body weight (bw) in rats and guinea pigs. Groups of male and female rats given daily doses up to 2000 mg/kg bw Ascorbic Acid for 2 years had no macro- or microscopically detectable toxic lesions. Mice given Ascorbic Acid subcutaneous and intravenous daily doses (500 to 1000 mg/kg bw) for 7 days had no changes in appetite, weight gain, and general behavior; and histological examination of various organs showed no changes. Ascorbic Acid was a photoprotectant when applied to mice and pig skin before exposure to ultraviolet (UV) radiation. The inhibition of UV-induced suppression of contact hypersensitivity was also noted. Magnesium Ascorbyl Phosphate administration immediately after exposure in hairless mice significantly delayed skin tumor formation and hyperplasia induced by chronic exposure to UV radiation. Pregnant mice and rats were given daily oral doses of Ascorbic Acid up to 1000 mg/kg bw with no indications of adult-toxic, teratogenic, or fetotoxic effects. Ascorbic Acid and Sodium Ascorbate were not genotoxic in several bacterial and mammalian test systems, consistent with the antioxidant properties of these chemicals. In the presence of certain enzyme systems or metal ions, evidence of genotoxicity was seen. The National Toxicology Program (NTP) conducted a 2-year oral carcinogenesis bioassay of Ascorbic Acid (25,000 and 50,000 ppm) in F344/N rats and B6C3F(1) mice. Ascorbic Acid was not carcinogenic in either sex of both rats and mice. Inhibition of carcinogenesis and tumor growth related to Ascorbic Acid's antioxidant properties has been reported. Sodium Ascorbate has been shown to promote the development of urinary carcinomas in two-stage carcinogenesis studies. Dermal application of Ascorbic Acid to patients with radiation dermatitis and burn victims had no adverse effects. Ascorbic Acid was a photoprotectant in clinical human UV studies at doses well above the minimal erythema dose (MED). An opaque cream containing 5% Ascorbic Acid did not induce dermal sensitization in 103 human subjects. A product containing 10% Ascorbic Acid was nonirritant in a 4-day minicumulative patch assay on human skin and a facial treatment containing 10% Ascorbic Acid was not a contact sensitizer in a maximization assay on 26 humans. Because of the structural and functional similarities of these ingredients, the Panel believes that the data on one ingredient can be extrapolated to all of them. The Expert Panel attributed the finding that Ascorbic Acid was genotoxic in these few assay systems due to the presence of other chemicals, e.g., metals, or certain enzyme systems, which effectively convert Ascorbic Acid's antioxidant action to that of a pro-oxidant. When Ascorbic Acid acts as an antioxidant, the Panel concluded that Ascorbic Acid is not genotoxic. Supporting this view were the carcinogenicity studies conducted by the NTP, which demonstrated no evidence of carcinogenicity. Ascorbic Acid was found to effectively inhibit nitrosamine yield in several test systems. The Panel did review studies in which Sodium Ascorbate acted as a tumor promoter in animals. These results were considered to be related to the concentration of sodium ions and the pH of urine in the test animals. Similar effects were seen with sodium bicarbonate. Because of the concern that certain metal ions may combine with these ingredients to produce pro-oxidant activity, the Panel cautioned formulators to be certain that these ingredients are acting as antioxidants in cosmetic formulations. The Panel believed that the clinical experience in which Ascorbic Acid was used on damaged skin with no adverse effects and the repeat-insult patch test (RIPT) using 5% Ascorbic Acid with negative results supports the finding that this group of ingredients does not present a risk of skin sensitization. These data coupled with an absence of reports in the clinical literature of Ascorbic Acid sensitization strongly support the safety of these ingredients.
NASA Astrophysics Data System (ADS)
Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei
2015-10-01
Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.
A mixed solvent system for preparation of spherically agglomerated crystals of ascorbic acid.
Ren, Fuzheng; Zhou, Yaru; Liu, Yan; Fu, Jinping; Jing, Qiufang; Ren, Guobin
2017-09-01
The objective of this research was to develop a novel solvent system to prepare spherically agglomerated crystals (SAC) of ascorbic acid with improved flowability for direct compression. A spherical agglomeration method was developed by selecting the mixed solvents (n-butyl and ethyl acetate) as a poor solvent and the process was further optimized by using triangular phase diagram and particle vision measurement. Physiochemical properties of SAC were characterized and compared with original drug crystals. It showed that amount of poor solvent, ratio of solvent mixture, and drug concentration are critical for preparation of SAC with desirable properties. The solid state of SAC was same as original crystals according to DSC, XRD, and FT-IR results. There was no significant difference in solubility and dissolution rate of drug between SAC and original crystals. The flowability and packability of SAC as well as the tensile strength and elastic recovery of tablets made from SAC were all significantly improved when compared with original crystals and tablets from crystals. It is concluded that the present method was suitable to prepare SAC of ascorbic acid for direct compression.
Alós, Enriqueta; Rodrigo, María J; Zacarías, Lorenzo
2013-06-01
Sweet pepper (Capsicum annuum L.) is widely recognized among the vegetables with high content of ascorbic acid (AsA). However, the metabolic pathways involved in the biosynthesis, recycling and degradation of AsA and their relative contribution to the concentration of AsA have not been established yet. In the present work, the expression levels of selected genes involved in the AsA biosynthesis, degradation and recycling pathways were analyzed during development and ripening of pepper fruit cv. Palermo and in mature fruit of four cultivars (Lipari, C-116, Surrentino and Italverde) with different AsA concentrations. An inverse correlation was found between the expression of the biosynthetic genes and AsA concentrations, which could indicate that a feedback mechanism regulates AsA homeostasis in pepper fruits. Interestingly, analysis of mRNA levels of ascorbate oxidase, involved in the degradation of AsA, suggests that this enzyme plays a critical role in the regulation of the AsA pool during fruit development and ripening. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Transfering vitamin C from fish to embryos
USDA-ARS?s Scientific Manuscript database
Beneficial effects of ascorbic acid supplementation to broodstock of a select aquaculture species is well documented. At the present levels of feeding, dietary means of vitamin C does not meet the requirements for maturation, reproduction and needs of early life stages of larvae. In addition, thi...
Calcium transport in vesicles energized by cytochrome oxidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosier, Randy N.
1979-01-01
Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K + selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K + flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interactionmore » with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.« less
Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.).
Xin, Ying; Zhang, Min; Adhikari, Benu
2014-09-01
The aim of this study was to research the ultrasound-assisted freezing (UAF) of broccoli. CaCl2 solution was used as freezing medium. The comparative advantage of using UAF over normal freezing on the freezing time, cell-wall bound calcium to total calcium ratio, textural properties, color, drip loss and L-ascorbic acid contents was evaluated. The application of UAF at selected acoustic intensity with a range of 0.250-0.412 W/cm(2) decreased the freezing time and the loss of cell-wall bound calcium content. Compared to normal freezing, the values of textural properties, color, L-ascorbic acid content were better preserved and the drip loss was significantly minimized by the application of UAF. However, when outside that range of acoustic intensity, the quality of the ultrasound-assisted frozen broccoli was inferior compared to that of the normally frozen samples. Selected the appropriate acoustic intensity was very important for the application of UAF. Copyright © 2014 Elsevier B.V. All rights reserved.
Oxidative stress does not influence local sweat rate during high-intensity exercise.
Meade, Robert D; Fujii, Naoto; Poirier, Martin P; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P
2018-02-01
What is the central question of this study? We evaluated whether oxidative stress attenuates the contribution of nitric oxide to sweating during high-intensity exercise. What is the main finding and its importance? In contrast to our previous report of an oxidative stress-mediated reduction in nitric oxide-dependent cutaneous vasodilatation in this cohort during intense exercise, we demonstrated no influence of local ascorbate administration on the sweating response during moderate- (∼51% peak oxygen uptake) or high-intensity exercise (∼72% peak oxygen uptake). These new findings provide important mechanistic insight into how exercise-induced oxidative stress impacts sudomotor activity. Nitric oxide (NO)-dependent sweating is diminished during high- but not moderate-intensity exercise. We evaluated whether this impairment stems from increased oxidative stress during high-intensity exercise. On two separate days, 11 young (24 ± 4 years) men cycled in the heat (35°C) at a moderate [500 W; 52 ± 6% peak oxygen uptake (V̇O2 peak )] or high (700 W; 71 ± 5% V̇O2 peak ) rate of metabolic heat production. Each session included two 30 min exercise bouts separated by a 20 min recovery period. Local sweat rate was monitored at four forearm skin sites continuously perfused via intradermal microdialysis with the following: (i) lactated Ringer solution (Control); (ii) 10 mm ascorbate (Ascorbate; non-selective antioxidant); (iii) 10 mm N G -nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor); or (iv) 10 mm ascorbate plus 10 mm l-NAME (Ascorbate + l-NAME). During moderate exercise, sweat rate was attenuated at the l-NAME and Ascorbate + l-NAME sites (both ∼1.0 mg min -1 cm -2 ; all P < 0.05) but not at the Ascorbate site (∼1.1 mg min -1 cm -2 ; both P ≥ 0.28) in comparison to the Control site (∼1.1 mg min -1 cm -2 ). However, no differences were observed between treatment sites (∼1.4 mg min -1 cm -2 ; P = 0.75) during high-intensity exercise. We conclude that diminished NO-dependent sweating during intense exercise occurs independent of oxidative stress. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Davison, G W; Ashton, T; George, L; Young, I S; McEneny, J; Davies, B; Jackson, S K; Peters, J R; Bailey, D M
2008-11-01
Patients with type 1 diabetes mellitus are more susceptible than healthy individuals to exercise-induced oxidative stress and vascular endothelial dysfunction, which has important implications for the progression of disease. Thus, in the present study, we designed a randomised double-blind, placebo-controlled trial to test the original hypothesis that oral prophylaxis with vitamin C attenuates rest and exercise-induced free radical-mediated lipid peroxidation in type 1 diabetes mellitus. All data were collected from hospitalised diabetic patients. The electron paramagnetic resonance spectroscopic detection of spin-trapped alpha-phenyl-tert-butylnitrone (PBN) adducts was combined with the use of supporting markers of lipid peroxidation and non-enzymatic antioxidants to assess exercise-induced oxidative stress in male patients with type 1 diabetes (HbA(1c) 7.9 +/- 1%, n = 12) and healthy controls (HbA(1c) 4.6 +/- 0.5%, n = 14). Following participant randomisation using numbers in a sealed envelope, venous blood samples were obtained at rest, after a maximal exercise challenge and before and 2 h after oral ingestion of 1 g ascorbate or placebo. Participants and lead investigators were blinded to the administration of either placebo or ascorbate treatments. Primary outcome was the difference in changes in free radicals following ascorbate ingestion. Six diabetic patients and seven healthy control participants were randomised to each of the placebo and ascorbate groups. Diabetic patients (n = 12) exhibited an elevated concentration of PBN adducts (p < 0.05 vs healthy, n = 14), which were confirmed as secondary, lipid-derived oxygen-centred alkoxyl (RO.) radicals (a(nitrogen) = 1.37 mT and abeta(hydrogen) = 0.18 mT). Lipid hydroperoxides were also selectively elevated and associated with a depression of retinol and lycopene (p < 0.05 vs healthy). Vitamin C supplementation increased plasma vitamin C concentration to a similar degree in both groups (p < 0.05 vs pre-supplementation) and attenuated the exercise-induced oxidative stress response (p < 0.05 vs healthy). There were no selective treatment differences between groups in the primary outcome variable. These findings are the first to suggest that oral vitamin C supplementation provides an effective prophylaxis against exercise-induced free radical-mediated lipid peroxidation in human diabetic blood. ISRCTN96164937.
Mody, Vino C; Kakar, Manoj; Elfving, Ase; Löfgren, Stefan
2008-03-01
To study if ascorbate supplementation decreases ultraviolet radiation (UVR)-induced cataract development in the guinea pig. Sixty 6-9-week-old pigmented guinea pigs received drinking water supplemented with or without 5.5 mm l-ascorbate for 4 weeks. After supplementation, 40 animals were exposed unilaterally in vivo under anaesthesia to 80 kJ/m(2) UVR-B. One day later, the animals were killed and lenses were extracted. Degree of cataract was quantified by measurement of intensity of forward lens light scattering. Lens ascorbate concentration was determined with high-performance liquid chromatography (HPLC) with UVR detection at 254 nm. Twenty animals were used as non-exposed control. Supplementation increased lens ascorbate concentration significantly. In UVR-exposed animals, mean 95% confidence intervals (CIs) for animal-averaged lens ascorbate concentration (micromol/g wet weight lens) were 0.54 +/- 0.07 (no ascorbate) and 0.83 +/- 0.05 (5.5 mm ascorbate). In non-exposed control animals, mean 95% CIs for animal-averaged lens ascorbate concentration (micromol/g wet weight lens) were 0.72 +/- 0.12 (0 mm ascorbate) and 0.90 +/- 0.15 (5.5 mm ascorbate). All non-exposed lenses were devoid of cataract. Superficial anterior cataract developed in all UVR-exposed lenses. The lens light scattering was 39.2 +/- 14.1 milli transformed equivalent diazepam concentration (m(tEDC)) without and 35.9 +/- 14.0 m(tEDC) with ascorbate supplementation. Superficial anterior cataract develops in lenses exposed to UVR-B. Ascorbate supplementation is non-toxic to both UVR-B-exposed lenses and non-exposed control lenses. Ascorbate supplementation does not reduce in vivo lens forward light scattering secondary to UVR-B exposure in the guinea pig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kviecinski, M.R., E-mail: mrkviecinski@hotmail.com; Pedrosa, R.C., E-mail: rozangelapedrosa@gmail.com; Felipe, K.B., E-mail: kakabettega@yahoo.com.br
2012-05-04
Highlights: Black-Right-Pointing-Pointer The cytotoxicity of juglone is markedly increased by ascorbate. Black-Right-Pointing-Pointer T24 cell death by oxidative stress is necrosis-like. Black-Right-Pointing-Pointer Redox cycling by juglone/ascorbate inhibits cell proliferation. Black-Right-Pointing-Pointer Cellular migration is impaired by juglone/ascorbate. -- Abstract: The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC{sub 50} value for juglone at 24 h decreased from 28.5 {mu}M to 6.3 {mu}M in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress inmore » juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 {mu}M), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.« less
Changes in the Ascorbate System during Seed Development of Vicia faba L. 1
Arrigoni, Oreste; De Gara, Laura; Tommasi, Franca; Liso, Rosalia
1992-01-01
Large changes occur in the ascorbate system during the development of Vicia faba seed and these appear closely related to what are generally considered to be the three stages of embryogenesis. During the first stage, characterized by embryonic cells with high mitotic activity, the ascorbic acid/dehydroascorbic acid ratio is about 7, whereas in the following stage, characterized by rapid cell elongation (stage 2), it is lower than 1. The different ascorbic/dehydroascorbic ratio may be correlated with the level of ascorbate free radical reductase activity, which is high in stage 1 and lower in stage 2. Ascorbate peroxidase activity is high and remains constant throughout stages 1 and 2, but it decreases when the water content of the seed begins to decline (stage 3). In the dry seed, the enzyme disappears together with ascorbic acid. Ascorbate peroxidase activity is observed to be 10 times higher than that of catalase, suggesting that ascorbate peroxidase, rather than catalase, is utilized in scavenging the H2O2 produced in the cell metabolism. There is no ascorbate oxidase in the seed of V. faba. V. faba seeds acquire the capability to synthesize ascorbic acid only after 30 days from anthesis, i.e. shortly before the onset of seed desiccation. This suggests that (a) the young seed is furnished with ascorbic acid by the parent plant throughout the period of intense growth, and (b) it is necessary for the seed to be endowed with the ascorbic acid biosynthetic system before entering the resting state so that the seed can promptly synthesize the ascorbic acid needed to reestablish metabolic activity when germination starts. PMID:16668855
The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration.
Szarka, András; Bánhegyi, Gábor; Asard, Han
2013-09-20
Ascorbate, this multifaceted small molecular weight carbohydrate derivative, plays important roles in a range of cellular processes in plant cells, from the regulation of cell cycle, through cell expansion and senescence. Beyond these physiological functions, ascorbate has a critical role in responses to abiotic stresses, such as high light, high salinity, or drought. The biosynthesis, recycling, and intracellular transport are important elements of the balancing of ascorbate level to the always-changing conditions and demands. A bidirectional tight relationship was described between ascorbate biosynthesis and the mitochondrial electron transfer chain (mETC), since L-galactono-1,4-lactone dehydrogenase (GLDH), the enzyme catalyzing the ultimate step of ascorbate biosynthesis, uses oxidized cytochrome c as the only electron acceptor and has a role in the assembly of Complex I. A similar bidirectional relationship was revealed between the photosynthetic apparatus and ascorbate biosynthesis since the electron flux through the photosynthetic ETC affects the biosynthesis of ascorbate and the level of ascorbate could affect photosynthesis. The details of this regulatory network of photosynthetic electron transfer, respiratory electron transfer, and ascorbate biosynthesis are still not clear, as are the potential regulatory role and the regulation of intracellular ascorbate transport and fluxes. The elucidation of the role of ascorbate as an important element of the network of photosynthetic, respiratory ETC and tricarboxylic acid cycle will contribute to understanding plant cell responses to different stress conditions.
Selected micronutrient intake and the risk of colorectal cancer.
Ferraroni, M.; La Vecchia, C.; D'Avanzo, B.; Negri, E.; Franceschi, S.; Decarli, A.
1994-01-01
The relationship between estimated intake of selected micronutrients and the risk of colorectal cancer was analysed using data from a case-control study conducted in northern Italy. The study was based on 828 patients with colon cancer, 498 with rectal cancer and 2,024 controls in hospital for acute, non-neoplastic, non-digestive tract diseases. Relative risks (RRs) of intake quintiles were computed after allowance for age, sex and other major potential confounding factors, including an estimate of total energy intake. No apparent trend in risk across intake quintiles was evident for retinol, vitamin D, methionine and calcium. For beta-carotene, ascorbic acid, vitamin E and folate there was a trend of a protective effect with increasing consumption: the RR for the highest versus the lowest quintile was 0.32 for beta-carotene, 0.40 for ascorbic acid, 0.60 for vitamin E and 0.52 for folate. These inverse associations were similar for colon and rectal cancer, and consistent across strata of sex and age. When simultaneous allowance was made for all these micronutrients, besides other covariates, the only persistent protective effects were for beta-carotene (RR = 0.38 for the highest quintile) and ascorbic acid (RR = 0.52). Whether this reflects a specific, or stronger, effect of these micronutrients, rather than problems of collinearity between micronutrients or other limitations of the data, remains open to discussion. Still, this study suggests that specific micronutrients may exert an independent protective effect against colorectal carcinogenesis. PMID:7981067
Anderson, R
1979-09-01
The effects of ascorbic acid and calcium and sodium ascorbate at a concentration range of 10(-6)M - 10(-1)M on polymorphonuclear leucocyte (PMN) phagocytosis of Candida albicans and post-phagocytic nitroblue tetrazolium (NBT) reduction, hexose monophosphate shunt (HMS) activity and myeloperoxidase-mediated iodination of ingested protein were investigated. Phagocytosis of C. albicans was unaffected by ascorbate concentrations of 10(-6)M - 10(-2)M; however, progressive inhibition was observed at concentrations of 10(-2)M upwards. Enhancement of resting and stimulated HMS activity and NBT reduction was evident at ascorbate concentrations of 10(-5) M - 10(-2)M. The stimulations of HMS activity and NBT reduction was independent of myeloperoxidase iodination of ingested protein and this latter function was strongly inhibited by ascorbate. Concentrations of ascorbic acid and calcium and sodium ascorbate which caused inhibition of phagocytosis and HMS activity were the same as those which mediated stimulation of cell motility, indicating that independent cellular mechanisms may govern motility and phagocytosis.
Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid
Meredith, M. Elizabeth; May, James M.
2013-01-01
Scope: Ascorbic acid (ascorbate) is required to recycle tetrahydrobiopterin, which is necessary for neurotransmitter synthesis by the rate-limiting enzymes tyrosine and tryptophan hydroxylases. We sought to determine whether ascorbate might regulate embryonic brain cortex monoamine synthesis utilizing transgenic mouse models with varying intracellular ascorbate levels. Methods and Results: In embryos lacking the sodium-dependent vitamin C transporter 2 (SVCT2), very low levels of brain ascorbate decreased cortex levels of norepinephrine and dopamine by approximately 33%, but had no effect on cortex serotonin or its metabolite, 5-hydroxyindole acetic acid. This decrease in ascorbate also led to a decrease in protein levels of tyrosine hydroxylase, but not of tryptophan hydroxylase. Increased cortex ascorbate in embryos carrying extra copies of the SVCT2 resulted in increased levels of dopamine and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), as well as serotonin and 5-hydroxyindole acetic acid. Conclusion: The dependence of embryonic brain cortex neurotransmitter synthesis and tyrosine hydroxylase expression on intracellular ascorbate emphasizes the importance of receiving adequate ascorbate during development. PMID:24095796
Tyrosinase-Based Biosensors for Selective Dopamine Detection
Florescu, Monica; David, Melinda
2017-01-01
A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA). For increased selectivity, gold electrodes were previously modified with cobalt (II)-porphyrin (CoP) film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr) was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA), with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%), and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum. PMID:28590453
Sen, S; Mukherjee, S
1997-01-01
Effect of unsaturated and saturated fats on cholesterol metabolism was studied in ascorbate sufficient and deficient guineapigs. Experimental animals were made chronic ascorbic acid deficient by allowing oral intake of 0.5 mg ascorbic acid/day/animal. Elevation in serum and liver cholesterol and triglyceride along with depression in cholesterol oxidation and 7 alpha-hydroxylation in liver was observed in unsaturated fat fed guineapigs with ascorbate deficiency. Liver microsomal cytochrome P-450 level was found to be low in ascorbate deficient animals. Polyunsaturated fat intake could not lower the serum cholesterol level in ascorbate deficiency. Today polyunsaturated fat in the diet is encouraged all over the world for its hypocholesterolemic effect. This study indicates that polyunsaturated fat intake with ascorbic acid deficiency may produce hypercholesterolemia.
Jespersen, H M; Kjaersgård, I V; Ostergaard, L; Welinder, K G
1997-01-01
Ascorbate peroxidases are haem proteins that efficiently scavenge H2O2 in the cytosol and chloroplasts of plants. Database analyses retrieved 52 expressed sequence tags coding for Arabidopsis thaliana ascorbate peroxidases. Complete sequencing of non-redundant clones revealed three novel types in addition to the two cytosol types described previously in Arabidopsis. Analysis of sequence data available for all plant ascorbate peroxidases resulted in the following classification: two types of cytosol soluble ascorbate peroxidase designated cs1 and cs2; three types of cytosol membrane-bound ascorbate peroxidase, namely cm1, bound to microbodies via a C-terminal membrane-spanning segment, and cm2 and cm3, both of unknown location; two types of chloroplast ascorbate peroxidase with N-terminal transit sequences, the stromal ascorbate peroxidase (chs), and the thylakoid-bound ascorbate peroxidase showing a C-terminal transmembrane segment and designated cht. Further comparison of the patterns of conserved residues and the crystal structure of pea ascorbate peroxidase showed that active site residues are conserved, and three peptide segments implicated in interaction with reducing substrate are similar, excepting cm2 and cm3 types. A change of Phe-175 in cytosol types to Trp-175 in chloroplast types might explain the greater ascorbate specificity of chloroplast compared with cytosol ascorbate peroxidases. Residues involved in homodimeric subunit interaction are conserved only in cs1, cs2 and cm1 types. The proximal cation (K+)-binding site observed in pea ascorbate peroxidase seems to be conserved. In addition, cm1, cm2, cm3, chs and cht ascorbate peroxidases contain Asp-43, Asn-57 and Ser-59, indicative of a distal monovalent cation site. The data support the hypothesis that present-day peroxidases evolved by an early gene duplication event. PMID:9291097
Senthilkumari, Srinivasan; Talwar, Badri; Dharmalingam, Kuppamuthu; Ravindran, Ravilla D; Jayanthi, Ramamurthy; Sundaresan, Periasamy; Saravanan, Charu; Young, Ian S; Dangour, Alan D; Fletcher, Astrid E
2014-07-01
We have previously reported low concentrations of plasma ascorbate and low dietary vitamin C intake in the older Indian population and a strong inverse association of these with cataract. Little is known about ascorbate levels in aqueous humor and lens in populations habitually depleted of ascorbate and no studies in any setting have investigated whether genetic polymorphisms influence ascorbate levels in ocular tissues. Our objectives were to investigate relationships between ascorbate concentrations in plasma, aqueous humor and lens and whether these relationships are influenced by Single Nucleotide Polymorphisms (SNPs) in sodium-dependent vitamin C transporter genes (SLC23A1 and SLC23A2). We enrolled sixty patients (equal numbers of men and women, mean age 63 years) undergoing small incision cataract surgery in southern India. We measured ascorbate concentrations in plasma, aqueous humor and lens nucleus using high performance liquid chromatography. SLC23A1 SNPs (rs4257763, rs6596473) and SLC23A2 SNPs (rs1279683 and rs12479919) were genotyped using a TaqMan assay. Patients were interviewed for lifestyle factors which might influence ascorbate. Plasma vitamin C was normalized by a log10 transformation. Statistical analysis used linear regression with the slope of the within-subject associations estimated using beta (β) coefficients. The ascorbate concentrations (μmol/L) were: plasma ascorbate, median and inter-quartile range (IQR), 15.2 (7.8, 34.5), mean (SD) of aqueous humor ascorbate, 1074 (545) and lens nucleus ascorbate, 0.42 (0.16) (μmol/g lens nucleus wet weight). Minimum allele frequencies were: rs1279683 (0.28), rs12479919 (0.30), rs659647 (0.48). Decreasing concentrations of ocular ascorbate from the common to the rare genotype were observed for rs6596473 and rs12479919. The per allele difference in aqueous humor ascorbate for rs6596473 was -217 μmol/L, p < 0.04 and a per allele difference in lens nucleus ascorbate of -0.085 μmol/g, p < 0.02 for rs12479919. The β coefficients for the regression of log10 plasma ascorbate on aqueous humor ascorbate were higher for the GG genotype of rs6596473: GG, β = 1460 compared to carriage of the C allele, CG, β = 1059, CC, β = 1132, p interaction = 0.1. In conclusion we found that compared to studies in well-nourished populations, ascorbate concentrations in the plasma, aqueous humor and lens nucleus were low. We present novel findings that polymorphisms in SLC23A1/2 genes influenced ascorbate concentration in aqueous humor and lens nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.
Parker, William H.; Rhea, Elizabeth Meredith; Qu, Zhi-Chao; Hecker, Morgan R.
2016-01-01
Vitamin C, or ascorbic acid, both tightens the endothelial permeability barrier in basal cells and also prevents barrier leak induced by inflammatory agents. Barrier tightening by ascorbate in basal endothelial cells requires nitric oxide derived from activation of nitric oxide synthase. Although ascorbate did not affect cyclic AMP levels in our previous study, there remains a question of whether it might activate downstream cyclic AMP-dependent pathways. In this work, we found in both primary and immortalized cultured endothelial cells that ascorbate tightened the endothelial permeability barrier by ∼30%. In human umbilical vein endothelial cells, this occurred at what are likely physiologic intracellular ascorbate concentrations. In so doing, ascorbate decreased measures of oxidative stress and also flattened the cells to increase cell-to-cell contact. Inhibition of downstream cyclic AMP-dependent proteins via protein kinase A did not prevent ascorbate from tightening the endothelial permeability barrier, whereas inhibition of Epac1 did block the ascorbate effect. Although Epac1 was required, its mediator Rap1 was not activated. Furthermore, ascorbate acutely stabilized microtubules during depolymerization induced by colchicine and nocodazole. Over several days in culture, ascorbate also increased the amount of stable acetylated α-tubulin. Microtubule stabilization was further suggested by the finding that ascorbate increased the amount of Epac1 bound to α-tubulin. These results suggest that physiologic ascorbate concentrations tighten the endothelial permeability barrier in unstimulated cells by stabilizing microtubules in a manner downstream of cyclic AMP that might be due both to increasing nitric oxide availability and to scavenging of reactive oxygen or nitrogen species. PMID:27605450
Holmes, M E; Samson, S E; Wilson, J X; Dixon, S J; Grover, A K
2000-01-01
Pig deendothelialized coronary artery rings and smooth muscle cells cultured from them accumulated ascorbate from medium containing Na(+). The accumulated material was determined to be ascorbate using high-performance liquid chromatography. We further characterized ascorbate uptake in the cultured cells. The data fitted best with a Hill coefficient of 1 for ascorbate (K(asc) = 22 +/- 2 microM) and 2 for Na(+) (K(Na) = 84 +/- 10 mM). The anion transport inhibitors sulfinpyrazone and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) inhibited the uptake. Transferring cultured cells loaded with (14)C-ascorbate into an ascorbate-free solution resulted in a biphasic loss of radioactivity - an initial sulfinpyrazone-insensitive faster phase and a late sulfinpyrazone-sensitive slower phase. Transferring loaded cells into a Na(+)-free medium increased the loss in the initial phase in a sulfinpyrazone-sensitive manner, suggesting that the ascorbate transporter is bidirectional. Including peroxide or superoxide in the solution increased the loss of radioactivity. Thus, ascorbate accumulated in coronary artery smooth muscle cells by a Na(+)-dependent transporter was lost in an ascorbate-free solution, and the loss was increased by removing Na(+) from the medium or by oxidative stress. Copyright 2000 S. Karger AG, Basel
Treatment of Irradiated Mice with High-Dose Ascorbic Acid Reduced Lethality
Sato, Tomohito; Kinoshita, Manabu; Yamamoto, Tetsuo; Ito, Masataka; Nishida, Takafumi; Takeuchi, Masaru; Saitoh, Daizoh; Seki, Shuhji; Mukai, Yasuo
2015-01-01
Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure. PMID:25651298
Response of the ascorbate-glutathione cycle to storage temperature in carambola fruit
USDA-ARS?s Scientific Manuscript database
The generation of reactive oxygen species (ROS) is considered to be a primary event under a variety of stress conditions. It has been generally accepted that reactive oxygen produced under stress is a detrimental factor, which causes lipid peroxidation, enzyme inactivation, and oxidative damage to D...
DEPLETION OF IRON AND ASCORBATE IN RODENTS DIMINISHES LUNG INJURY AFTER SILICA
Exposures of the lung to iron chelates can be associated with an injury. The catalysis of oxygen-based free radicals is postulated to participate in this injury. Such oxidant generation by mineral oxide particles can be dependent on availability of both iron and a reductant. We t...
Sun, Chia-Liang; Lee, Hsin-Hsien; Yang, Jen-Ming; Wu, Ching-Chou
2011-04-15
In this study, a graphene/Pt-modified glassy carbon (GC) electrode was created to simultaneously characterize ascorbic acid (AA), dopamine (DA), and uric acid (UA) levels via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). During the preparation of the nanocomposite, size-selected Pt nanoparticles with a mean diameter of 1.7 nm were self-assembled onto the graphene surface. In the simultaneous detection of the three aforementioned analytes using CV, the electrochemical potential differences among the three detected peaks were 185 mV (AA to DA), 144 mV (DA to UA), and 329 mV (AA and UA), respectively. In comparison to the CV results of bare GC and graphene-modified GC electrodes, the large electrochemical potential difference that is achieved via the use of the graphene/Pt nanocomposites is essential to the distinguishing of these three analytes. An optimized adsorption of size-selected Pt colloidal nanoparticles onto the graphene surface results in a graphene/Pt nanocomposite that can provide a good platform for the routine analysis of AA, DA, and UA. Copyright © 2011 Elsevier B.V. All rights reserved.
Tu, Hongbin; Wang, Yu; Li, Hongyan; Brinster, Lauren R; Levine, Mark
2017-09-01
Despite its transport by glucose transporters (GLUTs) in vitro, it is unknown whether dehydroascorbic acid (oxidized vitamin C, DHA) has any in vivo function. To investigate, we created a chemical transport knockout model using the vitamin C analog 6-bromo-ascorbate. This analog is transported on sodium-dependent vitamin C transporters but its oxidized form, 6-bromo-dehydroascorbic acid, is not transported by GLUTs. Mice (gulo -/- ) unable to synthesize ascorbate (vitamin C) were raised on 6-bromo-ascorbate. Despite normal survival, centrifugation of blood produced hemolysis secondary to near absence of red blood cell (RBC) ascorbate/6-bromo-ascorbate. Key findings with clinical implications were that RBCs in vitro transported dehydroascorbic acid but not bromo-dehydroascorbic acid; RBC ascorbate in vivo was obtained only via DHA transport; ascorbate via DHA transport in vivo was necessary for RBC structural integrity; and internal RBC ascorbate was essential to maintain ascorbate plasma concentrations in vitro/in vivo. Published by Elsevier B.V.
An acute study on the relative gastro-intestinal absorption of a novel form of calcium ascorbate.
Bush, M J; Verlangieri, A J
1987-07-01
Several functions of L-ascorbic acid (vitamin C) have been suggested in addition to its role in the prevention of scurvy. Consequently, a controversy has arisen over the daily intake of the vitamin which will afford maximum benefits. Rapid cellular uptake and delayed renal excretion of ascorbic acid would be conducive to providing optimum cellular concentration for biochemical activity. ESTER-C (patent pending), a complex consisting of L-ascorbic acid and Ca++, has been recently developed by Inter-Cal Corporation (421 Miller Road, Prescott, AZ 86301). It has been proposed that the structure of ESTER-C may render it more readily absorbed and less rapidly excreted than the acid or salt form of the vitamin. To test this hypothesis, ESTER-C and L-ascorbic acid were administered to two groups of rats. Blood was sampled at 20, 40, 80, 160 and 240 minutes and plasma analyzed for ascorbic acid. As urine appeared in collection cups, it was tested qualitatively for the presence of ascorbic acid. The plasma concentration of ascorbic acid was higher in ESTER-C treated rats at 20, 40 and 80 minutes than in rats given L-ascorbic acid. Ascorbic acid was detected in the urine of animals administered ESTER-C later than in those treated with L-ascorbic acid. These results support the hypothesis that ESTER-C is absorbed more readily and excreted less rapidly than L-ascorbic acid.
Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate.
Truffault, Vincent; Fry, Stephen C; Stevens, Rebecca G; Gautier, Hélène
2017-03-01
Ascorbate content in plants is controlled by its synthesis from carbohydrates, recycling of the oxidized forms and degradation. Of these pathways, ascorbate degradation is the least studied and represents a lack of knowledge that could impair improvement of ascorbate content in fruits and vegetables as degradation is non-reversible and leads to a depletion of the ascorbate pool. The present study revealed the nature of degradation products using [ 14 C]ascorbate labelling in tomato, a model plant for fleshy fruits; oxalate and threonate are accumulated in leaves, as is oxalyl threonate. Carboxypentonates coming from diketogulonate degradation were detected in relatively insoluble (cell wall-rich) leaf material. No [ 14 C]tartaric acid was found in tomato leaves. Ascorbate degradation was stimulated by darkness, and the degradation rate was evaluated at 63% of the ascorbate pool per day, a percentage that was constant and independent of the initial ascorbate or dehydroascorbic acid concentration over periods of 24 h or more. Furthermore, degradation could be partially affected by the ascorbate recycling pathway, as lines under-expressing monodehydroascorbate reductase showed a slight decrease in degradation product accumulation. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Davis, Kim A; Samson, Sue E; Wilson, John X; Grover, Ashok K
2006-10-24
In endothelial cells, anion channels open upon osmotic swelling during shear stress and hypotonic shock. Therefore, we examined the effects of hypotonic shock on release of the antioxidant anion ascorbate from pig coronary artery endothelial cells. Hypotonic shock potentiated ascorbate release from freshly isolated or cultured pig coronary artery endothelial cells; subsequently cultured endothelial cells were used. The hypotonic shock-induced increase in Asc release was rapid, depended on the degree of hypotonic shock, and not due to membrane leakiness. Stimulating P2Y2 like receptors in endothelial cells with ATP causes ascorbate release via a Ca2+ -mediated pathway. Hypotonic shock-induced release differed from the Ca2+-mediated Asc release because: (a) the increase in release with hypotonic shock was additive to that with ATP or A23187 (Ca2+ -ionophore), (b) apyrase, suramin or removing extracellular Ca2+ did not affect the hypotonic shock-stimulated release, (c) anion channel blockers inhibited the release by the two pathways differently, and (d) hypotonic shock increased the ascorbate release from endothelial cells and cultured smooth muscle cells whereas the Ca2+ -mediated ascorbate release occurred only in endothelial cells. Accumulation of ascorbate by endothelial cells was examined at extracellular ascorbate concentrations of 10 (Na+ -ascorbate symporter not saturated) and 5000 microM (Na+ -ascorbate symporter saturated). Hypotonic shock and A23187 decreased ascorbate accumulation at 10 microM ascorbate but increased it at 5000 microM. The effects of the two treatments were additive and also differed from each other with substitution of gluconate for extracellular chloride. Thus, ascorbate release from endothelial cells can be potentiated by two distinct pathways - hypotonic shock mediated and ATP/Ca2+ stimulated.
Zhang, Can; Liu, Wen-jun; Shi, Yun; An, Dai-zhi; Bai, Miao; Xu, Wen
2015-05-01
The quenching agents such as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite and sodium hyposulfite are commonly used for quenching the residual disinfectant in water. In this paper, in order to select the optimal type and concentration range of quenching agents prior to the Limulus assays, the interference effects of each quenching agent at different concentrations on endotoxin detection were investigated by the Limulus assays of kinetic-turbidity. Our results identified that, as for 0-1.0% concentration of histidine, ascorbic acid, Tween-80, sodium sulfite (pH unadjusted and pH neutral), interference on the Limulus assays was existed. Hence, these quenching agents could not be applied as neutralizers prior to Limulus assays. Although, there was no interference on endotoxin detection for the glycine, a yellow color, developed by the quenching products of glycine and glutaric dialdehyde, contributed to false positive results. Hence, glycine should not be used as quenching agents in Limulus assays for samples containing glutaric dialdehyde. Compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite, 0-1.0% concentration of sodium hyposulfite elicited no obvious interference, while 1.0%-5.0% concentration of sodium hyposulfite illustrated exhibition effect for endotoxin detection. All in all, compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80 and sodium sulfite, sodium hyposulfite is suitable for quenching chemicals prior to endotoxin detection and less than 0.5% of concentration is allowable.
An Experimental Evaluation of Adaptogenic Potential of Standardized Epipremnum Aureum Leaf Extract.
Das, Sreemoy Kanti; Sengupta, Pinaki; Mustapha, Mohd Shahimi; Sarker, Md Moklesur Rahman
2017-01-01
Stress is a normal part of everyday life but chronic stress can lead to a variety of stress-related illnesses including hypertension, anxiety, and depression. In the present investigation, standardized leaf extract of Epipremnumaureum was evaluated for its anti-stress potential. For the evaluation of anti-stress activity, groups of mice ( n = 6) were subjected to forced swim stress and anoxic stress tolerance test in mice 1h after daily treatment of E.aureumextract . Diazepam (5 mg/kg) was taken as a reference standard. Urinary vanillylmandelic acid (VMA) and ascorbic acid were selected as noninvasive biomarkers to assess the anti-stress activity and plasma cortisol, blood ascorbic acid, and weight of adrenal were measured. The 24 h urinary excretion of VMA and ascorbic acid were determined by spectrophotometric methods in all groups under normal and stressed conditions. The hematological parameters (neutrophils, lymphocytes, and eosinophils) were also determined. Administration of E.aureumat doses of 400 and 600 mg/kg wasfound to be effective in inhibiting the stress induced urinary biochemical changes in a dose-dependent manner. Treatment with E. aureum extract prevents the rise in blood ascorbic acid and plasma cortisol. Moreover, the extract prevented the increase in weight of adrenal gland also significantly increased the anoxia stress tolerance time. Dose-dependent significant reduction in white blood cell count was observed in anoxic stress tolerance test as compared to stressed group. Hence, the present study provides scientific support for the positiveadaptogenic effect of E. aureum extract.
Ontogenetic changes in vitamin C in selected rice varieties
USDA-ARS?s Scientific Manuscript database
Vitamin C (L-ascorbic acid, AsA) is a key antioxidant for both plants and animals. In plants, AsA is involved in several key physiological processes including photosynthesis, cell expansion, cell division, growth, flowering, and senescence. In addition, AsA is an enzyme cofactor and a regulator of...
Makavitskaya, M; Svistunenko, D; Navaselsky, I; Hryvusevich, P; Mackievic, V; Rabadanova, C; Tyutereva, E; Samokhina, V; Straltsova, D; Sokolik, A; Voitsekhovskaja, O; Demidchik, V
2018-02-17
Ascorbate is not often considered as a signalling molecule in plants. This study demonstrates that, in Arabidopsis roots, exogenous L-ascorbic acid triggers a transient increase of the cytosolic free calcium activity ([Ca2+]cyt.) that is central to plant signalling. Exogenous copper and iron stimulates the ascorbate-induced [Ca2+]cyt. elevation while cation channel blockers, free radical scavengers, low extracellular [Ca2+], transition metal chelators and removal of the cell wall inhibit this reaction. These data show that apoplastic redox-active transition metals are involved in the ascorbate-induced [Ca2+]cyt. elevation. Exogenous ascorbate also induces a moderate increase in programmed cell death symptoms in intact roots, but it does not activate Ca2+ influx currents in patch-clamped root protoplasts. Intriguingly, the replacement of gluconate with ascorbate in the patch-clamp pipette reveales a large ascorbate efflux current, which shows sensitivity to the anion channel blocker, anthracene-9-carboxylic acid (A9C), indicative of the ascorbate release via anion channels. EPR spectroscopy measurements demonstrates that salinity (NaCl) triggers the accumulation of root apoplastic ascorbyl radicals in A9C-dependent manner, confirming that L-ascorbate leaks through anion channels under depolarisation. This mechanism may underlie ascorbate release, signalling phenomena, apoplastic redox reactions, iron acquisition and control the ionic and electrical equilibrium (together K+ efflux via GORK channels).
Lane, Darius J. R.; Lawen, Alfons
2014-01-01
Vitamin C (ascorbate) plays numerous important roles in cellular metabolism, many of which have only come to light in recent years. For instance, within the brain, ascorbate acts in a neuroprotective and neuromodulatory manner that involves ascorbate cycling between neurons and vicinal astrocytes - a relationship that appears to be crucial for brain ascorbate homeostasis. Additionally, emerging evidence strongly suggests that ascorbate has a greatly expanded role in regulating cellular and systemic iron metabolism than is classically recognized. The increasing recognition of the integral role of ascorbate in normal and deregulated cellular and organismal physiology demands a range of medium-throughput and high-sensitivity analytic techniques that can be executed without the need for highly expensive specialist equipment. Here we provide explicit instructions for a medium-throughput, specific and relatively inexpensive microplate assay for the determination of both intra- and extracellular ascorbate in cell culture. PMID:24747535
Di Matteo, Antonio; Sacco, Adriana; De Stefano, Rosalba; Frusciante, Luigi; Barone, Amalia
2012-12-01
In recent years, interest in tomato breeding for enhanced antioxidant content has increased as medical research has pointed to human health benefits from antioxidant dietary intake. Ascorbate is one of the major antioxidants present in tomato, and little is known about mechanisms governing ascorbate pool size in this fruit. In order to provide further insights into genetic mechanisms controlling ascorbate biosynthesis and accumulation in tomato, we investigated the fruit transcriptome profile of the Solanum pennellii introgression line 10-1 that exhibits a lower fruit ascorbate level than its cultivated parental genotype. Our results showed that this reduced ascorbate level is associated with an increased antioxidant demand arising from an accelerated oxidative metabolism mainly involving mitochondria, peroxisomes, and cytoplasm. Candidate genes for controlling ascorbate level in tomato fruit were identified, highlighting the role of glycolysis, glyoxylate metabolism, and purine breakdown in modulating the ascorbate pool size.
Ascorbate oxidation is a prerequisite for its transport into rat liver microsomal vesicles.
Csala, M; Mile, V; Benedetti, A; Mandl, J; Bánhegyi, G
2000-01-01
Oxidation and uptake of ascorbate show similar time courses in rat liver microsomal vesicles: a rapid burst phase is followed by a slower process. Inhibitors of ascorbate oxidation (proadifen, econazole or quercetin) also effectively decreased the uptake of ascorbate. The results show that dehydroascorbate is the transport form of ascorbate at the membrane of the endoplasmic reticulum. PMID:10880339
Supplementation of Ascorbic Acid in Weanling Horses Following Prolonged Transportation
Ralston, Sarah; Stives, Michelle
2012-01-01
Simple Summary Horses normally synthesize adequate amounts of ascorbic acid (vitamin C) in their liver to meet their needs for the vitamin. However, prolonged stress results in low plasma concentrations and reduced immune function. Weanling horses were supplemented with ascorbic acid for 5 or 10 days or no ascorbic acid (4 per group) following 50+ hours of transportation. Supplementation caused increases in plasma concentrations but both supplemented groups had decreased plasma ascorbic acid for 1 to 3 weeks following cessation of supplementation, possibly due to suppressed synthesis. Supplementation of ascorbic acid following prolonged stress will increase plasma concentrations, but prolonged supplementation should be avoided. Abstract Though horses synthesize ascorbic acid in their liver in amounts that meet their needs under normal circumstances, prolonged stress results in low plasma concentrations due to enhanced utilization and renal excretion and can reduce immune function. It was hypothesized that plasma ascorbic acid could be maintained in weanling horses by oral supplementation following prolonged transportation. Weanlings were supplemented with no ascorbic acid (Tx 0: n = 4), 5 grams ascorbic acid twice daily for 5 days (Tx 1: n = 4) or for 10 days (Tx 2: n = 4) following >50 hours of transportation. Supplementation caused slight (P < 0.2) increases in plasma ascorbic acid concentrations. Both supplemented groups had decreased (P < 0.05) plasma concentrations for 1 to 3 weeks following cessation of supplementation, possibly due to increased renal excretion or suppressed hepatic synthesis. Supplementation of ascorbic acid following prolonged stress will increase plasma concentrations, but prolonged supplementation should be avoided. PMID:26486916
Microchannel emulsification: A promising technique towards encapsulation of functional compounds.
Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi
2017-06-13
This review provides an overview of microchannel emulsification (MCE) for production of functional monodispersed emulsion droplets. The main emphasis has been put on functional bioactives encapsulation using grooved-type and straight-through microchannel array plates. MCE successfully encapsulates the bioactives like β-carotene, oleuropein, γ-oryzanol, β-sitosterol, L-ascorbic acid and ascorbic acid derivatives, vitamin D and quercetin. These bioactives were encapsulated in a variety of delivery systems like simple and multiple emulsions, polymeric particles, microgels, solid lipid particles and functional vesicles. The droplet generation process in MCE is based upon spontaneous transformation of interfaces rather than high energy shear stress systems. The scale-up of MCE can increase the productivity of monodispersed droplets >100 L h -1 and makes it a promising tool at industrial level.
NASA Astrophysics Data System (ADS)
Xing, Guoke; Wang, Ke; Li, Ping; Wang, Wenqin; Chen, Tao
2018-03-01
In this study, in situ generation of Ag nanostructures with various morphology on poly(acrylic acid) (PAA) brushes grafted onto graphene oxide (GO), for use as substrates for surface-enhanced Raman scattering (SERS), is demonstrated. The overall synthetic strategy involves the loading of Ag precursor ions ((Ag+ and [Ag(NH3)2]+) onto PAA brush-grafted GO, followed by their in situ reduction to Ag nanostructures of various morphology using a reducing agent (NaBH4 or ascorbic acid). Novel 3D hierarchical flowerlike Ag nanostructures were obtained by using AgNO3 as precursor and ascorbic acid as reducing agent. Using 4-aminothiophenol as probe molecules, the as-prepared hierarchical Ag nanostructures exhibited excellent SERS performance, providing enhancement factors of ˜107.
Production of o-diphenols by immobilized mushroom tyrosinase.
Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio
2009-01-15
The o-diphenols 4-tert-butyl-catechol, 4-methyl-catechol, 4-methoxy-catechol, 3,4-dihydroxyphenylpropionic acid and 3,4-dihydroxyphenylacetic acid were produced from the corresponding monophenols (4-tert-butyl-phenol, 4-methyl-phenol, 4-methoxy-phenol, p-hydroxyphenylpropionic acid and p-hydroxyphenylacetic acid) using immobilized mushroom tyrosinase from Agaricus bisporus. In all cases the yield was R(diphenol)> or =88-96%, which, according to the literature, is the highest yield so far, obtained using tyrosinase. The reaction was carried out in 0.5M borate buffer pH 9.0 which was used to minimize the diphenolase activity of tyrosinase by complexing the o-diphenols generated. Hydroxylamine and ascorbic acid were also present in the reaction medium, the former being used to reduce mettyrosinase to deoxytyrosinase, closing the catalytic cycle, and the latter to reduce the o-quinone produced to o-diphenol. Inactivation of the tyrosinase by ascorbic acid was also minimized due to the formation of an ascorbic acid-borate complex. Concentrations of the o-diphenolic compounds obtained at several reaction times were determined by gas chromatography-mass spectrometry (GC-MS) and UV-vis spectroscopy. The experimental results are discussed.
Laing, William A.; Martínez-Sánchez, Marcela; Wright, Michele A.; Bulley, Sean M.; Brewster, Di; Dare, Andrew P.; Rassam, Maysoon; Wang, Daisy; Storey, Roy; Macknight, Richard C.; Hellens, Roger P.
2015-01-01
Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms. PMID:25724639
Laing, William A; Martínez-Sánchez, Marcela; Wright, Michele A; Bulley, Sean M; Brewster, Di; Dare, Andrew P; Rassam, Maysoon; Wang, Daisy; Storey, Roy; Macknight, Richard C; Hellens, Roger P
2015-03-01
Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms. © 2015 American Society of Plant Biologists. All rights reserved.
Cherdyntseva, Nadezda V; Ivanova, Anna A; Ivanov, Vladimir V; Cherdyntsev, Evgeny; Nair, Cherupally Krishnan Krishnan; Kagiya, Tsutomu V
2013-01-01
To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.
Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.
2012-01-01
The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048
Ascorbate in the guinea pig lens: dependence on drinking water supplementation.
Mody, Vino C; Kakar, Manoj; Elfving, Ase; Söderberg, Per G; Löfgren, Stefan
2005-04-01
To investigate whether lens ascorbate concentration can be elevated with drinking water supplementation. Pigmented guinea pigs received drinking water supplemented with L-ascorbate, concentration 0.00, 2.84, 5.68 or 8.52 mm for a duration of 4 weeks. In addition, the chow fed to all animals contained 125 mmol L-ascorbate per kg of chow. At the end of the supplementation period, the guinea pigs were killed. Each lens was extracted. The lens was processed and ascorbate concentration was measured using high performance liquid chromatography (HPLC) with 254 nm ultraviolet radiation detection. The data were analysed with regression. At the end of the test period, all lenses were devoid of cataract as observed by slit-lamp examination. All lenses contained a detectable concentration of ascorbate. Estimated 95% confidence intervals for mean animal-averaged lens ascorbate concentrations (micromol/g wet weight of whole lens) per group were 0.51 +/- 0.04 (0.00 mm; n = 6), 0.70 +/- 0.18 (2.84 mm; n = 6), 0.71 +/- 0.11 (5.68 mm; n = 5), and 0.71 +/- 0.06 (8.52 mm; n = 6). Animal-averaged lens ascorbate concentration [Asc(lens)] (micromol/g wet weight lens) increased with ascorbate supplementation in drinking water [Asc(water)] (M), in agreement with the model: [Asc(lens)] = A - Be(-kAsc(water)]. Lens ascorbate concentration increases with drinking water supplementation in the guinea pig without cataract development. The currently presented method for measurement of whole lens ascorbate content is suitable.
Ascorbic acid/Fe@Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants.
Hou, Xiaojing; Huang, Xiaopeng; Ai, Zhihui; Zhao, Jincai; Zhang, Lizhi
2016-06-05
In this study, we demonstrate that the combination of ascorbic acid and Fe@Fe2O3 core-shell nanowires (AA/Fe@Fe2O3) offers a highly efficient Fenton reagent. This combined Fenton reagent exhibited extremely high activity on the decomposition of H2O2 to produce OH for the degradation of various organic contaminants, including rhodamine B, methylene blue, alachlor, atrazine, siduron, lincomycin, and chloroamphenicol. The contaminant degradation constants in the AA/Fe@Fe2O3/H2O2 Fenton systems were 38-53 times higher than those in the conventional homogeneous Fenton system (Fe(II)/H2O2) at pH 3.8. Moreover, the OH generation rate constant in the AA/Fe@Fe2O3/H2O2 Fenton system was 1-3 orders of magnitudes greater than those of heterogeneous Fenton systems developed with other iron-containing materials (α-FeOOH, α-Fe2O3, FeOCl, and so on). The high activity of AA/Fe@Fe2O3 was attributed to the effective Fe(III)/Fe(II) cycle and the iron-ascorbate complex formation to stabilize ferrous ions with desirable and steady concentrations. During the AA/Fe@Fe2O3/H2O2 Fenton process, ascorbic acid served as a reducing and complexing reagent, enabling the reuse of Fe@Fe2O3 nanowires. We systematically investigated the alachlor and ascorbic acid degradation and found that they could be effectively degraded in the AA/Fe@Fe2O3/H2O2 system, accompanying with 100% of dechlorination and 92% of denitrification. This study sheds light on the importance of Fe(III)/Fe(II) cycle for the design of high efficient Fenton system and provides an alternative pathway for the organic contaminants removal. Copyright © 2016 Elsevier B.V. All rights reserved.
Wong, Yen-Ming; Siow, Lee-Fong
2015-05-01
Red-fleshed dragon fruit (Hylocereus polyrhizus) is rich in antioxidants. The aim of this study was to determine the effects of heat pasteurization, pH adjustment, ascorbic acid addition as well as storage under agitation and light or dark condition on betacyanin content in red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate. The concentrate was produced by concentrating clarified red-fleshed dragon fruit juice in a rotary evaporator at 40 °C. UV-Visible spectrophotometer was used for analyzing betacyanin content. Addition of 0.25 % ascorbic acid, pH 4.0, and pasteurization at 65 °C for 30 min were selected as the best processing conditions to retain betacyanin content in red-fleshed dragon fruit juice. Storage at the agitation speed of 220 rpm showed that the concentrated samples had higher betacyanin stability compared to juice, while both juice and concentrate had almost similar betacyanin stability when tested for storage in the presence of light. In summary, ascorbic acid stabilized betacyanin in both juice and concentrate at agitated or non-agitated conditions. In contrast, light degraded betacyanin in both juice and concentrate models.
Musameh, Mustafa M; Dunn, Christopher J; Uddin, Md Hemayet; Sutherland, Tara D; Rapson, Trevor D
2018-04-30
Using heme entrapped in recombinant silk films, we have produced 3rd generation biosensors, which allow direct electron transfer from the heme center to an electrode avoiding the need for electron mediators. Here, we demonstrate the use of these heme-silk films for the detection of nitric oxide (NO) at nanomolar levels in the presence and absence of oxygen. The sensor was prepared by drop-casting a silk solution on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT) followed by infusion with heme. The sensor was characterized by cyclic voltammetry and showed well defined and reversible Fe + / Fe 3+ redox couple activity, with NO detection by oxidation at potentials above +0.45V or reduction at potentials below - 0.7V. Evaluation of the effect of pH on the sensor response to NO reduction indicated a maximum response at pH 3. The sensor showed good linearity in the concentration range from 19 to 190nM (R 2 = 0.99) with a detection limit of 2nM. The sensor had excellent selectivity towards NO with no or negligible interference from oxygen, nitrite, nitrate, dopamine and ascorbic acid and retained 86% of response after 2 months of operation and storage at room temperature. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Mechanism of action of vitamin C in sepsis: Ascorbate modulates redox signaling in endothelium
Wilson, John X.
2009-01-01
Circulating levels of vitamin C (ascorbate) are low in patients with sepsis. Parenteral administration of ascorbate raises plasma and tissue concentrations of the vitamin and may decrease morbidity. In animal models of sepsis, intravenous ascorbate injection increases survival and protects several microvascular functions, namely, capillary blood flow, microvascular permeability barrier, and arteriolar responsiveness to vasoconstrictors and vasodilators. The effects of parenteral ascorbate on microvascular function are both rapid and persistent. Ascorbate quickly accumulates in microvascular endothelial cells, scavenges reactive oxygen species, and acts through tetrahydrobiopterin to stimulate nitric oxide production by endothelial nitric oxide synthase. A major reason for the long duration of the improvement in microvascular function is that cells retain high levels of ascorbate, which alter redox-sensitive signaling pathways to diminish septic induction of NADPH oxidase and inducible nitric oxide synthase. These observations are consistent with the hypothesis that microvascular function in sepsis may be improved by parenteral administration of ascorbate as an adjuvant therapy. PMID:19319840
Engineering Ascorbate Peroxidase Activity Into Cytochrome C Peroxidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meharenna, Y.T.; Oertel, P.; Bhaskar, B.
2009-05-26
Cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX) have very similar structures, and yet neither CCP nor APX exhibits each others activities with respect to reducing substrates. APX has a unique substrate binding site near the heme propionates where ascorbate H-bonds with a surface Arg and one heme propionate (Sharp et al. (2003) Nat. Struct. Biol. 10, 303--307). The corresponding region in CCP has a much longer surface loop, and the critical Arg residue that is required for ascorbate binding in APX is Asn in CCP. In order to convert CCP into an APX, the ascorbate-binding loop and critical argininemore » were engineered into CCP to give the CCP2APX mutant. The mutant crystal structure shows that the engineered site is nearly identical to that found in APX. While wild-type CCP shows no APX activity, CCP2APX catalyzes the peroxidation of ascorbate at a rate of {approx}12 min{sup -1}, indicating that the engineered ascorbate-binding loop can bind ascorbate.« less
Vitamin C: update on physiology and pharmacology
Mandl, J; Szarka, A; Bánhegyi, G
2009-01-01
Although ascorbic acid is an important water-soluble antioxidant and enzyme cofactor in plants and animals, humans and some other species do not synthesize ascorbate due to the lack of the enzyme catalyzing the final step of the biosynthetic pathway, and for them it has become a vitamin. This review focuses on the role of ascorbate in various hydroxylation reactions and in the redox homeostasis of subcellular compartments including mitochondria and endoplasmic reticulum. Recently discovered functions of ascorbate in nucleic acid and histone dealkylation and proteoglycan deglycanation are also summarized. These new findings might delineate a role for ascorbate in the modulation of both pro- and anti-carcinogenic mechanisms. Recent advances and perspectives in therapeutic applications are also reviewed. On the basis of new and earlier observations, the advantages of the lost ability to synthesize ascorbate are pondered. The increasing knowledge of the functions of ascorbate and of its molecular sites of action can mechanistically substantiate a place for ascorbate in the treatment of various diseases. PMID:19508394
Direct spectrophotometric measurement of supra-physiological levels of ascorbate in plasma.
Witmer, Jordan R; Wetherell, Bailey J; Wagner, Brett A; Du, Juan; Cullen, Joseph J; Buettner, Garry R
2016-08-01
Supra-physiological concentrations of ascorbate, vitamin C, in blood, greater than 1mM, achieved through intravenous administration (IV), are being tested in clinical trials to treat human disease, e.g. cancer. These trials need information on the high levels of ascorbate achieved in blood upon IV administration of pharmacological ascorbate so appropriate clinical decisions can be made. Here we demonstrate that in the complex matrix of human blood plasma supra-physiological levels of ascorbate can be quantified by direct UV spectroscopy with use of a microvolume UV-vis spectrophotometer. Direct quantitation of ascorbate in plasma in the range of 2.9mM, lower limit of detection, up to at least 35mM can be achieved without any sample processing, other than centrifugation. This approach is rapid, economical, and can be used to quantify supraphysiological blood levels of ascorbate associated with the use of IV administration of pharmacological ascorbate to treat disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Effect of leek and onion on processing and quality characteristics of Greek traditional sausages.
Fista, G A; Bloukas, J G; Siomos, A S
2004-10-01
The objective of this study was to investigate the effect of leek and onion on processing and quality characteristics of sausages and select the most appropriate, to determine the optimum level of selected vegetable and to improve its effectiveness on quality characteristics of sausages, in comparison to the addition of nitrites (100 ppm), by using a starter culture of Staphylococcus carnosus and ascorbate. The nitrate content of leek ranged from 213 to 255 ppm and that of onion was 79 ppm. Sausages produced with leek had higher (p<0.05) nitrite content (1.3-2.1 ppm) and a (∗)(+) values and higher scores for sensory attributes than sausages with onion. Sausages made with the total leek plant had the highest score for overall acceptability. The higher the leek level the higher the nitrate and nitrite content of sausages and the lower the redness, a (∗)(+). Sausages with 240 g of leek/kg had the highest (p<0.05) overall acceptability. Sausages with higher leek level had an intensive wrinkling on the surface and also an intensive and undesirable green colour. Sausages produced with 240 g of leek/kg had the same low level of nitrate and nitrite content, higher weight losses and lower pH values after the 3rd day of storage, compared to sausages produced with the addition of sodium nitrite. The addition of starter culture and ascorbic acid improved the redness (a (∗)) of sausages and reduced the 2-thiobarbituric acid value. Sausages with leek, starter culture and ascorbic acid had the highest score for odour and taste and overall acceptability.
The invertebrate Caenorhabditis elegans biosynthesizes ascorbate
Patananan, Alexander N.; Budenholzer, Lauren M.; Pedraza, Maria E.; Torres, Eric R.; Adler, Lital N.; Clarke, Steven G.
2015-01-01
L-ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete 13C-labeling of ascorbate when C. elegans was grown with 13C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role. PMID:25668719
Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.
Wang, Jin-Ye; Sekine, Seiji; Saito, Morio
2003-04-01
Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.
21 CFR 582.3189 - Calcium ascorbate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...
21 CFR 582.3189 - Calcium ascorbate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...
21 CFR 182.3189 - Calcium ascorbate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...
21 CFR 182.3189 - Calcium ascorbate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...
21 CFR 582.3189 - Calcium ascorbate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...
21 CFR 582.3189 - Calcium ascorbate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...
21 CFR 582.3189 - Calcium ascorbate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...
21 CFR 182.3189 - Calcium ascorbate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...
21 CFR 182.3189 - Calcium ascorbate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally...
21 CFR 582.3731 - Sodium ascorbate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...
21 CFR 182.3731 - Sodium ascorbate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is generally...
21 CFR 582.3731 - Sodium ascorbate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...
21 CFR 182.3731 - Sodium ascorbate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is generally...
21 CFR 582.3731 - Sodium ascorbate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...
21 CFR 182.3731 - Sodium ascorbate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is generally...
21 CFR 582.3731 - Sodium ascorbate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...
21 CFR 182.3731 - Sodium ascorbate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is generally...
21 CFR 582.3731 - Sodium ascorbate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...
21 CFR 172.315 - Nicotinamide-ascorbic acid complex.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nicotinamide-ascorbic acid complex. 172.315... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed conditions...
Li, Rong; Xin, Shan; Tao, Chengcheng; Jin, Xiang; Li, Hongbin
2017-01-01
Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H2O2, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway. PMID:28644407
Plumb, William; Townsend, Alexandra J; Rasool, Brwa; Alomrani, Sarah; Razak, Nurhayati; Karpinska, Barbara; Ruban, Alexander V; Foyer, Christine H
2018-05-03
The requirements of growth and photosynthesis for ascorbate were assessed under low (LL; 250 μmol m-2 s-1) or high (HL; 1600 μmol m-2 s-1) irradiance in wild type Arabidopsis thaliana and two ascorbate synthesis mutants (vtc2-1 and vtc2-4) that have 30% wild type ascorbate levels. The low ascorbate mutants had the same numbers of leaves but lower rosette area and biomass than the wild type under LL. Wild type plants experiencing HL had higher leaf ascorbate, anthocyanin and xanthophyll pigments than under LL. In contrast, leaf ascorbate levels were not increased under HL in the mutant lines. While the degree of oxidation measured using an in vivo redox reporter in the nuclei and cytosol of the leaf epidermal and stomatal cells was similar under both irradiances in all lines, anthocyanin levels were significantly lower than in the low ascorbate mutants than the wild type under HL. Differences in the photosynthetic responses of vtc2-1 and vtc2-4 mutants were observed. Unlike vtc2-1, the vtc2-4 mutants had wild type zeaxanthin contents. While both low ascorbate mutants had lower NPQ levels than the wild type under HL, qPd values were greater only in vtc2-1 leaves. Ascorbate is therefore essential for growth but not photoprotection.
Nauser, Thomas; Gebicki, Janusz M
2017-09-18
The principal initial biological targets of free radicals formed under conditions of oxidative stress are the proteins. The most common products of the interaction are carbon-centered alkyl radicals which react rapidly with oxygen to form peroxyl radicals and hydroperoxides. All these species are reactive, capable of propagating the free radical damage to enzymes, nucleic acids, lipids, and endogenous antioxidants, leading finally to the pathologies associated with oxidative stress. The best chance of preventing this chain of damage is in early repair of the protein radicals by antioxidants. Estimate of the effectiveness of the physiologically significant antioxidants requires knowledge of the antioxidant tissue concentrations and rate constants of their reaction with protein radicals. Previous studies by pulse radiolysis have shown that only ascorbate can repair the Trp and Tyr protein radicals before they form peroxyl radicals under physiological concentrations of oxygen. We have now extended this work to other protein C-centered radicals generated by hydroxyl radicals because these and many other free radicals formed under oxidative stress can produce secondary radicals on virtually any amino acid residue. Pulse radiolysis identified two classes of rate constants for reactions of protein radicals with ascorbate, a faster one in the range (9-60) × 10 7 M -1 s -1 and a slow one with a range of (0.5-2) × 10 7 M -1 s -1 . These results show that ascorbate can prevent further reactions of protein radicals only in the few human tissues where its concentration exceeds about 2.5 mM.
Ascorbic Acid Repletion: A Possible Therapy for Diabetic Macular Edema?
May, James M.
2016-01-01
Macular edema poses a significant risk for visual loss in persons with diabetic retinopathy. It occurs when plasma constituents and fluid leak out of damaged retinal microvasculature in the area of the macula, causing loss of central vision. Apoptotic loss of pericytes surrounding capillaries is perhaps the earliest feature of diabetic vascular damage in the macula, which is also associated with dysfunction of the endothelium and loss of the otherwise very tight endothelial permeability barrier. Increased oxidative stress is a key feature of damage to both cell types, mediated by excess superoxide from glucose-induced increases in mitochondrial metabolism, as well as by activation of the receptor for advanced glycation end products (RAGE). The latter in turn activates multiple pathways, some of which lead to increased oxidative stress, such as those involving NF-κB, NADPH oxidase, and endothelial nitric oxide synthase. Such cellular oxidative stress is associated with low cellular and plasma ascorbic acid levels in many subjects with diabetes in poor glycemic control. Whether repletion of low ascorbate in retinal endothelium and pericytes might help to prevent diabetic macular edema is unknown. However, cell culture studies show that the vitamin prevents high-glucose and RAGE-induced apoptosis in both cell types, that it preserves nitric oxide generated by endothelial cells, and that it tightens the leaky endothelial permeability barrier. Although these findings need to be confirmed in pre-clinical animal studies, it is worth considering clinical trials to determine whether adequate ascorbate repletion is possible and whether it might help to delay or even reverse early diabetic macular edema. PMID:26898503
Assay dilution factors confound measures of total antioxidant capacity in polyphenol-rich juices
USDA-ARS?s Scientific Manuscript database
The extent to which sample dilution factor (DF) affects Total Antioxidant Capacity (TAC) values is poorly understood. Thus, we examined the impact of DF on the ORAC, FRAP, DPPH, and Total Phenols (TP) assays using pomegranate juice (PJ), grape juice (GJ), selected flavonoids, ascorbic acid, and ella...
Antioxidant properties of selected fruit cultivars grown in Sri Lanka.
Silva, K D R R; Sirasa, M S F
2018-01-01
Extracts of twenty locally available Sri Lankan fruits were analysed for 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferrous reducing antioxidant power (FRAP), total phenolic content (TPC), total flavonoid content (TFC) and vitamin C content. The results showed that gooseberry (Phyllanthus emblica 'local') exhibited the highest DPPH scavenging activity (111.25mg ascorbic acid equivalent antioxidant capacity (AEAC)/g), FRAP (1022.05μmol FeSO 4 /g), TPC (915.7mg gallic acid equivalents (GAE)/100g), TFC (873.2mg catechin equivalents (CE)/100g) and vitamin C (136.8mg ascorbic acid equivalents (AAE)/100g), respectively. Sugar apple (Annona squamosa 'local') and star fruit (Averrhoa carambola 'Honey Sweet') obtained the second and third highest antioxidant activities in terms of rankings of FRAP, DPPH activities, TPC, TFC and vitamin C content. Strong correlation between vitamin C, TPC and TFC with FRAP and DPPH showed their contribution to antioxidant capacity. Among the selected fruits, underutilized fruit cultivar gooseberry showed the highest overall antioxidant potential. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mohammed, Afrah E; Smit, Inga; Pawelzik, Elke; Keutgen, Anna J; Horneburg, Bernd
2012-05-01
Tomato fruits are characterized by a good nutritional profile, including different bioactive compounds such as carotenoids, phenolic compounds and ascorbic acid. The objective of this study was to analyze the content of bioactive compounds in the fruit and the infection by Phytophthora infestans of 28 tomato genotypes from organic outdoor production. The relationship between bioactive compounds in the fruit and infection with P. infestans was estimated. Field experiments were carried out in 2004 and 2005 at two locations in central Germany. Significant variation among genotypes, locations and years was observed for the content of lycopene, ascorbic acid, total phenolic compounds, antioxidant capacity and the infection level of P. infestans. Antioxidant capacity seemed to be influenced mainly by the phenolics and was highest in small fruits, which were less infected with P. infestans. The large genetic variation among tomato genotypes for the content of bioactive compounds in their fruit allows for selection gains. None of the investigated bioactive compounds can be recommended for the indirect selection for increased field resistance against P. infestans. Copyright © 2011 Society of Chemical Industry.
Mazurek, Artur; Jamroz, Jerzy
2015-04-15
In food analysis, a method for determination of vitamin C should enable measuring of total content of ascorbic acid (AA) and dehydroascorbic acid (DHAA) because both chemical forms exhibit biological activity. The aim of the work was to confirm applicability of HPLC-DAD method for analysis of total content of vitamin C (TC) and ascorbic acid in various types of food by determination of validation parameters such as: selectivity, precision, accuracy, linearity and limits of detection and quantitation. The results showed that the method applied for determination of TC and AA was selective, linear and precise. Precision of DHAA determination by the subtraction method was also evaluated. It was revealed that the results of DHAA determination obtained by the subtraction method were not precise which resulted directly from the assumption of this method and the principles of uncertainty propagation. The proposed chromatographic method should be recommended for routine determinations of total vitamin C in various food. Copyright © 2014 Elsevier Ltd. All rights reserved.
The effect of intravitreal injection of vehicle solutions on form deprivation myopia in tree shrews.
Ward, Alexander H; Siegwart, John T; Frost, Michael R; Norton, Thomas T
2016-04-01
lntravitreal injection of substances dissolved in a vehicle solution is a common tool used to assess retinal function. We examined the effect of injection procedures (three groups) and vehicle solutions (four groups) on the development of form deprivation myopia (FDM) in juvenile tree shrews, mammals closely related to primates, starting at 24 days of visual experience (about 45 days of age). In seven groups (n = 7 per group), the myopia produced by monocular form deprivation (FD) was measured daily for 12 days during an 11-day treatment period. The FD eye was randomly selected; the contralateral eye served as an untreated control. The refractive state of both eyes was measured daily, starting just before FD began (day 1); axial component dimensions were measured on day 1 and after eleven days of treatment (day 12). Procedure groups: the myopia (treated eye - control eye refraction) in the FD group was the reference. The sham group only underwent brief daily anesthesia and opening of the conjunctiva to expose the sclera. The puncture group, in addition, had a pipette inserted daily into the vitreous. In four vehicle groups, 5 μL of vehicle was injected daily. The NaCl group received 0.85% NaCl. In the NaCl + ascorbic acid group, 1 mg/mL of ascorbic acid was added. The water group received sterile water. The water + ascorbic acid group received water with ascorbic acid (1 mg/mL). We found that the procedures associated with intravitreal injections (anesthesia, opening of the conjunctiva, and puncture of the sclera) did not significantly affect the development of FDM. However, injecting 5 μL of any of the four vehicle solutions slowed the development of FDM. NaCl had a small effect; myopia development in the last 6 days (-0.15 ± 0.08 D/day) was significantly less than in the FD group (-0.55 ± 0.06 D/day). NaCl + Ascorbic acid further slowed the development of FDM on several treatment days. H2O (-0.09 ± 0.05 D/day) and H2O + ascorbic acid (-0.08 ± 0.05 D/day) both almost completely blocked myopia development. The treated eye vitreous chamber elongation, compared with the control eye, in all groups was consistent with the amount of myopia. When FD continued (days 12-16) without injections in the water and water + ascorbic acid groups, the rate of myopia development quickly increased. Thus, it appears the vehicles affected retinal signaling rather than causing damage. The effect of water and water + ascorbic acid may be due to reduced osmolality or ionic concentration near the tip of the injection pipette. The effect of ascorbic acid, compared to NaCl alone, may be due to its reported dopaminergic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Therapeutic review: is ascorbic acid of value in chromium poisoning and chromium dermatitis?
Bradberry, S M; Vale, J A
1999-01-01
Repeated topical exposure to chromium(VI) may cause an allergic contact dermatitis or the formation of chrome ulcers. Systemic toxicity may occur following the ingestion of a chromium(VI) salt, from chromium(VI)-induced skin burns, or from inhalation of chromium(VI) occurring occupationally. Soluble chromium(VI) salts are usually absorbed more easily and cross cell membranes more readily than trivalent chromium salts, and, therefore chromium(VI) is more toxic than chromium(III). In experimental studies, endogenous ascorbic acid in rat lung, liver, and kidney and human plasma, effectively reduces chromium(VI) to chromium(III). The administration of exogenous ascorbic acid has been advocated therefore in the treatment of systemic chromium poisoning and chromium dermatitis to enhance the extracellular reduction of chromium(VI) to the less bioavailable chromium(III). In vitro experiments confirm that the addition of ascorbic acid to plasma containing chromium(VI) leads to a dose-dependent reduction of chromium(VI) to chromium(III). In animal studies, parenteral ascorbic acid 0.5-5 g/kg significantly reduced chromium-induced nephrotoxicity when administered 30 minutes before parenteral sodium dichromate and up to 1 hour after parenteral sodium chromate dosing. Parenteral ascorbic acid 0.5-5 g/kg also reduced mortality when given orally up to 2 hours after oral potassium dichromate dosing. However, the administration of parenteral ascorbic acid more than 2 hours after parenteral chromate in these experimental studies did not protect against renal damage, and parenteral ascorbic acid given 3 hours postparenteral chromate increased toxicity. In addition, there is no confirmed clinical evidence that the administration of ascorbic acid lessens morbidity or mortality in systemic chromium poisoning. A possible reason for the lack of benefit of ascorbic acid when administration is delayed, is that chromium(VI) cellular uptake has occurred prior to ascorbic acid administration. Topical 10% ascorbic acid has been claimed to reduce significantly the healing time of experimentally induced chrome ulcers in guinea pigs. The proposed mechanism is reduction on the skin surface of chromium(VI) to chromium(III). Several case reports suggest that topical ascorbic acid is effective in the management of chromium dermatitis but this has not been confirmed in controlled clinical trials and, moreover, the practical difficulties of frequent application are likely to limit its usefulness. Based on experimental studies, substantial amounts of ascorbic acid would need to be administered, preferably parenterally, soon after exposure to prevent systemic toxicity from chromium(VI) in humans. However, as ascorbic acid is a metabolic precursor of oxalate, the administration of ascorbic acid in high dose could lead to acute oxalate nephropathy, particularly in the presence of renal failure. While smaller doses of ascorbic acid (e.g., 10 g intravenously) are not toxic, such doses probably will not reduce the mortality from systemic chromium poisoning. There is currently insufficient evidence to advocate the use of ascorbic acid in the management of systemic chromium toxicity. Topical ascorbic acid may reduce dermal hexavalent chromium exposure, but this observation must be confirmed in controlled studies.
21 CFR 182.3189 - Calcium ascorbate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium ascorbate. 182.3189 Section 182.3189 Food... GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance...
21 CFR 182.8013 - Ascorbic acid.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a) Product. Ascorbic acid. (b) Conditions...
21 CFR 582.3013 - Ascorbic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ascorbic acid. 582.3013 Section 582.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Ascorbic acid. (a) Product. Ascorbic acid. (b) Conditions of use. This substance is generally recognized as...
Roselló, Salvador; Adalid, Ana Maria; Cebolla-Cornejo, Jaime; Nuez, Fernando
2011-04-01
Tomatoes are an important source of antioxidants (carotenoids, vitamin C, etc.) owing to their high level of consumption. There is great interest in developing cultivars with increased levels of lycopene, β-carotene or L-ascorbic acid. There is necessary to survey new sources of variation. In this study, the potential of improvement for each character in tomato breeding programmes, in a single or joint approach, and the nature of genotype (G), environment (E) and G × E interaction effects in the expression of these characters were investigated. The content of lycopene, β-carotene and ascorbic acid determined was very high in some phenotypes (up to 281, 35 and 346 mg kg(-1) respectively). The important differences in the three environments studied (with some stressing conditions in several situations) had a remarkable influence in the phenotypic expression of the functional characters evaluated. Nevertheless, the major contribution came from the genotypic effect along with a considerable G × E interaction. The joint accumulation of lycopene and β-carotene has a high genetic component. It is possible to select elite genotypes with high content of both carotenoids in tomato breeding programmes but multi-environment trials are recommended. The improvement of ascorbic acid content is more difficult because the interference of uncontrolled factors mask the real genetic potential. Among the accessions evaluated, there are four accessions with an amazing genetic potential for functional properties that can be used as donor parents in tomato breeding programmes or for direct consumption in quality markets. Copyright © 2011 Society of Chemical Industry.
Control of enzymatic browning in apple slices by using ascorbic acid under different conditions.
el-Shimi, N M
1993-01-01
Control of phenol oxidase activity in apple slices by the use of ascorbic acid at different pH values, temperature and time of incubation was investigated. The enzyme was almost inactivated at 1% and 1.5% ascorbic acid. Ascorbic acid solution (1%) caused a remarkable inhibition with the increasing acidity up to pH = 1. Heating treatments for apple slices dipped in 1% ascorbic acid caused a reduction of enzymatic browning, optimum temperature for inactivation of the enzyme was between 60-70 degrees C for 15 minutes. Increasing the time of dipping apple slices in 1% ascorbic acid solutions and at different pH values reduce phenolase activity.
Morais, H; Rodrigues, P; Ramos, C; Forgács, E; Cserháti, T; Oliveira, J
2002-10-01
The effect of ascorbic acid, light, and storage on the stability of the pigments beta-carotene and capsanthin in red pepper (Capsicum annuum) powder has been elucidated by determining the amount of pigment in samples treated by various concentrations of ascorbic acid. Determination of pigment concentration has been performed after different storage times using high-performance liquid chromatography. The dependence of the concentration of pigments on the concentration of ascorbic acid, presence of light and the storage time has been assessed by stepwise regression analysis. The concentration of pigments decreased at longer storage time and increased at higher concentration of ascorbic acid, beta-carotene being more sensitive towards storage time and concentration of ascorbic acid than capsanthin. Interaction between the effects of light and storage time, and light and concentration of ascorbic acid has been established.
NASA Astrophysics Data System (ADS)
Tominaga, Yoko; Kadota, Kazunori; Shimosaka, Atsuko; Yoshida, Mikio; Oshima, Kotaro; Shirakawa, Yoshiyuki
2018-05-01
The preparation of the titanium dioxide hollow particles encapsulating L-ascorbic acid via sol-gel process using inkjet nozzle has been performed, and the sustained release and the effect protecting against degradation of L-ascorbic acid in the particles were investigated. The morphology of titanium dioxide particles was evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The sustained release and the effect protecting against degradation of L-ascorbic acid were estimated by dialysis bag method in phosphate buffer saline (PBS) (pH = 7.4) as release media. The prepared titanium dioxide particles exhibited spherical porous structures. The particle size distribution of the titanium dioxide particles was uniform. The hollow titanium dioxide particles encapsulating L-ascorbic acid showed the sustained release. It was also found that the degradation of L-ascorbic acid could be inhibited by encapsulating L-ascorbic acid in the titanium dioxide hollow particles.
Sharma, Manju; Panwar, Neeraj; Arora, Pooja; Luhach, Jyoti; Chaudhry, Smita
2013-05-01
Air pollution tolerance index (APTI) calculated for various plant species growing in vicinity of three different industrial areas (Paper mill, Sugar mill, Thermal Power Plant) and Yamuna River belt of Yamuna Nagar. Studies were carried out to determine the physiological response of ten plant species. The leaf samples collected from these plant species were used to determine their plant APTI by calculating the ascorbic acid, total chlorophyll, pH, and relative water content for all selected sites. Highest pH, relative water content, ascorbic acid and total chlorophyll was observed in Castor (9.86), Parthenium (96.99%), Ficus benghalensis (14.90 mg g(-1)) and Amaranthus (7.08 mg g(-1)) at Yamuna river, Thermal power plant, Yamuna river and paper mill respectively. It was concluded that out of ten species studied only one species (Ficus benghalensis) showed moderately tolerant response in all selected sites, while other species showed sensitive response. According to observed APTI values, Ficus benghalensis showed the highest value (21.65) at sugar mill followed by thermal power plant (19.38), Paper mill (17.65) and Yamuna River (17.61). The lowest APTI values were reported in Oxalis corniculata (6.42) at Yamuna River belt followed by Malvestrum at sugar mill (7.71).
Stress-induced ascorbic acid depletion and cortisol production in two salmonid fishes
Wedemeyer, Gary
1969-01-01
Interrenal ascorbic acid and serum cortisol were measured in non-specificity stressed yearling coho salmon and rainbow trout.Interrenal ascorbate was markedly decreased during stress but increased to normal if adaptation occurred.Serum cortisol was elevated by non-specific stress and remained high after interrenal ascorbate had returned to initial levels.
Ascorbate as a Biosynthetic Precursor in Plants
Debolt, Seth; Melino, Vanessa; Ford, Christopher M.
2007-01-01
Background and Aims l-Ascorbate (vitamin C) has well-documented roles in many aspects of redox control and anti-oxidant activity in plant cells. This Botanical Briefing highlights recent developments in another aspect of l-ascorbate metabolism: its function as a precursor for specific processes in the biosynthesis of organic acids. Scope The Briefing provides a summary of recent advances in our understanding of l-ascorbate metabolism, covering biosynthesis, translocation and functional aspects. The role of l-ascorbate as a biosynthetic precursor in the formation of oxalic acid, l-threonic acid and l-tartaric acid is described, and progress in elaborating the mechanisms of the formation of these acids is reviewed. The potential conflict between the two roles of l-ascorbate in plant cells, functional and biosynthetic, is highlighted. Conclusions Recent advances in the understanding of l-ascorbate catabolism and the formation of oxalic and l-tartaric acids provide compelling evidence for a major role of l-ascorbate in plant metabolism. Combined experimental approaches, using classic biochemical and emerging ‘omics’ technologies, have provided recent insight to previously under-investigated areas. PMID:17098753
Vitamin C Transporters in Cancer: Current Understanding and Gaps in Knowledge
Wohlrab, Christina; Phillips, Elisabeth; Dachs, Gabi U.
2017-01-01
Sufficient uptake and whole body distribution of vitamin C (ascorbate) is essential for many biochemical processes, including some that are vital for tumor growth and spread. Uptake of ascorbate into cancer cells is modulated by availability, tumor blood flow, tissue diffusion parameters, and ascorbate transport proteins. Uptake into cells is mediated by two families of transport proteins, namely, the solute carrier gene family 23, consisting of sodium-dependent vitamin C transporters (SVCTs) 1 and 2, and the SLC2 family of glucose transporters (GLUTs). GLUTs transport the oxidized form of the vitamin, dehydroascorbate (DHA), which is present at negligible to low physiological levels. SVCT1 and 2 are capable of accumulating ascorbate against a concentration gradient from micromolar concentrations outside to millimolar levels inside of cells. Investigating the expression and regulation of SVCTs in cancer has only recently started to be included in studies focused on the role of ascorbate in tumor formation, progression, and response to therapy. This review gives an overview of the current, limited knowledge of ascorbate transport across membranes, as well as tissue distribution, gene expression, and the relevance of SVCTs in cancer. As tumor ascorbate accumulation may play a role in the anticancer activity of high dose ascorbate treatment, further research into ascorbate transport in cancer tissue is vital. PMID:28484682
Savini, Isabella; Catani, Maria Valeria; Rossi, Antonello; Duranti, Guglielmo; Melino, Gerry; Avigliano, Luciana
2002-02-01
Epidermal keratinocytes undergo differentiation in response to several stimuli to form the cornified envelope, a structure that contributes to the barrier function of skin. Although differentiation has been extensively analyzed, the precise role of vitamin C during this process is still not defined. Ascorbic acid, besides acting as a radical scavenger, has been shown to promote mesenchymal differentiation. In this study, we found that keratinocytes grown in ascorbate-supplemented medium developed a differentiated phenotype, as demonstrated by enhanced expression of marker genes and increase in cornified envelope content. The pro-differentiating effects of ascorbate were mediated by the protein-kinase-C-dependent induction of activating protein 1 DNA binding activity; indeed, down-modulation of protein kinase C activity abolished differentiation triggered by ascorbic acid. Although vitamin C appeared to regulate the same signaling pathway modulated by calcium, a classical in vitro inducer of epidermal differentiation, nonetheless terminally differentiated keratinocytes exhibited different ascorbate homeostasis and cellular antioxidant status. Indeed, we found that, unlike calcium, differentiation promoted by ascorbate was accompanied by (i) an enhanced ascorbate transport, due to overexpression of specific transporters, (ii) a great efficiency of dehydroascorbate uptake, and (iii) an increase in glutathione content with respect to proliferating cells. Ascorbic acid may be useful to promote epidermal differentiation, avoiding depletion of hydrophilic antioxidant stores.
Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress.
Domazou, Anastasia S; Zelenay, Viviane; Koppenol, Willem H; Gebicki, Janusz M
2012-10-15
Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress. Copyright © 2012 Elsevier Inc. All rights reserved.
Plasmatic antioxidant capacity due to ascorbate using TEMPO scavenging and electron spin resonance.
Piehl, Lidia L; Facorro, Graciela B; Huarte, Mónica G; Desimone, Martín F; Copello, Guillermo J; Díaz, Luis E; de Celis, Emilio Rubín
2005-09-01
Ascorbate is the most effective water-soluble antioxidant and its plasma concentration is usually measured by different methods including colorimetric assays, HPLC or capillary electrophoresis. Plasma antioxidant capacity is determined by indexes such as total reactive antioxidant potential, total antioxidant reactivity, oxygen radical absorbance capacity, etc. We developed an alternative method for the evaluation of the plasma antioxidant status due to ascorbate. TEMPO kinetics scavenging analyzed by ESR spectroscopy was performed on plasma samples in different antioxidant situations. Plasma ascorbate concentrations were determined by capillary electrophoresis. Ascorbyl radical levels were measured by ESR. Plasma reactivity with TEMPO (PR-T) reflected plasma ascorbate levels. Average PR-T for normal plasmas resulted 85+/-27 micromol/l (n=43). PR-T during ascorbic acid intake (1 g/day) increased to an average value of 130+/-20 micromol/l (p<0.001, n=20). PR-T correlated with the plasmatic ascorbate levels determined by capillary electrophoresis (r=0.92), presenting as an advantage the avoiding of the deproteination step. Plasma ascorbyl radical levels increase from 16+/-2 to 24+/-3 nmol/l (p<0.005, n=14) after ascorbate intake. PR-T could be considered as a measure of the plasmatic antioxidant capacity due to the plasma ascorbate levels and could be useful to investigate different antioxidant situations.
Taira, Norihisa; Katsuyama, Yushi; Yoshioka, Masato; Muraoka, Osamu; Morikawa, Toshio
2018-04-10
l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C-alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives ( 1 - 28 ) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure-function relationships. Although not the most potent inhibitors, 3- O -(2,3-dihydroxypropyl)-2- O -hexyl-l-ascorbic acid ( 6 , IC 50 = 81.4 µM) and 2- O -(2,3-dihydroxypropyl)-3- O -hexyl-l-ascorbic acid ( 20 , IC 50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3- O -alkyl-derivatives ( 2 - 14 ) exhibit stronger inhibitory activity than the corresponding 2- O -alkyl-derivatives ( 16 - 28 ); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.
USDA-ARS?s Scientific Manuscript database
Understanding how wound dressings may be designed to address critical unsolved issues in wound repair and treatment influences the development of dressings and new concepts of promoting healing. The vast majority of commercial dressing materials focus on the physical aspects of wounds, e.g., acting ...
Bulley, Sean; Wright, Michele; Rommens, Caius; Yan, Hua; Rassam, Maysoon; Lin-Wang, Kui; Andre, Christelle; Brewster, Di; Karunairetnam, Sakuntala; Allan, Andrew C; Laing, William A
2012-05-01
Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l-galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP-l-galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Loscos, Jorge; Matamoros, Manuel A; Becana, Manuel
2008-03-01
Ascorbate and glutathione are major antioxidants and redox buffers in plant cells but also play key functions in growth, development, and stress responses. We have studied the regulation of ascorbate and homoglutathione biosynthesis in common bean (Phaseolus vulgaris) nodules under stress conditions and during aging. The expression of five genes of the major ascorbate biosynthetic pathway was analyzed in nodules, and evidence was found that L-galactono-1,4-lactone dehydrogenase, the last committed step of the pathway, is posttranscriptionally regulated. Also, in nodules under stress conditions, gamma-glutamylcysteine synthetase was translationally regulated, but homoglutathione synthetase (mRNA and activity) and homoglutathione (content and redox state) were not affected. Most interestingly, in nodules exposed to jasmonic acid, dehydroascorbate reductase activity was posttranslationally suppressed, ascorbate oxidase showed strong transcriptional up-regulation, and dehydroascorbate content increased moderately. These changes were not due to a direct effect of jasmonic acid on the enzyme activities but might be part of the signaling pathway in the response of nodules to stress. We determined ascorbate, homoglutathione, and ascorbate-glutathione pathway enzyme activities in two senescing stages of nodules undergoing oxidative stress. When all parameters were expressed on a nodule fresh weight basis, we found that in the first stage ascorbate decreased by 60% and homoglutathione and antioxidant activities remained fairly constant, whereas in the second stage ascorbate and homoglutathione, their redox states, and their associated enzyme activities significantly decreased. The coexistence in the same plants of nodules at different senescence stages, with different ascorbate concentrations and redox states, indicates that the life span of nodules is in part controlled by endogenous factors and points to ascorbate as one of the key players.
Ascorbic acid: Chemistry, biology and the treatment of cancer☆
Du, Juan; Cullen, Joseph J.; Buettner, Garry R.
2013-01-01
Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH− an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H2O2). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H2O2 to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer. PMID:22728050
Targeted aerosolized delivery of ascorbate in the lungs of chlorine-exposed rats.
Bracher, Andreas; Doran, Stephen F; Squadrito, Giuseppe L; Postlethwait, Edward M; Bowen, Larry; Matalon, Sadis
2012-12-01
Chlorine (Cl(2))-induced lung injury is a serious public health threat that may result from industrial and household accidents. Post-Cl(2) administration of aerosolized ascorbate in rodents decreased lung injury and mortality. However, the extent to which aerosolized ascorbate augments depleted ascorbate stores in distal lung compartments has not been assessed. We exposed rats to Cl(2) (300 ppm for 30 min) and returned them to room air. Within 15-30 min postexposure, rats breathed aerosolized ascorbate and desferal or vehicle (mean particle size 3.3 μm) through a nose-only exposure system for 60 min and were euthanized. We measured the concentrations of reduced ascorbate in the bronchoalveolar lavage (BAL), plasma, and lung tissues with high-pressure liquid chromatography, protein plasma concentration in the BAL, and the volume of the epithelia lining fluid (ELF). Cl(2)-exposed rats that breathed aerosolized vehicle had lower values of ascorbate in their BAL, ELF, and lung tissues compared to air-breathing rats. Delivery of aerosolized ascorbate increased reduced ascorbate in BAL, ELF, lung tissues, and plasma of both Cl(2) and air-exposed rats without causing lung injury. Based on mean diameter of aerosolized particles and airway sizes we calculated that approximately 5% and 1% of inhaled ascorbate was deposited in distal lung regions of air and Cl(2)-exposed rats, respectively. Significantly higher ascorbate levels were present in the BAL of Cl(2)-exposed rats when aerosol delivery was initiated 1 h post-Cl(2). Aerosol administration is an effective, safe, and noninvasive method for the delivery of low molecular weight antioxidants to the lungs of Cl(2)-exposed individuals for the purpose of decreasing morbidity and mortality. Delivery is most effective when initiated 1 h postexposure when the effects of Cl(2) on minute ventilation subside.
Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati
2013-06-01
The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sahin, N; Onderci, M; Sahin, K; Gursu, M F; Smith, M O
2004-02-01
1. The effects of ascorbic acid (L-ascorbic acid) and melatonin supplementation on performance, carcase characteristics, malondialdehyde (MDA) as lipid peroxidation indicator, ascorbic acid, retinol, tocopherol and mineral status in the Japanese quail (Coturnix coturnix japonica) exposed to high ambient temperature were evaluated. 2. Two hundred and forty Japanese quails (10 d old) were randomly assigned to 8 treatment groups consisting of 10 replicates of three birds each. The birds were kept in a temperature-controlled room at 22 degrees C (Thermoneutral, TN groups) or 34 degrees C (for 8 h/d; 09:00 to 17:00 h; Heat stress, HS groups). Birds in both TN and HS were fed either a basal (control) diet or the basal diet supplemented with 250 mg of L-ascorbic acid/kg of diet (Ascorbic acid group), 40 mg of melatonin/kg of diet (Melatonin group) or both (Ascorbic acid + Melatonin group). 3. Supplementing heat-stressed quails with ascorbic acid and melatonin improved performance compared with the control group. Effects generally were greatest in quails supplemented with both ascorbic acid and melatonin. 4. Although supplementation did not consistently restore the concentrations of serum ascorbic acid, retinol and tocopherol to those of TN groups, these concentrations increased significantly with supplementation. Furthermore, serum and liver MDA and serum cholesterol and glucose concentrations were lower in the supplemented groups than in the heat-stressed controls. 5. Within each environment, excretion of Ca, P, Mg, Zn, Fe and Cr were lowest in the combination group and, in all cases, highest in the HS group. Interactions between diet and temperature were detected for live weight gain, cold carcase weight, MDA, ascorbic acid, tocopherol concentrations and excretion of zinc. 6. The results of the study indicate that ascorbic acid and melatonin supplementation attenuate the decline in performance and antioxidant and mineral status caused by heat stress and such supplementation may offer protection against heat-stress-related depression in performance of Japanese quails.
Rowe, D J; Ko, S; Tom, X M; Silverstein, S J; Richards, D W
1999-09-01
Vitamin C or ascorbate is important in wound healing due to its essential role in collagen synthesis. To study wound healing in the periodontium, cells adherent to expanded polytetrafluoroethylene (ePTFE) augmentation membranes, recovered from edentulous ridge augmentation procedures, have been established in culture in our laboratories. The objective of this study was to determine whether treatment of these cells with a calcium ascorbate, which contains vitamin C metabolites (metabolite-supplemented ascorbate), would increase the production of collagenous protein and mineralized tissue in vitro, as compared to unsupplemented calcium ascorbate (ascorbate). Cells derived from ePTFE membranes were cultured with beta-glycerophosphate and the test agents for 2 to 5 weeks, and the surface areas of the cell cultures occupied by mineralized nodules were measured using computerized image analysis. One experiment tested the effects of calcium threonate, one of the vitamin C metabolites in metabolite-supplemented ascorbate. Incorporation of radioactive proline and glycine was used as a measure of total protein (radioactivity precipitated by trichloracetic acid) and collagenase-digestible protein (radioactivity released by collagenase digestion.) Co-localization of collagen and fibronectin was examined by immunofluorescence. In vitro treatment of these cells with metabolite-supplemented ascorbate increased the area of the cell cultures occupied by mineralized nodules after 5 weeks. Cell cultures treated with metabolite-supplemented ascorbate also exhibited significant increases in total protein. The increase in collagenous proteins in these cultures accounted for 85% of the increase in total protein. The greatest difference between treatment groups was observed in the cell-associated fraction containing the extracellular matrix. The additional collagen exhibited normal co-distribution with fibronectin. In cultures treated with ascorbate spiked with calcium threonate, the area of mineralized tissue was significantly greater than in ascorbate-treated cultures, but was less than that observed in cultures treated with metabolite-supplemented ascorbate. In vitro treatment with ascorbate containing vitamin C metabolites enhanced the formation of mineralized nodules and collagenous proteins. Calcium threonate may be one of the metabolites influencing the mineralization process. Identifying factors which facilitate the formation of mineralized tissue has significant clinical ramifications in terms of wound healing and bone regeneration.
Beck, Raphaël; Pedrosa, Rozangela Curi; Dejeans, Nicolas; Glorieux, Christophe; Levêque, Philippe; Gallez, Bernard; Taper, Henryk; Eeckhoudt, Stéphane; Knoops, Laurent; Calderon, Pedro Buc; Verrax, Julien
2011-10-01
Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.
DPPH and oxygen free radicals as pro-oxidant of biomolecules.
Letelier, María Eugenia; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Holst, Marianne; Palma, Karina; Montoya, Margarita; Miranda, Dante; González-Lira, Víctor
2008-03-01
Numerous investigations exist about the alterations that oxygen free radicals can provoke on biomolecules; these modifications can be prevented and/or reversed by different antioxidants agents. On the other hand, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), a stable nitrogen synthetic radical, is used to evaluate the antioxidant capacity of medicinal herbal products; however, the structural changes that this radical provoke on the herbal active principles are not clear yet. In this work, we compared the redox reactivity of oxygen free radicals and DPPH radical on phospholipids and protein thiol groups present in rat liver microsomes. Cu2+/ascorbate was used as generator system of oxygen free radical and as antioxidant, an extract of Buddleja globosa's leaves. Cu2+/ascorbate provoked microsomal lipid peroxidation, microsomal thiols oxidation and oxygen consumption; all of these phenomena were inhibited by B. globosa extract. On the other hand, DPPH was bleached in different extension by the herbal extract and phosphatidyl choline; beside, DPPH decreased microsomal thiols content, but this phenomenon were not prevented by the herbal extract. Furthermore, DPPH did not induce oxygen consumption and neither modified the oxygen consumption induced by Cu2+/ascorbate. Distinct redox mechanisms may explain the differences between the reactivity of DPPH and oxygen free radicals on biomolecules, which is discussed.
Sumaya-Martínez, María Teresa; Cruz-Jaime, Sandra; Madrigal-Santillán, Eduardo; García-Paredes, Juan Diego; Cariño-Cortés, Raquel; Cruz-Cansino, Nelly; Valadez-Vega, Carmen; Martinez-Cardenas, Leonardo; Alanís-García, Ernesto
2011-01-01
Commercialization of cactus pears based on their antioxidant properties can generate competitive advantages, and these can turn into business opportunities and the development of new products and a high-value ingredient for the food industry. This work evaluated the antioxidant activities (1,1-diphenyl-2-picrylhydrazyl radical-scavenging, protection against oxidation of a β-carotene-linoleic acid emulsion, and iron (II) chelation), the content of total phenolic compounds, ascorbic acid, betacyanin, betaxanthin and the stability of betacyanin pigments in presence of Cu (II)-dependent hydroxyl radicals (OH•), in 18 cultivars of purple, red, yellow and white cactus pear from six Mexican states. Our results indicated that the antiradical activities from yellow and white cactus pear cultivars were not significantly different (p < 0.05) and were lower than the average antiradical activities in red and purple cultivars. The red cactus pear from the state of Zacatecas showed the highest antioxidant activity. The free radical scavenging activity for red cactus pears was significantly correlated (p < 0.05) to the concentration of total phenolic compounds (R2 = 0.90) and ascorbic acid (R2 = 0.86). All 18 cultivars of cactus pears studied showed significant chelating activity of ferrous ions. The red and purple cactus pears showed a great stability when exposed to OH•. PMID:22072899
Mateos, Rosa M.; Jiménez, Ana; Román, Paloma; Romojaro, Félix; Bacarizo, Sierra; Leterrier, Marina; Gómez, Manuel; Sevilla, Francisca; del Río, Luis A.; Corpas, Francisco J.; Palma, José M.
2013-01-01
Sweet pepper is susceptible to changes in the environmental conditions, especially temperatures below 15 °C. In this work, two sets of pepper fruits (Capsicum annuum L.) which underwent distinct temperature profiles in planta were investigated. Accordingly, two harvesting times corresponding to each set were established: Harvest 1, whose fruits developed and ripened at 14.9 °C as average temperature; and Harvest 2, with average temperature of 12.4 °C. The oxidative metabolism was analyzed in all fruits. Although total ascorbate content did not vary between Harvests, a shift from the reduced to the oxidized form (dehydroascorbate), accompanied by a higher ascorbate peroxidase activity, was observed in Harvest 2 with respect to Harvest 1. Moreover, a decrease of the ascorbate-generating enzymatic system, the γ-galactono-lactone dehydrogenase, was found at Harvest 2. The activity values of the NADP-dependent dehydrogenases analyzed seem to indicate that a lower NADPH synthesis may occur in fruits which underwent lower temperature conditions. In spite of the important changes observed in the oxidative metabolism in fruits subjected to lower temperature, no oxidative stress appears to occur, as indicated by the lipid peroxidation and protein oxidation profiles. Thus, the antioxidative systems of pepper fruits seem to be involved in the response against temperature changes. PMID:23644886
Shukla, Shruti; Mehta, Archana; John, Jinu; Singh, Siddharth; Mehta, Pradeep; Vyas, Suresh Prasad
2009-08-01
The aim of this study was to assess the in vitro potential of ethanolic extract of Caesalpinia bonducella seeds as a natural antioxidant. The DPPH activity of the extract (20, 40, 50, 100 and 200 microg/ml) was increased in a dose dependent manner, which was found in the range of 38.93-74.77% as compared to ascorbic acid (64.26-82.58%). The IC(50) values of ethanolic extract and ascorbic acid in DPPH radical scavenging assay were obtained to be 74.73 and 26.68 microg/ml, respectively. The ethanolic extract was also found to scavenge the superoxide generated by EDTA/NBT system. Measurement of total phenolic content of the ethanolic extract of C. bonducella was achieved using Folin-Ciocalteau reagent containing 62.50mg/g of phenolic content, which was found significantly higher when compared to reference standard gallic acid. The ethanolic extract also inhibited the hydroxyl radical, nitric oxide, superoxide anions with IC(50) values of 109.85, 102.65 and 89.84 microg/ml, respectively. However, the IC(50) values for the standard ascorbic acid were noted to be 70.79, 65.98 and 36.68 microg/ml respectively. The results obtained in this study clearly indicate that C. bonducella has a significant potential to use as a natural antioxidant agent.
Shibuya, Shuichi; Sakaguchi, Ikuyo; Ito, Shintaro; Kato, Eiko; Watanabe, Kenji; Izuo, Naotaka; Shimizu, Takahiko
2017-01-01
Ascorbic acid (AA) possesses multiple beneficial functions, such as regulating collagen biosynthesis and redox balance in the skin. AA derivatives have been developed to overcome this compound’s high fragility and to assist with AA supplementation to the skin. However, how AA derivatives are transferred into cells and converted to AA in the skin remains unclear. In the present study, we showed that AA treatment failed to increase the cellular AA level in the presence of AA transporter inhibitors, indicating an AA transporter-dependent action. In contrast, torisodium ascorbyl 6-palmitate 2-phosphate (APPS) treatment significantly enhanced the cellular AA level in skin cells despite the presence of inhibitors. In ex vivo experiments, APPS treatment also increased the AA content in a human epidermis model. Interestingly, APPS was readily metabolized and converted to AA in keratinocyte lysates via an intrinsic mechanism. Furthermore, APPS markedly repressed the intracellular superoxide generation and promoted viability associated with an enhanced AA level in Sod1-deficient skin cells. These findings indicate that APPS effectively restores the AA level and normalizes the redox balance in skin cells in an AA transporter-independent manner. Topical treatment of APPS is a beneficial strategy for supplying AA and improving the physiology of damaged skin. PMID:28640219
Różanowska, Małgorzata; Bakker, Linda; Boulton, Michael E.; Różanowski, Bartosz
2012-01-01
The purpose of this study was to determine the effects of increasing concentration of ascorbate alone and in combinations with α-tocopherol and zeaxanthin on phototoxicity to the retinal pigment epithelium. ARPE-19 cells were exposed to rose bengal and visible light in the presence and absence of antioxidants. Toxicity was quantified by an assay of cell reductive activity. 20 min exposure to visible light and photosensitizer decreased cell viability to ~42%. Lipophilic antioxidants increased viabilities to ~70%, ~61% and ~75% for α-tocopherol, zeaxanthin and their combination, respectively. Cell viabilities were ~70%, 56% and 5% after exposures in the presence of 0.35, 0.7 and 1.4 mM ascorbate, respectively. 45 min exposure increased cell death to ~74% and to >95% in the absence and presence of ascorbate, respectively. In the presence of ascorbate, zeaxanthin did not significantly affect phototoxicity. α-Tocopherol and its combination with zeaxanthin enhanced protective effects of ascorbate but did not prevent from ascorbate-mediated deleterious effects. In conclusion, there is a narrow range of concentrations and exposure times where ascorbate exerts photoprotective effects, exceeding which leads to ascorbate-mediated increase in photocytotoxicity. Vitamin E and its combination with zeaxanthin can enhance protective effects of ascorbate but do not ameliorate its deleterious effects. PMID:22924673
Pharmacological ascorbate and ionizing radiation (IR) increase labile iron in pancreatic cancer☆
Moser, Justin C.; Rawal, Malvika; Wagner, Brett A.; Du, Juan; Cullen, Joseph J.; Buettner, Garry R.
2013-01-01
Labile iron, i.e. iron that is weakly bound and is relatively unrestricted in its redox activity, has been implicated in both the pathogenesis as well as treatment of cancer. Two cancer treatments where labile iron may contribute to their mechanism of action are pharmacological ascorbate and ionizing radiation (IR). Pharmacological ascorbate has been shown to have tumor-specific toxic effects due to the formation of hydrogen peroxide. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of hydrogen peroxide; labile iron can also react with hydrogen peroxide. Here we have investigated the magnitude of the labile iron pool in tumor and normal tissue. We also examined the ability of pharmacological ascorbate and IR to change the size of the labile iron pool. Although a significant amount of labile iron was seen in tumors (MIA PaCa-2 cells in athymic nude mice), higher levels were seen in murine tissues that were not susceptible to pharmacological ascorbate. Pharmacological ascorbate and irradiation were shown to increase the labile iron in tumor homogenates from this murine model of pancreatic cancer. As both IR and pharmacological ascorbate may rely on labile iron for their effects on tumor tissues, our data suggest that pharmacological ascorbate could be used as a radio-sensitizing agent for some radio-resistant tumors. PMID:24396727
Role of ascorbic acid in stratum corneum lipid models exposed to UV irradiation.
Trommer, Hagen; Böttcher, Roif; Pöppl, Andreas; Hoentsch, Joachim; Wartewig, Siegfried; Neubert, Reinhard H H
2002-07-01
The effects of ascorbic acid on Stratum corneum lipid models following ultraviolet irradiation were studied adding iron ions as transition metal catalysts. Lipid peroxidation was quantified by the thiobarbituric acid assay. The qualitative changes were studied on a molecular level by mass spectrometry. To elucidate the nature of free radical involvement we carried out electron paramagnetic resonance studies. The influence of ascorbic acid on the concentration of hydroxyl radicals was examined using the spin trapping technique. Moreover, we checked the vitamin's ability to react with stable radicals. Ascorbic acid was found to have prooxidative effects in all lipid systems in a concentration dependent manner. The degradation products of ascorbic acid after its prooxidative action were detected. The concentration of the hydroxyl radicals in the Fenton assay was decreased by ascorbic acid. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate showed reduced concentration levels of the stable radical caused by ascorbic acid. Considering human skin and its constant exposure to UV light and oxygen, an increased pool of iron ions in irradiated skin and the depletion of co-antioxidants, the administration of ascorbic acid in cosmetic formulations or in sunscreens could unfold adverse effects among the Stratum corneum lipids.
Interference of ascorbic acid with chemical analytes.
Meng, Qing H; Irwin, William C; Fesser, Jennifer; Massey, K Lorne
2005-11-01
Ascorbic acid can interfere with methodologies involving redox reactions, while comprehensive studies on main chemistry analysers have not been reported. We therefore attempted to determine the interference of ascorbic acid with analytes on the Beckman Synchron LX20. Various concentrations of ascorbic acid were added to serum, and the serum analytes were measured on the LX20. With a serum ascorbic acid concentration of 12.0 mmol/L, the values for sodium, potassium, calcium and creatinine increased by 43%, 58%, 103% and 26%, respectively (P<0.01). With a serum ascorbic acid concentration of 12.0 mmol/L, the values for chloride, total bilirubin and uric acid decreased by 33%, 62% and 83%, respectively (P<0.01), and were undetectable for total cholesterol, triglyceride, ammonia and lactate. There was no definite influence of ascorbic acid on analytical values for total CO(2), urea, glucose, phosphate, total protein, albumin, amylase, creatine kinase, creatine kinase-MB, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total iron, unbound iron-binding capacity or magnesium. Ascorbic acid causes a false increase in sodium, potassium, calcium and creatinine results and a false decrease in chloride, total bilirubin, uric acid, total cholesterol, triglyceride, ammonia and lactate results.
Noh, A Long Sae Mi; Yim, Mijung
2011-03-01
Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.
Stirrat, Alison; Nelli, Silvia; McGuckin, Alicia; Ho, Vivian Wing Man; Wilson, William S; Martin, William
2006-03-18
Ascorbate blocks agonist-induced, endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation in the bovine perfused ciliary artery and this is associated with a rise in perfusion pressure. We now report the origins of this ascorbate-induced rise in perfusion pressure. In segments of ciliary artery perfused at 2.5 ml/min, the addition of ascorbate (10-150 microM) enhanced U46619-induced perfusion pressure. Ascorbate produced no enhancement in the absence of U46619, suggesting that its effects resulted not from a constrictor action but through removal of a tonic vasodilator influence. Experiments revealed the endothelial source of this vasodilator influence, and EDHF, but not nitric oxide or prostanoids, appeared to be involved. The ascorbate-induced enhancement of vasoconstrictor tone was not seen in a static myograph or in segments perfused at low rates of flow, but was seen at flow rates of 2.5 ml(-1) and above. We conclude that ascorbate augments vasoconstrictor tone through inhibition of flow-induced EDHF activity.
Remini, Hocine; Mertz, Christian; Belbahi, Amine; Achir, Nawel; Dornier, Manuel; Madani, Khodir
2015-04-15
The stability of ascorbic acid and colour intensity in pasteurised blood orange juice (Citrus sinensis [L.] Osbeck) during one month of storage was investigated at 4-37 °C. The effects of ascorbic acid fortification (at 100, 200 mg L(-1)) and deaeration, temperature/time storage on the kinetic behaviour were determined. Ascorbic acid was monitored by HPLC-DAD and colour intensity by spectrophotometric measurements. Degradation kinetics were best fitted by first-order reaction models for both ascorbic acid and colour intensity. Three models (Arrhenius, Eyring and Ball) were used to assess the temperature-dependent degradation. Following the Arrhenius model, activation energies were ranged from 51 to 135 kJ mol(-1) for ascorbic acid and from 49 to 99 kJ mol(-1) for colour intensity. The effect of storage temperature and deaeration are the most influent factors on kinetics degradation, while the fortification revealed no significant effect on ascorbic acid content and colour intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kaya, Armagan
2017-09-01
Ascorbic acid is an important antioxidant that plays role both on growth and development and also stress response of the plant. The purpose of this study was to determine the effect of ascorbate on physiological and biochemical changes of sunflower that was exposed to multiple stresses. Chlorophyll and carotenoid contents decreased and glutathione, ascorbate and malondialdehyde contents as well as antioxidant enzyme activities increased for sunflower plant that was exposed to 50 mM NaCl and pendimethalin at different concentrations. These changes were found to be more significant in groups simultaneously exposed to both stress factors. While malondialdehyde content decreased, chlorophyll, carotenoid, ascorbate, glutathione contents and antioxidant enzyme activities increased in plants treated exogenously with ascorbate, compared to the untreated samples. According to the findings of our study; compared to individual stress, the effect of stress is more pronounced in sunflower exposed to multiple stresses, and treatment with exogenous ascorbate reduces the negative effects of stress.
Santos-Ocaña, C; Navas, P; Crane, F L; Córdoba, F
1995-12-01
The presence of yeast cells in the incubation medium prevents the oxidation of ascrobate catalyzed by copper ions. Ethanol increases ascorbate retention. Pyrazole, an alcohol dehydrogenase inhibitor, prevents ascorbate stabilization by cells. Chelation of copper ions does not account for stabilization, since oxidation rates with broken or boiled cells or conditioned media are similar to control rates in the absence of cells. Protoplast integrity is needed to reach optimal values of stabilization. Chloroquine, a known inhibitor of plasma membrane redox systems, inhibits the ascorbate stabilization, the inhibition being partially reversed by coenzyme Q6. Chloroquine does not inhibit ferricyanide reduction. Growth of yeast in iron-deficient media to increase ferric ion reductase activity also increases the stabilization. In conclusion, extracellular ascorbate stabilization by yeast cells can reflect a coenzyme Q dependent transplasmalemma electron transfer which uses NADH as electron donor. Iron deficiency increases the ascorbate stabilization but the transmembrane ferricyanide reduction system can act independently of ascorbate stabilization.
Acuña, Aníbal I; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A; Parra, Alejandra V; Cepeda, Carlos; Toro, Carlos A; Vidal, René L; Hetz, Claudio; Concha, Ilona I; Brauchi, Sebastián; Levine, Michael S; Castro, Maite A
2013-01-01
Huntington's disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.
Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.
2013-01-01
Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death. PMID:24336051
Petrova, Anastasia A; Trubitsin, Boris V; Boskhomdzhieva, Baina K; Semenov, Alexey Yu; Tikhonov, Alexander N
2018-06-09
In this work, we investigated electron transport around the photosynthetic pigment-protein complex of Photosystem I (PS I) mediated by external high-potential electron carrier 2,3-dichloro-1,4-naphtoquinone (Cl 2 NQ) and ascorbate. It has been demonstrated that the oxidized species of Cl 2 NQ and ascorbate serve as intermediates capable of accepting electrons from the iron-sulfur cluster F X of PS I. Reduced species of Cl 2 NQ and ascorbate are oxidized by photooxidized PS I primary donor P700+ and/or by molecular oxygen. We have found the synergistic effect of Cl 2 NQ and ascorbate on the rate of P700+ reduction. Accelerated electron flow to P700+, observed in the presence of both Cl 2 NQ and ascorbate, is explained by an increase in the reduced species of Cl 2 NQ due to electron transfer from ascorbate. © 2018 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.
2013-12-01
Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.
Shishehbore, Masoud Reza; Aghamiri, Zahra
2014-01-01
In this study, a new reaction system for quantitative determination of ascorbic acid was introduced. The developed method is based on inhibitory effect of ascorbic acid on the Orange G-bromate system. The change in absorbance was followed spectrophotometrically at 478 nm. The dependence of sensitivity on the reaction variables including reagents concentration, temperature and time was investigated. Under optimum experimental conditions, calibration curve was linear over the range 0.7 - 33.5 μg mL(-1) of ascorbic acid including two linear segments and the relative standard deviations (n = 6) for 5.0 and 20.0 μg mL(-1) of ascorbic acid were 1.08 and 1.02%, respectively. The limit of detection was 0.21 μg mL(-) (1) of ascorbic acid. The effect of diverse species was also investigated. The developed method was successfully applied for the determination of ascorbic acid in pharmaceutical samples. The results were in a good agreement with those of reference method.
Formation of an ascorbate-apatite composite layer on titanium.
Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru
2007-09-01
An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 degrees C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 microg mm(-2), which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.
Novel DNA lesions generated by the interaction between therapeutic thiopurines and UVA light.
Zhang, Xiaohong; Jeffs, Graham; Ren, Xiaolin; O'Donovan, Peter; Montaner, Beatriz; Perrett, Conal M; Karran, Peter; Xu, Yao-Zhong
2007-03-01
The therapeutic effect of the thiopurines, 6-thioguanine (6-TG), 6-mercaptopurine, and its prodrug azathioprine, depends on the incorporation of 6-TG into cellular DNA. Unlike normal DNA bases, 6-TG absorbs UVA radiation, and UVA-mediated photochemical damage of DNA 6-TG has potentially harmful side effects. When free 6-TG is UVA irradiated in solution in the presence of molecular oxygen, reactive oxygen species are generated and 6-TG is oxidized to guanine-6-sulfonate (G(SO3)) and guanine-6-thioguanine in reactions involving singlet oxygen. This conversion is prevented by antioxidants, including the dietary vitamin ascorbate. DNA G(SO3) is also the major photoproduct of 6-TG in DNA and it can be selectively introduced into DNA or oligonucleotides in vitro by mild chemical oxidation. Thermal stability measurements indicate that G(SO3) does not form stable base pairs with any of the normal DNA bases in duplex oligonucleotides and is a powerful block for elongation by Klenow DNA polymerase in primer extension experiments. In cultured human cells, DNA damage produced by 6-TG and UVA treatment is associated with replication inhibition and provokes a p53-dependent DNA damage response.
Cha, John; Roomi, M Waheed; Ivanov, Vadim; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias
2013-01-01
Degradation of the extracellular matrix (ECM) plays a critical role in the formation of tumors and metastasis and has been found to correlate with the aggressiveness of tumor growth and invasiveness of cancer. Ascorbic acid, which is known to be essential for the structural integrity of the intercellular matrix, is not produced by humans and must be obtained from the diet. Cancer patients have been shown to have very low reserves of ascorbic acid. Our main objective was to determine the effect of ascorbate supplementation on metastasis, tumor growth and tumor immunohistochemistry in mice unable to synthesize ascorbic acid [gulonolactone oxidase (gulo) knockout (KO)] when challenged with B16FO melanoma or 4T1 breast cancer cells. Gulo KO female mice 36-38 weeks of age were deprived of or maintained on ascorbate in food and water for 4 weeks prior to and 2 weeks post intraperitoneal (IP) injection of 5x105 B16FO murine melanoma cells or to injection of 5x105 4T1 breast cancer cells into the mammary pad of mice. Ascorbate-supplemented gulo KO mice injected with B16FO melanoma cells demonstrated significant reduction (by 71%, p=0.005) in tumor metastasis compared to gulo KO mice on the control diet. The mean tumor weight in ascorbate supplemented mice injected with 4T1 cells was reduced by 28% compared to tumor weight in scorbutic mice. Scorbutic tumors demonstrated large dark cores, associated with increased necrotic areas and breaches to the tumor surface, apoptosis and matrix metalloproteinase-9 (MMP-9), and weak, disorganized or missing collagen I tumor capsule. In contrast, the ascorbate-supplemented group tumors had smaller fainter colored cores and confined areas of necrosis/apoptosis with no breaches from the core to the outside of the tumor and a robust collagen I tumor capsule. In both studies, ascorbate supplementation of gulo KO mice resulted in profoundly decreased serum inflammatory cytokine interleukin (IL)-6 (99% decrease, p=0.01 in the B16F0 study and 85% decrease, p=0.08 in the 4T1 study) compared to the levels in gulo KO mice deprived of ascorbate. In the B16FO study, ascorbate supplementation of gulo KO mice resulted in profoundly decreased serum VEGF (98% decrease, p=0.019 than in the scorbutic gulo KO mice). As expected, mean serum ascorbate level in ascorbate-restricted mice was 2% (p<0.001) of the mean ascorbate levels in supplemented mice. In conclusion, ascorbate supplementation hinders metastasis, tumor growth and inflammatory cytokine secretion as well as enhanced encapsulation of tumors elicited by melanoma and breast cancer cell challenge in gulo KO mice.
Byshneva, L N; Senchuk, V V
2002-01-01
The effect of UV radiation in vitro on the level of ascorbate, SH-groups and glutathione reductase activity in the soluble fraction of bovine eye lens was studied. UV-Irradiation increased NADPH-oxidoreductase activity, the level of ascorbate oxidation and decreased the content of SH-groups and activity of glutathione reductase. Significant activation of the NADPH-oxidoreductase activity in the presence of ascorbate and Cu2+ was observed after UV-irradiation. It is suggested that ascorbate may play an important role in the UV-induced lens pathology.
The kinetics of oxidation of bilirubin and ascorbic acid in solution
NASA Astrophysics Data System (ADS)
Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.
2012-07-01
The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.
Canavese, Caterina; Petrarulo, Michele; Massarenti, Paola; Berutti, Silvia; Fenoglio, Roberta; Pauletto, Daniela; Lanfranco, Giacomo; Bergamo, Daniela; Sandri, Luisa; Marangella, Martino
2005-03-01
Ascorbate supplementation for patients on regular dialysis treatment (RDT) is advised to obviate deficiency and improve epoetin response in those with functional iron deficiency. However, clear-cut safety concerns regarding hyperoxalemia are still poorly understood. This study tries to establish safety/efficacy profiles of ascorbate and oxalate during long-term intravenous ascorbate supplementation. A prospective study was performed in 30 patients on RDT showing ascorbate deficiency (plasma ascorbate < 2.6 mg/L [<15 micromol/L]): 18 patients were administered intravenous ascorbate during 18 months (250 mg/wk, subsequently increased to 500 mg), and 12 patients were taken as reference untreated cases. Plasma ascorbate and oxalate assays and dialytic balance determinations were performed (ion chromatography and reverse-phase high-performance liquid chromatography, respectively) at baseline, during treatment, and 12 months after withdrawal. Plasma ascorbate levels increased dose dependently with supplementation (1.6 +/- 0.8 mg/L [9.1 +/- 4.6 mumol/L] at baseline, 2.8 +/- 1.8 mg/L [15.9 +/- 10.1 micromol/L]) with 250 mg of ascorbate, and 6.6 +/- 2.8 mg/L [37.5 +/- 16.0 micromol/L] with 500 mg/wk of ascorbate), but only normalized with greater dosages for several months in 94% of patients. Baseline plasma oxalate levels increased from 3.2 +/- 0.8 mg/L (35.8 +/- 8.8 micromol/L) to 3.6 +/- 0.8 mg/L (39.5 +/- 9.1 micromol/L) and 4.5 +/- 0.9 mg/L (50.3 +/- 10.4 micromol/L) with 250 and 500 mg, respectively ( P < 0.001). The calcium oxalate saturation threshold was exceeded by 7 of 18 patients (40%) during 6 months therapy with 500 mg/wk. Ascorbate dialysis removal increased from 37.8 +/- 23.2 mg (215 +/- 132 micromol) to 99.6 +/- 51.7 mg (566 +/- 294 micromol) during supplementation (P < 0.001), with corresponding increases in oxalate removal from 82.5 +/- 33.2 mg (917 +/- 369 micromol) to 111.2 +/- 32.6 mg/L (1,236 +/- 362 micromol; P < 0.01). Withdrawal reverted plasma levels and dialysis removal to initial values. Values for untreated patients did not change during 1 year of follow-up. Patients on RDT may resolve ascorbate deficiency with intravenous supplementation of 500 mg/wk, but this implies a significant risk for oxalate supersaturation. Oxalate measurements are strongly recommended during long-term ascorbate therapy.
Redox and fungicidal properties of phthalocyanine metal complexes as related to active oxygen.
Vol'pin, M E; Novodarova, G N; Krainova NYu; Lapikova, V P; Aver'yanov, A A
2000-10-01
Some chemical and fungicidal effects of 20 phthalocyanines of Co, Fe, Cu, and Al were studied. Under dark conditions, these complexes reduced nitroblue tetrazolium in the presence of KCN, accelerated the autoxidation of ascorbate or hydroquinone and decomposed hydrogen peroxide. In the later reaction, hydroxyl radical was generated as evidenced with the deoxyribose assay. The inhibition by superoxide dismutase and catalase of catalyzed autoxidation of ascorbate suggests the participation of superoxide anion-radical and hydrogen peroxide in the reaction. Most complexes were toxic to the fungus Magnaporthe grisea which causes blast disease of rice. The toxicity was enhanced by light being diminished by antioxidant reagents sequestering active oxygen species. Some complexes (including nontoxic ones), after 1-day contact with a leaf surface of the disease-susceptible rice cultivar, induced the fungitoxicity of leaf diffusate. This toxicity was also light-activated and sensitive to antioxidant reagents. Several complexes, when added to inocula, decreased 2-3 times the frequency of the compatible symptoms of the blast. It is suggested that in planta, the dark redox activity of phthalocyanines along with their photosensitization promote the generation of active oxygen, which damages the parasite and, therefore, favors disease resistance.
Hara, Takeshi; Matsui, Hiroshi; Shimizu, Hironori
2014-01-01
Diacetyl (2,3-butanedione) is a key contributor to unpleasant odors emanating from the axillae, feet, and head regions. To investigate the mechanism of diacetyl generation on human skin, resident skin bacteria were tested for the ability to produce diacetyl via metabolism of the main organic acids contained in human sweat. L-lactate metabolism by Staphylococcus aureus and Staphylococcus epidermidis produced the highest amounts of diacetyl, as measured by high-performance liquid chromatography. Glycyrrhiza glabra root extract (GGR) and α-tocopheryl-L-ascorbate-2-O-phosphate diester potassium salt (EPC-K1), a phosphate diester of α-tocopherol and ascorbic acid, effectively inhibited diacetyl formation without bactericidal effects. Moreover, a metabolic flux analysis revealed that GGR and EPC-K1 suppressed diacetyl formation by inhibiting extracellular bacterial conversion of L-lactate to pyruvate or by altering intracellular metabolic flow into the citrate cycle, respectively, highlighting fundamentally distinct mechanisms by GGR and EPC-K1 to suppress diacetyl formation. These results provide new insight into diacetyl metabolism by human skin bacteria and identify a regulatory mechanism of diacetyl formation that can facilitate the development of effective deodorant agents.
Pérez-Pinzón, M A; Rice, M E
1995-12-24
We determined the ascorbic acid (ascorbate) and glutathione (GSH) contents of eight regions of the CNS from anoxia-tolerant turtles collected in summer and in winter. Ascorbate was of special interest because it is found in exceptionally high levels in the turtle CNS. The temperature-dependence of CNS ascorbate content was established by comparing levels in animals collected from two geographic zones with different average winter temperatures and in animals re-acclimated to different temperatures in the laboratory. The analytical method was liquid chromatography with electrochemical detection. Turtle ascorbate levels were 30-40% lower in animals acclimatized to winter (2 degrees C) than to summer (23 degrees C) in all regions of the CNS. Similarly, GSH levels were 20-30% lower in winter than in summer. Winter ascorbate levels were higher in turtles from Louisiana (19 degrees C) than in turtles acclimatized to winter in Wisconsin (2 degrees C). Summer and winter levels of ascorbate could be reversed by re-acclimating animals to cold (1 degree C) or warm (23 degrees C) temperatures for at least one week. CNS water content did not differ between cold- and warm-acclimated turtles. Taken together, the data indicated that ascorbate and GSH undergo significant seasonal variation and that the catalyst for change is environmental temperature. Steady-state ascorbate content showed a linear dependence on temperature, with a slope of 1.5% per degree C that was independent of CNS region. Lower levels of cerebral antioxidants in turtles exposed to colder temperatures were consistent with the decreased rate of cerebral metabolism that accompanies winter hibernation. Cerebral ascorbate and GSH levels in the turtle remained similar to or higher than those in mammals, even during winter, however. These findings support the notion that unique mechanisms of antioxidant regulation in the turtle contribute to their tolerance of the hypoxia-reoxygenation that characterizes diving behavior.
Grasso, Carole; Fabre, Marie-Sophie; Collis, Sarah V; Castro, M Leticia; Field, Cameron S; Schleich, Nanette; McConnell, Melanie J; Herst, Patries M
2014-01-01
Pharmacological ascorbate is currently used as an anti-cancer treatment, potentially in combination with radiation therapy, by integrative medicine practitioners. In the acidic, metal-rich tumor environment, ascorbate acts as a pro-oxidant, with a mode of action similar to that of ionizing radiation; both treatments kill cells predominantly by free radical-mediated DNA damage. The brain tumor, glioblastoma multiforme (GBM), is very resistant to radiation; radiosensitizing GBM cells will improve survival of GBM patients. Here, we demonstrate that a single fraction (6 Gy) of radiation combined with a 1 h exposure to ascorbate (5 mM) sensitized murine glioma GL261 cells to radiation in survival and colony-forming assays in vitro. In addition, we report the effect of a single fraction (4.5 Gy) of whole brain radiation combined with daily intraperitoneal injections of ascorbate (1 mg/kg) in an intracranial GL261 glioma mouse model. Tumor-bearing C57BL/6 mice were divided into four groups: one group received a single dose of 4.5 Gy to the brain 8 days after tumor implantation, a second group received daily intraperitoneal injections of ascorbate (day 8-45) after implantation, a third group received both treatments and a fourth control group received no treatment. While radiation delayed tumor progression, intraperitoneal ascorbate alone had no effect on tumor progression. Tumor progression was faster in tumor-bearing mice treated with radiation and daily ascorbate than in those treated with radiation alone. Histological analysis showed less necrosis in tumors treated with both radiation and ascorbate, consistent with a radio-protective effect of ascorbate in vivo. Discrepancies between our in vitro and in vivo results may be explained by differences in the tumor microenvironment, which determines whether ascorbate remains outside the cell, acting as a pro-oxidant, or whether it enters the cells and acts as an anti-oxidant.
Role of Vitamin C in the Function of the Vascular Endothelium
Harrison, Fiona E.
2013-01-01
Abstract Significance: Vitamin C, or ascorbic acid, has long been known to participate in several important functions in the vascular bed in support of endothelial cells. These functions include increasing the synthesis and deposition of type IV collagen in the basement membrane, stimulating endothelial proliferation, inhibiting apoptosis, scavenging radical species, and sparing endothelial cell-derived nitric oxide to help modulate blood flow. Although ascorbate may not be able to reverse inflammatory vascular diseases such as atherosclerosis, it may well play a role in preventing the endothelial dysfunction that is the earliest sign of many such diseases. Recent Advances: Beyond simply preventing scurvy, evidence is mounting that ascorbate is required for optimal function of many dioxygenase enzymes in addition to those involved in collagen synthesis. Several of these enzymes regulate the transcription of proteins involved in endothelial function, proliferation, and survival, including hypoxia-inducible factor-1α and histone and DNA demethylases. More recently, ascorbate has been found to acutely tighten the endothelial permeability barrier and, thus, may modulate access of ascorbate and other molecules into tissues and organs. Critical Issues: The issue of the optimal cellular content of ascorbate remains unresolved, but it appears that low millimolar ascorbate concentrations are normal in most animal tissues, in human leukocytes, and probably in the endothelium. Although there may be little benefit of increasing near maximal cellular ascorbate concentrations in normal people, many diseases and conditions have either systemic or localized cellular ascorbate deficiency as a cause for endothelial dysfunction, including early atherosclerosis, sepsis, smoking, and diabetes. Future Directions: A key focus for future studies of ascorbate and the vascular endothelium will likely be to determine the mechanisms and clinical relevance of ascorbate effects on endothelial function, permeability, and survival in diseases that cause endothelial dysfunction. Antioxid. Redox Signal. 19, 2068–2083. PMID:23581713
Paudel, K P; Kumar, S; Meur, S K; Kumaresan, A
2010-04-01
The present study evaluated the effectiveness of ascorbic acid, catalase, chlorpromazine and their combinations in reducing the cryodamages to crossbred bull (Bos taurus x Bos indicus) spermatozoa. A total of 32 ejaculates (eight each from four bulls) were diluted in Tris-citric acid-fructose-egg yolk-glycerol extender. Each ejaculate was split into six parts (five treatment and one control). Treatment groups included 10 mm ascorbic acid, 0.1 mm chlorpromazine, 200 IU/ml catalase, 10 mm ascorbic acid + 0.1 mm chlorpromazine or 200 IU/ml catalase + 0.1 mm chlorpromazine in the extender. Fluorescent probes (Fluorescein isothiocyanate--Pisum sativum agglutinin + Propidium iodide) were used for the assessment of spermatozoa viability and acrosomal status. The proportion of acrosome intact live (AIL), acrosome intact dead, acrosome reacted live and acrosome reacted dead sperm was assessed in fresh, equilibrated and frozen-thawed semen. The functional status of the sperm was assessed using hypo-osmotic sperm swelling test (HOSST). Activities of acrosin and hyaluronidase enzyme were also determined. Lipid peroxidation level was assayed based on the melonaldehyde (MDA) production. In cryopreserved semen, the values of AIL spermatozoa, HOSST response, hyaluronidase and acrosin activity were reduced by 53%, 47%, 34% and 54%, respectively from their initial values in fresh semen. However, MDA level was threefold higher in the frozen-thawed sperm compared with fresh sperm. Significant (p < 0.05) improvement in motility, viability, HOSST response, retention of hyaluonidase and acrosin and reduction in MDA was recorded in ascorbic acid, catalase, ascorbic acid + chlorpromazine and catalase + chlorpromazine incorporated groups. The percentage of AIL sperm was significantly (p < 0.05) higher in ascorbic acid, catalase and ascorbic acid + chlorpromazine incorporated groups compared with the control. Chlorpromazine alone did not improve the post-thaw semen quality but when combined with either ascorbic acid or catalase, improvement in semen quality was noticed. It was inferred that incorporation of ascorbic acid, catalase and ascorbic acid + chlorpromazine in semen extender improved the post-thaw semen quality in crossbred bulls.
Martin, A H; de Jong, G A H
2012-03-01
This paper investigates the possibility for iron fortification of food using a new preparation method for protein gel particles in which iron is entrapped in the presence of ascorbate using cold-set gelation. The effect of ascorbate on the iron-induced cold-set gelation process of whey protein was studied in order to optimize the ratio of iron/ascorbate. Subsequently, the effect of ascorbate on iron bio-accessibility was assessed in vitro. Rheology was used to study the protein gel formation, and the stability of the gel particles was determined by measuring the iron and protein content at different pH. In vitro studies were performed with the TNO Intestinal Model (TIM). Ascorbate appeared to affect the gel formation process and increased the gel strength of the iron-induced cold-set gels at specific iron/ascorbate ratio. With the Fe-protein gel particles being stable at a broad pH range, the release of iron from the particles was studied as a function of time. The low release of iron indicated a good encapsulation efficiency and the capability of whey protein to keep iron bound at different conditions (pH and presence of calcium). Results obtained with the TIM showed that ascorbate, when added to the protein gel particles, was very successful in enhancing the recovery and absorption of iron. The in vitro Fe(2+) bio-accessibility in the presence of ascorbate in iron-protein particles increased from 10% to almost 80%. This suggests that the concept of using protein particles with iron and ascorbate can effectively be used to fortify food products with iron for human consumption.
Cervilla, Luis M.; Blasco, Begoña; Ríos, Juan J.; Romero, Luis; Ruiz, Juan M.
2007-01-01
Background and Aims Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. Methods Two tomato (Solanum lycopersicum) cultivars (‘Kosaco’ and ‘Josefina’) were subjected to 0·05 (control), 0·5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H2O2; malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. Key Results The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H2O2 in the leaves of the two cultivars, these trends being more pronounced in ‘Josefina’ than in ‘Kosaco’. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in ‘Kosaco’. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. Conclusions High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell–Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress. PMID:17660516
Confocal raman microspectroscopy and imaging study of theraphthal in living cancer cells.
Feofanov, A V; Grichine, A I; Shitova, L A; Karmakova, T A; Yakubovskaya, R I; Egret-Charlier, M; Vigny, P
2000-01-01
Binary systems combining a transition metal complex and ascorbate have been proposed recently for catalytic therapy of malignant tumors. The killing effect on tumor cells is achieved by production of free radicals in the course of accelerated oxidation of ascorbate by dioxygen in the presence of transition metal complexes. Further progress in the development of binary catalytic systems (BCSs) requires a special method for their investigation in cells and tissues, because neither component of BCSs fluoresces. Here a resonance Raman confocal spectral imaging (RR CSI) technique was introduced as a unique approach to monitor quantitatively the transition metal complexes within living cells. Intracellular accumulation, localization, and retention of theraphthal (TP), a catalyst of the advanced TP/ascorbate BCS, were investigated in A549 cells with the RR CSI technique. The cellular analysis was complemented with the detailed study of molecular interactions of TP in solution and environmental factors affecting the RR spectrum of TP. TP does not penetrate into membranes, it binds very weakly to DNA and RNA, but it readily forms complexes with proteins. Binding with Ca(2+) cations and decreasing pH below 6 induce aggregation of TP. By analyzing RR spectra recorded from every point within a TP-treated cell, three states of the agent were discriminated, namely, monomeric TP in polar environment, TP bound to proteins, and aggregated TP. Their cytoplasmic and nuclear distributions were mapped at different stages of uptake and efflux. By introducing organelle-selective fluorescent probes into drug-treated cells and measuring intracellular localization of both the probe and the drug, compartmentation of TP was revealed. Cell growth suppression by the TP/ascorbate system was measured, and probable molecular and organelle targets of radical damage were characterized. PMID:10620313
Ceriotti, Ferruccio; Kaczmarek, Ewa; Guerra, Elena; Mastrantonio, Fabrizio; Lucarelli, Fausto; Valgimigli, Francesco; Mosca, Andrea
2015-03-01
Point-of-care (POC) testing devices for monitoring glucose and ketones can play a key role in the management of dysglycemia in hospitalized diabetes patients. The accuracy of glucose devices can be influenced by biochemical changes that commonly occur in critically ill hospital patients and by the medication prescribed. Little is known about the influence of these factors on ketone POC measurements. The aim of this study was to assess the analytical performance of POC hospital whole-blood glucose and ketone meters and the extent of glucose interference factors on the design and accuracy of ketone results. StatStrip glucose/ketone, Optium FreeStyle glucose/ketone, and Accu-Chek Performa glucose were also assessed and results compared to a central laboratory reference method. The analytical evaluation was performed according to Clinical and Laboratory Standards Institute (CLSI) protocols for precision, linearity, method comparison, and interference. The interferences assessed included acetoacetate, acetaminophen, ascorbic acid, galactose, maltose, uric acid, and sodium. The accuracies of both Optium ketone and glucose measurements were significantly influenced by varying levels of hematocrit and ascorbic acid. StatStrip ketone and glucose measurements were unaffected by the interferences tested with exception of ascorbic acid, which reduced the higher level ketone value. The accuracy of Accu-Chek glucose measurements was affected by hematocrit, by ascorbic acid, and significantly by galactose. The method correlation assessment indicated differences between the meters in compliance to ISO 15197 and CLSI 12-A3 performance criteria. Combined POC glucose/ketone methods are now available. The use of these devices in a hospital setting requires careful consideration with regard to the selection of instruments not sensitive to hematocrit variation and presence of interfering substances. © 2014 Diabetes Technology Society.
Saladi, Hari Krishna; Bollu, Indira Priyadarshini; Burla, Devipriya; Ballullaya, Srinidhi Vishnu; Devalla, Srihari; Maroli, Sohani; Jayaprakash, Thumu
2015-01-01
Introduction The bond strength of the composite to the bleached enamel plays a very important role in the success and longevity of an aesthetic restoration. Aim The aim of this study was to compare and evaluate the effect of Aloe Vera with 10% Sodium Ascorbate on the Shear bond strength of composite resin to bleached human enamel. Materials and Methods Fifty freshly extracted human maxillary central incisors were selected and divided into 5 groups. Group I and V are unbleached and bleached controls groups respectively. Group II, III, IV served as experimental groups. The labial surfaces of groups II, III, IV, V were treated with 35% Carbamide Peroxide for 30mins. Group II specimens were subjected to delayed composite bonding. Group III and IV specimens were subjected to application of 10% Sodium Ascorbate and leaf extract of Aloe Vera following the Carbamide Peroxide bleaching respectively. Specimens were subjected to shear bond strength using universal testing machine and the results were statistically analysed using ANOVA test. Tukey (HSD) Honest Significant Difference test was used to comparatively analyse statistical differences between the groups. A p-value <0.05 is taken as statistically significant. Results The mean shear bond strength values of Group V showed significantly lower bond strengths than Groups I, II, III, IV (p-value <0.05). There was no statistically significant difference between the shear bond strength values of groups I, II, III, IV. Conclusion Treatment of the bleached enamel surface with Aloe Vera and 10% Sodium Ascorbate provided consistently better bond strength. Aloe Vera may be used as an alternative to 10% Sodium Ascorbate. PMID:26674656
İlyasoğlu, Huri; Arpa, Tuba Eda
2017-10-01
The aim of this study was to investigate the effects of brewing conditions (infusion time and temperature) on the antioxidant properties of rosehip tea beverage. The ascorbic acid content, total phenolic content (TPC), and ferric reducing antioxidant power (FRAP) of rosehip tea beverage were analysed. A two-factor and three-level central composite design was applied to evaluate the effects of the variables on the responses. The best quadratic models were obtained for all responses. The generated models were validated under the optimal conditions. At the optimal conditions, the rosehip tea beverage had 3.15 mg 100 mL -1 of ascorbic acid, 61.44 mg 100 mL -1 of TPC, and 2591 µmol of FRAP. The best brewing conditions for the rosehip tea beverage were found to be an infusion time of 6-8 min at temperatures of 84-86 °C.
Gupta, Anurag; Leong, David Tai; Bai, Hui Fen; Singh, Shiv Brat; Lim, Thiam-Chye; Hutmacher, Dietmar Werner
2007-10-12
This study investigated the effects of various components [vitamin D3 (VD3), beta-glycerophosphate (BGP), and ascorbic acid (AA)] on the potential of human adipose-derived progenitor cells (ADPCs) to transdifferentiate into osteoblast-like cells. ADPCs were induced under four different supplement groups: (1) VD3+BGP+AA, (2) VD3 alone, (3) BGP+AA, and (4) no VD3, BGP or AA. Mineralization studies and presence of bone matrix-related proteins by immunostaining showed that the Group 1 ADPCs showed their ability to undergo osteoblastic differentiation. Further evaluation was made by estimation of levels of RUNX-2 and TAZ genes. Group 1 ADPCs showed the consistent expression of RUNX-2 and TAZ levels over the study period of 28days. The study showed good correlation among various parameters evaluated to conclude that ADPCs could be an alternative source for generating osteoblast-like cells.
Salivary ascorbic acid levels in betel quid chewers: A biochemical study.
Shetty, Shishir R; Babu, Subhas; Kumari, Suchetha; Prasad, Rajendra; Bhat, Supriya; Fazil, K A
2013-07-01
Quid chewing practice has been a part of our tradition since centuries with little known evidence of oral cancer. However, recent trends show a rise in occurrence of oral cancer often associated with tobacco and arecanut usage. Ascorbic acid is an important salivary antioxidant. Betel leaf which is used in quid is known to contain ascorbic acid. The aim of our study was to assess the salivary levels of ascorbic acid in traditional quid chewers so as to determine whether the betel leaf has protective antioxidant action. Salivary ascorbic acid levels of 60 subjects were estimated using the Dinitrophenyl hydrazine method. The results revealed that quid chewers who used betel leaf had higher salivary ascorbic acid content compared to nonbetel leaf quid chewers. This could possibly be due to the protective antioxidants in the betel leaf.
Tajmir-Riahi, H A
1990-10-01
The interaction of L-ascorbic acid with alkaline earth metal ions has been investigated in aqueous solution at pH 6-7. The solid salts of the type Mg(L-ascorbate)2.4H2O, Ca(L-ascorbate)2.2H2O, Sr(L-ascorbate)2.2H2O and Ba(L-ascorbate)2.2H2O were isolated and characterized by means of 13C NMR and FT-IR spectroscopy. Spectroscopic and other evidence suggested that in aqueous solution, the binding of the alkaline earth metal ions is through the O-3 atom of the ascorbate anion, while in the solid state the binding of the Mg(II) is different from those of the other alkaline earth metal ion salts. The Mg(II) ion binds to the O-3, O-1 atom of the two ascorbate anions and to two H2O molecules, while the eight-coordination around the Ca(II), Sr(II), and Ba(II) ions would be completed by the coordination of three acid anions, through O-5, O-6 of the first, O-3, O-5, O-6 of the second and O-1 of the third anion as well as to two H2O molecules. The structural properties of the alkaline earth metal-ascorbate salts are different in the solid and aqueous solution.
Portugal, Camila Cabral; da Encarnação, Thaísa Godinho; Socodato, Renato; Moreira, Sarah Rodrigues; Brudzewsky, Dan; Ambrósio, António Francisco; Paes-de-Carvalho, Roberto
2012-01-01
Ascorbate is an important antioxidant, which also displays important functions in neuronal tissues, including the retina. The retina is responsible for the initial steps of visual processing, which is further refined in cerebral high-order centers. The retina is also a prototypical model for studying physiologic aspects of cells that comprise the nervous system. Of major importance also is the cellular messenger nitric oxide (NO). Previous studies have demonstrated the significance of NO for both survival and proliferation of cultured embryonic retinal cells. Cultured retinal cells express a high-affinity ascorbate transporter, and the release of ascorbate is delicately regulated by ionotropic glutamate receptors. Therefore, we proposed whether there is interplay between the ascorbate transport system and NO signaling pathway in retinal cells. Here we show compelling evidence that ascorbate uptake is tightly controlled by NO and its downstream signaling pathway in culture. NO also modulates the expression of SVCT-2, an effect mediated by cGMP and PKG. Kinetic studies suggest that NO increases the transport capacity for ascorbate, but not the affinity of SVCT-2 for its substrate. Interestingly, NO utilizes the NF-κB pathway, in a PKG-dependent manner, to modulate both SVCT-2 expression and ascorbate uptake. These results demonstrate that NO exerts a fine-tuned control of the availability of ascorbate to cultured retinal cells and strongly reinforces ascorbate as an important bioactive molecule in neuronal tissues. PMID:22041898
Portugal, Camila Cabral; da Encarnação, Thaísa Godinho; Socodato, Renato; Moreira, Sarah Rodrigues; Brudzewsky, Dan; Ambrósio, António Francisco; Paes-de-Carvalho, Roberto
2012-02-03
Ascorbate is an important antioxidant, which also displays important functions in neuronal tissues, including the retina. The retina is responsible for the initial steps of visual processing, which is further refined in cerebral high-order centers. The retina is also a prototypical model for studying physiologic aspects of cells that comprise the nervous system. Of major importance also is the cellular messenger nitric oxide (NO). Previous studies have demonstrated the significance of NO for both survival and proliferation of cultured embryonic retinal cells. Cultured retinal cells express a high-affinity ascorbate transporter, and the release of ascorbate is delicately regulated by ionotropic glutamate receptors. Therefore, we proposed whether there is interplay between the ascorbate transport system and NO signaling pathway in retinal cells. Here we show compelling evidence that ascorbate uptake is tightly controlled by NO and its downstream signaling pathway in culture. NO also modulates the expression of SVCT-2, an effect mediated by cGMP and PKG. Kinetic studies suggest that NO increases the transport capacity for ascorbate, but not the affinity of SVCT-2 for its substrate. Interestingly, NO utilizes the NF-κB pathway, in a PKG-dependent manner, to modulate both SVCT-2 expression and ascorbate uptake. These results demonstrate that NO exerts a fine-tuned control of the availability of ascorbate to cultured retinal cells and strongly reinforces ascorbate as an important bioactive molecule in neuronal tissues.
Nitric Oxide in Plants: The Roles of Ascorbate and Hemoglobin
Wang, Xiaoguang; Hargrove, Mark S.
2013-01-01
Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates of rice nonsymbiotic hemoglobin reduction by ascorbate were measured directly, in the presence and absence of purified rice monodehydroascorbate reductase and NADH. Solution NO scavenging was also measured methodically in the presence and absence of rice nonsymbiotic hemoglobin and monodehydroascorbate reductase, under hypoxic and normoxic conditions, in an effort to gauge the likelihood of these proteins affecting NO metabolism in plant tissues. Our results indicate that ascorbic acid slowly reduces rice nonsymbiotic hemoglobin at a rate identical to myoglobin reduction. The product of the reaction is monodehydroascorbate, which can be efficiently reduced back to ascorbate in the presence of monodehydroascorbate reductase and NADH. However, our NO scavenging results suggest that the direct reduction of plant hemoglobin by ascorbic acid is unlikely to serve as a significant factor in NO metabolism, even in the presence of monodehydroascorbate reductase. Finally, the possibility that the direct reaction of nitrite/nitrous acid and ascorbic acid produces NO was measured at various pH values mimicking hypoxic plant cells. Our results suggest that this reaction is a likely source of NO as the plant cell pH drops below 7, and as nitrite concentrations rise to mM levels during hypoxia. PMID:24376554
Stevens, Rebecca G.; Baldet, Pierre; Bouchet, Jean-Paul; Causse, Mathilde; Deborde, Catherine; Deschodt, Claire; Faurobert, Mireille; Garchery, Cécile; Garcia, Virginie; Gautier, Hélène; Gouble, Barbara; Maucourt, Mickaël; Moing, Annick; Page, David; Petit, Johann; Poëssel, Jean-Luc; Truffault, Vincent; Rothan, Christophe
2018-01-01
Changing the balance between ascorbate, monodehydroascorbate, and dehydroascorbate in plant cells by manipulating the activity of enzymes involved in ascorbate synthesis or recycling of oxidized and reduced forms leads to multiple phenotypes. A systems biology approach including network analysis of the transcriptome, proteome and metabolites of RNAi lines for ascorbate oxidase, monodehydroascorbate reductase and galactonolactone dehydrogenase has been carried out in orange fruit pericarp of tomato (Solanum lycopersicum). The transcriptome of the RNAi ascorbate oxidase lines is inversed compared to the monodehydroascorbate reductase and galactonolactone dehydrogenase lines. Differentially expressed genes are involved in ribosome biogenesis and translation. This transcriptome inversion is also seen in response to different stresses in Arabidopsis. The transcriptome response is not well correlated with the proteome which, with the metabolites, are correlated to the activity of the ascorbate redox enzymes—ascorbate oxidase and monodehydroascorbate reductase. Differentially accumulated proteins include metacaspase, protein disulphide isomerase, chaperone DnaK and carbonic anhydrase and the metabolites chlorogenic acid, dehydroascorbate and alanine. The hub genes identified from the network analysis are involved in signaling, the heat-shock response and ribosome biogenesis. The results from this study therefore reveal one or several putative signals from the ascorbate pool which modify the transcriptional response and elements downstream. PMID:29491875
A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.
Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I
2009-07-01
In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.
Yamamoto, I; Ohmori, H
1981-01-01
In the presence, but not in the absence of Cu2+, ascorbate decomposes histamine in citrate phosphate buffer (pH 6.5) at 37 degrees, but not at 0 degrees. The breakdown is completely inhibited by catalase, but only slightly by superoxide dismutase, and scavengers of OH. like benzoic acid, ethanol or potassium iodide. A1 O2 scavenger, alpha-tocopherol also did not show significant effects on the reaction. On the other hand, addition of H2O2 to the reaction mixture markedly enhances the rate of histamine breakdown induced by ascorbate or ascorbate-Cu2+ systems. However, H2O2 alone cannot breakdown histamine even in the presence of Cu2+. Histamine breakdown induced by ascorbate appears to be dependent upon the autooxidation of this vitamin. From these results and the findings reported by Chatterjee et al. that the products of its aerobic oxidation, dehydroascorbic acid and H2O2 were ineffective in reacting with histamine in the presence of Cu2+, it is concluded that the combination of H2O2 and the intermediate of ascorbate oxidation (monodehydroascorbic acid or other unstable species), both of which are produced during the autooxidation of ascorbate, plays a major role in the histamine transformation by ascorbate-Cu2+ system.
NASA Astrophysics Data System (ADS)
Ahn, D. U.; Nam, K. C.
2004-09-01
Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.
Equilibrium constant for calcium ion and ascorbate ion.
Tsao, C S
1984-02-15
The combination of calcium and ascorbic acid in water at 25 degrees C has been examined by measuring the change of free calcium ion concentration as ascorbate was added in small increment to a solution of calcium. The data show clearly that complex formation between calcium ion and ascorbate ion occurred. At ionic strength mu = 0.1-0.2, the equilibrium constant of Ca++ and the singly-charged ascorbate ion has been measured to be 2.1 M-1. The precision of the result is better than 5% and the accuracy is estimated to be better than 20%. The application of the equilibrium constants is discussed.
Pundir, C S; Chauhan, Nidhi; Jyoti
2011-06-01
Ascorbate oxidase purified from Lagenaria siceraria fruit was immobilized onto epoxy resin "Araldite" membrane with 79.4% retention of initial activity of free enzyme. The biosensor showed optimum response within 15s at pH 5.8 and 35°C, which was directly proportional to ascorbate concentration ranging from 1-100μM. There was a good correlation (R(2) = 0.99) between serum ascorbic acid values by standard enzymic colorimetric method and the present method. The enzyme electrode was used for 200 times without considerable loss of activity during the span of 90 days when stored at 4°C.
Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw
2014-01-01
Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.
Effects of L-ascorbic acid on physicochemical characteristics of wheat starch.
Majzoobi, Mahsa; Radi, Mohsen; Farahnaky, Asgar; Tongdang, Tawee
2012-03-01
The main objective of this study was to determine the effects of l-ascorbic acid, as a permitted additive in bakery products, on characteristics of wheat starch. Suspensions of wheat starch (30%, w/w) in water containing 140 mg/kg ascorbic acid before and after gelatinization were prepared and studied using different techniques. The results of scanning electron microscopy showed that some spots appeared on the surface of the starch granules as a result of the addition of ascorbic acid. However, no changes in the starch crystalline pattern and its degree of crystallinity were observed by X-ray diffraction technique. For ungelatinized samples, no difference in the pasting properties of the samples was determined by the rapid visco analyzer, whereas for the gelatinized samples, peak and final viscosities decreased for the samples contained ascorbic acid. Determination of the intrinsic viscosities of the samples showed that addition of ascorbic acid to the gelatinized samples reduced the intrinsic viscosity. In general, it was found that ascorbic acid had some degradation effects on wheat starch molecules particularly after gelatinization. © 2012 Institute of Food Technologists®
A direct ascorbate fuel cell with an anion exchange membrane
NASA Astrophysics Data System (ADS)
Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.
2017-05-01
Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.
de la Torre, Daniel
2008-01-01
The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid. PMID:19082416
de la Torre, Daniel
2008-12-14
The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid.
Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko
2014-01-01
The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.
NASA Astrophysics Data System (ADS)
Silva, Cesar R.; Simoni, Jose A.; Collins, Carol H.; Volpe, Pedro L. O.
1999-10-01
Ascorbic acid is suggested as the weighable compound for the standardization of iodine solutions in an analytical experiment in general chemistry. The experiment involves an iodometric titration in which iodine reacts with ascorbic acid, oxidizing it to dehydroascorbic acid. The redox titration endpoint is determined by the first iodine excess that is complexed with starch, giving a deep blue-violet color. The results of the titration of iodine solution using ascorbic acid as a calibration standard were compared with the results acquired by the classic method using a standardized solution of sodium thiosulfate. The standardization of the iodine solution using ascorbic acid was accurate and precise, with the advantages of saving time and avoiding mistakes due to solution preparation. The colorless ascorbic acid solution gives a very clear and sharp titration end point with starch. It was shown by thermogravimetric analysis that ascorbic acid can be dried at 393 K for 2 h without decomposition. This experiment allows general chemistry students to perform an iodometric titration during a single laboratory period, determining with precision the content of vitamin C in pharmaceutical formulations.
Combined effect of selenium and ascorbic acid on alcohol induced hyperlipidemia in male guinea pigs.
Asha, G S; Indira, M
2004-02-01
Alcoholics usually suffer from malnutrition and are especially deficient in micronutrients like vitamin C, selenium and Zn. In the present study, combined effects of selenium and ascorbic acid on alcohol-induced hyperlipidemia were studied in guinea pigs. Four groups of male guinea pigs were maintained for 45 days as follows: control (1 mg ascorbate (AA)/100 g body mass/day), ethanol (900 mg ethanol/100 g body mass + 1 mg AA/100 g body mass/day), selenium+ascorbic acid [(25 mg AA + 0.05 mg Se)/100 g body mass/day], ethanol+selenium+ascorbic acid [(25 mg AA + 0.05 mg Se + 900 mg ethanol)/100 g body mass/day]. Co-administration of selenium and ascorbic acid along with alcohol reduced the concentration of all lipids, as also evidenced from the decreased activities of hydroxymethylglutaryl-CoA reductase and enhanced activities of plasma lecithin cholesterol acyl transferase and lipoprotein lipase. Concentrations of bile acids were increased. We conclude that the supplementation of Se and ascorbic acid reduced alcohol induced hyperlipidemia, by decreased synthesis and increased catabolism.
Leite, Gabriel Adan Araújo; Figueiredo, Thamiris Moreira; Sanabria, Marciana; Dias, Ana Flávia Mota Gonçalves; Silva, Patrícia Villela E; Martins Junior, Airton da Cunha; Barbosa Junior, Fernando; Kempinas, Wilma De Grava
2017-10-01
Dyslipidemias are occurring earlier in the population due to the increase of obesity and bad eating habits. Rosuvastatin inhibits the enzyme HMG-CoA reductase, decreasing total cholesterol. Ascorbic acid is an important antioxidant compound for male reproductive system. This study aimed to evaluate whether ascorbic acid supplementation may prevent the reproductive damage provoked by rosuvastatin administration at prepuberty. Male pups were distributed into six experimental groups that received saline solution 0.9%, 3 or 10mg/kg/day of rosuvastatin, 150mg/day of ascorbic acid, or 150mg/day of ascorbic acid associated with 3 or 10mg/kg/day of rosuvastatin from post-natal day (PND) 23 until PND53. Rosuvastatin-treated groups showed delayed puberty installation, androgen depletion and impairment on testicular and epididymal morphology. Ascorbic acid partially prevented these reproductive damages. In conclusion, rosuvastatin exposure is a probable risk to reproductive development and ascorbic acid supplementation may be useful to prevent the reproductive impairment of rosuvastatin exposure. Copyright © 2017 Elsevier Inc. All rights reserved.
Yu, Yanyan; Chen, Zuanguang; Zhang, Beibei; Li, Xinchun; Pan, Jianbin
2013-08-15
In this work, a facile electrochemical sensor based on poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene (PDDA-G) and graphite was fabricated. The composite electrode exhibited excellent selectivity and sensitivity towards uric acid (UA), owing to the electrocatalytic effect of graphene nanosheets and the electrostatic attractions between PDDA-G and UA. The anodic peak current of UA obtained by cyclic voltammetry (CV) increased over 10-fold compared with bare carbon paste electrode (CPE). And the reversibility of the oxidation process was improved significantly. Differential pulse voltammetry (DPV) was used to determine UA in the presence of ascorbic acid (AA) and dopamine (DA). It was found that all of oxidation peaks of three species could be well resolved, and the peak current of UA was much stronger than the other two components. More importantly, considerable-amount of AA and DA showed negligible interference to UA assay. The calibration curve for UA ranged from 0.5 to 20 μmol L(-1) with a correlation coefficient of 0.9934. The constructed sensor has been employed to quantitatively determine UA in urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Impact of exogenous ascorbic acid on biochemical activities of rice callus treated with salt stress
NASA Astrophysics Data System (ADS)
Alhasnawi, Arshad Naji; Zain, Che Radziah Che Mohd; Kadhimi, Ahsan A.; Isahak, Anizan; Mohamad, Azhar; Ashraf, Mehdi Farshad; Doni, Febri; Yusoff, Wan Mohtar Wan
2016-11-01
The application of in vitro systems can lead to new methods of crop amelioration. This method has been widely utilized for breeding tenacities, particularly for stress tolerance selection. Salinity causes oxidative stress in callus by enhancing the production of Reactive Oxygen Species (ROS), resulting in an efficient antioxidant system. The exogenous application of ascorbic acid (AsA) is an important requirement for tolerance. The present study aimed to examine in vitro selection strategy for callus induction in rice mature embryo culture on MS culture medium and to produce salt-tolerant callus under sodium chloride (NaCl) and AsA conditions in callus rice variety, MR269. This study also highlights changes in the activities of proline and antioxidants peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD) of callus under NaCl stress to understand their possible role in salt tolerance. However, various levels of exogenously applied AsA under saline conditions improved callus, and the antioxidant enzyme activities of AsA are related to resistance to oxidative stress. Our results provide strong support for the hypothesis that AsA-dependent antioxidant enzymes play a significant role in the salinity tolerance of callus rice.
Zhang, Yuhua; Fang, Xian; Zhao, Hong; Li, Zengxi
2018-05-01
A highly sensitive and selective detection of hexavalent chromium (Cr(VI)) and ascorbic acid (AA) was proposed using nitrogen-doped carbon dots (N-CDs). In the absence of AA, the quantitative detection of Cr(VI) was realized through Cr(VI) acting as a quencher to quench the fluorescence of N-CDs by inner filter effect (IFE) and static quenching effect. Under the optimal conditions, the linear range for Cr(VI) detection was from 0.01 to 250μM with a detection limit of 5nM (S/N = 3). In the presence of AA, the fluorescence intensity could be rapidly enhanced compared with the fluorescence of N-CDs/Cr(VI) system since Cr(VI) can be reduced into trivalent chromium (Cr(III)) by AA. And a wide linear range for AA detection was obtained from 1 to 750μM. The detection limit was 0.3μM (S/N = 3). More importantly, this method can be successfully applied to the detection of Cr(VI) in real water samples, and AA in vitamins C tablets and human serum sample. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Tianming; Fu, Yongming; He, Haoxuan; Dong, Chuanyi; Zhang, Linlin; Zeng, Hui; Xing, Lili; Xue, Xinyu
2018-02-01
A new self-powered wearable gustation electronic skin for mimicking taste buds has been realized based on enzyme-modified/ZnO nanowire arrays on patterned-electrode flexible substrate. The e-skin can actively taste beverages or fruits without any external electric power. Through the piezoelectric-enzymatic reaction coupling effect, the nanowires can harvest the mechanical energy of body movement and output piezoelectric signal. The piezoelectric output is significantly dependent on the concentration of target analyte. The response for detecting 2 × 10-2 M ascorbic acid (ascorbate acid oxidase@ZnO) is up to 171.747, and the selectivity is high. The response for detecting 50% alcohol (alcohol oxidase@ZnO) is up to 45.867. Our results provide a new research direction for the development of multifunctional e-skin and expand the study scope for self-powered bionic systems.
Salivary ascorbic acid levels in betel quid chewers: A biochemical study
Shetty, Shishir R.; Babu, Subhas; Kumari, Suchetha; Prasad, Rajendra; Bhat, Supriya; Fazil, K. A.
2013-01-01
Background: Quid chewing practice has been a part of our tradition since centuries with little known evidence of oral cancer. However, recent trends show a rise in occurrence of oral cancer often associated with tobacco and arecanut usage. Ascorbic acid is an important salivary antioxidant. Betel leaf which is used in quid is known to contain ascorbic acid. Aim: The aim of our study was to assess the salivary levels of ascorbic acid in traditional quid chewers so as to determine whether the betel leaf has protective antioxidant action. Materials and Methods: Salivary ascorbic acid levels of 60 subjects were estimated using the Dinitrophenyl hydrazine method. Results: The results revealed that quid chewers who used betel leaf had higher salivary ascorbic acid content compared to nonbetel leaf quid chewers. This could possibly be due to the protective antioxidants in the betel leaf. PMID:24455594
Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G
2006-01-01
Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.
Kim, Hyun-Wook; Hwang, Ko-Eun
2017-01-01
We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract (p<0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score (p<0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid (p>0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid (p<0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions. PMID:28515652
Hamdauoui, M; Doghri, T; Tritar, B
1995-01-01
The aim of our study was to evaluate the bioavailability of iron from a typical Tunisian meal 'couscous' provided to healthy rats with or without appropriate mixtures of tea plus ascorbic acid and to search for the optimal amount of ascorbic acid able to overcome the inhibitory effect of tea prepared under realistic Tunisian circumstances. Our findings show that a tea decoction (100 mg/ml) reduced nonheme iron absorption from couscous by 50% (16.5 vs. 33.1%; p < 0.01). In contrast, administration of 20 mg ascorbic acid increased nonheme iron absorption from couscous by more than 100% (66.8 vs. 33.1%; p < 0.001). Administration of ascorbic acid (20 mg) in a tea decoction (100 mg/ml) completely counteracted the inhibiting effect of tea and significantly improved the nonheme iron absorption from couscous (34 vs. 33% in the control group; NS). The same effect was shown when 10 mg ascorbic acid was added to the tea decoction; however, 5 mg ascorbic acid was not able to overcome the inhibitory effect of tea on nonheme iron absorption from couscous (33.1 vs. 19.4%; p < 0.01). Our findings demonstrate that a molar ratio of ascorbic acid and tea equal or superior to 0.25 or 0.50 is necessary to overcome the inhibitory effect in rats of tea prepared under Tunisian circumstances. In relation to human nutrition, for Tunisians who regularly drink tea, we suggest a much greater amount of ascorbic acid than that normally recommended for normal subjects.
Choi, Yun-Sang; Kim, Tae-Kyung; Jeon, Ki-Hong; Park, Jong-Dae; Kim, Hyun-Wook; Hwang, Ko-Eun; Kim, Young-Boong
2017-01-01
We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract ( p <0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid ( p <0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid ( p <0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score ( p <0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid ( p >0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid ( p <0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions.
Carr, Anitra C; Pullar, Juliet M; Bozonet, Stephanie M; Vissers, Margreet C M
2016-06-03
Inadequate dietary intake of vitamin C results in hypovitaminosis C, defined as a plasma ascorbate concentration ≤23 μmol/L. Our objective was to carry out a retrospective analysis of two vitamin C supplementation studies to determine whether supplementation with 50 mg/day vitamin C is sufficient to restore adequate ascorbate status (≥50 μmol/L) in individuals with hypovitaminosis C. Plasma ascorbate data from 70 young adult males, supplemented with 50 or 200 mg/day vitamin C for up to six weeks, was analyzed. Hypovitaminosis C status was identified based on plasma ascorbate being ≤23 μmol/L and the response of these individuals to vitamin C supplementation was examined. Of the participants consuming 50 mg/day vitamin C for up to six weeks, those with hypovitaminosis C at baseline achieved plasma concentrations of only ~30 μmol/L, whereas the remainder reached ~50 μmol/L. Participants who consumed 200 mg/day vitamin C typically reached saturating concentrations (>65 μmol/L) within one week, while those with hypovitaminosis C required two weeks to reach saturation. Regression modelling indicated that the participants' initial ascorbate status and body weight explained ~30% of the variability in the final ascorbate concentration. Overall, our analysis revealed that supplementation with 50 mg/day vitamin C, which resulted in a total dietary vitamin C intake of 75 mg/day, was insufficient to achieve adequate plasma ascorbate concentrations in individuals with hypovitaminosis C. Furthermore, increased body weight had a negative impact on ascorbate status.
Evaluation of Vitamin C for Adjuvant Sepsis Therapy
2013-01-01
Abstract Significance: Evidence is emerging that parenteral administration of high-dose vitamin C may warrant development as an adjuvant therapy for patients with sepsis. Recent Advances: Sepsis increases risk of death and disability, but its treatment consists only of supportive therapies because no specific therapy is available. The characteristics of severe sepsis include ascorbate (reduced vitamin C) depletion, excessive protein nitration in microvascular endothelial cells, and microvascular dysfunction composed of refractive vasodilation, endothelial barrier dysfunction, and disseminated intravascular coagulation. Parenteral administration of ascorbate prevents or even reverses these pathological changes and thereby decreases hypotension, edema, multiorgan failure, and death in animal models of sepsis. Critical Issues: Dehydroascorbic acid appears to be as effective as ascorbate for protection against microvascular dysfunction, organ failure, and death when injected in sepsis models, but information about pharmacodynamics and safety in human subjects is only available for ascorbate. Although the plasma ascorbate concentration in critically ill and septic patients is normalized by repletion protocols that use high doses of parenteral ascorbate, and such doses are tolerated well by most healthy subjects, whether such large amounts of the vitamin trigger adverse effects in patients is uncertain. Future Directions: Further study of sepsis models may determine if high concentrations of ascorbate in interstitial fluid have pro-oxidant and bacteriostatic actions that also modify disease progression. However, the ascorbate depletion observed in septic patients receiving standard care and the therapeutic mechanisms established in models are sufficient evidence to support clinical trials of parenteral ascorbate as an adjuvant therapy for sepsis. Antioxid. Redox Signal. 19, 2129–2140. PMID:23682970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E.H.
1991-01-01
Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in O3-susceptible (O3-S) 'Hark' and O3-resistant (O3-R) 'Hood' soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the correspondingmore » susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.« less
Landi, Marco; Degl'Innocenti, Elena; Guglielminetti, Lorenzo; Guidi, Lucia
2013-06-01
Polyphenol oxidase (PPO) and, to a minor extent, peroxidase (POD) represent the key enzymes involved in enzymatic browning, a negative process induced by cutting fresh-cut produce such as lettuce (Lactuca sativa) and rocket salad (Eruca sativa). Although ascorbic acid is frequently utilised as an anti-browning agent, its mechanism in the prevention of the browning phenomenon is not clearly understood. The activity of PPO and POD and their isoforms in lettuce (a high-browning and low-ascorbic acid species) and rocket salad (a low-browning and high-ascorbic species) was characterised. The kinetic parameters of PPO and in vitro ascorbic acid-PPO inhibition were also investigated. In rocket salad, PPO activity was much lower than that in lettuce and cutting induced an increase in PPO activity only in lettuce. Exogenous ascorbic acid (5 mmol L(-1)) reduced PPO activity by about 90% in lettuce. POD did not appear to be closely related to browning in lettuce. PPO is the main enzyme involved in the browning phenomenon; POD appears to play a minor role. The concentration of endogenous ascorbic acid in rocket salad was related to its low-browning sensitivity after cutting. In lettuce, the addition of ascorbic acid directly inhibited PPO activity. The results suggest that the high ascorbic acid content found in rocket salad plays an effective role in reducing PPO activity. © 2012 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasprzak, Kazimierz S.; Diwan, Bhalchandra A.; Kaczmarek, Monika Z.
2011-11-15
The aim of this study was to test a hypothesis that ascorbate depletion could enhance carcinogenicity and acute toxicity of nickel. Homozygous L-gulono- < gamma > -lactone oxidase gene knock-out mice (Gulo-/- mice) unable to produce ascorbate and wild-type C57BL mice (WT mice) were injected intramuscularly with carcinogenic nickel subsulfide (Ni{sub 3}S{sub 2}), and observed for the development of injection site tumors for 57 weeks. Small pieces of one of the induced tumors were transplanted subcutaneously into separate groups of Gulo-/- and WT mice and the growth of these tumors was measured for up to 3 months. The two strainsmore » of mice differed significantly with regard to (1) Ni{sub 3}S{sub 2} carcinogenesis: Gulo-/- mice were 40% more susceptible than WT mice; and (2) transplanted tumors development: Gulo-/- mice were more receptive to tumor growth than WT mice, but only in terms of a much shorter tumor latency; later in the exponential phase of growth, the growth rates were the same. And, with adequate ascorbate supplementation, the two strains were equally susceptible to acute toxicity of Ni{sub 3}S{sub 2}. Statistically significant effects of dietary ascorbate dosing levels were the following: (1) reduction in ascorbate supplementation increased acute toxicity of Ni{sub 3}S{sub 2} in Gulo-/- mice; (2) ascorbate supplementation extended the latency of transplanted tumors in WT mice. In conclusion, the lack of endogenous ascorbate synthesis makes Gulo-/- mice more susceptible to Ni{sub 3}S{sub 2} carcinogenesis. Dietary ascorbate tends to attenuate acute toxicity of Ni{sub 3}S{sub 2} and to extend the latency of transplanted tumors. The latter effects may be of practical importance to humans and thus deserve further studies. -- Highlights: Black-Right-Pointing-Pointer Ascorbate depletion enhances carcinogenicity and acute toxicity of nickel. Black-Right-Pointing-Pointer Gulo-/- mice unable to synthesize ascorbate were used in this study. Black-Right-Pointing-Pointer The reduction in ascorbate levels in Gulo-/- mice increased acute toxicity induced by Ni{sub 3}S{sub 2}. Black-Right-Pointing-Pointer Gulo-/- mice were found to be 40% more susceptible than WT mice to nickel-induced carcinogenesis.« less
Mansuri, Rani; Kumar, Ashish; Rana, Sindhuprava; Panthi, Bhavana; Ansari, M. Yousuf; Das, Sushmita; Dikhit, Manas Ranjan
2017-01-01
ABSTRACT In visceral leishmaniasis (VL), the host macrophages generate oxidative stress to destroy the pathogen, while Leishmania combats the harmful effect of radicals by redox homeostasis through its unique trypanothione cascade. Leishmania donovani ascorbate peroxidase (LdAPx) is a redox enzyme that regulates the trypanothione cascade and detoxifies the effect of H2O2. The absence of an LdAPx homologue in humans makes it an excellent drug target. In this study, the homology model of LdAPx was built, including heme, and diverse compounds were prefiltered (PAINS, ADMET, and Lipinski's rule of five) and thereafter screened against the LdAPx model. Compounds having good affinity in terms of the Glide XP (extra precision) score were clustered to select diverse compounds for experimental validation. A total of 26 cluster representatives were procured and tested on promastigote culture, yielding 12 compounds with good antileishmanial activity. Out of them, six compounds were safer on the BALB/c peritoneal macrophages and were also effective against disease-causing intracellular amastigotes. Three out of six compounds inhibited recombinant LdAPx in a noncompetitive manner and also demonstrated partial reversion of the resistance property in an amphotericin B (AmB)-resistant strain, which may be due to an increased level of reactive oxygen species (ROS) and decrease of glutathione (GSH) content. However, inhibition of LdAPx in resistant parasites enhanced annexin V staining and activation of metacaspase-like protease activity, which may help in DNA fragmentation and apoptosis-like cell death. Thus, the present study will help in the search for specific hits and templates of potential therapeutic interest and therefore may facilitate the development of new drugs for combination therapy against VL. PMID:28461317
Expression of Ascorbic Acid Oxidase in Zucchini Squash (Cucurbita pepo L.).
Lin, L S; Varner, J E
1991-05-01
The expression of ascorbic acid oxidase was studied in zucchini squash (Cucurbita pepo L.), one of the most abundant natural sources of the enzyme. In the developing fruit, specific activity of ascorbic acid oxidase was highest between 4 and 6 days after anthesis. Protein and mRNA levels followed the same trend as enzyme activity. Highest growth rate of the fruit occurred before 6 days after anthesis. Within a given fruit, ascorbic acid oxidase activity and mRNA level were highest in the epidermis, and lowest in the central placental region. In leaf tissue, ascorbic acid oxidase activity was higher in young leaves, and very low in old leaves. Within a given leaf, enzyme activity was highest in the fast-growing region (approximately the lower third of the blade), and lowest in the slow-growing region (near leaf apex). High expression of ascorbic acid oxidase at a stage when rapid growth is occurring (in both fruits and leaves), and localization of the enzyme in the fruit epidermis, where cells are under greatest tension during rapid growth in girth, suggest that ascorbic acid oxidase might be involved in reorganization of the cell wall to allow for expansion. Based on the known chemistry of dehydroascorbic acid, the end product of the ascorbic acid oxidase-catalyzed reaction, we have proposed several hypotheses to explain how dehydroascorbic acid might cause cell wall "loosening."
Cameron, Ewan; Pauling, Linus
1978-01-01
A study has been made of the survival times of 100 terminal cancer patients who were given supplemental ascorbate, usually 10 g/day, as part of their routine management and 1000 matched controls, similar patients who had received the same treatment except for the ascorbate. The two sets of patients were in part the same as those used in our earlier study [Cameron, E. & Pauling, L. (1976) Proc. Natl. Acad. Sci. USA 73, 3685-3689]. Tests confirm that the ascorbate-treated patients and the matched controls are representative subpopulations of the same population of “untreatable” patients. Survival times were measured not only from the date of “untreatability” but also from the precisely known date of first hospital attendance for the cancer that eventually reached the terminal stage. The ascorbate-treated patients were found to have a mean survival time about 300 days greater than that of the controls. Survival times greater than 1 yr after the date of untreatability were observed for 22% of the ascorbate-treated patients and for 0.4% of the controls. The mean survival time of these 22 ascorbate-treated patients is 2.4 yr after reaching the apparently terminal stage; 8 of the ascorbate-treated patients are still alive, with a mean survival time after untreatability of 3.5 yr. PMID:279931
Röhr, Dominik; Halfter, Hartmut; Schulz, Jörg B; Young, Peter; Gess, Burkhard
2017-07-01
Peripheral nerve myelination involves rapid production of tightly bound lipid layers requiring cholesterol biosynthesis and myelin protein expression, but also a collagen-containing extracellular matrix providing mechanical stability. In previous studies, we showed a function of ascorbic acid in peripheral nerve myelination and extracellular matrix formation in adult mice. Here, we sought the mechanism of action of ascorbic acid in peripheral nerve myelination using different paradigms of myelination in vivo and in vitro. We found impaired myelination and reduced collagen expression in Sodium-dependent Vitamin C Transporter 2 heterozygous mice (SVCT2 +/- ) during peripheral nerve development and after peripheral nerve injury. In dorsal root ganglion (DRG) explant cultures, hypo-myelination could be rescued by precoating with different collagen types. The activity of the ascorbic acid-dependent demethylating Ten-eleven-translocation (Tet) enzymes was reduced in ascorbic acid deprived and SVCT2 +/- DRG cultures. Further, in ascorbic acid-deprived DRG cultures, methylation of a CpG island in the collagen alpha1 (IV) and alpha2 (IV) bidirectional promoter region was increased compared to wild-type and ascorbic acid treated controls. Taken together, these results provide further evidence for the function of ascorbic acid in myelination and extracellular matrix formation in peripheral nerves and suggest a putative molecular mechanism of ascorbic acid function in Tet-dependent demethylation of collagen promoters. © 2017 Wiley Periodicals, Inc.
Harakeh, S; Jariwalla, R J; Pauling, L
1990-01-01
We have studied the action of ascorbate (vitamin C) on human immunodeficiency virus type 1 (HIV-1), the etiological agent clinically associated with AIDS. We report the suppression of virus production and cell fusion in HIV-infected T-lymphocytic cell lines grown in the presence of nontoxic concentrations of ascorbate. In chronically infected cells expressing HIV at peak levels, ascorbate reduced the levels of extracellular reverse transcriptase (RT) activity (by greater than 99%) and of p24 antigen (by 90%) in the culture supernatant. Under similar conditions, no detectable inhibitory effects on cell viability, host metabolic activity, and protein synthesis were observed. In freshly infected CD4+ cells, ascorbate inhibited the formation of giant-cell syncytia (by approximately 93%). Exposure of cell-free virus to ascorbate at 37 degrees C for 1 day had no effect on its RT activity or syncytium-forming ability. Prolonged exposure of virus (37 degrees C for 4 days) in the presence of ascorbate (100-150 micrograms/ml) resulted in the drop by a factor of 3-14 in RT activity as compared to a reduction by a factor of 25-172 in extracellular RT released from chronically infected cells. These results indicate that ascorbate mediates an anti-HIV effect by diminishing viral protein production in infected cells and RT stability in extracellular virions. Images PMID:1698293
Pinheiro, Lucas C; Ferreira, Graziele C; Vilalva, Kelvin H; Toledo, José C; Tanus-Santos, Jose E
2018-04-01
Nitrite reduces blood pressure (BP) in both clinical and experimental hypertension. This effect is attributable to the formation of nitric oxide (NO) and other NO-related species, which may be improved by ascorbate or other antioxidants. However, the BP responses to oral nitrite result, at least in part, of increased gastric S-nitrosothiol formation. This study tested the hypothesis that ascorbate may destroy S-nitrosothiols and therefore not all doses of ascorbate enhance the BP responses to oral nitrite. We assessed the BP responses to oral sodim nitrite (0.2 mmol/kg) in L-NAME hypertensive rats pretreated with ascorbate (0, 0.02, 0.2, or 2 mmol/kg). Plasma and gastric wall concentrations of nitrite and nitroso compounds concentrations were determined using an ozone-based reductive chemiluminescence assay. Nitrate concentrations were determined using the Griess reaction. Free thiol concentrations were determined by a colorimetric assay. The BP responses to nitrite exhibited a bell-shape profile as they were not modified by ascorbate 0.02 mmol/l, whereas the 0.2 mmol/kg dose enhanced and the 2 mmol/kg dose attenuated BP responses. In parallel with BP responses, nitrite-induced increases in plasma nitrite and RSNO species were not modified by ascorbate 0.02 mmol/l, whereas the 0.2 mmol/kg dose enhanced and the 2 mmol/kg dose attenuated them. Similar experiments were carried out with an equimolar dose of S-nitrosogluthathione. Ascorbate dose-dependently impaired the BP responses to S-nitrosogluthathione, and the corresponding increases in plasma RSNO, but not in plasma nitrite concentrations. This is the first study to show that while ascorbate dose-dependently impairs the BP responses to oral S-nitrosogluthathione, there are contrasting effects when low versus high ascorbate doses are compared with respect to its effects on the blood pressure responses to oral nitrite administration. Our findings may have special implications to patients taking ascorbate, as high doses of this vitamin may impair protective mechanisms associated with nitrite or nitrate from dietary sources. Copyright © 2018 Elsevier Inc. All rights reserved.
2014-01-01
Background Cross-sectional data suggests that a low level of plasma ascorbic acid positively associates with both Body Mass Index (BMI) and Waist Circumference (WC). This leads to questions about a possible relationship between dietary intake of ascorbic acid and subsequent changes in anthropometry, and whether such associations may depend on genetic predisposition to obesity. Hence, we examined whether dietary ascorbic acid, possibly in interaction with the genetic predisposition to a high BMI, WC or waist-hip ratio adjusted for BMI (WHR), associates with subsequent annual changes in weight (∆BW) and waist circumference (∆WC). Methods A total of 7,569 participants’ from MONICA, the Diet Cancer and Health study and the INTER99 study were included in the study. We combined 50 obesity associated single nucleotide polymorphisms (SNPs) in four genetic scores: a score of all SNPs and a score for each of the traits (BMI, WC and WHR) with which the SNPs associate. Linear regression was used to examine the association between ascorbic acid intake and ΔBW or ΔWC. SNP-score × ascorbic acid interactions were examined by adding product terms to the models. Results We found no significant associations between dietary ascorbic acid and ∆BW or ∆WC. Regarding SNP-score × ascorbic acid interactions, each additional risk allele of the 14 WHR associated SNPs associated with a ∆WC of 0.039 cm/year (P = 0.02, 95% CI: 0.005 to 0.073) per 100 mg/day higher ascorbic acid intake. However, the association to ∆WC only remained borderline significant after adjustment for ∆BW. Conclusion In general, our study does not support an association between dietary ascorbic acid and ∆BW or ∆WC, but a diet with a high content of ascorbic acid may be weakly associated to higher WC gain among people who are genetically predisposed to a high WHR. However, given the quite limited association any public health relevance is questionable. PMID:24886192
Clark, Emily R; Kurtz, Donald M
2017-04-17
Development of efficient light-driven splitting of water, 2H 2 O → 2H 2 + O 2 , often attempts to optimize photosensitization of the reductive and oxidative half-reactions individually. Numerous homogeneous and heterogeneous systems have been developed for photochemical stimulation of the reductive half reaction, 2H + + 2e - → H 2 . These systems generally consist of various combinations of a H + reduction catalyst, a photosensitizer (PS), and a "sacrificial" electron donor. Zinc(II)-porphyrins (ZnPs) have frequently been used as PSs for H 2 generation, but they are subject to various self-quenching processes in aqueous solutions. Colloidal platinum in nanoparticle form (Pt NP) is a classical H + reduction catalyst using ZnP photosensitizers, but efficient photosensitized H 2 generation requires an electron relay molecule between ZnP and Pt NP. The present report describes an aqueous system for visible (white) light-sensitized generation of H 2 using a protein-embedded Zn(II)-protoporphyrin IX as PS and Pt NP as H + reduction catalyst without an added electron relay. This system operated efficiently in piperazino- and morpholino-alkylsulfonic acid (Good's buffers), which served as sacrificial electron donors. The system also required ascorbate at relatively modest concentrations, which stabilized the Zn(II)-protoporphyrin IX against photodegradation. In the absence of an electron relay molecule, the photosensitized H 2 generation must involve formation of at least a transient complex between a protein-embedded Zn(II)-protoporphyrin IX species and Pt NP.
Blass, Sandra C; Goost, Hans; Burger, Christof; Tolba, René H; Stoffel-Wagner, Birgit; Stehle, Peter; Ellinger, Sabine
2013-12-05
Disorders in wound healing (DWH) are common in trauma patients, the reasons being not completely understood. Inadequate nutritional status may favor DWH, partly by means of oxidative stress. Reliable data, however, are lacking. This study should investigate the status of extracellular micronutrients in patients with DWH within routine setting. Within a cross-sectional study, the plasma/serum status of several micronutrients (retinol, ascorbic acid, 25-hydroxycholecalciferol, α-tocopherol, β-carotene, selenium, and zinc) were determined in 44 trauma patients with DWH in addition to selected proteins (albumin, prealbumin, and C-reactive protein; CRP) and markers of pro-/antioxidant balance (antioxidant capacity, peroxides, and malondialdehyde). Values were compared to reference values to calculate the prevalence for biochemical deficiency. Correlations between CRP, albumin and prealbumin, and selected micronutrients were analyzed by Pearson's test. Statistical significance was set at P < 0.05. Mean concentrations of ascorbic acid (23.1 ± 15.9 μmol/L), 25-hydroxycholecalciferol (46.2±30.6 nmol/L), β-carotene (0.6 ± 0.4 μmol/L), selenium (0.79±0.19 μmol/L), and prealbumin (24.8 ± 8.2 mg/dL) were relatively low. Most patients showed levels of ascorbic acid (<28 μmol/L; 64%), 25-hydroxycholecalciferol (<50 μmol/L; 59%), selenium (≤ 94 μmol/L; 71%) and β-carotene (<0.9 μmol/L; 86%) below the reference range. Albumin and prealbumin were in the lower normal range and CRP was mostly above the reference range. Plasma antioxidant capacity was decreased, whereas peroxides and malondialdehyde were increased compared to normal values. Inverse correlations were found between CRP and albumin (P < 0.05) and between CRP and prealbumin (P < 0.01). Retinol (P < 0.001), ascorbic acid (P < 0.01), zinc (P < 0.001), and selenium (P < 0.001) were negatively correlated with CRP. Trauma patients with DWH frequently suffer from protein malnutrition and reduced plasma concentrations of several micronutrients probably due to inflammation, increased requirement, and oxidative burden. Thus, adequate nutritional measures are strongly recommended to trauma patients.
New evidence for antioxidant properties of vitamin C.
Vojdani, A; Bazargan, M; Vojdani, E; Wright, J
2000-01-01
This study was designed to examine the effect of 500 to 5,000 mg of ascorbic acid on DNA adducts, natural killer (NK) cell activity, programmed cell death, and cell cycle analysis of human peripheral blood leukocytes. According to our hypothesis, if ascorbic acid is a pro-oxidant, doses between 500 and 5,000 mg should enhance DNA adduct formation, decrease immune function, change the cell cycle progression, and increase the rate of apoptosis. Twenty healthy volunteers were divided into four groups and given either placebo or daily doses of 500, 1,000 or 5,000 mg of ascorbic acid for a period of 2 weeks. On days 0, 1, 7, 15, and 21, blood was drawn from them, and the leukocytes were separated and examined for intracellular levels of ascorbic acid, the level of 8-hydroxyguanosine, NK cell activity, cell cycle progression, and apoptosis. Depending on the subjects, between a 0% and a 40% increase in cellular absorption of ascorbic acid was observed when daily doses of 500 mg were used. At doses greater than 500 mg, this cellular absorption was not increased further, and all doses produced equivalent increases in ascorbic acid on days 1 to 15. This increase in cellular concentration of ascorbic acid resulted in no statistically meaningful changes in the level of 8-hydroxyguanosine, increased NK cytotoxic activity, a reduced percentage of cells undergoing apoptosis, and switched cell cycle phases from S and G2/M to G0/G1. After a period of 1 week, with no placebo or vitamin washout, ascorbic acid levels along with functional assays returned to the baseline and became equivalent to placebos. In comparison with baseline values, no change (not more than daily assays variation) was seen in ascorbate concentrations or other assays during oral placebo treatment. We concluded that ascorbic acid is an antioxidant and that doses up to 5,000 mg neither induce mutagenic lesions nor have negative effects on NK cell activity, apoptosis, or cell cycle.
Ahn, Hee-Jeong; Li, Chao; Cho, Hye-Bin; Park, Sunghoon; Chang, Pahn-Shick; Kim, Young-Wan
2015-02-15
A mutant derived from a cyclodextrin glucantransferase with an alanine residue as its acid/base catalyst residue (CGT-E284A) catalyzed regioselective glycosylation at 3-OH of l-ascorbic acid using α-maltosyl fluoride (αG2F) and l-ascorbic acid as the donor and acceptor, respectively, yielding 3-O-α-maltosyl-l-ascorbate (AA3αG2). The optimum conditions were determined by high-performance liquid chromatography analysis with 20mM αG2F and 40mM l-ascorbic acid as the substrates at pH 7.5 and 25°C with 1mg/ml of the enzyme for 24h. Calcium ions bound in CGT-E284A played an important role in the transglycosylation. CGT-E284A exhibited typical saturation kinetic behaviour for αG2F at a fixed acceptor concentration (40mM), and substrate inhibition by l-ascorbic acid was observed at high l-ascorbic acid concentrations (>60mM). AA3αG2 was isolated from a preparative scale reaction with a yield of 29%, and it showed extremely high stability under oxidative conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ascorbic acid deficiency in patients with lichen planus.
Nicolae, Ilinca; Mitran, Cristina Iulia; Mitran, Madalina Irina; Ene, Corina Daniela; Tampa, Mircea; Georgescu, Simona Roxana
2017-01-01
Recent studies have highlighted the role of oxidative stress in the pathogenesis of lichen planus (LP). In the present study, the interest of the authors is focused on the investigation of ascorbic acid status in patients with LP and identification of parameters that might influence the level of this vitamin. We analyzed the level of urinary ascorbic acid (reflectometric method) in 77 patients with LP (cutaneous LP (CLP)-49 cases; oral LP (OLP)-28 cases) and 50 control subjects. The evaluation of all participants included clinical examination and laboratory and imaging tests. Compared to the control group (19.82 mg/dl) the level of ascorbic acid was significantly lower both in patients with CLP (8.47 mg/dl, p = 0.001) and in those with OLP (8.04 mg/dl, p = 0.001). In patients with LP it was found that the deficiency of ascorbic acid increases with age (r = -0.318, p = 0.032). The urinary concentrations of ascorbic acid were significantly lower in patients with LP associated with infections compared to patients with LP without infections. The urinary ascorbic acid level may be a useful parameter in identifying patients with LP who are at risk of developing viral or bacterial infections.
Supplement of a chitosan and ascorbic acid mixture for Crohn's disease: a pilot study.
Tsujikawa, Tomoyuki; Kanauchi, Osamu; Andoh, Akira; Saotome, Takao; Sasaki, Masaya; Fujiyama, Yoshihide; Bamba, Tadao
2003-02-01
Although the pathogenesis of Crohn's disease remains unclear, dietary fat is thought to exacerbate intestinal inflammation. Chitosan is a water-insoluble dietary fiber, and a chitosan and ascorbic acid mixture has been shown in rats to increase fecal fat excretion without affecting protein digestibility. However, it remains unclear whether a chitosan and ascorbic acid mixture is safe and effective for patients with Crohn's disease. We designed a pilot trial to investigate the tolerability and amount of fat excretion after the oral administration of a chitosan and ascorbic mixture for inactive Crohn's disease. Eleven outpatients were given seven tablets daily of a chitosan and ascorbic mixture (chitosan was given at 1.05 g/d) for 8 wk. Patients did not interrupt their respective therapies for Crohn's disease. The bowel movements of most patients increased slightly during the study. Nutritional and inflammatory markers in patients did not differ before and after treatment. The chitosan and ascorbic acid mixture significantly increased the fat concentration in the feces during treatment. These results indicated that oral administration of a chitosan and ascorbic acid mixture in patients with Crohn's disease is tolerable and increases fecal fat excretion without affecting disease activity.
Varo-Ghiuru, Florin; Miclea, Ileana; Hettig, Andrea; Ladoşi, Ioan; Miclea, Vasile; Egerszegi, István; Zăhan, Marius
2015-01-01
Due to pour quality of cryopreserved boar semen, artificial innsemination with frozen-thawed semen is quite limited. Developing protocols of boar semen cryopreservation represents a priority but also a challange. The goal of the present study was to evaluate the antioxidant potential of lutein, Trolox, ascorbic acid, and certain combinations of Trolox with ascorbic acid on boar semen cryopreservation procedure. Antioxidants were added to lactose-egg yolk extender, containing a final concentration of 3% glycerol and 0.5% Equex-STM. Semen of six boars was cryopreserved using straw-freezing procedure. After cryopreservation semen was thawed and evaluated for motility, normal apical ridge (NAR), hypo-osmotic swelling test (HOST) and DNA fragmentation index (DFI). Data were analyzed by one-way ANOVA. The results showed better motility after thawing at the concentration of 10 μM lutein, 200 μM Trolox, 200 μM ascorbic acid and 400-200 μM Trolox and ascorbic acid. The supplementation on boar freezing extender with 10 μM lutein increased post-thawed motility, NAR and HOST values (P < 0.01), and decrease DFI (P < 0.05) in comparison with control group. Similar results were obtained using 400-200 μM Trolox and ascorbic acid, with better results in the case of DFI (P < 0.01). In comparison with the control group, a concentration of 200 μM Trolox and 200 μM ascorbic acid provided significant differences (P < 0.01) of motility and NAR. The analysis of sperm characteristics showed that lutein and the mix between Trolox and ascorbic acid used in boar semen cryopreservation can improve the quality of spermatozoa.
Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E
2015-02-01
Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of ascorbate and dehydroascorbate on tissue uptake of glucose.
Mooradian, A D
1987-09-01
In vitro studies have suggested that ascorbate or dehydroascorbate share with glucose the same tissue-transport carrier. To determine if ascorbic acid or its oxidized form can inhibit tissue uptake of glucose, the brain uptake index (BUI) and muscle uptake index of glucose were determined by single arterial injection tissue-sampling technique. The injectate was either buffered Ringer's solution with varying concentrations of ascorbate, dehydroascorbate (pH 7.4), or 70% serum from individuals on vitamin C supplements. Ascorbic acid over a wide range of concentrations (0-10,000 mg/L) did not reduce the BUI. Ascorbic acid reduced BUI from the control value of 33 +/- 3.2 to 20.1 +/- 2.2% (P less than .01) only at 100,000 mg/L; this effect was probably secondary to osmotic disruption of blood-brain barrier. In contrast, dehydroascorbate inhibited the BUI of glucose from baseline value of 32.8 +/- 1.1 to 10.7 +/- 0.67%, with an estimated Ki of 13.0 mM. Masseter muscle glucose uptake was not significantly altered over a wide range of ascorbate or dehydroascorbate concentrations in the injectate. Dehydroascorbate (7500 mg/L) did not significantly reduce the BUI of [14C]phenylalanine (55.2 +/- 4.4 vs. 62.1 +/- 4.2% in controls). When serum from six individuals on calcium ascorbate (3-5 g/day) was compared with that of nine controls, the BUI was not different (19.3 +/- 1.7 vs. 19.3 +/- 1.1%). Similarly, supplementing the diet of eight healthy volunteers with 1 g calcium ascorbate for 8 days did not alter the BUI of glucose.(ABSTRACT TRUNCATED AT 250 WORDS)
Bozonet, Stephanie M; Pullar, Juliet M; Simcock, Jeremy W; Vissers, Margreet CM
2013-01-01
Background: Vitamin C (ascorbate) is likely to be essential for skeletal muscle structure and function via its role as an enzyme cofactor for collagen and carnitine biosynthesis. Vitamin C may also protect these metabolically active cells from oxidative stress. Objective: We investigated the bioavailability of vitamin C to human skeletal muscle in relation to dietary intake and plasma concentrations and compared this relation with ascorbate uptake by leukocytes. Design: Thirty-six nonsmoking men were randomly assigned to receive 6 wk of 0.5 or 2 kiwifruit/d, an outstanding dietary source of vitamin C. Fasting blood samples were drawn weekly, and 24-h urine and leukocyte samples were collected before intervention, after intervention, and after washout. Needle biopsies of skeletal muscle (vastus lateralis) were carried out before and after intervention. Results: Baseline vastus lateralis ascorbate concentrations were ∼16 nmol/g tissue. After intervention with 0.5 or 2 kiwifruit/d, these concentrations increased ∼3.5-fold to 53 and 61 nmol/g, respectively. There was no significant difference between the responses of the 2 groups. Mononuclear cell and neutrophil ascorbate concentrations increased only ∼1.5- and ∼2-fold, respectively. Muscle ascorbate concentrations were highly correlated (P < 0.001) with dietary intake (R = 0.61) and plasma concentrations (R = 0.75) in the range from 5 to 80 μmol/L. Conclusions: Human skeletal muscle is highly responsive to vitamin C intake and plasma concentrations and exhibits a greater relative uptake of ascorbate than leukocytes. Thus, muscle appears to comprise a relatively labile pool of ascorbate and is likely to be prone to ascorbate depletion with inadequate dietary intake. This trial was registered at the Australian New Zealand Clinical Trials Registry (www.anzctr.org.au) as ACTRN12611000162910. PMID:23446899
Dasgupta, Jaydip; Elliott, Ruth A; Tincello, Douglas G
2009-01-01
Consumption of carbonated soft drinks is independently associated with the development of overactive bladder (OR 1.41, 95% Cl 1.02-1.95). We have shown previously that artificial sweeteners, present in carbonated soft drinks, enhanced detrusor muscle contraction. Other constituents of soft drinks are preservatives and antioxidants, we evaluated the effects of two of these, ascorbic acid and citric acid, on the contractile response of isolated rat bladder muscle strips. Detrusor muscle strips were suspended in a perfusion organ bath. We determined the effect of ascorbic acid and citric acid on the contractile responses to electrical field stimulation (EFS) in the absence and presence of atropine, carbachol, alpha, beta methylene ATP, potassium and calcium. Ascorbic acid and citric acid (10(-7) M to 10(-3) M) enhanced the contractile response to 10 Hz EFS compared to control (P < 0.01). The frequency and amplitude of spontaneous bladder contractions were enhanced in the presence of ascorbic acid and citric acid by 14%, 21%, 21%, and 11% respectively. Ascorbic acid 10(-4) M significantly increased the atropine resistant response to EFS 5 Hz by 37% (P < 0.01) and inhibited contraction in response to carbachol 10(-4) M by 24%, (P < 0.05). Both ascorbic acid 10(-4) M and citric acid 10(-5) M significantly enhanced maximum contractile responses to alpha, beta methylene ATP, KCI and calcium compared to control. Ascorbic acid and citric acid augmented bladder muscle contraction possibly by enhanced Ca(2+) influx. Presynaptic neurotransmitter release was enhanced by ascorbic acid. Carbonated beverages containing preservatives may aggravate symptoms of OAB. (c) 2009 Wiley-Liss, Inc.
Yogeeta, Surinder Kumar; Hanumantra, Rao Balaji Raghavendran; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam
2006-05-01
The present study aims at evaluating the effect of the combination of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism. The rats were divided into eight groups: Control, isoproterenol, ferulic acid alone, ascorbic acid alone, ferulic acid+ascorbic acid, ferulic acid+isoproterenol, ascorbic acid+isoproterenol and ferulic acid+ascorbic acid+isoproterenol. Ferulic acid (20 mg/kg b.w.t.) and ascorbic acid (80 mg/kg b.w.t.) both alone and in combination was administered orally for 6 days and on the fifth and the sixth day, isoproterenol (150 mg/kg b.w.t.) was injected intraperitoneally to induce myocardial injury to rats. Induction of rats with isoproterenol resulted in a significant increase in the levels of triglycerides, total cholesterol, free fatty acids, free and ester cholesterol in both serum and cardiac tissue. A rise in the levels of phospholipids, lipid peroxides, low density lipoprotein and very low density lipoprotein-cholesterol was also observed in the serum of isoproterenol-intoxicated rats. Further, a decrease in the level of high density lipoprotein in serum and in the phospholipid levels, in the heart of isoproterenol-intoxicated rats was observed, which was paralleled by abnormal activities of lipid metabolizing enzymes: total lipase, cholesterol ester synthase, lipoprotein lipase and lecithin: cholesterol acyl transferase. Pre-cotreatment with the combination of ferulic acid and ascorbic acid significantly attenuated these alterations and restored the levels to near normal when compared to individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism.
Carr, Anitra C; Bozonet, Stephanie M; Pullar, Juliet M; Simcock, Jeremy W; Vissers, Margreet Cm
2013-04-01
Vitamin C (ascorbate) is likely to be essential for skeletal muscle structure and function via its role as an enzyme cofactor for collagen and carnitine biosynthesis. Vitamin C may also protect these metabolically active cells from oxidative stress. We investigated the bioavailability of vitamin C to human skeletal muscle in relation to dietary intake and plasma concentrations and compared this relation with ascorbate uptake by leukocytes. Thirty-six nonsmoking men were randomly assigned to receive 6 wk of 0.5 or 2 kiwifruit/d, an outstanding dietary source of vitamin C. Fasting blood samples were drawn weekly, and 24-h urine and leukocyte samples were collected before intervention, after intervention, and after washout. Needle biopsies of skeletal muscle (vastus lateralis) were carried out before and after intervention. Baseline vastus lateralis ascorbate concentrations were ~16 nmol/g tissue. After intervention with 0.5 or 2 kiwifruit/d, these concentrations increased ~3.5-fold to 53 and 61 nmol/g, respectively. There was no significant difference between the responses of the 2 groups. Mononuclear cell and neutrophil ascorbate concentrations increased only ~1.5- and ~2-fold, respectively. Muscle ascorbate concentrations were highly correlated (P < 0.001) with dietary intake (R = 0.61) and plasma concentrations (R = 0.75) in the range from 5 to 80 μmol/L. Human skeletal muscle is highly responsive to vitamin C intake and plasma concentrations and exhibits a greater relative uptake of ascorbate than leukocytes. Thus, muscle appears to comprise a relatively labile pool of ascorbate and is likely to be prone to ascorbate depletion with inadequate dietary intake. This trial was registered at the Australian New Zealand Clinical Trials Registry (www.anzctr.org.au) as ACTRN12611000162910.
Zhou, Xiaohua; Tai, Akihiro; Yamamoto, Itaru
2003-03-01
It has been shown that ascorbate (AsA) and its stable derivative, ascorbic acid 2-O-alpha-glucoside (AA-2G), do not elicit neurite outgrowth in PC12 cells. However, these ascorbates are synergistically enhanced by both dibutyryl cyclic AMP (Bt(2)cAMP)- and nerve growth factor (NGF)-induced neurite outgrowth in this model. In the present study, the effects of a series of novel lipophilic ascorbate derivatives, 6-acylated ascorbic acid 2-O-alpha-glucosides (6-Acyl-AA-2G), on neurite outgrowth induced by Bt(2)cAMP and NGF were examined in PC12 cells. We found that all the tested acylated ascorbate derivatives enhanced neurite formation induced by both agents in a dose-dependent manner. Of the 6-Acyl-AA-2G derivatives, 6-octanoyl ascorbic acid 2-O-alpha-glucoside (6-Octa-AA-2G) enhanced the Bt(2)cAMP-induced phosphorylated MAPK p44 and p42 expression. A alpha-glucosidase inhibitor, castanospermine, completely abrogated the promotion of neurite outgrowth and MAPK expression by 6-Octa-AA-2G. Addition of 6-Octa-AA-2G (0.5 mM) to PC12 cells caused a rapid and significant increase in intracellular AsA content, which reached a maximum and was maintained from 12 to 24 h after the culture. These findings suggest that 6-Acyl-AA-2G is rapidly hydrolyzed to AsA within the cell and enhances neurite differentiation through the interaction with the inducer-activated MAPK pathway.
Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C
2017-01-01
Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars ('Scarletprince' and 'CaroTiger'). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO 2 assimilation and stomatal conductance of water-stressed 'Scarletprince' trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed 'Scarletprince' trees was improved to values similar to control trees. On the other hand, water-stressed 'CaroTiger' trees needed two applications of ascorbic acid to reach values of CO 2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with 'Scarletprince' trees preferentially using proline as compatible solute and 'CaroTiger' trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes.
Penella, Consuelo; Calatayud, Ángeles; Melgar, Juan C.
2017-01-01
Exogenous application of biochemicals has been found to improve water stress tolerance in herbaceous crops but there are limited studies on deciduous fruit trees. The goal of this research was to study if ascorbic acid applications could improve physiological mechanisms associated with water stress tolerance in young fruit trees. Ascorbic acid was foliarly applied at a concentration of 250 ppm to water-stressed and well-watered peach trees (control) of two cultivars (‘Scarletprince’ and ‘CaroTiger’). Trees received either one or two applications, and 1 week after the second application all trees were rewatered to field capacity. Upon rewatering, CO2 assimilation and stomatal conductance of water-stressed ‘Scarletprince’ trees sprayed with ascorbic acid (one or two applications) were similar to those of well-irrigated trees, but water-stressed trees that had not received ascorbic acid did not recover photosynthetical functions. Also, water status in sprayed water-stressed ‘Scarletprince’ trees was improved to values similar to control trees. On the other hand, water-stressed ‘CaroTiger’ trees needed two applications of ascorbic acid to reach values of CO2 assimilation similar to control trees but these applications did not improve their water status. In general terms, different response mechanisms to cope with water stress in presence of ascorbic acid were found in each cultivar, with ‘Scarletprince’ trees preferentially using proline as compatible solute and ‘CaroTiger’ trees relying on stomatal regulation. The application of ascorbic acid reduced cell membrane damage and increased catalase activity in water-stressed trees of both cultivars. These results suggest that foliar applications of ascorbic acid could be used as a management practice for improving water stress tolerance of young trees under suboptimal water regimes. PMID:28979284
Urinary and plasma oxalate during ingestion of pure ascorbic acid: a re-evaluation.
Fituri, N; Allawi, N; Bentley, M; Costello, J
1983-01-01
Daily ingestion of 8 g of pure ascorbic acid by 8 normal subjects for 7 days did not, in contrast to previous reports in the literature, significantly alter urinary or plasma oxalate during or after ingestion. When urine with raised ascorbate values was heated at 100 degrees C for 30 min, a significant increase in urinary oxalate concentration was observed. Plasma ascorbate reached a mean value during ingestion of 3.3 mg/100 ml. Urinary citrate excretion significantly decreased during the first 4 days of ascorbic acid ingestion; however, the urinary inhibitory activity of calcium oxalate crystal growth was not significantly altered. Urinary and serum urate as well as urinary calcium and magnesium were unaltered by ingestion of the vitamin supplement.
Kobayashi, Kazuo; Seike, Yumiko; Saeki, Akinori; Kozawa, Takahiro; Takeuchi, Fusako; Tsubaki, Motonari
2014-10-06
The dynamics of free-radical species in a model cellular system are examined by measuring the formation and decay of ascorbate radicals within a liposome with pulse radiolysis techniques. Upon pulse radiolysis of an N2O-saturated aqueous solution containing ascorbate-loaded liposome vesicles, ascorbate radicals are formed by the reaction of OH(·) radicals with ascorbate in unilamellar vesicles exclusively, irrespective of the presence of vesicle lipids. The radicals are found to decay rapidly compared with the decay kinetics in an aqueous solution. The distinct radical reaction kinetics in the vesicles and in bulk solution are characterized, and the kinetic data are analyzed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ascorbic acid and tannins from Emblica officinalis Gaertn. Fruits--a revisit.
Majeed, Muhammed; Bhat, Beena; Jadhav, Atul N; Srivastava, Jyotish S; Nagabhushanam, Kalyanam
2009-01-14
The fruits of Emblica officinalis Gaertn. (Euphorbiaceae), also known as amla in Ayurveda, are considered to be a rich source of ascorbic acid. However, the antioxidant activities exhibited by E. officinalis extract are superior to those of ascorbic acid itself. Low molecular hydrolyzable tannins emblicanins A and B have been suggested in the earlier literature to be the contributory antioxidant molecules in the extract. This work finds no evidence for the presence of emblicanins A and B in the extract. In addition, the high content of ascorbic acid is also questionable due to previous nonidentification of coeluting mucic acid gallates. This paper reports a new HPLC method to detect even trace amounts of ascorbic acid in E. officinalis fruit juice or extract.
Determination of the ascorbic acid content of two medicinal plants in Nigeria.
H A, Okeri; P O, Alonge
2006-01-01
The fresh and dried leaves of two edible plants, Oldenlandia corymbosa and Dissotis rotundifolia have been assayed for their ascorbic acid content. They were found to be rich sources of ascorbic acid (vitamin C) when compared with some common garden fruits and vegetables. Students' t-test statistical analysis using INSTAT.EXE program for the results (mean+/-SEM) shows that there was no significant difference for the fresh leaves of the individual plants and also there is no significant difference for the dried leaves (P=0.05). However, there was significant difference between ascorbic acid content of the fresh and dried leaves of the same plant, obviously indicating that the fresh leaves contain more ascorbic acid than the dried leaves.
21 CFR 172.315 - Nicotinamide-ascorbic acid complex.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex...: (a) The additive is the product of the controlled reaction between ascorbic acid and nicotinamide...
21 CFR 172.315 - Nicotinamide-ascorbic acid complex.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex...: (a) The additive is the product of the controlled reaction between ascorbic acid and nicotinamide...
Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S
2016-11-01
The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aqueous humour and ultraviolet radiation.
Ringvold, A
1980-01-01
Studies on the ultraviolet ray absorption in the aqueous humour of rabbit, cat, monkey, guinea pig, and rat showed marked species differences. In the rabbit aqueous the ascorbic acid, the proteins, and some amino acids (tyrosine, phenylalanine, cystine, and tryptophane) are together responsible for the total absorption, and a very great part of it refers to the ascorbic acid content. Accordingly, species with significant amounts of ascorbic acid in the aqueous (monkey, rabbit, guinea pig) have a greater absorption capacity towards ultraviolet radiation than species (cat, rat) lacking this substance. This effect of the ascorbic acid may contribute in protecting the lens against the most biotoxic ultraviolet rays. It seems that the ascorbic acid concentration is highest in the aqueous of typical day animals and lowest in species being active in the dark, indicating a correlation between the aqueous' ascorbic acid level and the quantity of incident light on the eye. The possible significance of changed aqueous ultraviolet ray absorption in the pathogenesis of human cataract development is discussed.
NASA Astrophysics Data System (ADS)
Han, Shuhua; Zhou, Guangju; Fu, Yunzhi; Ma, Ying; Xu, Li; Zou, Chao; Chen, Wei; Yang, Yun; Huang, Shaoming
2015-12-01
We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl2]-/Au because of the alloying effect, resulting in the dissolved O2 molecules that serve as an effective etchant for oxidizing Au to Au(i). Ascorbic acid (AA) and chloroplatinic acid (H2PtCl6) are weak acids which can accelerate the etching by increasing the concentration of H+. The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H2PtCl6 here via their complexing interaction. AA reduces Pt(iv) and Ag(i) to atoms which grow on {100} facets. The formed Pt/Ag layer changes the etching direction from along [100] to [111] and generates the TAAPN. Besides, it has been noted that the TAAPNs exhibit good Surface Enhanced Raman Scattering (SERS) performance.We report the synthesis of high quality trimetallic Au/Ag/Pt nanorings (TAAPNs) by using Au/Ag alloy decahedra (AAAD) as templates. The alloying effect and AgCl-directing growth have been investigated in detail during the formation of TAAPN. It was found that the doping of Ag in AAAD changes the surrounding environment of Au atoms and decreases the oxidization reduction potential (ORP) of [AuCl2]-/Au because of the alloying effect, resulting in the dissolved O2 molecules that serve as an effective etchant for oxidizing Au to Au(i). Ascorbic acid (AA) and chloroplatinic acid (H2PtCl6) are weak acids which can accelerate the etching by increasing the concentration of H+. The AgCl selectively absorbs on {100} of the decahedra and induces the preferential deposition of H2PtCl6 here via their complexing interaction. AA reduces Pt(iv) and Ag(i) to atoms which grow on {100} facets. The formed Pt/Ag layer changes the etching direction from along [100] to [111] and generates the TAAPN. Besides, it has been noted that the TAAPNs exhibit good Surface Enhanced Raman Scattering (SERS) performance. Electronic supplementary information (ESI) available: The synthesis of pure Au decahedra, electrochemical measurements, other TEM images, HAADF images, EDS patterns, UV-vis spectra of products prepared under other conditions. See DOI: 10.1039/c5nr05531h
He, Caiyun; Zhang, Guoyun; Zhang, Jianguo; Zeng, Yanfei; Liu, Juanjuan
2017-05-01
Berries of sea buckthorn, known as the "king of vitamin C," are abundant in antioxidants, have attractive colors, and are an excellent material with which to study the relationships between berry color, antioxidants, and berry quality. No study has yet determined the molecular basis of the relationship between sea buckhorn berries and their color and antioxidant levels. By using RNA-seq, LC-MS/MS, and LC/GC-MS technology and selecting red (darkest colored) and yellow (lightest colored) sea buckthorn berries at different development stages, this study showed that the red and yellow berry resulted from a higher ratio of lycopene to β-carotene and of β-carotene to lycopene content, respectively. The uronic acid pathway-a known animal pathway-in ascorbic acid synthesis was found in sea buckthorn berries, and the higher expression of UDP-glucuronosyltransferase in red berries was consistent with the higher content of ascorbic acid. In summary, multiomic data showed that the color of sea buckthorn berries is mainly determined by β-carotene and lycopene; red sea buckthorn berries were richer than yellow berries in antioxidants, such as carotenoids, flavonoids, and ascorbic acid; and the animal pathway might be operating in sea buckthorn.-He, C., Zhang, G., Zhang, J., Zeng, Y., Liu, J. Integrated analysis of multiomic data reveals the role of the antioxidant network in the quality of sea buckthorn berry. © FASEB.
Verrax, Julien; Stockis, Julie; Tison, Aurélie; Taper, Henryk S; Calderon, Pedro Buc
2006-09-14
The effect of oxidative stress induced by the ascorbate/menadione-redox association was examined in K562 cells, a human erythromyeloid leukaemia cell line. Our results show that ascorbate enhances menadione redox cycling, leading to the formation of intracellular reactive oxygen species (as shown by dihydrorhodamine 123 oxidation). The incubation of cells in the presence of both ascorbate/menadione and aminotriazole, a catalase inhibitor, resulted in a strong decrease of cell survival, reinforcing the role of H(2)O(2) as the main oxidizing agent killing K562 cells. This cell death was not caspase-3-dependent. Indeed, neither procaspase-3 and PARP were processed and only a weak cytochrome c release was observed. Moreover, we observed only 23% of cells with depolarized mitochondria. In ascorbate/menadione-treated cells, DNA fragmentation was observed without any sign of chromatin condensation (DAPI and TUNEL tests). The cell demise by ascorbate/menadione is consistent with a necrosis-like cell death confirmed by both cytometric profile of annexin-V/propidium iodide labeled cells and by light microscopy examination. Finally, we showed that a single i.p. administration of the association of ascorbate and menadione is able to inhibit the growth of K562 cells by about 60% (in both tumour size and volume) in an immune-deficient mice model. Taken together, these results reinforced our previous claims about a potential application of the ascorbate/menadione association in cancer therapy.
Valent, Sándor; Tóth, Miklós
2006-01-01
In neutral aqueous solutions tetrahydrobiopterin is oxidized by dioxygen in a reaction that is succinctly described as autooxidation. Ascorbate and thiols moderate this reaction by reversing the oxidative process. In the present study the effect of various thiols on the apparent Arrhenius activation energy of tetrahydrobiopterin autooxidation was characterized and compared to that of ascorbate determined previously. We observed that - in sharp contrast to ascorbate - the efficiency of thiols to protect tetrahydrobiopterin decreased with the elevation of temperature from 22 to 37 degrees C. Accordingly, the apparent Arrhenius activation energies (in kJ/mol) measured in the presence of thiols were consistently greater than the value determined with tetrahydrobiopterin alone (59.6 +/- 1.4) or in the presence of ascorbate (59.9 +/- 2.8). Thus, the energy values were 88.8+/-1.1 with glutathione, 87.6 +/- 2.1 with N-acetylcysteine, 79.2 +/- 1.6 with cysteine, 75.1 +/- 2.4 with dithiotreitol and 70.3 +/- 0.9 with homocysteine. Since thiols are as potent reducing agents as ascorbate, these findings suggest that thiols and ascorbate protect tetrahydrobiopterin from oxidation acting at different steps of the oxidation process. It is likely that thiols reduce quinoidal dihydrobiopterin, whereas ascorbate scavenges the trihydrobiopterin radical to tetrahydrobiopterin. Furthermore, the results indicate that thiols are excellent tools to protect tetrahydrobiopterin from autooxidative decomposition in laboratory experiments conducted at relatively low temperatures, whereas the protective effect diminishes at 37 degrees C, i.e. under physiological conditions.
Méndez, Rosa Olivia; Wyatt, C Jane; Saavedra, Javier; Ornelas, Alicia
2002-12-01
Ascorbic acid is one of the important antioxidant nutrients that can aid in the prevention of oxidative cellular damage. Adequate dietary intake is essential as humans can not synthesize this vitamin. It has been reported that smokers require higher dietary intakes to maintain their serum levels. The objective of this study was to determine serum levels of ascorbic acid in young male smokers and non smokers in the city of Hermosillo, Sonora, Mexico. In addition, their dietary intake of ascorbic acid was determined by a 24 h dietary recall. The dietary intake of ascorbic acid in 12 smokers was 64 +/- 11 mg/d and in 13 non smokers it was 70 +/- 12 mg/d. The smokers in this study did not meet the dietary recommendation of 100 mg/d. Serum ascorbic acid values in smokers and non smokers were 24.2 +/- 6.9 mumol/L and 30.9 +/- 3.7 mumol/L respectively. No significant difference was found among the 2 groups. Although the average serum ascorbic acid values fell within the range considered normal, 50% of the smokers had individual values that were below 23 mumol/L, indicating that these subjects have hipovitaminosis. A positive correlation between intake and serum levels was obtained for smokers (r = 0.71; p = 0.03). The results of this study suggest smokers may be at increased risk for chronic diseases due to their low intake and low serum levels of ascorbic acid.
Ascorbic Acid Determination in Commercial Fruit Juice Samples by Cyclic Voltammetry
Pisoschi, Aurelia Magdalena; Danet, Andrei Florin; Kalinowski, Slawomir
2008-01-01
A method was developed for assessing ascorbic acid concentration in commercial fruit juice by cyclic voltammetry. The anodic oxidation peak for ascorbic acid occurs at about 490 mV on a Pt disc working electrode (versus SCE). The influence of the potential sweep speed on the peak height was studied. The obtained calibration graph shows a linear dependence between peak height and ascorbic acid concentration in the domain (0.1–10 mmol·L−1). The equation of the calibration graph was y = 6.391x + 0.1903 (where y represents the value of intensity measured for the anodic peak height, expressed as μA and x the analyte concentration, as mmol·L−1, r2 = 0.9995, r.s.d. = 1.14%, n = 10, Cascorbic acid = 2 mmol·L−1). The developed method was applied to ascorbic acid assessment in fruit juice. The ascorbic acid content determined ranged from 0.83 to 1.67 mmol·L−1 for orange juice, from 0.58 to 1.93 mmol·L−1 for lemon juice, and from 0.46 to 1.84 mmol·L−1 for grapefruit juice. Different ascorbic acid concentrations (from standard solutions) were added to the analysed samples, the degree of recovery being comprised between 94.35% and 104%. Ascorbic acid determination results obtained by cyclic voltammetry were compared with those obtained by the volumetric method with dichlorophenol indophenol. The results obtained by the two methods were in good agreement. PMID:19343183
21 CFR 182.3013 - Ascorbic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ascorbic acid. 182.3013 Section 182.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3013 Ascorbic...
21 CFR 172.315 - Nicotinamide-ascorbic acid complex.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.315 Nicotinamide-ascorbic acid complex. Nicotinamide-ascorbic acid complex may be safely used in accordance with the following prescribed conditions: (a) The additive is the product of...
21 CFR 182.3731 - Sodium ascorbate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3731 Sodium ascorbate. (a) Product. Sodium...
Protective and Therapeutic Agents for War Gases - Solutions of BAL
1945-04-02
Ascorbic Acid 1.07 Thiosorbitol :7 7§ Catechol 1.07 Menthol p-Toluene Sulfinic Gum Tragacanth .76 Acid 1.07 Glycine .74 Formamidlne Sulfinic...Hydrazine hydrochlorlde d-iao-ascorbic acid Iflcotlnlc acid Ascorbic acid "Avonex" (oat flour concentrate) Sulfanilamide Camphor Menthol Thiodiglycol
The effect of artichoke (Cynara scolymus L.) extract on ROS generation in HUVEC cells.
Juzyszyn, Z; Czerny, B; Pawlik, A; Droździk, M
2008-09-01
The effect of an artichoke extract on induced reactive oxygen species (ROS) generation in cultured human umbilical endothelial cells (HUVECs) and its reductive properties were evaluated. Preincubation of HUVEC cells with the artichoke extract at concentrations of 25-100 microg/mL for 24 h abolished ROS generation induced by LPS and oxyLDL as evaluated by the fluorescence intensity of 2',7'-dichlorofluorescein (DCF). Potent, concentration-dependent reductive properties of the artichoke extract were demonstrated by the reduction kinetics of cytochrome c in reference to ascorbate were also revealed. The results of the present study the warrant application of artichoke extracts as endothelium protecting agents.
Ruíz-Torres, Carmelo; Feriche-Linares, Rafael; Rodríguez-Ruíz, Marta; Palma, José M; Corpas, Francisco J
2017-04-01
Arsenic (As) contamination is a major environmental problem which affects most living organisms from plants to animals. This metalloid poses a health risk for humans through its accumulation in crops and water. Using garlic (Allium sativum L.) plants as model crop exposed to 200μM arsenate, a comparative study among their main organs (roots and shoots) was made. The analysis of arsenic, glutathione (GSH), phytochelatins (PCs) and lipid peroxidation contents with the activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate-glutathione cycle), and the main components of the NADPH-generating system, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH) was carried out. Data showed a correlation among arsenic accumulation in the different organs, PCs content and the antioxidative response, with a general decline of the NADPH-generating systems in roots. Overall, our results demonstrate that there are clear connections between arsenic uptake, increase of their As-chelating capacity in roots and a decline of antioxidative enzyme activities (catalase and the ascorbate peroxidase) whose alteration provoked As-induced oxidative stress. Thus, the data suggest that roots act as barrier of arsenic mediated by a prominent sulfur metabolism which is characterized by the biosynthesis of high amount of PCs. Copyright © 2017 Elsevier GmbH. All rights reserved.
Qu, Zhengyi; Na, Weidan; Liu, Xiaotong; Liu, Hua; Su, Xingguang
2018-01-02
In this paper, we developed a sensitive fluorescence biosensor for tyrosinase (TYR) and acid phosphatase (ACP) activity detection based on nitrogen-doped graphene quantum dots (N-GQDs). Tyrosine could be catalyzed by TYR to generate dopaquinone, which could efficiently quench the fluorescence of N-GQDs, and the degree of fluorescence quenching of N-GQDs was proportional to the concentration of TYR. In the presence of ACP, l-Ascorbic acid-2-phosphate (AAP) was hydrolyzed to generate ascorbic acid (AA), and dopaquinone was reduced to l-dopa, resulting in the fluorescence recovery of the quenched fluorescence by dopaquinone. Thus, a novel fluorescence biosensor for the detection of TYR and ACP activity based on N-GQDs was constructed. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of TYR and ACP in the range of 0.43-3.85 U mL -1 and 0.04-0.7 mU mL -1 with a detection limit of 0.15 U mL -1 and 0.014 mU mL -1 , respectively. The feasibility of the proposed biosensor in real samples assay was also studied and satisfactory results were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of modified atmosphere packaging on 'Star Ruby' grapefruit phytochemicals.
Chaudhary, Priyanka R; Jayaprakasha, G K; Porat, Ron; Patil, Bhimanagouda S
2015-01-28
Modified atmosphere packaging (MAP) can extend the shelf life of salads, vegetables, and fruits by generating a storage environment with low O2, high CO2, and high humidity. The current study investigates the effect of modified atmosphere and humidity generated by two plastic films, microperforated bags (MIPBs) and macroperforated bags (MAPBs), on the levels of phytochemicals present in 'Star Ruby' grapefruits (Citrus paradisi, Macf.) stored for 16 weeks at 10 °C. Control fruits were stored without any packaging film. Juice samples were analyzed every 4 weeks for ascorbic acid, carotenoids, limonoids, flavonoids, and furocoumarins and assessed for quality parameters. MAP significantly reduced weight loss compared to control grapefruits. Control fruits had more β-carotene, lycopene, and furocoumarin compared with the fruits in MAP. Flavonoid content was highest in fruits stored in MAPB (P < 0.05), while fruits stored in MIPB showed no significant difference in flavonoid content compared to control (P > 0.05). The MAP treatments did not significantly affect ascorbic acid, limonoids, or fruit quality parameters, including total soluble solids, acidity, ripening ratio, decay and disorders, fruit taste, and off-flavors after 16 weeks of storage. These results suggest that MAP can be used to maintain the quality of 'Star Ruby' grapefruit with no detrimental effect on health-promoting phytochemicals.
Dhale, Mohan A; Javagal, Manjunatha; Puttananjaiah, Mohan-Kumari H
2018-05-03
Monascus purpureus is known to produce several coloured secondary metabolites. In this study, M. purpureus CFR 410-11 mutant fermented with rice was dried and extracted in hexane for purification of pigment. The purity of the isolated pigment was confirmed by different chromatography techniques. The spectroscopic analysis revealed its structural identity as rubropunctatin. The antioxidant potencies of isolated rubropunctatin were evaluated. Rubropunctatin scavenged 16% 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical and inhibited 20% superoxide generation at 8 μg/ml concentration. The multiple antioxidant abilities of rubropunctatin were evidenced by its ferric reducing capacity also. The oxidative damage of BSA protein was induced by the metal catalyzed oxidation (MCO) by Fe 2+ /H 2 O 2 . The protective effects of rubropunctatin and M. purpureus (MTCC-410 and CFR 410-11) extracts were compared with glutathione and ascorbic acid. The M. purpureus extracts and rubropunctatin inhibited the formation of carbonyl content and protein oxidation assayed by SDS-PAGE. Rubropunctatin (42-169 μM) efficiently inhibited the protein oxidation compared to glutathione (48-195 μM) and ascorbic acid (85-340 μM) by scavenging the superoxide and hydroxyl radical generated in the system. Copyright © 2018 Elsevier B.V. All rights reserved.
Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.
Biffinger, Justin C; Byrd, Jacqueline N; Dudley, Breanna L; Ringeisen, Bradley R
2008-01-18
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the presence of oxygen, power densities of 270+/-10, 350+/-20, and 120+/-10 W/m(3) were recorded from the mini-MFC for glucose, fructose, and ascorbic acid electron donors, respectively, while sucrose and acetate produced no response. The power produced from glucose decreased considerably (
21 CFR 182.8013 - Ascorbic acid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...
21 CFR 182.8013 - Ascorbic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...
21 CFR 182.8013 - Ascorbic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...
21 CFR 182.8013 - Ascorbic acid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ascorbic acid. 182.8013 Section 182.8013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8013 Ascorbic acid. (a...
PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN
PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN
ABSTRACT
Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...
21 CFR 182.3013 - Ascorbic acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ascorbic acid. 182.3013 Section 182.3013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... acid. (a) Product. Ascorbic acid. (b) Conditions of use. This substance is generally recognized as safe...
Nutritional aspects of ascorbic acid: uses and abuses.
Vilter, R W
1980-12-01
Ascorbic acid in physiological doses is essential for the normal functioning of the human body. Larger doses are required to treat a severe deficiency of vitamin C intake, as in the case of scurvy. Occasionally, massive doses may be required to treat a metabolic defect involving ascorbic acid. There has been some mention of megadose therapy with ascorbic acid for the prevention of colds, the improved healing of wounds and even the treatment of cancer, but no acceptable scientific data have been presented. In fact, in a few instances, such therapy has proved injurious.
Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1
Yang, Joan C.; Loewus, Frank A.
1975-01-01
l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288
Diffusive properties of Vitamin C aqueous solutions by quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Migliardo, F.; Magazù, S.; Migliardo, P.
2001-07-01
Quasi elastic neutron scattering (QENS) results on aqueous solutions of L-ascorbic acid (Vitamin C) are reported. Data, collected by the IRIS spectrometer at the ISIS facility on partially deuterated L-ascorbic acid in D 2O and on hydrogenated L-ascorbic acid in H 2O, allow to characterize the diffusive dynamics of both hydrated Vitamin C and water, revealing that this latter is strongly affected by the presence of L-ascorbic acid and furnishing a hydration number value of ∼5 at T=33°C.
Intravenous ascorbic acid to prevent and treat cancer-associated sepsis?
2011-01-01
The history of ascorbic acid (AA) and cancer has been marked with controversy. Clinical studies evaluating AA in cancer outcome continue to the present day. However, the wealth of data suggesting that AA may be highly beneficial in addressing cancer-associated inflammation, particularly progression to systemic inflammatory response syndrome (SIRS) and multi organ failure (MOF), has been largely overlooked. Patients with advanced cancer are generally deficient in AA. Once these patients develop septic symptoms, a further decrease in ascorbic acid levels occurs. Given the known role of ascorbate in: a) maintaining endothelial and suppression of inflammatory markers; b) protection from sepsis in animal models; and c) direct antineoplastic effects, we propose the use of ascorbate as an adjuvant to existing modalities in the treatment and prevention of cancer-associated sepsis. PMID:21375761
Kehinde, Olaniyi S; Christianah, Oyewopo I; Oyetunji, Oyewopo A
2018-01-01
The effect of the concomitant use of sodium benzoate (NaB) and ascorbic acid on human health remains controversial. Therefore, the current study is designed to investigate the effect of NaB and ascorbic acid on the testicular function of adult Wistar rats. Adult Wistar rats were randomly allotted into Control (vehicle; received 1 ml of distilled water), NaB-treated (SB-treated; received 100 mg/kg body weight; b.w ), ascorbic acid-treated (AA-treated; received 150 mg/kg b.w ) and NaB+ ascorbic acid-treated (SB+AA-treated) groups. The treatment lasted for 28 days and the administration was given orally. The body weight change was monitored. Semen analysis, biochemical assay and histological examination were performed. Treatment with NaB significantly altered the cytoarchitecture of testicular tissue, sperm quality, testicular endocrine function and oxidative stress status without any alteration in body weight gain compared to control. In addition, treatment with NaB+ ascorbic acid exacerbated testicular tissue disruption, impaired sperm quality and testicular endocrine impairment with significant reduction in oxidative stress and unaltered body weight gain when compared with NaB-treated group. This study suggests that ascorbic acid and NaB synergistically aggravates testicular dysfunction. This is independent of oxidative stress status.
Vandegeer, Rebecca K; Powell, Kevin S; Tausz, Michael
2016-07-20
Plant antioxidants ascorbate and glutathione play an important role in regulating potentially harmful reactive oxygen species produced in response to virus infection. Barley yellow dwarf virus is a widespread viral pathogen that systemically infects cereal crops including wheat, barley and oats. In addition, rising atmospheric CO 2 will alter plant growth and metabolism, including many potential but not well understood effects on plant-virus interactions. In order to better understand the wheat-BYDV interaction and any potential changes under elevated CO 2 , the total concentration and oxidised fraction of ascorbate and glutathione was measured in leaves of a susceptible wheat cultivar (Triticum aestivum L. 'Yitpi') infected with Barley yellow dwarf virus-PAV (Padi Avenae virus) and grown under elevated CO 2 in controlled environment chambers. Virus infection decreased total leaf ascorbate and glutathione concentrations and increased the fraction of oxidised ascorbate (dehydroascorbate). Elevated CO 2 decreased the fraction of oxidised ascorbate. In this work, we demonstrate that systemic infection by a phloem-restricted virus weakens the antioxidant pools of ascorbate and glutathione. In addition, elevated CO 2 may decrease oxidative stress, for example, from virus infection, but there was no direct evidence for an interactive effect between treatments. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ioannidi, Eugenia; Kalamaki, Mary S; Engineer, Cawas; Pateraki, Irene; Alexandrou, Dimitris; Mellidou, Ifigeneia; Giovannonni, James; Kanellis, Angelos K
2009-01-01
L-ascorbate (the reduced form of vitamin C) participates in diverse biological processes including pathogen defence mechanisms, and the modulation of plant growth and morphology, and also acts as an enzyme cofactor and redox status indicator. One of its chief biological functions is as an antioxidant. L-ascorbate intake has been implicated in the prevention/alleviation of varied human ailments and diseases including cancer. To study the regulation of accumulation of this important nutraceutical in fruit, the expression of 24 tomato (Solanum lycopersicon) genes involved in the biosynthesis, oxidation, and recycling of L-ascorbate during the development and ripening of fruit have been characterized. Taken together with L-ascorbate abundance data, the results show distinct changes in the expression profiles for these genes, implicating them in nodal regulatory roles during the process of L-ascorbate accumulation in tomato fruit. The expression of these genes was further studied in the context of abiotic and post-harvest stress, including the effects of heat, cold, wounding, oxygen supply, and ethylene. Important aspects of the hypoxic and post-anoxic response in tomato fruit are discussed. The data suggest that L-galactose-1-phosphate phosphatase could play an important role in regulating ascorbic acid accumulation during tomato fruit development and ripening.
Wade, Kaitlin H; Forouhi, Nita G; Cook, Derek G; Johnson, Paul; McConnachie, Alex; Morris, Richard W; Rodriguez, Santiago; Ye, Zheng; Ebrahim, Shah; Padmanabhan, Sandosh; Watt, Graham; Bruckdorfer, K Richard; Wareham, Nick J; Whincup, Peter H; Chanock, Stephen; Sattar, Naveed; Lawlor, Debbie A; Davey Smith, George; Timpson, Nicholas J
2015-01-01
Background: Observational studies showed that circulating l-ascorbic acid (vitamin C) is inversely associated with cardiometabolic traits. However, these studies were susceptible to confounding and reverse causation. Objectives: We assessed the relation between l-ascorbic acid and 10 cardiometabolic traits by using a single nucleotide polymorphism in the solute carrier family 23 member 1 (SLC23A1) gene (rs33972313) associated with circulating l-ascorbic acid concentrations. The observed association between rs33972313 and cardiometabolic outcomes was compared with that expected given the rs33972313-l-ascorbic acid and l-ascorbic acid–outcome associations. Design: A meta-analysis was performed in the following 5 independent studies: the British Women's Heart and Health Study (n = 1833), the MIDSPAN study (n = 1138), the Ten Towns study (n = 1324), the British Regional Heart Study (n = 2521), and the European Prospective Investigation into Cancer (n = 3737). Results: With the use of a meta-analysis of observational estimates, inverse associations were shown between l-ascorbic acid and systolic blood pressure, triglycerides, and the waist-hip ratio [the strongest of which was the waist-hip ratio (−0.13-SD change; 95% CI: −0.20-, −0.07-SD change; P = 0.0001) per SD increase in l-ascorbic acid], and a positive association was shown with high-density lipoprotein (HDL) cholesterol. The variation at rs33972313 was associated with a 0.18-SD (95% CI: 0.10-, 0.25-SD; P = 3.34 × 10−6) increase in l-ascorbic acid per effect allele. There was no evidence of a relation between the variation at rs33972313 and any cardiometabolic outcome. Although observed estimates were not statistically different from expected associations between rs33972313 and cardiometabolic outcomes, estimates for low-density lipoprotein cholesterol, HDL cholesterol, triglycerides, glucose, and body mass index were in the opposite direction to those expected. Conclusions: The nature of the genetic association exploited in this study led to limited statistical application, but despite this, when all cardiometabolic traits were assessed, there was no evidence of any trend supporting a protective role of l-ascorbic acid. In the context of existing work, these results add to the suggestion that observational relations between l-ascorbic acid and cardiometabolic health may be attributable to confounding and reverse causation. PMID:25527764
Wade, Kaitlin H; Forouhi, Nita G; Cook, Derek G; Johnson, Paul; McConnachie, Alex; Morris, Richard W; Rodriguez, Santiago; Ye, Zheng; Ebrahim, Shah; Padmanabhan, Sandosh; Watt, Graham; Bruckdorfer, K Richard; Wareham, Nick J; Whincup, Peter H; Chanock, Stephen; Sattar, Naveed; Lawlor, Debbie A; Davey Smith, George; Timpson, Nicholas J
2015-01-01
Observational studies showed that circulating L-ascorbic acid (vitamin C) is inversely associated with cardiometabolic traits. However, these studies were susceptible to confounding and reverse causation. We assessed the relation between L-ascorbic acid and 10 cardiometabolic traits by using a single nucleotide polymorphism in the solute carrier family 23 member 1 (SLC23A1) gene (rs33972313) associated with circulating L-ascorbic acid concentrations. The observed association between rs33972313 and cardiometabolic outcomes was compared with that expected given the rs33972313-L-ascorbic acid and L-ascorbic acid-outcome associations. A meta-analysis was performed in the following 5 independent studies: the British Women's Heart and Health Study (n = 1833), the MIDSPAN study (n = 1138), the Ten Towns study (n = 1324), the British Regional Heart Study (n = 2521), and the European Prospective Investigation into Cancer (n = 3737). With the use of a meta-analysis of observational estimates, inverse associations were shown between L-ascorbic acid and systolic blood pressure, triglycerides, and the waist-hip ratio [the strongest of which was the waist-hip ratio (-0.13-SD change; 95% CI: -0.20-, -0.07-SD change; P = 0.0001) per SD increase in L-ascorbic acid], and a positive association was shown with high-density lipoprotein (HDL) cholesterol. The variation at rs33972313 was associated with a 0.18-SD (95% CI: 0.10-, 0.25-SD; P = 3.34 × 10⁻⁶) increase in L-ascorbic acid per effect allele. There was no evidence of a relation between the variation at rs33972313 and any cardiometabolic outcome. Although observed estimates were not statistically different from expected associations between rs33972313 and cardiometabolic outcomes, estimates for low-density lipoprotein cholesterol, HDL cholesterol, triglycerides, glucose, and body mass index were in the opposite direction to those expected. The nature of the genetic association exploited in this study led to limited statistical application, but despite this, when all cardiometabolic traits were assessed, there was no evidence of any trend supporting a protective role of L-ascorbic acid. In the context of existing work, these results add to the suggestion that observational relations between L-ascorbic acid and cardiometabolic health may be attributable to confounding and reverse causation.
NASA Astrophysics Data System (ADS)
Charrier, Jessica G.; Anastasio, Cort
2011-12-01
Inhalation of ambient particulate matter causes morbidity and mortality in humans. One hypothesized mechanism of toxicity is the particle-induced formation of reactive oxygen species (ROS) - including the highly damaging hydroxyl radical ( rad OH) - followed by inflammation and a variety of diseases. While past studies have found correlations between ROS formation and a variety of metals, there are no quantitative measurements of rad OH formation from transition metals at concentrations relevant to 24-hour ambient particulate exposure. This research reports specific and quantitative measurements of rad OH formation from 10 individual transition metals (and several mixtures) in a cell-free surrogate lung fluid (SLF) with four antioxidants: ascorbate, citrate, glutathione, and uric acid. We find that Fe and Cu can produce rad OH under all antioxidant conditions as long as ascorbate is present and that mixtures of the two metals synergistically increase rad OH production. Manganese and vanadium can also produce rad OH under some conditions, but given that their ambient levels are typically very low, these metals are not likely to chemically produce significant levels of rad OH in the lung fluid. Cobalt, chromium, nickel, zinc, lead, and cadmium do not produce rad OH under any of our experimental conditions. The antioxidant composition of our SLF significantly affects rad OH production from Fe and Cu: ascorbate is required for rad OH formation, citrate increases rad OH production from Fe, and both citrate and glutathione suppress rad OH production from Cu. MINTEQ ligand speciation modeling indicates that citrate and glutathione affect rad OH production by changing metal speciation, altering the reactivity of the metals. In the most realistic SLF (i.e., with all four antioxidants), Fe generates approximately six times more rad OH than does the equivalent amount of Cu. Since levels of soluble Fe in PM are typically higher than those of Cu, our results suggest that Fe dominates the chemical generation of rad OH from deposited particles in the lungs.
Relative hyperoxaluria, crystalluria and haematuria after megadose ingestion of vitamin C.
Auer, B L; Auer, D; Rodgers, A L
1998-09-01
Long-term or high-dosage consumption of vitamin C may play a role in calcium oxalate kidney stone formation. The present study was undertaken to determine the biochemical and physicochemical risk factors in a male subject who developed haematuria and calcium oxalate crystalluria after ingestion of large doses of ascorbic acid for 8 consecutive days. Twenty-four-hour urine samples were collected before and during the ascorbic acid ingestion period as well as after the detection of haematuria. A special procedure was implemented for urine collections to allow for oxalate, ascorbate and other urinalysis. Oxalate was determined in the presence of EDTA to prevent in vitro conversion to ascorbic acid, whereas ascorbate itself was determined by manual titration in a redox method using the dye dichlorophenolindophenol. Urinalysis data were used to compute calcium oxalate relative supersaturations and Tiselius risk indices, whereas scanning electron microscopy was used to examine urinary deposits. Oxalate excretion increased by about 350% during ascorbate ingestion before haematuria. Ascorbate concentrations also increased dramatically but appeared to reach a plateau maximum. Increasing calcium excretion was accompanied by decreasing potassium and phosphate values. The calcium oxalate relative supersaturation and Tiselius risk index increased during vitamin C ingestion and large aggregates of calcium oxalate dihydrate crystals were observed by scanning electron microscopy immediately after the detection of haematuria. High percentage metabolic conversion of ascorbate to oxalate in this subject caused relative hyperoxaluria and crystalluria, the latter manifesting itself as haematuria. Clinicians need to be alerted to the potential dangers of large dose ingestion of vitamin C in some individuals.
The high affinity of small-molecule antioxidants for hemoglobin.
Puscas, Cristina; Radu, Luana; Carrascoza, Francisco; Mot, Augustin C; Amariei, Diana; Lungu, Oana; Scurtu, Florina; Podea, Paula; Septelean, Raluca; Matei, Alina; Mic, Mihaela; Attia, Amr A; Silaghi-Dumitrescu, Radu
2018-06-18
Hemoglobin has previously been shown to display ascorbate peroxidase and urate peroxidase activity, with measurable Michaelis-Menten parameters that reveal a particularly low Km for ascorbate as well as for urate - lower than the respective in vivo concentrations of these antioxidants in blood. Also, direct detection of a hemoglobin-ascorbate interaction was possible by monitoring the 1H-NMR spectrum of ascorbate in the presence of hemoglobin. The relative difference in structures between ascorbate and urate may raise the question as to exactly what the defining structural features would be, for a substrate that binds to hemoglobin with high affinity. Reported here are Michaelis-Menten parameters for hemoglobin acting as peroxidase against a number of other substrates of varying structures - gallate, caffeate, rutin, 3-hydroxyflavone, 3,6-dihydroxyflavone, quercetin, epicatechin, luteolin - all with high affinities (some higher than those of physiologically-relevant redox partners of Hb - ascorbate and urate). Moreover, this high affinity appears general to animal hemoglobins. 1 H-NMR and 13 C-NMR spectra reveal a general pattern wherein small hydrophilic antioxidants appear to all have their signals affected, presumably due to binding to hemoglobin. Fluorescence and calorimetry measurements confirm these conclusions. Docking calculations confirm the existence of binding sites on hemoglobin and on myoglobin for ascorbate as well as for other antioxidants. Support is found for involvement of Tyr42 in binding of three out of the four substrates investigated in the case of hemoglobin (including ascorbate and urate, as blood-contained relevant substrates), but also for Tyr145 (with urate and caffeate) and Tyr35 (with gallate). Copyright © 2018 Elsevier Inc. All rights reserved.
Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear.
Heinrich, Ulf-Rüdiger; Fischer, Ilka; Brieger, Jürgen; Rümelin, Andreas; Schmidtmann, Irene; Li, Huige; Mann, Wolf J; Helling, Kai
2008-05-01
Noise-induced hearing loss can be caused, among other causes, by increased nitric oxide (NO) production in the inner ear leading to nitroactive stress and cell destruction. Some studies in the literature suggest that the degree of hearing loss (HL) could be reduced in an animal model through ascorbic acid supplementation. To identify the effect of ascorbic acid on tissue-dependent NO content in the inner ear of the guinea pig, we determined the local NO production in the organ of Corti and the lateral wall separately 6 hours after noise exposure. Prospective animal study in guinea pigs. Over a period of 7 days, male guinea pigs were supplied with minimum (25 mg/kg body weight/day) and maximum (525 mg/kg body weight/day) ascorbic acid doses, and afterwards exposed to noise (90 dB sound pressure level for 1 hour). The acoustic-evoked potentials were recorded before and after noise exposure. The organ of Corti and the lateral wall were incubated differently for 6 hours in culture medium, and the degree of NO production was determined by chemiluminescence. Ascorbic acid treatment reduced the hearing threshold shift after noise exposure depending on concentration. When the maximum ascorbic acid dose was substituted, NO production was significantly reduced in the lateral wall after noise exposure and slightly reduced in the organ of Corti. Oral supplementation of the natural radical scavenger ascorbic acid reduces the NO-production rate in the inner ear in noisy conditions. This finding supports the concept of inner ear protection by ascorbic acid supplementation.
Boekholdt, S Matthijs; Meuwese, Marijn C; Day, Nicholas E; Luben, Robert; Welch, Ailsa; Wareham, Nicholas J; Khaw, Kay-Tee
2006-09-01
High plasma concentrations of ascorbic acid, a marker of fruit and vegetable intake, are associated with low risk of coronary artery disease. Whether this relationship is explained by a reduction in systemic inflammation is unclear. We investigated the relationship between ascorbic acid plasma concentration and coronary artery disease risk, and in addition whether this relationship depended on classical risk factors and C-reactive protein (CRP) concentration. We used a prospective nested case-control design. The study consisted of 979 cases and 1794 controls (1767 men and 1006 women). Increasing ascorbic acid quartiles were associated with lower age, BMI, systolic and diastolic blood pressure, and CRP concentration, but with higher HDL-cholesterol concentration. No associations existed between ascorbic acid concentration and total cholesterol concentration or LDL-cholesterol concentration. When data from men and women were pooled, the risk estimates decreased with increasing ascorbic acid quartiles such that people in the highest ascorbic acid quartile had an odds ratio for future coronary artery disease of 0.67 (95 % CI 0.52, 0.87) compared with those in the lowest quartile (P for linearity=0.001). This relationship was independent of sex, age, diabetes, smoking, BMI, LDL-cholesterol, HDL-cholesterol, systolic blood pressure and CRP level. These data suggest that the risk reduction associated with higher ascorbic acid plasma concentrations, a marker of fruit and vegetable intake, is independent of classical risk factors and also independent of CRP concentration.
Hu, Y; Mitchell, K M; Albahadily, F N; Michaelis, E K; Wilson, G S
1994-10-03
The in vivo measurement of the rapid changes in the extracellular concentrations of L-glutamic acid in the mammalian brain during normal neuronal activity or following excessive release due to episodes of anoxia or ischemia has not been possible to this date. Current techniques for the measurement of the release of endogenous glutamate into the extracellular space of the central nervous system are relatively slow and do not measure the actual concentration of free glutamate in the extracellular space. An enzyme-based electrode with rapid response times (about 1 s) and high degree of sensitivity (less than 2 microM) and selectivity for L-glutamic acid is described in this paper. This electrode has both L-glutamate and ascorbate oxidase immobilized on its surface. The latter enzyme removes almost completely any interferences produced by the high levels of extracellular ascorbate present in brain tissue. The response of the electrode to glutamate and other potentially interfering substances was fully characterized in vitro and its selectivity, sensitivity and rapidity in responding to a rise in extracellular glutamate concentrations was also demonstrated in vivo. Placement of the electrode in the dentate gyrus of the hippocampus led to the detection of both KCl-induced release of L-glutamic acid and the release induced by stimulation of the axons in the perforant pathway. The development of this selective, sensitive and rapidly responding glutamate sensor should make it now possible to measure the dynamic events associated with glutamate neurotransmission in the central nervous system.
Chairam, Sanoe; Sriraksa, Worawit; Amatatongchai, Maliwan; Somsook, Ekasith
2011-01-01
A poly(aniline-co-m-ferrocenylaniline) was successfully synthesized on a glassy carbon electrode (GCE) by electrochemical copolymerization using a scan potential range from −0.3 to +0.9 V (vs. Ag/AgCl) in 0.5 M H2SO4 containing 30% acetonitrile (ACN), 0.1 M aniline (Ani) and 0.005 M m-ferrocenyaniline (m-FcAni). The field emission scanning electron microscope (FESEM) and electrochemical methods were used to characterize the poly(Ani-co-m-FcAni) modified electrode. The poly(Ani-co-m-FcAni)/GCE exhibited excellent electrocatalytic oxidation of ascorbic acid (AA) in citrate buffer solution (CBS, pH 5.0). The anodic peak potential of AA was shifted from +0.55 V at the bare GCE to +0.25 V at the poly(Ani-co-m-FcAni)/GCE with higher current responses than those seen on the bare GCE. The scan number at the 10th cycle was selected as the maximum scan cycle in electrochemical polymerization. The limit of detection (LOD) was estimated to be 2.0 μM based on the signal-to-noise ratio (S/N = 3). The amperometric responses demonstrated an excellent selectivity for AA determination over glucose (Glu) and dopamine (DA). PMID:22346636
Harakeh, S; Jariwalla, R J
1991-12-01
To elucidate the action of vitamin C on pathogenic human retroviruses, we investigated and compared the effects of noncytoxic concentrations of ascorbic acid (AA), its calcium salt (Ca-ascorbate), and two thiol-based reducing agents [glutathione (GSH) and N-acetyl-L-cysteine (NAC)] against human immunodeficiency virus (HIV)-1 replication in chronically infected T lymphocytes. Ca-ascorbate reduced extracellular HIV reverse transcriptase (RT) activity by about the same magnitude as the equivalent dose of AA. Long-term experiments showed that continuous presence of ascorbate was necessary for HIV suppression. NAC (10 mmol/L) caused less than twofold inhibition of HIV RT and conferred a synergistic effect (approximately eightfold inhibition) when tested simultaneously with AA (0.426 mmol/L). In contrast, nonesterified GSH (less than or equal to 1.838 mmol/L) had no effect on RT concentrations and did not potentiate the anti-HIV effect of AA. These results further support the potent antiviral activity of ascorbate and suggest its therapeutic value in controlling HIV infection in combination with thiols.
Gönüllü, U; Sensoy, D; Uner, M; Yener, G; Altinkurt, T
2006-01-01
Calcium ascorbate (CAAS), which is a hydrophilic and stable derivative of ascorbic acid (vitamin C) (AA), is commonly used in foods as an antioxidative agent. There are very limited reports on its dermatological use in the literature. In this paper, it is reported that CAAS could be used in place of ascorbic acid, which has chemical stability problems in topicals due to degradation by oxidation. The aim of this study was to investigate the skin-hydrating effect of CAAS compared to those of ascorbic acid and tocopherol (vitamin E) (T), which is a potential skin moisturizer and commonly used in dermocosmetics. Vitamins are incorporated into two kinds of base creams (o/w and w/o emulsion creams), alone and in combinations. Formulations were applied to the inner forearms of volunteers, and skin conductance was measured by using a corneometer. Data obtained were statistically evaluated. It was found that the skin-hydrating effect of CAAS was higher than that of AA and lower than that of T. However, its effect was very close to that of T.
Ascorbate and low concentrations of FeSO4 induce Ca2+-dependent pore in rat liver mitochondria.
Brailovskaya, I V; Starkov, A A; Mokhova, E N
2001-08-01
Oxidative stress is one of the most frequent causes of tissue and cell injury in various pathologies. The molecular mechanism of mitochondrial damage under conditions of oxidative stress induced in vitro with low concentrations of FeSO4 and ascorbate (vitamin C) was studied. FeSO4 (1-4 microM) added to rat liver mitochondria that were incubated in the presence of 2.3 mM ascorbate induced (with a certain delay) a decrease in membrane potential and high-amplitude swelling. It also significantly decreased the ability of mitochondria to accumulate exogenous Ca2+. All the effects of FeSO4 + ascorbate were essentially prevented by cyclosporin A, a specific inhibitor of the mitochondrial Ca2+-dependent pore (also known as the mitochondrial permeability transition). EGTA restored the membrane potential of mitochondria de-energized with FeSO4 + ascorbate. We hypothesize that oxidative stress induced in vitro with FeSO4 and millimolar concentrations of ascorbate damages mitochondria by inducing the cyclosporin A-sensitive Ca2+-dependent pore in the inner mitochondrial membrane.
Warren, Jeffrey J.; Mayer, James M.
2010-01-01
Ascorbate (Vitamin C) is a ubiquitous biological cofactor. While its aqueous solution chemistry has long been studied, many in vivo reactions of ascorbate occur in enzyme active sites or at membrane interfaces, which have varying local environments. This report shows that the rate and driving force of oxidations of two ascorbate derivatives by the TEMPO radical (2,2′-6,6′-tetramethylpiperidine-1-oxyl) in acetonitrile are very sensitive to the presence of various additives. These reactions proceed by the transfer of a proton and an electron (a hydrogen atom), as is typical of biological ascorbate reactions. The measured rate and equilibrium constants vary substantially with added water or other polar solutes in acetonitrile solutions, indicating large shifts in the reducing power of ascorbate. The correlation of rate and equilibrium constants indicates that this effect has a thermochemical origin rather than being a purely kinetic effect. This contrasts with previous examples of solvent effects on hydrogen atom transfer reactions. Potential biological implications of this apparently unique effect are discussed. PMID:20476757
Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.
Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M
2006-04-01
The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p < 0.001). This suggests that use of ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.
Layer-by-Layer Alginate and Fungal Chitosan Based Edible Coatings Applied to Fruit Bars.
Bilbao-Sainz, Cristina; Chiou, Bor-Sen; Punotai, Kaylin; Olson, Donald; Williams, Tina; Wood, Delilah; Rodov, Victor; Poverenov, Elena; McHugh, Tara
2018-05-30
Food waste is currently being generated at an increasing rate. One proposed solution would be to convert it to biopolymers for industrial applications. We recovered chitin from mushroom waste and converted it to chitosan to produce edible coatings. We then used layer-by-layer (LbL) electrostatic deposition of the polycation chitosan and the polyanion alginate to coat fruit bars enriched with ascorbic acid. The performance of the LbL coatings was compared with those containing single layers of fungal chitosan, animal origin chitosan and alginate. Bars containing alginate-chitosan LbL coatings showed increased ascorbic acid content, antioxidant capacity, firmness and fungal growth prevention during storage. Also, the origin of the chitosan did not affect the properties of the coatings. Mushroom stalk bases could be an alternative source for isolating chitosan with similar properties to animal-based chitosan. Also, layer-by-layer assembly is a cheap, simple method that can improve the quality and safety of fruit bars. © 2018 Institute of Food Technologists®.
Lin, Shuw-Yuan; Lai, Wan-Wen; Chou, Chi-Chung; Kuo, Hsiu-Maan; Li, Te-Mao; Chung, Jing-Gung; Yang, Jen-Hung
2006-12-01
Vitamin C has been reported to be useful in the treatment and prevention of cancer. Inconsistent effects from growth stimulation to induction of apoptosis of malignant tumor cells, however, have been reported. Melanoma is an increasingly common and potentially lethal malignancy. It was reported that melanoma cells were more susceptible to ascorbate toxicity than any other tumor cells. The mechanisms accounting for ascorbate-induced apoptosis in human melanoma cells, however, have remained unclear. This study was undertaken to investigate the effect of sodium ascorbate on cytotoxicity and apoptosis in human malignant melanoma A375.S2 cells. A375.S2 cells were incubated with a certain range of concentrations of sodium ascorbate for various time periods. In order to examine the effects of sodium ascorbate on cell proliferation, cell cycle, apoptosis and necrosis, we performed 4,6-diamidino-2-phenylindole dihydrochloride assays and flow cytometry analysis. Polymerase chain reaction was used to examine the mRNA levels of p53, p21, p27, cyclin A, cyclin E, CDK2 and CDK4, which are associated with cell cycle S-phase arrest and apoptosis. Flow cytometric analysis showed that sodium ascorbate significantly induced cell cycle arrest and apoptosis in the A375.S2 cell line in a dose-dependent manner. The increased expressions of p53 and p21, and the decreased expressions of cyclin A, cyclin E, CDK2 and CDK4, indicated the cell cycle arrest at G1/S phase after the cells had been treated with sodium ascorbate. Induction of apoptosis involved an increase in the levels of p53, p21 and cellular Ca, and a decrease in mitochondrial membrane potential and activation of caspase 3 before culminating in apoptosis in sodium ascorbate-treated A375.S2 cells.
Are medication restrictions before FOBT necessary?
Konrad, Gerald; Katz, Alan
2012-01-01
Abstract Objective To determine whether medication interventions enhance the sensitivity and specificity of guaiac-based fecal occult blood testing (FOBT) when screening for colorectal cancer (CRC). Data sources We searched PubMed-MEDLINE, CINAHL, and the Cochrane databases using the MeSH headings occult blood, feces/analysis, and guaiac/analysis, linking them to variations of anticoagulants, heparin, warfarin, iron, aspirin, nonsteroidal anti-inflammatory drugs (NSAIDs), clopidogrel, cyclooxygenase-2 inhibitors, and ascorbic acid (vitamin C). Study selections were limited to English studies involving humans. Study selection All resulting titles and abstracts were reviewed for studies that included manipulation of medications associated with guaiac-based FOBT. If the study’s relevance was unclear from the abstract, the full article was reviewed. The search resulted in 31 pertinent studies. Synthesis No studies addressed the effects of medication interventions on the sensitivity or specificity of FOBT screening. Randomized controlled trials, however, showed no increase in the rate of positive results among those taking NSAIDs. The literature is mixed regarding the effect of NSAIDs on the positive predictive value of a positive FOBT result, although no change in positive predictive value has been shown for warfarin. Iron will not affect FOBT results in vivo. Ascorbic acid might inhibit positive FOBT results both in vitro and in vivo, but it has not been studied in screening populations. Conclusion Studies evaluating the effects of medication intervention on FOBT screening for CRC are limited by their lower quality and because they do not address sensitivity and specificity. Available evidence, however, does not suggest a benefit from withholding NSAIDs, anticoagulant medications, or iron during the screening period. These recommendations should be abandoned in order to maximize adherence to screening. Positive FOBT results obtained among patients taking these medications deserve full evaluation for CRC. Until further studies clarify the effect of ascorbic acid on FOBT screening, withholding this medication before testing seems prudent. PMID:22972722
Release of the antioxidants ascorbate and urate from a nitrergically-innervated smooth muscle.
Lilley, E; Gibson, A
1997-12-01
1. The main object of the present study was to determine whether ascorbate, an antioxidant which has been shown to protect nitric oxide (NO) from attack by scavenger molecules, might be released from nitrergically-innervated smooth muscle; ascorbate release from the rat anococcygeus was measured by use of h.p.l.c. with electrochemical detection. 2. Incubation of rat anococcygeus muscles in normal physiological salt solution (PSS; 30 min) resulted in release of ascorbate into the bathing medium (7.7 +/- 0.9 nmol g-1 tissue). This release was increased by 96% when muscles were incubated in high K+ (70 mM) PSS. The resting release of ascorbate was unaffected by tetrodotoxin (TTX; 1 microM), omega-conotoxin GVIA (10 nM) or omission of calcium ions from the PSS (with addition of 0.2 mM EGTA), but all three procedures attenuated the increased release observed under depolarizing conditions. Resting release of ascorbate was unaffected by glutamate (100 microM), aspartate (100 microM), gamma-aminobutyric acid (100 microM) or carbachol (50 microM). 3. A second h.p.l.c. peak, which always preceded the ascorbate peak, was identified as urate. Urate release from the anococcygeus, following 30 min incubation in normal PSS, was 64.6 +/- 12.7 nmol g-1 tissue but, unlike ascorbate, urate release was unchanged in high K+ PSS. In functional experiments, urate (100-400 microM) partially protected NO (15 microM)-induced relaxations of the rat anococcygeus from inhibition by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO; 50 microM), but not from inhibition by hydroquinone or duroquinone (both 100 microM). 4. Muscles chemically sympathectomized with 6-hydroxydopamine (6-OHDA, 500 microM; 2 h) still exhibited release of ascorbate (2.5 +/- 0.4 nmol g-1 tissue) and urate (22.2 +/- 2.9 nmol g-1 tissue); in both cases the release was similar to that observed in time-matched control tissues not exposed to 6-OHDA. High K+ PSS produced a TTX-sensitive increase in release of ascorbate, but not urate, from 6-OHDA-treated muscles. 5. The results demonstrate that significant amounts of ascorbate and urate are released from the rat anococcygeus muscle. Ascorbate, but not urate, release appears to be enhanced by activation of nerves which are resistant to 6-OHDA pretreatment. Since both antioxidants can protect NO from attack by scavenger molecules, their release in nitrergically-innervated tissues may be important for the provision of the correct redox environment to allow NO to fulfill its proposed neurotransmitter role.
Lin, Chih-Ching; Jih, Pei-Ju; Lin, Hsin-Hung; Lin, Jeng-Shane; Chang, Ling-Lan; Shen, Yu-Hsing; Jeng, Shih-Tong
2011-10-01
Wounding caused by rain, wind, and pathogen may lead plants to onset defense response. Previous studies indicated that mechanical wounding stimulates plants to generate nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). In this study, the functions of NO and H(2)O(2) after wounding in sweet potato (Ipomoea batatas cv. Tainung 57) was further analyzed. Mechanical wounding damaged cells and resulted in necrosis, but the presence of NO donors or NO scavenger might reduce or enhance the cell death caused by wounding, respectively. The amount of H(2)O(2) induced by wounding was also decreased or increased when plants were incubated with NO donors or NO scavenger, individually. These results indicate that NO may regulate H(2)O(2) generation to affect cell death. NO-induced proteins isolated from two-dimensional electrophoresis were identified to be Copper/Zinc superoxide dismutases (CuZnSODs). The activities of CuZnSODs and ascorbate peroxidase (APX) could be enhanced by NO. In addition, the expression of CuZnSOD and APX was induced by wounding via NO, and their expression was further stimulated by NO through the generation of cGMP. The influx of calcium ions and the activity of NADPH oxidase were also involved in the NO signal transduction pathway inducing APX expression. Collectively, the generation of H(2)O(2) in wounded plants might trigger cell death. Meanwhile, the production of NO induced by wounding stimulated signal transducers including cGMP, calcium ions, and H(2)O(2) to activate CuZnSOD and APX, which further decreased H(2)O(2) level and reduced the cell death caused by wounding.
Jongberg, Sisse; Tørngren, Mari Ann; Skibsted, Leif H
2018-01-15
Background: Ascorbate is often applied to enhance stability and robustness of brine-injected pork chops sold for retail, but may affect protein oxidation, while plant extracts are potential substitutes. Methods: Brine-injected pork chops (weight-gain ~12%, NaCl ~0.9%) prepared with ascorbate (225 ppm), green tea extract (25 ppm gallic acid equivalents (GAE)), or maté extract (25 ppm GAE) stored (5 °C, seven days) in high-oxygen atmosphere packaging (MAP: 80% O₂ and 20% CO₂) were analyzed for color changes, sensory quality, and protein oxidation compared to a control without antioxidant. Results: No significant differences were observed for green tea and maté extracts as compared to ascorbate when evaluated based on lipid oxidation derived off-flavors, except for stale flavor, which maté significantly reduced. All treatments increased the level of the protein oxidation product, α-aminoadipic semialdehyde as compared to the control, and ascorbate was further found to increase thiol loss and protein cross-linking, with a concomitant decrease in the sensory perceived tenderness. Conclusions: Green tea and maté were found to equally protect against lipid oxidation derived off-flavors, and maté showed less prooxidative activity towards proteins as compared to ascorbate, resulting in more tender meat. Maté is a valuable substitute for ascorbate in brine-injected pork chops.
Ladurner, Angela; Schmitt, Christoph A.; Schachner, Daniel; Atanasov, Atanas G.; Werner, Ernst R.; Dirsch, Verena M.; Heiss, Elke H.
2012-01-01
Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an arginine–citrulline conversion assay and HPLC analysis, respectively. Over a period of 4 h, ascorbate steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphorylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4 stabilization. PMID:22542797
Han, Min; Pendem, Suresh; Teh, Suet Ling; Sukumaran, Dinesh K; Wu, Feng; Wilson, John X
2010-01-01
Endothelial barrier dysfunction contributes to morbidity in sepsis. We tested the hypothesis that raising the intracellular ascorbate concentration protects the endothelial barrier from septic insult by inhibiting protein phosphatase type 2A. Monolayer cultures of microvascular endothelial cells were incubated with ascorbate, dehydroascorbic acid (DHAA), the NADPH oxidase inhibitors apocynin and diphenyliodonium, or the PP2A inhibitor okadaic acid and then were exposed to septic insult (lipopolysaccharide and interferon-gamma). Under standard culture conditions that depleted intracellular ascorbate, septic insult stimulated oxidant production and PP2A activity, dephosphorylated phosphoserine and phosphothreonine residues in the tight junction-associated protein occludin, decreased the abundance of occludin at cell borders, and increased monolayer permeability to albumin. NADPH oxidase inhibitors prevented PP2A activation and monolayer leak, showing that these changes required reactive oxygen species. Okadaic acid, at a concentration that inhibited PP2A activity and monolayer leak, prevented occludin dephosphorylation and redistribution, implicating PP2A in the response of occludin to septic insult. Incubation with ascorbate or DHAA raised intracellular ascorbate concentrations and mitigated the effects of septic insult. In conclusion, ascorbate acts within microvascular endothelial cells to inhibit septic stimulation of oxidant production by NADPH oxidase and thereby prevents PP2A activation, PP2A-dependent dephosphorylation and redistribution of occludin, and disruption of the endothelial barrier. Copyright 2009 Elsevier Inc. All rights reserved.
Abbasi, A; Niakousari, M
2008-05-15
The aim of this research was to determine shelf life stability of un-pasteurized lemon juice filled in clear or dark green glass bottles. Presence of light, time and temperature affect the ascorbic acid retention in citrus juices. Bottles were stored at room temperature (27 +/- 3 degrees C) and in the refrigerator (3 +/- 1 degrees C). Total soluble solids, total titrable acidity and pH value were measured every three weeks and analysis was carried out on ascorbic acid content by means of titration method in the presence of 2,6-dichlorophenol indophenol. The study was carried out for 12 weeks after which slight changes in color, taste and apparent texture in some samples were observed and ascorbic acid content reduced by 50%. Soluble solids content, pH value and total acidity were 5.5 degrees Brix, 2.73 and 5 g/100 mL, respectively which appeared not to be significantly influenced by storage time or conditions. Ascorbic acid content initially at 38.50 mg/100 mL was sharply reduced to about 22 mg/100 mL within the first three weeks of storage. The final ascorbic acid content of all samples was about 15 mg/100 mL. The deteriorative reaction of ascorbic acid in the juice at all conditions followed a first-order kinetic model with activation energy of 137 cal mol(-1).
Vitamin C transporter gene polymorphisms, dietary vitamin C and serum ascorbic acid.
Cahill, Leah E; El-Sohemy, Ahmed
2009-01-01
Vitamin C transporter proteins SVCT1 and SVCT2 are required for the absorption and transport of vitamin C in humans. This study aims to determine whether common SVCT genotypes modify the association between dietary vitamin C and serum ascorbic acid. Non-smoking men and women (n=1,046) aged 20-29 were participants of the Toronto Nutrigenomics and Health Study. Overnight fasting blood samples were collected to determine serum ascorbic acid concentrations by HPLC and to genotype for two SVCT1 (rs4257763 and rs6596473) and two SVCT2 (rs6139591 and rs2681116) polymorphisms. No diet-gene interactions were observed for the vitamin C transporter polymorphisms, however, the average (mean+/-SE) serum ascorbic acid concentrations differed between rs4257763 genotypes (GG: 24.4+/-1.3, GA: 26.8+/-1.1, AA: 29.7+/-1.4 micromol/l; p=0.002). For this polymorphism, the correlation between dietary vitamin C and serum ascorbic acid was only significant in subjects with a G allele. The SVCT2 polymorphisms also appeared to modify the strength of the diet-serum correlation. Our findings demonstrate that genetic variation in SVCT1 can influence serum ascorbic acid concentrations and that SVCT1 and SVCT2 genotypes modify the strength of the correlation between dietary vitamin C and serum ascorbic acid. Copyright © 2010 S. Karger AG, Basel.
Sreemantula, Satyanarayana; Nammi, Srinivas; Kolanukonda, Rajabhanu; Koppula, Sushruta; Boini, Krishna M
2005-01-01
Background The aerial parts of Vitis vinifera (common grape or European grape) have been widely used in Ayurveda to treat a variety of common and stress related disorders. In the present investigation, the seed extract of V. vinifera was evaluated for antistress activity in normal and stress induced rats. Furthermore, the extract was studied for nootropic activity in rats and in-vitro antioxidant potential to correlate its antistress activity. Methods For the evaluation of antistress activity, groups of rats (n = 6) were subjected to forced swim stress one hour after daily treatment of V. vinifera extract. Urinary vanillylmandelic acid (VMA) and ascorbic acid were selected as non-invasive biomarkers to assess the antistress activity. The 24 h urinary excretion of vanillylmandelic acid (VMA) and ascorbic acid were determined by spectrophotometric methods in all groups under normal and stressed conditions. The nootropic activity of the extract as determined from acquisition, retention and retrieval in rats was studied by conditioned avoidance response using Cook's pole climbing apparatus. The in vitro antioxidant activity was determined based on the ability of V. vinifera to scavenge hydroxyl radicals. Results Daily administration of V. vinifera at doses of 100, 200 and 300 mg/kg body weight one hour prior to induction of stress inhibited the stress induced urinary biochemical changes in a dose dependent manner. However, no change in the urinary excretion of VMA and ascorbic acid was observed in normal animals at all the doses studied. The cognition, as determined by the acquisition, retention and recovery in rats was observed to be dose dependent. The extract also produced significant inhibition of hydroxyl radicals in comparison to ascorbic acid in a dose dependent manner. Conclusion The present study provides scientific support for the antistress (adaptogenic), antioxidant and nootropic activities of V. vinifera seed extract and substantiate the traditional claims for the usage of grape fruits and seeds in stress induced disorders. PMID:15656916
Chen, Q; Hu, K; Miura, Y
1999-09-01
An ion chromatographic method was used to separate the species of L-ascorbic acid, sulfite and thiosulfate in their mixtures. This method is based on the separation of each anion in their mixtures by using a separation column, and then on the fluorimetric measurement of cerium (III) formed by a postcolumn reaction of cerium (IV) with the species of L-ascorbic acid, sulfite and thiosulfate in the effluent. The optimal conditions for separating and determining the above three species have been established. By using a 3 mmol/L carbonate eluent, the species of L-ascorbic acid, sulfite and thiosulfate could be eluted at the proper retention times of 1.7, 2.6 and 5.0 min, respectively, and these three anions could be separated completely. The effects of the concentrations of cerium (IV) and sulfuric acid in the postcolumn reaction solution on the chromatographic peak-height were tested in order to obtain the optimal peak-height. It was found that the peak-height at first increases rapidly with an increase in the concentration of cerium (IV) and sulfuric acid respectively up to a certain concertation, then increases slowly. These critical concentrations of cerium (IV) and sulfuric acid also depend on the amount of the analyte injected. Meanwhile the baseline signals of the sepectra increase with an increase in the concentration of cerium (IV). Some concentrations above the critical concentration of sulfuric acid could be selected as the optimal concentration of sulfuric acid, but the concentration of cerium (IV) should be optimized by establishing a compromise between the higher peak-height and the lower baseline signal. The detection limit of this method was found to be 1 mumol/L for thiosulfate when an amount of 100 microL analyte was injected.
Assay Dilution Factors Confound Measures of Total Antioxidant Capacity in Polyphenol-Rich Juices
Bolling, Bradley W.; Chen, Ya-Yen; Kamil, Alison G.; Chen, C-Y. Oliver
2016-01-01
The extent to which sample dilution factor (DF) affects total antioxidant capacity (TAC) values is poorly understood. Thus, we examined the impact of DF on the ORAC, FRAP, DPPH, and total phenols (TP) assays using pomegranate juice (PJ), grape juice (GJ), selected flavonoids, ascorbic acid, and ellagic acid. For ORAC, GJ was comparable to PJ at DF 750, but at DF 2000, the ORAC value of GJ was 40% more than PJ. Increasing DF increased GJ and PJ, DPPH, TP, and FRAP values 11% and 14%, respectively. Increased test concentrations of quercetin and catechin resulted in 51% and 126% greater ORAC values, but decreased naringenin by 68%. Flavonoids, but not ellagic acid or ascorbic acid, may contribute to the dilution effect on the variation of final TAC values. Thus, reporting TAC or TP using a single DF may introduce uncertainty about the confidence of TAC assay values, especially when comparing different juices. These results underscore the importance of using compatible test standards for reporting TAC values. PMID:22251245
Abd_Allah, Elsayed Fathi; Hashem, Abeer; Alqarawi, Abdulaziz Abdullah; Bahkali, Ali Hassan; Alwhibi, Mona S.
2015-01-01
Pot experiments were conducted to evaluate the damaging effects of salinity on Sesbania sesban plants in the presence and absence of arbuscular mycorrhizal fungi (AMF). The selected morphological, physiological and biochemical parameters of S. sesban were measured. Salinity reduced growth and chlorophyll content drastically while as AMF inoculated plants improved growth. A decrease in the number of nodules, nodule weight and nitrogenase activity was also evident due to salinity stress causing reduction in nitrogen fixation and assimilation potential. AMF inoculation increased these parameters and also ameliorated the salinity stress to some extent. Antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as non enzymatic antioxidants (ascorbic acid and glutathione) also exhibited great variation with salinity treatment. Salinity caused great alterations in the endogenous levels of growth hormones with abscisic acid showing increment. AMF inoculated plants maintained higher levels of growth hormones and also allayed the negative impact of salinity. PMID:25972748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong
2006-04-01
Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, {alpha}-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, {gamma}-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treatingmore » the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects.« less
Teleszko, Mirosława; Wojdyło, Aneta; Rudzińska, Magdalena; Oszmiański, Jan; Golis, Tomasz
2015-04-29
The aim of this study was to determine selected phytochemicals in berries of eight sea buckthorn (Hippophaë rhamnoides subsp. mongolica) cultivars, including lipophilic and hydrophilic compounds. In the experiment chromatographic analyses, GC (phytosterols and fatty acids), UPLC-PDA-FL, LC-MS (polyphenols), and HPLC (L-ascorbic acid), as well spectrophotometric method (total carotenoids) were used. The lipid fraction isolated from whole fruit contained 14 phytosterols (major compounds β-sitosterol > 24-methylenecykloartanol > squalene) and 11 fatty acids in the order MUFAs > SFAs > PUFAs. Carotenoids occurred in concentrations between 6.19 and 23.91 mg/100 g fresh weight (fw) (p < 0.05). The major polyphenol group identified in berries was flavonols (mean content of 311.55 mg/100 g fw), with the structures of isorhamnetin (six compounds), quercetin (four compounds), and kaempferol (one compound) glycosides. Examined sea buckthorn cultivars were characterized also by a high content of L-ascorbic acid in a range from 52.86 to 130.97 mg/100 g fw (p < 0.05).
Mahanom, H; Azizah, A; Dzulkifly, M
1999-12-01
The effect of oven drying at 50ᵒC ± 1ᵒC for 9 hour, 70ᵒC ± 1ᵒC for 5 hour and freeze drying on retention of chlorophyll, riboflavin, niacin, ascorbic acid and carotenoids in herbal preparation consisting of 8 medicinal plants was evaluated. The medicinal plants selected were leaves of Apium graveolens (saderi), Averrhoa bilimbi (belimbing buluh), Centella asiatica (pegaga), Mentha arvensis (pudina), Psidium guajava (jambu batu), Sauropus androgynous (cekor manis), Solanum nigrum (terung meranti) and Polygonum minus (kesum ). Results revealed that both type and conditions of the drying treatments affected retention of all phytochemicals analysed. Herbal preparation developed using oven drying was found to have inferior phytochemicals content compared to that obtained by freeze dryer. Nevertheless, the herbal preparation developed using all treatments still retain appreciable amount of phytochemicals studied, especially carotenoids, ascorbic acid, niacin and riboflavin and thus have potential for commercial purposes.
Liquid chromatographic determination of L-ascorbic acid in candies and soft drinks.
Maeda, Y; Ochi, S; Masui, T; Matubara, S
1988-01-01
The L-ascorbic acid (AsA) contents of candies and soft drinks available in the market were determined by liquid chromatography (LC). Samples are cleaned up on a disposable Sep-Pak C18 cartridge followed by reverse phase separation on an ODS column using a mobile phase of 0.1% phosphoric acid (pH 2.2). The AsA peak is detected on the basis of the UV absorption at 254 nm. The detection limit was 1 microgram/mL final concentration. Recoveries of AsA added at levels of 1-10 mg/g candy and 1-10 mg/10 mL soft drink were 99.2-101.7% with a coefficient of variation of 0.52-1.20% (n = 5). The present method allows rapid and accurate assays because it is a simple procedure compared with the official dye-titration method, and it is suitable for the routine analysis of AsA in selected candies and soft drinks.
USDA-ARS?s Scientific Manuscript database
Aqueous solutions of ethanol and ascorbic acid alone and in combination were compared to a commonly used sanitizer, sodium hypochlorite, and a leading commercial antibrowning agent containing calcium ascorbate (CA)for their efficacy to inhibit microbial growth and browning on fresh-cut lotus root. F...
Aljuhani, Naif; Michail, Karim; Karapetyan, Zubeida; Siraki, Arno G
2013-10-01
We have investigated the effect of NaHCO3 on menadione redox cycling and cytotoxicity. A cell-free system utilized menadione and ascorbic acid to catalyze a redox cycle, and we utilized murine hepatoma (Hepa 1c1c7) cells for in vitro experiments. Experiments were performed using low (2 mmol/L) and physiological (25 mmol/L) levels of NaHCO3 in buffer equilibrated to physiological pH. Using oximetry, ascorbic acid oxidation, and ascorbyl radical detection, we found that menadione redox cycling was enhanced by NaHCO3. Furthermore, Hepa 1c1c7 cells treated with menadione demonstrated cytotoxicity that was significantly increased with physiological concentrations of NaHCO3 in the media, compared with low levels of NaHCO3. Interestingly, the inhibition of superoxide dismutase (SOD) with 2 different metal chelators was associated with a protective effect against menadione cytotoxicity. Using isolated protein, we found a significant increase in protein carbonyls with menadione-ascorbate-SOD with physiological NaHCO3 levels; low NaHCO3 or SOD-free reactions produced lower levels of protein carbonyls. In conclusion, these findings suggest that the hydrogen peroxide generated by menadione redox cycling together with NaHCO3-CO2 are potential substrates for SOD peroxidase activity that can lead to carbonate-radical-enhanced cytotoxicity. These findings demonstrate the importance of NaHCO3 in menadione redox cycling and cytotoxicity.
Darwish, Majd; Lopez-Lauri, Félicie; Vidal, Véronique; El Maâtaoui, Mohamed; Sallanon, Huguette
2015-07-01
The effect of the alternation of light/dark periods (AL) (16/8 min light/dark cycles and a photosynthetic photon flux density (PPFD) of 50 μmol photons m(-2) s(-1) for three days) to clarify the mechanisms involved in the clomazone tolerance of tobacco plantlets primed with AL was studied. Clomazone decreased PSII activity, the net photosynthetic rate (Pn), and the ascorbate and total polyphenol contents and increased H2O2 and starch grain accumulation and the number of the cells that underwent programmed cell death (PCD). The pretreatment with AL reduced the inhibitory effect of clomazone on the PSII activity and photosynthesis, as indicated by the decreases in the H2O2 and starch grain accumulation and the PCD levels, and increased the content of ascorbate and certain phenolic compounds, such as chlorogenic acid, neochlorogenic acid and rutin. The AL treatment could promote photorespiration via post-illumination burst (PIB) effects. This alternative photorespiratory electron pathway may reduce H2O2 generation via the consumption of photochemical energy, such as NADH+H(+). At 10 days (D10) of AL treatment, this process induced moderate stress which stimulates H2O2 detoxification systems by increasing the activity of antioxidant enzymes and the biosynthesis of antioxidant components. Therefore, the PCD levels provoked by clomazone were noticeably decreased. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Jun; Pu, Huimin; Chen, Chong; Liu, Yunpeng; Bai, Ruyu; Kan, Juan; Jin, Changhai
2018-01-10
The ascorbic acid (AA) and hydroxyl peroxide (H 2 O 2 ) redox pair induced free radical grafting reaction is a promising approach to conjugate phenolic groups with chitosan (CS). In order to reveal the exact mechanisms of the AA/H 2 O 2 redox pair induced grafting reaction, free radicals generated in the AA/H 2 O 2 redox system were compared with hydroxyl radical ( • OH) produced in the Fe 2+ /H 2 O 2 redox system. Moreover, the structural and physicochemical properties of caffeic acid grafted CS (CA-g-CS) synthesized in these two redox systems were compared. Results showed that only ascorbate radical (Asc •- ) was produced in the AA/H 2 O 2 system. The reaction between Asc •- and CS produced novel carbon-centered radicals, whereas no new free radicals were detected when • OH reacted with CS. Thin layer chromatography, UV-vis, Fourier transform infrared, and nuclear magnetic resonance spectroscopic analyses all confirmed that CA was successfully grafted onto CS through Asc •- . However, CA could be hardly grafted onto CS via • OH. CA-g-CS synthesized through Asc •- exhibited lower thermal stability and crystallinity than the reaction product obtained through • OH. For the first time, our results demonstrated that the synthesis of CA-g-CS in the AA/H 2 O 2 redox system was mediated by Asc •- rather than • OH.
Somparn, Poorichaya; Bootprapan, Tanabodee; Tu, Hongbin; Tangtanatakul, Pattarin; Nuengjumnong, Ratchanok; Worasilchai, Navaporn; Tiranathanagul, Khajohn; Eiam-ong, Somchai; Levine, Mark; Chinampon, Ariya; Srisawat, Nattachai
2015-01-01
Amphotericin B (Ampho B) is a fungicidal drug that causes cell wall injury. Pharmacological ascorbate induces the extracellular prooxidants, which might enter the Ampho B-induced cell wall porosity and act synergistically. We tested low-dose Ampho B with a short course of pharmacological ascorbate using a mouse model of sepsis preconditioned with an injection of Candida albicans 6 h prior to cecal ligation and puncture (CLP). In this model, candidemia reappeared as early as 6 h after CLP with a predictably high mortality rate. This characteristic mimics sepsis in the phase of immunosuppression in patients. Using the model, at 12- and 18-h post-CLP, we administered isotonic (pH neutralized) pharmacological ascorbate intravenously with low-dose Ampho B or sodium deoxycholate, vehicle-controlled, administered IP. The survival rate of low-dose Ampho B plus ascorbate was 53%, compared with <11% for low-dose Ampho B or high-dose Ampho B alone. In addition, a beneficial effect was demonstrated in terms of kidney damage, liver injury, spleen histopathology, and serum markers at 24 h after CLP. Kidney injury was less severe in low-dose Ampho B plus ascorbate combination therapy due to less severe sepsis. Moreover, ascorbate enhanced the effectiveness of phagocytosis against C. albicans in human phagocytic cells. Taken together, the data indicate that the new mouse model simulates sepsis-induced immunosuppression and that the combination of pharmacological ascorbate with an antifungal drug is a potentially effective treatment that may reduce nephrotoxicity, and perhaps also increase fungicidal activity in patients with systemic candidiasis caused by Candida albicans. PMID:25994956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hata, Kuniki; Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195; Urushibara, Ayumi
Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield ofmore » DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.« less
Davidsson, L; Walczyk, T; Morris, A; Hurrell, R F
1998-05-01
The influence of ascorbic acid on iron absorption from an iron-fortified, chocolate-flavored milk drink (6.3 mg total Fe per serving) was evaluated with a stable-isotope technique in 20 6-7-y-old Jamaican children. Each child received two test meals labeled with 5.6 mg 57Fe and 3.0 mg 58Fe as ferrous sulfate on 2 consecutive days. Three different doses of ascorbic acid (0, 25, and 50 mg per 25-g serving) were evaluated in two separate studies by using a crossover design. Iron isotope ratios were measured by negative thermal ionization mass spectrometry. In the first study, iron absorption was significantly greater (P < 0.0001) after the addition of 25 mg ascorbic acid: geometric mean iron absorption was 1.6% (range: 0.9-4.2%) and 5.1% (2.2-17.3%) for the test meals containing 0 and 25 mg ascorbic acid, respectively. In the second study, a significant difference (P < 0.05) in iron absorption was observed when the ascorbic acid content was increased from 25 to 50 mg: geometric mean iron absorption was 5.4% (range: 2.7-10.8%) compared with 7.7% (range: 4.7-16.5%), respectively. The chocolate drink contained relatively high amounts of polyphenolic compounds, phytic acid, and calcium, all well-known inhibitors of iron absorption. The low iron absorption without added ascorbic acid shows that chocolate milk is a poor vehicle for iron fortification unless sufficient amounts of an iron-absorption enhancer are added. Regular consumption of iron-fortified chocolate milk drinks containing added ascorbic acid could have a positive effect on iron nutrition in population groups vulnerable to iron deficiency.
Sadeghi, Akram; Ebrahimzadeh Bideskan, Alireza; Alipour, Fatemeh; Fazel, Alireza; Haghir, Hossein
2013-02-01
The aim of this study was to investigate ascorbic acid and garlic protective effects on lead-induced neurotoxicity during rat hippocampus development. 90 pregnant wistar rats were divided randomly into nine groups: 1- Animals received leaded water (L). 2- Rats received leaded water and ascorbic acid (L+AA). 3- Animals received leaded water and garlic juice (L+G). 4-Animals received leaded water, ascorbic acid and garlic juice (L+G+AA). 5- Rats treated with ascorbic acid (AA). 6- Rats treated with garlic juice (G). 7- Rats treated with ascorbic acid and garlic juice (AA+G). 8- Rats treated with tap water plus 0.4 ml/l normal hydrogen chloride (HCl) and 0.5 mg/l Glucose (Sham). 9- Normal group (N). Leaded water (1500 ppm), garlic juice (1 ml/100g/day, gavage) and ascorbic acid (500 mg/kg/day, IP) were used. Finally, blood lead levels (BLL) were measured in both rats and their offspring. The rat offspring brain sections were stained using Toluidine Blue and photographed. Dark neurons (DNs) were counted to compare all groups. BLL significantly increased in L group compared to control and sham groups and decreased in L+G and L+AA groups in comparison to the L group (P<0.05). the number of DNs in the CA1, CA3, and DG of rat offspring hippocampus significantly increased in L group in comparison to control and sham groups (P<0.05) and decreased in L+G and L+AA groups compared to L group (P<0.05). Garlic juice and ascorbic acid administration during pregnancy and lactation may protect lead-induced neural damage in rat offspring hippocampus.
Singh, Gurpreet; Mohanty, B P; Saini, G S S
2016-02-15
Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.
[Cellular and intracellular transport of vitamin C. The physiologic aspects].
Szarka, András; Lőrincz, Tamás
2013-10-20
Vitamin C requirement is satisfied by natural sources and vitamin C supplements in the ordinary human diet. The two major forms of vitamin C in the diet are L-ascorbic acid and L-dehydroascorbic acid. Both ascorbate and dehydroascorbate are absorbed along the entire length of the human intestine. The reduced form, L-ascorbic acid is imported by an active mechanism, requiring two sodium-dependent vitamin C transporters (SVCT1 and SVCT2). The transport of the oxidized form, dehydroascorbate is mediated by glucose transporters GLUT1, GLUT3 and possibly GLUT4. Initial rate of uptake of both ascorbate and dehydroascorbate is saturable with increasing external substrate concentration. Vitamin C plasma concentrations are tightly controlled when the vitamin is taken orally. It has two simple reasons, on the one hand, the capacity of the transporters is limited, on the other hand the two Na+-dependent transporters can be down-regulated by an elevated level of ascorbate.
Boroumand, Samira; Chamjangali, Mansour Arab; Bagherian, Ghadamali
2017-03-05
A simple and sensitive double injection/single detector flow injection analysis (FIA) method is proposed for the simultaneous kinetic determination of ascorbic acid (AA) and uric acid (UA). This method is based upon the difference between the rates of the AA and UA reactions with Fe 3+ in the presence of 1, 10-phenanthroline (phen). The absorbance of Fe 2+ /1, 10-phenanthroline (Fe-phen) complex obtained as the product was measured spectrophotometrically at 510nm. To reach a good accuracy in the differential kinetic determination via the mathematical manipulations of the transient signals, different criteria were considered in the selection of the optimum conditions. The multi criteria decision making (MCDM) approach was applied for the selection of the optimum conditions. The importance weights of the evaluation criteria were determined using the analytic hierarchy process, entropy method, and compromised weighting (CW). The experimental conditions (alternatives) were ranked by the technique for order preference by similarity to an ideal solution. Under the selected optimum conditions, the obtained analytical signals were linear in the ranges of 0.50-5.00 and 0.50-4.00mgL -1 for AA and UA, respectively. The 3σ detection limits were 0.07mgL -1 for AA and 0.12mgL -1 for UA. The relative standard deviations for four replicate determinations of AA and UA were 2.03% and 3.30% respectively. The method was also applied for the analysis of analytes in the blood serum, Vitamine C tablets, and tap water with satisfactory results. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Boroumand, Samira; Chamjangali, Mansour Arab; Bagherian, Ghadamali
2017-03-01
A simple and sensitive double injection/single detector flow injection analysis (FIA) method is proposed for the simultaneous kinetic determination of ascorbic acid (AA) and uric acid (UA). This method is based upon the difference between the rates of the AA and UA reactions with Fe3 + in the presence of 1, 10-phenanthroline (phen). The absorbance of Fe2 +/1, 10-phenanthroline (Fe-phen) complex obtained as the product was measured spectrophotometrically at 510 nm. To reach a good accuracy in the differential kinetic determination via the mathematical manipulations of the transient signals, different criteria were considered in the selection of the optimum conditions. The multi criteria decision making (MCDM) approach was applied for the selection of the optimum conditions. The importance weights of the evaluation criteria were determined using the analytic hierarchy process, entropy method, and compromised weighting (CW). The experimental conditions (alternatives) were ranked by the technique for order preference by similarity to an ideal solution. Under the selected optimum conditions, the obtained analytical signals were linear in the ranges of 0.50-5.00 and 0.50-4.00 mg L- 1 for AA and UA, respectively. The 3σ detection limits were 0.07 mg L- 1 for AA and 0.12 mg L- 1 for UA. The relative standard deviations for four replicate determinations of AA and UA were 2.03% and 3.30% respectively. The method was also applied for the analysis of analytes in the blood serum, Vitamine C tablets, and tap water with satisfactory results.
Electrochemical and spectroscopic characterization of surface sol-gel processes.
Chen, Xiaohong; Wilson, George S
2004-09-28
(3-Mercaptopropyl)trimethoxysilane (MTS) forms a unique film on a platinum substrate by self-assembly and sol-gel cross-linking. The gelating and drying states of the self-assembled MTS sol-gel films were probed by use of electrochemical and spectroscopic methods. The thiol moiety was the only active group within the sol-gel network. Gold nanoparticles were employed to detect the availability of the thiol group and their interaction further indicated the physicochemical states of the sol-gel inner structure. It was found that the thiol groups in the open porous MTS aerogel matrix were accessible to the gold nanoparticles while thiol groups in the compact MTS xerogel network were not accessible to the gold nanoparticles. The characteristics of the sol-gel matrix change with time because of its own irreversible gelating and drying process. The present work provides direct evidence of gold nanoparticle binding with thiol groups within the sol-gel structures and explains the different permeability of "aerogel" and "xerogel" films of MTS on the basis of electrochemical and spectroscopic results. Two endogenous species, hydrogen peroxide and ascorbic acid, were used to test the permeability of the self-assembled sol-gel film in different states. The MTS xerogel film on the platinum electrode was extremely selective against ascorbic acid while maintaining high sensitivity to hydrogen peroxide in contrast to the relatively high permeability of ascorbic acid in the MTS aerogel film. This study showed the potential of the MTS sol-gel film as a nanoporous material in biosensor development.
Cunja, Vlasta; Mikulic-Petkovsek, Maja; Zupan, Anka; Stampar, Franci; Schmitzer, Valentina
2015-04-15
Primary and secondary metabolites of Rosa canina hips were determined by HPLC/MS during ripening and after frost damage. Rose hips were harvested six times from the beginning of September until the beginning of December. Color parameters a*, b* and L* decreased during maturation. Glucose and fructose were the predominant sugars representing up to 92% total sugars, and citric acid was the major organic acid detected in rose hips (constituting up to 58% total organic acids). Total sugar and ascorbic acid content significantly decreased after frost damage; from 42.2 to 25.9 g 100 g(-1) DW for sugars and from 716.8 to 176.0 mg 100 g(-1) DW for ascorbic acid. Conversely, β-carotene and lycopene levels increased in frostbitten rose hips to 22.1 and 113.2 mg 100 g(-1) DW, respectively. In addition to cyanidin-3-glucoside (highest level in hips was 125.7 μg 100 g (-1) DW), 45 different phenolic compounds have been identified. The most abundant were proanthocyanidins (their levels amounted up to 90% of total flavanol content) and their content showed no significant differences during maturation. The levels of catechin, phloridzin, flavanones and several quercetin glycosides were highest on the first three sampling dates and decreased after frost. Antioxidant capacity similarly decreased in frostbitten rose hips. Total phenolic content increased until the third sampling and decreased on later samplings. Copyright © 2015 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Evans, Emrys W.; Kattnig, Daniel R.; Henbest, Kevin B.; Hore, P. J.; Mackenzie, Stuart R.; Timmel, Christiane R.
2016-08-01
Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (kBT), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, the form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green's function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ˜500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.
Szymula, M
2004-01-01
The antioxidant efficiency of two hydrophilic species, ascorbic acid (AA) and propyl gallate (PG), in an anionic surfactant system are studied. Ascorbic acid and propyl gallate are dissolved/solubilized in a microemulsion formed by water, pentanol, and sodium dodecyl sulfate. The determination of propyl gallate decomposition/oxidation kinetics shows enhanced oxidation of PG with increasing pentanol concentration in the system. When ascorbic acid and propyl gallate are both present in water, in surfactant aqueous solution, and in the studied microemulsion systems, the molecular complex AAPG is formed. After some time the complex decomposes.
Effect of residual ascorbate on determination of nitrite in commercial cured meat products.
Fox, J B; Doerr, R C; Gates, R
1984-01-01
Residual ascorbate in cured meat slurries results in different amounts of pigment being produced from different Griess reagent combinations. The phenomenon was used to study residual ascorbate in commercial cured meat products which had a variety of textures, acidities, moisture and meat content, fat, homogeneity, initial nitrite, and processing conditions. Diluting and heating the samples according to the AOAC procedure did not completely eliminate the ascorbate interference, but making the sample alkaline did. Determining nitrite separately in supernate and precipitate from the first dilution showed the effect of heating to be the elimination of interferences and solubilization or extraction of nitrite from the precipitate.
Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.
Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate
2002-12-06
Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.
Radhakrishnakartha, Harikrishnan; Appu, Abhilash Puthuvelvippel; Indira, Madambath
2014-01-15
The impact of ascorbic acid supplementation against ethanol induced Leydig cell toxicity was studied in guinea pigs. Male guinea pigs were exposed to ethanol (4g/kgb.wt.) for 90 days. After 90 days, ethanol administration was completely stopped and animals in the ethanol group were divided into abstention group and ascorbic acid supplemented group (25mg/100gb.wt.) and those in control group were maintained as control and control+ascorbic acid group. Ethanol administration reduced the serum testosterone and LH (luteinising hormone) levels and elevated estradiol levels. Cholesterol levels in Leydig cell were increased whereas the mRNA and protein expressions of StAR (steroidogenic acute regulatory) protein, cytochrome P450scc (cytochrome p450side chain cleavage enzyme), 3β-HSD (3β-hydroxysteroid dehydrogenase), 17β-HSD (17β-hydroxysteroid dehydrogenase) and LH receptor were drastically reduced. Administration of ascorbic acid resulted in alteration of all these parameters indicating enhanced recovery from ethanol induced inhibition of Leydig cell steroidogenesis. Although abstention could also reduce the inhibition of steroidogenesis, this was lesser in comparison with ascorbic acid supplemented group. © 2013 Published by Elsevier B.V.
Mochizuki, H; Oda, H; Yokogoshi, H
2000-04-01
The effect of dietary taurine on ascorbic acid metabolism and hepatic drug-metabolizing enzymes was investigated in rats fed diets containing polychlorinated biphenyls (PCB) to determine whether taurine has an adaptive and protective function in xenobiotic-treated animals. Young male Wistar rats (60 g) were fed diets containing 0 or 0.2 g/kg diet PCB with or without 30 g/kg diet of taurine for 14 d. The rats fed the PCB-containing diets had greater liver weight, higher ascorbic acid concentrations in the liver and spleen and greater hepatic cytochrome P-450 contents than control rats that were not treated with PCB (P < 0.01). In PCB-fed rats, urinary ascorbic acid excretion was enhanced, and serum cholesterol concentration (especially HDL-cholesterol) was significantly elevated compared with those in control rats. Dietary taurine significantly potentiated the increases in the urinary excretion of ascorbic acid and the rise in the levels of cytochrome P-450 which were caused by PCB treatment. On the other hand, the supplementation of taurine to control diet did not alter these variables. Taurine may enhance the hepatic drug-metabolizing systems, leading to the stimulation of the ascorbic acid metabolism in rats fed diets containing PCB.
Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar
2016-01-01
Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats.
Tørngren, Mari Ann
2018-01-01
Background: Ascorbate is often applied to enhance stability and robustness of brine-injected pork chops sold for retail, but may affect protein oxidation, while plant extracts are potential substitutes. Methods: Brine-injected pork chops (weight-gain ~12%, NaCl ~0.9%) prepared with ascorbate (225 ppm), green tea extract (25 ppm gallic acid equivalents (GAE)), or maté extract (25 ppm GAE) stored (5 °C, seven days) in high-oxygen atmosphere packaging (MAP: 80% O2 and 20% CO2) were analyzed for color changes, sensory quality, and protein oxidation compared to a control without antioxidant. Results: No significant differences were observed for green tea and maté extracts as compared to ascorbate when evaluated based on lipid oxidation derived off-flavors, except for stale flavor, which maté significantly reduced. All treatments increased the level of the protein oxidation product, α-aminoadipic semialdehyde as compared to the control, and ascorbate was further found to increase thiol loss and protein cross-linking, with a concomitant decrease in the sensory perceived tenderness. Conclusions: Green tea and maté were found to equally protect against lipid oxidation derived off-flavors, and maté showed less prooxidative activity towards proteins as compared to ascorbate, resulting in more tender meat. Maté is a valuable substitute for ascorbate in brine-injected pork chops. PMID:29342928
D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewus, F.A.; Seib, P.A.
1991-01-01
The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogsmore » of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.« less
D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loewus, F.A.; Seib, P.A.
1991-12-31
The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogsmore » of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.« less
Ascorbate synthesis pathway, dual role of ascorbate in bone homeostasis
USDA-ARS?s Scientific Manuscript database
Using mouse gene knock-out models, we identify aldehyde reductase (EC 1.1.1.2, Akr1a4 (GR)) and aldose reductase (EC 1.1.1.21, Akr1b3 (AR)) as the enzymes responsible for conversion of D-glucuronate to L-gulonate, a key step in the ascorbate (ASC) synthesis pathway in mice. The gene knock-out (KO) m...
Ameyapoh, Yaovi; de Souza, Comlan; Traore, Alfred S
2008-09-01
Microbiological and physicochemical qualities of a tomato (Lycopersicon esculentum) puree production line (ripe tomato, washing, cutting, pounding, bleaching, straining, bottling and pasteurization) and its preservation in Togo, West Africa, were studied using the HACCP method. Samples generated during the steps described previously were analyzed by determining sensory, chemical and microbiological characteristics. Samples were analyzed using MPN for coliform populations and plate count methodology for other bacteria. The microorganisms involved in spoilage of the opened products were moulds of genera Penicillium, Aspergillus, Fusarium, Geotrichum, Mucor and gram-positive Bacillus bacteria. The preserved tomato puree exhibited a pH value of 4.3, 90% water content, 0.98 water activity (aw) and an average ascorbic acid level of 27.3mg/100g. Results showed that the critical control point (CCP) of this tomato puree processing line is the pasteurization stage. The analysis of selected microbiological and physicochemical parameters during the preservation of bottled tomato puree indicated that this product was stable over 22 months at 29 degrees C. But the stability of the opened product stored at 29 degrees C did not exceed two months.
Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles
NASA Astrophysics Data System (ADS)
Abrar, Md Abu; Dong, Yue; Lee, Paul Kyuheon; Kim, Woo Soo
2016-07-01
Here we report a flexible amperometric lactate biosensor using silver nanoparticle based conductive electrode. Mechanically bendable cross-serpentine-shaped silver electrode is generated on flexible substrate for the mechanical durability such as bending. The biosensor is designed and fabricated by modifying silver electrode with lactate oxidase immobilized by bovine serum albumin. The in-sensor pseudo Ag/AgCl reference electrode is fabricated by chloridization of silver electrode, which evinced its long-term potential stability against a standard commercial Ag/AgCl reference electrode. The amperometric response of the sensor shows linear dependence with lactate concentration of 1~25 mM/L. Anionic selectivity is achieved by using drop-casted Nafion coated on silver electrode against anionic interferences such as ascorbate. This non-invasive electrochemical lactate sensor also demonstrates excellent resiliency against mechanical deformation and temperature fluctuation which leads the possibility of using it on human epidermis for continuous measurement of lactate from sweat. Near field communication based wireless data transmission is demonstrated to reflect a practical approach of the sensor to measure lactate concentration portably using human perspiration.
Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles
Abrar, Md Abu; Dong, Yue; Lee, Paul Kyuheon; Kim, Woo Soo
2016-01-01
Here we report a flexible amperometric lactate biosensor using silver nanoparticle based conductive electrode. Mechanically bendable cross-serpentine-shaped silver electrode is generated on flexible substrate for the mechanical durability such as bending. The biosensor is designed and fabricated by modifying silver electrode with lactate oxidase immobilized by bovine serum albumin. The in-sensor pseudo Ag/AgCl reference electrode is fabricated by chloridization of silver electrode, which evinced its long-term potential stability against a standard commercial Ag/AgCl reference electrode. The amperometric response of the sensor shows linear dependence with lactate concentration of 1~25 mM/L. Anionic selectivity is achieved by using drop-casted Nafion coated on silver electrode against anionic interferences such as ascorbate. This non-invasive electrochemical lactate sensor also demonstrates excellent resiliency against mechanical deformation and temperature fluctuation which leads the possibility of using it on human epidermis for continuous measurement of lactate from sweat. Near field communication based wireless data transmission is demonstrated to reflect a practical approach of the sensor to measure lactate concentration portably using human perspiration. PMID:27465437
Vidović, Marija; Morina, Filis; Prokić, Ljiljana; Milić-Komić, Sonja; Živanović, Bojana; Jovanović, Sonja Veljović
2016-11-01
In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100μmolm -2 s -1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H 2 O 2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H 2 O 2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H 2 O 2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H 2 O 2 in signaling were discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.
Rysman, Tine; Van Hecke, Thomas; De Smet, Stefaan; Van Royen, Geert
2016-05-25
The effect of sodium ascorbate and apple phenolics on the oxidative stability of emulsion-type sausages during storage and digestion was investigated. Emulsion-type sausages containing 0.05% sodium ascorbate or 3% freeze-dried apple pomace were subjected to chilled illuminated storage and subsequent in vitro digestion. Lipid oxidation was assessed as TBARS, and protein oxidation was evaluated as thiol oxidation, total carbonyls, and γ-glutamic and α-amino adipic semialdehyde. Proteolysis was measured after digestion to evaluate protein digestibility. The results suggest the presence of protein-ascorbate and protein-phenol interactions, which may decrease protein digestibility and may interfere with spectrophotometric methods for measuring oxidation.
Abdul Kamal Nazer, Meeran Mohideen; Hameed, Abdul Rahman Shahul; Riyazuddin, Patel
2004-01-01
A simple and rapid potentiometric method for the estimation of ascorbic acid in pharmaceutical dosage forms has been developed. The method is based on treating ascorbic acid with iodine and titration of the iodide produced equivalent to ascorbic acid with silver nitrate using Copper Based Mercury Film Electrode (CBMFE) as an indicator electrode. Interference study was carried to check possible interference of usual excipients and other vitamins. The precision and accuracy of the method was assessed by the application of lack-of-fit test and other statistical methods. The results of the proposed method and British Pharmacopoeia method were compared using F and t-statistical tests of significance.
Decalcification by ascorbic acid for immuno- and affinohistochemical techniques on the inner ear.
Merchán-Pérez, A; Gil-Loyzaga, P; Bartolomé, M V; Remezal, M; Fernández, P; Rodríguez, T
1999-08-01
An ascorbic acid decalcifying solution was applied to immuno- and affinohistochemical studies on the inner ear. Rat inner ears fixed in 4% paraformaldehyde in PBS or in 2% acetic acid in ethanol solutions were adequately decalcified in an ascorbic acid solution, at a temperature of 4 degrees C. The decalcifying solution was prepared with 1% ascorbic acid and 0.84% sodium chloride in distilled water (pH 2.5-2.6). The decalcification time was in a direct relationship to the specimen calcification. In this study, two neuroactive substances (gamma-aminobutyric acid and calcitonin gene-related peptide), neurofilaments, and the galectine endogenous lectin were successfully detected immunohistochemically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calabrese, E.J.; Barrett, T.J.; Leonard, D.A.
1988-01-01
The interrelationship between tissue ascorbic acid levels and tissue ..beta..-glucuronidase activity was examined in rats injected with 3-methylcholanthrene, an agent which induces ascorbic acid synthesis in rats. Six Fisher 344 rats were dosed intraperitoneally (IP) with 30 mg/kg of 3-methylcholanthrene. Ascorbic acid levels and ..beta..-glucuronidase (..beta..-G) activity were determined for lung, liver and kidney tissues. In a follow-up study, rats were dosed for three consecutive days with 3-methylcholanthrene. Controls in both groups were dosed IP with Emulphor (EL-620). Animals were sacrificed one week after the final dosage and lung, liver and kidney tissues were examined.
Lee, Jong-Hee; Kamada, Kai; Enomoto, Naoya; Hojo, Junichi
2007-12-15
Polyhedral gold nanoparticles below 100 nm in size were fabricated by continuously delivered HAuCl(4) and PVP starting solutions into l-ascorbic acid aqueous solution in the presence of gold seeds, and under addition of sodium hydroxide (NaOH). By continuously delivered PVP and HAuCl(4) starting solutions in the presence of gold seed, the size and shape of polyhedral gold were achieved in relatively good uniformity (particle size distribution=65-95 nm). Morphological evolution was also attempted using different growth rates of crystal facets with increasing reaction temperature, and selective adsorption of PVP.
Zhang, Lijun; Wang, Guiheng; Wu, Di; Xiong, Can; Zheng, Lei; Ding, Yunsheng; Lu, Hongbo; Zhang, Guobing; Qiu, Longzhen
2018-02-15
In this study, an organic electrochemical transistor sensor (OECT) with a molecularly imprinted polymer (MIP)-modified gate electrode was prepared for the detection of ascorbic acid (AA). The combination of the amplification function of an OECT and the selective specificity of MIPs afforded a highly sensitive, selective OECT sensor. Cyclic voltammetry and electrochemical impedance spectroscopy measurements were carried out to monitor the stepwise fabrication of the modified electrodes and the adsorption capacity of the MIP/Au electrodes. Atomic force microscopy was employed for examining the surface morphology of the electrodes. Important detection parameters, pH and detection temperature were optimized. With the change in the relative concentration of AA from 1μM to 100μM, the MIP-OECT sensor exhibited a low detection limit of 10nM (S/N > 3) and a sensitivity of 75.3μA channel current change per decade under optimal conditions. In addition, the MIP-OECT sensor exhibited excellent specific recognition ability to AA, which prevented the interference from other structurally similar compounds (e.g., aspartic acid, glucose, uric acid, glycine, glutathione, H 2 O 2 ), and common metal ions (K + , Na + , Ca 2+ , Mg 2+ , and Fe 2+ ). In addition, a series of vitamin C beverages were analyzed to demonstrate the feasibility of the MIP-OECT sensor. Using the proposed principle, several other sensors with improved performance can be constructed via the modification of organic electrochemical transistors with appropriate MIP films. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of ascorbic acid on storage of Greyhound erythrocytes.
Fontes, Jorge A; Banerjee, Uddyalok; Iazbik, M Cristina; Marín, Liliana M; Couto, C Guillermo; Palmer, Andre F
2015-09-01
To assess changes in biochemical and biophysical properties of canine RBCs during cold (1° to 6°C) storage in a licensed RBC additive solution (the RBC preservation solution designated AS-1) supplemented with ascorbic acid. Blood samples from 7 neutered male Greyhounds; all dogs had negative results when tested for dog erythrocyte antigen 1.1. Blood was collected into citrate-phosphate-dextrose and stored in AS-1. Stored RBCs were supplemented with 7.1mM ascorbic acid or with saline (0.9% NaCl) solution (control samples). Several biochemical and biophysical properties of RBCs were measured, including percentage hemolysis, oxygen-hemoglobin equilibrium, and the kinetic rate constants for O2 dissociation, carbon monoxide association, and nitric oxide dioxygenation. Greyhound RBCs stored in AS-1 supplemented with ascorbic acid did not have significantly decreased hemolysis, compared with results for the control samples, during the storage period. In this study, ascorbic acid did not reduce hemolysis during storage. Several changes in stored canine RBCs were identified as part of the hypothermic storage lesion.
Lee, Eunmi; Kim, Kyusik; Choi, Moonjae; Lee, Youngmoo; Park, Jin-Won; Kim, Bumsang
2010-11-01
pH-Responsive P(MAA-co-EGMA) hydrogel microparticles were prepared and their feasibility as intelligent delivery carriers was evaluated. P(MAA-co-EGMA) hydrogel microparticles were synthesized via dispersion photopolymerization. There was a drastic change in the swelling ratio of P(MAA-co-EGMA) microparticles at a pH of ~ 5 and, as the amount of MAA in the hydrogel increased, the swelling ratio increased at a pH above 5. The loading efficiency of the ascorbic acid into the hydrogel was affected more by the degree of swelling of the hydrogel than the electrostatic interaction between the hydrogel and the loaded ascorbic acid. The P(MAA-co-EGMA) hydrogel microparticles showed a pH-sensitive release behavior. Thus, at pH 4 almost none of the ascorbic acid permeated through the skin while at pH 6 relatively high skin permeability was obtained. The ascorbic acid loaded in the hydrogel particles was hardly degraded and its stability was maintained at high temperature.
Vossen, Els; Utrera, Mariana; De Smet, Stefaan; Morcuende, David; Estévez, Mario
2012-12-01
The effect of dog rose (Rosa canina L.; RC), rich in polyphenols and ascorbic acid, on lipid and protein oxidation, colour stability and texture of frankfurters was investigated. Four treatments were prepared: with 5 or 30 g/kg RC extract and without sodium ascorbate and sodium nitrite (5RC and 30RC, respectively), a positive control (with sodium ascorbate and sodium nitrite; PC) and a negative control (without sodium ascorbate, sodium nitrite or RC extract; NC). Hexanal values were much higher throughout storage in NC compared to RC and PC frankfurters (P<0.001). The RC extracts protected against protein oxidation, but not as efficiently as PC (P<0.05). In the RC treated frankfurters, lower a* values were measured compared to PC due to the lack of sodium nitrite. In conclusion, dog rose can act as a natural antioxidant in frankfurters, but not as full replacer for sodium nitrite. Copyright © 2012 Elsevier Ltd. All rights reserved.
Covarrubias-Pinto, Adriana; Moll, Pablo; Solís-Maldonado, Macarena; Acuña, Aníbal I.; Riveros, Andrea; Miró, María Paz; Papic, Eduardo; Beltrán, Felipe A.; Cepeda, Carlos; Concha, Ilona I.; Brauchi, Sebastián; Castro, Maite A.
2016-01-01
Failure in energy metabolism and oxidative damage are associated with Huntington’s disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity. PMID:26456058
Jaeschke, Débora Pez; Marczak, Ligia Damasceno Ferreira; Mercali, Giovana Domeneghini
2016-05-15
The effect of electric field on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating was evaluated. Ascorbic acid kinetic degradation was evaluated at 80, 85, 90 and 95°C during 60 min of thermal treatment by ohmic and conventional heating. Carotenoid degradation was evaluated at 90 and 95°C after 50 min of treatment. The different temperatures evaluated showed the same effect on degradation rates. To investigate the influence of oxygen concentration on the degradation process, ohmic heating was also carried out under rich and poor oxygen modified atmospheres at 90°C. Ascorbic acid and carotenoid degradation was higher under a rich oxygen atmosphere, indicating that oxygen is the limiting reagent of the degradation reaction. Ascorbic acid and carotenoid degradation was similar for both heating technologies, demonstrating that the presence of the oscillating electric field did not influence the mechanisms and rates of reactions associated with the degradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Komiyama, Kota; Ashikaga, Takashi; Inagaki, Dai; Miyabe, Tomonori; Arai, Marina; Yoshida, Kiyotaka; Miyazawa, Satoshi; Nakada, Akihiro; Kawamura, Iwanari; Masuda, Shinichiro; Nagamine, Sho; Hojo, Rintaro; Aoyama, Yuya; Tsuchiyama, Takaaki; Fukamizu, Seiji; Shibui, Takashi; Sakurada, Harumizu
2017-01-25
Sodium bicarbonate and ascorbic acid have been proposed to prevent contrast-induced nephropathy (CIN). The present study evaluated the effect of their combined use on CIN incidence.Methods and Results:We prospectively enrolled 429 patients with chronic kidney disease (CKD: baseline estimated glomerular filtration rate <60 mL/min/1.73 m 2 ) prior to elective coronary catheterization. CIN was defined as absolute (≥0.5 mg/dL) or relative (≥25%) increase in serum creatinine within 72 h. In the saline hydration (n=218) and combined sodium bicarbonate+ascorbic acid (n=211) groups, a total of 1,500-2,500 mL 0.9% saline was given before and after the procedure. In addition, the combination group received 20 mEq sodium bicarbonate and 3 g ascorbic acid i.v. before the procedure, followed by 2 g ascorbic acid after the procedure and a further 2 g after 12 h. There were no significant differences between the basic characteristics and contrast volume in the 2 groups. CIN occurred in 19 patients (8.7%) in the saline group, and in 6 patients (2.8%) in the combined treatment group (P=0.008). Combined sodium bicarbonate and ascorbic acid could prevent CIN following catheterization in CKD patients.
NASA Astrophysics Data System (ADS)
Munawaroh, H.; adillah, G. F.; Saputri, L. N. M. Z.; Hanif, Q. A.; Hidayat, R.; Wahyuningsih, S.
2016-02-01
Study of color stability of anthocyanin from extract mangosteen pericarp (Garcinia mangostana L.) with co-pigmentation method has been conducted. Malic acid and ascorbic acid used as a co-pigment to stabilize the anthocyanin structure through formation of new binding between anthocyanin. Anthocyanin from mangosteen pericarp were isolated by several steps, including maceration, extraction, and Thin Layer Chromatography (TLC). The anthocyanin separation was conducted by TLC, while the identification of functional groups of those compound, were used FTIR (Fourier Transform Infrared Spectroscopy) for spectra analysis. Ultraviolet- visible absorption spectra have represented differences absorbance and color intensity in various pH. Copigmentation with malic acid and ascorbic acid in many composition and temperature were also well described. Meanwhile, anthocyanin-malic acid and anthocyanin-ascorbic acid have color retention higher than that of pure anthocyanin. Maximum color retention has been achieved at a ratio of 1:3 and 1:5 for ascorbic acid and malic acid, respectively. Therefore, the addition of ascorbic acid and malic acid as a copigment shows the ability to protect color retention of anthocyanin (mangosteen pericarp) from degradation process. The better efficiency of DSSC (η) have been achieved, whereas n of controlled anthocyanin, anthocyanin-ascorbic acid, and anthocyanin-malic acid were 0,1996%, 0,2922%, 0,3029%, respectively.
Inyang, U E; Abah, U J
1997-01-01
Fully riped cashew apples (yellow variety) were steamed for 7 minutes prior to juice extraction. The extracted juice was blended with various proportions of sweet orange juice. Chemical composition and organoleptic evaluation were carried out on both the blended and unblended juices. The ascorbic acid content of unsteamed cashew apple juice was 287 mg/100 ml. Steaming of the cashew apple prior to juice extraction resulted in a decreased (230 mg/100 ml) content of ascorbic acid. It also led to slight decreases in soluble solids and titratable acidity. A comparison of the chemical composition of the two juices showed that the orange juice contained more sugars, titratable acidity and soluble solids but less ascorbic acid than cashew apple juice. Consequently, the soluble solids, titratable acidity, reducing and total sugars of the blends increased with increase in the proportions of orange juice while the content of ascorbic acid was decreasing. In spite of the decrease in ascorbic acid content of the blends, results showed that blended juice would no doubt be a very good source of ascorbic acid. Result of the organoleptic evaluation revealed that a 60% cashew apple and 40% orange juice gave a good quality juice in terms of flavor, after taste and overall acceptability.
Zhao, Rong; Holmgren, Arne
2004-02-01
Ebselen is a selanazal drug recently revealed as a highly efficient peroxiredoxin mimic catalyzing the hydroperoxide reduction by the mammalian thioredoxin system [thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH]. The mammalian Trx system is a dehydroascorbic acid reductase recycling ascorbic acid essential for cell functions. Here we report that ebselen strongly facilitated the recycling of ascorbic acid by the TrxR both with and without Trx present. Reduction of dehydroascorbic acid by TrxR has a pH optimum of 6.4, and only approximately 55% of this activity at a physiological pH of 7.4. Ebselen at 6 microM enhances this reaction three-fold and with the same pH optimum of 6.4. The mechanism of the ebselen effect is suggested to involve reduction of dehydroascorbic acid by the ebselen selenol, a highly efficient two-electron reductant. Thus, ebselen acts as an antioxidant to lower the peroxide tone inside cells and to facilitate the recycling of dehydroascorbic acid to ascorbic acid, so as to increase the radical scavenging capacity of ascorbic acid directly or indirectly via vitamin E. The high ascorbic acid recycling efficiency of ebselen at pH 6.4 may play a major role in oxidatively stressed cells, where cytosol acidosis may trigger various responses, including apoptosis.
Allen, Angela; Fisher, Christopher; Premawardhena, Anuja; Bandara, Dayananda; Perera, Ashok; Allen, Stephen; St Pierre, Timothy; Olivieri, Nancy
2012-01-01
During investigations of the phenotypic diversity of hemoglobin (Hb) E β thalassemia, a patient was encountered with persistently high levels of methemoglobin associated with a left-shift in the oxygen dissociation curve, profound ascorbate deficiency, and clinical features of scurvy; these abnormalities were corrected by treatment with vitamin C. Studies of erythropoietin production before and after treatment suggested that, as in an ascorbate-deficient murine model, the human hypoxia induction factor pathway is not totally dependent on ascorbate levels. A follow-up study of 45 patients with HbE β thalassemia showed that methemoglobin levels were significantly increased and that there was also a significant reduction in plasma ascorbate levels. Haptoglobin levels were significantly reduced, and the high frequency of the 2.2 haptoglobin genotype may place an additional pressure on ascorbate as a free-radical scavenger in this population. There was, in addition, a highly significant correlation between methemoglobin levels, splenectomy, and factors that modify the degree of globin-chain imbalance. Because methemoglobin levels are modified by several mechanisms and may play a role in both adaptation to anemia and vascular damage, there is a strong case for its further study in other forms of thalassemia and sickle-cell anemia, particularly when splenic function is defective. PMID:22885163
Leboy, P S; Vaias, L; Uschmann, B; Golub, E; Adams, S L; Pacifici, M
1989-10-15
During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.
Cholula-Díaz, Jorge L; Lomelí-Marroquín, Diana; Pramanick, Bidhan; Nieto-Argüello, Alfonso; Cantú-Castillo, Luis A; Hwang, Hyundoo
2018-03-01
Ascorbic acid (vitamin C) has an essential role in the human body mainly due to its antioxidant function. In this work, metallic silver nanoparticle (AgNP) colloids were used in SERS experiments to detect ascorbic acid in aqueous solution. The AgNPs were synthesized by a green method using potato starch as reducing and stabilizing agent, and water as the solvent. The optical properties of the yellowish as-synthesized silver colloids were characterized by UV-vis spectroscopy, in which besides a typical band at 410 nm related to the localized surface plasmon resonance of the silver nanoparticles, a shoulder band around 500 nm, due to silver nanoparticle cluster formation, is presented when relatively higher concentrations of starch are used in the synthesis. These starch-capped silver nanoparticles show an intrinsic Raman peak at 1386 cm -1 assigned to deformation modes of the starch structure. The increase of the intensity of the SERS peak at 1386 cm -1 with an increase in the concentration of the ascorbic acid is related to a decrease of the gap between dimers and trimers of the silver nanoparticle clusters produced by the presence of ascorbic acid in the colloid. The limit of detection of this technique for ascorbic acid is 0.02 mM with a measurement concentration range of 0.02-10 mM, which is relevant for the application of this method for detecting ascorbic acid in biological specimen. Copyright © 2017 Elsevier B.V. All rights reserved.
Cryptosporidium-contaminated water disinfection by a novel Fenton process.
Matavos-Aramyan, Sina; Moussavi, Mohsen; Matavos-Aramyan, Hedieh; Roozkhosh, Sara
2017-05-01
Three novel modified advanced oxidation process systems including ascorbic acid-, pro-oxidants- and ascorbic acid-pro-oxidants-modified Fenton system were utilized to study the disinfection efficiency on Cryptosporidium-contaminated drinking water samples. Different concentrations of divalent and trivalent iron ions, hydrogen peroxide, ascorbic acid and pro-oxidants at different exposure times were investigated. These novel systems were also compared to the classic Fenton system and to the control system which comprised of only hydrogen peroxide. The complete in vitro mechanism of the mentioned modified Fenton systems are also provided. The results pointed out that by considering the optimal parameter limitations, the ascorbic acid-modified Fenton system decreased the Cryptosporidium oocytes viability to 3.91%, while the pro-oxidant-modified and ascorbic acid-pro-oxidant-modified Fenton system achieved an oocytes viability equal to 1.66% and 0%, respectively. The efficiency of the classic Fenton at optimal condition was observed to be 20.12% of oocytes viability. The control system achieved 86.14% of oocytes viability. The optimum values of the operational parameters during this study are found to be 80mgL -1 for the divalent iron, 30mgL -1 for ascorbic acid, 30mmol for hydrogen peroxide, 25mgL -1 for pro-oxidants and an exposure time equal to 5min. The ascorbic acid-pro-oxidants-modified Fenton system achieved a promising complete water disinfection (0% viability) at the optimal conditions, leaving this method a feasible process for water disinfection or decontamination, even at industrial scales. Copyright © 2017 Elsevier Inc. All rights reserved.
Ascorbic acid prevents vascular dysfunction induced by oral glucose load in healthy subjects.
De Marchi, Sergio; Prior, Manlio; Rigoni, Anna; Zecchetto, Sara; Rulfo, Fanny; Arosio, Enrico
2012-01-01
To examine the effects of oral glucose load on forearm circulatory regulation before and after ascorbic acid administration in healthy subjects. Microcirculation study with laser Doppler was performed at the hand in basal conditions, after ischemia and after acetylcholine and nitroprusside; strain gauge plethysmography was performed at basal and after ischemia. The tests were repeated in the same sequence 2 hour after oral administration of glucose (75 g). The subjects were randomised for administration of ascorbic acid (1 g bid) or placebo (sodium bicarbonate 1 g bid) for 10 days. After that, the tests were repeated before and after a new oral glucose load. Blood pressure and heart rate were monitored. Macrocirculatory flux, pressure values and heart rate were unvaried throughout the study. The glucose load caused a reduction in the hyperemic peak flow with laser Doppler and plethysmography; it reduced flux recovery time and hyperemic curve area after ischemia; acetylcholine elicited a minor increase in flux with laser Doppler. The response to nitroprusside was unvaried after glucose load as compared to basal conditions. Treatment with ascorbic acid prevented the decrease in hyperemia after glucose, detected with laser Doppler and plethysmography. Ascorbic acid prevented the decreased response to acetylcholine after glucose, the response to nitroprusside was unaffected by ascorbic acid. Results after placebo were unvaried. Oral glucose load impairs endothelium dependent dilation and hyperaemia at microcirculation, probably via oxidative stress; ascorbic acid can prevent it. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
O'Neill, P; Fielden, E M; Avigliano, L; Marcozzi, G; Ballini, A; Agrò, F
1984-08-15
The interaction of one-electron reduced metronidazole (ArNO2.-) with native and Type-2-copper-depleted ascorbate oxidase were studied in buffered aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. With ArNO2.-, reduction of Type 1 copper of the native enzyme and of the Type-2-copper-depleted ascorbate oxidase occurs via a bimolecular step and at the same rate. Whereas the native protein accepts, in the absence of O2, 6-7 reducing equivalents, Type-2-copper-depleted ascorbate oxidase accepts only 3 reducing equivalents with stoichiometric reduction of Type 1 copper. On reaction of O2.- with ascorbate oxidase under conditions of [O2.-] much greater than [ascorbate oxidase], removal of Type 2 copper results in reduction of all the Type 1 copper atoms, in contrast with reduction of the equivalent of only one Type 1 copper atom in the holoprotein. From observations at 610 nm, the rate of reduction of ascorbate oxidase by O2.- is not dependent on the presence of Type 2 copper. For the holoprotein, no significant optical-absorption changes were observed at 330 nm. It is proposed that electrons enter the protein via Type 1 copper in a rate-determining step followed by a fast intramolecular transfer of electrons within the protein. For the Type-2-copper-depleted protein, intramolecular transfer within the protein, however, is slow or does not occur. In the presence of O2, it is also suggested that re-oxidation of the partially reduced holoprotein occurs at steady state, as inferred from the observations at 330 nm and 610 nm. The role of Type 2 copper in ascorbate oxidase is discussed in terms of its involvement in redistribution of electrons within the protein or structural considerations.
Ischemia/reperfusion-induced injury of forebrain mitochondria and protection by ascorbate.
Sciamanna, M A; Lee, C P
1993-09-01
Complete, reversible forebrain ischemia was induced with a seven-vessel occlusion rat model. Previous studies of ischemic (M. A. Sciamanna, J. Zinkel, A. Y. Fabi, and C. P. Lee, 1992, Biochim. Biophys. Acta 1134, 223-232) rat brain mitochondria (RBM) showed that ischemia of 30 min caused an approximately 60% decrease in State 3 respiratory rates with both succinate and NAD-linked substrates and also in energy-linked Ca2+ transport. No significant change was seen in the State 4 rates. The inhibition of respiration could be prevented by EGTA or ruthenium red. In this paper it is shown that reperfusion (5 h) following ischemia (30 min) further impaired RBM respiratory activities (succinate and NAD-linked substrates). The presence of EGTA or ruthenium red in the assay medium did not protect against ischemia/reperfusion-induced injury. The effects of ascorbate, an oxygen radical scavenger, were studied. RBM isolated from ascorbate-treated animals (0.8 mg ascorbate/kg body weight) after ischemia (30 min) alone showed only a slight increase in State 3 (approximately 25%) and a decrease in State 4 (approximately 20%) activities with succinate, when compared to untreated 30-min ischemic animals, whereas, with glutamate+malate little or no effect was seen. The respiratory activities of RBM from ascorbate-treated, ischemic/reperfused (30 min/5 h) rats were restored to approximately 65% of controls levels. Ascorbate protection was dose-dependent with maximum protection at 0.8 mg ascorbate/kg body weight of rat. The k of succinate oxidase-supported Ca2+ uptake also returned to 62% of control values. Protection by ascorbate was most effective when administered prior to the onset of ischemia and provided partial protection when administered after the onset of reperfusion. These results suggest that ischemia-induced injury is primarily mediated by disruption of cellular Ca2+ homeostasis, and reperfusion-induced injury by peroxidative events.
Kenney, W. Larry
2011-01-01
Elevated low-density lipoproteins (LDL) are associated with cutaneous microvascular dysfunction partially mediated by increased arginase activity, which is decreased following a systemic atorvastatin therapy. We hypothesized that increased ascorbate-sensitive oxidant stress, partially mediated through uncoupled nitric oxide synthase (NOS) induced by upregulated arginase, contributes to cutaneous microvascular dysfunction in hypercholesterolemic (HC) humans. Four microdialysis fibers were placed in the skin of nine HC (LDL = 177 ± 6 mg/dl) men and women before and after 3 mo of a systemic atorvastatin intervention and at baseline in nine normocholesterolemic (NC) (LDL = 95 ± 4 mg/dl) subjects. Sites served as control, NOS inhibited, L-ascorbate, and arginase-inhibited+L-ascorbate. Skin blood flow was measured while local skin heating (42°C) induced NO-dependent vasodilation. After the established plateau in all sites, 20 mM ≪ngname≫ was infused to quantify NO-dependent vasodilation. Data were normalized to maximum cutaneous vascular conductance (CVC) (sodium nitroprusside + 43°C). The plateau in vasodilation during local heating (HC: 78 ± 4 vs. NC: 96 ± 2% CVCmax, P < 0.01) and NO-dependent vasodilation (HC: 40 ± 4 vs. NC: 54 ± 4% CVCmax, P < 0.01) was reduced in the HC group. Acute L-ascorbate alone (91 ± 5% CVCmax, P < 0.001) or combined with arginase inhibition (96 ± 3% CVCmax, P < 0.001) augmented the plateau in vasodilation in the HC group but not the NC group (ascorbate: 96 ± 2; combo: 93 ± 4% CVCmax, both P > 0.05). After the atorvastatin intervention NO-dependent vasodilation was augmented in the HC group (HC postatorvastatin: 64 ± 4% CVCmax, P < 0.01), and there was no further effect of ascorbate alone (58 ± 4% CVCmax, P > 0.05) or combined with arginase inhibition (67 ± 4% CVCmax, P > 0.05). Increased ascorbate-sensitive oxidants contribute to hypercholesteromic associated cutaneous microvascular dysfunction which is partially reversed with atorvastatin therapy. PMID:21715698
Santos, Ítala Mônica Sales; da Rocha Tomé, Adriana; Saldanha, Gláucio Barros; Ferreira, Paulo Michel Pinheiro; Militão, Gardenia Carmem Gadelha
2009-01-01
Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA) in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group), ascorbic acid (500 mg/kg, i.p., AA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of ascorbic acid (500 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of ascorbic acid (AA plus pilocarpine group). After the treatments all groups were observed for 6 h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a strong protective effect could be achieved using ascorbic acid. PMID:20716907
De, Sandip Kumar; Mondal, Subrata; Sen, Pintu; Pal, Uttam; Pathak, Biswarup; Rawat, Kuber Singh; Bardhan, Munmun; Bhattacharya, Maireyee; Satpati, Biswarup; De, Amitabha; Senapati, Dulal
2018-06-14
Understanding and exploring the decisive factors responsible for superlative catalytic efficiency is necessary to formulate active electrode materials for improved electrocatalysis and high-throughput sensing. This research demonstrates the ability of bud-shaped gold nanoflowers (AuNFs), intermediates in the bud-to-blossom gold nanoflower synthesis, to offer remarkable electrocatalytic efficiency in the oxidation of ascorbic acid (AA) at nanomolar concentrations. Multicomponent sensing in a single potential sweep is measured using differential pulse voltammetry while the kinetic parameters are estimated using electrochemical impedance spectroscopy. The outstanding catalytic activity of bud-structured AuNF [iAuNFp(Bud)/iGCp ≅ 100] compared with other bud-to-blossom intermediate nanostructures is explained by studying their structural transitions, charge distributions, crystalline patterns, and intrinsic irregularities/defects. Detailed microscopic analysis shows that density of crystal defects, such as edges, terraces, steps, ledges, kinks, and dislocation, plays a major role in producing the high catalytic efficiency. An associated ab initio simulation provides necessary support for the projected role of different crystal facets as selective catalytic sites. Density functional theory corroborates the appearance of inter- and intra-molecular hydrogen bonding within AA molecules to control the resultant fingerprint peak potentials at variable concentrations. Bud-structured AuNF facilitates AA detection at nanomolar levels in a multicomponent pathological sample.
Song, Wenjing; Ding, Jiawang; Liang, Rongning; Qin, Wei
2011-10-17
A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
Mahmood, Tahir; Anwar, Farooq; Abbas, Mateen; Boyce, Mary C.; Saari, Nazamid
2012-01-01
Selected soluble sugars and organic acids were analyzed in strawberry, sweet cherry, and mulberry fruits at different ripening stages by HPLC. The amounts of fructose, glucose and sucrose were found to be: strawberry (1.79–2.86, 1.79–2.25 and 0.01–0.25 g/100 g FW), sweet cherry (0.76–2.35, 0.22–3.39 and 0.03–0.13 g/100 g) and mulberry (3.07–9.41, 1.53–4.95 and 0.01–0.25 g/100 g) at un-ripened to fully-ripened stages, respectively. The strawberry, sweet cherry and mulberry mainly contained tartaric, citric and ascorbic acids in the range of 16–55, 70–1934 and 11–132 mg/100 g; 2–8, 2–10 and 10–17 mg/100 g; 2–118, 139–987 and 2–305 mg/100 g at un-ripened to fully-ripened stages, respectively. Fructose and glucose were established to be the major sugars in all the tested fruit while citric and ascorbic acid were the predominant organic acids in strawberry and mulberry while tartaric acid was mainly present in sweet cherry. The tested fruits mostly showed an increase in the concentration of sugars and organic acids with ripening. PMID:22408396
Reid, Caroline H; Finnerty, Niall J
2017-07-08
We detail an extensive characterisation study on a previously described dual amperometric H₂O₂ biosensor consisting of H₂O₂ detection (blank) and degradation (catalase) electrodes. In vitro investigations demonstrated excellent H₂O₂ sensitivity and selectivity against the interferent, ascorbic acid. Ex vivo studies were performed to mimic physiological conditions prior to in vivo deployment. Exposure to brain tissue homogenate identified reliable sensitivity and selectivity recordings up to seven days for both blank and catalase electrodes. Furthermore, there was no compromise in pre- and post-implanted catalase electrode sensitivity in ex vivo mouse brain. In vivo investigations performed in anaesthetised mice confirmed the ability of the H₂O₂ biosensor to detect increases in amperometric current following locally perfused/infused H₂O₂ and antioxidant inhibitors mercaptosuccinic acid and sodium azide. Subsequent recordings in freely moving mice identified negligible effects of control saline and sodium ascorbate interference injections on amperometric H₂O₂ current. Furthermore, the stability of the amperometric current was confirmed over a five-day period and analysis of 24-h signal recordings identified the absence of diurnal variations in amperometric current. Collectively, these findings confirm the biosensor current responds in vivo to increasing exogenous and endogenous H₂O₂ and tentatively supports measurement of H₂O₂ dynamics in freely moving NOD SCID mice.
Microelectrode array fabrication for electrochemical detection with carbon nanotubes
NASA Astrophysics Data System (ADS)
Clark, James
Understanding how the brain works remains one of the key challenges for scientists. To further this understanding a wide variety of technologies and research methods have been developed. One such technology is conductive electrodes, used to measure the electrical signals elicited from neuronal cells and tissues. These electrodes can be fabricated as a singular electrode or as a multi-electrode array (MEA). This permits bio-electrical measurements from one particular area or simultaneous measurements from multiple areas, respectively. Studying electrical and chemical signals of individual cells in situ requires the use of electrodes with ≤20 µm diameter. However, electrodes of this size generally produce high impedance, perturbing recording of the small signals generated from individual cells. Nanomaterials, such as carbon nanotubes (CNTs), can be deposited to increase the real surface area of these electrodes, producing higher sensitivity measurements. This thesis investigates the potential for using photo-thermal chemical vapour deposition grown CNTs as the electrode material for a de novo fabricated MEA. This device aimed to measure electrochemical signals in the form of dopamine, an important mammalian neurotransmitter, as well as conventional bio-electrical signals that the device is designed for. Realising this aim began with improving CNT aqueous wetting behaviour via oxygen plasma functionalisation. This procedure demonstrated grafting of oxygen functional groups to the CNT structure, and dramatic improvements in aqueous wetting behaviour, with CNTs attached to the device. Subsequently, oxygen plasma functionalised CNT-based MEAs were fabricated and tested, allowing comparisons with a non-functionalised CNT MEA and a state-of-the-art commercial MEA. The functionalised CNT MEA demonstrated an order of magnitude improvement compared to commercial MEAs (2.75 kΩ vs. 25.6 kΩ), at the biologically relevant frequency of 1 kHz. This was followed by measurement of one of the best sensitivity density values, compared to the available literature, for the electrochemical detection of dopamine (9.48 µA µM-1 mm-2). The functionalised CNT MEA then illustrated some selectivity compared to common interferents, i.e. ascorbic acid, of a higher concentration. Nonetheless, imaging of the MEA revealed CNTs were being removed from the electrode areas due to extensive use. Therefore, the final results chapter aimed to develop a novel fabrication route for CNT-based MEAs that produced improved CNT retention on the electrodes. This next-generation functionalised CNT-based MEA displayed improved CNT retention, whilst also producing competitive electrochemical impedance values at 1 kHz (17.8 kΩ) and excellent electrochemical selectivity for dopamine vs. ascorbic acid. Overall, this thesis demonstrates the potential for using MEAs as electrochemical detectors of biological molecules, specifically when using functionalised CNTs as the electrode material.
Choe, Jung-Yoon; Park, Ki-Yeun; Kim, Seong-Kyu
2015-01-01
The aim of this study is to clarify the effect of oxidative stress on monosodium urate (MSU)-mediated apoptosis of renal cells. Quantitative real-time polymerase chain reaction and immunoblotting for Bcl-2, caspase-9, caspase-3, iNOS, cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-18, TNF receptor-associated factor-6 (TRAF-6), and mitogen-activated protein kinases were performed on human embryonic kidney 293 (HEK293) cells, which were stimulated by MSU crystals. Fluorescence-activated cell sorting was performed using annexin V for assessment of apoptosis. Reactive oxygen species (ROS) were measured. IL-1β siRNA was used for blocking IL-1β expression. MSU crystals promoted ROS, iNOS, and COX-2 expression and also increased TRAF-6 and IL-1β expression in HEK293 cells, which was inhibited by an antioxidant ascorbic acid. Caspase-dependent renal cell apoptosis was induced through attenuation of Bcl-2 and enhanced caspase-3 and caspase-9 expression by MSU crystals, which was significantly reversed by ascorbic acid and transfection of IL-1β siRNA to HEK293 cells. Ascorbic acid inhibited phosphorylation of extracellular signal-regulated kinase and Jun N-terminal protein kinase stimulated by MSU crystals. ROS accumulation and iNOS and COX-2 mRNA expression by MSU crystals was also suppressed by transfection with IL-1β siRNA. Oxidative stress generated by MSU crystals promotes renal apoptosis through the mitochondrial caspase-dependent apoptosis pathway.
2010-01-01
hematocrit, low oxygen tension, acetaminophen, uric acid , ascorbic acid , maltose, galactose, xy- lose, lactose, operator inexperience, age of strips, heat...Biomedical, Waltham, MA) that corrects for the effects of anemia, low oxygen tension, acetaminophen, uric acid , ascorbic acid , maltose, galactose, xylose, and...resulted in inappropriately high glucometer values (data not shown). The effects of interfering substances (acetaminophen, uric acid , ascorbic acid
Chen, Bingcan; Rao, Jiajia; Ding, Yangping; McClements, David Julian; Decker, Eric Andrew
2016-07-01
The impact of natural hydrophilic antioxidants, metal chelators, and hydrophilic antioxidant/metal chelator mixture on the oxidative stability of base algae oil and water-in-algae oil emulsion was investigated. The results showed that green tea extract and ascorbic acid had greatest protective effect against algae oil oxidation and generated four day lag phase, whereas rosmarinic acid, grape seed extract, grape seed extract polymer, deferoxamine (DFO), and ethylenediaminetetraacetic acid (EDTA) had no significant protective effect. Besides, there was no synergistic effect observed between natural antioxidants and ascorbic acid. The emulsifiers are critical to the physicochemical stability of water-in-algae oil emulsions. Polyglycerol polyricinoleate (PGPR) promoted the oxidation of emulsion. Conversely, the protective effect on algae oil oxidation was appreciated when defatted soybean lecithin (PC 75) or defatted lyso-lecithin (Lyso-PC) was added. The role of hydrophilic antioxidants in emulsion was similar to that in algae oil except EDTA which demonstrated strong antioxidative effect in emulsion. The results could provide information to build up stable food products containing polyunsaturated fatty acids (PUFA). Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Hua; Na, Weidan; Liu, Ziping; Chen, Xueqian; Su, Xingguang
2017-06-15
In this paper, a facile and rapid fluorescence turn-on assay for fluorescent detection of ascorbic acid (AA) was developed by using the orange emission graphene quantum dots (GQDs). In the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H 2 O 2 ), catechol can be oxidized by hydroxyl radicals and converted to o-benzoquinone, which can significantly quench the fluorescence of GQDs. However, when AA present in the system, it can consume part of H 2 O 2 and hydroxyl radicals to inhibit the generation of o-benzoquinone, resulting in fluorescence recovery. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of H 2 O 2 in the range of 3.33-500µM with a detection limit of 1.2µM. The linear detection for AA was in the range from 1.11 to 300µM with a detection limit of 0.32µM. The proposed method was applied to the determination of AA in human serum samples with satisfactory results. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhi-Jun; Zhan, Fei; Xiao, Hongyan
X-ray transient absorption spectroscopy (XTA) and optical transient spectroscopy (OTA) were used to probe the Co(I) intermediate generated in situ from an aqueous photocatalytic hydrogen evolution system, with [RuII(bpy)3]Cl2·6H2O as the photosensitizer, ascorbic acid/ascorbate as the electron donor, and the Co-polypyridyl complex ([CoII(DPABpy) Cl]Cl) as the pre-catalyst. Upon exposure to light, the XTA measured at Co K-edge visualizes the grow and decay of the Co(I) intermediate, and reveals its Co-N bond contraction of 0.09 ± 0.03 Å. Density functional theory (DFT) calculations support the bond contraction and illustrate that the metal-to-ligand π back-bonding greatly stabilizes the penta-coordinated Co(I) intermediate, whichmore » provides easy photon access. To the best of our knowledge, this is the first example of capturing the penta-coordinated Co(I) intermediate in operando with bond contraction by XTA, thereby providing new insights for fundamental understanding of structure– function relationship of cobalt-based molecular catalysts.« less
Tomasetti, Marco; Nocchi, Linda; Neuzil, Jiri; Goodwin, Jacob; Nguyen, Maria; Dong, Lanfeng; Manzella, Nicola; Staffolani, Sara; Milanese, Claudio; Garrone, Beatrice; Alleva, Renata; Borghi, Battista; Santarelli, Lory; Guerrieri, Roberto
2012-01-01
The redox-silent vitamin E analog α-tocopheryl succinate (α-TOS) was found to synergistically cooperate with vitamin K3 (VK3) plus ascorbic acid (AA) in the induction of cancer cell-selective apoptosis via a caspase-independent pathway. Here we investigated the molecular mechanism(s) underlying cell death induced in prostate cancer cells by α-TOS, VK3 and AA, and the potential use of targeted drug combination in the treatment of prostate cancer. The generation of ROS, cellular response to oxidative stress, and autophagy were investigated in PC3 prostate cancer cells by using drugs at sub-toxic doses. We evaluated whether PARP1-mediated apoptosis-inducing factor (AIF) release plays a role in apoptosis induced by the combination of the agents. Next, the effect of the combination of α-TOS, VK3 and AA on tumor growth was examined in nude mice. VK3 plus AA induced early ROS formation associated with induction of autophagy in response to oxidative stress, which was reduced by α-TOS, preventing the formation of autophagosomes. α-TOS induced mitochondrial destabilization leading to the release of AIF. Translocation of AIF from mitochondria to the nucleus, a result of the combinatorial treatment, was mediated by PARP1 activation. The inhibition of AIF as well as of PARP1 efficiently attenuated apoptosis triggered by the drug combination. Using a mouse model of prostate cancer, the combination of α-TOS, VK3 and AA was more efficient in tumor suppression than when the drugs were given separately, without deleterious side effects. α-TOS, a mitochondria-targeting apoptotic agent, switches at sub-apoptotic doses from autophagy-dependent survival of cancer cells to their demise by promoting the induction of apoptosis. Given the grim prognosis for cancer patients, this finding is of potential clinical relevance.
Meade, Robert D; Fujii, Naoto; Alexander, Lacy M; Paull, Gabrielle; Louie, Jeffrey C; Flouris, Andreas D; Kenny, Glen P
2015-01-01
Abstract Nitric oxide (NO)-dependent cutaneous vasodilatation is reportedly diminished during exercise performed at a high (700 W) relative to moderate (400 W) rate of metabolic heat production. The present study evaluated whether this impairment results from increased oxidative stress associated with an accumuluation of reactive oxygen species (ROS) during high intensity exercise. On two separate days, 11 young (mean ± SD, 24 ± 4 years) males cycled in the heat (35°C) at a moderate (500 W) or high (700 W) rate of metabolic heat production. Each session included two 30 min exercise bouts followed by 20 and 40 min of recovery, respectively. Cutaneous vascular conductance (CVC) was monitored at four forearm skin sites continuously perfused via intradermal microdialysis with: (1) lactated Ringer solution (Control); (2) 10 mm ascorbate (Ascorbate); (3) 10 mm l-NAME; or (4) 10 mm ascorbate + 10 mm l-NAME (Ascorbate + l-NAME). At the end of each 500 W exercise bout, CVC was attenuated with l-NAME (∼35% CVCmax) and Ascorbate + l-NAME (∼43% CVCmax) compared to Control (∼60% CVCmax; all P < 0.04); however, Ascorbate did not modulate CVC during exercise (∼60% CVCmax; both P > 0.87). Conversely, CVC was elevated with Ascorbate (∼72% CVCmax; both P < 0.03) but remained similar to Control (∼59% CVCmax) with l-NAME (∼50% CVCmax) and Ascorbate + l-NAME (∼47% CVCmax; all P > 0.05) at the end of both 700 W exercise bouts. We conclude that oxidative stress associated with an accumulation of ascorbate-sensitive ROS impairs NO-dependent cutaneous vasodilatation during intense exercise. Key points Recent work demonstrates that nitric oxide (NO) contributes to cutaneous vasodilatation during moderate (400 W of metabolic heat production) but not high (700 W of metabolic heat production) intensity exercise bouts performed in the heat (35°C). The present study evaluated whether the impairment in NO-dependent cutaneous vasodilatation was the result of a greater accumulation of reactive oxygen species during high (700 W of metabolic heat production) relative to moderate (500 W of metabolic heat production) intensity exercise. It was shown that local infusion of ascorbate (an anti-oxidant) improves NO-dependent forearm cutaneous vasodilatation during high intensity exercise in the heat. These findings provide novel insight into the physiological mechanisms governing cutaneous blood flow during exercise-induced heat stress and provide direction for future research exploring whether oxidative stress underlies the impairments in heat dissipation that may occur in older adults, as well as in individuals with pathophysiological conditions such as type 2 diabetes. PMID:26110415
Howard, L R; Talcott, S T; Brenes, C H; Villalon, B
2000-05-01
The effect of fruit maturation on changes in carotenoids, flavonoids, total soluble reducing equivalents, phenolic acids, ascorbic acid, and antioxidant activity (AOX) in different pepper types (Capsicum annuum, Capsicum frutescens, and Capsicum chinese) was determined. Generally, the concentration of these chemical constituents increased as the peppers reached maturity. Peppers contained high levels of L-ascorbic acid and carotenoids at maturity, contributing 124-338% of the RDA for vitamin C and 0.33-336 RE/100 g of provitamin A activity, respectively. Levels of phenolic acids, capxanthin, and zeaxanthin generally increased during maturation, whereas the level of lutein declined. Flavonoid concentrations varied greatly among the pepper types analyzed and were negatively correlated to AOX under the conditions of the beta-carotene-linoleic assay. Model systems were used to aid in understanding the relationship between flavonoids and AOX. Significant increases in AOX were observed in pepper juice models in response to increasing dilution factors and the presence of EDTA, indicating a pro-oxidant effect due to metal ions in the system. In vitro models demonstrated that increasing levels of flavonoids in combination with constant levels of caffeic and ascorbic acid gave a resultant AOX that was either additive of the two compounds or competitive in their ability to scavenge peroxyl radicals. The model systems were in good agreement with the chemical composition of the pepper cultivars and reflected the interactions affecting AOX. More research is needed to understand the complex interactions that occur among various antioxidants present in pepper extracts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Emrys W.; Henbest, Kevin B.; Timmel, Christiane R., E-mail: christiane.timmel@chem.ox.ac.uk, E-mail: stuart.mackenzie@chem.ox.ac.uk
Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (k{sub B}T), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, themore » form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green’s function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ∼500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.« less
NASA Astrophysics Data System (ADS)
Ouattara, B.; Giroux, M.; Yefsah, R.; Smoragiewicz, W.; Saucier, L.; Borsa, J.; Lacroix, M.
2002-03-01
The current interest in "minimally processed foods" has attracted the attention for combination of mild treatments to improve food safety and shelf-life extention. The present study was conducted to evaluate the combined effect of gamma irradiation and incorporation of naturally occurring antimicrobial compounds on microbial and biochemistry characteristics of ground beef. Ground beef patties (23% fat ) were purchased from a local grocery store (IGA, Laval, Que., Canada) and divided into 3 separate treatment groups: (i) control (ground beef without additive), (ii) ground beef with 0.5% (w/w) ascorbic acid, and (iii) ground beef with 0.5% ascorbic acid and coated with a protein-based coating containing selected spices. Samples were irradiated at 0, 1, 2, and 3 kGy final dose at the CIC. Samples were stored at 4°C and evaluated periodically for microbial growth, total thiobarbituric reactive substances (TBARS) and free sulfydryl content. At the end of the storage period, Enterobacteriaceae, Lactic acid bacteria, Pseudomonas and Brochothrix thermosphacta were enumerated. Regardless of the treatment group, irradiation significantly ( p⩽0.05) reduced the total aerobic plate counts (APC). Irradiation doses of 1, 2, and 3 kGy produced immediate reduction of 2, 3, and 4 log units of APCs, respectively. Also, shelf-life periods were higher for ground beef samples containing food additives. Lactic acid bacteria and Brochothrix thermosphacta were more resistant to irradiation than Enterobacteriaceae and Pseudomonas. Concentration of TBARS and free sulfydryl concentrations were stabilized during post-irradiation storage for samples containing ascorbic acid and coated with the protein-based coating containing spices.
King, Amanda M; Glass, Kathleen A; Milkowski, Andrew L; Sindelar, Jeffrey J
2015-08-01
The antimicrobial impact of purified and natural sources of both nitrite and ascorbate were evaluated against Clostridium perfringens during the postthermal processing cooling period of deli-style turkey breast. The objective of phase I was to assess comparable concentrations of nitrite (0 or 100 ppm) and ascorbate (0 or 547 ppm) from both purified and natural sources. Phase II was conducted to investigate concentrations of nitrite (50, 75, or 100 ppm) from cultured celery juice powder and ascorbate (0, 250, or 500 ppm) from cherry powder to simulate alternative curing formulations. Ground turkey breast (75% moisture, 1.2% salt, pH 6.2) treatments were inoculated with C. perfringens spores (three-strain mixture) to yield 2.5 log CFU/g. Individual 50-g portions were vacuum packaged, cooked to 71.1°C, and chilled from 54.4 to 26.7°C in 5 h and from 26.7 to 7.2°C in 10 additional hours. Triplicate samples were assayed for growth of C. perfringens at predetermined intervals by plating on tryptose-sulfite-cycloserine agar; experiments were replicated three times. In phase I, uncured, purified nitrite, and natural nitrite treatments without ascorbate had 5.3-, 4.2-, and 4.4-log increases in C. perfringens, respectively, at 15 h, but <1-log increase was observed at the end of chilling in treatments containing 100 ppm of nitrite and 547 ppm of ascorbate from either source. In phase II, 0, 50, 75, and 100 ppm of nitrite and 50 ppm of nitrite plus 250 ppm of ascorbate supported 4.5-, 3.9-, 3.5-, 2.2-, and 1.5-log increases in C. perfringens, respectively. In contrast, <1-log increase was observed after 15 h in the remaining phase II treatments supplemented with 50 ppm of nitrite and 500 ppm of ascorbate or ≥75 ppm of nitrite and ≥250 ppm of ascorbate. These results confirm that equivalent concentrations of nitrite, regardless of the source, provide similar inhibition of C. perfringens during chilling and that ascorbate enhances the antimicrobial effect of nitrite on C. perfringens at concentrations commonly used in alternative cured meats.
Mlakar, A; Spiteller, G
1997-01-01
2-Hydroxy-succinaldehyde was detected by a GC/MS analysis of trapped aldehydic compounds obtained after Fe2+/ascorbate lipid peroxidation of arachidonic acid. Precursor molecules of aldehydes are hydroperoxy compounds. Thus the generation of the two aldehydic groups in 2-hydroxysuccinaldehyde requires a precursor molecule with two hydroperoxy groups. The hydroxy group in 2-position is generated by a third hydroperoxidation reaction. The detection of 2-hydroxysuccinaldehyde--although found only in traces--is the first example for triple dioxigenation of unsaturated fatty acid. Linolenic acid produces 2-hydroxysuccinaldehyde in much lower amounts than arachidonic acid. A similar oxidation of linoleic acid was not observed.
The Use of Ascorbic Acid as a Food Additive: Technical-Legal Issues
Varvara, Michele; Bozzo, Giancarlo; Celano, Giuseppe; Disanto, Chiara; Pagliarone, Cosimo Nicola
2016-01-01
Ascorbic acid (C6H8O6) is an organic compound belonging to the family of monosaccharide. It is highly soluble in water, and is often called one of the secrets of the Mediterranean diet. Its use is widespread in the food industry is also important, having always been exploited for its antioxidant and stabilising ability. Many indeed are the additive formulations that take advantage of these properties. The purpose of this paper is to explain the characteristics that make ascorbic acid an important food additive and to emphasise the technical and legal issues related to its use in food productions. In particular, in the course of this employment, laws and scientific studies have been applied to the resolution of a lawsuit, having as its object the use of ascorbic acid in preparations of ground beef sold at a butcher shop. The views expressed in court by the technical consultant have led to the acquittal of the accused, in the light of the demonstrated and proven non-toxicity of the molecule and the use of a mixture of additives for the production of sausage. The European and national legislations, supported by numerous scientific studies, define the possible use of ascorbic acid according to the principle of quantum satis, and it can be used in foods for children. Our work aims to represent further evidence of the safety of use of ascorbic acid as a food additive, and – as confirmed by the legal decision reported – it wants to bring out the prospects for use of ascorbic acid for technological purposes even by registered establishments. PMID:27800425
Auer, B L; Auer, D; Rodgers, A L
1998-03-01
The present study was undertaken to determine the effect of ingestion of large doses of vitamin C on urinary oxalate excretion and on a number of other biochemical and physicochemical risk factors associated with calcium oxalate urolithiasis. A further objective was to determine urinary ascorbate excretion and to relate it qualitatively to ingested levels of the vitamin and oxalate excretion. Ten healthy males participated in a protocol in which 4 g ascorbic acid was ingested for 5 days. Urines (24 h) were collected prior to, during and after the protocol. The urine collection procedure was designed to allow for the analysis of oxalate in the presence and absence of an EDTA preservative and for the analysis of ascorbic acid by manual titration using 2,6 dichlorophenolindophenol. Physicochemical risk factors such as the calcium oxalate relative supersaturation and Tiselius risk index were calculated from urine composition. The results showed that erroneously high analytical oxalate levels occur in the asence of preservative. In the preserved samples there was no significant increase in oxalate excretion at any stage of the protocol. Ascorbate excretion increased when vitamin C ingestion commenced but levelled out after 24 hours suggesting that saturation of the metabolic pool is reached within 24 hours after which ingested ascorbic acid is excreted unmetabolized in the urine. While transient statistically significant changes occurred in some of the biochemical risk factors, they were not regarded as being clinically significant. There were no changes in either the calcium oxalate relative supersaturation or Tiselius risk index. It is concluded that ingestion of large doses of ascorbic acid does not affect the principal risk factors associated with calcium oxalate kidney stone formation.
Xiao, Wei; Jones, Adele M; Collins, Richard N; Waite, T David
2018-05-09
The inorganic core of the iron storage protein, ferritin, is recognized as being analogous to the poorly crystalline iron mineral, ferrihydrite (Fh). Fh is also abundant in soils where it is central to the redox cycling of particular soil contaminants and trace elements. In geochemical circles, it is recognized that Fh can undergo Fe(II)-catalyzed transformation to form more crystalline iron minerals, vastly altering the reactivity of the iron oxide and, in some cases, the redox poise of the system. Of relevance to both geochemical and biological systems, we investigate here if the naturally occurring reducing agent, ascorbate, can effect such an Fe(II)-catalyzed transformation of Fh at 25 °C and circumneutral pH. The transformation of ferrihydrite to possible secondary Fe(III) mineralization products was quantified using Fourier transform infrared (FTIR) spectroscopy, with supporting data obtained using X-ray absorbance spectroscopy (XAS) and X-ray diffraction (XRD). Whilst the amount of Fe(II) formed in the presence of ascorbate has resulted in Fh transformation in previous studies, no transformation of Fh to more crystalline Fe(III) (oxyhydr)oxides was observed in this study. Further experiments indicated this was due to the ability of ascorbate to inhibit the formation of goethite, lepidocrocite and magnetite. The manner in which ascorbate associated with Fh was investigated using FTIR and total organic carbon (TOC) analysis. The majority of ascorbate was found to adsorb to the Fh surface under anoxic conditions but, under oxic conditions, ascorbate was initially adsorbed then became incorporated within the Fe(III) (oxyhydr)oxide structure (i.e., co-precipitated) over time. Copyright © 2018 Elsevier B.V. All rights reserved.
Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants 1
Nuss, Richard F.; Loewus, Frank A.
1978-01-01
l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined. When l-[1-14C]ascorbic acid is supplied to young seedlings of R. crispus or H. glomeratus, a major portion of the 14C is released over a 24-hour period as 14CO2 and only a small portion is recovered as [14C]oxalate, unlike cuttings from 2- or 4-month-old plants which retain a large part of the 14C as [14C]oxalic acid and release very little 14CO2. Support for an intermediate role of oxalate in the release of 14CO2 from l-[1-14C]ascorbic acid is seen in the rapid release of 14CO2 by R. crispus and H. glomeratus seedlings labeled with [14C]oxalic acid. The common origin of oxalic acid carbon in the C1 and C2 fragment from l-ascorbic acid is demonstrated by comparison of 14C content of oxalic acid in several oxalate-accumulators after cuttings or seedlings are supplied equal amounts of l-[1-14C]- or l-[UL-14C]ascorbic acid. Theoretically, l-[1-14C]ascorbic acid will produce labeled oxalic acid containing three times as much 14C as l-[UL-14C]ascorbic acid when equal amounts of label are provided. Experimentally, a ratio of 2.7 ± 0.5 is obtained in duplicate experiments with six different species. PMID:16660342