Sample records for selectively kill cells

  1. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells.

    PubMed

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.

  2. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

    PubMed Central

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177

  3. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    PubMed

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  4. Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen-pyropheophorbide conjugate.

    PubMed

    Fernandez Gacio, Ana; Fernandez-Marcos, Carlos; Swamy, Narasimha; Dunn, Darra; Ray, Rahul

    2006-10-15

    We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens. 2006 Wiley-Liss, Inc.

  5. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    PubMed

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  6. Golden Berry-Derived 4β-hydroxywithanolide E for Selectively Killing Oral Cancer Cells by Generating ROS, DNA Damage, and Apoptotic Pathways

    PubMed Central

    Chiu, Chien-Chih; Haung, Jo-Wen; Chang, Fang-Rong; Huang, Kuang-Jing; Huang, Hsuan-Min; Huang, Hurng-Wern; Chou, Chon-Kit; Wu, Yang-Chang; Chang, Hsueh-Wei

    2013-01-01

    Background Most chemotherapeutic drugs for killing cancer cells are highly cytotoxic in normal cells, which limits their clinical applications. Therefore, a continuing challenge is identifying a drug that is hypersensitive to cancer cells but has minimal deleterious effects on healthy cells. The aims of this study were to evaluate the potential of 4β-hydroxywithanolide (4βHWE) for selectively killing cancer cells and to elucidate its related mechanisms. Methodology and Principal Findings Changes in survival, oxidative stress, DNA damage, and apoptosis signaling were compared between 4βHWE-treated oral cancer (Ca9-22) and normal fibroblast (HGF-1) cells. At 24 h and 48 h, the numbers of Ca9-22 cells were substantially decreased, but the numbers of HGF-1 cells were only slightly decreased. Additionally, the IC50 values for 4βHWE in the Ca9-22 cells were 3.6 and 1.9 µg/ml at 24 and 48 h, respectively. Time-dependent abnormal increases in ROS and dose-responsive mitochondrial depolarization can be exploited by using 4βHWE in chemotherapies for selectively killing cancer cells. Dose-dependent DNA damage measured by comet-nuclear extract assay and flow cytometry-based γ-H2AX/propidium iodide (PI) analysis showed relatively severer damage in the Ca9-22 cells. At both low and high concentrations, 4βHWE preferably perturbed the cell cycle in Ca9-22 cells by increasing the subG1 population and arrest of G1 or G2/M. Selective induction of apoptosis in Ca9-22 cells was further confirmed by Annexin V/PI assay, by preferential expression of phosphorylated ataxia-telangiectasia- and Rad3-related protein (p-ATR), and by cleavage of caspase 9, caspase 3, and poly ADP-ribose polymerase (PARP). Conclusions/Significance Together, the findings of this study, particularly the improved understanding of the selective killing mechanisms of 4βHWE, can be used to improve efficiency in killing oral cancer cells during chemoprevention and therapy. PMID:23705007

  7. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    PubMed

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  8. Vitamin C, a Multi-Tasking Molecule, Finds a Molecular Target in Killing Cancer Cells.

    PubMed

    Li, Robert

    2016-03-01

    Early work in the 1970s by Linus Pauling, a twice-honored Nobel laureate, led to his proposal of using high-dose vitamin C to treat cancer patients. Over the past several decades, a number of studies in animal models as well as several small-scale clinical studies have provided substantial support of Linus Pauling's early proposal. Production of reactive oxygen species (ROS) via oxidation of vitamin C appears to be a major underlying event, leading to the selective killing of cancer cells. However, it remains unclear how vitamin C selectively kills cancer cells while sparing normal cells and what the molecular targets of high-dose vitamin C are. In a recent article published in Science (2015 December 11; 350(6266):1391-6. doi: 10.1126/science.aaa5004), Yun et al. reported that vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) through an ROS-dependent mechanism. This work by Yun et al. along with other findings advances our current understanding of the molecular basis of high-dose vitamin C-mediated cancer cell killing, which will likely give an impetus to the continued research efforts aiming to further decipher the novel biochemistry of vitamin C and its unique role in cancer therapy.

  9. Mechanistic insights into selective killing of OXPHOS-dependent cancer cells by arctigenin.

    PubMed

    Brecht, Karin; Riebel, Virginie; Couttet, Philippe; Paech, Franziska; Wolf, Armin; Chibout, Salah-Dine; Pognan, Francois; Krähenbühl, Stephan; Uteng, Marianne

    2017-04-01

    Arctigenin has previously been identified as a potential anti-tumor treatment for advanced pancreatic cancer. However, the mechanism of how arctigenin kills cancer cells is not fully understood. In the present work we studied the mechanism of toxicity by arctigenin in the human pancreatic cell line, Panc-1, with special emphasis on the mitochondria. A comparison of Panc-1 cells cultured in glucose versus galactose medium was applied, allowing assessments of effects in glycolytic versus oxidative phosphorylation (OXPHOS)-dependent Panc-1 cells. For control purposes, the mitochondrial toxic response to treatment with arctigenin was compared to the anti-cancer drug, sorafenib, which is a tyrosine kinase inhibitor known for mitochondrial toxic off-target effects (Will et al., 2008). In both Panc-1 OXPHOS-dependent and glycolytic cells, arctigenin dissipated the mitochondrial membrane potential, which was demonstrated to be due to inhibition of the mitochondrial complexes II and IV. However, arctigenin selectively killed only the OXPHOS-dependent Panc-1 cells. This selective killing of OXPHOS-dependent Panc-1 cells was accompanied by generation of ER stress, mitochondrial membrane permeabilization and caspase activation leading to apoptosis and aponecrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity.

    PubMed

    Ogawa, Mikako; Tomita, Yusuke; Nakamura, Yuko; Lee, Min-Jung; Lee, Sunmin; Tomita, Saori; Nagaya, Tadanobu; Sato, Kazuhide; Yamauchi, Toyohiko; Iwai, Hidenao; Kumar, Abhishek; Haystead, Timothy; Shroff, Hari; Choyke, Peter L; Trepel, Jane B; Kobayashi, Hisataka

    2017-02-07

    Immunogenic cell death (ICD) is a form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Cancer cells killed via ICD can elicit antitumor immunity. ICD is efficiently induced by near-infrared photo-immunotherapy (NIR-PIT) that selectively kills target-cells on which antibody-photoabsorber conjugates bind and are activated by NIR light exposure. Advanced live cell microscopies showed that NIR-PIT caused rapid and irreversible damage to the cell membrane function leading to swelling and bursting, releasing intracellular components due to the influx of water into the cell. The process also induces relocation of ICD bio markers including calreticulin, Hsp70 and Hsp90 to the cell surface and the rapid release of immunogenic signals including ATP and HMGB1 followed by maturation of immature dendritic cells. Thus, NIR-PIT is a therapy that kills tumor cells by ICD, eliciting a host immune response against tumor.

  11. Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics.

    PubMed

    Cai, Jing; Lin, Yuan; Zhang, Haipeng; Liang, Jiankai; Tan, Yaqian; Cavenee, Webster K; Yan, Guangmei

    2017-06-27

    Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.

  12. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  13. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  14. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET.

    PubMed

    Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-01-18

    Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy.

    PubMed

    Gustafsson, Lotta; Hallgren, Oskar; Mossberg, Ann-Kristin; Pettersson, Jenny; Fischer, Walter; Aronsson, Annika; Svanborg, Catharina

    2005-05-01

    New cancer treatments should aim to destroy tumor cells without disturbing normal tissue. HAMLET (human alpha-lactalbumin made lethal to tumor cells) offers a new molecular approach to solving this problem, because it induces apoptosis in tumor cells but leaves normal differentiated cells unaffected. After partial unfolding and binding to oleic acid, alpha-lactalbumin forms the HAMLET complex, which enters tumor cells and freezes their metabolic machinery. The cells proceed to fragment their DNA, and they disintegrate with apoptosis-like characteristics. HAMLET kills a wide range of malignant cells in vitro and maintains this activity in vivo in patients with skin papillomas. In addition, HAMLET has striking effects on human glioblastomas in a rat xenograft model. After convection-enhanced delivery, HAMLET diffuses throughout the brain, selectively killing tumor cells and controlling tumor progression without apparent tissue toxicity. HAMLET thus shows great promise as a new therapeutic with the advantage of selectivity for tumor cells and lack of toxicity.

  16. Clinical-scale laser-based scanning and processing of live cells: selective photothermal killing of fluorescent tumor targets for autologous stem cell transplantation

    NASA Astrophysics Data System (ADS)

    Koller, Manfred R.; Hanania, Elie G.; Eisfeld, Timothy; O'Neal, Robert A.; Khovananth, Kevin M.; Palsson, Bernhard O.

    2001-04-01

    High-dose chemotherapy, followed by autologous hematopoietic stem cell (HSC) transplantation, is widely used for the treatment of cancer. However, contaminating tumor cells within HSC harvests continue to be of major concern since re-infused tumor cells have proven to contribute to disease relapse. Many tumor purging methods have been evaluated, but all leave detectable tumor cells in the transplant and result in significant loss of HSCs. These shortcomings cause engraftment delays and compromise the therapeutic value of purging. A novel approach integrating automated scanning cytometry, image analysis, and selective laser-induced killing of labeled cells within a cell mixture is described here. Non-Hodgkin's lymphoma (NHL) cells were spiked into cell mixtures, and fluorochrome-conjugated antibodies were used to label tumor cells within the mixture. Cells were then allowed to settle on a surface, and as the surface was scanned with a fluorescence excitation source, a laser pulse was fired at every detected tumor cell using high-speed beam steering mirrors. Tumor cells were selectively killed with little effect on adjacent non-target cells, demonstrating the feasibility of this automated cell processing approach. This technology has many potential research and clinical applications, one example of which is tumor cell purging for autologous HSC transplantation.

  17. Designing and building oncolytic viruses

    PubMed Central

    Maroun, Justin; Muñoz-Alía, Miguel; Ammayappan, Arun; Schulze, Autumn; Peng, Kah-Whye; Russell, Stephen

    2017-01-01

    Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care. PMID:29387140

  18. Selective killing of hepatocellular carcinoma HepG2 cells by three-dimensional nanographene nanoparticles based on triptycene

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoqin; Gan, Lu; Liu, Ying; Zhang, Chun; Yong, Tuying; Wang, Ziyi; Xu, Huibi; Yang, Xiangliang

    2015-03-01

    Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents.Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07248k

  19. Cancer cell-selective killing polymer/copper combination.

    PubMed

    He, Huacheng; Altomare, Diego; Ozer, Ufuk; Xu, Hanwen; Creek, Kim; Chen, Hexin; Xu, Peisheng

    2016-01-01

    Chemotherapy has been adopted for cancer treatment for decades. However, its efficacy and safety are frequently compromised by the multidrug-resistance of cancer cells and the poor cancer cell selectivity of anticancer drugs. Hereby, we report a combination of a pyridine-2-thiol containing polymer and copper which can effectively kill a wide spectrum of cancer cells, including drug resistant cancer cells, while sparing normal cells. The polymer nanoparticle enters cells via an exofacial thiol facilitated route, and releases active pyridine-2-thiol with the help of intracellularly elevated glutathione (GSH). Due to their high GSH level, cancer cells are more vulnerable to the polymer/copper combination. In addition, RNA microarray analysis revealed that the treatment can reverse cancer cells' upregulated oncogenes (CIRBP and STMN1) and downregulated tumor suppressor genes (CDKN1C and GADD45B) to further enhance the selectivity for cancer cells.

  20. A repetitive mutation and selection system for bacterial evolution to increase the specific affinity to pancreatic cancer cells.

    PubMed

    Osawa, Masaki

    2018-01-01

    It is difficult to target and kill cancer cells. One possible approach is to mutate bacteria to enhance their binding to cancer cells. In the present study, Gram-negative Escherichia coli and Gram-positive Bacillus subtilis were randomly mutated, and then were positively and negatively selected for binding cancer vs normal cells. With repetitive mutation and selection both bacteria successfully evolved to increase affinity to the pancreatic cancer cell line (Mia PaCa-2) but not normal cells (HPDE: immortalized human pancreatic ductal epithelial cells). The mutant E. coli and B. subtilis strains bound to Mia PaCa-2 cells about 10 and 25 times more than to HPDE cells. The selected E. coli strain had mutations in biofilm-related genes and the regulatory region for a type I pilus gene. Consistent with type I pili involvement, mannose could inhibit the binding to cells. The results suggest that weak but specific binding is involved in the initial step of adhesion. To test their ability to kill Mia PaCa-2 cells, hemolysin was expressed in the mutant strain. The hemolysin released from the mutant strain was active and could kill Mia PaCa-2 cells. In the case of B. subtilis, the initial binding to the cells was a weak interaction of the leading pole of the motile bacteria. The frequency of this interaction to Mia PaCa-2 cells dramatically increased in the evolved mutant strain. This mutant strain could also specifically invade beneath Mia PaCa-2 cells and settle there. This type of mutation/selection strategy may be applicable to other combinations of cancer cells and bacterial species.

  1. Varying congruence of hygienic responses to Varroa destructor and freeze-killed brood among different types of honey bees

    USDA-ARS?s Scientific Manuscript database

    Different types of honey bees, Apis mellifera L., have been selectively bred for enhanced hygiene (i.e., removal of affected brood from sealed cells) to improve resistance to diseases and parasites. Bees selected for removal of freeze-killed brood (FKB) have protection from several microbial disease...

  2. Sibling Rivalry in Myxococcus xanthus Is Mediated by Kin Recognition and a Polyploid Prophage.

    PubMed

    Dey, Arup; Vassallo, Christopher N; Conklin, Austin C; Pathak, Darshankumar T; Troselj, Vera; Wall, Daniel

    2016-01-19

    Myxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-type Myxococcus xanthus (DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large "polyploid prophage," Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery of M. xanthus to transfer a toxin that makes the population "addicted" to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (by traA allele swap) to recognize a closely related species, Myxococcus fulvus. As a result, M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms in traA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes. The transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is mediated by the TraA cell surface receptor. Surprisingly, we report that TraA recognition can also involve sibling killing. We show that killing originates from a prophage-like element that has apparently hijacked the TraA system to deliver a toxin to kin. We hypothesize that this killing system has imposed selective pressures on kin recognition, which in turn has resulted in TraA polymorphisms and hence many different recognition groups. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Sibling Rivalry in Myxococcus xanthus Is Mediated by Kin Recognition and a Polyploid Prophage

    PubMed Central

    Dey, Arup; Vassallo, Christopher N.; Conklin, Austin C.; Pathak, Darshankumar T.; Troselj, Vera

    2016-01-01

    ABSTRACT Myxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-type Myxococcus xanthus (DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large “polyploid prophage,” Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery of M. xanthus to transfer a toxin that makes the population “addicted” to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (by traA allele swap) to recognize a closely related species, Myxococcus fulvus. As a result, M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms in traA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes. IMPORTANCE The transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is mediated by the TraA cell surface receptor. Surprisingly, we report that TraA recognition can also involve sibling killing. We show that killing originates from a prophage-like element that has apparently hijacked the TraA system to deliver a toxin to kin. We hypothesize that this killing system has imposed selective pressures on kin recognition, which in turn has resulted in TraA polymorphisms and hence many different recognition groups. PMID:26787762

  4. Enhanced cell killing and apoptosis of oral squamous cell carcinoma cells with ultrasound in combination with cetuximab coated albumin microbubbles.

    PubMed

    Narihira, Kyoichi; Watanabe, Akiko; Sheng, Hong; Endo, Hitomi; Feril, Loreto B; Irie, Yutaka; Ogawa, Koichi; Moosavi-Nejad, Seyedeh; Kondo, Seiji; Kikuta, Toshihiro; Tachibana, Katsuro

    2018-03-01

    Targeted microbubbles have the potential to be used for ultrasound (US) therapy and diagnosis of various cancers. In the present study, US was irradiated to oral squamous cell carcinoma cells (HSC-2) in the presence of cetuximab-coated albumin microbubbles (CCAM). Cell killing rate with US treatment at 0.9 W/cm 2 and 1.0 W/cm 2 in the presence of CCAM was greater compared to non-targeted albumin microbubbles (p < .05). On the other hand, selective cell killing was not observed in human myelomonocytic lymphoma cell line (U937) that had no affinity to cetuximab. Furthermore, US irradiation in the presence of CCAM showed a fivefold increase of cell apoptotic rate for HSC-2 cells (21.0 ± 3.8%) as compared to U937 cells (4.0 ± 0.8%). Time-signal intensity curve in a tissue phantom demonstrated clear visualisation of CCAM with conventional US imaging device. Our experiment verifies the hypothesis that CCAM was selective to HSC-2 cells and may be applied as a novel therapeutic/diagnostic microbubble for oral squamous cell carcinoma.

  5. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL.

    PubMed

    Bellantuono, Ilaria; Gao, Liquan; Parry, Suzanne; Marley, Steve; Dazzi, Francesco; Apperley, Jane; Goldman, John M; Stauss, Hans J

    2002-11-15

    Using the allo-restricted T-cell approach to circumvent tolerance, we have previously identified a cytotoxic T-lymphocyte (CTL) epitope in the transcription factor Wilms tumor antigen 1 (WT1) presented by HLA-A0201 (A2) class I molecules. Here we describe an additional A2-presented epitope and show that CTLs against both epitopes kill WT1-expressing leukemia cell lines. Colony-forming assays demonstrated that both types of CTL killed CD34(+) progenitor cells from A2(+) leukemia patients, but not from A2(+) healthy individuals. The long-term culture-initiating cell (LTC-IC) assay was used to analyze the killing activity of WT1-specific CTLs against the more immature fraction of CD34(+) cells. The CTLs killed LTC-ICs of patients with chronic myelogenous leukemia (CML), whereas the function of normal CD34(+) progenitor/stem cells was not inhibited. Together, the data show that CTLs specific for 2 distinct peptide epitopes of WT1 can discriminate between normal and leukemia LTC-ICs, suggesting that such CTLs have the potential to selectively kill CML progenitor/stem cells.

  6. Human Papillomavirus E6E7-Mediated Adenovirus Cell Killing: Selectivity of Mutant Adenovirus Replication in Organotypic Cultures of Human Keratinocytes

    PubMed Central

    Balagué, Cristina; Noya, Francisco; Alemany, Ramon; Chow, Louise T.; Curiel, David T.

    2001-01-01

    Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human papillomavirus (HPV) E6 and E7 oncoproteins, which are present in a high percentage of anogenital cancers. For this purpose, we have employed an organotypic model of human stratified squamous epithelium derived from primary keratinocytes that have been engineered to express HPV-18 oncoproteins stably. We show that, whereas wild-type adenovirus promotes a widespread cytopathic effect in all infected cells, E1A- and E1A/E1B-deleted adenoviruses cause no deleterious effect regardless of the coexpression of HPV18 E6E7. An adenovirus deleted in the CR2 domain of E1A, necessary for binding to the pRB family of pocket proteins, shows no selectivity of replication as it efficiently kills all normal and E6E7-expressing keratinocytes. Finally, an adenovirus mutant deleted in the CR1 and CR2 domains of E1A exhibits preferential replication and cell killing in HPV E6E7-expressing cultures. We conclude that the organotypic keratinocyte culture represents a distinct model to evaluate adenovirus selectivity and that, based on this model, further modifications of the adenovirus genome are required to restrict adenovirus replication to tumor cells. PMID:11462032

  7. Altering calcium influx for selective destruction of breast tumor.

    PubMed

    Yu, Han-Gang; McLaughlin, Sarah; Newman, Mackenzie; Brundage, Kathleen; Ammer, Amanda; Martin, Karen; Coad, James

    2017-03-04

    Human triple-negative breast cancer has limited therapeutic choices. Breast tumor cells have depolarized plasma membrane potential. Using this unique electrical property, we aim to develop an effective selective killing of triple-negative breast cancer. We used an engineered L-type voltage-gated calcium channel (Cec), activated by membrane depolarization without inactivation, to induce excessive calcium influx in breast tumor cells. Patch clamp and flow cytometry were used in testing the killing selectivity and efficiency of human breast tumor cells in vitro. Bioluminescence and ultrasound imaging were used in studies of human triple-negative breast cancer cell MDA-MB-231 xenograft in mice. Histological staining, immunoblotting and immunohistochemistry were used to investigate mechanism that mediates Cec-induced cell death. Activating Cec channels expressed in human breast cancer MCF7 cells produced enormous calcium influx at depolarized membrane. Activating the wild-type Cav1.2 channels expressed in MCF7 cells also produced a large calcium influx at depolarized membrane, but this calcium influx was diminished at the sustained membrane depolarization due to channel inactivation. MCF7 cells expressing Cec died when the membrane potential was held at -10 mV for 1 hr, while non-Cec-expressing MCF7 cells were alive. MCF7 cell death was 8-fold higher in Cec-expressing cells than in non-Cec-expressing cells. Direct injection of lentivirus containing Cec into MDA-MB-231 xenograft in mice inhibited tumor growth. Activated caspase-3 protein was detected only in MDA-MB-231 cells expressing Cec, along with a significantly increased expression of activated caspase-3 in xenograft tumor treated with Cec. We demonstrated a novel strategy to induce constant calcium influx that selectively kills human triple-negative breast tumor cells.

  8. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation.

    PubMed

    Arimilli, Subhashini; Schmidt, Eckhardt; Damratoski, Brad E; Prasad, G L

    2017-10-01

    Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.

  9. Cancer selection.

    PubMed

    Leroi, Armand M; Koufopanou, Vassiliki; Burt, Austin

    2003-03-01

    Cancers are often thought to be selectively neutral. This is because most of the individuals that they kill are post-reproductive. Some cancers, however, kill the young and so select for anticancer adaptations that reduce the chance of death. These adaptations could reduce the somatic mutation rate or the selective value of a mutant clone of cells, or increase the number of stages required for neoplasia. New theory predicts that cancer selection--selection to prevent or postpone deaths due to cancer--should be especially important as animals evolve new morphologies or larger, longer-lived bodies, and might account for some of the differences in the causes of cancer between mice and men.

  10. Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability

    PubMed Central

    Crocetti, Sara; Beyer, Christian; Schade, Grit; Egli, Marcel; Fröhlich, Jürg; Franco-Obregón, Alfredo

    2013-01-01

    Introduction A common drawback of many anticancer therapies is non-specificity in action of killing. We investigated the potential of ultra-low intensity and frequency pulsed electromagnetic fields (PEMFs) to kill breast cancer cells. Our criteria to accept this technology as a potentially valid therapeutic approach were: 1) cytotoxicity to breast cancer cells and; 2) that the designed fields proved innocuous to healthy cell classes that would be exposed to the PEMFs during clinical treatment. Methods MCF7 breast cancer cells and their normal counterparts, MCF10 cells, were exposed to PEMFs and cytotoxic indices measured in order to design PEMF paradigms that best kill breast cancer cells. The PEMF parameters tested were: 1) frequencies ranging from 20 to 50 Hz; 2) intensities ranging from 2 mT to 5 mT and; 3) exposure durations ranging from 30 to 90 minutes per day for up to three days to determine the optimum parameters for selective cancer cell killing. Results We observed a discrete window of vulnerability of MCF7 cells to PEMFs of 20 Hz frequency, 3 mT magnitude and exposure duration of 60 minutes per day. The cell damage accrued in response to PEMFs increased with time and gained significance after three days of consecutive daily exposure. By contrast, the PEMFs parameters determined to be most cytotoxic to breast cancer MCF-7 cells were not damaging to normal MCF-10 cells. Conclusion Based on our data it appears that PEMF-based anticancer strategies may represent a new therapeutic approach to treat breast cancer without affecting normal tissues in a manner that is non-invasive and can be potentially combined with existing anti-cancer treatments. PMID:24039828

  11. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.

    PubMed

    Thurber, Aaron; Wingett, Denise G; Rasmussen, John W; Layne, Janet; Johnson, Lydia; Tenne, Dmitri A; Zhang, Jianhui; Hanna, Charles B; Punnoose, Alex

    2012-06-01

    This work reports a new method to improve our recent demonstration of zinc oxide (ZnO) nanoparticles (NPs) selectively killing certain human cancer cells, achieved by incorporating Fe ions into the NPs. Thoroughly characterized cationic ZnO NPs (∼6 nm) doped with Fe ions (Zn(1-x )Fe (x) O, x = 0-0.15) were used in this work, applied at a concentration of 24 μg/ml. Cytotoxicity studies using flow cytometry on Jurkat leukemic cancer cells show cell viability drops from about 43% for undoped ZnO NPs to 15% for ZnO NPs doped with 7.5% Fe. However, the trend reverses and cell viability increases with higher Fe concentrations. The non-immortalized human T cells are markedly more resistant to Fe-doped ZnO NPs than cancerous T cells, confirming that Fe-doped samples still maintain selective toxicity to cancer cells. Pure iron oxide samples displayed no appreciable toxicity. Reactive oxygen species generated with NP introduction to cells increased with increasing Fe up to 7.5% and decreased for >7.5% doping.

  12. A Novel Inhibitor Of Topoisomerase I is Selectively Toxic For A Subset of Non-Small Cell Lung Cancer Cell Lines | Office of Cancer Genomics

    Cancer.gov

    SW044248, identified through a screen for chemicals that are selectively toxic for NSCLC cell lines, was found to rapidly inhibit macromolecular synthesis in sensitive, but not in insensitive cells. SW044248 killed approximately 15% of a panel of 74 NSCLC cell lines and was non-toxic to immortalized human bronchial cell lines.

  13. Photoexcited quantum dots for killing multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  14. EGFR-targeted granzyme B expressed in NK cells enhances natural cytotoxicity and mediates specific killing of tumor cells.

    PubMed

    Oberoi, Pranav; Jabulowsky, Robert A; Bähr-Mahmud, Hayat; Wels, Winfried S

    2013-01-01

    Natural killer (NK) cells are highly specialized effectors of the innate immune system that hold promise for adoptive cancer immunotherapy. Their cell killing activity is primarily mediated by the pro-apoptotic serine protease granzyme B (GrB), which enters targets cells with the help of the pore-forming protein perforin. We investigated expression of a chimeric GrB fusion protein in NK cells as a means to augment their antitumoral activity. For selective targeting to tumor cells, we fused the epidermal growth factor receptor (EGFR) peptide ligand transforming growth factor α (TGFα) to human pre-pro-GrB. Established human NKL natural killer cells transduced with a lentiviral vector expressed this GrB-TGFα (GrB-T) molecule in amounts comparable to endogenous wildtype GrB. Activation of the genetically modified NK cells by cognate target cells resulted in the release of GrB-T together with endogenous granzymes and perforin, which augmented the effector cells' natural cytotoxicity against NK-sensitive tumor cells. Likewise, GrB-T was released into the extracellular space upon induction of degranulation with PMA and ionomycin. Secreted GrB-T fusion protein displayed specific binding to EGFR-overexpressing tumor cells, enzymatic activity, and selective target cell killing in the presence of an endosomolytic activity. Our data demonstrate that ectopic expression of a targeted GrB fusion protein in NK cells is feasible and can enhance antitumoral activity of the effector cells.

  15. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    PubMed Central

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  16. Targeted drug delivery using genetically engineered diatom biosilica.

    PubMed

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-11-10

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.

  17. Design, synthesis and characterization of novel quinacrine analogs that preferentially kill cancer over non-cancer cells through the down-regulation of Bcl-2 and up-regulation of Bax and Bad.

    PubMed

    Solomon, V Raja; Almnayan, Danah; Lee, Hoyun

    2017-09-08

    Both quinacrine, which contains a 9-aminoacridine scaffold, and thiazolidin-4-one are promising anticancer leads. In an attempt to develop effective and potentially safe anticancer agents, we synthesized 23 novel hybrid compounds by linking the main structural unit of the 9-aminoacridine ring with the thiazolidin-4-one ring system, followed by examination of their anticancer effects against three human breast tumor cell lines and matching non-cancer cells. Most of the hybrid compounds showed good activities, and many of them possessed the preferential killing property against cancer over non-cancer cells. In particular, 3-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-2-(2,6-difluoro-phenyl)-thiazolidin-4-one (11; VR118) effectively killed/inhibited proliferation of cancer cells at IC 50 values in the range of 1.2-2.4 μM. Furthermore, unlike quinacrine or cisplatin, compound 11 showed strong selectivity for cancer cell killing, as it could kill cancer cells 7.6-fold (MDA-MB231 vs MCF10A) to 14.7-fold (MCF7 vs MCF10A) more effectively than matching non-cancer cells. Data from flow cytometry, TUNEL and Western blot assays showed that compound 11 kills cancer cells by apoptosis through the down-regulation of Bcl-2 (but not Bcl-X L ) survival protein and up-regulation of Bad and Bax pro-apoptotic proteins. Thus, compound 11 is a highly promising lead for an effective and potentially anticancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. The cytotoxic mechanism of karlotoxin 2 (KmTx 2) from Karlodinium veneficum (Dinophyceae)

    PubMed Central

    Deeds, Jonathan R.; Hoesch, Robert E.; Place, Allen R.; Kao, Joseph P.Y.

    2015-01-01

    This study demonstrates that the polyketide toxin karlotoxin 2 (KmTx 2) produced by Karlodinium veneficum, a dinoflagellate associated with fish kills in temperate estuaries worldwide, alters vertebrate cell membrane permeability. Microfluorimetric and electrophysiological measurements were used to determine that vertebrate cellular toxicity occurs through non-selective permeabilization of plasma membranes, leading to osmotic cell lysis. Previous studies showed that KmTx 2 is lethal to fish at naturally-occurring concentrations measured during fish kills, while sub-lethal doses severely damage gill epithelia. This study provides a mechanistic explanation for the association between K. veneficum blooms and fish kills that has long been observed in temperate estuaries worldwide. PMID:25546005

  19. Repurposing a Prokaryotic Toxin-Antitoxin System for the Selective Killing of Oncogenically Stressed Human Cells.

    PubMed

    Preston, Mark A; Pimentel, Belén; Bermejo-Rodríguez, Camino; Dionne, Isabelle; Turnbull, Alice; de la Cueva-Méndez, Guillermo

    2016-07-15

    Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far.

  20. Smart Plasmonic Glucose Nanosensors as Generic Theranostic Agents for Targeting-Free Cancer Cell Screening and Killing.

    PubMed

    Chen, Limei; Li, Haijuan; He, Haili; Wu, Haoxi; Jin, Yongdong

    2015-07-07

    Fast and accurate identification of cancer cells from healthy normal cells in a simple, generic way is very crucial for early cancer detection and treatment. Although functional nanoparticles, like fluorescent quantum dots and plasmonic Au nanoparticles (NPs), have been successfully applied for cancer cell imaging and photothermal therapy, they suffer from the main drawback of needing time-consuming targeting preparation for specific cancer cell detection and selective ablation. The lack of a generic and effective method therefore limits their potential high-throughput cancer cell preliminary screening and theranostic applications. We report herein a generic in vitro method for fast, targeting-free (avoiding time-consuming preparations of targeting moiety for specific cancer cells) visual screening and selective killing of cancer cells from normal cells, by using glucose-responsive/-sensitive glucose oxidase-modified Ag/Au nanoshells (Ag/Au-GOx NSs) as a smart plasmonic theranostic agent. The method is generic to some extent since it is based on the distinct localized surface plasmon resonance (LSPR) responses (and colors) of the smart nanoprobe with cancer cells (typically have a higher glucose uptake level) and normal cells.

  1. Saliva and dental plaque.

    PubMed

    Rudney, J D

    2000-12-01

    Dental plaque is being redefined as oral biofilm. Diverse overlapping microbial consortia are present on all oral tissues. Biofilms are structured, displaying features like channels and projections. Constituent species switch back and forth between sessile and planktonic phases. Saliva is the medium for planktonic suspension. Several major functions can be defined for saliva in relation to oral biofilm. It serves as a medium for transporting planktonic bacteria within and between mouths. Bacteria in transit may be vulnerable to negative selection. Salivary agglutinins may prevent reattachment to surfaces. Killing by antimicrobial proteins may lead to attachment of dead cells. Salivary proteins form conditioning films on all oral surfaces. This contributes to positive selection for microbial adherence. Saliva carries chemical messengers which allow live adherent cells to sense a critical density of conspecifics. Growth begins, and thick biofilms may become resistant to antimicrobial substances. Salivary macromolecules may be catabolized, but salivary flow also may clear dietary substrates. Salivary proteins act in ways that benefit both host and microbe. All have multiple functions, and many do the same job. They form heterotypic complexes, which may exist in large micelle-like structures. These issues make it useful to compare subjects whose saliva functions differently. We have developed a simultaneous assay for aggregation, killing, live adherence, and dead adherence of oral species. Screening of 149 subjects has defined high killing/low adherence, low killing/high adherence, high killing/high adherence, and low killing/low adherence groups. These will be evaluated for differences in their flora.

  2. The offer of chemistry to targeted therapy in cancer.

    PubMed

    Jemel, Ikram; Jellali, Karim; Elloumi, Jihene; Aifa, Sami

    2011-12-01

    Cancer therapy is facing the big challenge of destroying selectively tumour cells without harming the normal tissues. Chemotherapy was trying from the beginning to kill malignant cells because of their proliferative activity since normal cells are in general quiescent. Meanwhile side effects were produced due to the destruction of some normal cells that need regular proliferation. The discovery of biomarkers led to the identification of molecular targets within tumour cells in order to kill them selectively. Chemistry followed the progress of biomarkers biotechnology by the production of target specific antagonists which were the subject of many patents. Meanwhile novel problems of tumour resistance appeared and made the battle against cancer a non stop development of new strategies and new weapons. As a consequence, paralleled activities of patenting biomarkers and chemical antagonists are continuously generated. The offer of chemistry does not actually limit the efficiency of Targeted therapy but the identification of biomarkers is still missing the exclusive specificity to tumour cells.

  3. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less

  4. Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis

    PubMed Central

    de la Cueva-Méndez, Guillermo; Mills, Anthony D.; Clay-Farrace, Lorena; Díaz-Orejas, Ramón; Laskey, Ronald A.

    2003-01-01

    Plasmid R1 inhibits growth of bacteria by synthesizing an inhibitor of cell proliferation, Kid, and a neutralizing antidote, Kis, which binds tightly to the toxin. Here we report that this toxin and antidote, which have evolved to function in bacteria, also function efficiently in a wide range of eukaryotes. Kid inhibits cell proliferation in yeast, Xenopus laevis and human cells, whilst Kis protects. Moreover, we show that Kid triggers apoptosis in human cells. These effects can be regulated in vivo by modulating the relative amounts of antidote and toxin using inducible eukaryotic promoters for independent transcriptional control of their genes. These findings allow highly regulatable, selective killing of eukaryotic cells, and could be applied to eliminate cancer cells or specific cell lineages in development. PMID:12514130

  5. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy.

    PubMed

    Jeyamohan, Prashanti; Hasumura, Takashi; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2013-01-01

    The photothermal effect of single-walled carbon nanotubes (SWCNTs) in combination with the anticancer drug doxorubicin (DOX) for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX) binds at physiological pH (pH 7.4) and is released only at a lower pH, ie, lysosomal pH (pH 4.0), which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR) region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light-heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy.

  6. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine: An anticancer agent targeting hypoxic cells

    PubMed Central

    Seow, Helen A.; Penketh, Philip G.; Shyam, Krishnamurthy; Rockwell, Sara; Sartorelli, Alan C.

    2005-01-01

    To target malignant cells residing in hypoxic regions of solid tumors, we have designed and synthesized prodrugs generating the cytotoxic alkylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) after bioreductive activation. We postulate that one of these agents, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119), requires enzymatic nitro reduction to produce 90CE, whereas another agent, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(4-nitrobenzyloxy)carbonyl]hydrazine (PNBC), can also be activated by nucleophilic attack by thiols such as glutathione (GSH)/GST. We demonstrated that these agents selectively kill hypoxic EMT6 mouse mammary carcinoma and CHO cells. In hypoxia, 50 μM KS119 produced 5 logs of kill of EMT6 cells without discernable cytotoxicity in air; similar effects were observed with CHO cells. PNBC was less efficacious against hypoxic tumor cells and also had some toxicity to aerobic cells, presumably because of GST/thiol activation, making PNBC less interesting as a selective hypoxic-cell cytotoxin. BALB/c mice with established EMT6 solid tumors were used to demonstrate that KS119 could reach and kill hypoxic cells in solid tumors. To gain information on bioreductive enzymes involved in the activation of KS119, cytotoxicity was measured in CHO cell lines overexpressing NADH:cytochrome b5 reductase (NBR), NADPH:cytochrome P450 reductase (NPR), or NAD(P)H: quinone oxidoreductase 1 (NQO1). Increased cytotoxicity occurred in cells overexpressing NBR and NPR, whereas overexpressed NQO1 had no effect. These findings were supported by enzymatic studies using purified NPR and xanthine oxidase to activate KS119. KS119 has significant potential as a hypoxia-selective tumor-cell cytotoxin and is unlikely to cause major toxicity to well oxygenated normal tissues. PMID:15964988

  7. In vivo marking of spontaneous or vaccine-induced fibrosarcomas in the domestic house cat, using an adenoviral vector containing a bifunctional fusion protein, GAL-TEK.

    PubMed

    Marini, F C; Cannon, J P; Belmont, J W; Shillitoe, E J; Lapeyre, J N

    1995-09-01

    We evaluated the ability of a replication-deficient, recombinant adenoviral vector to transfer the bifunctional gene GAL-TEK, which expresses a marking/therapeutic gene product, to naturally occurring cat fibrosarcomas in situ. GAL-TEK contains an in-frame fusion of the bacterial LacZ gene for histochemical marking of tumors with beta-galactosidase (beta-Gal) and the HSV tk gene for enzyme-prodrug activation of the prodrug ganciclovir (GCV) to induce selective tumor cell killing. GAL-TEK bifunctional marking and cell killing activities were tested in vitro after adenoviral vector infection of HT1080 human fibrosarcoma cells. The tk activity of GAL-TEK is shown to be almost as potent as HSV tk to catalyze conversion of GCV to GCV nucleotides and promote selective cell killing. Using 8 cats with recurring 2.5-cm2 fibrosarcomas that either arose spontaneously or were induced by vaccine, we determined experimentally the administration routes and times required for optimum GAL-TEK gene transfer by beta-Gal histological staining and reverse transcriptase polymerase chain reaction to the multiple compartments of the growing fibrosarcomas consonant with minimizing collateral infection of neighboring tissues and other unwanted side effects.

  8. Bcl-2 antagonists kill plasmacytoid dendritic cells from lupus-prone mice and dampen interferon-α production.

    PubMed

    Zhan, Yifan; Carrington, Emma M; Ko, Hyun-Ja; Vikstrom, Ingela B; Oon, Shereen; Zhang, Jian-Guo; Vremec, David; Brady, Jamie L; Bouillet, Philippe; Wu, Li; Huang, David C S; Wicks, Ian P; Morand, Eric F; Strasser, Andreas; Lew, Andrew M

    2015-03-01

    Interferon-α (IFNα)-producing plasmacytoid dendritic cells (PDCs) are implicated in the pathogenesis of systemic lupus erythematosus (SLE). IFNα-related genes are highlighted among SLE susceptibility alleles and are characteristically expressed in the blood of patients with SLE, while in mouse models of lupus, PDC numbers and IFNα production are increased. This study was undertaken to investigate the effects of inhibitors that selectively target different antiapoptotic molecules on the survival of PDCs. PDC numbers, in vitro survival, and expression of antiapoptotic molecules were evaluated in lupus-prone (NZB × NZW)F1 (NZB/NZW) mice. The impact of Bcl-2 antagonists and glucocorticoids on PDCs was evaluated in vitro and in vivo. IFNα production by NZB/NZW mice was evaluated before and after treatment with Bcl-2 antagonists. PDCs, but not lymphoid tissue-resident conventional DCs, largely relied on the antiapoptotic protein Bcl-2 for survival. The enlarged PDC compartment in NZB/NZW mice was associated with selectively prolonged survival and increased Bcl-2 transcription. Functionally, this resulted in enhanced production of IFNα. Bcl-2 inhibitors selectively killed mouse and human PDCs, including PDCs from SLE patients, but not conventional DCs, dampened IFNα production by PDCs, and synergized with glucocorticoids to kill activated PDCs. Enhanced PDC survival is a likely contributing factor to enhanced IFNα production by lupus PDCs. Bcl-2 antagonists potently and selectively kill PDCs and reduce IFNα production. Thus, we believe that they are attractive candidates for treating PDC-associated diseases. Copyright © 2015 by the American College of Rheumatology.

  9. Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp.

    PubMed Central

    Eckert, Randal; Qi, Fengxia; Yarbrough, Daniel K.; He, Jian; Anderson, Maxwell H.; Shi, Wenyuan

    2006-01-01

    Currently available antimicrobials exhibit broad killing with regard to bacterial genera and species. Indiscriminate killing of microbes by these conventional antibiotics can disrupt the ecological balance of the indigenous microbial flora, often resulting in negative clinical consequences. Species-specific antimicrobials capable of precisely targeting pathogenic bacteria without damaging benign microorganisms provide a means of avoiding this problem. In this communication, we report the successful creation of the first synthetic, target-specific antimicrobial peptide, G10KHc, via addition of a rationally designed Pseudomonas-specific targeting moiety (KH) to a generally killing peptide (novispirin G10). The resulting chimeric peptide showed enhanced bactericidal activity and faster killing kinetics against Pseudomonas spp. than G10 alone. The enhanced killing activities are due to increased binding and penetration of the outer membrane of Pseudomonas sp. cells. These properties were not observed in tests of untargeted bacterial species, and this specificity allowed G10KHc to selectively eliminate Pseudomonas spp. from mixed cultures. This work lays a foundation for generating target-specific “smart” antimicrobials to complement currently available conventional antibiotics. PMID:16569868

  10. An Integrin-Targeting RGDK-Tagged Nanocarrier: Anticancer Efficacy of Loaded Curcumin.

    PubMed

    Das, Krishnendu; Nimushakavi, Sahithi; Chaudhuri, Arabinda; Das, Prasanta Kumar

    2017-05-22

    Herein we report the design and development of α 5 β 1 integrin-specific noncovalent RGDK-lipopeptide-functionalized single-walled carbon nanotubes (SWNTs) that selectively deliver the anticancer drug curcumin to tumor cells. RGDK tetrapeptide-tagged amphiphiles were synthesized that efficiently disperse SWNTs with a suspension stability index of >80 % in cell culture media. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)- and lactate dehydrogenase (LDH)-based cell viability assays in tumor (B16F10 melanoma) and noncancerous (NIH3T3 mouse fibroblast) cells revealed the non-cytotoxic nature of these RGDK-lipopeptide-SWNT conjugates. Cellular uptake experiments with monoclonal antibodies against α v β 3 , α v β 5 , and α 5 β 1 integrins showed that these SWNT nanovectors deliver their cargo (Cy3-labeled oligonucleotides, Cy3-oligo) to B16F10 cells selectively via α 5 β 1 integrin. Notably, the nanovectors failed to deliver the Cy3-oligo to NIH3T3 cells. The RGDK-SWNT is capable of delivering the anticancer drug curcumin to B16F10 cells more efficiently than NIH3T3 cells, leading to selective killing of B16F10 cells. Results of Annexin V binding based flow cytometry experiments are consistent with selective killing of tumor cells through the late apoptotic pathway. Biodistribution studies in melanoma (B16F10)-bearing C57BL/6J mice showed tumor-selective accumulation of curcumin intravenously administered via RGDK-lipopeptide-SWNT nanovectors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis

    PubMed Central

    Arlia-Ciommo, Anthony; Svistkova, Veronika; Mohtashami, Sadaf; Titorenko, Vladimir I.

    2016-01-01

    A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast. PMID:26636650

  12. Selective killing of tumors deficient in methylthioadenosine phosphorylase: a novel strategy.

    PubMed

    Lubin, Martin; Lubin, Adam

    2009-05-29

    The gene for methylthioadenosine phosphorylase (MTAP) lies on 9p21, close to the gene CDKN2A that encodes the tumor suppressor proteins p16 and p14ARF. MTAP and CDKN2A are homozygously co-deleted, with a frequency of 35 to 70%, in lung and pancreatic cancer, glioblastoma, osteosarcoma, soft-tissue sarcoma, mesothelioma, and T-cell acute lymphoblastic leukemia. In normal cells, but not in tumor cells lacking MTAP, MTAP cleaves the natural substrate, 5'-deoxy-5'-methylthioadenosine (MTA), to adenine and 5-methylthioribose-1-phosphate (MTR-1-P), which are then converted to adenine nucleotides and methionine. This distinct difference between normal MTAP-positive cells and tumor MTAP-negative cells led to several proposals for therapy. We offer a novel strategy in which both MTA and a toxic adenine analog, such as 2,6-diaminopurine (DAP), 6-methylpurine (MeP), or 2-fluoroadenine (F-Ade), are administered. In MTAP-positive cells, abundant adenine, generated from supplied MTA, competitively blocks the conversion of an analog, by adenine phosphoribosyltransferase (APRT), to its active nucleotide form. In MTAP-negative tumor cells, the supplied MTA cannot generate adenine; hence conversion of the analog is not blocked. We show that this combination treatment--adenine analog plus MTA--kills MTAP-negative A549 lung tumor cells, while MTAP-positive human fibroblasts (HF) are protected. In co-cultures of the breast tumor cell line, MCF-7, and HF cells, MCF-7 is inhibited or killed, while HF cells proliferate robustly. 5-Fluorouracil (5-FU) and 6-thioguanine (6-TG) may also be used with our strategy. Though neither analog is activated by APRT, in MTAP-positive cells, adenine produced from supplied MTA blocks conversion of 5-FU and 6-TG to their toxic nucleotide forms by competing for 5-phosphoribosyl-1-pyrophosphate (PRPP). The combination of MTA with 5-FU or 6-TG, in the treatment of MTAP-negative tumors, may produce a significantly improved therapeutic index. We describe a selective strategy to kill tumor cells lacking MTAP.

  13. Protecting the normal in order to better kill the cancer

    PubMed Central

    Liu, Bingya; Ezeogu, Lewis; Zellmer, Lucas; Yu, Baofa; Xu, Ningzhi; Joshua Liao, Dezhong

    2015-01-01

    Chemotherapy is the only option for oncologists when a cancer has widely spread to different body sites. However, almost all currently available chemotherapeutic drugs will eventually encounter resistance after their initial positive effect, mainly because cancer cells develop genetic alterations, collectively coined herein as mutations, to adapt to the therapy. Some patients may still respond to a second chemo drug, but few cases respond to a third one. Since it takes time for cancer cells to develop new mutations and then select those life-sustaining ones via clonal expansion, “run against time for mutations to emerge” should be a crucial principle for treatment of those currently incurable cancers. Since cancer cells constantly change to adapt to the therapy whereas normal cells are stable, it may be a better strategy to shift our focus from killing cancer cells per se to protecting normal cells from chemotherapeutic toxicity. This new strategy requires the development of new drugs that are nongenotoxic and can quickly, in just hours or days, kill cancer cells without leaving the still-alive cells with time to develop mutations, and that should have their toxicities confined to only one or few organs, so that specific protections can be developed and applied. PMID:26177855

  14. Selective cytotoxicity of transformed cells but not normal cells by a sialoglycopeptide growth regulator in the presence of tumor necrosis factor

    NASA Technical Reports Server (NTRS)

    Woods, K. M.; Fattaey, H.; Johnson, T. C.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The tumor necrosis factor-alpha (TNF)-resistant, SV40-transformed, murine fibroblast cell lines, F5b and F5m, became sensitive to TNF-mediated cytolysis after treatment with a biologically active 18 kDa peptide fragment (SGP) derived from a 66-kDa parental cell surface sialoglycoprotein. Neither TNF nor the SGP alone exhibited cytotoxicity to the two SV40-transformed cell lines. However, Balb/c 3T3 cells, incubated with SGP alone or with SGP and TNF, were not killed. Therefore, SGP can selectively sensitize cells for TNF alpha-mediated cytotoxicity. This selective sensitization may be due to the previously documented ability of the SGP to selectively mediate cell cycle arrest.

  15. Polysaccharide nano-vesicular multidrug carriers for synergistic killing of cancer cells.

    PubMed

    Pramod, P S; Shah, Ruchira; Chaphekar, Sonali; Balasubramanian, Nagaraj; Jayakannan, Manickam

    2014-10-21

    Multi-drug delivery based on polymer nano-scaffolds is an essential protocol to be developed for better administration of anticancer drugs to enhance their therapeutic efficacies against cancer cells. Here, we report dual delivery polysaccharide nano-vesicles that are capable of loading and delivering both water soluble and water insoluble drugs together in a single polymer scaffold. The selective rupture of the nano-vesicular assembly under intracellular enzyme conditions allowed the simultaneous delivery of a hydrophobic drug camptothecin (CPT) and hydrophilic drug doxorubicin (DOX) supporting their synergistic killing of breast and colon cancer cells. The polysaccharide nano-vesicles have allowed us to address a few important questions regarding the need for multiple drug administration in cancer cells including (a) the role of simultaneous drug release, (b) antagonistic versus synergistic effects of drug combinations and (c) how these are affected by the ratio of drugs. Further, evaluation of the role of caveolae in endocytosis of these polymer scaffolds was also made. The vesicular scaffolds were found to preserve and deliver DOX resulting in 50-60% better killing of cancer cells than the free drug. Additionally, dual loaded nano-vesicles when compared to drug cocktails with individual drugs in separate nano-vesicles (at comparable molar ratios) suggest the relative drug concentration following release and mode of delivery to be both important in cancer cell killing. Results from these experiments have revealed newly developed polysaccharide nano-vesicles loaded with DOX and CPT drugs as potential candidates for improved breast cancer cell killing. Thus, these custom-designed polysaccharide nano-vesicles provide a new perspective on multi-anticancer drug delivery systems and their efficacy.

  16. HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design.

    PubMed

    de Goeij, Bart E C G; Peipp, Matthias; de Haij, Simone; van den Brink, Edward N; Kellner, Christian; Riedl, Thilo; de Jong, Rob; Vink, Tom; Strumane, Kristin; Bleeker, Wim K; Parren, Paul W H I

    2014-01-01

    The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (Kadcyla(TM)). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach. As a model toxin, amenable to in vitro high-throughput screening, we employed Pseudomonas exotoxin A (ETA') fused to an anti-kappa light chain domain antibody. Cytotoxicity induced by HER2 antibodies, which were thus non-covalently linked to ETA', was assessed for high and low HER2 expressing tumor cell lines and correlated with internalization and downmodulation of HER2 antibody-target complexes. Our results demonstrate that HER2 antibodies that do not inhibit heterodimerization of HER2 with related ErbB receptors internalize more efficiently and show greater ETA'-mediated cytotoxicity than antibodies that do inhibit such heterodimerization. Moreover, stimulation with ErbB ligand significantly enhanced ADC-mediated tumor kill by antibodies that do not inhibit HER2 heterodimerization. This suggests that the formation of HER2/ErbB-heterodimers enhances ADC internalization and subsequent killing of tumor cells. Our study indicates that selecting HER2 ADCs that allow piggybacking of HER2 onto other ErbB receptors provides an attractive strategy for increasing ADC delivery and tumor cell killing capacity to both high and low HER2 expressing tumor cells.

  17. Apoptin towards safe and efficient anticancer therapies.

    PubMed

    Backendorf, Claude; Noteborn, Mathieu H M

    2014-01-01

    The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.

  18. Selective killing of Kaposi's sarcoma-associated herpesvirus lytically infected cells with a recombinant immunotoxin targeting the viral gpK8.1A envelope glycoprotein

    PubMed Central

    Chatterjee, Deboeeta; Chandran, Bala

    2012-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) is etiologically associated with three neoplastic syndromes: Kaposi sarcoma and the uncommon HIV-associated B-cell lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. The incidence of the latter B-cell pathology has been increasing in spite of antiretroviral therapy; its association with lytic virus replication has prompted interest in therapeutic strategies aimed at this phase of the virus life cycle. We designed and expressed a recombinant immunotoxin (2014-PE38) targeting the gpK8.1A viral glycoprotein expressed on the surface of the virion and infected cells. We show that this immunotoxin selectively kills KSHV-infected cells in dose-dependent fashion, resulting in major reductions of infectious virus release. The immunotoxin and ganciclovir, an inhibitor of viral DNA replication, showed marked reciprocal potentiation of antiviral activities. These results suggest that the immunotoxin, alone or in combination, may represent a new approach to treat diseases associated with KSHV lytic replication. PMID:22377676

  19. Selective Destruction Of Cells Infected With The Human Immunodeficiency Virus

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2006-03-28

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a varient of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  20. Selective destruction of cells infected with human immunodeficiency virus

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2003-09-30

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a variant of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  1. In vitro cytotoxicity of galvanically coupled magnesium-titanium particles on human osteosarcoma SAOS2 cells: A potential cancer therapy.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2018-04-10

    Osteosarcoma is a malignant bone cancer that occurs mostly in children and young adults. This study investigated the cytotoxicity of Mg and Mg-Ti microparticles to human osteosarcoma cells. Osteosarcoma cells were killed in a dosage-dependent manner when cells, with a cell seeding density of 30,000 cells/cm 2 , were cultured with 0 to 2500 µg/mL of Mg or Mg-Ti in cell culture media for 24-72 h. Mg-Ti killed cells more effectively, where 1250 µg/mL of Mg-Ti killed cells completely by 24 h, while 2500 µg/mL of Mg killed nearly all cells, but not all. Killing due to particle corrosion occurred mostly during the first 24 h, and so the percent cell viability between 24 and 72 h showed not much variability. However, the measurement of live and dead cell numbers, over the timeframe of 24-72 h, showed more insight, such as cell recovery. If particle concentrations were low, the number of live cells increased after 24 h, indicating cell proliferation. If particle concentrations were high, the number of live cells either remained steady or decreased, indicating cell quiescence or continued killing, respectively. Increase in the number of dead cells also indicated killing, while plateau meant discontinued killing. In addition, repeated killing of recovered cells exhibited the same dose-dependent killing profile as the initial experiment, implying little development of cell resistance to treatment. These results, together, show that osteosarcoma cells are susceptible to killing by way of exposure to corroding particles, showing highly effective killing using the galvanic couple of Mg-Ti. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  2. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells

    PubMed Central

    Choi, Paul J.; Mitchison, Timothy J.

    2013-01-01

    Cytotoxic lymphocytes eliminate virus-infected and cancerous cells by immune recognition and killing through the perforin-granzyme pathway. Traditional killing assays measure average target cell lysis at fixed times and high effector:target ratios. Such assays obscure kinetic details that might reveal novel physiology. We engineered target cells to report on granzyme activity, used very low effector:target ratios to observe potential serial killing, and performed low magnification time-lapse imaging to reveal time-dependent statistics of natural killer (NK) killing at the single-cell level. Most kills occurred during serial killing, and a single NK cell killed up to 10 targets over a 6-h assay. The first kill was slower than subsequent kills, especially on poor targets, or when NK signaling pathways were partially inhibited. Spatial analysis showed that sequential kills were usually adjacent. We propose that NK cells integrate signals from the previous and current target, possibly by simultaneous contact. The resulting burst kinetics and spatial coordination may control the activity of NK cells in tissues. PMID:23576740

  3. Apoptosis induced by tumor necrosis factor-alpha in rat hepatocyte cell lines expressing hepatitis B virus.

    PubMed Central

    Guilhot, S.; Miller, T.; Cornman, G.; Isom, H. C.

    1996-01-01

    Three well differentiated SV40-immortalized rat hepatocyte cell lines, CWSV1, CWSV2, and CWSV14, and Hepatitis B Virus (HBV)-producing cell lines derived from them were examined for sensitivity to tumor necrosis factor (TNF)-alpha. CWSV1, CWSV2, and CWSV14 cells were co-transfected with a DNA construct containing a dimer of the HBV genome and the neo gene and selected in G418 to generate stable cell lines. Characterization of these cell lines indicated that they contain integrated HBV DNA, contain low molecular weight HBV DNA compatible with the presence of HBV replication intermediates, express HBV transcripts, and produce HBV proteins. The viability of CWSV1, CWSV2, and CWSV2 cells was not significantly altered when they were treated with TNF-alpha at concentrations as high as 20,000 U/ml. The HBV-expressing CWSV1 cell line, SV1di36, and the HBV-expressing CWSV14 cell line, SV14di208, were also not killed when treated with TNF-alpha. However, the HBV-expressing CWSV2 cell line, SV2di366, was extensively killed when treated with TNF-alpha at concentrations ranging from 200 to 20,000 U/ml. Analysis of several different HBV-producing CWSV2 cell lines indicated that TNF-alpha killing depended upon the level of HBV expression. The TNF-alpha-induced cell killing in high HBV-producing CWSV2 cell lines was accompanied by the presence of an oligonucleosomal DNA ladder characteristic of apoptosis. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 9 Figure 10 Figure 11 PMID:8774135

  4. Polysaccharide nano-vesicular multidrug carriers for synergistic killing of cancer cells

    NASA Astrophysics Data System (ADS)

    Pramod, P. S.; Shah, Ruchira; Chaphekar, Sonali; Balasubramanian, Nagaraj; Jayakannan, Manickam

    2014-09-01

    Multi-drug delivery based on polymer nano-scaffolds is an essential protocol to be developed for better administration of anticancer drugs to enhance their therapeutic efficacies against cancer cells. Here, we report dual delivery polysaccharide nano-vesicles that are capable of loading and delivering both water soluble and water insoluble drugs together in a single polymer scaffold. The selective rupture of the nano-vesicular assembly under intracellular enzyme conditions allowed the simultaneous delivery of a hydrophobic drug camptothecin (CPT) and hydrophilic drug doxorubicin (DOX) supporting their synergistic killing of breast and colon cancer cells. The polysaccharide nano-vesicles have allowed us to address a few important questions regarding the need for multiple drug administration in cancer cells including (a) the role of simultaneous drug release, (b) antagonistic versus synergistic effects of drug combinations and (c) how these are affected by the ratio of drugs. Further, evaluation of the role of caveolae in endocytosis of these polymer scaffolds was also made. The vesicular scaffolds were found to preserve and deliver DOX resulting in 50-60% better killing of cancer cells than the free drug. Additionally, dual loaded nano-vesicles when compared to drug cocktails with individual drugs in separate nano-vesicles (at comparable molar ratios) suggest the relative drug concentration following release and mode of delivery to be both important in cancer cell killing. Results from these experiments have revealed newly developed polysaccharide nano-vesicles loaded with DOX and CPT drugs as potential candidates for improved breast cancer cell killing. Thus, these custom-designed polysaccharide nano-vesicles provide a new perspective on multi-anticancer drug delivery systems and their efficacy.Multi-drug delivery based on polymer nano-scaffolds is an essential protocol to be developed for better administration of anticancer drugs to enhance their therapeutic efficacies against cancer cells. Here, we report dual delivery polysaccharide nano-vesicles that are capable of loading and delivering both water soluble and water insoluble drugs together in a single polymer scaffold. The selective rupture of the nano-vesicular assembly under intracellular enzyme conditions allowed the simultaneous delivery of a hydrophobic drug camptothecin (CPT) and hydrophilic drug doxorubicin (DOX) supporting their synergistic killing of breast and colon cancer cells. The polysaccharide nano-vesicles have allowed us to address a few important questions regarding the need for multiple drug administration in cancer cells including (a) the role of simultaneous drug release, (b) antagonistic versus synergistic effects of drug combinations and (c) how these are affected by the ratio of drugs. Further, evaluation of the role of caveolae in endocytosis of these polymer scaffolds was also made. The vesicular scaffolds were found to preserve and deliver DOX resulting in 50-60% better killing of cancer cells than the free drug. Additionally, dual loaded nano-vesicles when compared to drug cocktails with individual drugs in separate nano-vesicles (at comparable molar ratios) suggest the relative drug concentration following release and mode of delivery to be both important in cancer cell killing. Results from these experiments have revealed newly developed polysaccharide nano-vesicles loaded with DOX and CPT drugs as potential candidates for improved breast cancer cell killing. Thus, these custom-designed polysaccharide nano-vesicles provide a new perspective on multi-anticancer drug delivery systems and their efficacy. Electronic supplementary information (ESI) available: Synthesis scheme, DLS histogram, FE-SEM image, AFM image, TEM image of DEX-PDP-5, AFM image of VDOX+CPT, AFM image of VDOX, characterization of VCPT, characterization of VRHO, DOX nuclear localization, characterization of dual drug loaded vesicles, fluorescent microscopic image of VDOX-CPT, cumulative drug release profile from dual drug loaded vesicles, rate constant determination, and cumulative release profile of DOX and CPT from VDOX+CPT (1 : 4). See DOI: 10.1039/c4nr03514c

  5. Small Molecules that Suppress IGF-Activated Prostate Cancers

    DTIC Science & Technology

    2006-04-01

    selectively impair the growth of IGF2-overexpressing hepatocellular carcinoma cells. For cell viability assays, IGF2-expressing cells were plated at a...produced at high levels in liver tumors (27). We identified three chemically analogous compounds that killed IGF2-overexpressing hepatocellular carcinoma cells... hepatocellular carcinoma cell lines that we recently characterized2 indicated that one of the three chemi- cals, 94G6, exhibited the highest cytotoxicity

  6. A subset of platinum-containing chemotherapeutic agents kill cells by inducing ribosome biogenesis stress rather than by engaging a DNA damage response

    PubMed Central

    Bruno, Peter M.; Liu, Yunpeng; Park, Ga Young; Murai, Junko; Koch, Catherine E.; Eisen, Timothy J.; Pritchard, Justin R.; Pommier, Yves; Lippard, Stephen J.; Hemann, Michael T.

    2017-01-01

    Cisplatin and its platinum analogues, carboplatin and oxaliplatin, are some of the most widely used cancer chemotherapeutics. However, although cisplatin and carboplatin are primarily used in germ cell, breast and lung malignancies, oxaliplatin is instead used almost exclusively in colorectal and other gastrointestinal cancers. Here, we utilize a unique multi-platform genetic approach to study the mechanism of action of these clinically established platinum anti-cancer agents as well as more recently developed cisplatin analogues. We show that oxaliplatin, unlike cisplatin and carboplatin, does not kill cells via the DNA damage response. Rather, oxaliplatin kills cells by inducing ribosome biogenesis stress. This difference in drug mechanism explains the distinct clinical implementation of oxaliplatin relative to cisplatin and may enable mechanistically informed selection of distinct platinum drugs for distinct malignancies. These data highlight the functional diversity of core components of front line cancer therapy and the potential benefits of applying a mechanism-based rationale to the use of our current arsenal of anti-cancer drugs. PMID:28263311

  7. Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus.

    PubMed

    Gomes-da-Silva, Lígia C; Zhao, Liwei; Bezu, Lucillia; Zhou, Heng; Sauvat, Allan; Liu, Peng; Durand, Sylvère; Leduc, Marion; Souquere, Sylvie; Loos, Friedemann; Mondragón, Laura; Sveinbjørnsson, Baldur; Rekdal, Øystein; Boncompain, Gaelle; Perez, Franck; Arnaut, Luis G; Kepp, Oliver; Kroemer, Guido

    2018-05-28

    Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune-dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species-dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA-dependent secretory pathway. This led to a general inhibition of protein secretion by PDT-treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin-based PDT Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro-apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function. © 2018 The Authors.

  8. Prolonged early G1 arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle–coupled loss of IRF4

    PubMed Central

    Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L.; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C.; Staudt, Louis M.; Niesvizky, Ruben; Moore, Malcolm A. S.

    2012-01-01

    Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G1 arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G1 and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G1 block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy. PMID:22718837

  9. Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4.

    PubMed

    Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C; Staudt, Louis M; Niesvizky, Ruben; Moore, Malcolm A S; Chen-Kiang, Selina

    2012-08-02

    Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G(1) block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.

  10. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma.

    PubMed

    Oelsner, Sarah; Friede, Miriam E; Zhang, Congcong; Wagner, Juliane; Badura, Susanne; Bader, Peter; Ullrich, Evelyn; Ottmann, Oliver G; Klingemann, Hans; Tonn, Torsten; Wels, Winfried S

    2017-02-01

    Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications. To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z). Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γ null mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo. Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro

    NASA Astrophysics Data System (ADS)

    Ishijima, A.; Minamihata, K.; Yamaguchi, S.; Yamahira, S.; Ichikawa, R.; Kobayashi, E.; Iijima, M.; Shibasaki, Y.; Azuma, T.; Nagamune, T.; Sakuma, I.

    2017-03-01

    While chemotherapy is a major mode of cancer therapeutics, its efficacy is limited by systemic toxicities and drug resistance. Recent advances in nanomedicine provide the opportunity to reduce systemic toxicities. However, drug resistance remains a major challenge in cancer treatment research. Here we developed a nanomedicine composed of a phase-change nano-droplet (PCND) and an anti-cancer antibody (9E5), proposing the concept of ultrasound cancer therapy with intracellular vaporisation. PCND is a liquid perfluorocarbon nanoparticle with a liquid-gas phase that is transformable upon exposure to ultrasound. 9E5 is a monoclonal antibody targeting epiregulin (EREG). We found that 9E5-conjugated PCNDs are selectively internalised into targeted cancer cells and kill the cells dynamically by ultrasound-induced intracellular vaporisation. In vitro experiments show that 9E5-conjugated PCND targets 97.8% of high-EREG-expressing cancer cells and kills 57% of those targeted upon exposure to ultrasound. Furthermore, direct observation of the intracellular vaporisation process revealed the significant morphological alterations of cells and the release of intracellular contents.

  12. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity

    PubMed Central

    Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A.; Hoek, Jan B.

    2016-01-01

    We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacological dose (5-20 mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1 mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. PMID:27036367

  13. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity.

    PubMed

    Rouleau, Lauren; Antony, Anil Noronha; Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A; Hoek, Jan B

    2016-06-01

    We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacologic dose (5-20mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine.

    PubMed

    Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2015-11-01

    Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity. Copyright © 2015. Published by Elsevier B.V.

  15. Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in Escherichia coli cells.

    PubMed

    Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A; Agu, Chukwuma A; Wang, Xindan; Bernal, Juan A; Sherratt, David J; de la Cueva-Méndez, Guillermo

    2014-02-18

    Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid-bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.

  16. Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in Escherichia coli cells

    PubMed Central

    Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A.; Agu, Chukwuma A.; Wang, Xindan; Bernal, Juan A.; Sherratt, David J.; de la Cueva-Méndez, Guillermo

    2014-01-01

    Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid–bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs. PMID:24449860

  17. Overcoming Drug Resistant Prostate Cancer with APE1/Ref-1 Blockade

    DTIC Science & Technology

    2015-10-01

    cells avoid being killed by chemotherapy: Apurinic/apyrimidinic endonuclease/ redox -factor 1, or simply, Ref-1, for short. In this report, we...survivin signaling in human prostate cancer specimens. Genetic knockdown of APE1/Ref-1 disrupts prostate cancer cell growth and survival in cell culture...In addition, inhibition of the redox function selectively of Ref-1 results in cell growth inhibition, with this therapy preferentially inhibiting

  18. Overcoming Drug Resistant Prostate Cancer with APE1/Ref 1 Blockade

    DTIC Science & Technology

    2015-10-01

    cells avoid being killed by chemotherapy: Apurinic/apyrimidinic endonuclease/ redox -factor 1, or simply, Ref-1, for short. In this report, we...survivin signaling in human prostate cancer specimens. Genetic knockdown of APE1/Ref-1 disrupts prostate cancer cell growth and survival in cell culture...In addition, inhibition of the redox function selectively of Ref-1 results in cell growth inhibition, with this therapy preferentially inhibiting

  19. Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy.

    PubMed

    Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lis, Paweł; Bartkowiak, Anna; Gonchar, Mykhailo; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2014-07-01

    The small molecule 3-bromopyruvate (3-BP), which has emerged recently as the first member of a new class of potent anticancer agents, was tested for its capacity to kill multiple myeloma (MM) cancer cells. Human MM cells (RPMI 8226) begin to lose viability significantly within 8 h of incubation in the presence of 3-BP. The Km (0.3 mmol/l) for intracellular accumulation of 3-BP in MM cells is 24 times lower than that in control cells (7.2 mmol/l). Therefore, the uptake of 3-BP by MM cells is significantly higher than that by peripheral blood mononuclear cells. Further, the IC50 values for human MM cells and control peripheral blood mononuclear cells are 24 and 58 µmol/l, respectively. Therefore, specificity and selectivity of 3-BP toward MM cancer cells are evident on the basis of the above. In MM cells the transcription levels of the gene encoding the monocarboxylate transporter MCT1 is significantly amplified compared with control cells. The level of intracellular ATP in MM cells decreases by over 90% within 1 h after addition of 100 µmol/l 3-BP. The cytotoxicity of 3-BP, exemplified by a marked decrease in viability of MM cells, is potentiated by the inhibitor of glutathione synthesis buthionine sulfoximine. In addition, the lack of mutagenicity and its superior capacity relative to Glivec to kill MM cancer cells are presented in this study.

  20. A Novel Polyphenol Conjugate Sensitizes Cisplatin-Resistant Head and Neck Cancer Cells to Cisplatin via Nrf2 Inhibition.

    PubMed

    Kim, Eun Hye; Jang, Hyejin; Roh, Jong-Lyel

    2016-11-01

    Many cancer cells show acquired resistance to chemotherapeutic agents, such as cisplatin. This is a major cause of cancer treatment failure, and novel agents to overcome resistance are thus urgently required. A novel synthetic polyphenol conjugate, (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (DPP-23), selectively kills tumor cells via the reactive oxygen species (ROS)-mediated unfolded protein response. We investigated the ability of DPP-23 to overcome cisplatin resistance in head and neck cancer (HNC) cells and further clarified its molecular mechanisms of action. Cisplatin-resistant HNC cell lines and their parental and other HNC cell lines were used. The effects of cisplatin and DPP-23 were assessed alone and in combination in HNC and normal cells using cell viability, cell cycle, and cell death assays, by measuring glutathione (GSH), ROS, and protein levels, and via preclinical mouse studies. DPP-23 induced selective cell death in HNC cells, including cisplatin-resistant HNC cells, but spared normal cells, via cellular GSH depletion and ROS accumulation. The effect was blocked by the antioxidant N-acetyl-L-cysteine. DPP-23 activated p53 and its related cell death pathways via a robust accumulation of cellular ROS that involved inhibition of nuclear factor erythroid 2-related factor 2 antioxidant defense mechanisms. Thus, DPP-23 significantly overcame cisplatin resistance in HNC cells in vitro and in vivo As a promising anticancer strategy, ROS generation and subsequent selective cancer cell killing by DPP-23 might help to overcome cisplatin resistance in HNC. Mol Cancer Ther; 15(11); 2620-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. 'Dual hit' metabolic modulator LDCA selectively kills cancer cells by efficient competitive inhibition of LDH-A.

    PubMed

    Ghosh, Monisankar; Saha, Suchandrima; Dutta, Samir Kumar

    2016-02-07

    Herein, we synthesize and elucidate the potential of a novel 'dual hit' molecule, LDCA, to constitutively block lactate dehydrogenase isoform-A (LDH-A) to selectively subvert apoptosis and rigorously attenuate breast tumor progression in a mouse model, comprehensively delineating the therapeutic prospectus of LDCA in the field of cancer metabolics.

  2. Persister eradication: lessons from the world of natural products.

    PubMed

    Keren, Iris; Mulcahy, Lawrence R; Lewis, Kim

    2012-01-01

    Persisters are specialized survivor cells that protect bacterial populations from killing by antibiotics. Persisters are dormant phenotypic variants of regular cells rather than mutants. Bactericidal antibiotics kill by corrupting their targets into producing toxic products; tolerance to antibiotics follows when targets are inactive. Transcriptome analysis of isolated persisters points to toxin/antitoxin modules as a principle component of persister formation. Mechanisms of persister formation are redundant, making it difficult to eradicate these cells. In Escherichia coli, toxins RelE and MazF cause dormancy by degrading mRNA; HipA inhibits translation by phosphorylating Ef-Tu; and TisB forms an anion channel in the membrane, leading to a decrease in pmf and ATP levels. Prolonged treatment of chronic infections with antibiotics selects for hip mutants that produce more persister cells. Eradication of tolerant persisters is a serious challenge. Some of the existing antibiotics are capable of killing persisters, pointing to ways of developing therapeutics to treat chronic infections. Mitomycin is a prodrug which is converted into a reactive compound forming adducts with DNA upon entering the cell. Prolonged treatment with aminoglycosides that cause mistranslation leading to misfolded peptides can sterilize a stationary culture of Pseudomonas aeruginosa, a pathogen responsible for chronic, highly tolerant infections of cystic fibrosis patients. Finally, one of the best bactericidal agents is rifampin, an inhibitor of RNA polymerase, and we suggest that it "kills" by preventing persister resuscitation. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell sensitivity to natural killing.

  4. LuIII Parvovirus Selectively and Efficiently Targets, Replicates in, and Kills Human Glioma Cells

    PubMed Central

    Paglino, Justin C.; Ozduman, Koray

    2012-01-01

    Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons. PMID:22553327

  5. LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells.

    PubMed

    Paglino, Justin C; Ozduman, Koray; van den Pol, Anthony N

    2012-07-01

    Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.

  6. Naltrexone at low doses upregulates a unique gene expression not seen with normal doses: Implications for its use in cancer therapy.

    PubMed

    Liu, Wai M; Scott, Katherine A; Dennis, Jayne L; Kaminska, Elwira; Levett, Alan J; Dalgleish, Angus G

    2016-08-01

    It has been reported that lower doses of the opioid antagonist naltrexone are able to reduce tumour growth by interfering with cell signalling as well as by modifying the immune system. We have evaluated the gene expression profile of a cancer cell line after treatment with low-dose naltrexone (LDN), and assessed the effect that adapting treatment schedules with LDN may have on enhancing efficacy. LDN had a selective impact on genes involved with cell cycle regulation and immune modulation. Similarly, the pro-apoptotic genes BAD and BIK1 were increased only after LDN. Continuous treatment with LDN had little effect on growth in different cell lines; however, altering the treatment schedule to include a phase of culture in the absence of drug following an initial round of LDN treatment, resulted in enhanced cell killing. Furthermore, cells pre-treated with LDN were more sensitive to the cytotoxic effects of a number of common chemotherapy agents. For example, priming HCT116 with LDN before treatment with oxaliplatin significantly increased cell killing to 49±7.0 vs. 14±2.4% in cultures where priming was not used. Interestingly, priming with NTX before oxaliplatin resulted in just 32±1.8% cell killing. Our data support further the idea that LDN possesses anticancer activity, which can be improved by modifying the treatment schedule.

  7. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jason Z.; Ke, Yuebin; Misra, Hara P.

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone,more » a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with low NQO1 expression, mitochondria play a critical role in beta-Lp redox activation. • In cancer cells with high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1.« less

  8. Annatto Constituent Cis-Bixin Has Selective Antimyeloma Effects Mediated by Oxidative Stress and Associated with Inhibition of Thioredoxin and Thioredoxin Reductase

    PubMed Central

    Tibodeau, Jennifer D.; Isham, Crescent R.

    2010-01-01

    Abstract In pursuit of the anticancer effects of seeds of the rain forest plant Bixa orellana (annatto), we found that its constituent cis-bixin induced cytotoxicity in a wide variety of tumor cell lines (IC50 values from 10 to 50 μM, 24-h exposures) and, importantly, also selectively killed freshly collected patient multiple myeloma cells and highly drug-resistant multiple myeloma cell lines. Mechanistic studies indicated that cis-bixin–induced cytotoxicity was greatly attenuated by co-treatment with glutathione or N-acetylcysteine (NAC); whereas fluorescence-activated cell sorting (FACS) assays using the cell-permeable dyes 5-(and-6) chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA), or dihydroethidium demonstrated that cis-bixin rapidly induced cellular reactive oxygen species (ROS) in dose- and time-dependent fashions, collectively implicating ROS as contributory to cis-bixin–induced cytotoxicity. In pursuit of potential contributors to ROS imposition by cis-bixin, we found that cis-bixin inhibited both thioredoxin (Trx) and thioredoxin reductase (TrxR1) activities at concentrations comparable to those required for cytotoxicity, implicating the inhibition of these redox enzymes as potentially contributing to its ability to impose cellular ROS and to kill cancer cells. Collectively, our studies indicate that the annatto constituent cis-bixin has intriguing selective antimyeloma activity that appears to be mediated through effects on redox signaling. Antioxid. Redox Signal. 13, 987–997. PMID:20170403

  9. Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells

    PubMed Central

    Ding, Husheng; McDonald, Jennifer S.; Yun, Seongseok; Schneider, Paula A.; Peterson, Kevin L.; Flatten, Karen S.; Loegering, David A.; Oberg, Ann L.; Riska, Shaun M.; Huang, Shengbing; Sinicrope, Frank A.; Adjei, Alex A.; Karp, Judith E.; Meng, X. Wei; Kaufmann, Scott H.

    2014-01-01

    Although farnesyltransferase inhibitors have shown promising activity in relapsed lymphoma and sporadic activity in acute myelogenous leukemia, their mechanism of cytotoxicity is incompletely understood, making development of predictive biomarkers difficult. In the present study, we examined the action of tipifarnib in human acute myelogenous leukemia cell lines and clinical samples. In contrast to the Ras/MEK/ERK pathway-mediated Bim upregulation that is responsible for tipifarnib-induced killing of malignant lymphoid cells, inhibition of Rheb-induced mTOR signaling followed by dose-dependent upregulation of Bax and Puma occurred in acute myelogenous leukemia cell lines undergoing tipifarnib-induced apoptosis. Similar Bax and Puma upregulation occurred in serial bone marrow samples harvested from a subset of acute myelogenous leukemia patients during tipifarnib treatment. Expression of FTI-resistant Rheb M184L, like knockdown of Bax or Puma, diminished tipifarnib-induced killing. Further analysis demonstrated that increased Bax and Puma levels reflect protein stabilization rather than increased gene expression. In U937 cells selected for tipifarnib resistance, neither inhibition of signaling downstream of Rheb nor Bax and Puma stabilization occurred. Collectively, these results not only identify a pathway downstream from Rheb that contributes to tipifarnib cytotoxicity in human acute myelogenous leukemia cells, but also demonstrate that FTI-induced killing of lymphoid versus myeloid cells reflects distinct biochemical mechanisms downstream of different farnesylated substrates. (ClinicalTrials.gov identifier NCT00602771) PMID:23996484

  10. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer.

    PubMed

    Powell Gray, Bethany; Kelly, Linsley; Ahrens, Douglas P; Barry, Ashley P; Kratschmer, Christina; Levy, Matthew; Sullenger, Bruce A

    2018-05-01

    Therapies that can eliminate both local and metastatic prostate tumor lesions while sparing normal organ tissue are desperately needed. With the goal of developing an improved drug-targeting strategy, we turned to a new class of targeted anticancer therapeutics: aptamers conjugated to highly toxic chemotherapeutics. Cell selection for aptamers with prostate cancer specificity yielded the E3 aptamer, which internalizes into prostate cancer cells without targeting normal prostate cells. Chemical conjugation of E3 to the drugs monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) yields a potent cytotoxic agent that efficiently kills prostate cancer cells in vitro but does not affect normal prostate epithelial cells. Importantly, the E3 aptamer targets tumors in vivo and treatment with the MMAF-E3 conjugate significantly inhibits prostate cancer growth in mice, demonstrating the in vivo utility of aptamer-drug conjugates. Additionally, we report the use of antidotes to block E3 aptamer-drug conjugate cytotoxicity, providing a safety switch in the unexpected event of normal cell killing in vivo.

  11. When No Response Is a Good Thing | Center for Cancer Research

    Cancer.gov

    Custom-designed therapies that target cell-surface antigens or receptors represent a promising immunological approach in cancer therapy. Antibodies that bind these targets are the starting point.  Potent toxins can then be added to them by fusing antibody fragments to powerful bacterial toxins such as Pseudomonas exotoxin (PE). This recombinant immunotoxin combines antibody selectivity with toxin cell-killing potency.

  12. Paramecium species ingest and kill the cells of the human pathogenic fungus Cryptococcus neoformans.

    PubMed

    Frager, Shalom Z; Chrisman, Cara J; Shakked, Rachel; Casadevall, Arturo

    2010-08-01

    A fundamental question in the field of medical mycology is the origin of virulence in those fungal pathogens acquired directly from the environment. In recent years, it was proposed that the virulence of certain environmental animal-pathogenic microbes, such as Cryptococcus neoformans, originated from selection pressures caused by species-specific predation. In this study, we analyzed the interaction of C. neoformans with three Paramecium spp., all of which are ciliated mobile protists. In contrast to the interaction with amoebae, some Paramecium spp. rapidly ingested C. neoformans and killed the fungus. This study establishes yet another type of protist-fungal interaction supporting the notion that animal-pathogenic fungi in the environment are under constant selection by predation.

  13. Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells

    PubMed Central

    Law, Mary E.; Davis, Bradley J.; Bartley, Ashton N.; Higgins, Paul J.; Kilberg, Michael S.; Santostefano, Katherine E.; Terada, Naohiro; Heldermon, Coy D.; Castellano, Ronald K.; Law, Brian K.

    2017-01-01

    Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus, new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors, and “Triple-Negative” Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor, Progesterone Receptor, and HER2. A significant fraction of TNBCs overexpress the HER2 family member Epidermal Growth Factor Receptor (EGFR). Thus agents that selectively kill EGFR+ and HER2+ tumors would provide new options for breast cancer therapy. We previously identified a class of compounds we termed Disulfide bond Disrupting Agents (DDAs) that selectively kill EGFR+ and HER2+ breast cancer cells in vitro and blocked the growth of HER2+ breast tumors in an animal model. DDA-dependent cytotoxicity was found to correlate with downregulation of HER1-3 and Akt dephosphorylation. Here we demonstrate that DDAs activate the Unfolded Protein Response (UPR) and that this plays a role in their ability to kill EGFR+ and HER2+ cancer cells. The use of breast cancer cell lines ectopically expressing EGFR or HER2 and pharmacological probes of UPR revealed all three DDA responses: HER1-3 downregulation, Akt dephosphorylation, and UPR activation, contribute to DDA-mediated cytotoxicity. Significantly, EGFR overexpression potentiates each of these responses. Combination studies with DDAs suggest that they may be complementary with EGFR/HER2-specific receptor tyrosine kinase inhibitors and mTORC1 inhibitors to overcome drug resistance. PMID:28423644

  14. A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers

    PubMed Central

    Hocke, Sandra; Guo, Yang; Job, Albert; Orth, Michael; Ziesch, Andreas; Lauber, Kirsten; De Toni, Enrico N; Gress, Thomas M.; Herbst, Andreas; Göke, Burkhard; Gallmeier, Eike

    2016-01-01

    The phosphoinositide 3-kinase-related kinase ATR represents a central checkpoint regulator and mediator of DNA-repair. Its inhibition selectively eliminates certain subsets of cancer cells in various tumor types, but the underlying genetic determinants remain enigmatic. Here, we applied a synthetic lethal screen directed against 288 DNA-repair genes using the well-defined ATR knock-in model of DLD1 colorectal cancer cells to identify potential DNA-repair defects mediating these effects. We identified a set of DNA-repair proteins, whose knockdown selectively killed ATR-deficient cancer cells. From this set, we further investigated the profound synthetic lethal interaction between ATR and POLD1. ATR-dependent POLD1 knockdown-induced cell killing was reproducible pharmacologically in POLD1-depleted DLD1 cells and a panel of other colorectal cancer cell lines by using chemical inhibitors of ATR or its major effector kinase CHK1. Mechanistically, POLD1 depletion in ATR-deficient cells caused caspase-dependent apoptosis without preceding cell cycle arrest and increased DNA-damage along with impaired DNA-repair. Our data could have clinical implications regarding tumor genotype-based cancer therapy, as inactivating POLD1 mutations have recently been identified in small subsets of colorectal and endometrial cancers. POLD1 deficiency might thus represent a predictive marker for treatment response towards ATR- or CHK1-inhibitors that are currently tested in clinical trials. PMID:26755646

  15. Killing machines: three pore-forming proteins of the immune system

    PubMed Central

    McCormack, Ryan; de Armas, Lesley; Shiratsuchi, Motoaki

    2014-01-01

    The evolution of early multicellular eukaryotes 400–500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here. PMID:24293008

  16. Radiogenetic therapy: strategies to overcome tumor resistance.

    PubMed

    Marples, B; Greco, O; Joiner, M C; Scott, S D

    2003-01-01

    The aim of cancer gene therapy is to selectively kill malignant cells at the tumor site, by exploiting traits specific to cancer cells and/or solid tumors. Strategies that take advantage of biological features common to different tumor types are particularly promising, since they have wide clinical applicability. Much attention has focused on genetic methods that complement radiotherapy, the principal treatment modality, or that exploit hypoxia, the most ubiquitous characteristic of most solid cancers. The goal of this review is to highlight two promising gene therapy methods developed specifically to target the tumor volume that can be readily used in combination with radiotherapy. The first approach uses radiation-responsive gene promoters to control the selective expression of a suicide gene (e.g., herpes simplex virus thymidine kinase) to irradiated tissue only, leading to targeted cell killing in the presence of a prodrug (e.g., ganciclovir). The second method utilizes oxygen-dependent promoters to produce selective therapeutic gene expression and prodrug activation in hypoxic cells, which are refractive to conventional radiotherapy. Further refining of tumor targeting can be achieved by combining radiation and hypoxia responsive elements in chimeric promoters activated by either and dual stimuli. The in vitro and in vivo studies described in this review suggest that the combination of gene therapy and radiotherapy protocols has potential for use in cancer care, particularly in cases currently refractory to treatment as a result of inherent or hypoxia-mediated radioresistance.

  17. Using natural products to promote caspase-8-dependent cancer cell death.

    PubMed

    Tewary, Poonam; Gunatilaka, A A Leslie; Sayers, Thomas J

    2017-02-01

    The selective killing of cancer cells without toxicity to normal nontransformed cells is an idealized goal of cancer therapy. Thus, there has been much interest in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a protein that appears to selectively kill cancer cells. TRAIL has been reported to trigger apoptosis and under some circumstances, an alternate death signaling pathway termed necroptosis. The relative importance of necroptosis for cell death induction in vivo is under intensive investigation. Nonetheless, many cancer cells (particularly those freshly isolated from cancer patients) are highly resistant to TRAIL-mediated cell death. Therefore, there is an underlying interest in identifying agents that can be combined with TRAIL to improve its efficacy. There are numerous reports in which combination of TRAIL with standard antineoplastic drugs has resulted in enhanced cancer cell death in vitro. However, many of these chemotherapeutic drugs are nonspecific and associated with adverse effects, which raise serious concerns for cancer therapy in patients. By contrast, natural products have been shown to be safer and efficacious alternatives. Recently, a number of studies have suggested that certain natural products when combined with TRAIL can enhance cancer cell death. In this review, we highlight molecular pathways that might be targeted by various natural products to promote cell death, and focus on our recent work with withanolides as TRAIL sensitizers. Finally, we will suggest synergistic approaches for combining active withanolides with various forms of immunotherapy to promote cancer cell death and an effective antitumor immune response.

  18. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (P<0.05), although the pH measured for magnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (P<0.05). Together, these findings show that pH is not the sole factor associated with cell killing and that the electrochemical reactions, including the reduction reactions, play an important role. Reduction reactions on galvanically coupled Mg-Ti and Mg particles may generate reactive oxygen intermediates that are able to kill cells in close proximity to the particles and this approach may lead to potential therapies for infection and cancer. This paper demonstrates that during active corrosion of both Mg and Mg-Ti particles cells cultured with the particles are killed in a dose-dependent particle concentration fashion. Additionally, galvanically-coupled magnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    PubMed Central

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs. PMID:28251165

  20. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells.

    PubMed

    Spiess, Katja; Jeppesen, Mads G; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen; Kledal, Thomas N; Rosenkilde, Mette M

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX 3 CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX 3 CR1, the endogenous receptor for CX 3 CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs.

  1. CAR-T cells are serial killers

    PubMed Central

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-01-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours. PMID:26587330

  2. CAR-T cells are serial killers.

    PubMed

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-12-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.

  3. In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity

    PubMed Central

    Halle, Stephan; Keyser, Kirsten Anja; Stahl, Felix Rolf; Busche, Andreas; Marquardt, Anja; Zheng, Xiang; Galla, Melanie; Heissmeyer, Vigo; Heller, Katrin; Boelter, Jasmin; Wagner, Karen; Bischoff, Yvonne; Martens, Rieke; Braun, Asolina; Werth, Kathrin; Uvarovskii, Alexey; Kempf, Harald; Meyer-Hermann, Michael; Arens, Ramon; Kremer, Melanie; Sutter, Gerd; Messerle, Martin; Förster, Reinhold

    2016-01-01

    Summary According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+ T cell immunity. PMID:26872694

  4. A Bacillus sp. strain with antagonistic activity against Fusarium graminearum kills Microcystis aeruginosa selectively.

    PubMed

    Xuan, Huanling; Dai, Xianzhu; Li, Jing; Zhang, Xiaohui; Yang, Caiyun; Luo, Feng

    2017-04-01

    Cyanobacterial harmful algal blooms (CyanoHABs) cause severe environmental problems, economic losses and threaten human health seriously. In the present study, a Bacillus sp. strain, designated as AF-1, with strong antagonistic activity against plant pathogenic fungus Fusarium graminearum was isolated from purple soil. Bacillus sp. AF-1 selectively killed Microcystis aeruginosa at low cell density (1.6×10 3 cfu/mL), and showed the strongest bactericidal activity against M. aeruginosa NIES-843 (A e =93%, t=6d). The algicidal substances originated from strain AF-1 were stable in the temperature range of 35-100°C, and pH range of 3-11. Cell-free filtrate of AF-1 culture caused excessive accumulation of intracellular reactive oxygen species (ROS), cell death and the efflux of intracellular components of M. aeruginosa NIES-843 cells. The expression of genes recA, psbA1, psbD1, rbcL and mcyB, involved in DNA repair, photosynthesis and microcystin synthesis of NIES 843, were significantly influenced by the cell-free filtrate of AF-1 culture. Bacillus sp. AF-1 has the potential to be developed as a bifunctional biocontrol agent to control CyanoHABs and F. graminearum caused plant disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Antifungal Activity of Eupolauridine and Its Action on DNA Topoisomerases

    PubMed Central

    Khan, Shabana I.; Nimrod, Alison C.; Mehrpooya, Mohammed; Nitiss, John L.; Walker, Larry A.; Clark, Alice M.

    2002-01-01

    The azafluoranthene alkaloid eupolauridine has previously been shown to have in vitro antifungal activity and selective inhibition of fungal topoisomerase I. The present study was undertaken to examine further its selectivity and mode of action. Eupolauridine completely inhibits the DNA relaxation activity of purified fungal topoisomerase I at 50 μg/ml, but it does not stabilize the cleavage complex of either human or fungal topoisomerase I. Cleavage complex stabilization is the mode of action of topoisomerase I targeting drugs of the camptothecin family. Also, unlike camptothecin, eupolauridine does not cause significant cytotoxicity in mammalian cells. To determine if the inhibition of topoisomerase I is the principal mode of antifungal action of eupolauridine, Saccharomyces cerevisiae strains with alterations in topoisomerase genes were used in clonogenic assays. The antifungal activity of eupolauridine was not diminished in the absence of topoisomerase I; rather, the cells lacking the enzyme were more sensitive to the drug. Cell-killing activity of eupolauridine was also more pronounced in cells that overexpressed topoisomerase II. In vitro assays with the purified yeast enzyme confirmed that eupolauridine stabilized topoisomerase II covalent complexes. These results indicate that a major target for fungal cell killing by eupolauridine is DNA topoisomerase II rather than topoisomerase I, but does not exclude the possibility that the drug also acts against other targets. PMID:12019091

  6. Antifungal activity of eupolauridine and its action on DNA topoisomerases.

    PubMed

    Khan, Shabana I; Nimrod, Alison C; Mehrpooya, Mohammed; Nitiss, John L; Walker, Larry A; Clark, Alice M

    2002-06-01

    The azafluoranthene alkaloid eupolauridine has previously been shown to have in vitro antifungal activity and selective inhibition of fungal topoisomerase I. The present study was undertaken to examine further its selectivity and mode of action. Eupolauridine completely inhibits the DNA relaxation activity of purified fungal topoisomerase I at 50 microg/ml, but it does not stabilize the cleavage complex of either human or fungal topoisomerase I. Cleavage complex stabilization is the mode of action of topoisomerase I targeting drugs of the camptothecin family. Also, unlike camptothecin, eupolauridine does not cause significant cytotoxicity in mammalian cells. To determine if the inhibition of topoisomerase I is the principal mode of antifungal action of eupolauridine, Saccharomyces cerevisiae strains with alterations in topoisomerase genes were used in clonogenic assays. The antifungal activity of eupolauridine was not diminished in the absence of topoisomerase I; rather, the cells lacking the enzyme were more sensitive to the drug. Cell-killing activity of eupolauridine was also more pronounced in cells that overexpressed topoisomerase II. In vitro assays with the purified yeast enzyme confirmed that eupolauridine stabilized topoisomerase II covalent complexes. These results indicate that a major target for fungal cell killing by eupolauridine is DNA topoisomerase II rather than topoisomerase I, but does not exclude the possibility that the drug also acts against other targets.

  7. Radio-sensitization of Prostate Cancer Cells by Monensin Treatment and its associated Gene Expression Profiling Changes

    NASA Technical Reports Server (NTRS)

    Zhang Ye; Rohde, Larry H.; Wu, Honglu

    2008-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. Here, we investigated the effect of monensin on sensitizing radiation mediated cell killing of two radio-resistant prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-). Treatment with monensin alone (5 micromoles-20 micromoles) showed a significant direct cell killing of Lncap (10-30%), but not PC3 cells. Monensin was also shown to successfully sensitize Lncap cells to X-ray radiation (2Gy-10Gy) mediated cell death, up to 50% of killing with the combined treatment. To better understand the mechanisms of radio-resistance of these two cell lines and their different response to monensin, the apoptosis related gene expression profiles in both cell lines were analyzed using cDNA PCR array. Without any treatment, PC3 showed a much higher expression level of antiapoptosis genes than Lncap in the BCL2 family, the caspase/card family and the TNF ligand/receptor family. At 2 hr after 20 micormolar monensin treatment alone, only the TRAF and CIDE family showed a greater induction in Lncap cells than in PC3. Exposures to 10 Gy X-rays alone of Lncap cells significantly induced gene expression levels in the death and death receptor domain family, the TNF ligand and receptor family, and apoptotic group of BCL2 family; whereas exposures of PC3 induced only the expression of genes in the anti-apoptosis group of CASP and CARD family. Furthermore, we selectively suppressed the expression of several anti-apoptosis genes (BCL-xl, Bcl2A1, BIRC2, BIRC3 and CASP2) in PC3 cells by using the siRNA treatment. Exposure to 10Gy X-rays alone showed an enhanced cell killing (about 15%) in BCL-x1 silenced cells, but not in cells with siRNA treatment targeting other anti-apoptosis genes. We also exposed PC3 cells to protons in the Bragg peak region to compare the effectiveness of cell killing of X-rays. Interestingly, in comparison to X-rays, protons significantly reduced the gene expression in the anti-apoptosis family, suggesting that proton treatment may be more effective for PC3 cells. As a conclusion, monensin was found to sensitize Lncap cells, but not PC3, and over-expression of Bcl-xl cells may be responsible for the radio- or chemo-resistance characteristics of PC3 cells.

  8. Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion

    PubMed Central

    Ralston, Katherine S.; Solga, Michael D.; Mackey-Lawrence, Nicole M.; Somlata; Bhattacharya, Alok; Petri, William A.

    2014-01-01

    Summary paragraph Entamoeba histolytica is the causative agent of amoebiasis, a potentially fatal diarrheal disease in the developing world. The parasite was named “histolytica” for its ability to destroy host tissues, which is most likely driven by direct killing of human cells. The mechanism of human cell killing has been unclear, though the accepted model was that the parasites use secreted toxic effectors to kill cells prior to ingestion1. Here we report the surprising discovery that amoebae kill by biting off and ingesting distinct pieces of living human cells, resulting in intracellular calcium elevation and eventual cell death. After cell killing, amoebae detach and cease ingestion. Ingestion of bites is required for cell killing, and also contributes to invasion of intestinal tissue. The internalization of bites of living human cells is reminiscent of trogocytosis (Greek trogo–, nibble) observed between immune cells2–6, but amoebic trogocytosis differs since it results in death. The ingestion of live cell material and the rejection of corpses illuminate a stark contrast to the established model of dead cell clearance in multicellular organisms7. These findings change the paradigm for tissue destruction in amoebiasis and suggest an ancient origin of trogocytosis as a form of intercellular exchange. PMID:24717428

  9. Experimental evidence for killing the resistant cells and raising the efficacy and decreasing the toxicity of cytostatics and irradiation by mixtures of the agents of the passive antitumor defense system in the case of various tumor and normal cell lines in vitro.

    PubMed

    Kulcsár, Gyula

    2009-02-01

    Despite the substantial decline of the immune system in AIDS, only a few kinds of tumors increase in incidence. This shows that the immune system has no absolute role in the prevention of tumors. Therefore, the fact that tumors do not develop in the majority of the population during their lifetime indicates the existence of other defense system(s). According to our hypothesis, the defense is made by certain substances of the circulatory system. Earlier, on the basis of this hypothesis, we experimentally selected 16 substances of the circulatory system and demonstrated that the mixture of them (called active mixture) had a cytotoxic effect (inducing apoptosis) in vitro and in vivo on different tumor cell lines, but not on normal cells and animals. In this paper, we provide evidence that different cytostatic drugs or irradiation in combination with the active mixture killed significantly more cancer cells, compared with either treatments alone. The active mixture decreased, to a certain extent, the toxicity of cytostatics and irradiation on normal cells, but the most important result was that the active mixture destroyed the multidrug-resistant cells. Our results provide the possibility to improve the efficacy and reduce the side-effects of chemotherapy and radiation therapy and to prevent the relapse by killing the resistant cells.

  10. Cloning and characterization of human immunodeficiency virus type 1 variants diminished in the ability to induce syncytium-independent cytolysis.

    PubMed Central

    Stevenson, M; Haggerty, S; Lamonica, C; Mann, A M; Meier, C; Wasiak, A

    1990-01-01

    The phenomenon of interference was exploited to isolate low-abundance noncytopathic human immunodeficiency virus type 1 (HIV-1) variants from a primary HIV-1 isolate from an asymptomatic HIV-1-seropositive hemophiliac. Successive rounds of virus infection of a cytolysis-susceptible CD4+ cell line and isolation of surviving cells resulted in selective amplification of an HIV-1 variant reduced in the ability to induce cytolysis. The presence of a PvuII polymorphism facilitated subsequent amplification and cloning of cytopathic and noncytopathic HIV-1 variants from the primary isolate. Cloned virus stocks from cytopathic and noncytopathic variants exhibited similar replication kinetics, infectivity, and syncytium induction in susceptible host cells. The noncytopathic HIV-1 variant was unable, however, to induce single-cell killing in susceptible host cells. Construction of viral hybrids in which regions of cytopathic and noncytopathic variants were exchanged indicated that determinants for the noncytopathic phenotype map to the envelope glycoprotein. Sequence analysis of the envelope coding regions indicated the absence of two highly conserved N-linked glycosylation sites in the noncytopathic HIV-1 variant, which accompanied differences in processing of precursor gp160 envelope glycoprotein. These results demonstrate that determinants for syncytium-independent single-cell killing are located within the envelope glycoprotein and suggest that single-cell killing is profoundly influenced by alterations in envelope sequence which affect posttranslational processing of HIV-1 envelope glycoprotein within the infected cell. Images PMID:1695254

  11. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganusov, Vitaly V

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targetsmore » with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the phenotype of vaccine-induced memory CD8 T cells with their killing efficacy in vivo.« less

  12. Tracking in vivo migration and distribution of antigen-specific cytotoxic T lymphocytes by 5,6-carboxyfluorescein diacetate succinimidyl ester staining during cancer immunotherapy.

    PubMed

    Xu, Wei-li; Li, Suo-lin; Wen, Ming; Wen, Jun-ye; Han, Jie; Zhang, Hong-zhen; Gao, Fei; Cai, Jian-hui

    2013-08-01

    Killing of targeted tumors during adoptive cell transfer therapy is associated with cytotoxic T lymphocyte (CTL) numbers, immunophenotype, tumor-specificity, and in vivo residence time, migration, and distribution. Therefore, tracing in vivo persistence, migration, and distribution of CTLs is important for cancer immunotherapy. Optimal staining concentration for CTL proliferation was determined by cell counting kit-8 (CCK-8) assay and killing efficiencies of CTLs or carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled melanoma antigen-specific cytotoxic T lymphocytes (CFSE-CTLs) for malignant melanoma cells in vitro were compared. Additionally, CFSE-CTLs were intravenously transfused to mice receiving B16 melanoma, and their residence time, migration, and distribution in vivo were observed by measuring fluorescence intensities of CFSE-CTLs per gram of tissue (%FI/g) in various tissues and analyzing tumor/non-tumor (T/NT) values. Anti-tumor effects of transferred CTLs and correlation between %FI/g and D-value of tumor size were analyzed. Five-micromolar CFSE was optimal for labeling CTLs with minimal cytotoxicity. No significant difference occurred between CTLs and CFSE-CTLs for tumor cell killing (P = 0.849) or interleukin-2 (P = 0.318) and interferon-γ (P = 0.201) levels. Distribution of CTLs in vivo varied with time. A negative correlation between %FI/g in tumors and D-value of tumor sizes by Spearman correlation analysis was observed. CTLs were recruited to and killed tumors from 6 hours to 3 days after cell infusion. CTLs were observed up to three weeks later in the tumor, liver, kidneys, and spleen; this was related to the abundant blood supply or the nature of immune organs. CCK-8 assay is a novel method to select optimal CFSE staining concentrations. Fluorescence intensity of transferred CTLs reflects their killing efficiency of tumors. CFSE fluorescent markers can trace in vivo CTL persistence, migration, and distribution because of its stability, long half-life, and low toxicity.

  13. High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes.

    PubMed

    Falcón, Rocío; Martínez, Alba; Albert, Eliseo; Madrid, Silvia; Oltra, Rosa; Giménez, Estela; Soriano, Mario; Vinuesa, Víctor; Gozalbo, Daniel; Gil, María Luisa; Navarro, David

    2016-05-01

    Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index <60%) compared with those killed efficiently (killing index >70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  14. Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma.

    PubMed

    Nakazawa, Tsutomu; Nakamura, Mitsutoshi; Park, Young Soo; Motoyama, Yasushi; Hironaka, Yasuo; Nishimura, Fumihiko; Nakagawa, Ichiro; Yamada, Shuichi; Matsuda, Ryosuke; Tamura, Kentaro; Sugimoto, Tadashi; Takeshima, Yasuhiro; Marutani, Akiko; Tsujimura, Takahiro; Ouji, Noriko; Ouji, Yukiteru; Yoshikawa, Masahide; Nakase, Hiroyuki

    2014-01-01

    Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell-cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32% U87MG, 15% U138MG, 1% A172, and 50% K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.

  15. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces.

    PubMed

    Hasan, Jafar; Webb, Hayden K; Truong, Vi Khanh; Pogodin, Sergey; Baulin, Vladimir A; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-10-01

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on its physical surface structure. As such, they provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. Their effectiveness against a wide spectrum of bacteria, however, is yet to be established. Here, the bactericidal properties of the wings were tested against several bacterial species, possessing a range of combinations of morphology and cell wall type. The tested species were primarily pathogens, and included Bacillus subtilis, Branhamella catarrhalis, Escherichia coli, Planococcus maritimus, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Staphylococcus aureus. The wings were found to consistently kill Gram-negative cells (i.e., B. catarrhalis, E. coli, P. aeruginosa, and P. fluorescens), while Gram-positive cells (B. subtilis, P. maritimus, and S. aureus) remained resistant. The morphology of the cells did not appear to play any role in determining cell susceptibility. The bactericidal activity of the wing was also found to be quite efficient; 6.1 ± 1.5 × 10(6) P. aeruginosa cells in suspension were inactivated per square centimeter of wing surface after 30-min incubation. These findings demonstrate the potential for the development of selective bactericidal surfaces incorporating cicada wing nanopatterns into the design.

  16. Identification of an Antimicrobial Agent Effective against Methicillin-Resistant Staphylococcus aureus Persisters Using a Fluorescence-Based Screening Strategy

    PubMed Central

    Kim, Wooseong; Conery, Annie L.; Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Ausubel, Frederick M.; Mylonakis, Eleftherios

    2015-01-01

    Persisters are a subpopulation of normal bacterial cells that show tolerance to conventional antibiotics. Persister cells are responsible for recalcitrant chronic infections and new antibiotics effective against persisters would be a major development in the treatment of these infections. Using the reporter dye SYTOX Green that only stains cells with permeabilized membranes, we developed a fluorescence-based screening assay in a 384-well format for identifying compounds that can kill methicillin-resistant Staphylococcus aureus (MRSA) persisters. The assay proved robust and suitable for high throughput screening (Z`-factor: >0.7). In screening a library of hits from a previous screen, which identified compounds that had the ability to block killing of the nematode Caenorhabditis by MRSA, we discovered that the low molecular weight compound NH125, a bacterial histidine kinase inhibitor, kills MRSA persisters by causing cell membrane permeabilization, and that 5 μg/mL of the compound can kill all cells to the limit of detection in a 108 CFU/mL culture of MRSA persisters within 3h. Furthermore, NH125 disrupts 50% of established MRSA biofilms at 20 μg/mL and completely eradicates biofilms at 160 μg/mL. Our results suggest that the SYTOX Green screening assay is suitable for large-scale projects to identify small molecules effective against MRSA persisters and should be easily adaptable to a broad range of pathogens that form persisters. Since NH125 has strong bactericidal properties against MRSA persisters and high selectivity to bacteria, we believe NH125 is a good anti-MRSA candidate drug that should be further evaluated. PMID:26039584

  17. 75 FR 75179 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-02

    ... of Federally-funded research and development. Foreign patent applications are filed on selected... and Its Reactivity to Human Tumors,'' HHS Reference No. E-272-2010/0-- Research Material. Patent... before they can act to kill the cell. As a result, research has generally been directed to overcoming MDR...

  18. Individual motile CD4+ T cells can participate in efficient multi-killing through conjugation to multiple tumor cells

    PubMed Central

    Liadi, Ivan; Singh, Harjeet; Romain, Gabrielle; Rey-Villamizar, Nicolas; Merouane, Amine; Adolacion, Jay R T.; Kebriaei, Partow; Huls, Helen; Qiu, Peng; Roysam, Badrinath; Cooper, Laurence J.N.; Varadarajan, Navin

    2015-01-01

    T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multi-killing via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, likely due to the lower Granzyme B content. Significantly, in both sets of T cells, a minor sub-population of individual T cells identified by their high motility, demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis was modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of their ability to resist activation induced cell death (AICD). We anticipate that TIMING may be utilized to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. PMID:25711538

  19. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  20. Improved Killing of Ovarian Cancer Stem Cells by Combining a Novel Chimeric Antigen Receptor-Based Immunotherapy and Chemotherapy.

    PubMed

    Klapdor, Rüdiger; Wang, Shuo; Hacker, Ulrich; Büning, Hildegard; Morgan, Michael; Dörk, Thilo; Hillemanns, Peter; Schambach, Axel

    2017-10-01

    Ovarian cancer represents the most lethal gynecological cancer. Although cytoreductive chemotherapy and surgery lead to complete macroscopic tumor removal, most of the patients in advanced stages suffer from recurrent disease and subsequently die. This may be explained by the activity of cancer stem cells (CSC), which are a subpopulation of cells with an elevated chemoresistance and an increased capacity for self-renewal and metastatic spread. Specifically targeting these cells by adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. This study selected the widely accepted CSC marker CD133 as a target for a chimeric antigen receptor (CAR)-based immunotherapeutic approach to treat ovarian cancer. A lentiviral vector was generated encoding a third-generation anti-CD133-CAR, and clinically used NK92 cells were transduced. These engineered natural killer (NK) cells showed specific killing against CD133-positive ovarian cancer cell lines and primary ovarian cancer cells cultured from sequential ascites harvests. Additionally, specific activation of these engineered NK cells was demonstrated via interferon-gamma secretion assays. To improve clinical efficacy of ovarian cancer treatment, the effect of the chemotherapeutic agent cisplatin was evaluated together with CAR-transduced NK cell treatment. It was demonstrated that NK cells remain cytotoxic and active under cisplatin treatment and, importantly, that sequential treatment with cisplatin followed by CAR-NK cells led to the strongest killing effect. The specific eradication of ovarian CSCs by anti-CD133-CAR expressing NK92 cells represents a promising strategy and, when confirmed in vivo, shall be the basis of future clinical studies with the aim to prevent recurrent disease.

  1. Targeting hunter distribution based on host resource selection and kill sites to manage disease risk.

    PubMed

    Dugal, Cherie J; van Beest, Floris M; Vander Wal, Eric; Brook, Ryan K

    2013-10-01

    Endemic and emerging diseases are rarely uniform in their spatial distribution or prevalence among cohorts of wildlife. Spatial models that quantify risk-driven differences in resource selection and hunter mortality of animals at fine spatial scales can assist disease management by identifying high-risk areas and individuals. We used resource selection functions (RSFs) and selection ratios (SRs) to quantify sex- and age-specific resource selection patterns of collared (n = 67) and hunter-killed (n = 796) nonmigratory elk (Cervus canadensis manitobensis) during the hunting season between 2002 and 2012, in southwestern Manitoba, Canada. Distance to protected area was the most important covariate influencing resource selection and hunter-kill sites of elk (AICw = 1.00). Collared adult males (which are most likely to be infected with bovine tuberculosis (Mycobacterium bovis) and chronic wasting disease) rarely selected for sites outside of parks during the hunting season in contrast to adult females and juvenile males. The RSFs showed selection by adult females and juvenile males to be negatively associated with landscape-level forest cover, high road density, and water cover, whereas hunter-kill sites of these cohorts were positively associated with landscape-level forest cover and increasing distance to streams and negatively associated with high road density. Local-level forest was positively associated with collared animal locations and hunter-kill sites; however, selection was stronger for collared juvenile males and hunter-killed adult females. In instances where disease infects a metapopulation and eradication is infeasible, a principle goal of management is to limit the spread of disease among infected animals. We map high-risk areas that are regularly used by potentially infectious hosts but currently underrepresented in the distribution of kill sites. We present a novel application of widely available data to target hunter distribution based on host resource selection and kill sites as a promising tool for applying selective hunting to the management of transmissible diseases in a game species.

  2. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies.

    PubMed

    Selestino Neta, Maria Cipriano; Vittorazzi, Catia; Guimarães, Aline Cristina; Martins, João Damasceno Lopes; Fronza, Marcio; Endringer, Denise Coutinho; Scherer, Rodrigo

    2017-12-01

    Orange Jessamine [Murraya paniculata L. (Rutaceae)] has been used worldwide in folk medicine as an anti-inflammatory, antibiotic and analgesic. The objective of this study is to investigate the in vitro antioxidant, cytotoxic, antibacterial and antifungal activity and the time-kill curve studies of orange jessamine essential oil and β-caryophyllene, as well as the chemical composition of the essential oil. The cytotoxic activity of M. paniculata and β-caryophyllene (7.8-500 μg/mL) was evaluated using the MTT assay on normal fibroblasts and hepatoma cells. The minimal inhibitory concentration and time-kill curves (24 h) were evaluated against those of Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Enterococcus faecallis, Aspergillus (niger, fumigates and parasiticum) and F. solani by the broth microdilution method. The antioxidant activity was measured by the DPPH and ABTS assays. Chemical composition was evaluated by GC/MS analyses. GC/MS analyses identified 13 compounds, with β-caryophyllene as the major compound. The oil exhibited moderate antibacterial activity (MIC <1.0 mg/mL) and strong antifungal activity. Time-kill curve studies showed that either the essential oil or β-caryophyllene presented rapid bacterial killing (4 h for S. aureus) and fungicidal effect (2-4 h for F. solani); however, both displayed weak free radical scavenger capacity. The cytotoxic activity exhibited a prominent selective effect against hepatoma cancer cells (IC 50 value =63.7 μg/mL) compared with normal fibroblasts (IC 50 value =195.0 μg/mL), whereas the β-caryophyllene showed low cytotoxicity. The experimental data suggest that the activities of M. paniculata essential oil are due to the synergistic action among its components.

  3. Effective elimination of cancer stem cells by magnetic hyperthermia.

    PubMed

    Sadhukha, Tanmoy; Niu, Lin; Wiedmann, Timothy Scott; Panyam, Jayanth

    2013-04-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells that have stem cell-like properties and are thought to be responsible for tumor drug resistance and relapse. Therapies that can effectively eliminate CSCs will, therefore, likely inhibit tumor recurrence. The objective of our study was to determine the susceptibility of CSCs to magnetic hyperthermia, a treatment that utilizes superparamagnetic iron oxide nanoparticles placed in an alternating magnetic field to generate localized heat and achieve selective tumor cell kill. SPIO NPs having a magnetite core of 12 nm were used to induce magnetic hyperthermia in A549 and MDA-MB-231 tumor cells. Multiple assays for CSCs, including side population phenotype, aldehyde dehydrogenase expression, mammosphere formation, and in vivo xenotransplantation, indicated that magnetic hyperthermia reduced or, in some cases, eliminated the CSC subpopulation in treated cells. Interestingly, conventional hyperthermia, induced by subjecting cells to elevated temperature (46 °C) in a water bath, was not effective in eliminating CSCs. Our studies show that magnetic hyperthermia has pleiotropic effects, inducing acute necrosis in some cells while stimulating reactive oxygen species generation and slower cell kill in others. These results suggest the potential for lower rates of tumor recurrence after magnetic hyperthermia compared to conventional cancer therapies.

  4. Behavioral study of selected microorganisms in an aqueous electrohydrodynamic liquid bridge.

    PubMed

    Paulitsch-Fuchs, Astrid H; Zsohár, Andrea; Wexler, Adam D; Zauner, Andrea; Kittinger, Clemens; de Valença, Joeri; Fuchs, Elmar C

    2017-07-01

    An aqueous electrohydrodynamic (EHD) floating liquid bridge is a unique environment for studying the influence of protonic currents (mA cm -2 ) in strong DC electric fields (kV cm -1 ) on the behavior of microorganisms. It forms in between two beakers filled with water when high-voltage is applied to these beakers. We recently discovered that exposure to this bridge has a stimulating effect on Escherichia coli. . In this work we show that the survival is due to a natural Faraday cage effect of the cell wall of these microorganisms using a simple 2D model. We further confirm this hypothesis by measuring and simulating the behavior of Bacillus subtilis subtilis , Neochloris oleoabundans, Saccharomyces cerevisiae and THP-1 monocytes. Their behavior matches the predictions of the model: cells without a natural Faraday cage like algae and monocytes are mostly killed and weakened, whereas yeast and Bacillus subtilis subtilis survive. The effect of the natural Faraday cage is twofold: First, it diverts the current from passing through the cell (and thereby killing it); secondly, because it is protonic it maintains the osmotic pressure in the cell wall, thereby mitigating cytolysis which would normally occur due to the low osmotic pressure of the surrounding medium. The method presented provides the basis for selective disinfection of solutions containing different microorganisms.

  5. Cell wars: regulation of cell survival and proliferation by cell competition

    PubMed Central

    Vivarelli, Silvia; Wagstaff, Laura; Piddini, Eugenia

    2012-01-01

    During cell competition fitter cells take over the tissue at the expense of viable, but less fit, cells, which are eliminated by induction of apoptosis or senescence. This probably acts as a quality-control mechanism to eliminate suboptimal cells and safeguard organ function. Several experimental conditions have been shown to trigger cell competition, including differential levels in ribosomal activity or in signalling pathway activation between cells, although it is unclear how those differences are sensed and translated into fitness levels. Many of the pathways implicated in cell competition have been previously linked with cancer, and this has led to the hypothesis that cell competition could play a role in tumour formation. Cell competition could be co-opted by cancer cells to kill surrounding normal cells and boost their own tissue colonization. However, in some cases, cell competition could have a tumour suppressor role, as cells harbouring mutations in a subset of tumour suppressor genes are killed by wild-type cells. Originally described in developing epithelia, competitive interactions have also been observed in some stem cell niches, where they play a role in regulating stem cell selection, maintenance and tissue repopulation. Thus competitive interactions could be relevant to the maintenance of tissue fitness and have a protective role against aging. PMID:22928509

  6. Adoptive transfer of natural killer cells promotes the anti-tumor efficacy of T cells.

    PubMed

    Goding, Stephen R; Yu, Shaohong; Bailey, Lisa M; Lotze, Michael T; Basse, Per H

    2017-04-01

    The density of NK cells in tumors correlates positively with prognosis in many types of cancers. The average number of infiltrating NK cells is, however, quite modest (approximately 30 NK cells/sq.mm), even in tumors deemed to have a "high" density of infiltrating NK cells. It is unclear how such low numbers of tumor-infiltrating NK cells can influence outcome. Here, we used ovalbumin-expressing tumor cell lines and TCR transgenic, OVA-specific cytotoxic T lymphocytes (OT-I-CTLs) to determine whether the simultaneous attack by anti-tumor CTLs and IL-2-activated NK (A-NK) cells synergistically increases the overall tumor cell kill and whether upregulation of tumor MHC class-I by NK cell-derived interferon-gamma (IFNγ) improves tumor-recognition and kill by anti-tumor CTLs. At equal E:T ratios, A-NK cells killed OVA-expressing tumor cells better than OT-I-CTLs. The cytotoxicity against OVA-expressing tumor cells increased by combining OT-I-CTLs and A-NK cells, but the increase was additive rather than synergistic. A-NK cells adenovirally-transduced to produce IL-12 (A-NK IL-12 ) produced high amounts of IFNγ. The addition of a low number of A-NK IL-12 cells to OT-I-CTLs resulted in a synergistic, albeit modest, increase in overall cytotoxicity. Pre-treatment of tumor cells with NK cell-conditioned medium increased tumor MHC expression and sensitivity to CTL-mediated killing. Pre-treatment of CTLs with NK cell-conditioned medium had no effect on CTL cytotoxicity. In vivo, MHC class-I expression by OVA-expressing B16 melanoma lung metastases increased significantly within 24-48h after adoptive transfer of A-NK IL-12 cells. OT-I-CTLs and A-NK IL-12 cells localized selectively and equally well into OVA-expressing B16 lung metastases and treatment of mice bearing 7-days-old OVA-B16 lung metastases with both A-NK IL-12 cells and OT-I-CTLs lead to a significant prolongation of survival. Thus, an important function of tumor-infiltrating NK cells may be to increase tumor cell expression of MHC class-I through secretion of IFNγ, to prepare them for recognition by tumor-specific CTLs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Platelet factor 4 activity against P. falciparum and its translation to nonpeptidic mimics as antimalarials.

    PubMed

    Love, Melissa S; Millholland, Melanie G; Mishra, Satish; Kulkarni, Swapnil; Freeman, Katie B; Pan, Wenxi; Kavash, Robert W; Costanzo, Michael J; Jo, Hyunil; Daly, Thomas M; Williams, Dewight R; Kowalska, M Anna; Bergman, Lawrence W; Poncz, Mortimer; DeGrado, William F; Sinnis, Photini; Scott, Richard W; Greenbaum, Doron C

    2012-12-13

    Plasmodium falciparum pathogenesis is affected by various cell types in the blood, including platelets, which can kill intraerythrocytic malaria parasites. Platelets could mediate these antimalarial effects through human defense peptides (HDPs), which exert antimicrobial effects by permeabilizing membranes. Therefore, we screened a panel of HDPs and determined that human platelet factor 4 (hPF4) kills malaria parasites inside erythrocytes by selectively lysing the parasite digestive vacuole (DV). PF4 rapidly accumulates only within infected erythrocytes and is required for parasite killing in infected erythrocyte-platelet cocultures. To exploit this antimalarial mechanism, we tested a library of small, nonpeptidic mimics of HDPs (smHDPs) and identified compounds that kill P. falciparum by rapidly lysing the parasite DV while sparing the erythrocyte plasma membrane. Lead smHDPs also reduced parasitemia in a murine malaria model. Thus, identifying host molecules that control parasite growth can further the development of related molecules with therapeutic potential. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Novel method for in vitro depletion of T cells by monoclonal antibody-targeted photosensitization.

    PubMed

    Berki, T; Németh, P

    1998-02-01

    An immunotargeting method (called photo-immunotargeting) has been developed for selective in vitro cell destruction. The procedure combines the photosensitizing (toxic) effect of light-induced dye-molecules, e.g., hematoporphyrin (HP) and the selective binding ability of monoclonal antibodies (mAb) to cell surface molecules. The photosensitizer HP molecules were covalently attached to monoclonal antibodies (a-Thy-1) recognizing an antigen on the surface of T lymphocytes, and used for T cell destruction. To increase the selectivity of the conventional targeting methods, a physical activation step (local light irradiation) as a second degree of specificity was employed. The HP in conjugated form was sufficient to induce T cell (thymocytes, EL-4 cell line) death after irradiation at 400 nm, at tenfold lower concentration compared to the photosensitizing effect of unbound HP. The selective killing of T lymphocytes (bearing the Thy-1 antigen) in a mixed cell population was demonstrated after a treatment with the phototoxic conjugate and light irradiation. This method can be useful for selective destruction of one population (target cell) in an in vitro heterogeneous cell mixture, e.g., in bone marrow transplants for T cell depletion to avoid graft vs. host reaction.

  9. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells

    PubMed Central

    Janssen, Aniek; Kops, Geert J. P. L.; Medema, René H.

    2009-01-01

    The mitotic checkpoint has evolved to prevent chromosome mis-segregations by delaying mitosis when unattached chromosomes are present. Inducing severe chromosome segregation errors by ablating the mitotic checkpoint causes cell death. Here we have analyzed the consequences of gradual increases in chromosome segregation errors on the viability of tumor cells and normal human fibroblasts. Partial reduction of essential mitotic checkpoint components in four tumor cell lines caused mild chromosome mis-segregations, but no lethality. These cells were, however, remarkably more sensitive to low doses of taxol, which enhanced the amount and severity of chromosome segregation errors. Sensitization to taxol was achieved by reducing levels of Mps1 or BubR1, proteins having dual roles in checkpoint activation and chromosome alignment, but not by reducing Mad2, functioning solely in the mitotic checkpoint. Moreover, we find that untransformed human fibroblasts with reduced Mps1 levels could not be sensitized to sublethal doses of taxol. Thus, targeting the mitotic checkpoint and chromosome alignment simultaneously may selectively kill tumor cells by enhancing chromosome mis-segregations. PMID:19855003

  10. A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

    PubMed Central

    Sateriale, Adam; Huston, Christopher D.

    2011-01-01

    The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model. PMID:21331284

  11. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis.

    PubMed

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Li, Yi; Zhen, Yong-Su

    2017-05-01

    CD13 is a marker of angiogenic endothelial cells, and recently it is proved to be a biomarker of human liver cancer stem cells (CSCs). Herein, the therapeutic effects of NGR-LDP-AE, a fusion protein composed of CD13-targeting peptide NGR and antitumor antibiotic lidamycin, on human liver cancer and its mechanism were studied. Western blot and immunofluorescence assay demonstrated that CD13 (WM15 epitope) was expressed in both human liver cancer cell lines and vascular endothelial cells, while absent in normal liver cells. MTT assay showed that NGR-LDP-AE displayed potent cytotoxicity to cultured tumor cell lines with IC 50 values at low nanomolar level. NGR-LDP-AE inhibited tumorsphere formation of liver cancer cells, and the IC 50 values were much lower than that in MTT assay, indicating selectively killing of CSCs. In endothelial tube formation assay, NGR-LDP-AE at low cytotoxic dose significantly inhibited the formation of intact tube networks. Animal experiment demonstrated that NGR-LDP-AE inhibited the growth of human liver cancer xenograft. Immunohistochemical analysis showed that NGR-LDP-AE induced the down-regulation of CD13. In vitro experiment using cultured tumor cells also confirmed this result. NGR-LDP-AE activated both apoptotic and autophagic pathways in cultured tumor cells, while the induced autophagy protected cells from death. Conclusively, NGR-LDP-AE exerts its antitumor activity via killing liver CSCs and inhibiting angiogenesis. With one targeting motif, NGR-LDP-AE acts on both liver CSCs and angiogenic endothelial cells. It is a promising dual targeting fusion protein for liver cancer therapy, especially for advanced or relapsed cancers. © 2017 Wiley Periodicals, Inc.

  12. Selenium- and tellurium-containing multifunctional redox agents as biochemical redox modulators with selective cytotoxicity.

    PubMed

    Jamier, Vincent; Ba, Lalla A; Jacob, Claus

    2010-09-24

    Various human diseases, including different types of cancer, are associated with a disturbed intracellular redox balance and oxidative stress (OS). The past decade has witnessed the emergence of redox-modulating compounds able to utilize such pre-existing disturbances in the redox state of sick cells for therapeutic advantage. Selenium- and tellurium-based agents turn the oxidizing redox environment present in certain cancer cells into a lethal cocktail of reactive species that push these cells over a critical redox threshold and ultimately kill them through apoptosis. This kind of toxicity is highly selective: normal, healthy cells remain largely unaffected, since changes to their naturally low levels of oxidizing species produce little effect. To further improve selectivity, multifunctional sensor/effector agents are now required that recognize the biochemical signature of OS in target cells. The synthesis of such compounds provides interesting challenges for chemistry in the future.

  13. Influence of anaesthetics on tumour-cell kill and repopulation in B16 melanoma treated with melphalan.

    PubMed Central

    Peacock, J. H.; Stephens, T. C.

    1978-01-01

    The influence of anaesthetics on the in vivo response of B16 melanoma to melphalan was studied using an in vitro cell-survival assay. Three anaesthetics were used, Saffan (Althesin) Sagatal (Nembutal) and Hypnorm. When Saffan was administered to tumour-bearing animals before melphalan there was a significant increase in tumour-cell kill. This effect was not observed with Sagatal or Hypnorm. Maximum increase in tumour-cell kill was achieved when Saffan was administered about 1 h before melphalan, and was dependent on Saffan dose. Clonogenic tumour-cell repopulation after melphalan was rapid (TD - 1 day) and the rate was similar from 2 levels of cell kill. When Saffan was combined with melphalan the repopulation rate was the same as with melphalan alone, and the increased cell kill was reflected in increased growth delay. The in vitro response of B16 melanoma cells to melphalan was unaltered by pretreatment with, or simultaneous exposure to Saffan. The results suggest that the mechanism of the enhanced cell kill in vivo is probably due to an indirect systemic effect, rather than a direct effect on the tumour cells. PMID:743490

  14. NAADP Activates Two-Pore Channels on T Cell Cytolytic Granules to Stimulate Exocytosis and Killing

    PubMed Central

    Davis, Lianne C.; Morgan, Anthony J.; Chen, Ji-Li; Snead, Charlotte M.; Bloor-Young, Duncan; Shenderov, Eugene; Stanton-Humphreys, Megan N.; Conway, Stuart J.; Churchill, Grant C.; Parrington, John; Cerundolo, Vincenzo; Galione, Antony

    2012-01-01

    Summary A cytotoxic T lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. Although inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum activates the store-operated Ca2+-influx pathway that is necessary for exocytosis, it is not a sufficient stimulus [1–4]. Here we identify the Ca2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and its recently identified molecular target, two-pore channels (TPCs) [5–7], as being important for T cell receptor signaling in CTLs. We demonstrate that cytolytic granules are not only reservoirs of cytolytic proteins but are also the acidic Ca2+ stores mobilized by NAADP via TPC channels on the granules themselves, so that TPCs migrate to the immunological synapse upon CTL activation. Moreover, NAADP activates TPCs to drive exocytosis in a way that is not mimicked by global Ca2+ signals induced by IP3 or ionomycin, suggesting that critical, local Ca2+ nanodomains around TPCs stimulate granule exocytosis. Hence, by virtue of the NAADP/TPC pathway, cytolytic granules generate Ca2+ signals that lead to their own exocytosis and to cell killing. This study highlights a selective role for NAADP in stimulating exocytosis crucial for immune cell function and may impact on stimulus-secretion coupling in wider cellular contexts. PMID:23177477

  15. Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells

    DTIC Science & Technology

    2014-12-01

    These mutants will be tested for their specificity and potency against PSA positive/negative cells in conjunction with the PSMA binding urea...targeting studies. Second, to achieve cell binding and uptake, we propose to link a PSMA binding urea to the C-terminus of recombinant GZMB. This will be...will be linked to the free amine of the PSMA urea in order to covalently link the compound to the C- terminus of GZMB. The C-terminus was chosen

  16. Oligo-branched peptides for tumor targeting: from magic bullets to magic forks.

    PubMed

    Falciani, Chiara; Pini, Alessandro; Bracci, Luisa

    2009-02-01

    Selective targeting of tumor cells is the final goal of research and drug discovery for cancer diagnosis, imaging and therapy. After the invention of hybridoma technology, the concept of magic bullet was introduced into the field of oncology, referring to selective killing of tumor cells, by specific antibodies. More recently, small molecules and peptides have also been proposed as selective targeting agents. We analyze the state of the art of tumor-selective agents that are presently available and tested in clinical settings. A novel approach based on 'armed' oligo-branched peptides as tumor targeting agents, is discussed and compared with existing tumor-selective therapies mediated by antibodies, small molecules or monomeric peptides. Oligo-branched peptides could be novel drugs that combine the advantages of antibodies and small molecules.

  17. Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor Cells In Vitro and In Vivo.

    PubMed

    Kaid, Carolini; Goulart, Ernesto; Caires-Júnior, Luiz C; Araujo, Bruno H S; Soares-Schanoski, Alessandra; Bueno, Heloisa M S; Telles-Silva, Kayque A; Astray, Renato M; Assoni, Amanda F; Júnior, Antônio F R; Ventini, Daniella C; Puglia, Ana L P; Gomes, Roselane P; Zatz, Mayana; Okamoto, Oswaldo K

    2018-06-15

    Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV BR ) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV BR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV BR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV BR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKV BR -induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV BR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects. Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR . ©2018 American Association for Cancer Research.

  18. ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage

    PubMed Central

    Peng, Xiaohua; Gandhi, Varsha

    2013-01-01

    Targeting tumor cells is an important strategy to improve the selectivity of cancer therapies. With the advanced studies in cancer biology, we know that cancer cells are usually under increased oxidative stress. The high level of reactive oxygen species in cancer cells has been exploited for developing novel therapeutic strategies to preferentially kill cancer cells. Our group, amongst others, have used boronic acids/esters as triggers for developing ROS-activated anticancer prodrugs that target cancer cells. The selectivity was achieved by combining a specific reaction between boronates and H2O2 with the efficient masking of drug toxicity in the prodrug via boronates. Prodrugs activated via ferrocene-mediated oxidation have also been developed to improve the selectivity of anticancer drugs. We describe how the strategies of ROS-activation can be used for further development of new ROS-targeting prodrugs, eventually leading to novel approaches and/or combined technology for more efficient and selective treatment of cancers. PMID:22900465

  19. Bactericidal effects of various concentrations of enrofloxacin, florfenicol, tilmicosin phosphate, and tulathromycin on clinical isolates of Mannheimia haemolytica.

    PubMed

    Blondeau, Joseph M; Shebelski, Shantelle D; Hesje, Christine K

    2015-10-01

    To determine bactericidal effects of enrofloxacin, florfenicol, tilmicosin, and tulathromycin on clinical isolates of Mannheimia haemolytica at various bacterial densities and drug concentrations. 4 unique isolates of M haemolytica recovered from clinically infected cattle. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined for each drug and isolate. Mannheimia haemolytica suspensions (10(6) to 10(9) CFUs/mL) were exposed to the determined MIC and MPC and preestablished maximum serum and tissue concentrations of each drug. Log10 reduction in viable cells (percentage of cells killed) was measured at various points. Bacterial killing at the MIC was slow and incomplete. After 2 hours of isolate exposure to the MPC and maximum serum and tissue concentrations of the tested drugs, 91% to almost 100% cell killing was achieved with enrofloxacin, compared with 8% growth to 93% cell killing with florfenicol, 199% growth to 63% cell killing with tilmicosin, and 128% growth to 43% cell killing with tulathromycin over the range of inoculum tested. For all drugs, killing of viable organisms was evident at all bacterial densities tested; however, killing was more substantial at the MPC and maximum serum and tissue drug concentrations than at the MIC and increased with duration of drug exposure. Rank order of drugs by killing potency was enrofloxacin, florfenicol, tilmicosin, and tulathromycin. Findings suggested that antimicrobial doses that equaled or exceeded the MPC provided rapid killing of M haemolytica by the tested drugs, decreasing opportunities for antimicrobial-resistant subpopulations of bacteria to develop during drug exposure.

  20. Correction of both spontaneous and DEB-induced chromosome instability in Fanconi anemia FA-C cells by FACC cDNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavropoulos, D.J.; Tomkins, D.J.; Allingham-Hawkins, D.J.

    1994-09-01

    Cells from all four Fanconi anemia complementation groups show hypersensitivity to cell-killing by mitomycin C (MMC), diepoxybutane (DEB) and other DNA cross-linking agents, and increased spontaneous and DEB-induced chromosome aberrations (CA). The extent of these phenotypes varies between lymphoblastoid cell lines from different complementation groups. Our data showed that the difference in MMC hypersensitivity and DEB-CA was not always coupled. While 230N (FA-B) had higher DEB-induced CA/cell than 536N (FA-C) (7.42 vs. 4.46 respectively), that latter was much more sensitive to cell-killing by MMC (dose at 10% survival, D{sub 10}: 5.2 vs. 1.2 ng/ml respectively). Strathdes et al. (1992) clonedmore » a cDNA Fanconi anemia complementation group C (FACC) which complemented the hypersensitivity to MMC and DEB cell-killing of FA-C cells (536N) but not cells from the other three complementation groups. The present study was initiated to determine whether chromosome instability in 536N is also complemented by the FACC (FAC3) cDNA. The pREP4-FAC3 vector was transfected into 536N and transfectants selected with hygromycin B. The DEB D{sub 10} of 536N (1.0 {mu}M) was corrected to the control level (16.2 {mu}M for 3TO) by FACC (15.1 {mu}M for 536N-FACC), as previously demonstrated. Chromosome instability (cab, cse, ctb, cte) was determined without and with 0.1 {mu}g/ml DEB treatment. Spontaneous CA of 536N (0.30 aberrations/cell) was corrected to the control level (0.04 for 3TO) by FACC (0.06 for 536N-FACC). Similarly, the DEB-induced CA was corrected (2.74 for 536N vs. 0.06 and 0.02 for 3TO and 536N-FACC respectively). Thus, at least for FA complementation group C, hypersensitivity to cell-killing and chromosome instability are not dissociated and are most likely caused by the same gene defect.« less

  1. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells

    PubMed Central

    Ni, Miaozhong; Xiong, Min; Zhang, Xinchao; Cai, Guoping; Chen, Huaiwen; Zeng, Qingmin; Yu, Zuochong

    2015-01-01

    Background Cancer stem cells (CSCs) possess the characteristics associated with normal stem cells and are responsible for cancer initiation, recurrence, and metastasis. CD133 is regarded as a CSCs marker of osteosarcoma, which is the most common primary bone malignancy in childhood and adolescence. Salinomycin, a polyether ionophore antibiotic, has been shown to kill various CSCs, including osteosarcoma CSCs. However, salinomycin displayed poor aqueous solubility that hinders its clinical application. The objective of this study was to develop salinomycin-loaded nanoparticles to eliminate CD133+ osteosarcoma CSCs. Methods The salinomycin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles (SAL-NP) conjugated with CD133 aptamers (Ap-SAL-NP) were developed by an emulsion/solvent evaporation method, and the targeting and cytotoxicity of Ap-SAL-NP to CD133+ osteosarcoma CSCs were evaluated. Results The nanoparticles are of desired particle size (~150 nm), drug encapsulation efficiency (~50%), and drug release profile. After 48 hours treatment of the Saos-2 CD133+ osteosarcoma cells with drugs formulated in Ap-SAL-NP, SAL-NP, and salinomycin, the concentrations needed to kill 50% of the incubated cells were found to be 2.18, 10.72, and 5.07 μg/mL, respectively, suggesting that Ap-SAL-NP could be 4.92 or 2.33 fold more effective than SAL-NP or salinomycin, respectively. In contrast, Ap-SAL-NP was as effective as SAL-NP, and less effective than salinomycin in Saos-2 CD133− cells, suggesting that Ap-SAL-NP possess specific cytotoxicity toward Saos-2 CD133+ cells. Ap-SAL-NP showed the best therapeutic effect in Saos-2 osteosarcoma xenograft mice, compared with SAL-NP or salinomycin. Significantly, Ap-SAL-NP could selectively kill CD133+ osteosarcoma CSCs both in vitro and in vivo, as reflected by the tumorsphere formation and proportion of Saos-2 CD133+ cells. Conclusion Our results suggest that CD133 is a potential target for drug delivery to osteosarcoma CSCs and that it is possible to significantly inhibit the osteosarcoma growth by killing CD133+ osteosarcoma CSCs. We demonstrated that Ap-SAL-NP have the potential to target and kill CD133+ osteosarcoma CSCs. PMID:25848270

  2. Mechanisms of cell killing by the new anti-cancer drug SR 4233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.

    SR 4233 (3-amino-1,2,4-benzotriazine, 1,4-dioxide) is a new potential anti-cancer drug which has a highly selective toxicity to hypoxic cells. This study investigated the mechanism of cell killing by this drug. Enzymatic studies have shown that SR 4233 is reductively metabolized to SR 4317 by the tumor cell lines SCVII and HT 1080 under hypoxic conditions. Cytochrome P-450 may play a major role in the reduction in both cell lines. DT diaphorase is the second most important enzyme in reducing SR 4233. In characterizing the major cellular target for SR 4233, the author has shown that damage to cell mitochondria ismore » produced largely under aerobic conditions, whereas DNA is likely to be the major target for cell death under hypoxic conditions. Further experiments demonstrated that DNA damage was similar to that produced by ionizing radiation at equitoxic doses, and chromosome aberrations can entirely account for cell death by SR 4233 under hypoxic conditions in the low dose range. Nevertheless, chromosome breaks produced by SR 4233 are less repairable than those produced by ionizing radiation, suggesting highly localized damage in the DNA by discrete foci of SR 4233 radicals.« less

  3. Cell Death and Cancer Therapy: Don't Forget to Kill the Cancer Cell!

    PubMed

    Letai, Anthony

    2015-11-15

    In our current age of targeted therapies, there is understandably considerable attention paid to the specific molecular targets of pharmaceutical intervention. For a targeted drug to work, it must bind to a target selectively and impair its function. Monitoring biomarkers of the impaired target function can provide vital in vivo pharmacodynamic information. Moreover, genetic changes to the target are often the source of resistance to targeted agents. However, for the treatment of cancer, it is necessary that the therapy not only provide efficient binding and inhibition of the target, but also that this intervention reliably kills the cancer cell. In this CCR Focus section, four articles make the connection between therapies that target T-cell activation, autophagy, IAP proteins, and BCL-2 and the commitment of cancer cells to cell death. Before addressing those exciting classes of targeted therapies, however, an overview is provided to discuss cell death induced by what is arguably still the most successful set of drugs in the history of medical oncology, conventional chemotherapy. See all articles in this CCR Focus section, "Cell Death and Cancer Therapy." ©2015 American Association for Cancer Research.

  4. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells

    PubMed Central

    Mitchell, Michael J.; Chen, Christina S.; Ponmudi, Varun; Hughes, Andrew D.; King, Michael R.

    2012-01-01

    The presence of circulating tumor cells (CTCs) is believed to lead to the formation of secondary tumors via an adhesion cascade involving interaction between adhesion receptors of endothelial cells and ligands on CTCs. Many CTCs express sialylated carbohydrate ligands on their surfaces that adhere to selectin protein found on inflamed endothelial cells. We have investigated the feasibility of using immobilized selectin proteins as a targeting mechanism for CTCs under flow. Herein, targeted liposomal doxorubicin (L-DXR) was functionalized with recombinant human E-selectin (ES) and polyethylene glycol (PEG) to target and kill cancer cells under shear flow, both when immobilized along a microtube device or sheared in a cone-and-plate viscometer in a dilute suspension. Healthy circulating cells such as red blood cells were not targeted by this mechanism and were left to freely circulate, and minimal leukocyte death was observed. Halloysite nanotube (HNT)-coated microtube devices immobilized with nanoscale liposomes significantly enhanced the targeting, capture, and killing of cancer cells. This work demonstrates that E-selectin functionalized L-DXR, sheared in suspension or immobilized onto microtube devices, provides a novel approach to selectively target and deliver chemotherapeutics to CTCs in the bloodstream. PMID:22421423

  5. Immunotoxins recognising a new epitope on the neural cell adhesion molecule have potent cytotoxic effects against small cell lung cancer.

    PubMed

    Zangemeister-Wittke, U; Collinson, A R; Frösch, B; Waibel, R; Schenker, T; Stahel, R A

    1994-01-01

    The present study describes a comparison of two potent immunotoxins which utilise an identical targeting component, a monoclonal antibody (SEN7) specific for small cell lung cancer (SCLC), conjugated to two different effector components, blocked ricin (bR) and Pseudomonas exotoxin A (PE). SEN7 recognises a novel epitope on the neural cell adhesion molecule (NCAM) which is highly associated with SCLC. The immunotoxins SEN7-PE and SEN7-bR were selectively and potently active against a number of SCLC cell lines, of both classic and variant morphologies, inhibiting the incorporation of [3H]leucine with IC50 values ranging between 22 pM and 85 pM and between 7 pM and 62 pM for SEN7-PE and SEN7-bR respectively. Intoxication by both immunotoxins proceeded rapidly following short 2 h lag phases; the initial rates of protein synthesis inhibition occurred with t50 values of 6.5 h for SEN7-PE and 5.5 h for SEN7-bR. Monensin drastically enhanced the cytotoxic activity of the weakly active SEN7-ricin A-chain by 2,100-fold and of SEN7-bR by 80-fold but had no effect on SEN7-PE. In limiting dilution assays, four and more than 4.5 logs of clonogenic SW2 tumour cells were selectively eliminated from the cultures during continuous exposure to the immunotoxins SEN7-PE and SEN7-bR respectively, while antigen-negative cells required up to 1,000-fold more drug for a similar cell kill. SW2 cells surviving SEN7-bR treatment in the cultures did not express NCAM and consequently were not selectively killed by SEN7 immunotoxins. SW2 cells surviving continuous exposure to SEN7-PE showed no alteration in NCAM expression but were more resistant to intoxication mediated by PE. These cells were still sensitive to SEN7-bR.

  6. Pathogen-Specific T Cell Polyfunctionality Is a Correlate of T Cell Efficacy and Immune Protection

    PubMed Central

    Boyd, Anders; Almeida, Jorge R.; Darrah, Patricia A.; Sauce, Delphine; Seder, Robert A.; Appay, Victor; Gorochov, Guy; Larsen, Martin

    2015-01-01

    Introduction Understanding the factors that delineate the efficacy of T cell responses towards pathogens is crucial for our ability to develop potent therapies against infectious diseases. Multidimensional evaluation of T cell functionality at the single-cell level enables exhaustive analysis of combinatorial functional properties, hence polyfunctionality. We have recently invented an algorithm that quantifies polyfunctionality, the Polyfunctionality Index (Larsen et al. PLoS One 2012). Here we demonstrate that quantitative assessment of T cell polyfunctionality correlates with T cell efficacy measured as the capacity to kill target cells in vitro and control infection in vivo. Methods We employed the polyfunctionality index on two datasets selected for their unique ability to evaluate the polyfunctional imprint on T cell efficacy. 1) HIV-specific CD8+ T cells and 2) Leishmania major-specific CD4+ T cells were analysed for their capacity to secrete multiple effector molecules, kill target cells and control infection. Briefly, employing the Polyfunctionality Index algorithm we determined the parameter estimates resulting in optimal correlation between T cell polyfunctionality and T cell efficacy. Results T cell polyfunctionality is correlated with T cell efficacy measured as 1) target killing (r=0.807, P<0.0001) and 2) lesion size upon challenge with Leishmania major (r=-0.50, P=0.004). Contrary to an approach relying on the Polyfunctionality Index algorithm, quantitative evaluation of T cell polyfunctionality traditionally ignores the gradual contribution of more or less polyfunctional T cells. Indeed, comparing both approaches we show that optimal description of T cell efficacy is obtained when gradually integrating all levels of polyfunctionality in accordance with the Polyfunctionality Index. Conclusions Our study presents a generalizable methodology to objectively evaluate the impact of polyfunctionality on T cell efficacy. We show that T cell polyfunctionality is a superior correlate of T cell efficacy both in vitro and in vivo as compared with response size. Therefore, future immunotherapies should aim to increase T cell polyfunctionality. PMID:26046523

  7. A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells

    PubMed Central

    2011-01-01

    Background Transferrin receptor (TfR) is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and the regulation of cell growth. Recent studies have shown the elevated expression levels of TfR on cancer cells compared with normal cells. The elevated expression levels of this receptor in malignancies, which is the accessible extracellular protein, can be a fascinating target for the treatment of cancer. We have recently designed novel type of immunotoxin, termed "hybrid peptide", which is chemically synthesized and is composed of target-binding peptide and lytic peptide containing cationic-rich amino acids components that disintegrates the cell membrane for the cancer cell killing. The lytic peptide is newly designed to induce rapid killing of cancer cells due to conformational change. In this study, we designed TfR binding peptide connected with this novel lytic peptide and assessed the cytotoxic activity in vitro and in vivo. Methods In vitro: We assessed the cytotoxicity of TfR-lytic hybrid peptide for 12 cancer and 2 normal cell lines. The specificity for TfR is demonstrated by competitive assay using TfR antibody and siRNA. In addition, we performed analysis of confocal fluorescence microscopy and apoptosis assay by Annexin-V binding, caspase activity, and JC-1 staining to assess the change in mitochondria membrane potential. In vivo: TfR-lytic was administered intravenously in an athymic mice model with MDA-MB-231 cells. After three weeks tumor sections were histologically analyzed. Results The TfR-lytic hybrid peptide showed cytotoxic activity in 12 cancer cell lines, with IC50 values as low as 4.0-9.3 μM. Normal cells were less sensitive to this molecule, with IC50 values > 50 μM. Competition assay using TfR antibody and knockdown of this receptor by siRNA confirmed the specificity of the TfR-lytic hybrid peptide. In addition, it was revealed that this molecule can disintegrate the cell membrane of T47D cancer cells just in 10 min, to effectively kill these cells and induce approximately 80% apoptotic cell death but not in normal cells. The intravenous administration of TfR-lytic peptide in the athymic mice model significantly inhibited tumor progression. Conclusions TfR-lytic peptide might provide a potent and selective anticancer therapy for patients. PMID:21849092

  8. Therapeutic Targeting of Alternative Translation Initiation in Breast Cancer

    DTIC Science & Technology

    2009-04-01

    investigation within the next 6 months. Cell type specific cancer cell killing of the prototype oncolytic poliovirus , PVS-RIPO, depends on selective...demanded by FDA. 15. SUBJECT TERMS Translation, eIF4E, eIF4G, IRES, Cancer, Poliovirus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...genetically recombinant poliovirus . Moreover, my work has laid the groundwork for correlative testing and efficacy studies of a vast array of protein kinase

  9. Buwchitin: a ruminal peptide with antimicrobial potential against Enterococcus faecalis

    NASA Astrophysics Data System (ADS)

    Oyama, Linda B.; Crochet, Jean-Adrien; Edwards, Joan E.; Girdwood, Susan E.; Cookson, Alan R.; Fernandez-Fuentes, Narcis; Hilpert, Kai; Golyshin, Peter N.; Golyshina, Olga V.; Privé, Florence; Hess, Matthias; Mantovani, Hilario C.; Creevey, Christopher J.; Huws, Sharon A.

    2017-07-01

    Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.

  10. 40 CFR 180.1325 - Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... A396 cells and spent fermentation media exemption from the requirement of a tolerance. 180.1325 Section...-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the requirement of...-killed Burkholderia spp. strain A396 cells and spent fermentation media in or on all food commodities...

  11. Hypoxia Induced Impairment of NK Cell Cytotoxicity against Multiple Myeloma Can Be Overcome by IL-2 Activation of the NK Cells

    PubMed Central

    Sarkar, Subhashis; Germeraad, Wilfred T. V.; Rouschop, Kasper M. A.; Steeghs, Elisabeth M. P.; van Gelder, Michel; Bos, Gerard M. J.; Wieten, Lotte

    2013-01-01

    Background Multiple Myeloma (MM) is an incurable plasma cell malignancy residing within the bone marrow (BM). We aim to develop allogeneic Natural Killer (NK) cell immunotherapy for MM. As the BM contains hypoxic regions and the tumor environment can be immunosuppressive, we hypothesized that hypoxia inhibits NK cell anti-MM responses. Methods NK cells were isolated from healthy donors by negative selection and NK cell function and phenotype were examined at oxygen levels representative of hypoxic BM using flowcytometry. Additionally, NK cells were activated with IL-2 to enhance NK cell cytotoxicity under hypoxia. Results Hypoxia reduced NK cell killing of MM cell lines in an oxygen dependent manner. Under hypoxia, NK cells maintained their ability to degranulate in response to target cells, though, the percentage of degranulating NK cells was slightly reduced. Adaptation of NK- or MM cells to hypoxia was not required, hence, the oxygen level during the killing process was critical. Hypoxia did not alter surface expression of NK cell ligands (HLA-ABC, -E, MICA/B and ULBP1-2) and receptors (KIR, NKG2A/C, DNAM-1, NCRs and 2B4). It did, however, decrease expression of the activating NKG2D receptor and of intracellular perforin and granzyme B. Pre-activation of NK cells by IL-2 abrogated the detrimental effects of hypoxia and increased NKG2D expression. This emphasized that activated NK cells can mediate anti-MM effects, even under hypoxic conditions. Conclusions Hypoxia abolishes the killing potential of NK cells against multiple myeloma, which can be restored by IL-2 activation. Our study shows that for the design of NK cell-based immunotherapy it is necessary to study biological interactions between NK- and tumor cells also under hypoxic conditions. PMID:23724099

  12. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing

    NASA Astrophysics Data System (ADS)

    Wülfing, Christoph; Purtic, Bozidar; Klem, Jennifer; Schatzle, John D.

    2003-06-01

    Cytolytic killing is a major effector mechanism in the elimination of virally infected and tumor cells. The innate cytolytic effectors, natural killer (NK) cells, and the adaptive effectors, cytotoxic T cells (CTL), despite differential immune recognition, both use the same lytic mechanism, cytolytic granule release. Using live cell video fluorescence microscopy in various primary cell models of NK cell and CTL killing, we show here that on tight target cell contact, a majority of the NK cells established cytoskeletal polarity required for effective lytic function slowly or incompletely. In contrast, CTLs established cytoskeletal polarity rapidly. In addition, NK cell killing was uniquely sensitive to minor interference with cytoskeletal dynamics. We propose that the stepwise NK cell cytoskeletal polarization constitutes a series of checkpoints in NK cell killing. In addition, the use of more deliberate progression to effector function to compensate for inferior immune recognition specificity provides a mechanistic explanation for how the same effector function can be used in the different functional contexts of the innate and adaptive immune response.

  13. Virus-Based Cancer Therapeutics for Targeted Photodynamic Therapy.

    PubMed

    Cao, Binrui; Xu, Hong; Yang, Mingying; Mao, Chuanbin

    2018-01-01

    Cancer photodynamic therapy (PDT) involves the absorption of light by photosensitizers (PSs) to generate cytotoxic singlet oxygen for killing cancer cells. The success of this method is usually limited by the lack of selective accumulation of the PS at cancer cells. Bioengineered viruses with cancer cell-targeting peptides fused on their surfaces are great drug carriers that can guide the PS to cancer cells for targeted cancer treatment. Here, we use cell-targeting fd bacteriophages (phages) as an example to describe how to chemically conjugate PSs (e.g., pyropheophorbide-a (PPa)) onto a phage particle to achieve targeted PDT.

  14. Cryptococcus Neoformans Modulates Extracellular Killing by Neutrophils

    PubMed Central

    Qureshi, Asfia; Grey, Angus; Rose, Kristie L.; Schey, Kevin L.; Del Poeta, Maurizio

    2011-01-01

    We recently established a key role for host sphingomyelin synthase (SMS) in regulating the killing activity of neutrophils against Cryptococcus neoformans. In this paper, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and natural killer (NK) cells (Tgε26 mice). To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike Candida albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. We monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the conditioned medium and found that pre-incubation with live but not “heat-killed” fungal cells significantly inhibits further killing activity of the medium. We then studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption–ionization tissue imaging in infected lung we found that similar to previous observations in the isogenic wild-type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells, but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells. PMID:21960987

  15. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa.

    PubMed

    Brand, Alexandra; Barnes, Julia D; Mackenzie, Kevin S; Odds, Frank C; Gow, Neil A R

    2008-10-01

    The fungus, Candida albicans, and the bacterium, Pseudomonas aeruginosa, are opportunistic human pathogens that have been coisolated from diverse body sites. Pseudomonas aeruginosa suppresses C. albicans proliferation in vitro and potentially in vivo but it is the C. albicans hyphae that are killed while yeast cells are not. We show that hyphal killing involves both contact-mediated and soluble factors. Bacterial culture filtrates contained heat-labile soluble factors that killed C. albicans hyphae. In cocultures, localized points of hyphal lysis were observed, suggesting that adhesion and subsequent bacteria-mediated cell wall lysis is involved in the killing of C. albicans hyphae. The glycosylation status of the C. albicans cell wall affected the rate of contact-dependent killing because mutants with severely truncated O-linked, but not N-linked, glycans were hypersensitive to Pseudomonas-mediated killing. Deletion of HWP1, ALS3 or HYR1, which encode major hypha-associated cell wall proteins, had no effect on fungal susceptibility.

  16. Membrane oxidation in cell delivery and cell killing applications

    PubMed Central

    Wang, Ting-Yi; Libardo, M. Daben J.; Angeles-Boza, Alfredo M.; Pellois, Jean-Philippe

    2018-01-01

    Cell delivery or cell killing processes often involve the crossing or disruption of cellular membranes. We review how, by modifying the composition and properties of membranes, membrane oxidation can be exploited to enhance the delivery of macromolecular cargos into live human cells. We also describe how membrane oxidation can be utilized to achieve efficient killing of bacteria by antimicrobial peptides. Finally, we present recent evidence highlighting how membrane oxidation is intimately engaged in natural biological processes such as antigen delivery in dendritic cells and in the killing of bacteria by human macrophages. Overall, the insights that have been recently gained in this area should facilitate the development of more effective delivery technologies and antimicrobial therapeutic approaches. PMID:28355059

  17. The effect of cell density, proximity, and time on the cytotoxicity of magnesium and galvanically coupled magnesium-titanium particles in vitro.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2018-05-01

    Magnesium (Mg) and galvanically coupled magnesium-titanium (Mg-Ti) particles in vitro have been reported previously to kill cells in a dosage-dependent manner. Mg-Ti particles kill cells more effectively than Mg alone, due to the galvanic effect of Mg and Ti. This study further investigated the in vitro cytotoxicity of Mg and Mg-Ti in terms of particle concentration, cell density, time, and proximity. Cell density has an effect on cell viability only at low particle concentrations (below 250 µg/mL), where cell viability dropped only for lower cell densities (5000-10,000 cells/cm 2 ) and not for higher cell densities (20,000-30,000 cells/cm 2 ), showing that the particles cannot kill if there are more cells present. Cytotoxicity of Mg and Mg-Ti particles is quick and temporary, where the particles kill cells only during particle corrosion (first 24 h). Depending on the percentage of surviving cells, particle concentrations, and ongoing corrosion activity, the remaining live cells either proliferated and recovered, or just remained viable and quiescent. The particle killing is also proximity-dependent, where cell viability was significantly higher for cells far away from the particles (greater than ∼1 mm) compared to those close to the particles (less than ∼1 mm). Although the increase of pH does affect cell viability negatively, it is not the sole killing factor since cell viability is significantly dependent on particle type and proximity but not pH. Mg and Mg-Ti particles used in this study are large enough to prevent direct cell phagocytosis so that the cell killing effect may be attributed to solely electrochemical reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1428-1439, 2018. © 2018 Wiley Periodicals, Inc.

  18. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki

    2012-03-12

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  19. An Acidic Microenvironment Increases NK Cell Killing of Cryptococcus neoformans and Cryptococcus gattii by Enhancing Perforin Degranulation

    PubMed Central

    Islam, Anowara; Li, Shu Shun; Oykhman, Paul; Timm-McCann, Martina; Huston, Shaunna M.; Stack, Danuta; Xiang, Richard F.; Kelly, Margaret M.; Mody, Christopher H.

    2013-01-01

    Cryptococcus gattii and Cryptococcus neoformans are encapsulated yeasts that can produce a solid tumor-like mass or cryptococcoma. Analogous to malignant tumors, the microenvironment deep within a cryptococcoma is acidic, which presents unique challenges to host defense. Analogous to malignant cells, NK cells kill Cryptococcus. Thus, as in tumor defense, NK cells must kill yeast cells across a gradient from physiologic pH to less than 6 in the center of the cryptococcoma. As acidic pH inhibits anti-tumor activities of NK cells, we sought to determine if there was a similar reduction in the anticryptococcal activity of NK cells. Surprisingly, we found that both primary human NK cells and the human NK cell line, YT, have preserved or even enhanced killing of Cryptococcus in acidic, compared to physiological, pH. Studies to explore the mechanism of enhanced killing revealed that acidic pH does not increase the effector to target ratio, binding of cytolytic cells to Cryptococcus, or the active perforin content in effector cells. By contrast, perforin degranulation was greater at acidic pH, and increased degranulation was preceded by enhanced ERK1/2 phosphorylation, which is essential for killing. Moreover, using a replication defective ras1 knockout strain of Cryptococcus increased degranulation occurred during more rapid replication of the organisms. Finally, NK cells were found intimately associated with C. gattii within the cryptococcoma of a fatal infection. These results suggest that NK cells have amplified signaling, degranulation, and greater killing at low pH and when the organisms are replicating quickly, which would help maintain microbicidal host defense despite an acidic microenvironment. PMID:23853583

  20. Selective Activation of a Perforin-Granzyme B Fusion Protein Toxin by PSA as Therapy for Metastatic Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    Prostate Cancer PRINCIPAL INVESTIGATOR: Samuel Denmeade RECIPIENT: Johns Hopkins University Baltimore, MD 21218 REPORT DATE: October 2016 TYPE...PSA as Therapy for Metastatic Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0382 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Samuel R Denmeade...cytotoxic agent that can selectively kill both proliferating and non-proliferating prostate cancer cells within a metastatic site without significant host

  1. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity.

    PubMed

    Rajasekaran, Ganesan; Kim, Eun Young; Shin, Song Yub

    2017-05-01

    Although the human-derived antimicrobial peptide (AMP) LL-37 has potent antimicrobial and anti-inflammatory activities, its therapeutic application is limited by its low cell selectivity and high production cost due to its large size. To overcome these problems, we tried to develop novel LL-37-derived short α-helical AMPs with improved cell selectivity and without a significant loss of anti-inflammatory activity relative to that of parental LL-37. Using amino acid substitution, we designed and synthesized a series of FK13 analogs based on the sequence of the 13-meric short FK13 peptide (residues 17-29 of LL-37) that has been identified as the region responsible for the antimicrobial activity of LL-37. Among the designed FK13 analogs, FK-13-a1 and FK-13-a7 showed high cell selectivity and retained the anti-inflammatory activity. The therapeutic index (a measure of cell selectivity) of FK-13-a1 and FK-13-a7 was 6.3- and 2.3-fold that of parental LL-37, respectively. Furthermore, FK-13-a1 and FK-13-a7 displayed more potent antimicrobial activity against antibiotic-resistant bacteria including MRSA, MDRPA, and VREF, than did LL-37. In addition, FK-13-a1 and FK-13-a7 exhibited greater synergistic effects with chloramphenicol against MRSA and MDRPA and were more effective anti-biofilm agents against MDRPA than LL-37 was. Moreover, FK-13-a1 and FK-13-a7 maintained their activities in the presence of physiological salts and human serum. SYTOX green uptake, membrane depolarization and killing kinetics revealed that FK13-a1 and FK13-a7 kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Taken together, our results suggest that FK13-a1 and FK13-a7 can be developed as novel antimicrobial/anti-inflammatory agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Engineering a Cell-surface Aptamer Circuit for Targeted and Amplified Photodynamic Cancer Therapy

    PubMed Central

    Han, Da; Zhu, Guizhi; Wu, Cuichen; Zhu, Zhi; Chen, Tao; Zhang, Xiaobing

    2013-01-01

    Photodynamic therapy (PDT) is one of the most promising and noninvasive methods for clinical treatment of different malignant diseases. Here, we present a novel strategy of designing an aptamer-based DNA nanocircuit capable of the selective recognition of cancer cells, controllable activation of photosensitizer and amplification of photodynamic therapeutic effect. The aptamers can selectively recognize target cancer cells and bind to the specific proteins on cell membranes. Then the overhanging catalyst sequence on aptamer can trigger a toehold-mediated catalytic strand displacement to activate photosensitizer and achieve amplified therapeutic effect. The specific binding-induced activation allows the DNA circuit to distinguish diseased cells from healthy cells, reducing damage to nearby healthy cells. Moreover, the catalytic amplification reaction will only take place close to the target cancer cells, resulting in a high local concentration of singlet oxygen to selectively kill the target cells. The principle employed in this study demonstrated the feasibility of assembling a DNA circuit on cell membranes and could further broaden the utility of DNA circuits for applications in biology, biotechnology, and biomedicine. PMID:23397942

  3. Mountain lions prey selectively on prion-infected mule deer

    PubMed Central

    Krumm, Caroline E.; Conner, Mary M.; Hobbs, N. Thompson; Hunter, Don O.; Miller, Michael W.

    2010-01-01

    The possibility that predators choose prey selectively based on age or condition has been suggested but rarely tested. We examined whether mountain lions (Puma concolor) selectively prey upon mule deer (Odocoileus hemionus) infected with chronic wasting disease, a prion disease. We located kill sites of mountain lions in the northern Front Range of Colorado, USA, and compared disease prevalence among lion-killed adult (≥2 years old) deer with prevalence among sympatric deer taken by hunters in the vicinity of kill sites. Hunter-killed female deer were less likely to be infected than males (odds ratios (OR) = 0.2, 95% confidence intervals (CI) = 0.1–0.6; p = 0.015). However, both female (OR = 8.5, 95% CI = 2.3–30.9) and male deer (OR = 3.2, 95% CI = 1–10) killed by a mountain lion were more likely to be infected than same-sex deer killed in the vicinity by a hunter (p < 0.001), suggesting that mountain lions in this area actively selected prion-infected individuals when targeting adult mule deer as prey items. PMID:19864271

  4. A hypoxia- and {alpha}-fetoprotein-dependent oncolytic adenovirus exhibits specific killing of hepatocellular carcinomas.

    PubMed

    Kwon, Oh-Joon; Kim, Pyung-Hwan; Huyn, Steven; Wu, Lily; Kim, Minjung; Yun, Chae-Ok

    2010-12-15

    Oncolytic adenoviruses (Ad) constitute a new promising modality of cancer gene therapy that displays improved efficacy over nonreplicating Ads. We have previously shown that an E1B 19-kDa-deleted oncolytic Ad exhibits a strong cell-killing effect but lacks tumor selectivity. To achieve hepatoma-restricted cytotoxicity and enhance replication of Ad within the context of tumor microenvironment, we used a modified human α-fetoprotein (hAFP) promoter to control the replication of Ad with a hypoxia response element (HRE). We constructed Ad-HRE(6)/hAFPΔ19 and Ad-HRE(12)/hAFPΔ19 that incorporated either 6 or 12 copies of HRE upstream of promoter. The promoter activity and specificity to hepatoma were examined by luciferase assay and fluorescence-activated cell sorting analysis. In addition, the AFP expression- and hypoxia-dependent in vitro cytotoxicity of Ad-HRE(6)/hAFPΔ19 and Ad-HRE(12)/hAFPΔ19 was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cytopathic effect assay. In vivo tumoricidal activity on subcutaneous and liver orthotopic model was monitored by noninvasive molecular imaging. Ad-HRE(12)/hAFPΔ19 exhibited enhanced tumor selectivity and cell-killing activity when compared with Ad-hAFPΔ19. The tumoricidal activity of Ad-HRE(12)/hAFPΔ19 resulted in significant inhibition of tumor growth in both subcutaneous and orthotopic models. Histologic examination of the primary tumor after treatment confirmed accumulation of viral particles near hypoxic areas. Furthermore, Ad-HRE(12)/hAFPΔ19 did not cause severe inflammatory immune response and toxicity after systemic injection. The results presented here show the advantages of incorporating HREs into a hAFP promoter-driven oncolytic virus. This system is unique in that it acts in both a tissue-specific and tumor environment-selective manner. The greatly enhanced selectivity and tumoricidal activity of Ad-HRE(12)/hAFPΔ19 make it a promising therapeutic agent in the treatment of liver cancers. ©2010 AACR.

  5. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release.

    PubMed

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb E M; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; El Zowalaty, Mohamed Ezzat

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.

  6. Cytotoxic Killing and Immune Evasion by Repair

    NASA Astrophysics Data System (ADS)

    Chan, Cliburn; George, Andrew J. T.; Stark, Jaroslav

    2007-07-01

    The interaction between the immune system and pathogens is a complex one, with pathogens constantly developing new ways of evading destruction by the immune system. The immune system's task is made even harder when the pathogen in question is an intra-cellular one (such as a virus or certain bacteria) and it is necessary to kill the infected host cell in order to eliminate the pathogen. This causes damage to the host, and such killing therefore needs to be carefully controlled, particularly in tissues with poor regenerative potential, or those involved in the immune response itself. Host cells therefore possess repair mechanisms which can counteract killing by immune cells. These in turn can be subverted by pathogens which up-regulate the resistance of infected cells to killing. In this paper, we explore the hypothesis that this repair process plays an important role in determining the efficacy of evasion and escape from immune control. We model a situation where cytotoxic T lymphocytes (CTL) and natural killer (NK) cells kill pathogen-infected and tumour cells by directed secretion of preformed granules containing perforin and granzymes. Resistance to such killing can be conferred by the expression of serine protease inhibitors (serpins). These are utilized by several virally infected and tumour cells, as well as playing a role in the protection of host bystander, immune and immuneprivileged cells. We build a simple stochastic model of cytotoxic killing, where serpins can neutralize granzymes stoichiometrically by forming an irreversible complex, and the survival of the cell is determined by the balance between serpin depletion and replenishment, which in its simplest form is equivalent to the well known shot noise process. We use existing analytical results for this process, and additional simulations to analyse the effects of repair on cytotoxic killing. We then extend the model to the case of a replicating target cell population, which gives a branching process coupled to shot noise. We show how the process of repair can have a major impact on the dynamics of pathogen evasion and escape of tumour cells from immune surveillance

  7. Effects of murine leukemia virus env gene proteins on macrophage-mediated cytotoxicity in vitro

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Takemoto, L. J.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    F5b Tumor cells were incubated with concentrated culture supernatants taken from cells resistant (F5m) or sensitive (F5b) to contact-dependent macrophage cytotoxicity. Macrophage cell line B6MP102 and murine peritoneal macrophages killed targets incubated with supernatants taken from sensitive cells but poorly killed cells incubated in supernatants isolated from resistant cells. Membranes from cells resistant to macrophage killing, F5m, were fused into F5b cells. The fused F5b cells were killed significantly less than F5b cells fused with F5b cell membranes or untreated F5b cells. The decreased killing of F5b cells corresponded to increased concentrations of gp70(a) molecules on F5b cells. Affinity purified gp70(a) was added to cytotoxicity assays but failed to inhibit macrophage cytotoxicity. P15E molecules were detectable on both F5b and F5m cells. In addition, a synthetic peptide found to exhibit the inhibitory properties of p15E was added to cytotoxicity assays. P15E synthetic peptide also did not inhibit macrophage cytotoxicity. Therefore, env gene proteins of murine leukemia virus do not appear responsible for inducing tumor cell resistance to activated macrophage contact-dependent cytotoxicity.

  8. Re-engineering and evaluation of anti-DNA autoantibody 3E10 for therapeutic applications.

    PubMed

    Rattray, Zahra; Dubljevic, Valentina; Rattray, Nicholas J W; Greenwood, Deanne L; Johnson, Caroline H; Campbell, James A; Hansen, James E

    2018-02-12

    A key challenge in the development of novel chemotherapeutics is the design of molecules capable of selective toxicity to cancer cells. Antibodies have greater target specificity compared to small molecule drugs, but most are unable to penetrate cells, and predominantly target extracellular antigens. A nuclear-penetrating anti-DNA autoantibody isolated from the MRL/lpr lupus mouse model, 3E10, preferentially localizes to tumors, inhibits DNA repair, and selectively kills cancer cells with defects in DNA repair. A murine divalent single chain variable fragment of 3E10 with mutations for improved DNA binding affinity, 3E10 (D31N) di-scFv, has previously been produced in P. pastoris and yielded promising pre-clinical findings, but is unsuitable for clinical testing. The present study reports the design, expression and testing of a panel of humanized 3E10 (D31N) di-scFvs, some of which contain CDR substitution. These variants were expressed in a modified CHO system and evaluated for their physicochemical attributes and ability to penetrate nuclei to selectively cause DNA damage accumulation in and kill cancer cells with DNA repair defects. Secondary structure was conserved and most variants retained the key characteristics of the murine 3E10 (D31N) di-scFv produced in P. pastoris. Moreover, several variants with CDR substitutions outperformed the murine prototype. In conclusion, we have designed several humanized variants of 3E10 (D31N) di-scFv that have potential for application as monotherapy or conjugates for targeted nuclear drug delivery. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. An in vitro investigation of immunomodulatory properties of Lactobacillus plantarum and L. delbrueckii cells and their extracellular polysaccharides

    PubMed Central

    KISHIMOTO, Mana; NOMOTO, Ryohei; MIZUNO, Masashi; OSAWA, Ro

    2017-01-01

    Many probiotic lactobacilli and their extracellular polysaccharides (EPS) have beneficial immunological properties. However, it is unclear how they elicit the host immune response. We thus investigated the immunological properties of UV-killed Lactobacillus delbrueckii TU-1 and L. plantarum KM-9 cells as well as their extracellular polysaccharides (EPSs). High-performance liquid chromatography and ion exchange chromatography analyses showed that their EPSs differ in sugar composition and sugar fractionation. The immunological properties were evaluated in a semi-intestinal model using a Transwell co-culture system that employed human intestinal epithelial (Caco-2) cells on the apical side and murine macrophage (RAW264.7) cells on the basolateral side. The UV-killed cells and EPSs were added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of tumor necrosis factor-α and several cytokines released by RAW264.7 or Caco-2 cells were quantified by cytotoxic activity on L929 cells (murine fibrosarcoma cell line) and quantitative reverse-transcriptase PCR. We found that the UV-killed cells and their EPSs had immunological effects on RAW264.7 cells via Caco-2 cells. The RAW264.7 cells showed different cytokine production profiles when treated with UV-killed cells and EPSs. The UV-killed cells and EPSs promoted a Th1-type cellular response. Furthermore, we found that the UV-killed cells sent positive signals through Toll-like receptor (TLR) 2. Meanwhile, neither EPS sent a positive signal through TLR4 and TLR2. This evidence suggests that both UV-killed cells of the lactobacillus strains and their EPSs trigger a Th1-type immune response in a human host, with the former triggering the response via the TLRs expressed on its epithelium and the latter employing a mechanism yet to be determined, possibly involving a novel receptor that is designed to recognize specific patterns of repeating sugar in the EPSs. PMID:28748131

  10. An in vitro investigation of immunomodulatory properties of Lactobacillus plantarum and L. delbrueckii cells and their extracellular polysaccharides.

    PubMed

    Kishimoto, Mana; Nomoto, Ryohei; Mizuno, Masashi; Osawa, Ro

    2017-01-01

    Many probiotic lactobacilli and their extracellular polysaccharides (EPS) have beneficial immunological properties. However, it is unclear how they elicit the host immune response. We thus investigated the immunological properties of UV-killed Lactobacillus delbrueckii TU-1 and L. plantarum KM-9 cells as well as their extracellular polysaccharides (EPSs). High-performance liquid chromatography and ion exchange chromatography analyses showed that their EPSs differ in sugar composition and sugar fractionation. The immunological properties were evaluated in a semi-intestinal model using a Transwell co-culture system that employed human intestinal epithelial (Caco-2) cells on the apical side and murine macrophage (RAW264.7) cells on the basolateral side. The UV-killed cells and EPSs were added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of tumor necrosis factor-α and several cytokines released by RAW264.7 or Caco-2 cells were quantified by cytotoxic activity on L929 cells (murine fibrosarcoma cell line) and quantitative reverse-transcriptase PCR. We found that the UV-killed cells and their EPSs had immunological effects on RAW264.7 cells via Caco-2 cells. The RAW264.7 cells showed different cytokine production profiles when treated with UV-killed cells and EPSs. The UV-killed cells and EPSs promoted a Th1-type cellular response. Furthermore, we found that the UV-killed cells sent positive signals through Toll-like receptor (TLR) 2. Meanwhile, neither EPS sent a positive signal through TLR4 and TLR2. This evidence suggests that both UV-killed cells of the lactobacillus strains and their EPSs trigger a Th1-type immune response in a human host, with the former triggering the response via the TLRs expressed on its epithelium and the latter employing a mechanism yet to be determined, possibly involving a novel receptor that is designed to recognize specific patterns of repeating sugar in the EPSs.

  11. Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity

    PubMed Central

    Li, Hao; Ponder, Elizabeth L.; Verdoes, Martijn; Asbjornsdottir, Kristijana H.; Deu, Edgar; Edgington, Laura E.; Lee, Jeong Tae; Kirk, Christopher J.; Demo, Susan D.; Williamson, Kim C.; Bogyo, Matthew

    2012-01-01

    Summary The Plasmodium proteasome has been suggested to be a potential anti-malarial drug target, however toxicity of inhibitors has prevented validation of this enzyme in vivo. We report here a screen of a library of 670 analogs of the recently FDA approved inhibitor, carfilzomib, to identify compounds that selectively kill parasites. We identified one compound, PR3, that has significant parasite killing activity in vitro but dramatically reduced toxicity in host cells. We found that this parasite-specific toxicity is not due to selective targeting of the Plasmodium proteasome over the host proteasome, but instead is due to a lack of activity against one of the human proteasome subunits. Subsequently, we used PR3 to significantly reduce parasite load in P. berghei infected mice without host toxicity, thus validating the proteasome as a viable anti-malarial drug target. PMID:23142757

  12. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease.

    PubMed

    Jochmans, Dirk; Anders, Maria; Keuleers, Inge; Smeulders, Liesbeth; Kräusslich, Hans-Georg; Kraus, Günter; Müller, Barbara

    2010-10-15

    Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells. These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action.

  13. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease

    PubMed Central

    2010-01-01

    Background Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Results Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells. Conclusion These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action. PMID:20950436

  14. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.

    2008-02-15

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Ourmore » data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 {mu}g/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo.« less

  15. Powerful bacterial killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide.

    PubMed

    Brudzynski, Katrina; Abubaker, Kamal; Wang, Tony

    2012-01-01

    Exposure of bacterial cells to honey inhibits their growth and may cause cell death. Our previous studies showed a cause-effect relationship between hydroxyl radical generated from honey hydrogen peroxide and growth arrest. Here we explored the role of hydroxyl radicals as inducers of bacterial cells death. The bactericidal effect of ·OH on antibiotic-resistant clinical isolates of MRSA and VRE and standard bacterial strains of E. coli and B. subtiles was examined using a broth microdilution assay supplemented with 3'-(p-aminophenyl) fluorescein (APF) as the ·OH trap, followed by colony enumeration. Bactericidal activities of eight honeys (six varieties of buckwheat, blueberry and manuka honeys) were analyzed. The MBC/MIC ratio ≤4 and the killing curves indicated that honeys exhibited powerful, concentration-dependent bactericidal effect. The extent of killing depended on the ratio of honey concentration to bacterial load, indicating that honey dose was critical for its bactericidal efficacy. The killing rate and potency varied between honeys and ranged from over a 6-log(10) to 4-log(10) CFU/ml reduction of viable cells, equivalent to complete bacterial eradication. The maximal killing was associated with the extensive degradation of bacterial DNA. Honey concentration at which DNA degradation occurred correlated with cell death observed in the concentration-dependent cell-kill on agar plates. There was no quantitative relationship between the ·OH generation by honey and bactericidal effect. At the MBC, where there was no surviving cells and no DNA was visible on agarose gels, the ·OH levels were on average 2-3x lower than at Minimum Inhibitory Concentration (MICs) (p < 0.0001). Pre-treatment of honey with catalase, abolished the bactericidal effect. This raised possibilities that either the abrupt killing prevented accumulation of ·OH (dead cells did not generate ·OH) or that DNA degradation and killing is the actual footprint of ·OH action. In conclusion, honeys of buckwheat origin exhibited powerful, concentration-dependent bactericidal effect. The killing and DNA degradation showed a cause-effect relationship. Hydrogen peroxide was an active part of honey killing mechanism.

  16. Truncated Autoinducing Peptide Conjugates Selectively Recognize and Kill Staphylococcus aureus.

    PubMed

    Tsuchikama, Kyoji; Shimamoto, Yasuhiro; Anami, Yasuaki

    2017-06-09

    The accessory gene regulator (agr) of Staphylococcus aureus coordinates various pathogenic events and is recognized as a promising therapeutic target for virulence control. S. aureus utilizes autoinducing peptides (AIPs), cyclic-peptide signaling molecules, to mediate the agr system. Despite the high potency of synthetic AIP analogues in agr inhibition, the potential of AIP molecules as a delivery vehicle for antibacterial agents remains unexplored. Herein, we report that truncated AIP scaffolds can be fused with fluorophore and cytotoxic photosensitizer molecules without compromising their high agr inhibitory activity, binding affinity to the receptor AgrC, or cell specificity. Strikingly, a photosensitizer-AIP conjugate exhibited 16-fold greater efficacy in a S. aureus cell-killing assay than a nontargeting analogue. These findings highlight the potential of truncated AIP conjugates as useful chemical tools for in-depth biological studies and as effective anti-S. aureus agents.

  17. PDE5 Inhibitors Enhance Celecoxib Killing in Multiple Tumor Types

    PubMed Central

    BOOTH, LAURENCE; ROBERTS, JANE L.; CRUICKSHANKS, NICHOLA; TAVALLAI, SEYEDMEHRAD; WEBB, TIMOTHY; SAMUEL, PETER; CONLEY, ADAM; BINION, BRITTANY; YOUNG, HAROLD F.; POKLEPOVIC, ANDREW; SPIEGEL, SARAH; DENT, PAUL

    2015-01-01

    The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with a clinically relevant NSAID, celecoxib, to kill tumor cells. Celecoxib and PDE5 inhibitors interacted in a greater than additive fashion to kill multiple tumor cell types. Celecoxib and sildenafil killed ex vivo primary human glioma cells as well as their associated activated microglia. Knock down of PDE5 recapitulated the effects of PDE5 inhibitor treatment; the nitric oxide synthase inhibitor L-NAME suppressed drug combination toxicity. The effects of celecoxib were COX2 independent. Over-expression of c-FLIP-s or knock down of CD95/FADD significantly reduced killing by the drug combination. CD95 activation was dependent on nitric oxide and ceramide signaling. CD95 signaling activated the JNK pathway and inhibition of JNK suppressed cell killing. The drug combination inactivated mTOR and increased the levels of autophagy and knock down of Beclin1 or ATG5 strongly suppressed killing by the drug combination. The drug combination caused an ER stress response; knock down of IRE1α/XBP1 enhanced killing whereas knock down of eIF2α/ATF4/CHOP suppressed killing. Sildenafil and celecoxib treatment suppressed the growth of mammary tumors in vivo. Collectively our data demonstrate that clinically achievable concentrations of celecoxib and sildenafil have the potential to be a new therapeutic approach for cancer. PMID:25303541

  18. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture

    PubMed Central

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. PMID:27821713

  19. Salinomycin kills cancer stem cells by sequestering iron in lysosomes

    NASA Astrophysics Data System (ADS)

    Mai, Trang Thi; Hamaï, Ahmed; Hienzsch, Antje; Cañeque, Tatiana; Müller, Sebastian; Wicinski, Julien; Cabaud, Olivier; Leroy, Christine; David, Amandine; Acevedo, Verónica; Ryo, Akihide; Ginestier, Christophe; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle; Codogno, Patrice; Mehrpour, Maryam; Rodriguez, Raphaël

    2017-10-01

    Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.

  20. Effect of Escherichia coli and Lactobacillus rhamnosus on Macrophage Inflammatory Protein 3α, Tumor Necrosis Factor Alpha, and Transforming Growth Factor β Release by Polarized Rat Uterine Epithelial Cells in Culture

    PubMed Central

    Crane-Godreau, Mardi A.; Wira, Charles R.

    2004-01-01

    Entry of bacteria from the vagina into the uterus raises the question of uterine epithelial cell (UEC) signaling in response to the presence of bacteria. Our model system helps to define microbially elicited UEC basolateral cytokine release, important in regulating underlying stromal immune cell protection. UECs from adult rats were grown in cell culture inserts to establish a confluent polarized monolayer as was determined by transepithelial resistance (TER). Polarized epithelial cell cultures were treated apically with live or heat-killed Escherichia coli or Lactobacillus rhamnosus prior to collection of basolateral media after 24 h of incubation. Coculture of polarized UECs with live E. coli had no effect on epithelial cell TER. In response to exposure to live E. coli, epithelial cell basolateral release of macrophage inflammatory protein 3α (MIP3α) and tumor necrosis factor alpha (TNF-α) increased at a time when basolateral release of biologically active transforming growth factor β (TGF-β) decreased. Incubation of UECs with heat-killed E. coli resulted in an increased basolateral release of MIP3α and TNF-α, without affecting TER or TGF-β. In contrast to E. coli, live or heat-killed L. rhamnosus had no effect on TER or cytokine release. These studies indicate that polarized rat UECs respond to gram-negative E. coli by releasing the cytokines MIP3α and TNF-α, signals important to both the innate and adaptive immune systems. These findings suggest that UEC responses to bacteria are selective and important in initiating and regulating immune protection in the female reproductive tract. PMID:15039305

  1. LET and ion-species dependence for cell killing and mutation induction in normal human fibroblasts.

    PubMed

    Tsuruoka, Chizuru; Suzuki, Masao; Fujitaka, Kazunobu

    2003-10-01

    We have been studying LET and ion species dependence of RBE values in cell killing and mutation induction. Normal human skin fibroblasts were irradiated with heavy-ion beams such as carbon (290 Mev/u and 135 Mev/u), neon (230 Mev/u and 400 Mev/u), silicon (490 Mev/u) and iron (500 Mev/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS). Cell killing effect was detected as reproductive cell death using a colony formation assay. Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies. The RBE-LET curves of cell killing and mutation induction were different each ion beam. So, we plotted RBE for cell killing and mutation induction as function of Z*2/beta2 instead of LET. RBE-Z*2/beta2 curves of cell killing indicated that the discrepancy of RBE-LET curves was reconciled each ion species. But RBE-Z*2/beta2 curves of mutation induction didn't corresponded between carbon- and silicon-ion beams. These results suggested that different biological endpoints may be suitable for different physical parameter, which represent the track structure of energy deposition of ion beams.

  2. Investigating the Effect of Different Treatments with Lactic Acid Bacteria on the Fate of Listeria monocytogenes and Staphylococcus aureus Infection in Galleria mellonella Larvae

    PubMed Central

    Grounta, Athena; Harizanis, Paschalis; Mylonakis, Eleftherios; Nychas, George-John E.; Panagou, Efstathios Z.

    2016-01-01

    The use of Galleria mellonella as a model host to elucidate microbial pathogenesis and search for novel drugs and therapies has been well appreciated over the past years. However, the effect of microorganisms with functional appeal in the specific host remains scarce. The present study investigates the effect of treatment with selected lactic acid bacteria (LAB) with probiotic potential, as potential protective agents by using live or heat-killed cells at 6 and 24 h prior to infection with Listeria monocytogenes and Staphylococcus aureus or as potential therapeutic agents by using cell-free supernatants (CFS) after infection with the same pathogens. The employed LAB strains were Lactobacillus pentosus B281 and Lactobacillus plantarum B282 (isolated from table olive fermentations) along with Lactobacillus rhamnosus GG (inhabitant of human intestinal tract). Kaplan-Meier survival curves were plotted while the pathogen’s persistence in the larval hemolymph was determined by microbiological analysis. It was observed that the time (6 or 24 h) and type (live or heat-killed cells) of challenge period with LAB prior to infection greatly affected the survival of infected larvae. The highest decrease of L. monocytogenes population in the hemolymph was observed in groups challenged for 6 h with heat-killed cells by an average of 1.8 log units compared to non challenged larvae for strains B281 (p 0.0322), B282 (p 0.0325), and LGG (p 0.0356). In the case of S. aureus infection, the population of the pathogen decreased in the hemolymph by 1 log units at 8 h post infection in the groups challenged for 6 h with heat-killed cells of strains B281 (p 0.0161) and B282 (p 0.0096) and by 1.8 log units in groups challenged with heat-killed cells of LGG strain (p 0.0175). Further use of CFS of each LAB strain did not result in any significant prolonged survival but interestingly it resulted in pronounced decrease of L. monocytogenes in the hemolymph at 24 h and 48 h after infection by more than 1 log unit (p < 0.05) depending on the strain. The results of the present work support the broader use of G. mellonella larvae as a low cost in vivo tool for screening for probiotic properties. PMID:27618619

  3. NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing

    PubMed Central

    Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn

    2016-01-01

    Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610

  4. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed Central

    Gomes, Nelson G. M.; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-01-01

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms. PMID:26090846

  5. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    PubMed

    Gomes, Nelson G M; Lefranc, Florence; Kijjoa, Anake; Kiss, Robert

    2015-06-19

    Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  6. A Drosera-bioinspired hydrogel for catching and killing cancer cells

    PubMed Central

    Li, Shihui; Chen, Niancao; Gaddes, Erin R.; Zhang, Xiaolong; Dong, Cheng; Wang, Yong

    2015-01-01

    A variety of bioinspired materials have been successfully synthesized to mimic the sophisticated structures or functions of biological systems. However, it is still challenging to develop materials with multiple functions that can be performed synergistically or sequentially. The purpose of this work was to demonstrate a novel bioinspired hydrogel that can interact with cancer cells, functionally similar to Drosera in catching and killing prey. This hydrogel had two layers with the top one functionalized with oligonucleotide aptamers and the bottom one functionalized with double-stranded DNA. The results show that the top hydrogel layer was able to catch target cells with high efficiency and specificity, and that the bottom hydrogel layer could sequester doxorubicin (Dox) for sustained drug release. Importantly, the released Dox could kill 90% of the cells after 1-h residence of the cells on the hydrogel. After the cell release, this bifunctional hydrogel could be regenerated for continuous cell catching and killing. Therefore, the data presented in this study has successfully demonstrated the potential of developing a material system with the functions of attracting, catching and killing diseased cells (e.g., circulating tumor cells) or even invading microorganisms (e.g., bacteria). PMID:26396063

  7. Molecular Mechanism of MART-1+/A*0201+ Human Melanoma Resistance to Specific CTL-Killing Despite Functional Tumor-CTL Interaction

    PubMed Central

    Jazirehi, Ali R.; Baritaki, Stavroula; Koya, Richard C.; Bonavida, Benjamin; Economou, James S.

    2014-01-01

    Durable responses in metastatic melanoma patients remain generally difficult to achieve. Adoptive cell therapy with ex vivo engineered lymphocytes expressing high affinity T cell receptors TCRα/β for the melanoma antigen MART-127-35/HLA A*0201 (recognized by F5 cytotoxic T lymphocytes [F5 CTLs]) has been found to benefit certain patients. However, many other patients are inherently unresponsive and/or relapse for unknown reasons. To analyze the basis for the acquired-resistance and strategies to reverse it, we established F5 CTLresistant (R) human melanoma clones from relatively sensitive parental lines under selective F5 CTL pressure. Surface MART-127-35/HLA-A*0201 in these clones was unaltered and F5 CTLs recognized and interacted with them similarly to the parental lines. Nevertheless, the R clones were resistant to F5 CTL killing, exhibited hyperactivation of the NF-κB survival pathway, and overexpression of the anti-apoptotic genes Bcl-2, Bcl-xL and Mcl-1. Sensitivity to F5 CTL-killing could be increased by pharmacological inhibition of the NF-κB pathway, Bcl-2 family members, or the proteasome, the latter of which reduced NF-κB activity and diminished anti-apoptotic gene expression. Specific gene-silencing (by siRNA) confirmed the protective role of anti-apoptotic factors by reversing R clone resistance. Together, our findings suggest that long-term immunotherapy may impose a selection for the development of resistant cells that are unresponsive to highly avid and specific melanoma-reactive CTLs, despite maintaining expression of functional peptide:MHC complexes, due to activation of anti-apoptotic signaling pathways. Though unresponsive to CTL, our results argue that resistant cells can be re-sensitized to immunotherapy with co-administration of targeted inhibitors to anti-apoptotic survival pathways. PMID:21159666

  8. Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells

    DTIC Science & Technology

    2013-10-01

    prostate cancer cells in vitro . Evaluate CD59 expression in human prostate cancer microarrays. Aim 4: Evaluate toxicity and efficacy of the lead PAC5...fragment in vitro . Since PSA is the major chymotrypsin-like serine protease in the seminal plasma and prostatic fluid, we hypothesized that PSA was...that the evolution -related complement protein C5, but not C4, is a substrate of PSA as well. *Department of Pharmacology and Molecular Sciences, The

  9. Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells

    DTIC Science & Technology

    2012-10-01

    prostate cancer cells in vitro . Evaluate CD59 expression in human prostate cancer microarrays. Aim 4: Evaluate toxicity and efficacy of the lead...findings suggest PSA may also have immunoregulatory activity in the seminal plasma to aid in normal fertility that may have been co-opted by prostate...cleavage fragments have not been described. PSA can cleave C3 and generate the 37 kDa fragment in vitro . PSA is the major chymotrypsin-like serine

  10. Dynamic visualization the whole process of cytotoxic T lymphocytes killing the B16 tumor cells in vitro

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2016-03-01

    Cytotoxic T lymphocytes (CTLs) played a key role in the immune system to destroy the tumor cells. Although some mechanisms of CTLs killing the tumor cells are revealed already, the dynamic information of CTLs interaction with tumor cells are still not known very clearly. Here we used confocal microscopy to visualize the whole process of CTLs killing the tumor cells in vitro. The imaging data showed that CTLs destroyed the target tumor cells rapidly and efficiently. Several CTLs surrounded one or some tumor cells and the average time for CTLs destroying one tumor cell is just a few minutes in vitro. The study displayed the temporal events of CTLs interacting with tumor cells at the beginning and finally killing them and directly presented the efficient tumor cell cytotoxicity of the CTLs. The results helped us to deeply understand the mechanism of the CTLs destroying the tumor cells and to develop the cancer immunotherapy.

  11. Single-hit mechanism of tumour cell killing by radiation.

    PubMed

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells should be further investigated as a radiation-hypersensitive target that could be modulated for therapeutic advantage.

  12. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis.

    PubMed

    Huang, Xiumei; Dong, Ying; Bey, Erik A; Kilgore, Jessica A; Bair, Joseph S; Li, Long-Shan; Patel, Malina; Parkinson, Elizabeth I; Wang, Yiguang; Williams, Noelle S; Gao, Jinming; Hergenrother, Paul J; Boothman, David A

    2012-06-15

    Agents, such as β-lapachone, that target the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to induce programmed necrosis in solid tumors have shown great promise, but more potent tumor-selective compounds are needed. Here, we report that deoxynyboquinone kills a wide spectrum of cancer cells in an NQO1-dependent manner with greater potency than β-lapachone. Deoxynyboquinone lethality relies on NQO1-dependent futile redox cycling that consumes oxygen and generates extensive reactive oxygen species (ROS). Elevated ROS levels cause extensive DNA lesions, PARP1 hyperactivation, and severe NAD+ /ATP depletion that stimulate Ca2+ -dependent programmed necrosis, unique to this new class of NQO1 "bioactivated" drugs. Short-term exposure of NQO1+ cells to deoxynyboquinone was sufficient to trigger cell death, although genetically matched NQO1- cells were unaffected. Moreover, siRNA-mediated NQO1 or PARP1 knockdown spared NQO1+ cells from short-term lethality. Pretreatment of cells with BAPTA-AM (a cytosolic Ca2+ chelator) or catalase (enzymatic H2O2 scavenger) was sufficient to rescue deoxynyboquinone-induced lethality, as noted with β-lapachone. Investigations in vivo showed equivalent antitumor efficacy of deoxynyboquinone to β-lapachone, but at a 6-fold greater potency. PARP1 hyperactivation and dramatic ATP loss were noted in the tumor, but not in the associated normal lung tissue. Our findings offer preclinical proof-of-concept for deoxynyboquinone as a potent chemotherapeutic agent for treatment of a wide spectrum of therapeutically challenging solid tumors, such as pancreatic and lung cancers.

  13. The marine cytotoxin portimine is a potent and selective inducer of apoptosis.

    PubMed

    Cuddihy, Sarah L; Drake, Sarah; Harwood, D Tim; Selwood, Andrew I; McNabb, Paul S; Hampton, Mark B

    2016-12-01

    Portimine is a recently discovered member of a class of marine micro-algal toxins called cyclic imines. In dramatic contrast to related compounds in this toxin class, portimine has very low acute toxicity to mice but is highly cytotoxic to cultured cells. In this study we show that portimine kills human Jurkat T-lymphoma cells and mouse embryonic fibroblasts (MEFs), with LC 50 values of 6 and 2.5 nM respectively. Treated cells displayed rapid caspase activation and phosphatidylserine exposure, indicative of apoptotic cell death. Jurkat cells overexpressing the anti-apoptotic protein Bcl-2 or Bax/Bak knockout MEFs were completely protected from portimine. This protection was apparent even at high concentrations of portimine, with no evidence of necrotic cell death, indicating that portimine is a selective chemical inducer of apoptosis. Treatment of the Bcl-2-overexpressing cells with both portimine and the Bcl-2 inhibitor ABT-737 proved a powerful combination, causing >90 % death. We conclude that portimine is one of the most potent naturally derived inducers of apoptosis to be discovered, and it displays strong selectivity for the induction of apoptotic pathways.

  14. Multiple factors and processes involved in host cell killing by bacteriophage Mu: characterization and mapping.

    PubMed

    Waggoner, B T; Marrs, C F; Howe, M M; Pato, M L

    1984-07-15

    The regions of bacteriophage Mu involved in host cell killing were determined by infection of a lambda-immune host with 12 lambda pMu-transducing phages carrying different amounts of Mu DNA beginning at the left end. Infecting lambda pMu phages containing 5.0 (+/- 0.2) kb or less of the left end of Mu DNA did not kill the lambda-immune host, whereas lambda pMu containing 5.1 kb did kill, thus locating the right end of the kil gene between approximately 5.0 and 5.1 kb. For the Kil+ phages the extent of killing increased as the multiplicity of infection (m.o.i.) increased. In addition, killing was also affected by the presence of at least two other regions of Mu DNA: one, located between 5.1 and 5.8 kb, decreased the extent of killing; the other, located between 6.3 and 7.9 kb, greatly increased host cell killing. Killing was also assayed after lambda pMu infection of a lambda-immune host carrying a mini-Mu deleted for most of the B gene and the middle region of Mu DNA. Complementation of mini-Mu replication by infecting B+ lambda pMu phages resulted in killing of the lambda-immune, mini-Mu-containing host, regardless of the presence or absence of the Mu kil gene. The extent of host cell killing increased as the m.o.i. of the infecting lambda pMu increased, and was further enhanced by both the presence of the kil gene and the region located between 6.3 and 7.9 kb. These distinct processes of kil-mediated killing in the absence of replication and non-kil-mediated killing in the presence of replication were also observed after induction of replication-deficient and kil mutant prophages, respectively.

  15. Enhancing the Oncolytic Activity of CD133-Targeted Measles Virus: Receptor Extension or Chimerism with Vesicular Stomatitis Virus Are Most Effective

    PubMed Central

    Kleinlützum, Dina; Hanauer, Julia D. S.; Muik, Alexander; Hanschmann, Kay-Martin; Kays, Sarah-Katharina; Ayala-Breton, Camilo; Peng, Kah-Whye; Mühlebach, Michael D.; Abel, Tobias; Buchholz, Christian J.

    2017-01-01

    Therapy resistance and tumor recurrence are often linked to a small refractory and highly tumorigenic subpopulation of neoplastic cells, known as cancer stem cells (CSCs). A putative marker of CSCs is CD133 (prominin-1). We have previously described a CD133-targeted oncolytic measles virus (MV-CD133) as a promising approach to specifically eliminate CD133-positive tumor cells. Selectivity was introduced at the level of cell entry by an engineered MV hemagglutinin (H). The H protein was blinded for its native receptors and displayed a CD133-specific single-chain antibody fragment (scFv) as targeting domain. Interestingly, MV-CD133 was more active in killing CD133-positive tumors than the unmodified MV-NSe despite being highly selective for its target cells. To further enhance the antitumoral activity of MV-CD133, we here pursued arming technologies, receptor extension, and chimeras between MV-CD133 and vesicular stomatitis virus (VSV). All newly generated viruses including VSV-CD133 were highly selective in eliminating CD133-positive cells. MV-CD46/CD133 killed in addition CD133-negative cells being positive for the MV receptors. In an orthotopic glioma model, MV-CD46/CD133 and MVSCD-CD133, which encodes the super cytosine deaminase, were most effective. Notably, VSV-CD133 caused fatal neurotoxicity in this tumor model. Use of CD133 as receptor could be excluded as being causative. In a subcutaneous tumor model of hepatocellular cancer, VSV-CD133 revealed the most potent oncolytic activity and also significantly prolonged survival of the mice when injected intravenously. Compared to MV-CD133, VSV-CD133 infected a more than 104-fold larger area of the tumor within the same time period. Our data not only suggest new concepts and approaches toward enhancing the oncolytic activity of CD133-targeted oncolytic viruses but also raise awareness about careful toxicity testing of novel virus types. PMID:28695108

  16. Disrupting CCT-β : β-tubulin selectively kills CCT-β overexpressed cancer cells through MAPKs activation

    PubMed Central

    Liu, Yan-Jin; Kumar, Vathan; Lin, Yuan-Feng; Liang, Po-Huang

    2017-01-01

    We have previously demonstrated the ability of I-Trp to disrupt the protein–protein interaction of β-tubulin with chaperonin-containing TCP-1β (CCT-β). This caused more severe apoptosis in multidrug-resistant MES-SA/Dx5, compared to MES-SA, due to its higher CCT-β overexpression. In this study, we screened a panel of cancer cell lines, finding CCT-β overexpression in the triple-negative breast cancer cell line MDA-MB-231, colorectal cancer cell lines Colo205 and HCT116, and a gastric cancer cell line MKN-45. Thus, I-Trp killed these cancers with sub- to low-μM EC50, whereas it was non-toxic to MCF-10A. We then synthesized analogs of I-Trp and evaluated their cytotoxicity. Furthermore, apoptotic mechanism investigations revealed the activation of both protein ubiquitination/degradation and ER-associated protein degradation pathways. These pathways proceeded through activation of MAPKs at the onset of CCT-β : β-tubulin complex disruption. We thus establish an effective strategy to treat CCT-β overexpressed cancers by disrupting the CCT-β : β-tubulin complex. PMID:28906489

  17. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    NASA Astrophysics Data System (ADS)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  18. Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics

    PubMed Central

    Goler-Baron, Vicky; Assaraf, Yehuda G.

    2012-01-01

    Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing lysosomal photodestruction of normal breast epithelial cells. Thus, MDR modalities including ABCG2-dependent drug sequestration within EVs can be rationally converted to a pharmacologically lethal Trojan horse to selectively eradicate MDR cancer cells. PMID:22530032

  19. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma.

    PubMed

    Sun, Jingping; Law, Gabriela P; McKallip, Robert J

    2012-03-01

    In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44(lo)) or elevated (CD44(hi)) expression of CD44 are generated and that the CD44(hi) cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.

  20. Effects of Surotomycin on Clostridium difficile Viability and Toxin Production In Vitro

    PubMed Central

    Bouillaut, Laurent; McBride, Shonna; Schmidt, Diane J.; Suarez, José M.; Tzipori, Saul; Mascio, Carmela; Chesnel, Laurent

    2015-01-01

    The increasing incidence and severity of infection by Clostridium difficile have stimulated attempts to develop new antimicrobial therapies. We report here the relative abilities of two antibiotics (metronidazole and vancomycin) in current use for treating C. difficile infection and of a third antimicrobial, surotomycin, to kill C. difficile cells at various stages of development and to inhibit the production of the toxin proteins that are the major virulence factors. The results indicate that none of the drugs affects the viability of spores at 8× MIC or 80× MIC and that all of the drugs kill exponential-phase cells when provided at 8× MIC. In contrast, none of the drugs killed stationary-phase cells or inhibited toxin production when provided at 8× MIC and neither vancomycin nor metronidazole killed stationary-phase cells when provided at 80× MIC. Surotomycin, on the other hand, did kill stationary-phase cells when provided at 80× MIC but did so without inducing lysis. PMID:25941230

  1. Penile cancer

    MedlinePlus

    Cancer - penis; Squamous cell cancer - penis; Glansectomy; Partial penectomy ... cancer may include: Chemotherapy -- uses medicines to kill cancer cells Radiation -- uses high-powered x-rays to kill ...

  2. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  3. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  4. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  5. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  6. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  7. Winter wolf predation in a multiple ungulate prey system, Gates of the Arctic National Park, Alaska

    USGS Publications Warehouse

    Dale, Bruce W.; Adams, Layne G.; Bowyer, R. Terry; Carbyn, Ludwig N.; Fritts, Steven H.; Seip, Dale R.

    1995-01-01

    We investigated patterns of winter wolf predation, including prey selection, prey switching, kill rates, carcass utilization, and consumption rates for four wolf packs during three different study periods (March 1989, March 1990, and November 1990) in Gates of the Arctic National Park and Preserve, Alaska. Wolves killed predominantly caribou (165 caribou, seven moose, and five Dall sheep) even when moose and sheep were more abundant. Prey selection varied between study periods. More moose were killed in march 1989, a particularly deep snow year, and more sheep were killed in November 1990 than during other periods. Overall kill rates ranged from 0-8 days/ungulate killed (x̅ = 2.0, SD = 1.6) and did not vary between study periods.  Pack size and species killed explained significant variation in the length of time intervals between kills. Although caribou density varied nearly 40-fold between pack territories, it had little influence on predation characteristics except at low densities, when kill rates may have declined. Caribou distribution had marked effects on wolf predation rate.

  8. Allogeneic killing by earthworm effector cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-01-01

    We observed spontaneous allogeneic cytotoxicity by coelomocytes (Lumbricus terrestris) using three assays: trypan blue, lactate dehydrogenase release and chromium-51 release. Cell-cell contact may not be essential to effect cytotoxicity, since killing of allogeneic cells occurred in pooled allogeneic coelomic fluid derived from worms raised in two different geographic locales. We observed no significant spontaneous cytotoxicity against autogeneic target coelomocytes haptenated with 2,4,6-trinitrobenzene sulfonic acid; however, coelomocytes effected significant spontaneous cytotoxicity against haptenated allogeneic targets. These results support the view that earthworm coelomocytes can act as effector cells that can specifically kill nonself target cells.

  9. Lysosomal Signaling Enhances Mitochondria-Mediated Photodynamic Therapy in A431 Cancer Cells: Role of Iron

    PubMed Central

    Saggu, Shalini; Hung, Hsin-I; Quiogue, Geraldine; Lemasters, John J.; Nieminen, Anna-Liisa

    2015-01-01

    In photodynamic therapy (PDT), light activates a photosensitizer added to a tissue, resulting in singlet oxygen formation and cell death. The photosensitizer phthalocyanine 4 (Pc 4) localizes primarily to mitochondrial membranes in cancer cells, resulting in mitochondria-mediated cell death. The aim of this study was to determine how lysosomes contribute to PDT-induced cell killing by mitochondria-targeted photosensitizers such as Pc 4. We monitored cell killing of A431 cells after Pc 4-PDT in the presence and absence of bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes. Bafilomycin was not toxic by itself, but greatly enhanced Pc 4-PDT-induced cell killing. To investigate whether iron loading of lysosomes affects bafilomycin-induced killing, cells were incubated with ammonium ferric citrate (30 μm) for 30 h prior to PDT. Ammonium ferric citrate enhanced Pc 4 plus bafilomycin-induced cell killing without having toxicity by itself. Iron chelators (desferrioxamine and starch-desferrioxamine) and the inhibitor of the mitochondrial calcium (and ferrous iron) uniporter, Ru360, protected against Pc 4 plus bafilomycin toxicity. These results support the conclusion that chelatable iron stored in the lysosomes enhances the efficacy of bafilomycin-mediated PDT and that lysosomal disruption augments PDT with Pc 4. PMID:22220628

  10. Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions

    PubMed Central

    Mathews, Salima; Hans, Michael

    2013-01-01

    Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344

  11. Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer.

    PubMed

    Zhang, Lu; Theodoropoulos, Panayotis C; Eskiocak, Ugur; Wang, Wentian; Moon, Young-Ah; Posner, Bruce; Williams, Noelle S; Wright, Woodring E; Kim, Sang Bum; Nijhawan, Deepak; De Brabander, Jef K; Shay, Jerry W

    2016-10-19

    Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC), and more than 90% of those mutations generate stable truncated gene products. We describe a chemical screen using normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein. With this screen, we identified a small molecule, TASIN-1 (truncated APC selective inhibitor-1), that specifically kills cells with APC truncations but spares normal and cancer cells with wild-type APC. TASIN-1 exerts its cytotoxic effects through inhibition of cholesterol biosynthesis. In vivo administration of TASIN-1 inhibits tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity. TASIN-1 represents a potential therapeutic strategy for prevention and intervention in CRC with mutant APC. Copyright © 2016, American Association for the Advancement of Science.

  12. A novel factor H-Fc chimeric immunotherapeutic molecule against Neisseria gonorrhoeae

    PubMed Central

    Shaughnessy, Jutamas; Gulati, Sunita; Agarwal, Sarika; Unemo, Magnus; Ohnishi, Makoto; Su, Xia-Hong; Monks, Brian G.; Visintin, Alberto; Madico, Guillermo; Lewis, Lisa A.; Golenbock, Douglas T.; Reed, George W.; Rice, Peter A.; Ram, Sanjay

    2015-01-01

    Neisseria gonorrhoeae (Ng), the causative agent of the sexually transmitted infection gonorrhea, has developed resistance to almost every conventional antibiotic. There is an urgent need to develop novel therapies against gonorrhea. Many pathogens, including Ng, bind the complement inhibitor factor H (FH) to evade complement-dependent killing. Sialylation of gonococcal lipooligosaccharide, as occurs in vivo, augments binding of human FH through its domains 18-20 (FH18-20). We explored the utility of fusing FH18-20 with IgG Fc (FH18-20/Fc) to create a novel anti-infective immunotherapeutic. FH18-20 also binds to select host glycosaminoglycans to limit unwanted complement activation on host cells. To identify mutation(s) in FH18-20 that eliminated complement activation on host cells, yet maintained binding to Ng, we created four mutations in domains 19 or 20 described in atypical hemolytic uremic syndrome that prevented binding of mutated fH to human erythrocytes. One of the mutant proteins (D to G at position 1119 in domain 19; FHD1119G/Fc) facilitated complement-dependent killing of gonococci similar to unmodified FH18-20/Fc, but unlike FH18-20/Fc, did not lyse human erythrocytes. FHD1119G/Fc bound to all (100%) of 15 sialylated clinical Ng isolates tested (including three contemporary ceftriaxone-resistant strains), mediated complement-dependent killing of 10/15 (67%) strains and enhanced C3 deposition (≥10-fold above baseline levels) on each of the five isolates not directly killed by complement. FHD1119G/Fc facilitated opsonophagocytic killing of a serum-resistant strain by human polymorphonuclear neutrophils. FHD1119G/Fc administered intravaginally significantly reduced the duration and burden of gonococcal infection in the mouse vaginal colonization model. FHD1119G/Fc represents a novel immunotherapeutic against multidrug-resistant Ng. PMID:26773149

  13. Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy.

    PubMed

    Cheng, Xing; Wang, Weijia; Xu, Qi; Harper, James; Carroll, Danielle; Galinski, Mark S; Suzich, JoAnn; Jin, Hong

    2016-06-01

    Clinical development of a mesogenic strain of Newcastle disease virus (NDV) as an oncolytic agent for cancer therapy has been hampered by its select agent status due to its pathogenicity in avian species. Using reverse genetics, we have generated a lead candidate oncolytic NDV based on the mesogenic NDV-73T strain that is no longer classified as a select agent for clinical development. This recombinant NDV has a modification at the fusion protein (F) cleavage site to reduce the efficiency of F protein cleavage and an insertion of a 198-nucleotide sequence into the HN-L intergenic region, resulting in reduced viral gene expression and replication in avian cells but not in mammalian cells. In mammalian cells, except for viral polymerase (L) gene expression, viral gene expression is not negatively impacted or increased by the HN-L intergenic insertion. Furthermore, the virus can be engineered to express a foreign gene while still retaining the ability to grow to high titers in cell culture. The recombinant NDV selectively replicates in and kills tumor cells and is able to drive potent tumor growth inhibition following intratumoral or intravenous administration in a mouse tumor model. The candidate is well positioned for clinical development as an oncolytic virus. Avian paramyxovirus type 1, NDV, has been an attractive oncolytic agent for cancer virotherapy. However, this virus can cause epidemic disease in poultry, and concerns about the potential environmental and economic impact of an NDV outbreak have precluded its clinical development. Here we describe generation and characterization of a highly potent oncolytic NDV variant that is unlikely to cause Newcastle disease in its avian host, representing an essential step toward moving NDV forward as an oncolytic agent. Several attenuation mechanisms have been genetically engineered into the recombinant NDV that reduce chicken pathogenicity to a level that is acceptable worldwide without impacting viral production in cell culture. The selective tumor replication of this recombinant NDV, both in vitro and in vivo, along with efficient tumor cell killing makes it an attractive oncolytic virus candidate that may provide clinical benefit to patients. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Trichostatin A Sensitizes Hepatocellular Carcinoma Cells to Enhanced NK Cell-mediated Killing by Regulating Immune-related Genes.

    PubMed

    Shin, Sangsu; Kim, Miok; Lee, Seon-Jin; Park, Kang-Seo; Lee, Chang Hoon

    2017-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect.

    PubMed

    Hirayama, Ryoichi; Ito, Atsushi; Noguchi, Miho; Matsumoto, Yoshitaka; Uzawa, Akiko; Kobashi, Gen; Okayasu, Ryuichi; Furusawa, Yoshiya

    2013-11-01

    We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.

  16. Trichostatin A Sensitizes Hepatocellular Carcinoma Cells to Enhanced NK Cell-mediated Killing by Regulating Immune-related Genes

    PubMed Central

    SHIN, SANGSU; KIM, MIOK; LEE, SEON-JIN; PARK, KANG-SEO

    2017-01-01

    Background/Aim: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. Materials and Methods: A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. Results: TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. Conclusion: TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis. PMID:28871002

  17. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  18. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  19. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  20. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  1. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  2. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  3. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  4. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  5. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  6. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  7. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  8. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  9. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  10. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Panleukopenia Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  11. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Calicivirus Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed which...

  12. Studies on the kinetics of killing and the proposed mechanism of action of microemulsions against fungi.

    PubMed

    Al-Adham, Ibrahim S I; Ashour, Hana; Al-Kaissi, Elham; Khalil, Enam; Kierans, Martin; Collier, Phillip J

    2013-09-15

    Microemulsions are physically stable oil/water clear dispersions, spontaneously formed and thermodynamically stable. They are composed in most cases of water, oil, surfactant and cosurfactant. Microemulsions are stable, self-preserving antimicrobial agents in their own right. The observed levels of antimicrobial activity associated with microemulsions may be due to the direct effect of the microemulsions themselves on the bacterial cytoplasmic membrane. The aim of this work is to study the growth behaviour of different microbes in presence of certain prepared physically stable microemulsion formulae over extended periods of time. An experiment was designed to study the kinetics of killing of a microemulsion preparation (17.3% Tween-80, 8.5% n-pentanol, 5% isopropyl myristate and 69.2% sterile distilled water) against selected test microorganisms (Candida albicans, Aspergillus niger, Schizosaccharomyces pombe and Rhodotorula spp.). Secondly, an experiment was designed to study the effects of the microemulsion preparation on the cytoplasmic membrane structure and function of selected fungal species by observation of 260 nm component leakage. Finally, the effects of the microemulsion on the fungal membrane structure and function using S. pombe were studied using transmission electron microscopy. The results showed that the prepared microemulsions are stable, effective antimicrobial systems with effective killing rates against C. albicans, A. niger, S. pombe and Rhodotorula spp. The results indicate a proposed mechanism of action of significant anti-membrane activity, resulting in the gross disturbance and dysfunction of the cytoplasmic membrane structure which is followed by cell wall modifications, cytoplasmic coagulation, disruption of intracellular metabolism and cell death. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Proton suicide: general method for direct selection of sugar transport- and fermentation-defective mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkelman, J.W.; Clark, D.P.

    A positive selection procedure was devised for bacterial mutants incapable of producing acid from sugars by fermentation. The method relied on the production of elemental bromine from a mixture of bromide and bromate under acidic conditions. When wild-type Escherichia coli cells were plated on media containing a fermentable sugar and an equimolar mixture of bromide and bromate, most of the cells were killed but a variety of mutants unable to produce acid from the sugar survived. Among these mutants were those defective in (i) sugar uptake, (ii) the glycolytic pathway, and (iii) the excretion. There were also novel mutants withmore » some presumed regulatory defects affecting fermentation.« less

  14. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb EM; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; Zowalaty, Mohamed Ezzat El

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and −60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells. PMID:24204141

  15. Nontoxic, Hydrophilic Cationic Polymers-Identified as Class of Antimicrobial Polymers.

    PubMed

    Strassburg, Arne; Kracke, Frauke; Wenners, Julia; Jemeljanova, Anna; Kuepper, Jannis; Petersen, Hanne; Tiller, Joerg C

    2015-12-01

    Amphiphilic polycations are an alternative to biocides but also toxic to mammalian cells. Antimicrobially active hydrophilic polycations based on 1,4-dibromo-2-butene and tetramethyl-1,3-propanediamine named PBI are not hemotoxic for porcine red blood cells with a hemocytotoxicity (HC50) of more than 40,000 μg · mL(-1). They are quickly killing bacterial cells at their MIC (minimal inhibitory concentration). The highest found selectivity HC50 /MIC is more than 20,000 for S. epidermidis. Investigations on sequentially prepared PBIs with defined molecular weight Mn and tailored end groups revealed that there is a dependence of antimicrobial activity and selectivity on Mn and nature of the end groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Analyze the Impact of Habitat Patches on Wildlife Road-Kill

    NASA Astrophysics Data System (ADS)

    Seok, S.; Lee, J.

    2015-10-01

    The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-kill and to suggest that spatial location of habitat patches should be considered as one of the important factors when making policies for mitigating road-kill. Habitat patches were presumed from habitat variables and a suitability index on target-species that was chosen by literature review. The road-kill hotspot was calculated using Getis-Ord Gi*. After that, we performed a correlation analysis between Gi Z-score and the distance from habitat patches to the roads. As a result, there is a low negative correlation between two variables and it increases the Gi Z-score if the habitat patches and the roads become closer.

  17. IgM-mediated opsonization and cytotoxicity in the shark.

    PubMed

    McKinney, E C; Flajnik, M F

    1997-02-01

    Two types of cytotoxic reactions have been observed using cells from the nurse shark: spontaneous cytotoxicity mediated by cells of the macrophage lineage and antibody-dependent killing carried out by a different effector cell population. Previous data showed that removal of phagocytic cells using iron particles abolished macrophage-mediated killing, but not antibody-dependent reactions. The current study used single cell assays and showed that the effector of antibody-driven reactions was the neutrophil. Surprisingly, the mechanism of killing was shown to be phagocytosis mediated by both 7S and 19S immunoglobulin M (IgM). Reactions proceeded with as little as 0.01 microg of purified 19S or 7S IgM and were complete within 4-6 h. In contrast, purified immunoglobulin did not adsorb to macrophages and had no effect on target cell binding or cytotoxicity. Pretreatment of cells with cytochalasin D abolished the phagocytic reaction, but not spontaneous cytotoxicity. These data show that antibody-mediated killing results from opsonization and phagocytosis; the mechanism of macrophage killing is currently unknown. In addition, these data show that the shark neutrophil, not the macrophage lineage, carries a receptor for Fc mu.

  18. Convection shapes the trade-off between antibiotic efficacy and the selection for resistance in spatial gradients.

    PubMed

    Gralka, Matti; Fusco, Diana; Martis, Stephen; Hallatschek, Oskar

    2017-07-19

    Since penicillin was discovered about 90 years ago, we have become used to using drugs to eradicate unwanted pathogenic cells. However, using drugs to kill bacteria, viruses or cancer cells has the serious side effect of selecting for mutant types that survive the drug attack. A crucial question therefore is how one could eradicate as many cells as possible for a given acceptable risk of drug resistance evolution. We address this general question in a model of drug resistance evolution in spatial drug gradients, which recent experiments and theories have suggested as key drivers of drug resistance. Importantly, our model takes into account the influence of convection, resulting for instance from blood flow. Using stochastic simulations, we study the fates of individual resistance mutations and quantify the trade-off between the killing of wild-type cells and the rise of resistance mutations: shallow gradients and convection into the antibiotic region promote wild-type death, at the cost of increasing the establishment probability of resistance mutations. We can explain these observed trends by modeling the adaptation process as a branching random walk. Our analysis reveals that the trade-off between death and adaptation depends on the relative length scales of the spatial drug gradient and random dispersal, and the strength of convection. Our results show that convection can have a momentous effect on the rate of establishment of new mutations, and may heavily impact the efficiency of antibiotic treatment.

  19. Convection shapes the trade-off between antibiotic efficacy and the selection for resistance in spatial gradients

    NASA Astrophysics Data System (ADS)

    Gralka, Matti; Fusco, Diana; Martis, Stephen; Hallatschek, Oskar

    2017-08-01

    Since penicillin was discovered about 90 years ago, we have become used to using drugs to eradicate unwanted pathogenic cells. However, using drugs to kill bacteria, viruses or cancer cells has the serious side effect of selecting for mutant types that survive the drug attack. A crucial question therefore is how one could eradicate as many cells as possible for a given acceptable risk of drug resistance evolution. We address this general question in a model of drug resistance evolution in spatial drug gradients, which recent experiments and theories have suggested as key drivers of drug resistance. Importantly, our model takes into account the influence of convection, resulting for instance from blood flow. Using stochastic simulations, we study the fates of individual resistance mutations and quantify the trade-off between the killing of wild-type cells and the rise of resistance mutations: shallow gradients and convection into the antibiotic region promote wild-type death, at the cost of increasing the establishment probability of resistance mutations. We can explain these observed trends by modeling the adaptation process as a branching random walk. Our analysis reveals that the trade-off between death and adaptation depends on the relative length scales of the spatial drug gradient and random dispersal, and the strength of convection. Our results show that convection can have a momentous effect on the rate of establishment of new mutations, and may heavily impact the efficiency of antibiotic treatment.

  20. Novel non-trimethoxylphenyl piperlongumine derivatives selectively kill cancer cells.

    PubMed

    Zhang, Youjun; Ma, Hao; Wu, Yuelin; Wu, Zhongli; Yao, Zhengguang; Zhang, Wannian; Zhuang, Chunlin; Miao, Zhenyuan

    2017-06-01

    Piperlongumine (PL) is a natural alkaloid with broad biological activities. Twelve analogues have been designed and synthesized with non-substituted benzyl rings or heterocycles in this work. Most of the compounds showed better anticancer activities than the parent PL without apparent toxicity in normal cells. Elevation of cellular ROS levels was one of the main anticancer mechanisms of these compounds. Cell apoptosis and cell cycle arrest for the best compound ZM90 were evaluated and similar mechanism of action with PL was demonstrated. The SAR was also characterized, providing worthy directions for further optimization of PL compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics.

    PubMed

    Mannino, Mariella; Gomez-Roman, Natividad; Hochegger, Helfrid; Chalmers, Anthony J

    2014-07-01

    Glioma stem-cell-like cells are considered to be responsible for treatment resistance and tumour recurrence following chemo-radiation in glioblastoma patients, but specific targets by which to kill the cancer stem cell population remain elusive. A characteristic feature of stem cells is their ability to undergo both symmetric and asymmetric cell divisions. In this study we have analysed specific features of glioma stem cell mitosis. We found that glioma stem cells appear to be highly prone to undergo aberrant cell division and polyploidization. Moreover, we discovered a pronounced change in the dynamic of mitotic centrosome maturation in these cells. Accordingly, glioma stem cell survival appeared to be strongly dependent on Aurora A activity. Unlike differentiated cells, glioma stem cells responded to moderate Aurora A inhibition with spindle defects, polyploidization and a dramatic increase in cellular senescence, and were selectively sensitive to Aurora A and Plk1 inhibitor treatment. Our study proposes inhibition of centrosomal kinases as a novel strategy to selectively target glioma stem cells. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli

    PubMed Central

    Hong, Robert; Kang, Tae Y.; Michels, Corinne A.

    2012-01-01

    Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-reactive substances (TBARS) assay. Survival, TBARS levels, and DNA degradation were followed in cells exposed to copper alloy surfaces containing 60 to 99.90% copper or in medium containing CuSO4. In all cases, TBARS levels increased with copper exposure levels. Cells exposed to the highest copper content alloys, C11000 and C24000, exhibited novel characteristics. TBARS increased immediately at a very rapid rate but peaked at about 30 min. This peak was associated with the period of most rapid killing, loss in membrane integrity, and DNA degradation. DNA degradation is not the primary cause of copper-mediated surface killing. Cells exposed to the 60% copper alloy for 60 min had fully intact genomic DNA but no viable cells. In a fabR mutant strain with increased levels of unsaturated fatty acids, sensitivity to copper alloy surface-mediated killing increased, TBARS levels peaked earlier, and genomic DNA degradation occurred sooner than in the isogenic parental strain. Taken together, these results suggest that copper alloy surface-mediated killing of E. coli is triggered by nonenzymatic oxidative damage of membrane phospholipids that ultimately results in the loss of membrane integrity and cell death. PMID:22247141

  3. Maintenance of the HIV Reservoir Is Antagonized by Selective BCL2 Inhibition

    PubMed Central

    Cummins, Nathan W.; Sainski-Nguyen, Amy M.; Natesampillai, Sekar; Aboulnasr, Fatma; Kaufmann, Scott

    2017-01-01

    ABSTRACT Decay of the HIV reservoir is slowed over time in part by expansion of the pool of HIV-infected cells. This expansion reflects homeostatic proliferation of infected cells by interleukin-7 (IL-7) or antigenic stimulation, as well as new rounds of infection of susceptible target cells. As novel therapies are being developed to accelerate the decay of the latent HIV reservoir, it will be important to identify interventions that prevent expansion and/or repopulation of the latent HIV reservoir. Our previous studies showed that HIV protease cleaves the host protein procaspase 8 to generate Casp8p41, which can bind and activate Bak to induce apoptosis of infected cells. In circumstances where expression of the anti-apoptotic protein BCL2 is high, Casp8p41 instead binds BCL2, and cell death does not occur. This effect can be overcome by treating cells with the clinically approved BCL2 antagonist venetoclax, which prevents Casp8p41 from binding BCL2, thereby allowing Casp8p41 to bind Bak and kill the infected cell. Here we assess whether the events that maintain the HIV reservoir are also antagonized by venetoclax. Using the J-Lat 10.6 model of persistent infection, we demonstrate that proliferation and HIV expression are countered by the use of venetoclax, which causes preferential killing of the HIV-expressing cells. Similarly, during new rounds of infection of primary CD4 T cells, venetoclax causes selective killing of HIV-infected cells, resulting in decreased numbers of HIV DNA-containing cells. IMPORTANCE Cure of HIV infection requires an intervention that reduces the HIV reservoir size. A variety of approaches are being tested for their ability to impact HIV reservoir size. Even if successful, however, these approaches will need to be combined with additional complementary approaches that prevent replenishment or repopulation of the HIV reservoir. Our previous studies have shown that the FDA-approved BCL2 antagonist venetoclax has a beneficial effect on the HIV reservoir size following HIV reactivation. Here we demonstrate that venetoclax also has a beneficial effect on HIV reservoir size in a model of homeostatic proliferation of HIV as well as in acute spreading infection of HIV in primary CD4 T cells. These results suggest that venetoclax, either alone or in combination with other approaches to reducing HIV reservoir size, is a compound worthy of further study for its effects on HIV reservoir size. PMID:28331083

  4. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells.

    PubMed

    Ferreira-Teixeira, Margarida; Paiva-Oliveira, Daniela; Parada, Belmiro; Alves, Vera; Sousa, Vitor; Chijioke, Obinna; Münz, Christian; Reis, Flávio; Rodrigues-Santos, Paulo; Gomes, Célia

    2016-10-21

    High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete remission. Although pre-clinical, our results strongly suggest that an immunotherapeutic strategy using allogeneic activated NK cells from healthy donors is effective and should be exploited as a complementary therapeutic strategy in high-risk NMIBC patients to prevent tumor recurrence and progression.

  5. To kill, stay or flee: the effects of lions and landscape factors on habitat and kill site selection of cheetahs in South Africa.

    PubMed

    Rostro-García, Susana; Kamler, Jan F; Hunter, Luke T B

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species' habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa.

  6. To Kill, Stay or Flee: The Effects of Lions and Landscape Factors on Habitat and Kill Site Selection of Cheetahs in South Africa

    PubMed Central

    Rostro-García, Susana; Kamler, Jan F.; Hunter, Luke T. B.

    2015-01-01

    Understanding how animals utilize available space is important for their conservation, as it provides insight into the ecological needs of the species, including those related to habitat, prey and inter and intraspecific interactions. We used 28 months of radio telemetry data and information from 200 kill locations to assess habitat selection at the 3rd order (selection of habitats within home ranges) and 4th order (selection of kill sites within the habitats used) of a reintroduced population of cheetahs Acinonyx jubatus in Phinda Private Game Reserve, South Africa. Along with landscape characteristics, we investigated if lion Panthera leo presence affected habitat selection of cheetahs. Our results indicated that cheetah habitat selection was driven by a trade-off between resource acquisition and lion avoidance, and the balance of this trade-off varied with scale: more open habitats with high prey densities were positively selected within home ranges, whereas more closed habitats with low prey densities were positively selected for kill sites. We also showed that habitat selection, feeding ecology, and avoidance of lions differed depending on the sex and reproductive status of cheetahs. The results highlight the importance of scale when investigating a species’ habitat selection. We conclude that the adaptability of cheetahs, together with the habitat heterogeneity found within Phinda, explained their success in this small fenced reserve. The results provide information for the conservation and management of this threatened species, especially with regards to reintroduction efforts in South Africa. PMID:25693067

  7. A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue

    PubMed Central

    Garcia, Paulo A.; Davalos, Rafael V.; Miklavcic, Damijan

    2014-01-01

    Electroporation-based therapies are powerful biotechnological tools for enhancing the delivery of exogeneous agents or killing tissue with pulsed electric fields (PEFs). Electrochemotherapy (ECT) and gene therapy based on gene electrotransfer (EGT) both use reversible electroporation to deliver chemotherapeutics or plasmid DNA into cells, respectively. In both ECT and EGT, the goal is to permeabilize the cell membrane while maintaining high cell viability in order to facilitate drug or gene transport into the cell cytoplasm and induce a therapeutic response. Irreversible electroporation (IRE) results in cell kill due to exposure to PEFs without drugs and is under clinical evaluation for treating otherwise unresectable tumors. These PEF therapies rely mainly on the electric field distributions and do not require changes in tissue temperature for their effectiveness. However, in immediate vicinity of the electrodes the treatment may results in cell kill due to thermal damage because of the inhomogeneous electric field distribution and high current density during the electroporation-based therapies. Therefore, the main objective of this numerical study is to evaluate the influence of pulse number and electrical conductivity in the predicted cell kill zone due to irreversible electroporation and thermal damage. Specifically, we simulated a typical IRE protocol that employs ninety 100-µs PEFs. Our results confirm that it is possible to achieve predominant cell kill due to electroporation if the PEF parameters are chosen carefully. However, if either the pulse number and/or the tissue conductivity are too high, there is also potential to achieve cell kill due to thermal damage in the immediate vicinity of the electrodes. Therefore, it is critical for physicians to be mindful of placement of electrodes with respect to critical tissue structures and treatment parameters in order to maintain the non-thermal benefits of electroporation and prevent unnecessary damage to surrounding healthy tissue, critical vascular structures, and/or adjacent organs. PMID:25115970

  8. Evolution of coalitionary killing.

    PubMed

    Wrangham, R W

    1999-01-01

    Warfare has traditionally been considered unique to humans. It has, therefore, often been explained as deriving from features that are unique to humans, such as the possession of weapons or the adoption of a patriarchal ideology. Mounting evidence suggests, however, that coalitional killing of adults in neighboring groups also occurs regularly in other species, including wolves and chimpanzees. This implies that selection can favor components of intergroup aggression important to human warfare, including lethal raiding. Here I present the principal adaptive hypothesis for explaining the species distribution of intergroup coalitional killing. This is the "imbalance-of-power hypothesis," which suggests that coalitional killing is the expression of a drive for dominance over neighbors. Two conditions are proposed to be both necessary and sufficient to account for coalitional killing of neighbors: (1) a state of intergroup hostility; (2) sufficient imbalances of power between parties that one party can attack the other with impunity. Under these conditions, it is suggested, selection favors the tendency to hunt and kill rivals when the costs are sufficiently low. The imbalance-of-power hypothesis has been criticized on a variety of empirical and theoretical grounds which are discussed. To be further tested, studies of the proximate determinants of aggression are needed. However, current evidence supports the hypothesis that selection has favored a hunt-and-kill propensity in chimpanzees and humans, and that coalitional killing has a long history in the evolution of both species.

  9. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells.

    PubMed

    Lizcano, Leandro J; Siles, Maite; Trepiana, Jenifer; Hernández, M Luisa; Navarro, Rosaura; Ruiz-Larrea, M Begoña; Ruiz-Sanz, José Ignacio

    2014-12-30

    There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations < 75 µg/mL) or even protected cells from basal death (P. putumayoense) in primary cultures of rat hepatocytes. In every case, cytotoxicity was accompanied by an intracellular accumulation of reactive oxygen species (ROS). These results provide evidence for the anticancer activities of the studied plants on specific cell lines and suggest that cell killing could be mediated by ROS, thus involving mechanisms independent of the plants free radical scavenging activities. Results also support the use of these extracts of the Vismia and Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma.

  10. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  11. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  12. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  13. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  14. 9 CFR 113.215 - Bovine Virus Diarrhea Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bovine Virus Diarrhea Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.215 Bovine Virus Diarrhea Vaccine, Killed Virus. Bovine Virus Diarrhea Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed virus...

  15. Action of caffeine on x-irradiated HeLa cells. III. enhancement of x-ray-induced killing during G/sub 2/ arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, P.M.; Bose, S.K.; Jones, R.W.

    1978-11-01

    The ability of caffeine to enhance the expression of potentially lethal x-ray damage in HeLa S3 cells was examined as a function of the age of the cells in the generation cycle. Synchronous populations were irradiated at different times after mitotic collection and treated for various intervals with 1 mM caffeiene, which causes negligible killing of unirradiated cells. The response was thereby determined as a function of cell age at both the time of irradiation and the time of exposure to caffeine. The amount of cell killing depends strongly on when in the cycle caffeine is present and only weaklymore » on when the cells are irradiated. If cells are irradiated in early G/sub 1/, caffeine treatment enhances killing for 2 to 3 hr. No additional enhancement is observed until 16 to 17 hr postcollection, corresponding to G/sub 2/; here they enter a second period of much greater sensitivity. Similarly, fluorodeoxyuridine resynchronized cells irradiated during S and treated with caffeine suffer no enhanced killing until they pass into this sensitive phase in G/sub 2/, approximately 7 hr after release from the fluorodeoxyuridine block. The sensitive period appears to coincide with G/sub 2/ arrest. The rate and extent of killing during this period are dependent upon the x-ray dose and the caffeine concentration. In the absence of caffeine, cells irradiated in G/sub 1/ lose sensitivity to caffeine in about 9 hr; they do so faster in G/sub 2/. It is concluded that the potentially lethal x-ray damage expressed on treatment with caffeine is retained for many hours in the presence of caffeine and is maximally manifested by G/sub 2/-arrested cells.« less

  16. Hypofractionation Results in Reduced Tumor Cell Kill Compared to Conventional Fractionation for Tumors With Regions of Hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, David J., E-mail: david.j.carlson@yale.ed; Yale University School of Medicine, Department of Therapeutic Radiology, New Haven, CT; Keall, Paul J.

    2011-03-15

    Purpose: Tumor hypoxia has been observed in many human cancers and is associated with treatment failure in radiation therapy. The purpose of this study is to quantify the effect of different radiation fractionation schemes on tumor cell killing, assuming a realistic distribution of tumor oxygenation. Methods and Materials: A probability density function for the partial pressure of oxygen in a tumor cell population is quantified as a function of radial distance from the capillary wall. Corresponding hypoxia reduction factors for cell killing are determined. The surviving fraction of a tumor consisting of maximally resistant cells, cells at intermediate levels ofmore » hypoxia, and normoxic cells is calculated as a function of dose per fraction for an equivalent tumor biological effective dose under normoxic conditions. Results: Increasing hypoxia as a function of distance from blood vessels results in a decrease in tumor cell killing for a typical radiotherapy fractionation scheme by a factor of 10{sup 5} over a distance of 130 {mu}m. For head-and-neck cancer and prostate cancer, the fraction of tumor clonogens killed over a full treatment course decreases by up to a factor of {approx}10{sup 3} as the dose per fraction is increased from 2 to 24 Gy and from 2 to 18 Gy, respectively. Conclusions: Hypofractionation of a radiotherapy regimen can result in a significant decrease in tumor cell killing compared to standard fractionation as a result of tumor hypoxia. There is a potential for large errors when calculating alternate fractionations using formalisms that do not account for tumor hypoxia.« less

  17. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells.

    PubMed

    Dos Santos, Ancély F; Terra, Letícia F; Wailemann, Rosangela A M; Oliveira, Talita C; Gomes, Vinícius de Morais; Mineiro, Marcela Franco; Meotti, Flávia Carla; Bruni-Cardoso, Alexandre; Baptista, Maurício S; Labriola, Leticia

    2017-03-15

    Breast cancer is the main cause of mortality among women. The disease presents high recurrence mainly due to incomplete efficacy of primary treatment in killing all cancer cells. Photodynamic therapy (PDT), an approach that causes tissue destruction by visible light in the presence of a photosensitizer (Ps) and oxygen, appears as a promising alternative therapy that could be used adjunct to chemotherapy and surgery for curing cancer. However, the efficacy of PDT to treat breast tumours as well as the molecular mechanisms that lead to cell death remain unclear. In this study, we assessed the cell-killing potential of PDT using methylene blue (MB-PDT) in three breast epithelial cell lines that represent non-malignant conditions and different molecular subtypes of breast tumours. Cells were incubated in the absence or presence of MB and irradiated or not at 640 nm with 4.5 J/cm 2 . We used a combination of imaging and biochemistry approaches to assess the involvement of classical autophagic and apoptotic pathways in mediating the cell-deletion induced by MB-PDT. The role of these pathways was investigated using specific inhibitors, activators and gene silencing. We observed that MB-PDT differentially induces massive cell death of tumour cells. Non-malignant cells were significantly more resistant to the therapy compared to malignant cells. Morphological and biochemical analysis of dying cells pointed to alternative mechanisms rather than classical apoptosis. MB-PDT-induced autophagy modulated cell viability depending on the cell model used. However, impairment of one of these pathways did not prevent the fatal destination of MB-PDT treated cells. Additionally, when using a physiological 3D culture model that recapitulates relevant features of normal and tumorous breast tissue morphology, we found that MB-PDT differential action in killing tumour cells was even higher than what was detected in 2D cultures. Finally, our observations underscore the potential of MB-PDT as a highly efficient strategy which could use as a powerful adjunct therapy to surgery of breast tumours, and possibly other types of tumours, to safely increase the eradication rate of microscopic residual disease and thus minimizing the chance of both local and metastatic recurrence.

  18. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.

    PubMed

    Swift, Brenna E; Williams, Brent A; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-07-01

    Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89-99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma tumor burden in a xenograft mouse model was reduced by intravenous NK-92 cell therapy. Since multiple myeloma colony frequency correlates with survival, our observations have important clinical implications and suggest that clinical studies of NK cell lines to treat MM are warranted.

  19. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture.

    PubMed

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Rational Design of Evolutionarily Stable Microbial Kill Switches.

    PubMed

    Stirling, Finn; Bitzan, Lisa; O'Keefe, Samuel; Redfield, Elizabeth; Oliver, John W K; Way, Jeffrey; Silver, Pamela A

    2017-11-16

    The evolutionary stability of synthetic genetic circuits is key to both the understanding and application of genetic control elements. One useful but challenging situation is a switch between life and death depending on environment. Here are presented "essentializer" and "cryodeath" circuits, which act as kill switches in Escherichia coli. The essentializer element induces cell death upon the loss of a bi-stable cI/Cro memory switch. Cryodeath makes use of a cold-inducible promoter to express a toxin. We employ rational design and a toxin/antitoxin titering approach to produce and screen a small library of potential constructs, in order to select for constructs that are evolutionarily stable. Both kill switches were shown to maintain functionality in vitro for at least 140 generations. Additionally, cryodeath was shown to control the growth environment of a population, with an escape frequency of less than 1 in 10 5 after 10 days of growth in the mammalian gut. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Tumour volume response, initial cell kill and cellular repopulation in B16 melanoma treated with cyclophosphamide and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea.

    PubMed Central

    Stephens, T. C.; Peacock, J. H.

    1977-01-01

    The relationship between tumour volume response and cell kill in B16 melanoma following treatment in vivo with cyclophosphamide (CY) and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) was investigated. Tumour volume response, expressed as growth delay, was estimated from measurements of tumour dimensions. Depression of in vitro colony-forming ability of cells from treated tumours was used as the measure of tumour cell kill. The relationship between these parameters was clearly different for the two agents studied. CY produced more growth delay (7.5 days) per decade of tumour cell kill than CCNU (2 to 3.5 days). The possibility that this was due to a technical artefact was rejected in favour of an alternative explanation that different rates of cellular repopulation in tumours treated with CY and CCNU might be responsible. Cellular repopulation was measured directly, by performing cell-survival assays at various times after treatment with doses of CY and CCNU which produced about 3 decades of cell kill. The rate of repopulation by clonogenic cells was much slower after treatment with CY than with CCNU, and this appears to account for the longer duration of the growth delay obtained with CY. PMID:921888

  2. Flow cytometric analysis of cell killing by the jumper ant venom peptide pilosulin 1.

    PubMed

    King, M A; Wu, Q X; Donovan, G R; Baldo, B A

    1998-08-01

    Pilosulin 1 is a synthetic 56-amino acid residue polypeptide that corresponds to the largest allergenic polypeptide found in the venom of the jumper ant Myrmecia pilosula. Initial experiments showed that pilosulin 1 lysed erythrocytes and killed proliferating B cells. Herein, we describe how flow cytometry was used to investigate the cytotoxicity of the peptide for human white blood cells. Cells were labeled with fluorochrome-conjugated antibodies, incubated with the peptide and 7-aminoactinomycin D (7-AAD), and then analyzed. The effects of varying the peptide concentration, serum concentration, incubation time, and incubation temperature were measured, and the cytotoxicity of pilosulin 1 was compared with that of the bee venom peptide melittin. The antibodies and the 7-AAD enabled the identification of cell subpopulations and dead cells, respectively. It was possible, using the appropriate mix of antibodies and four-color analysis, to monitor the killing of three or more cell subpopulations simultaneously. We found that 1) pilosulin 1 killed cells within minutes, with kinetics similar to those of melittin; 2) pilosulin 1 was a slightly more potent cytotoxic agent than melittin; 3) both pilosulin 1 and melittin were more potent against mononuclear leukocytes than against granulocytes; and 4) serum inhibited killing by either peptide.

  3. Irreversible EGFR Inhibitor EKB-569 Targets Low-LET γ-Radiation-Triggered Rel Orchestration and Potentiates Cell Death in Squamous Cell Carcinoma

    PubMed Central

    Aravindan, Natarajan; Thomas, Charles R.; Aravindan, Sheeja; Mohan, Aswathi S.; Veeraraghavan, Jamunarani; Natarajan, Mohan

    2011-01-01

    EKB-569 (Pelitinib), an irreversible EGFR tyrosine kinase inhibitor has shown potential therapeutic efficiency in solid tumors. However, cell-killing potential in combination with radiotherapy and its underlying molecular orchestration remain to be explored. The objective of this study was to determine the effect of EKB-569 on ionizing radiation (IR)-associated NFκB-dependent cell death. SCC-4 and SCC-9 cells exposed to IR (2Gy) with and without EKB-569 treatment were analyzed for transactivation of 88 NFκB pathway molecules, NFκB DNA-binding activity, translation of the NFκB downstream mediators, Birc1, 2 and 5, cell viability, metabolic activity and apoptosis. Selective targeting of IR-induced NFκB by EKB-569 and its influence on cell-fate were assessed by overexpressing (p50/p65) and silencing (ΔIκBα) NFκB. QPCR profiling after IR exposure revealed a significant induction of 74 NFκB signal transduction molecules. Of those, 72 were suppressed with EKB-569. EMSA revealed a dose dependent inhibition of NFκB by EKB-569. More importantly, EKB-569 inhibited IR-induced NFκB in a dose-dependent manner, and this inhibition was sustained up to at least 72 h. Immunoblotting revealed a significant suppression of IR-induced Birc1, 2 and 5 by EKB-569. We observed a dose-dependent inhibition of cell viability, metabolic activity and apoptosis with EKB-569. EKB-569 significantly enhanced IR-induced cell death and apoptosis. Blocking NFκB improved IR-induced cell death. Conversely, NFκB overexpression negates EKB-569 -induced cell-killing. Together, these pre-clinical data suggest that EKB-569 is a radiosensitizer of squamous cell carcinoma and may mechanistically involve selective targeting of IR-induced NFκB-dependent survival signaling. Further pre-clinical in-vivo studies are warranted. PMID:22242139

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seong-Su, E-mail: seong-su-han@uiowa.edu; Han, Sangwoo; Kamberos, Natalie L.

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL onmore » the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.« less

  5. Destruction of solid tumors by immune cells

    NASA Astrophysics Data System (ADS)

    López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2017-03-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. In order to investigate the fractional cell kill that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic CD8+ T cells (CTLs), we present several in silico simulations and mathematical analyses. When the CTLs eradicate efficiently the tumor cells, the models predict a correlation between the morphology of the tumors and the rate at which they are lysed. However, when the effectiveness of the immune cells is decreased, the mathematical function fails to reproduce the process of lysis. This limit is thoroughly discussed and a new fractional cell kill is proposed.

  6. Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions.

    PubMed

    Wang, Tieshan; Zheng, Xinyan; Wang, Xiaoyu; Lu, Xia; Shen, Yanghao

    2017-02-01

    Uranium adsorption mechanisms of live and heat-killed Saccharomyces cerevisiae in different pH values and biomass concentrations were studied under environmentally relevant conditions. Compared with live cells, the adsorption capacity of heat-killed cells is almost one order of magnitude higher in low biomass concentration and highly acidic pH conditions. To explore the mesoscopic surface interactions between uranium and cells, the characteristic of uranium deposition was investigated by SEM-EDX, XPS and FTIR. Biosorption process of live cells was considered to be metabolism-dependent. Under stimulation by uranyl ions, live cells could gradually release phosphorus and reduce uranium from U(VI) to U(IV) to alleviate uranium toxicity. The uranyl-phosphate complexes were formed in scale-like shapes on cell surface. The metabolic detoxification mechanisms such as reduction and "self-protection" are of significance to the migration of radionuclides. In the metabolism-independent biosorption process of heat-killed cells: the cells cytomembrane was damaged by autoclaving which led to the free diffusion of phosphorous from intracellular, and the rough surface and nano-holes indicated that the dead cells provided larger contact area to precipitate U(VI) as spherical nano-particles. The high biosorption capacity of heat-killed cells makes it become a suitable biological adsorbent for uranium removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A mathematical model of antibody-dependent cellular cytotoxicity (ADCC).

    PubMed

    Hoffman, F; Gavaghan, D; Osborne, J; Barrett, I P; You, T; Ghadially, H; Sainson, R; Wilkinson, R W; Byrne, H M

    2018-01-07

    Immunotherapies exploit the immune system to target and kill cancer cells, while sparing healthy tissue. Antibody therapies, an important class of immunotherapies, involve the binding to specific antigens on the surface of the tumour cells of antibodies that activate natural killer (NK) cells to kill the tumour cells. Preclinical assessment of molecules that may cause antibody-dependent cellular cytotoxicity (ADCC) involves co-culturing cancer cells, NK cells and antibody in vitro for several hours and measuring subsequent levels of tumour cell lysis. Here we develop a mathematical model of such an in vitro ADCC assay, formulated as a system of time-dependent ordinary differential equations and in which NK cells kill cancer cells at a rate which depends on the amount of antibody bound to each cancer cell. Numerical simulations generated using experimentally-based parameter estimates reveal that the system evolves on two timescales: a fast timescale on which antibodies bind to receptors on the surface of the tumour cells, and NK cells form complexes with the cancer cells, and a longer time-scale on which the NK cells kill the cancer cells. We construct approximate model solutions on each timescale, and show that they are in good agreement with numerical simulations of the full system. Our results show how the processes involved in ADCC change as the initial concentration of antibody and NK-cancer cell ratio are varied. We use these results to explain what information about the tumour cell kill rate can be extracted from the cytotoxicity assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bull heading to kill live gas wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudeman, P.; Avest, D. ter; Grodal, E.O.

    1994-12-31

    To kill a live closed-in gas well by bull heading down the tubing, the selected pump rate should be high enough to ensure efficient displacement of the gas into the formation (i.e., to avoid the kill fluid bypassing the gas). On the other hand, the pressures that develop during bull heading at high rate must not exceed wellhead pressure rating, tubing or casing burst pressures or the formation breakdown gradient, since this will lead, at best, to a very inefficient kill job. Given these constraints, the optimum kill rate, requited hydraulic horsepower, density and type of kill fluids have tomore » be selected. For this purpose a numerical simulator has been developed, which predicts the sequence of events during bull heading. Pressures and flow rates in the well during the kill job are calculated, taking to account slip between the gas and kill fluid, hydrostatic and friction pressure drop, wellbore gas compression and leak-off to the formation. Comparison with the results of a dedicated field test demonstrates that these parameters can be estimated accurately. Example calculations will be presented to show how the simulator can be used to identify an optimum kill scenario.« less

  9. Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins.

    PubMed

    García-Bayona, Leonor; Guo, Monica S; Laub, Michael T

    2017-03-21

    Most bacteria are in fierce competition with other species for limited nutrients. Some bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to planktonic cells in aqueous environments. Here, we identify an atypical two-protein bacteriocin in the α-proteobacterium Caulobacter crescentus that is retained on the surface of producer cells where it mediates cell contact-dependent killing. The bacteriocin-like proteins CdzC and CdzD harbor glycine-zipper motifs, often found in amyloids, and CdzC forms large, insoluble aggregates on the surface of producer cells. These aggregates can drive contact-dependent killing of other organisms, or Caulobacter cells not producing the CdzI immunity protein. The Cdz system uses a type I secretion system and is unrelated to previously described contact-dependent inhibition systems. However, Cdz-like systems are found in many bacteria, suggesting that this form of contact-dependent inhibition is common.

  10. Cytotoxicity of ethanolic extracts of Artemisia annua to Molt-4 human leukemia cells

    USDA-ARS?s Scientific Manuscript database

    Cancer is the second cause of death in the United States, and current treatment is expensive and kills also healthy cells. Affordable alternatives that kill only cancer cells are needed. Artemisinin, extracted from the Artemisia annua, has potent anticancer activity and low toxicity to normal cell...

  11. Liposomes loaded with bioactive lipids enhance antibacterial innate immunity irrespective of drug resistance.

    PubMed

    Poerio, Noemi; Bugli, Francesca; Taus, Francesco; Santucci, Marilina B; Rodolfo, Carlo; Cecconi, Francesco; Torelli, Riccardo; Varone, Francesco; Inchingolo, Riccardo; Majo, Fabio; Lucidi, Vincenzina; Mariotti, Sabrina; Nisini, Roberto; Sanguinetti, Maurizio; Fraziano, Maurizio

    2017-03-27

    Phagocytosis is a key mechanism of innate immunity, and promotion of phagosome maturation may represent a therapeutic target to enhance antibacterial host response. Phagosome maturation is favored by the timely and coordinated intervention of lipids and may be altered in infections. Here we used apoptotic body-like liposomes (ABL) to selectively deliver bioactive lipids to innate cells, and then tested their function in models of pathogen-inhibited and host-impaired phagosome maturation. Stimulation of macrophages with ABLs carrying phosphatidic acid (PA), phosphatidylinositol 3-phosphate (PI3P) or PI5P increased intracellular killing of BCG, by inducing phagosome acidification and ROS generation. Moreover, ABLs carrying PA or PI5P enhanced ROS-mediated intracellular killing of Pseudomonas aeruginosa, in macrophages expressing a pharmacologically-inhibited or a naturally-mutated cystic fibrosis transmembrane conductance regulator. Finally, we show that bronchoalveolar lavage cells from patients with drug-resistant pulmonary infections increased significantly their capacity to kill in vivo acquired bacterial pathogens when ex vivo stimulated with PA- or PI5P-loaded ABLs. Altogether, these results provide the proof of concept of the efficacy of bioactive lipids delivered by ABL to enhance phagosome maturation dependent antimicrobial response, as an additional host-directed strategy aimed at the control of chronic, recurrent or drug-resistant infections.

  12. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells

    NASA Astrophysics Data System (ADS)

    Aires, Antonio; Ocampo, Sandra M.; Simões, Bruno M.; Josefa Rodríguez, María; Cadenas, Jael F.; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B.; Carrascosa, José L.; Cortajarena, Aitziber L.

    2016-02-01

    Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.

  13. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  14. Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells.

    PubMed Central

    Gillies, S D; Reilly, E B; Lo, K M; Reisfeld, R A

    1992-01-01

    A genetically engineered fusion protein consisting of a chimeric anti-ganglioside GD2 antibody (ch14.18) and interleukin 2 (IL2) was tested for its ability to enhance the killing of autologous GD2-expressing melanoma target cells by a tumor-infiltrating lymphocyte line (660 TIL). The fusion of IL2 to the carboxyl terminus of the immunoglobulin heavy chain did not reduce IL2 activity as measured in a standard proliferation assay using either mouse or human T-cell lines. Antigen-binding activity was greater than that of the native chimeric antibody. The ability of resting 660 TIL cells to kill their autologous GD2-positive target cells was enhanced if the target cells were first coated with the fusion protein. This stimulation of killing was greater than that of uncoated cells in the presence of equivalent or higher concentrations of free IL2. Such antibody-cytokine fusion proteins may prove useful in targeting the biological effect of IL2 and other cytokines to tumor cells and in this way stimulate their immune destruction. Images PMID:1741398

  15. Killing effect of TNF-mediated by conditionally replicating adenovirus on esophageal cancer and lung cancer cell lines.

    PubMed

    Jiang, Yue-Quan; Zhang, Zhi; Cai, Hua-Rong; Zhou, Hong

    2015-01-01

    The killing effect of TNF mediated by conditionally replicating adenovirus SG502 on human cancer cell lines was assessed by in vivo and in vitro experiments. The recombinant adenovirus SG502-TNF was used to infect human lung cancer cell line A549 and human esophageal cancer cell line TE-1. The expression of the exogenous gene and its inhibitory effect on the tumor cell lines were thus detected. Tumor transplantation experiment was performed in mice with the purpose of assessing the inhibitory effect of the adenovirus on tumor cells and tumor formation. The targeting of the adenovirus and the mechanism of tumor inhibition were discussed by in vivo imaging technology, HE staining and TUNEL assay. Recombinant adenovirus SG502-TNF targeted the tumor cells specifically with stable expression of TNF, which produced a killing effect on tumor cells by regulating the apoptotic signaling pathway. Recombinant adenovirus SG502-TNF possessed significant killing effect on TE-1 cells either in vivo or in vitro. This finding demonstrated the potential clinical application of adenovirus SG502.

  16. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism

    PubMed Central

    van Dongen, Stijn; Haluck-Kangas, Ashley; Sarshad, Aishe A; Bartom, Elizabeth T; Kim, Kwang-Youn A; Scholtens, Denise M; Hafner, Markus; Zhao, Jonathan C; Murmann, Andrea E

    2017-01-01

    Over 80% of multiple-tested siRNAs and shRNAs targeting CD95 or CD95 ligand (CD95L) induce a form of cell death characterized by simultaneous activation of multiple cell death pathways preferentially killing transformed and cancer stem cells. We now show these si/shRNAs kill cancer cells through canonical RNAi by targeting the 3’UTR of critical survival genes in a unique form of off-target effect we call DISE (death induced by survival gene elimination). Drosha and Dicer-deficient cells, devoid of most miRNAs, are hypersensitive to DISE, suggesting cellular miRNAs protect cells from this form of cell death. By testing 4666 shRNAs derived from the CD95 and CD95L mRNA sequences and an unrelated control gene, Venus, we have identified many toxic sequences - most of them located in the open reading frame of CD95L. We propose that specific toxic RNAi-active sequences present in the genome can kill cancer cells. PMID:29063830

  17. Granzyme B; the chalk-mark of a cytotoxic lymphocyte

    PubMed Central

    Waterhouse, Nigel J; Sedelies, Karin A; Clarke, Chris JP

    2004-01-01

    During cytotoxic lymphocyte (CL) mediated killing of target cells, granzyme B is released from the CL into the immune synapse. Recent studies have found that ELISPOT-detection of granzyme B correlated well with conventional assays for CL mediated killing. In this way, the released granzyme B can be used to mark the spot where a target cell was murdered. We discuss the benefits and potential limitations of using this assay to measure CL mediated killing of target cells. PMID:15500699

  18. Effect of a streptococcal preparation (OK432) on natural killer activity of tumour-associated lymphoid cells in human ovarian carcinoma and on lysis of fresh ovarian tumour cells.

    PubMed Central

    Colotta, F.; Rambaldi, A.; Colombo, N.; Tabacchi, L.; Introna, M.; Mantovani, A.

    1983-01-01

    The streptococcal preparation OK432 was studied for its effects on natural killer (NK) activity of peripheral blood lymphocytes (PBL) from normal donors and from ovarian cancer patients, and of tumour-associated lymphocytes (TAL) from peritoneal effusions. OK432 augmented NK activity against the susceptible K562 line and induced killing of the relatively resistant Raji line. Freshly isolated ovarian carcinoma cells were relatively resistant to killing by unstimulated PBL and TAL. OK432 induced significant, though low, levels of cytotoxicity against 51Cr-labelled ovarian carcinoma cells. Augmentation of killing of fresh tumour cells by OK432 was best observed in a 20 h assay and both autologous and allogeneic targets were lysed. PBL were separated on discontinuous Percoll gradients. Unstimulated and OK432-boosted activity were enriched in the lower density fractions where large granular lymphocytes (LGL) and activity against K562 were found. Thus, OK432 augments NK activity of PBL and TAL in human ovarian carcinomas and induces low, but significant, levels of killing of fresh tumour cells. Effector cells involved in killing of fresh ovarian tumours copurify with LGL on discontinuous gradients of Percoll. PMID:6626452

  19. Live to die another way: modes of programmed cell death and the signals emanating from dying cells

    PubMed Central

    Fuchs, Yaron; Steller, Hermann

    2015-01-01

    Preface All life ends in death, but perhaps one of life’s grander ironies is that it also depends on death. Cell-intrinsic suicide pathways, termed programmed cell death (PCD), are crucial for animal development, tissue homeostasis and pathogenesis. Originally, PCD was virtually synonymous with apoptosis, but recently, alternative PCD mechanisms have been reported. Here, we provide an overview of several distinct PCD mechanisms, namely apoptosis, autophagy and necroptosis. In addition, we discuss the complex signals emanating from dying cells, which can either fuel regeneration or instruct additional killing. Further advances in understanding the physiological role of multiple cell death mechanisms and associated signals will be important to selectively manipulate PCD for therapeutic purposes. PMID:25991373

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shier, W.T.

    Normally a freeze-thaw cycle is a very efficient method of killing mammalian cells. However, this report describes conditions that prevent killing of cultured mammalian cells by nucleated freezing at -24 degrees C. Optimal protection from cell killing at -24 degrees C was obtained in isotonic solutions containing an organic cryoprotectant such as dimethyl sulfoxide (DMSO; 10%, v/v), a saccharide such as sucrose over a broad concentration range from 50 to 150 mM, and glucose. Glycerol was also an effective cryoprotectant but other organic solvents were ineffective, although in some cases they appeared to protect cell membranes, while not protecting othermore » vital components. A wide variety of saccharide structures were effective at protecting cells from freeze-thaw killing, with trehalose being particularly effective. The degree of resistance to killing by a freeze-thaw cycle under these conditions varied widely among different cell lines. If toxicity of DMSO was responsible for this variability of cryoprotection, it must have been due to short-term, not longer term, toxicity of DMSO. Studies on the mechanism by which cells are protected from killing under these conditions indicated that neither vitrification of the medium nor the concentrating of components during freezing were involved. One model not eliminated by the mechanistic studies proposes that the organic solvent cryoprotectant component acts by fluidizing membranes under the thawing conditions, so that any holes produced by ice crystals propagating through membranes can reseal during the thawing process. In this model one of the mechanisms by which the saccharide component could act is by entering the cells and stabilizing vital intracellular components. Consistent with this, a freeze-thaw cycle promoted the uptake of labeled sucrose into cultured cells.« less

  1. GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS

    PubMed Central

    Forman, James; Möller, Göran

    1973-01-01

    Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific. PMID:4269560

  2. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen.

    PubMed

    Kyle, M E; Miccadei, S; Nakae, D; Farber, J L

    1987-12-31

    Superoxide dismutase, catalase and mannitol prevent the killing of cultured hepatocytes by acetaminophen in the presence of an inhibitor of glutathione reductase, BCNU. Under these conditions, the cytotoxicity of acetaminophen depends upon its metabolism, since beta-naphthoflavone, an inhibitor of mixed function oxidation, prevents the cell killing. In hepatocytes made resistant to acetaminophen by pretreatment with the ferric iron chelator, deferoxamine, addition of ferric or ferrous iron restores the sensitivity to acetaminophen. In such a situation, both superoxide dismutase and catalase prevent the killing by acetaminophen in the presence of ferric iron. By contrast, catalase, but not superoxide dismutase, prevents the cell killing dependent upon addition of ferrous iron. These results document the participation of both superoxide anion and hydrogen peroxide in the killing of cultured hepatocytes by acetaminophen and suggest that hydroxyl radicals generated by an iron catalyzed Haber-Weiss reaction mediate the cell injury.

  3. Cytolysin-dependent evasion of lysosomal killing.

    PubMed

    Håkansson, Anders; Bentley, Colette Cywes; Shakhnovic, Elizabeth A; Wessels, Michael R

    2005-04-05

    Local host defenses limit proliferation and systemic spread of pathogenic bacteria from sites of mucosal colonization. For pathogens such as streptococci that fail to grow intracellularly, internalization and killing by epithelial cells contribute to the control of bacterial growth and dissemination. Here, we show that group A Streptococcus (GAS), the agent of streptococcal sore throat and invasive soft tissue infections, evades internalization and intracellular killing by pharyngeal epithelial cells. Production of the cholesterol-binding cytotoxin streptolysin O (SLO) prevented internalization of GAS into lysosomes. In striking contrast, GAS rendered defective in production of SLO were internalized directly or rapidly transported into lysosomes, where they were killed by a pH-dependent mechanism. Because SLO is the prototype of cholesterol-dependent cytolysins produced by many Gram-positive bacteria, cytolysin-mediated evasion of lysosomal killing may be a general mechanism to protect such pathogens from clearance by host epithelial cells.

  4. 4H-Chromene-based anticancer agents towards multi-drug resistant HL60/MX2 human leukemia: SAR at the 4th and 6th positions.

    PubMed

    Puppala, Manohar; Zhao, Xinghua; Casemore, Denise; Zhou, Bo; Aridoss, Gopalakrishnan; Narayanapillai, Sreekanth; Xing, Chengguo

    2016-03-15

    4H-Chromene-based compounds, for example, CXL017, CXL035, and CXL055, have a unique anticancer potential that they selectively kill multi-drug resistant cancer cells. Reported herein is the extended structure-activity relationship (SAR) study, focusing on the ester functional group at the 4th position and the conformation at the 6th position. Sharp SARs were observed at both positions with respect to cellular cytotoxic potency and selectivity between the parental HL60 and the multi-drug resistant HL60/MX2 cells. These results provide critical guidance for future medicinal optimization. Copyright © 2016. Published by Elsevier Ltd.

  5. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression.

    PubMed

    Gresnigt, Mark S; Jaeger, Martin; Subbarao Malireddi, R K; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J G; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus . When exploring the role of NOD1 in an experimental mouse model, we found that Nod1 -/- mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1 -/- mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus . Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1 -/- mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1 -/- cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus . This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells to clear the infection by increasing fungal killing and cytokine responses.

  6. Catalase-Modulated Heterogeneous Fenton Reaction for Selective Cancer Cell Eradication: SnFe2O4 Nanocrystals as an Effective Reagent for Treating Lung Cancer Cells.

    PubMed

    Lee, Kuan-Ting; Lu, Yu-Jen; Mi, Fwu-Long; Burnouf, Thierry; Wei, Yi-Ting; Chiu, Shao-Chieh; Chuang, Er-Yuan; Lu, Shih-Yuan

    2017-01-18

    Heterogeneous Fenton reactions have been proven to be an effective and promising selective cancer cell treatment method. The key working mechanism for this method to achieve the critical therapeutic selectivity however remains unclear. In this study, we proposed and demonstrated for the first time the critical role played by catalase in realizing the therapeutic selectivity for the heterogeneous Fenton reaction-driven cancer cell treatment. The heterogeneous Fenton reaction, with the lattice ferric ions of the solid catalyst capable of converting H 2 O 2 to highly reactive hydroxyl radicals, can effectively eradicate cancer cells. In this study, SnFe 2 O 4 nanocrystals, a recently discovered outstanding heterogeneous Fenton catalyst, were applied for selective killing of lung cancer cells. The SnFe 2 O 4 nanocrystals, internalized into the cancer cells, can effectively convert endogenous H 2 O 2 into highly reactive hydroxyl radicals to invoke an intensive cytotoxic effect on the cancer cells. On the other hand, catalase, present at a significantly higher concentration in normal cells than in cancer cells, remarkably can impede the apoptotic cell death induced by the internalized SnFe 2 O 4 nanocrystals. According to the results obtained from the in vitro cytotoxicity study, the relevant oxidative attacks were effectively suppressed by the presence of normal physiological levels of catalase. The SnFe 2 O 4 nanocrystals were thus proved to effect apoptotic cancer cell death through the heterogeneous Fenton reaction and were benign to cells possessing normal physiological levels of catalase. The catalase modulation of the involved heterogeneous Fenton reaction plays the key role in achieving selective cancer cell eradication for the heterogeneous Fenton reaction-driven cancer cell treatment.

  7. Critical high-dimensional state transitions in cell populations or why cancers follow the principle ``What does not kill me makes me stronger''

    NASA Astrophysics Data System (ADS)

    Huang, Sui

    Transitions between high-dimensional attractor states in the quasi-potential landscape of the gene regulatory network, induced by environmental perturbations and/or facilitated by mutational rewiring of the network, underlie cell phenotype switching in development as well as in cancer progression, including acquisition of drug-resistant phenotypes. Considering heterogeneous cell populations as statistical ensembles of cells, and single-cell resolution gene expression profiling of cell populations undergoing a cell phenotype shift allow us now to map the topography of the landscape and its distortion. From snapshots of single-cell expression patterns of a cell population measured during major transitions we compute a quantity that identifies symmetry-breaking destabilization of attractors (bifurcation) and concomitant dimension-reduction of the state space manifold (landscape distortion) which precede critical transitions to new attractor states. The model predicts, and we show experimentally, the almost inevitable generation of aberrant cells associated with such critical transitions in multi-attractor landscapes: therapeutic perturbations which seek to push cancer cells to the apoptotic state, almost always produce ``rebellious'' cells which move in the ``opposite direction'': instead of dying they become more stem-cell-like and malignant. We show experimentally that the inadvertent generation of more malignant cancer cells by therapy indeed results from transition of surviving (but stressed) cells into unforeseen attractor states and not simply from selection of inherently more resistant cells. Thus, cancer cells follow not so much Darwin, as generally thought (survival of the fittest), but rather Nietzsche (What does not kill me makes me stronger). Supported by NIH (NCI, NIGMS), Alberta Innovates.

  8. Synergy between tobramycin and trivalent chromium ion in electrochemical control of Pseudomonas aeruginosa.

    PubMed

    Niepa, Tagbo H R; Wang, Hao; Dabrowiak, James C; Gilbert, Jeremy L; Ren, Dacheng

    2016-05-01

    We recently demonstrated that the effectiveness of tobramycin (Tob), an aminoglycoside, against antibiotic-tolerant persister cells of Pseudomonas aeruginosa can be enhanced by electrochemical factors generated from direct currents (DC). Supplementation of Ni(II), Cr(III) and Fe(II) during carbon-mediated DC treatment revealed that these metal cations promote killing of persister cells in the presence of tobramycin, which led to our hypothesis that specific interactions between Tob and some metal ions contribute to the synergistic killing of persister cells. In this study, the interactions between selected metal cations and Tob were investigated using (1)H-(13)C HSQC NMR. Increase in the concentration of Cr(III) (in the form of [CrCl2(H2O)4](+)) in solutions containing Tob was found to shift the HSQC NMR peaks of Tob to new positions, suggesting the formation of a Cr(III)-Tob complex. Crystal field effects and electrochemical properties of the complex were further studied using UV-visible spectroscopy and cyclic voltammetry, which led to the finding that the Cr(III)-Tob complex has increased affinity with negatively charged nucleic acids. These findings are helpful for understanding the mechanism of electrochemical control of bacterial cells and for developing more effective antimicrobial therapies based on aminoglycosides and electrochemical species released from various metallic biomaterials. Medical device associated infections present a major challenge to healthcare and the quality of life of affected individuals. This problem is further exacerbated by the emergence of multidrug resistant pathogens. Thus, alternative methods for microbial control are urgently needed. Recently, we reported synergy between tobramycin and low-level electrochemical currents generated using stainless steel electrodes in killing bacterial persister cells, a dormant population with high-level intrinsic tolerance to antibiotics. In this article, we describe how electrically-induced interaction between aminoglycosides and certain metal cations enhance the potency of tobramycin in bacterial killing. The findings will help design new methods for controlling infections through electrochemical disruption of cellular function and associated drug resistance. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    PubMed Central

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  10. Both Leukotoxin and Poly-N-Acetylglucosamine Surface Polysaccharide Protect Aggregatibacter actinomycetemcomitans Cells from Macrophage Killing

    PubMed Central

    Venketaraman, Vishwanath; Lin, Albert K.; Le, Amy; Kachlany, Scott C.; Connell, Nancy D.; Kaplan, Jeffrey B.

    2008-01-01

    Two virulence factors produced by the periodontopathogen Aggregatibacter actinomycetemcomitans are leukotoxin, a secreted lipoprotein that kills human polymorphonuclear leukocytes and macrophages, and poly-N-acetylglucosamine (PGA), a surface polysaccharide that mediates intercellular adhesion, biofilm formation and detergent resistance. In this study we examined the roles of leukotoxin and PGA in protecting A. actinomycetemcomitans cells from killing by the human macrophage cell line THP-1. Monolayers of THP-1 cells were infected with single-cell suspensions of a wild-type A. actinomycetemcomitans strain, or of isogenic leukotoxin or PGA mutant strains. After 48 h, viable bacteria were enumerated by dilution plating, macrophage morphology was evaluated microscopically, and macrophage viability was measured by a Trypan blue dye exclusion assay. The number of A. actinomycetemcomitans CFUs increased approximately 2-fold in wells infected with the wild-type strain, but decreased by approximately 70–90% in wells infected with the leukotoxin and PGA mutant strains. Infection with the wild-type or leukotoxin mutant strain caused a significant decrease in THP-1 cell viability, whereas infection with the PGA mutant strain did not result in any detectable changes in THP-1 viability. Pre-treatment of wild-type A. actinomycetemcomitans cells with the PGA-hydrolyzing enzyme dispersin B rendered them sensitive to killing by THP-1 cells. We concluded that both leukotoxin and PGA are necessary for evasion of macrophage killing by A. actinomycetemcomitans. PMID:18573331

  11. Impact of nest sanitation on the immune system of parents and nestlings in a passerine bird.

    PubMed

    Evans, Jessica K; Griffith, Simon C; Klasing, Kirk C; Buchanan, Katherine L

    2016-07-01

    Bacterial communities are thought to have fundamental effects on the growth and development of nestling birds. The antigen exposure hypothesis suggests that, for both nestlings and adult birds, exposure to a diverse range of bacteria would select for stronger immune defences. However, there are relatively few studies that have tested the immune/bacterial relationships outside of domestic poultry. We therefore sought to examine indices of immunity (microbial killing ability in naive birds, which is a measure of innate immunity, and the antibody response to sheep red blood cells, which measures adaptive immunity) in both adult and nestling zebra finches (Taeniopygia guttata). We did this throughout breeding and between reproductive attempts in nests that were experimentally manipulated to change the intensity of bacterial exposure. Our results suggest that nest sanitation and bacterial load affected measures of the adaptive immune system, but not the innate immune parameters tested. Adult finches breeding in clean nests had a lower primary antibody response to sheep red blood cells, particularly males, and a greater difference between primary and secondary responses. Adult microbial killing of Escherichia coli decreased as parents moved from incubation to nestling rearing for both nest treatments; however, killing of Candida albicans remained consistent throughout. In nestlings, both innate microbial killing and the adaptive antibody response did not differ between nest environments. Together, these results suggest that exposure to microorganisms in the environment affects the adaptive immune system in nesting birds, with exposure upregulating the antibody response in adult birds. © 2016. Published by The Company of Biologists Ltd.

  12. Two-stage model of radon-induced malignant lung tumors in rats: effects of cell killing

    NASA Technical Reports Server (NTRS)

    Luebeck, E. G.; Curtis, S. B.; Cross, F. T.; Moolgavkar, S. H.

    1996-01-01

    A two-stage stochastic model of carcinogenesis is used to analyze lung tumor incidence in 3750 rats exposed to varying regimens of radon carried on a constant-concentration uranium ore dust aerosol. New to this analysis is the parameterization of the model such that cell killing by the alpha particles could be included. The model contains parameters characterizing the rate of the first mutation, the net proliferation rate of initiated cells, the ratio of the rates of cell loss (cell killing plus differentiation) and cell division, and the lag time between the appearance of the first malignant cell and the tumor. Data analysis was by standard maximum likelihood estimation techniques. Results indicate that the rate of the first mutation is dependent on radon and consistent with in vitro rates measured experimentally, and that the rate of the second mutation is not dependent on radon. An initial sharp rise in the net proliferation rate of initiated cell was found with increasing exposure rate (denoted model I), which leads to an unrealistically high cell-killing coefficient. A second model (model II) was studied, in which the initial rise was attributed to promotion via a step function, implying that it is due not to radon but to the uranium ore dust. This model resulted in values for the cell-killing coefficient consistent with those found for in vitro cells. An "inverse dose-rate" effect is seen, i.e. an increase in the lifetime probability of tumor with a decrease in exposure rate. This is attributed in large part to promotion of intermediate lesions. Since model II is preferable on biological grounds (it yields a plausible cell-killing coefficient), such as uranium ore dust. This analysis presents evidence that a two-stage model describes the data adequately and generates hypotheses regarding the mechanism of radon-induced carcinogenesis.

  13. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    PubMed

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  14. Short communication: Antiproliferative effect of wild Lactobacillus strains isolated from fermented foods on HT-29 cells.

    PubMed

    Tuo, Y F; Zhang, L W; Yi, H X; Zhang, Y C; Zhang, W Q; Han, X; Du, M; Jiao, Y H; Wang, S M

    2010-06-01

    In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells. Among the strains, the cellular components of Lactobacillus coryniformis ssp. torquens T3L exerted marked antiproliferative activities against HT-29 cells. The maximum inhibition rates of HT-29 cells by the heat-killed bacterial cells (1x10(7) cfu/mL), cell wall (20 microg of protein/mL) and genomic DNA (100 microg/mL) of L. coryniformis ssp. torquens T3L were 30, 44.9, and 35.9%, respectively. The results indicate that the heat-killed bacterial cells, cell wall, and genomic DNA of the 7 wild Lactobacillus strains could inhibit the growth of HT-29 cells. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Bactericidal activity of juvenile chinook salmon macrophages against Aeromonas salmonicida after exposure to live or heat-killed Renibacterium salmoninarum or to soluble proteins produced by R. salmoninarum

    USGS Publications Warehouse

    Siegel, D.C.; Congleton, J.L.

    1997-01-01

    Macrophages isolated from the anterior kidney of juvenile chinook salmon Oncorhynchus tshawytscha in 96-well microtiter plates were exposed for 72 h to 0, 105, or 106 live or heat-killed Renibacterium salmoninarum cells per well or to 0, 0.1, 1.0, or 10 ??g/mL of R. salmoninarum soluble proteins. After treatment, the bactericidal activity of the macrophages against Aerornonas salmonicida was determined by a colorimetric assay based on the reduction of the tetrazolium dye MTT to formazan by viable bacteria. The MTT assay was modified to allow estimation of the percentage of bacteria killed by reference to a standard curve relating the number of bacteria added to microtiter wells to absorbance by formazan at 600 nm. The live and heat-killed R. salmoninarum treatments significantly (P < 0.001) increased killing of A. salmonicida by chinook salmon macrophages. In each of the five trials, significantly (P < 0.05) greater increases in killing occurred after exposure to 105 R. salmoninarum cells than to 106 R. salmoninarum cells per well. In contrast, treatment of macrophages with 10 ??g/mL R. salmoninarum soluble proteins significantly (P < 0.001) decreased killing of A. salmonicida, but treatment with lower doses did not. These results show that the bactericidal activity of chinook salmon macrophages is stimulated by exposure to R. salmoninarum cells at lower dose levels but inhibited by exposure to R. salmoninarum cells or soluble proteins at higher dose levels.

  16. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity.

    PubMed

    Ogitani, Yusuke; Hagihara, Katsunobu; Oitate, Masataka; Naito, Hiroyuki; Agatsuma, Toshinori

    2016-07-01

    Antibody-drug conjugates deliver anticancer agents selectively and efficiently to tumor tissue and have significant antitumor efficacy with a wide therapeutic window. DS-8201a is a human epidermal growth factor receptor 2 (HER2)-targeting antibody-drug conjugate prepared using a novel linker-payload system with a potent topoisomerase I inhibitor, exatecan derivative (DX-8951 derivative, DXd). It was effective against trastuzumab emtansine (T-DM1)-insensitive patient-derived xenograft models with both high and low HER2 expression. In this study, the bystander killing effect of DS-8201a was evaluated and compared with that of T-DM1. We confirmed that the payload of DS-8201a, DXd (1), was highly membrane-permeable whereas that of T-DM1, Lys-SMCC-DM1, had a low level of permeability. Under a coculture condition of HER2-positive KPL-4 cells and negative MDA-MB-468 cells in vitro, DS-8201a killed both cells, whereas T-DM1 and an antibody-drug conjugate with a low permeable payload, anti-HER2-DXd (2), did not. In vivo evaluation was carried out using mice inoculated with a mixture of HER2-positive NCI-N87 cells and HER2-negative MDA-MB-468-Luc cells by using an in vivo imaging system. In vivo, DS-8201a reduced the luciferase signal of the mice, indicating suppression of the MDA-MB-468-Luc population; however, T-DM1 and anti-HER2-DXd (2) did not. Furthermore, it was confirmed that DS-8201a was not effective against MDA-MB-468-Luc tumors inoculated at the opposite side of the NCI-N87 tumor, suggesting that the bystander killing effect of DS-8201a is observed only in cells neighboring HER2-positive cells, indicating low concern in terms of systemic toxicity. These results indicated that DS-8201a has a potent bystander effect due to a highly membrane-permeable payload and is beneficial in treating tumors with HER2 heterogeneity that are unresponsive to T-DM1. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  17. A lentiviral vector that activates latent human immunodeficiency virus-1 proviruses by the overexpression of tat and that kills the infected cells.

    PubMed

    Macías, David; Oya, Ricardo; Saniger, Luisa; Martín, Francisco; Luque, Francisco

    2009-11-01

    Despite the efficient HIV-1 replication blockage achieved with current highly active antiretroviral therapy (HAART) therapies, HIV-1 persists in the body and survives in a latent state that can last for the entire life of the patient. A long-lived reservoir of latently infected CD4(+) memory T cells represents the most important sanctuary for the virus and the greatest obstacle for viral eradication. In this work, we present an initial step toward a gene therapy approach aimed at the activation of latent provirus to induce the death of latently infected T cells. Latent HIV-1 infection is characterized by the failure of viral gene expression as a consequence of uninitiated or aborted transcription. We have constructed an HIV-1-based lentiviral vector (p5p53RTAT3) that expresses the viral trans-activating protein Tat in a drug-regulated manner and p53 in a Rev-dependent manner. We have demonstrated that the Tat-expressed protein from p5p53RTAT3 vector reactivates latent HIV-1 proviruses in J1.1 and ACH-2 cell lines and promotes p53-induced apoptosis in the presence of Rev. Our system was able to trigger the trans-activation of the provirus 5' long terminal repeat (LTR), stimulate the expression of the Rev protein from a tat-defective provirus, and provoke apoptosis selectively in the cells transfected with a tat-defective HIV-1 provirus in contrast to those with no HIV-1 provirus. However, the Rev-dependent p53 killing of latently infected cells was not effective enough for complete elimination of the awakened HIV-1 viruses. In summary, we have developed a vector system that is efficient in activating latent HIV-1 proviruses but that needs further improvement to kill infected cells.

  18. Boosting Natural Killer Cell-Based Immunotherapy with Anticancer Drugs: a Perspective.

    PubMed

    Cifaldi, Loredana; Locatelli, Franco; Marasco, Emiliano; Moretta, Lorenzo; Pistoia, Vito

    2017-12-01

    Natural killer (NK) cells efficiently recognize and kill tumor cells through several mechanisms including the expression of ligands for NK cell-activating receptors on target cells. Different clinical trials indicate that NK cell-based immunotherapy represents a promising antitumor treatment. However, tumors develop immune-evasion strategies, including downregulation of ligands for NK cell-activating receptors, that can negatively affect antitumor activity of NK cells, which either reside endogenously, or are adoptively transferred. Thus, restoration of the expression of NK cell-activating ligands on tumor cells represents a strategic therapeutic goal. As discussed here, various anticancer drugs can fulfill this task via different mechanisms. We envision that the combination of selected chemotherapeutic agents with NK cell adoptive transfer may represent a novel strategy for cancer immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis.

    PubMed

    Bonne-Année, Sandra; Kerepesi, Laura A; Hess, Jessica A; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B; Nolan, Thomas J; Abraham, David

    2014-06-01

    Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis

    PubMed Central

    Bonne-Année, Sandra; Kerepesi, Laura A.; Hess, Jessica A.; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B.; Nolan, Thomas J.; Abraham, David

    2014-01-01

    Neutrophils are multifaceted cells that are often the immune system’s first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. PMID:24642003

  1. Abortion, embryonic stem cell research, and waste.

    PubMed

    Jensen, David A

    2008-01-01

    Can one consistently deny the permissibility of abortion while endorsing the killing of human embryos for the sake of stem cell research? The question is not trivial; for even if one accepts that abortion is prima facie wrong in all cases, there are significant differences with many of the embryos used for stem cell research from those involved in abortion--most prominently, many have been abandoned in vitro, and appear to have no reasonably likely meaningful future. On these grounds one might think to maintain a strong position against abortion but endorse killing human embryos for the sake of stem cell research and its promising benefits. I will argue, however, that these differences are not decisive. Thus, one who accepts a strong view against abortion is committed to the moral impermissibility of killing human embryos for the sake of stem cell research. I do not argue for the moral standing of either abortion or the killing of embryos for stem cell research; I only argue for the relation between the two. Thus the conclusion is relevant to those with a strong view in favor of the permissibility of killing embryos for the sake of research as much as for those who may strongly oppose abortion; neither can consider their position in isolation from the other.

  2. Bacterial killing in macrophages and amoeba: do they all use a brass dagger?

    PubMed

    German, Nadezhda; Doyscher, Dominik; Rensing, Christopher

    2013-10-01

    Macrophages are immune cells that are known to engulf pathogens and destroy them by employing several mechanisms, including oxidative burst, induction of Fe(II) and Mn(II) efflux, and through elevation of Cu(I) and Zn(II) concentrations in the phagosome ('brass dagger'). The importance of the latter mechanism is supported by the presence of multiple counteracting efflux systems in bacteria, responsible for the efflux of toxic metals. We hypothesize that similar bacteria-killing mechanisms are found in predatory protozoa/amoeba species. Here, we present a brief summary of soft metal-related mechanisms used by macrophages, and perhaps amoeba, to inactivate and destroy bacteria. Based on this, we think it is likely that copper resistance is also selected for by protozoan grazing in the environment.

  3. Requirement and Redundancy of the Src Family Kinases Fyn and Lyn in Perforin-Dependent Killing of Cryptococcus neoformans by NK Cells

    PubMed Central

    Oykhman, Paul; Timm-McCann, Martina; Xiang, Richard F.; Islam, Anowara; Li, Shu Shun; Stack, Danuta; Huston, Shaunna M.; Ma, Ling Ling

    2013-01-01

    Natural killer (NK) cells directly recognize and kill fungi, such as the pathogenic fungus Cryptococcus neoformans, via cytolytic mechanisms. However, the precise signaling pathways governing this NK cell microbicidal activity and the implications for fungal recognition are still unknown. Previously, it was reported that NK cell anticryptococcal activity is mediated through a conserved phosphatidylinositol 3-kinase–extracellular signal-regulated kinase 1/2 (PI3K-ERK1/2) pathway. Using YT (a human NK-like cell line) and primary human NK cells, we sought to identify the upstream, receptor-proximal signaling elements that led to fungal cytolysis. We demonstrate that Src family kinases were activated in response to C. neoformans. Furthermore, pharmacologic inhibition with an Src kinase inhibitor blocked C. neoformans-induced downstream activation of PI3K and ERK1/2 and abrogated cryptococcal killing. At the same time, the inhibitor disrupted the polarization of perforin-containing granules toward the NK cell-cryptococcal synapse but had no effect on conjugate formation between the organism and the NK cell. Finally, small interfering RNA (siRNA) double (but not single) knockdown of two Src family kinases, Fyn and Lyn, blocked cryptococcal killing. Together these data demonstrate a mechanism whereby the Src family kinases, Fyn and Lyn, redundantly mediate anticryptococcal activity through the activation of PI3K and ERK1/2, which in turn facilitates killing by inducing the polarization of perforin-containing granules to the NK cell-cryptococcal synapse. PMID:23918783

  4. Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins

    PubMed Central

    García-Bayona, Leonor; Guo, Monica S; Laub, Michael T

    2017-01-01

    Most bacteria are in fierce competition with other species for limited nutrients. Some bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to planktonic cells in aqueous environments. Here, we identify an atypical two-protein bacteriocin in the α-proteobacterium Caulobacter crescentus that is retained on the surface of producer cells where it mediates cell contact-dependent killing. The bacteriocin-like proteins CdzC and CdzD harbor glycine-zipper motifs, often found in amyloids, and CdzC forms large, insoluble aggregates on the surface of producer cells. These aggregates can drive contact-dependent killing of other organisms, or Caulobacter cells not producing the CdzI immunity protein. The Cdz system uses a type I secretion system and is unrelated to previously described contact-dependent inhibition systems. However, Cdz-like systems are found in many bacteria, suggesting that this form of contact-dependent inhibition is common. DOI: http://dx.doi.org/10.7554/eLife.24869.001 PMID:28323618

  5. A novel bispecific antibody, S-Fab, induces potent cancer cell killing.

    PubMed

    Li, Li; He, Ping; Zhou, Changhua; Jing, Li; Dong, Bin; Chen, Siqi; Zhang, Ning; Liu, Yawei; Miao, Ji; Wang, Zhong; Li, Qing

    2015-01-01

    Bispecific antibodies that engage immune cells to kill cancer cells have been actively studied in cancer immunotherapy. In this study, we present a novel bispecific format, S-Fab, fabricated by linking a single-domain anti-carcinoembryonic antigen VHH to a conventional anti-CD3 Fab. In contrast to most bispecific antibodies, the S-Fab bispecific antibody can be efficiently expressed and purified from bacteria. The purified S-Fab is stable in serum and is able to recruit T cells to drive potent cancer cell killing. In xenograft models, the S-Fab antibody suppresses tumor growth in the presence of human immune cells. Our study suggested that the bispecific S-Fab format can be applied to a wide range of immunotherapies.

  6. Controlling plasma stimulated media in cancer treatment application

    NASA Astrophysics Data System (ADS)

    Yan, Dayun; Sherman, Jonathan H.; Cheng, Xiaoqian; Ratovitski, Edward; Canady, Jerome; Keidar, Michael

    2014-12-01

    Cold atmospheric plasma (CAP) constitutes a "cocktail" of various reactive species. Accumulating evidence shows the effectiveness of CAP in killing cancer cells and decreasing the tumor size, which provides a solid basis for its potential use in cancer treatment. Currently, CAP is mainly used to directly treat cancer cells and trigger the death of cancer cells via apoptosis or necrosis. By altering the concentration of fetal bovine serum in Dulbecco's modified Eagle's medium and the temperature to store CAP stimulated media, we demonstrated controllable strategies to harness the stimulated media to kill glioblastoma cells in vitro. This study demonstrated the significant role of media in killing cancer cells via the CAP treatment.

  7. Comparison of antimicrobial activity of selected, commercially available wound dressing materials.

    PubMed

    Szweda, Piotr; Gorczyca, Grzegorz; Tylingo, Robert

    2018-05-02

    The aim of our study was to examine the antimicrobial potential of eight selected, commercially available wound dressings containing different antimicrobial agents: silver, chlorhexidine acetate, povidone-iodine, and manuka honey. The materials were tested against four reference strains of bacteria: Staphylococcus aureus (PCM 2051), Staphylococcus epidermidis (PCM 2118), Pseudomonas aeruginosa (ATCC 27853), and Escherichia coli (K12), using the disc diffusion-like method and a time-killing assay. For both experiments, the highest activity against all four tested strains of bacteria was observed in the case of Mepilex Ag, which contains silver as an antibacterial agent. Incubation for four hours of a 10x10mm 2 piece of this material in 10ml cells suspension (concentration: 10 9 -10 10 CFU/ml) resulted in complete elimination of bacteria of all four strains tested. The same results were obtained for a povidone-iodine containing dressing, Inadine, though its activity was lower in the disc diffusion assay. Silvercel, Aquacel Ag and Melgisorb Ag, which also contain silver, also exhibited a satisfactory level of activity. In the case of Aquacel Ag, 24 hours' incubation resulted in complete elimination of the cells of both Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa.The Escherichia coli cells were killed after only four hours' treatment. High effectiveness against Escherichia coli was also demonstrated for Silvercel. However, 24 hours' includation was required for complete elimination of the cells of this bacteria strain. High activity against all tested bacteria, but only in the disc diffusion assay, was observed for Algivon, which contains manuka honey. The Medisorb Silver Pad, containing silver, and Bactigras, which contains chlorhexidine acetate, revealed much lower antimicrobial activity, particularly noticeable in the time-killing assay. In addition, we also tested the anti-staphylococcal activity of a biopolymer material impregnated with lysostaphin. Results revealed that its activity against Staphylococcus aureus was comparable to the most active wound dressings impregnated with silver or inadine. Some important differences in the antimicrobial potential of investigated materials have been found. The presented results could be of interest to clinicians managing wounds.

  8. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter.

    PubMed

    Su, Zhao-Zhong; Sarkar, Devanand; Emdad, Luni; Duigou, Gregory J; Young, Charles S H; Ware, Joy; Randolph, Aaron; Valerie, Kristoffer; Fisher, Paul B

    2005-01-25

    One impediment to effective cancer-specific gene therapy is the rarity of regulatory sequences targeting gene expression selectively in tumor cells. Although many tissue-specific promoters are recognized, few cancer-selective gene promoters are available. Progression-elevated gene-3 (PEG-3) is a rodent gene identified by subtraction hybridization that displays elevated expression as a function of transformation by diversely acting oncogenes, DNA damage, and cancer cell progression. The promoter of PEG-3, PEG-Prom, displays robust expression in a broad spectrum of human cancer cell lines with marginal expression in normal cellular counterparts. Whereas GFP expression, when under the control of a CMV promoter, is detected in both normal and cancer cells, when GFP is expressed under the control of the PEG-Prom, cancer-selective expression is evident. Mutational analysis identifies the AP-1 and PEA-3 transcription factors as primary mediators of selective, cancer-specific expression of the PEG-Prom. Synthesis of apoptosis-inducing genes, under the control of the CMV promoter, inhibits the growth of both normal and cancer cells, whereas PEG-Prom-mediated expression of these genes kills only cancer cells and spares normal cells. The efficacy of the PEG-Prom as part of a cancer gene therapeutic regimen is further documented by in vivo experiments in which PEG-Prom-controlled expression of an apoptosis-inducing gene completely inhibited prostate cancer xenograft growth in nude mice. These compelling observations indicate that the PEG-Prom, with its cancer-specific expression, provides a means of selectively delivering genes to cancer cells, thereby providing a crucial component in developing effective cancer gene therapies.

  9. Current update of adoptive immunotherapy using cytokine-induced killer cells to eliminate malignant gliomas.

    PubMed

    Ryu, Je Il; Han, Myung Hoon; Cheong, Jin Hwan; Kim, Jae Min; Kim, Choong Hyun

    2017-03-01

    The therapeutic outcome for those with malignant glioma is poor, even though diverse therapeutic modalities have been developed. Immunotherapy has emerged as a therapeutic approach for malignant gliomas, making it possible to selectively treat tumors while sparing normal tissue. Here, we review clinical trials of adoptive immunotherapy approaches for malignant gliomas. We also describe a clinical trial that examined the efficacy and safety of autologous cytokine-induced killer (CIK) cells along with concomitant chemoradiotherapy for newly diagnosed glioblastoma. These CIK cells identify and kill autologous tumor cells. This review focuses on the use of adoptive immunotherapy for malignant gliomas and reviews the current literature on the concept of antitumor activity mediated by CIK cells.

  10. γδ T cells as a potential tool in colon cancer immunotherapy.

    PubMed

    Ramutton, Thiranut; Buccheri, Simona; Dieli, Francesco; Todaro, Matilde; Stassi, Giorgio; Meraviglia, Serena

    2014-01-01

    γδ T cells are capable of recognizing tumor cells and exert potent cellular cytotoxicity against a large range of tumors, including colon cancer. However, tumors utilize numerous strategies to escape recognition or killing by patrolling γδ T cells, such a downregulation of NKG2D ligands, MICA/B and ULBPs. Therefore, the combined upregulation of T-cell receptorand NKG2D ligands on tumor cells and induction of NKG2D expression on γδ T cells may greatly enhance tumor killing and unlock the functions of γδ T cells. Here, we briefly review current data on the mechanisms of γδ T-cell recognition and killing of colon cancer cells and propose that γδ T cells may represent a promising target for the design of novel and highly innovative immunotherapy in patients with colon cancer.

  11. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies

    PubMed Central

    Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C

    2012-01-01

    Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949

  12. Tumor immune evasion arises through loss of TNF sensitivity.

    PubMed

    Kearney, Conor J; Vervoort, Stephin J; Hogg, Simon J; Ramsbottom, Kelly M; Freeman, Andrew J; Lalaoui, Najoua; Pijpers, Lizzy; Michie, Jessica; Brown, Kristin K; Knight, Deborah A; Sutton, Vivien; Beavis, Paul A; Voskoboinik, Ilia; Darcy, Phil K; Silke, John; Trapani, Joseph A; Johnstone, Ricky W; Oliaro, Jane

    2018-05-18

    Immunotherapy has revolutionized outcomes for cancer patients, but the mechanisms of resistance remain poorly defined. We used a series of whole-genome clustered regularly interspaced short palindromic repeat (CRISPR)-based screens performed in vitro and in vivo to identify mechanisms of tumor immune evasion from cytotoxic lymphocytes [CD8 + T cells and natural killer (NK) cells]. Deletion of key genes within the tumor necrosis factor (TNF) signaling, interferon-γ (IFN-γ) signaling, and antigen presentation pathways provided protection of tumor cells from CD8 + T cell-mediated killing and blunted antitumor immune responses in vivo. Deletion of a number of genes in the TNF pathway also emerged as the key mechanism of immune evasion from primary NK cells. Our screens also identified that the metabolic protein 2-aminoethanethiol dioxygenase (Ado) modulates sensitivity to TNF-mediated killing by cytotoxic lymphocytes and is required for optimal control of tumors in vivo. Remarkably, we found that tumors delete the same genes when exposed to perforin-deficient CD8 + T cells, demonstrating that the dominant immune evasion strategy used by tumor cells is acquired resistance to T cell-derived cytokine-mediated antitumor effects. We demonstrate that TNF-mediated bystander killing is a potent T cell effector mechanism capable of killing antigen-negative tumor cells. In addition to highlighting the importance of TNF in CD8 + T cell- and NK cell-mediated killing of tumor cells, our study also provides a comprehensive picture of the roles of the TNF, IFN, and antigen presentation pathways in immune-mediated tumor surveillance. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria.

    PubMed

    Feng, Guangxue; Yuan, Youyong; Fang, Hu; Zhang, Ruoyu; Xing, Bengang; Zhang, Guanxin; Zhang, Deqing; Liu, Bin

    2015-08-11

    We report the design and synthesis of a red fluorescent AIE light-up probe for selective recognition, naked-eye detection, and image-guided photodynamic killing of Gram-positive bacteria, including vancomycin-resistant Enterococcus strains.

  14. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?

    PubMed

    Abbas, Hussein H K; Alhamoudi, Kheloud M H; Evans, Mark D; Jones, George D D; Foster, Steven S

    2018-04-16

    Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall our cell viability data indicates that targeting MTH1 will likely not be an across-the-board effective NSCLC therapeutic strategy; rather it induces non-cytotoxic DNA damage that could promote cancer heterogeneity and evolution.

  15. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface.

    PubMed

    Ciandrini, E; Campana, R; Baffone, W

    2017-06-01

    This research investigates the ability of live and heat-killed (HK) Lactic Acid Bacteria (LAB) to interfere with Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 during biofilm formation. Eight Lactobacillus spp. and two oral colonizers, pathogenic Streptococcus mutans and resident Streptococcus oralis, were characterized for their aggregation abilities, cell surface properties and biofilm formation ability on titanium surface. Then, the interference activity of selected live and HK Lactobacillus spp. during S. mutans and S. oralis biofilm development were performed. The cell-free culture supernatants (CFCS) anti-biofilm activity was also determined. LAB possess good abilities of auto-aggregation (from 14.19 to 28.97%) and of co-aggregation with S. oralis. The cell-surfaces characteristics were most pronounced in S. mutans and S. oralis, while the highest affinities to xylene and chloroform were observed in Lactobacillus rhamnosus ATCC 53103 (56.37%) and Lactobacillus paracasei B21060 (43.83%). S. mutans and S. oralis developed a biofilm on titanium surface, while LAB showed a limited or no ability to create biofilm. Live and HK L. rhamnosus ATCC 53103 and L. paracasei B21060 inhibited streptococci biofilm formation by competition and displacement mechanisms with no substantial differences. The CFCSs of both LAB strains, particularly the undiluted one of L. paracasei B21060, decreased S. mutans and S. oralis biofilm formation. This study evidenced the association of LAB aggregation abilities and cell-surface properties with the LAB-mediated inhibition of S. mutans and S. oralis biofilm formation. Lactobacilli showed different mechanisms of action and peculiar strain-specific characteristics, maintained also in the heat-killed LAB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the PARP1 inhibitor niraparib to kill ovarian cancer cells.

    PubMed

    Booth, Laurence; Roberts, Jane L; Samuel, Peter; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-06-03

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET, PDGFRα and mutant RAS proteins via autophagic degradation. Neratinib interacted in an additive to synergistic fashion with the approved PARP1 inhibitor niraparib to kill ovarian cancer cells. Neratinib and niraparib caused the ATM-dependent activation of AMPK which in turn was required to cause mTOR inactivation, ULK-1 activation and ATG13 phosphorylation. The drug combination initially increased autophagosome levels followed later by autolysosome levels. Preventing autophagosome formation by expressing activated mTOR or knocking down of Beclin1, or knock down of the autolysosome protein cathepsin B, reduced drug combination lethality. The drug combination caused an endoplasmic reticulum stress response as judged by enhanced eIF2α phosphorylation that was responsible for reducing MCL-1 and BCL-XL levels and increasing ATG5 and Beclin1 expression. Knock down of BIM, but not of BAX or BAK, reduced cell killing. Expression of activated MEK1 prevented the drug combination increasing BIM expression and reduced cell killing. Downstream of the mitochondrion, drug lethality was partially reduced by knock down of AIF, but expression of dominant negative caspase 9 was not protective. Our data demonstrate that neratinib and niraparib interact to kill ovarian cancer cells through convergent DNA damage and endoplasmic reticulum stress signaling. Cell killing required the induction of autophagy and was cathepsin B and AIF -dependent, and effector caspase independent.

  17. New trial evaluates investigational drug for endometrial and breast cancers | Center for Cancer Research

    Cancer.gov

    A new clinical trial is testing ONC201, an investigational drug that in laboratory studies has been shown to kill breast and endometrial cancer cells most likely by destroying mitochondria within the tumor cells. Mitochondria are the “powerhouse” of the cell, and blocking its activity may kill tumor cells and shrink tumors in human patients.

  18. Study characterizes how DNA-damaging anti-cancer drugs kill cancer cells | Center for Cancer Research

    Cancer.gov

    Patients whose cancer cells express the SLFN11 protein are more likely to respond to DNA-damaging anti-cancer drugs than those whose cancer cells don’t express SLFN11. In a new study, Center for Cancer Research investigators show how these drugs recruit SLFN11 to block replication and kill cancer cells. Read more…

  19. Internalization of a C17α-alkynylestradiol-porphyrin conjugate into estrogen receptor positive MCF-7 breast cancer cells.

    PubMed

    Sadler, Sara; Persons, Kelly S; Jones, Graham B; Ray, Rahul

    2011-08-01

    We hypothesized that expression of nuclear estrogen receptor (ER) in hormone-sensitive breast cancer cells could be harnessed synergistically with the tumor-accumulating effect of porphyrins to selectively deliver estrogen-porphyrin conjugates into breast tumor cells, and preferentially kill tumor cells upon exposure to visible light. In this study we synthesized a conjugate of C(17α)-alkynylestradiol and pyropheophorbide and demonstrated that this conjugate is internalized by ER-positive MCF-7 cells while pyropheophorbide did not, suggesting an ER-mediated uptake and internalization of the conjugate by incipient nuclear ER in MCF-7 cells. This study is a direct demonstration of our hypothesis about ER-mediated internalization of estrogen-porphyrin conjugates. Copyright © 2011. Published by Elsevier Ltd.

  20. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs.

    PubMed

    Secret, Emilie; Smith, Kevin; Dubljevic, Valentina; Moore, Eli; Macardle, Peter; Delalat, Bahman; Rogers, Mary-Louise; Johns, Terrance G; Durand, Jean-Olivier; Cunin, Frédérique; Voelcker, Nicolas H

    2013-05-01

    We describe the preparation of biodegradable porous silicon nanoparticles (pSiNP) functionalized with cancer cell targeting antibodies and loaded with the hydrophobic anti-cancer drug camptothecin. Orientated immobilization of the antibody on the pSiNP is achieved using novel semicarbazide based bioconjugate chemistry. To demonstrate the generality of this targeting approach, the three antibodies MLR2, mAb528 and Rituximab are used, which target neuroblastoma, glioblastoma and B lymphoma cells, respectively. Successful targeting is demonstrated by means of flow cytometry and immunocytochemistry both with cell lines and primary cells. Cell viability assays after incubation with pSiNPs show selective killing of cells expressing the receptor corresponding to the antibody attached on the pSiNP. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma.

    PubMed

    Chiron, David; Dousset, Christelle; Brosseau, Carole; Touzeau, Cyrille; Maïga, Sophie; Moreau, Philippe; Pellat-Deceunynck, Catherine; Le Gouill, Steven; Amiot, Martine

    2015-04-20

    The aggressive biological behavior of mantle cell lymphoma (MCL) and its short response to current treatment highlight a great need for better rational therapy. Herein, we investigate the ability of ABT-199, the Bcl-2-selective BH3 mimetic, to kill MCL cells. Among MCL cell lines tested (n = 8), only three were sensitive (LD50 < 200 nM). In contrast, all primary MCL samples tested (n = 11) were highly sensitive to ABT-199 (LD50 < 10 nM). Mcl-1 and Bcl-xL both confer resistance to ABT-199-specific killing and BCL2/(BCLXL+MCL1) mRNA ratio is a strong predictor of sensitivity. By mimicking the microenvironment through CD40 stimulation, we show that ABT-199 sensitivity is impaired through activation of NF-kB pathway and Bcl-x(L) up-regulation. We further demonstrate that resistance is rapidly lost when MCL cells detach from CD40L-expressing fibroblasts. It has been reported that ibrutinib induces lymphocytosis in vivo holding off malignant cells from their protective microenvironment. We show here for two patients undergoing ibrutinib therapy that mobilized MCL cells are highly sensitive to ABT-199. These results provide evidence that in situ ABT-199 resistance can be overcome when MCL cells escape from the lymph nodes. Altogether, our data support the clinical application of ABT-199 therapy both as a single agent and in sequential combination with BTK inhibitors.

  2. The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization.

    PubMed

    Zhou, Heng; Forveille, Sabrina; Sauvat, Allan; Sica, Valentina; Izzo, Valentina; Durand, Sylvère; Müller, Kevin; Liu, Peng; Zitvogel, Laurence; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2015-09-29

    LTX-315 has been developed as an amphipathic cationic peptide that kills cancer cells. Here, we investigated the putative involvement of mitochondria in the cytotoxic action of LTX-315. Subcellular fractionation of LTX-315-treated cells, followed by mass spectrometric quantification, revealed that the agent was enriched in mitochondria. LTX-315 caused an immediate arrest of mitochondrial respiration without any major uncoupling effect. Accordingly, LTX-315 disrupted the mitochondrial network, dissipated the mitochondrial inner transmembrane potential, and caused the release of mitochondrial intermembrane proteins into the cytosol. LTX-315 was relatively inefficient in stimulating mitophagy. Cells lacking the two pro-apoptotic multidomain proteins from the BCL-2 family, BAX and BAK, were less susceptible to LTX-315-mediated killing. Moreover, cells engineered to lose their mitochondria (by transfection with Parkin combined with treatment with a protonophore causing mitophagy) were relatively resistant against LTX-315, underscoring the importance of this organelle for LTX-315-mediated cytotoxicity. Altogether, these results support the notion that LTX-315 kills cancer cells by virtue of its capacity to permeabilize mitochondrial membranes.

  3. The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization

    PubMed Central

    Zhou, Heng; Forveille, Sabrina; Sauvat, Allan; Sica, Valentina; Izzo, Valentina; Durand, Sylvère; Müller, Kevin; Liu, Peng; Zitvogel, Laurence; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2015-01-01

    LTX-315 has been developed as an amphipathic cationic peptide that kills cancer cells. Here, we investigated the putative involvement of mitochondria in the cytotoxic action of LTX-315. Subcellular fractionation of LTX-315-treated cells, followed by mass spectrometric quantification, revealed that the agent was enriched in mitochondria. LTX-315 caused an immediate arrest of mitochondrial respiration without any major uncoupling effect. Accordingly, LTX-315 disrupted the mitochondrial network, dissipated the mitochondrial inner transmembrane potential, and caused the release of mitochondrial intermembrane proteins into the cytosol. LTX-315 was relatively inefficient in stimulating mitophagy. Cells lacking the two pro-apoptotic multidomain proteins from the BCL-2 family, BAX and BAK, were less susceptible to LTX-315-mediated killing. Moreover, cells engineered to lose their mitochondria (by transfection with Parkin combined with treatment with a protonophore causing mitophagy) were relatively resistant against LTX-315, underscoring the importance of this organelle for LTX-315-mediated cytotoxicity. Altogether, these results support the notion that LTX-315 kills cancer cells by virtue of its capacity to permeabilize mitochondrial membranes. PMID:26378049

  4. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability.

    PubMed

    Luo, Tuoping; Masson, Kristina; Jaffe, Jacob D; Silkworth, Whitney; Ross, Nathan T; Scherer, Christina A; Scholl, Claudia; Fröhling, Stefan; Carr, Steven A; Stern, Andrew M; Schreiber, Stuart L; Golub, Todd R

    2012-02-21

    Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33's kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33's kinase activity does not represent a promising anti-KRAS therapeutic strategy.

  5. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability

    PubMed Central

    Luo, Tuoping; Masson, Kristina; Jaffe, Jacob D.; Silkworth, Whitney; Ross, Nathan T.; Scherer, Christina A.; Scholl, Claudia; Fröhling, Stefan; Carr, Steven A.; Stern, Andrew M.; Schreiber, Stuart L.; Golub, Todd R.

    2012-01-01

    Approximately 30% of human cancers harbor oncogenic gain-of-function mutations in KRAS. Despite interest in KRAS as a therapeutic target, direct blockade of KRAS function with small molecules has yet to be demonstrated. Based on experiments that lower mRNA levels of protein kinases, KRAS-dependent cancer cells were proposed to have a unique requirement for the serine/threonine kinase STK33. Thus, it was suggested that small-molecule inhibitors of STK33 might have therapeutic benefit in these cancers. Here, we describe the development of selective, low nanomolar inhibitors of STK33’s kinase activity. The most potent and selective of these, BRD8899, failed to kill KRAS-dependent cells. While several explanations for this result exist, our data are most consistent with the view that inhibition of STK33’s kinase activity does not represent a promising anti-KRAS therapeutic strategy. PMID:22323609

  6. Helicases as Prospective Targets for Anti-Cancer Therapy

    PubMed Central

    Gupta, Rigu; Brosh, Robert M.

    2008-01-01

    It has been proposed that selective inactivation of a DNA repair pathway may enhance anti-cancer therapies that eliminate cancerous cells through the cytotoxic effects of DNA damaging agents or radiation. Given the unique and critically important roles of DNA helicases in the DNA damage response, DNA repair, and maintenance of genomic stability, a number of strategies currently being explored or in use to combat cancer may be either mediated or enhanced through the modulation of helicase function. The focus of this review will be to examine the roles of helicases in DNA repair that might be suitably targeted by cancer therapeutic approaches. Treatment of cancers with anti-cancer drugs such as small molecule compounds that modulate helicase expression or function is a viable approach to selectively kill cancer cells through the inactivation of helicase-dependent DNA repair pathways, particularly those associated with DNA recombination, replication restart, and cell cycle checkpoint. PMID:18473724

  7. Fluorescence-guided surgery of a highly-metastatic variant of human triple-negative breast cancer targeted with a cancer-specific GFP adenovirus prevents recurrence

    PubMed Central

    Yano, Shuya; Takehara, Kiyoto; Miwa, Shinji; Kishimoto, Hiroyuki; Tazawa, Hiroshi; Urata, Yasuo; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2016-01-01

    We have previously developed a genetically-engineered GFP-expressing telomerase-dependent adenovirus, OBP-401, which can selectively illuminate cancer cells. In the present report, we demonstrate that targeting a triple-negative high-invasive human breast cancer, orthotopically-growing in nude mice, with OBP-401 enables curative fluorescence-guided surgery (FGS). OBP-401 enabled complete resection and prevented local recurrence and greatly inhibited lymph-node metastasis due to the ability of the virus to selectively label and subsequently kill cancer cells. In contrast, residual breast cancer cells become more aggressive after bright (white)-light surgery (BLS). OBP-401-based FGS also improved the overall survival compared with conventional BLS. Thus, metastasis from a highly-aggressive triple-negative breast cancer can be prevented by FGS in a clinically-relevant mouse model. PMID:27689331

  8. Killing of intrafamilial leukocytes by earthworm effector cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-01-01

    When Lumbricus and Eisenia coelomocytes are cultured together in intrafamilial xenogeneic combinations, significant cytotoxicity occurs at 24 h but not at 5 nor 72 h, as shown by trypan blue assay. In a 4.5-h assay, measuring 51Cr release, using an effector/target ratio of 25:1, unpooled cells from a single Lumbricus killed Eisenia cells at levels of 6% and 14%. However, Eisenia coelomocyte survival was high and identical in either cell-free xenogeneic (Lumbricus) coelomic fluid or in artificial medium. In this 1-way assay, earthworm (Lumbricus) coelomocytes act as effector cells that kill non-self target cells, even those of other earthworms. Comparisons with previous results reveal greater reliability and consistently repeatable results when the 51Cr release assay is used to measure cytotoxicity regardless of the targets.

  9. Weapons used by juveniles and adult offenders in U.S. parricide cases.

    PubMed

    Heide, Kathleen M; Petee, Thomas A

    2007-11-01

    In recent decades, attention has focused on juveniles who kill their parents. Research has indicated that increases in juvenile homicide have been associated with the availability of firearms, but little is known about the weapons juveniles use to kill their parents and whether their weapon usage is different from that of adult children who kill their parents. This article uses Supplementary Homicide Report data for the 24-year period 1976 to 1999 to investigate weapons selected by parricide offenders to kill biological mothers and fathers. Significant differences were found in the weapons used in matricide and patricide incidents and in the weapons selected by juvenile and adult offenders. A comparison with an earlier study by Heide revealed that weapon usage in parricide events is stable. Differences found in both studies between weapons used to kill parents and offender age are consistent with a physical strength hypothesis proposed by Heide in 1993.

  10. A Lipopeptide Facilitate Induction of Mycobacterium leprae Killing in Host Cells

    PubMed Central

    Maeda, Yumi; Tamura, Toshiki; Fukutomi, Yasuo; Mukai, Tetsu; Kai, Masanori; Makino, Masahiko

    2011-01-01

    Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells. PMID:22132248

  11. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides.

    PubMed

    Boyd, Marie; Ross, Susan C; Dorrens, Jennifer; Fullerton, Natasha E; Tan, Ker Wei; Zalutsky, Michael R; Mairs, Robert J

    2006-06-01

    Recent studies have shown that indirect effects of ionizing radiation may contribute significantly to the effectiveness of radiotherapy by sterilizing malignant cells that are not directly hit by the radiation. However, there have been few investigations of the importance of indirect effects in targeted radionuclide treatment. Our purpose was to compare the induction of bystander effects by external beam gamma-radiation with those resultant from exposure to 3 radiohaloanalogs of metaiodobenzylguanidine (MIBG): (131)I-MIBG (low-linear-energy-transfer [LET] beta-emitter), (123)I-MIBG (potentially high-LET Auger electron emitter), and meta-(211)At-astatobenzylguanidine ((211)At-MABG) (high-LET alpha-emitter). Two human tumor cell lines-UVW (glioma) and EJ138 (transitional cell carcinoma of bladder)-were transfected with the noradrenaline transporter (NAT) gene to enable active uptake of MIBG. Medium from cells that accumulated the radiopharmaceuticals or were treated with external beam radiation was transferred to cells that had not been exposed to radioactivity, and clonogenic survival was determined in donor and recipient cultures. Over the dose range 0-9 Gy of external beam radiation of donor cells, 2 Gy caused 30%-40% clonogenic cell kill in recipient cultures. This potency was maintained but not increased by higher dosage. In contrast, no corresponding saturation of bystander cell kill was observed after treatment with a range of activity concentrations of (131)I-MIBG, which resulted in up to 97% death of donor cells. Cellular uptake of (123)I-MIBG and (211)At-MABG induced increasing recipient cell kill up to levels that resulted in direct kill of 35%-70% of clonogens. Thereafter, the administration of higher activity concentrations of these high-LET emitters was inversely related to the kill of recipient cells. Over the range of activity concentrations examined, neither direct nor indirect kill was observed in cultures of cells not expressing the NAT and, thus, incapable of active uptake of MIBG. Potent toxins are generated specifically by cells that concentrate radiohalogenated MIBG. These may be LET dependent and distinct from those elicited by conventional radiotherapy.

  12. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model

    PubMed Central

    Swift, Brenna E.; Williams, Brent A.; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A.; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-01-01

    Background Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. Design and Methods The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Results Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89–99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. Conclusions This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma tumor burden in a xenograft mouse model was reduced by intravenous NK-92 cell therapy. Since multiple myeloma colony frequency correlates with survival, our observations have important clinical implications and suggest that clinical studies of NK cell lines to treat MM are warranted. PMID:22271890

  13. In Vitro Studies on Erythrosine-Based Photodynamic Therapy of Malignant and Pre-Malignant Oral Epithelial Cells

    PubMed Central

    Garg, Abhishek D.; Bose, Muthiah; Ahmed, Mohammed I.; Bonass, William A.; Wood, Simon R.

    2012-01-01

    Photodynamic Therapy (PDT) involves the administration of a tumor localizing photosensitizing agent, which upon activation with light of an appropriate wavelength leads to the destruction of the tumor cells. The aim of the present study was to determine the efficacy of erythrosine as a photosensitizer for the PDT of oral malignancies. The drug uptake kinetics of erythrosine in malignant (H357) and pre-malignant (DOK) oral epithelial cells and their susceptibility to erythrosine-based PDT was studied along with the determination of the subcellular localization of erythrosine. This was followed by initial investigations into the mechanism of cell killing induced following PDT involving both high and low concentrations of erythrosine. The results showed that at 37°C the uptake of erythrosine by both DOK and H357 cells increased in an erythrosine dose dependent manner. However, the percentage of cell killing observed following PDT differed between the 2 cell lines; a maximum of ∼80% of DOK cell killing was achieved as compared to ∼60% killing for H357 cells. Both the DOK and H357 cell types exhibited predominantly mitochondrial accumulation of erythrosine, but the mitochondrial trans-membrane potential (ΔΨm) studies showed that the H357 cells were far more resistant to the changes in ΔΨm when compared to the DOK cells and this might be a factor in the apparent relative resistance of the H357 cells to PDT. Finally, cell death morphology and caspase activity analysis studies demonstrated the occurrence of extensive necrosis with high dose PDT in DOK cells, whereas apoptosis was observed at lower doses of PDT for both cell lines. For H357 cells, high dose PDT produced both apoptotic as well as necrotic responses. This is the first instance of erythrosine-based PDT's usage for cancer cell killing. PMID:22485174

  14. A heterotypic bystander effect for tumor cell killing after adeno-associated virus/phage-mediated, vascular-targeted suicide gene transfer.

    PubMed

    Trepel, Martin; Stoneham, Charlotte A; Eleftherohorinou, Hariklia; Mazarakis, Nicholas D; Pasqualini, Renata; Arap, Wadih; Hajitou, Amin

    2009-08-01

    Suicide gene transfer is the most commonly used cytotoxic approach in cancer gene therapy; however, a successful suicide gene therapy depends on the generation of efficient targeted systemic gene delivery vectors. We recently reported that selective systemic delivery of suicide genes such as herpes simplex virus thymidine kinase (HSVtk) to tumor endothelial cells through a novel targeted adeno-associated virus/phage vector leads to suppression of tumor growth. This marked effect has been postulated to result primarily from the death of cancer cells by hypoxia following the targeted disruption of tumor blood vessels. Here, we investigated whether an additional mechanism of action is involved. We show that there is a heterotypic "bystander" effect between endothelial cells expressing the HSVtk suicide gene and tumor cells. Treatment of cocultures of HSVtk-transduced endothelial cells and non-HSVtk-transduced tumor cells with ganciclovir results in the death of both endothelial and tumor cells. Blocking of this effect by 18alpha-glycyrrhetinic acid indicates that gap junctions between endothelial and tumor cells are largely responsible for this phenomenon. Moreover, the observed bystander killing is mediated by connexins 43 and 26, which are expressed in endothelial and tumor cell types. Finally, this heterotypic bystander effect is accompanied by a suppression of tumor growth in vivo that is independent of primary gene transfer into host-derived tumor vascular endothelium. These findings add an alternative nonmutually exclusive and potentially synergistic cytotoxic mechanism to cancer gene therapy based on targeted adeno-associated virus/phage and further support the promising role of nonmalignant tumor stromal cells as therapeutic targets.

  15. Synthesis, activity and pharmacophore development for isatin-β-thiosemicarbazones with selective activity towards multidrug resistant cellsa

    PubMed Central

    Hall, Matthew D.; Salam, Noeris K.; Hellawell, Jennifer L.; Fales, Henry M.; Kensler, Caroline B.; Ludwig, Joseph A.; Szakacs, Gergely; Hibbs, David E.; Gottesman, Michael M.

    2009-01-01

    We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-β-thiosemicarbazones from our initial study have been validated, and a range of analogs synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1-selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone, and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicty of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity, and aid in directing the search for the mechanism of action of 1. PMID:19397322

  16. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression

    PubMed Central

    Gresnigt, Mark S.; Jaeger, Martin; Subbarao Malireddi, R. K.; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J. G.; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L.

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells to clear the infection by increasing fungal killing and cytokine responses. PMID:29326692

  17. High hydrostatic pressure affects antigenic pool in tumor cells: Implication for dendritic cell-based cancer immunotherapy.

    PubMed

    Urbanova, Linda; Hradilova, Nada; Moserova, Irena; Vosahlikova, Sarka; Sadilkova, Lenka; Hensler, Michal; Spisek, Radek; Adkins, Irena

    2017-07-01

    High hydrostatic pressure (HHP) can be used to generate dendritic cell (DC)-based active immunotherapy for prostate, lung and ovarian cancer. We showed here that HHP treatment of selected human cancer cell lines leads to a degradation of tumor antigens which depends on the magnitude of HHP applied and on the cancer cell line origin. Whereas prostate or ovarian cell lines displayed little protein antigen degradation with HHP treatment up to 300MPa after 2h, tumor antigens are hardly detected in lung cancer cell line after treatment with HHP 250MPa at the same time. On the other hand, quick reduction of tumor antigen-coding mRNA was observed at HHP 200MPa immediately after treatment in all cell lines tested. To optimize the DC-based active cellular therapy protocol for HHP-sensitive cell lines the immunogenicity of HHP-treated lung cancer cells at 150, 200 and 250MPa was compared. Lung cancer cells treated with HHP 150MPa display characteristics of immunogenic cell death, however cells are not efficiently phagocytosed by DC. Despite induction of the highest number of antigen-specific CD8 + T cells, 150 MPa-treated lung cancer cells survive in high numbers. This excludes their use in DC vaccine manufacturing. HHP of 200MPa treatment of lung cancer cells ensures the optimal ratio of efficient immunogenic killing and delivery of protein antigens in DC. These results represent an important pre-clinical data for generation of immunogenic killed lung cancer cells in ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa). Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  18. Selecting timber species to replace killed firetree in Hawaii

    Treesearch

    Gerald A. Walters

    1970-01-01

    A species with little commercial value, firetree (Myrica faya Ait.) infests several islands of Hawaii. A test of replacing herbicide-killed firetrees by underplanting selected timber species is underway. Among the seven species planted, Austrailan toon-on the basis of its initial survival and growth-shows the most promise for reforestation. Falling...

  19. Landscape review of current HIV 'kick and kill' cure research - some kicking, not enough killing.

    PubMed

    Thorlund, Kristian; Horwitz, Marc S; Fife, Brian T; Lester, Richard; Cameron, D William

    2017-08-29

    Current antiretroviral therapy (ART) used to treat human immunodeficiency virus (HIV) patients is life-long because it only suppresses de novo infections. Recent efforts to eliminate HIV have tested the ability of a number of agents to reactivate ('Kick') the well-known latent reservoir. This approach is rooted in the assumption that once these cells are reactivated the host's immune system itself will eliminate ('Kill') the virus. While many agents have been shown to reactivate large quantities of the latent reservoir, the impact on the size of the latent reservoir has been negligible. This suggests that the immune system is not sufficient to eliminate reactivated reservoirs. Thus, there is a need for more emphasis on 'kill' strategies in HIV cure research, and how these might work in combination with current or future kick strategies. We conducted a landscape review of HIV 'cure' clinical trials using 'kick and kill' approaches. We identified and reviewed current available clinical trial results in human participants as well as ongoing and planned clinical trials. We dichotomized trials by whether they did not include or include a 'kill' agent. We extracted potential reasons why the 'kill' is missing from current 'kick and kill' strategies. We subsequently summarized and reviewed current 'kill' strategies have entered the phase of clinical trial testing in human participants and highlighted those with the greatest promise. The identified 'kick' trials only showed promise on surrogate measures activating latent T-cells, but did not show any positive effects on clinical 'cure' measures. Of the 'kill' agents currently being tested in clinical trials, early results have shown small but meaningful proportions of participants remaining off ART for several months with broadly neutralizing antibodies, as well as agents for regulating immune cell responses. A similar result was also recently observed in a trial combining a conventional 'kick' with a vaccine immune booster ('kill'). While an understanding of the efficacy of each individual component is crucial, no single 'kick' or 'kill' agent is likely to be a fully effective cure. Rather, the solution is likely found in a combination of multiple 'kick and kill' interventions.

  20. Small Molecule Protection of Bone Marrow Hematopoietic Stem Cells

    DTIC Science & Technology

    2015-10-01

    several recently identified small molecules can protect hematopoietic stem cells (HSCs) from damage or killing by endogenous aldehydes . Proof-of-concept...anemia bone marrow failure CD34+ hematopoietic stem cells aldehydes formaldehyde DNA damage DNA base adduct DNA-protein crosslink mass...below. Revised Specific Aim 1: Small molecule protection of human cells from aldehyde - induced killing (in vitro studies - no mice or human subjects

  1. Human Natural Killer Cells Exhibit Direct Activity Against Aspergillus fumigatus Hyphae, But Not Against Resting Conidia

    PubMed Central

    Schmidt, Stanislaw; Tramsen, Lars; Hanisch, Mitra; Latgé, Jean-Paul; Huenecke, Sabine; Koehl, Ulrike

    2011-01-01

    Because natural killer (NK) cells kill tumor cells and combat infections, there is growing interest in adoptively transferring NK cells to hematopoietic stem cell recipients. Unfortunately, in humans, the activity of NK cells against Aspergillus species, the major cause of invasive fungal infection in stem cell recipients, are poorly characterized. Our results show that unstimulated and interleukin-2 prestimulated human NK cells kill Aspergillus fumigatus hyphae but do not affect resting conidia. Killing is also induced by the supernatant of prestimulated NK cells and human perforin. The high levels of interferon-γ and granulocyte macrophage colony-stimulating factor produced by prestimulated NK cells are significantly reduced by Aspergillus, indicating an immunosuppressive effect of the fungus. Whereas Aspergillus hyphae activate NK cells, resting, and germinating, conidia and conidia of ΔrodA mutants lacking the hydrophobic surface layer do not. Our results suggest that adoptively transferred human NK cells may be a potential antifungal tool in the transplantation context. PMID:21208932

  2. Homologous species restriction of the complement-mediated killing of nucleated cells.

    PubMed Central

    Yamamoto, H; Blaas, P; Nicholson-Weller, A; Hänsch, G M

    1990-01-01

    The homologous restriction of complement (C) lysis is attributed to membrane proteins: decay-accelerating factor (DAF), C8 binding protein (C8bp) and P18/CD59. Since these proteins are also expressed on peripheral blood cells, species restriction was tested for in the complement-mediated killing of antibody-coated human leucocytes by human or rabbit complement. Killing was more efficient when rabbit complement was used. Preincubation of cells with an antibody to DAF abolished the difference. When C1-7 sites were first attached to the cells and either rabbit or human C8, C9 were added, the killing of monocytes and lymphocytes was equally efficient; only in polymorphonuclear neutrophils was a higher efficiency of rabbit C8, C9 seen. Thus, in contrast to haemolysis, restriction occurred predominantly at the C3 level and the action of the terminal complement components was not inhibited. Since C8bp isolated from peripheral blood cells showed essentially similar characteristics as the erythrocyte-derived C8bp, the failure of C8bp to inhibit the action of the terminal components on nucleated cells might reflect differences of the complement membrane interactions between erythrocytes or nucleated cells, respectively. Images Figure 5 PMID:1697561

  3. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM.

    PubMed

    Follin-Arbelet, Virginie; Misund, Kristine; Naderi, Elin Hallan; Ugland, Hege; Sundan, Anders; Blomhoff, Heidi Kiil

    2015-08-26

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM.

  4. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM

    PubMed Central

    Follin-Arbelet, Virginie; Misund, Kristine; Hallan Naderi, Elin; Ugland, Hege; Sundan, Anders; Kiil Blomhoff, Heidi

    2015-01-01

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM. PMID:26306624

  5. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis.

    PubMed

    San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi

    2015-10-01

    This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis

    PubMed Central

    San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi

    2015-01-01

    This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. PMID:26185055

  7. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    PubMed

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  8. Structures and properties of naturally occurring polyether antibiotics.

    PubMed

    Rutkowski, Jacek; Brzezinski, Bogumil

    2013-01-01

    Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties.

  9. Structures and Properties of Naturally Occurring Polyether Antibiotics

    PubMed Central

    Rutkowski, Jacek; Brzezinski, Bogumil

    2013-01-01

    Polyether ionophores represent a large group of natural, biologically active substances produced by Streptomyces spp. They are lipid soluble and able to transport metal cations across cell membranes. Several of polyether ionophores are widely used as growth promoters in veterinary. Polyether antibiotics show a broad spectrum of bioactivity ranging from antibacterial, antifungal, antiparasitic, antiviral, and tumour cell cytotoxicity. Recently, it has been shown that some of these compounds are able to selectively kill cancer stem cells and multidrug-resistant cancer cells. Thus, they are recognized as new potential anticancer drugs. The biological activity of polyether ionophores is strictly connected with their molecular structure; therefore, the purpose of this paper is to present an overview of their formula, molecular structure, and properties. PMID:23586016

  10. Human Monocytes in the Presence of Interferons Alpha2a and Gamma Are Potent Killers of Serous Ovarian Cancer Cell Lines in Combination with Paclitaxel and Carboplatin

    PubMed Central

    Johnson, Chase L.; Zoon, Kathryn C.

    2015-01-01

    Interferons (IFNs) play an important role in immune surveillance of tumors; however, their efficacy in the treatment of malignancies has been limited. Monocytes are mononuclear phagocytes that are critical to the generation of an innate immune response to tumors. The authors and others have shown that treatment of tumor cell lines in vitro and in vivo with human monocytes primed with type I and type II IFNs results in killing. We now expand on this work, in an extended panel of ovarian cancer cell lines. In this study, we hypothesized that there would be variable sensitivity amongst cell lines to the killing properties of monocytes and IFNs. To this end, we explored the interactions of IFN primed monocytes in conjunction with the standard of therapy for ovarian cancer, taxane, and platinum-based chemotherapeutics. Using 6 ovarian cancer cell lines, we demonstrated that there is variation from cell line to cell line in the ability of IFN-α2a and IFN-γ primed monocytes to synergistically kill target tumor cells, and further, there is an additive killing effect when target cells are treated with both IFN primed monocytes and chemotherapy. PMID:25068849

  11. Synthesis and Evaluation of Folate-Conjugated Phenanthraquinones for Tumor-Targeted Oxidative Chemotherapy

    PubMed Central

    Kumar, Ajay; Chelvam, Venkatesh; Sakkarapalayam, Mahalingam; Li, Guo; Sanchez-Cruz, Pedro; Piñero, Natasha S.; Low, Philip S.; Alegria, Antonio E.

    2016-01-01

    Almost all cells are easily killed by exposure to potent oxidants. Indeed, major pathogen defense mechanisms in both animal and plant kingdoms involve production of an oxidative burst, where host defense cells show an invading pathogen with reactive oxygen species (ROS). Although cancer cells can be similarly killed by ROS, development of oxidant-producing chemotherapies has been limited by their inherent nonspecificity and potential toxicity to healthy cells. In this paper, we describe the targeting of an ROS-generating molecule selectively to tumor cells using folate as the tumor-targeting ligand. For this purpose, we exploit the ability of 9,10-phenanthraquinone (PHQ) to enhance the continuous generation of H2O2 in the presence of ascorbic acid to establish a constitutive source of ROS within the tumor mass. We report here that incubation of folate receptor-expressing KB cells in culture with folate-PHQ plus ascorbate results in the death of the cancer cells with an IC50 of ~10 nM (folate-PHQ). We also demonstrate that a cleavable spacer linking folate to PHQ is significantly inferior to a noncleavable spacer, in contrast to most other folate-targeted therapeutic agents. Unfortunately, no evidence for folate-PHQ mediated tumor regression in murine tumor models is obtained, suggesting that unanticipated impediments to generation of cytotoxic quantities of ROS in vivo are encountered. Possible mechanisms and potential solutions to these unanticipated results are offered. PMID:27066312

  12. Bone marrow transplantation across major histocompatibility barriers. V. Protection of mice from lethal graft-vs. -host disease by pretreatment of donor cells with monoclonal anti-Thy-1. 2 coupled to the toxin ricin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallera, D.A.; Youle, R.J.; Neville, D.M. Jr.

    1982-03-01

    A new method has been devised to eliminate T cells from murine bone marrow grafts across major histocompatibility barriers and thus prevent graft-vs.-host disease (GVHD). The method utilizes a monoclonal antibody directed at the Thy-1.2 antigen but is complement independent. To make anti-Thy-1.2 toxic, the antibody is covalently linked to the toxin ricin. Ricin ordinarily binds, enters, and kills cells through receptors containing galactose. The hybrid protein, anti-Thy-1.2-ricin, can enter and kill cells via the Thy-1.2 receptor. In the presence of lactose the usual entry route for ricin is largely blocked and the hybrid is shown to be a highlymore » selective reagent that is T cell specific in its inhibition of mitogen-stimulated splenocytes. We have used a model of severe and fatal GVHD where BALB/c splenocytes and bone marrow cells are given to irradiated C57BL/6 recipients. Over 90% of these mice die by day 70, exhibiting signs of GVHD. When donor cells are pretreated with 0.5 microgram/ml of anti-Thy-1.2-ricin plus 200 mM lactose before injection, 10 of 11 animals survive through day 70 without signs of GVHD. These studies demonstrate that ricin linked to monoclonal antibodies may have utility related to the prevention of GVHD in human bone marrow transplantation.« less

  13. Role of HIV-specific CD8+ T cells in pediatric HIV cure strategies after widespread early viral escape.

    PubMed

    Leitman, Ellen M; Thobakgale, Christina F; Adland, Emily; Ansari, M Azim; Raghwani, Jayna; Prendergast, Andrew J; Tudor-Williams, Gareth; Kiepiela, Photini; Hemelaar, Joris; Brener, Jacqui; Tsai, Ming-Han; Mori, Masahiko; Riddell, Lynn; Luzzi, Graz; Jooste, Pieter; Ndung'u, Thumbi; Walker, Bruce D; Pybus, Oliver G; Kellam, Paul; Naranbhai, Vivek; Matthews, Philippa C; Gall, Astrid; Goulder, Philip J R

    2017-11-06

    Recent studies have suggested greater HIV cure potential among infected children than adults. A major obstacle to HIV eradication in adults is that the viral reservoir is largely comprised of HIV-specific cytotoxic T lymphocyte (CTL) escape variants. We here evaluate the potential for CTL in HIV-infected slow-progressor children to play an effective role in "shock-and-kill" cure strategies. Two distinct subgroups of children were identified on the basis of viral load. Unexpectedly, in both groups, as in adults, HIV-specific CTL drove the selection of escape variants across a range of epitopes within the first weeks of infection. However, in HIV-infected children, but not adults, de novo autologous variant-specific CTL responses were generated, enabling the pediatric immune system to "corner" the virus. Thus, even when escape variants are selected in early infection, the capacity in children to generate variant-specific anti-HIV CTL responses maintains the potential for CTL to contribute to effective shock-and-kill cure strategies in pediatric HIV infection. © 2017 Leitman et al.

  14. Selection and dynamics of embryonic stem cell integration into early mouse embryos

    PubMed Central

    Alexandrova, Stoyana; Kalkan, Tuzer; Humphreys, Peter; Riddell, Andrew; Scognamiglio, Roberta; Trumpp, Andreas; Nichols, Jennifer

    2016-01-01

    The process by which pluripotent cells incorporate into host embryos is of interest to investigate cell potency and cell fate decisions. Previous studies suggest that only a minority of the embryonic stem cell (ESC) inoculum contributes to the adult chimaera. How incoming cells are chosen for integration or elimination remains unclear. By comparing a heterogeneous mix of undifferentiated and differentiating ESCs (serum/LIF) with more homogeneous undifferentiated culture (2i/LIF), we examine the role of cellular heterogeneity in this process. Time-lapse ex vivo imaging revealed a drastic elimination of serum/LIF ESCs during early development in comparison with 2i/LIF ESCs. Using a fluorescent reporter for naive pluripotency (Rex1-GFP), we established that the acutely eliminated serum/LIF ESCs had started to differentiate. The rejected cells were apparently killed by apoptosis. We conclude that a selection process exists by which unwanted differentiating cells are eliminated from the embryo. However, occasional Rex1− cells were able to integrate. Upregulation of Rex1 occurred in a proportion of these cells, reflecting the potential of the embryonic environment to expedite diversion from differentiation priming to enhance the developing embryonic epiblast. PMID:26586221

  15. Designing Anticancer Peptides by Constructive Machine Learning.

    PubMed

    Grisoni, Francesca; Neuhaus, Claudia S; Gabernet, Gisela; Müller, Alex T; Hiss, Jan A; Schneider, Gisbert

    2018-04-21

    Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Assessing hygienic behavior of Apis mellifera unicolor (Hymenoptera: Apidae), the endemic honey bee from Madagascar.

    PubMed

    Rasolofoarivao, H; Delatte, H; Raveloson Ravaomanarivo, L H; Reynaud, B; Clémencet, J

    2015-06-01

    Hygienic behavior (HB) is one of the natural mechanisms of honey bee for limiting the spread of brood diseases and Varroa destructor parasitic mite. Objective of our study was to measure HB of Apis mellifera unicolor colonies (N = 403) from three geographic regions (one infested and two free of V. destructor) in Madagascar. The pin-killing method was used for evaluation of the HB. Responses were measured from 3 h 30 min to 7 h after perforation of the cells. Colonies were very effective in detecting perforated cells. In the first 4 h, on average, they detected at least 50% of the pin-killed brood. Six hours after cell perforation, colonies tested (N = 91) showed a wide range of uncapped (0 to 100%) and cleaned cells (0 to 82%). Global distribution of the rate of cleaned cells at 6 h was multimodal and hygienic responses could be split in three classes. Colonies from the three regions showed a significant difference in HB responses. Three hypotheses (geographic, genetic traits, presence of V. destructor) are further discussed to explain variability of HB responses among the regions. Levels of HB efficiency of A. mellifera unicolor colonies are among the greatest levels reported for A. mellifera subspecies. Presence of highly hygienic colonies is a great opportunity for future breeding program in selection for HB.

  17. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.

    2011-08-12

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial {beta}-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial {beta}-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial {beta}-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally,more » oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.« less

  18. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    PubMed Central

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.; Scott, John E.; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R.

    2011-01-01

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11–induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy. PMID:21051639

  19. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.

    PubMed

    Wallace, Bret D; Wang, Hongwei; Lane, Kimberly T; Scott, John E; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R

    2010-11-05

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.

  20. Expression of complement membrane regulators membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59) in human malignant gliomas.

    PubMed Central

    Mäenpää, A.; Junnikkala, S.; Hakulinen, J.; Timonen, T.; Meri, S.

    1996-01-01

    Gliomas are malignant brain tumors, which, despite recent progress in surgical and radiological treatment, still have a poor prognosis. Since gliomas apparently resist immunological clearance mechanisms, we became interested in examining bow gliomas resist killing by the human complement system. The resistance of human cells to complement-mediated damage is, in large part, mediated by specific inhibitors of complement:membrane cofactor protein (CD46), decay-accelerating factor (CD55), and protectin (CD59). In the present study we examined the expression of complement regulators in 14 human glioma tumors and in 7 glioma cell lines (U251, U87, HS683, U373, U138, U118, and H2). Protectin was found to be strongly expressed by all glioma tumors and cell lines. Northern blotting analysis demonstrated the typical pattern of four to five protectin mRNAs in the glioma cells. Except for blood vessels, the expression of decay-accelerating factor was weak or absent in the tumors in situ, whereas in the cell lines its expression varied, ranging from negative to intermediate. Membrane cofactor protein was moderately expressed by all the cell lines but only weakly in the tumors. Cell-killing experiments demonstrated that the glioma cell lines were exceptionally resistant to C-mediated lysis. Five of the seven cell lines (U373, HS683, U118, U138, and H2) resisted complement lysis under conditions where most other cell lines were sensitive to killing. Neutralization experiments using specific monoclonal antibodies indicated that protectin was functionally the most important complement regulator in the glioma cells. The killing of the U87 and U251 cells could be significantly increased by a blocking anti-protectin monoclonal antibody, whereas for the other cell lines only moderate or no response was observed. The H2 cell line resisted killing by all antibodies and by complement. These results show that protectin is the most important complement regulator on human glioma cells. The exceptional complement resistance of some glioma cell lines suggests that they may utilize other, hitherto less well characterized, mechanisms to resist complement killing. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 PMID:8644856

  1. Reactive Oxygen Species (ROS) Inducible DNA Cross-Linking Agents and Their Effect on Cancer Cells and Normal Lymphocytes

    PubMed Central

    2015-01-01

    Reducing host toxicity is one of the main challenges of cancer chemotherapy. Many tumor cells contain high levels of ROS that make them distinctively different from normal cells. We report a series of ROS-activated aromatic nitrogen mustards that selectively kill chronic lymphocytic leukemia (CLL) over normal lymphocytes. These agents showed powerful DNA cross-linking abilities when coupled with H2O2, one of the most common ROS in cancer cells, whereas little DNA cross-linking was detected without H2O2. Consistent with chemistry observation, in vitro cytotoxicity assay demonstrated that these agents induced 40–80% apoptosis in primary leukemic lymphocytes isolated from CLL patients but less than 25% cell death to normal lymphocytes from healthy donors. The IC50 for the most potent compound (2) was ∼5 μM in CLL cells, while the IC50 was not achieved in normal lymphocytes. Collectively, these data provide utility and selectivity of these agents that will inspire further and effective applications. PMID:24801734

  2. Residual chromatin breaks as biodosimetry for cell killing by carbon ions.

    PubMed

    Suzuki, M; Kase, Y; Nakano, T; Kanai, T; Ando, K

    1998-01-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/micrometer, 76 keV/micrometer) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/micrometer beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  3. Residual chromatin breaks as biodosimetry for cell killing by carbon ions

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Kase, Y.; Nakano, T.; Kanai, T.; Ando, K.

    1998-11-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/μm, 76 keV/μm) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/μm beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  4. Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene.

    PubMed

    Zhao, Huifen; Pestina, Tamara I; Nasimuzzaman, Md; Mehta, Perdeep; Hargrove, Phillip W; Persons, Derek A

    2009-06-04

    Correction of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However, transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT), driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs, which can be administered to kill residual untransduced, diseased HSCs, whereas transduced cells are protected. Mice transplanted with beta-thalassemic HSCs transduced with a gamma-globin/MGMT vector initially had subtherapeutic levels of red cells expressing gamma-globin. To enrich gamma-globin-expressing cells, transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of gamma-globin-expressing red cells and the amount of fetal hemoglobin, leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of gamma-globin-expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for beta-thalassemia.

  5. Cytotoxic T cells use mechanical force to potentiate target cell killing

    PubMed Central

    Basu, Roshni; Whitlock, Benjamin M.; Husson, Julien; Le Floc’h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C.; Huse, Morgan

    2016-01-01

    SUMMARY The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. PMID:26924577

  6. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy

    PubMed Central

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient’s against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers. PMID:28187172

  7. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    PubMed

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  8. PARP Inhibitors Synergize With Loss of Checkpoint Control to Kill Mammary Carcinoma Cells

    DTIC Science & Technology

    2011-06-01

    from three studies S.E.M. B, MCF7 breast cancer and PANC -1 and MiaPaca2 pancreatic cancer cells were plated in triplicate and treated with vehicle...inhibitors to kill pancreatic carcinoma cells PANC -1 (pancreatic) and MiaPaca2 (pancreatic) carcinoma cells were plated as single cells (250–2000 cells...231 and PANC -1. Simian virus 40 large T antigen-transformed fibroblasts that are not tu- morigenic in mice were also sensitive to the drug schedule

  9. Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway

    NASA Astrophysics Data System (ADS)

    Ahamed, Maqusood; Alhadlaq, Hisham A.; Khan, M. A. Majeed; Akhtar, Mohd. Javed

    2013-01-01

    Iron oxide (Fe3O4) nanoparticles (NPs) are increasingly recognized for their utility in biomedical applications. However, little is known about the anticancer activity of Fe3O4 NPs. This study was designed to investigate whether Fe3O4 NPs induced toxicity in a cell-specific manner and determine the possible mechanisms of toxicity caused by Fe3O4 NPs in cancer cells. Fe3O4 NPs used in this study were synthesized by green method using α- d-glucose as a reducing agent. Prepared Fe3O4 NPs were spherical in shape with a smooth surface, were fairly distributed, and had an average diameter of 23 nm. Cytotoxicity of Fe3O4 NPs was examined against two types of cancer cells (human hepatocellular carcinoma HepG2 and human lung adenocarcinoma A549) and two normal cells (human lung fibroblast IMR-90 and rat hepatocytes). Fe3O4 NPs exerted distinct effects on cell viability via killing of cancer cells while posing no toxicity on normal cells. Fe3O4 NPs were found to induce depletion of glutathione and induction of reactive oxygen species (ROS) in both types of cancer cells (HepG2 and A549). Further, co-exposure of ascorbic acid significantly attenuated the Fe3O4 NPs-induced oxidative stress. The mRNA levels of tumor suppressor gene p53 and apoptotic genes (caspase-3 and caspase-9) were up-regulated in both types of cancer cells due to Fe3O4 NPs exposure. Protein level of p53, along with the higher activity of caspase-3 and caspase-9 enzymes, was also up-regulated by Fe3O4 NPs. Taken together, our data demonstrated that Fe3O4 NPs selectively induced apoptosis in cancer cells (HepG2 and A549) through up-regulation of p53 that might be mediated by ROS through which most of the anticancer drugs trigger apoptosis. The present study warrants further investigation on anticancer activity of Fe3O4 NPs in relevant animal models.

  10. Positive and Negative Selection in Transgenic Mice Expressing a T-Cell Receptor Specific for Influenza Nucleoprotein and Endogenous Superantigen

    PubMed Central

    Mamalaki, Clio; Elliott, James; Norton, Trisha; Yannoutsos, Nicholas; Townsend, Alain R.; Chandler, Phillip; Simpson, Elizabeth

    1993-01-01

    A transgenic mouse was generated expressing on most (>80%) of thymocytes and peripheral T cells a T-cell receptor isolated from a cytotoxic T-cell clone (F5). This clone is CD8+ and recognizes αα366-374 of the nucleoprotein (NP 366-374) of influenza virus (A/NT/60/68), in the context of Class ,MHC Db (Townsend et al., 1986). The receptor utilizes the Vβ11 and Vα4 gene segments for the β chain and α chain, respectively (Palmer et al., 1989). The usage of Vβ11 makes this TcR reactive to Class II IE molecules and an endogenous ligand recently identified as a product of the endogenous mammary tumour viruses (Mtv) 8, 9, and 11 (Dyson et al., 1991). Here we report the development of F5 transgenic T cells and their function in mice of the appropriate MHC (C57BL/10 H-2b, IE-) or in mice expressing Class II MHC IE (e.g., CBA/Ca H-2k and BALB/c H-2d) and the endogenous Mtv ligands. Positive selection of CD8+ T cells expressing the Vβ11 is seen in C57BL/10 transgenic mice (H-2b). Peripheral T cells from these mice are capable of killing target cells in an antigen-dependent manner after a period of in vitro culture with IL-2. In the presence of Class II MHC IE molecules and the endogenous Mtv ligand, most of the single-positive cells carrying the transgenic T-cell receptor are absent in the thymus. Unexpectedly, CD8+ peripheral T-cells in these (H-2k or H-2d) F5 mice are predominantly Vβ11 positive and also have the capacity to kill targets in an antigen-dependent manner. This is true even following backcrossing of the F5 TcR transgene to H-2d scid/scid mice, in which functional rearrangement of endogenous TcR alpha- and beta-chain genes is impaired. PMID:8281031

  11. Cytotoxic Tumor-Targeting Peptides From In Vivo Phage Display.

    PubMed

    Northup, Jessica R Newton; Deutscher, Susan L

    2016-01-01

    We previously utilized an in vivo peptide phage display selection technique, which included the use of detergent elution of phage from excised tumor, to obtain tumor-targeting phage with the ability to extravasate the vasculature and bind directly to prostate tumor tissue. It is hypothesized that this same in vivo phage selection technique can be used to functionally select for molecules that not only bind to cancer cells but also kill them. Here we analyzed two different in vivo phage display selected phage clones, G1 and H5, retrieved from PC-3 human prostate carcinoma xenografted tumors. First, cell de-attachment as an endpoint criterion for apoptosis and cell cycle was examined. After 2.5 hours incubation with G1 phage, PC-3 cell attachment was reduced by 23.8% and the percent of cell population in M phase reduced by 32.1%. In comparison, PC-3 cells incubated with H5 phage had a reduction of 25.0% cell attachment and 33.6% of cell population in M phase. These changes in combination with elevated caspase activation within cells in M phase, and no significant changes to G1/G0 or S phase cell populations suggest that the cytotoxic phages are targeting actively dividing PC-3 cells. Microscopic studies were also performed to further analyze the nature of cytotoxicity of these two phage clones. It was found that G1 phage induced and co- localized with tubulin based projections within apoptotic cells, while H5 phage did not. These phage may form the foundation for a new class of targeted prostate cancer therapeutic agents.

  12. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.

    PubMed

    Ye, S J

    1999-02-01

    A mathematical model to calculate the theoretical cell survival probability (nominally, the cell survival fraction) is developed to evaluate preclinical treatment conditions for boron neutron capture therapy (BNCT). A treatment condition is characterized by the neutron beam spectra, single or bilateral exposure, and the choice of boron carrier drug (boronophenylalanine (BPA) or boron sulfhydryl hydride (BSH)). The cell survival probability defined from Poisson statistics is expressed with the cell-killing yield, the 10B(n,alpha)7Li reaction density, and the tolerable neutron fluence. The radiation transport calculation from the neutron source to tumours is carried out using Monte Carlo methods: (i) reactor-based BNCT facility modelling to yield the neutron beam library at an irradiation port; (ii) dosimetry to limit the neutron fluence below a tolerance dose (10.5 Gy-Eq); (iii) calculation of the 10B(n,alpha)7Li reaction density in tumours. A shallow surface tumour could be effectively treated by single exposure producing an average cell survival probability of 10(-3)-10(-5) for probable ranges of the cell-killing yield for the two drugs, while a deep tumour will require bilateral exposure to achieve comparable cell kills at depth. With very pure epithermal beams eliminating thermal, low epithermal and fast neutrons, the cell survival can be decreased by factors of 2-10 compared with the unmodified neutron spectrum. A dominant effect of cell-killing yield on tumour cell survival demonstrates the importance of choice of boron carrier drug. However, these calculations do not indicate an unambiguous preference for one drug, due to the large overlap of tumour cell survival in the probable ranges of the cell-killing yield for the two drugs. The cell survival value averaged over a bulky tumour volume is used to predict the overall BNCT therapeutic efficacy, using a simple model of tumour control probability (TCP).

  13. CD3+ CD8+ NKG2D+ T Lymphocytes Induce Apoptosis and Necroptosis in HLA-Negative Cells via FasL-Fas Interaction.

    PubMed

    Ivanova, Olga K; Sharapova, Tatiana N; Romanova, Elena A; Soshnikova, Natalia V; Sashchenko, Lidia P; Yashin, Denis V

    2017-10-01

    An important problem in cellular immunology is to identify new populations of cytotoxic lymphocytes capable of killing tumor cells that have lost classical components of MHC-machinery and to understand mechanisms of the death of these cells. We have previously found that CD4 + CD25 + lymphocytes appear in the lymphokine-activated killer (LAK) cell culture, which carry Tag7 (PGRP-S) and FasL proteins on their surface and can kill Hsp70- and Fas-expressing HLA-negative cells. In this work, we have continued to study the mechanisms of killing of the HLA-negative tumor cells, focusing this time on the CD8 + lymphocytes. We show that after a tumor antigen contact the IL-2 activated CD8 + lymphocytes acquire ability to lyse tumor cells bearing this antigen. However, activation of the CD8 + lymphocytes in the absence of antigen causes appearance of a cytotoxic population of CD8 + NKG2D + lymphocytes, which are able to lyse HLA-negative cancer cells that have lost the classic mechanism of antigen presentation. These cells recognize the noncanonical MicA antigen on the surface of HLA-negative K562 cells but kill them via the FasL-Fas interaction, as do cytotoxic T lymphocytes. FasL presented on the lymphocyte surface can trigger both apoptosis and necroptosis. Unlike in the case of TNFR1, another cell death receptor, no switching to alternative processes has been observed upon induction of Fas-dependent cell death. It may well be that the apoptotic and necroptotic signals are transduced separately in the latter case, with the ability of FasL + lymphocytes to induce necroptosis allowing them to kill tumor cells that escape apoptosis. J. Cell. Biochem. 118: 3359-3366, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Continuous evolution of B. thuringiensis toxins overcomes insect resistance

    PubMed Central

    Badran, Ahmed H.; Guzov, Victor M.; Huai, Qing; Kemp, Melissa M.; Vishwanath, Prashanth; Kain, Wendy; Nance, Autumn M.; Evdokimov, Artem; Moshiri, Farhad; Turner, Keith H.; Wang, Ping; Malvar, Thomas; Liu, David R.

    2016-01-01

    The Bacillus thuringiensis δ-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. We developed a phage-assisted continuous evolution (PACE) selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively targeted by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (Kd = 11–41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome Bt toxin resistance in insects and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects. PMID:27120167

  15. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab.

    PubMed

    Fujii, Rika; Friedman, Eitan R; Richards, Jacob; Tsang, Kwong Y; Heery, Christopher R; Schlom, Jeffrey; Hodge, James W

    2016-06-07

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.

  16. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab

    PubMed Central

    Fujii, Rika; Friedman, Eitan R.; Richards, Jacob; Tsang, Kwong Y.; Heery, Christopher R.; Schlom, Jeffrey; Hodge, James W.

    2016-01-01

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC. PMID:27172898

  17. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis

    PubMed Central

    Mercer, Frances; Ng, Shek Hang; Brown, Taylor M.; Boatman, Grace; Johnson, Patricia J.

    2018-01-01

    T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis–host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking “bites” of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target. PMID:29408891

  18. The in vitro mitogenic response to intact bacteria by murine B cells does not predict in vivo susceptibility to Salmonella typhimurium.

    PubMed

    Elkins, K; Metcalf, E S

    1986-05-01

    We are interested in developing in vitro culture systems that will permit immune responses to intact Salmonella typhimurium, since these systems would have certain advantages over in vivo infection models for the characterization of the host's responding cell types. In this report, the in vitro proliferative response of nonimmune murine spleen cells to four different killed preparations of S. typhimurium, strain TML (TML), are examined. These studies show that UV-killed TML, heat-killed TML, glutaraldehyde-killed TML, and acetone-killed and dried TML, all elicit a nonspecific mitogenic spleen cell response in vitro, as does a live, avirulent, temperature-sensitive mutant of TML, TS27. This response reaches a maximum on day 2 after initiation of culture, which is similar to the time course of a conventional lipopolysaccharide (LPS) response. Unlike the LPS response, little 3H-thymidine incorporation is observed in low-density cultures (2 X 10(5) cells/well), which suggests a critical role for accessory cells. The responding cell types include, but are not necessarily limited to, the B-cell population. The response cannot be readily inhibited by polymyxin B, which binds specifically to the lipid A portion of LPS. Thus, the bacterial components required for mitogenicity are not yet definitively identified. A survey of the mitogenic responses of lymphocytes from various inbred mouse strains, including the C3H/HeJ LPS hyporesponsive strain, indicates that all B cells tested are capable of proliferating vigorously in response to intact TML, regardless of the in vivo susceptibility to virulent infection. These results also emphasize the importance of assessing the nonspecific components of the immune response when studying the specific immune response to intact S. typhimurium.

  19. Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿

    PubMed Central

    Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600

  20. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    PubMed

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells.

    PubMed

    Dalton, Jane E; Howell, Gareth; Pearson, Jayne; Scott, Phillip; Carding, Simon R

    2004-09-15

    Gammadelta T cells have a direct role in resolving the host immune response to infection by eliminating populations of activated macrophages. Macrophage reactivity resides within the Vgamma1/Vdelta6.3 subset of gammadelta T cells, which have the ability to kill activated macrophages following infection with Listeria monocytogenes (Lm). However, it is not known how gammadelta T cell macrophage cytocidal activity is regulated, or what effector mechanisms gammadelta T cells use to kill activated macrophages. Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta-/- mice were incubated with splenocytes from wild-type and Fas ligand (FasL)-deficient mice (gld), the ability of Vgamma1 T cells to bind macrophages was shown to be dependent upon Fas-FasL interactions. Combinations of anti-TCR and FasL Abs completely abolished binding to and killing of activated macrophages by Vgamma1 T cells. In addition, confocal microscopy showed that Fas and the TCR colocalized on Vgamma1 T cells at points of contact with macrophages. Collectively, these studies identify an accessory or coreceptor-like function for Fas-FasL that is essential for the interaction of Vgamma1 T cells with activated macrophages and their elimination during the resolution stage of pathogen-induced immune responses. Copyright 2004 The American Association of Immunologists, Inc.

  2. Methadone, commonly used as maintenance medication for outpatient treatment of opioid dependence, kills leukemia cells and overcomes chemoresistance.

    PubMed

    Friesen, Claudia; Roscher, Mareike; Alt, Andreas; Miltner, Erich

    2008-08-01

    The therapeutic opioid drug methadone (d,l-methadone hydrochloride) is the most commonly used maintenance medication for outpatient treatment of opioid dependence. In our study, we found that methadone is also a potent inducer of cell death in leukemia cells and we clarified the unknown mechanism of methadone-induced cell killing in leukemia cells. Methadone inhibited proliferation in leukemia cells and induced cell death through apoptosis induction and activated apoptosis pathways through the activation of caspase-9 and caspase-3, down-regulation of Bcl-x(L) and X chromosome-linked inhibitor of apoptosis, and cleavage of poly(ADP-ribose) polymerase. In addition, methadone induced cell death not only in anticancer drug-sensitive and apoptosis-sensitive leukemia cells but also in doxorubicin-resistant, multidrug-resistant, and apoptosis-resistant leukemia cells, which anticancer drugs commonly used in conventional therapies of leukemias failed to kill. Depending on caspase activation, methadone overcomes doxorubicin resistance, multidrug resistance, and apoptosis resistance in leukemia cells through activation of mitochondria. In contrast to leukemia cells, nonleukemic peripheral blood lymphocytes survived after methadone treatment. These findings show that methadone kills leukemia cells and breaks chemoresistance and apoptosis resistance. Our results suggest that methadone is a promising therapeutic approach not only for patients with opioid dependence but also for patients with leukemias and provide the foundation for new strategies using methadone as an additional anticancer drug in leukemia therapy, especially when conventional therapies are less effective.

  3. Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection

    PubMed Central

    Zhukovsky, Eugene A.; Morse, Richard J.; Maus, Marcela V.

    2016-01-01

    To realize the full potential of cancer immunotherapy, the latest generation immunotherapeutics are designed to harness the potent tumor-killing capacity of T cells. Thus, to mobilize T cells, new optimized bispecific antibody (BsAb) designs, enabling efficient polyclonal redirection of cytotoxic activity through binding to CD3 and a Tumor Associated Antigen (TAA) and refined genetically-modified T cells have recently expanded the arsenal of available options for cancer treatment. This review presents the current understanding of the parameters crucial to the design of optimal T cell redirecting BsAb and chimeric antigen receptor (CAR)-modified T cells. However, there are additional questions that require thorough elucidation. Both modalities will benefit from design changes that may increase the therapeutic window. One such approach could employ the discrimination afforded by multiple TAA to significantly increase selectivity. PMID:26963133

  4. The yield of DNA double strand breaks determined after exclusion of those forming from heat-labile lesions predicts tumor cell radiosensitivity to killing.

    PubMed

    Cheng, Yanlei; Li, Fanghua; Mladenov, Emil; Iliakis, George

    2015-09-01

    The radiosensitivity to killing of tumor cells and in-field normal tissue are key determinants of radiotherapy response. In vitro radiosensitivity of tumor- and normal-tissue-derived cells often predicts radiation response, but high determination cost in time and resources compromise utility as routine response-predictor. Efforts to use induction or repair of DNA double-strand-breaks (DSBs) as surrogate-predictors of cell radiosensitivity to killing have met with limited success. Here, we re-visit this issue encouraged by our recent observations that ionizing radiation (IR) induces not only promptly-forming DSBs (prDSBs), but also DSBs developing after irradiation from the conversion to breaks of thermally-labile sugar-lesions (tlDSBs). We employ pulsed-field gel-electrophoresis and flow-cytometry protocols to measure total DSBs (tDSB=prDSB+tlDSBs) and prDSBs, as well as γH2AX and parameters of chromatin structure. We report a fully unexpected and in many ways unprecedented correlation between yield of prDSBs and radiosensitivity to killing in a battery of ten tumor cell lines that is not matched by yields of tDSBs or γH2AX, and cannot be explained by simple parameters of chromatin structure. We propose the introduction of prDSBs-yield as a novel and powerful surrogate-predictor of cell radiosensitivity to killing with potential for clinical application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms.

    PubMed

    Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S; Pitts, Betsey; Lohner, Karl; Martínez de Tejada, Guillermo

    2015-07-07

    Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen -particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least hydrophobic lipopeptides, DI-MB-LF11-322 (2,2-dimethylbutanoyl-PFWRIRIRR) and DI-MB-LF11-215, penetrated deep into the biofilm structure and homogenously killed biofilm-forming bacteria. We identified peptides derived from human lactoferricin with potent antimicrobial activity against P. aeruginosa growing either in planktonic or in biofilm mode. Although further structure-activity relationship analyses are necessary to optimize the anti-biofilm activity of these compounds, the results indicate that lactoferricin derived peptides are promising anti-biofilm agents.

  6. Importance of the autocontrol crossmatch in human renal transplantation.

    PubMed

    Cross, D E; Greiner, R; Whittier, F C

    1976-04-01

    The killing of donor cells in the standard lymphocyte crossmatch is considered strong evidence for preformed antibodies in the recipients's serum. Moreover, it is generally accepted that presensitization has occurred if any of the stored sera kill the donor cells. In our hands, if either the current or the stored sera kill the donor cells, it precludes transplantation. In nine cases we discovered that the recipient's sera also killed the recipient's own lymphocytes, a positive autocontrol test, indicating that factors other than conventional preformed cytotoxic antibodies were responsible for the positive standard crossmatch. The nine patients who demonstrated a positive standard crossmatch and a positive autocontrol for those sera received cadaver allografts. None of the kidneys were rejected hyperacutely and all are functioning adequately. We conclude that the autocontrol crossmatch is an important adjunct for uncovering false positive reactions in the standard lymphocyte crossmatch test.

  7. Herpes Simplex Virus-based gene Therapy Enhances the Efficacy of Mitomycin-C in the Treatment of Human Bladder Transitional Cell Carcinoma

    PubMed Central

    Mullerad, Michael; Bochner, Bernard H.; Adusumilli, Prasad S.; Bhargava, Amit; Kikuchi, Eiji; Hui-Ni, Chen; Kattan, Michael W.; Chou, Ting-Chao; Fong, Yuman

    2005-01-01

    Purpose Oncolytic replication-competent herpes simplex virus type-1 (HSV) mutants have the ability to replicate in and kill malignant cells. We have previously demonstrated the ability of replication-competent HSV to control bladder cancer growth in an orthotopic murine model. We hypothesized that a combination of a chemotherapeutic agent used for intravesical treatment - mitomycin-C (MMC) - and oncolytic HSV would exert a synergistic effect in the treatment of human transitional cell carcinoma (TCC). Materials and Methods We used the mutant HSV NV1066, which is deleted for viral genes ICP0 and ICP4 and selectively infects cancer cells, to treat TCC lines, KU19-19 and SKUB. Cell survival was determined by lactate dehydrogenase (LDH) assay for each agent as well as for drug-viral combinations from days 1 to 5. The isobologram method and the combination index method of Chou-Talalay were used to assess for synergistic effect. Results NV1066 enhanced MMC mediated cytotoxicity at all combinations tested for both KU19-19 and SKUB. Combination of both agents demonstrated a synergistic effect and allowed dose reduction by 12 and 10.4 times (NV1066) and by 3 and 156 times (MMC) in the treatment of KU19-19 and SKUB respectively, while achieving an estimated 90% cell kill. Conclusion These data provide the cellular basis for the clinical investigation of combined mitomycin-C and oncolytic HSV therapy in the treatment of bladder cancer. PMID:16006968

  8. Killing of Saccharomyces cerevisiae by the lysosomotropic detergent N-dodecylimidazole.

    PubMed Central

    Hussain, M; Leibowitz, M J; Lenard, J

    1987-01-01

    The lysosomotropic detergent N-dodecylimidazole (C12-Im) has previously been found to kill mammalian cells by concentrating in lysosomes, followed by lysosomal disruption and release of cytotoxic enzymes into the cytoplasm. The action of C12-Im on Saccharomyces cerevisiae is described in this report. C12-Im prevented growth of colonies when present in 1% yeast extract-2% Bacto-Peptone-2% glucose plates at concentrations of 5 micrograms/ml or above, or when present in a soft agar overlay at 20 micrograms/ml. Treatment of cells suspended in glucose-containing buffer (pH 8.0, 37 degrees C) with C12-Im (6 micrograms/ml) caused greater than 95% cell death within 6 min. Dependence of killing on C12-Im concentration was sigmoidal, suggesting a cooperative mode of action. Killing was pH dependent, being much more effective at pH 8.0 than at pH 5.0. Ammonium sulfate and imidazole protected against killing if added before, but not after, the addition of C12-Im. Sensitivity to C12-Im was strongly growth dependent: the cells were most sensitive at early to mid-logarithmic phase of growth and became progressively less sensitive during progression through late logarithmic and stationary phase. Vacuolar disruption by C12-Im was demonstrated by using cells loaded with lucifer yellow CH or fluoresceinated dextran in their vacuoles; vacuoles of logarithmically growing cells were more sensitive than those of stationary-phase cells. These results suggest that vacuolar disruption by C12-Im may underlie its cytotoxic effects. Images PMID:3300529

  9. Combined effects of space flight factors and radiation on humans

    NASA Technical Reports Server (NTRS)

    Todd, P.; Pecaut, M. J.; Fleshner, M.; Clarkson, T. W. (Principal Investigator)

    1999-01-01

    The probability that a dose of ionizing radiation kills a cell is about 10,000 times the probability that the cell will be transformed to malignancy. On the other hand, the number of cells killed required to significantly impact health is about 10,000 times the number that must be transformed to cause a late malignancy. If these two risks, cell killing and malignant transformation, are about equal, then the risk that occurs during a mission is more significant than the risk that occurs after a mission. The latent period for acute irradiation effects (cell killing) is about 2-4 weeks; the latent period for malignancy is 10-20 years. If these statements are approximately true, then the impact of cell killing on health in the low-gravity environment of space flight should be examined to establish an estimate of risk. The objective of this study is to synthesize data and conclusions from three areas of space biology and environmental health to arrive at rational risk assessment for radiations received by spacecraft crews: (1) the increased physiological demands of the space flight environment; (2) the effects of the space flight environment on physiological systems; and (3) the effects of radiation on physiological systems. One physiological system has been chosen: the immune response and its components, consisting of myeloid and lymphoid proliferative cell compartments. Best-case and worst-case scenarios are considered. In the worst case, a doubling of immune-function demand, accompanied by a halving of immune capacity, would reduce the endangering dose to a crew member to around 1 Gy.

  10. Curcumin interacts with sildenafil to kill GI tumor cells via endoplasmic reticulum stress and reactive oxygen/ nitrogen species

    PubMed Central

    Roberts, Jane L.; Poklepovic, Andrew; Booth, Laurence

    2017-01-01

    The present studies focused on the ability of the phosphodiesterase 5 (PDE5) inhibitor sildenafil to enhance the anti-cancer properties of clinically relevant concentrations of the dietary diarylheptanoid curcumin. In gastrointestinal tumor cells, sildenafil and curcumin interacted in a greater than additive fashion to kill. Inhibition of the extrinsic apoptotic pathway suppressed killing by ∼50%, as did blockade of the intrinsic apoptotic pathway. Sildenafil and curcumin reduced mTORC1 and mTORC2 activity and increased Beclin1 levels and the numbers of autophagosomes and autolysosomes in cells in a PERK-eIF2α-dependent fashion. Knock down of Beclin1 or ATG5 partially suppressed killing. In contrast, stable knock out of ATG16-L1 unexpectedly enhanced killing, an effect not altered by Beclin1/ATG5 knock down. Curcumin and sildenafil exposure reduced the expression of MCL-1, BCL-XL, thioredoxin and superoxide dismutase 2 (SOD2) in an eIF2α-dependent fashion. Curcumin and sildenafil interacted in a greater than additive fashion to increase the levels of reactive oxygen species; knock down of thioredoxin or SOD2 enhanced killing and over-expression of thioredoxin or SOD2 suppressed killing. In vivo, curcumin and sildenafil interacted to suppress the growth of colon cancer tumors. Multiplex analyses of plasma taken after drug exposure at animal nadir indicated that the levels of M-CSF, CXCL-9, PDGF and G-CSF were significantly increased by [curcumin + sildenafil] and that expression of CXCL1 and CCL5 were significantly reduced. Cells isolated from in vivo treated [curcumin + sildenafil] tumors were resistant to in vitro [curcumin + sildenafil] exposure, a phenotype that was blocked by the colon cancer therapeutic regorafenib. PMID:29245915

  11. Altered Dynamics of Candida albicans Phagocytosis by Macrophages and PMNs When Both Phagocyte Subsets Are Present

    PubMed Central

    Rudkin, Fiona M.; Bain, Judith M.; Walls, Catriona; Lewis, Leanne E.; Gow, Neil A. R.; Erwig, Lars P.

    2013-01-01

    ABSTRACT An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. PMID:24169578

  12. Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification

    PubMed Central

    Garg, Himanshu; Joshi, Anjali

    2016-01-01

    Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy. PMID:26800572

  13. Conditional Cytotoxic Anti-HIV Gene Therapy for Selectable Cell Modification.

    PubMed

    Garg, Himanshu; Joshi, Anjali

    2016-05-01

    Gene therapy remains one of the potential strategies to achieve a cure for HIV infection. One of the major limitations of anti-HIV gene therapy concerns recovering an adequate number of modified cells to generate an HIV-proof immune system. Our study addresses this issue by developing a methodology that can mark conditional vector-transformed cells for selection and subsequently target HIV-infected cells for elimination by treatment with ganciclovir (GCV). We used the herpes simplex virus thymidine kinase (TK) mutant SR39, which is highly potent at killing cells at low GCV concentrations. This gene was cloned into a conditional HIV vector, pNL-GFPRRESA, which expresses the gene of interest as well as green fluorescent protein (GFP) in the presence of HIV Tat protein. We show here that TK-SR39 was more potent that wild-type TK (TK-WT) at eliminating infected cells at lower concentrations of GCV. As the vector expresses GFP in the presence of Tat, transient expression of Tat either by Tat RNA transfection or transduction by a nonintegrating lentiviral (NIL) vector marked the cells with GFP for selection. In cells selected by this strategy, TK-SR39 was more potent at limiting virus replication than TK-WT. Finally, in Jurkat cells modified and selected by this approach, infection with CXCR4-tropic Lai virus could be suppressed by treatment with GCV. GCV treatment limited the number of HIV-infected cells, virus production, as well as virus-induced cytopathic effects in this model. We provide proof of principle that TK-SR39 in a conditional HIV vector can provide a safe and effective anti-HIV strategy.

  14. Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells.

    PubMed

    Battivelli, Emilie; Dahabieh, Matthew S; Abdel-Mohsen, Mohamed; Svensson, J Peter; Tojal Da Silva, Israel; Cohn, Lillian B; Gramatica, Andrea; Deeks, Steven; Greene, Warner C; Pillai, Satish K; Verdin, Eric

    2018-05-01

    Human immunodeficiency virus (HIV) infection is currently incurable, due to the persistence of latently infected cells. The 'shock and kill' approach to a cure proposes to eliminate this reservoir via transcriptional activation of latent proviruses, enabling direct or indirect killing of infected cells. Currently available latency-reversing agents (LRAs) have however proven ineffective. To understand why, we used a novel HIV reporter strain in primary CD4 + T cells and determined which latently infected cells are reactivatable by current candidate LRAs. Remarkably, none of these agents reactivated more than 5% of cells carrying a latent provirus. Sequencing analysis of reactivatable vs. non-reactivatable populations revealed that the integration sites were distinguishable in terms of chromatin functional states. Our findings challenge the feasibility of 'shock and kill', and suggest the need to explore other strategies to control the latent HIV reservoir. © 2018, Battivelli et al.

  15. Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans*

    PubMed Central

    Xiang, Richard F.; Stack, Danuta; Huston, Shaunna M.; Li, Shu Shun; Ogbomo, Henry; Kyei, Stephen K.; Mody, Christopher H.

    2016-01-01

    The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found that Cryptococcus neoformans independently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing, Cryptococcus initiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity against C. neoformans. Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to kill C. neoformans. PMID:26867574

  16. Gene therapy for human ovarian cancer cells using efficient expression of Fas gene combined with γδT cells.

    PubMed

    Lin, Jiajing; Zeng, Dingyuan; He, Hongying; Tan, Guangping; Lan, Ying; Jiang, Fuyan; Sheng, Shuting

    2017-10-01

    Low tissue specificity and efficiency of exogenous gene expression are the two major obstacles in tumor‑targeted gene therapy. The Fas cell surface death receptor (Fas)/Fas ligand pathway is one of the primary pathways responsible for the regulation of cell apoptosis. The aim of the present study was to explore whether the regulation of tumor specific promoters and a two‑step transcriptional amplification system (TSTA) assured efficient, targeted expression of their downstream Fas gene in human ovarian cancer cells, and to assess the killing effect of γδT cells on these cells with high Fas expression. Three shuttle plasmids containing different control elements of the human telomerase reverse transcriptase (hTERT) promoter and/or TSTA were constructed and packaged into adenovirus 5 (Ad5) vectors for the expression of exogenous Fas gene. The human ovarian cancer cell line SKOV3 and a control human embryonic lung fibroblast cell line were transfected with Ad5‑hTERT‑Fas or Ad5‑hTERT‑TSTA‑Fas. Fas mRNA and protein expression were examined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. γδT lymphocytes were isolated, cultured and mixed at different ratios with SKOV3 cells with Fas expression in order to assess the killing effect of γδT cells. hTERT promoter induced the specific expression of FAS gene in SKOV3 cells, and the TSTA strategy increased FAS expression by 14.2‑fold. The killing effect of γδT cells increased with the expression level of Fas and the effector‑target cell ratio. The killing rate for SKOV3 cells with high FAS expression was 72.5% at an effector‑target cell ratio of 40:1. The regulators of hTERT promoter and TSTA assure the efficient and targeted expression of their downstream Fas gene in SKOV3 cells. The killing effect of γδT cells for ovarian cancer cells with relatively high Fas expression was improved.

  17. Multimeric complement component C9 is necessary for killing of Escherichia coli J5 by terminal attack complex C5b-9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, K.A.; Schmetz, M.A.; Sanders, M.E.

    The authors studied the molecular composition of the complement C5b-9 complex required for optimal killing of Escherichia coli strain J5. J5 cells were incubated in 3.3%, 6.6%, or 10.0% C8-deficient serum previously absorbed to remove specific antibody and lysozyme. This resulted in the stable deposition after washing of 310, 560, and 890 C5b67 molecules per colony-forming unit, respectively, as determined by binding of /sup 125/I-labeled C7. Organisms were then incubated with excess C8 and various amounts of /sup 131/I-labeled C9. Plots of the logarithm (base 10) of E. coli J5 cells killed (log kill) vs. C9 input were sigmoidal, confirmingmore » the multihit nature of the lethal process. When C9 was supplied in excess, 3300, 5700, and 9600 molecules of C9 were bound per organism for cells bearing 310, 560, and 890 C5b-8 complexes, respectively, leading to C9-to-C7 ratios of 11.0:1, 10.8:1, and 11.4:1 and to log kill values of 1.3, 2.1, and 3.9. However, at low inputs of C9 that lead to C9-to-C7 ratios of less than 3.3:1, no killing occurred, and this was independent of the number of C5b-9 complexes bound. Formation of multimeric C9 at C9-to-C7 ratios permissive for killing was confirmed by electron microscopy and by binding of /sup 125/I-labeled antibody with specificity for multimeric but not monomeric C9. These experiments are the first to demonstrate a biological function for C9 polymerization and suggest that multimeric C9 is necessary for optimal killing of E. coli J5 cells by C5b-9.« less

  18. Off to the Organelles - Killing Cancer Cells with Targeted Gold Nanoparticles

    PubMed Central

    Kodiha, Mohamed; Wang, Yi Meng; Hutter, Eliza; Maysinger, Dusica; Stochaj, Ursula

    2015-01-01

    Gold nanoparticles (AuNPs) are excellent tools for cancer cell imaging and basic research. However, they have yet to reach their full potential in the clinic. At present, we are only beginning to understand the molecular mechanisms that underlie the biological effects of AuNPs, including the structural and functional changes of cancer cells. This knowledge is critical for two aspects of nanomedicine. First, it will define the AuNP-induced events at the subcellular and molecular level, thereby possibly identifying new targets for cancer treatment. Second, it could provide new strategies to improve AuNP-dependent cancer diagnosis and treatment. Our review summarizes the impact of AuNPs on selected subcellular organelles that are relevant to cancer therapy. We focus on the nucleus, its subcompartments, and mitochondria, because they are intimately linked to cancer cell survival, growth, proliferation and death. While non-targeted AuNPs can damage tumor cells, concentrating AuNPs in particular subcellular locations will likely improve tumor cell killing. Thus, it will increase cancer cell damage by photothermal ablation, mechanical injury or localized drug delivery. This concept is promising, but AuNPs have to overcome multiple hurdles to perform these tasks. AuNP size, morphology and surface modification are critical parameters for their delivery to organelles. Recent strategies explored all of these variables, and surface functionalization has become crucial to concentrate AuNPs in subcellular compartments. Here, we highlight the use of AuNPs to damage cancer cells and their organelles. We discuss current limitations of AuNP-based cancer research and conclude with future directions for AuNP-dependent cancer treatment. PMID:25699096

  19. Kinetics of killing Listeria monocytogenes by macrophages: rapid killing accompanying phagocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.A.

    1983-08-01

    The kinetics of bactericidal activity of activated macrophages can be precisely described by a mathematical model in which phagocytosis, killing, digestion, and release of degraded bacterial material are considered to occur continuously. To gain a better understanding of these events, I have determined the period of time between first contact of bacteria with macrophages and the onset of killing. Activated rat peritoneal macrophages were incubated for various times up to 15 min with Listeria monocytogenes previously labeled with /sup 3/H-thymidine and the unassociated bacteria removed by two centrifugations through a density interface. Both cell-associated radioactivity and cell-associated viable bacteria, determinedmore » as colony forming units after sonication of the cell pellet, increased with time of incubation. However, the specific viability of these bacteria, expressed as the ratio of number of viable bacteria per unit radioactivity declined with time, as an approximate inverse exponential, after a lag period of 2.9 +/- 0.8 min. Evidence is given that other possible causes for this decline in specific viability, other than death of the bacteria, such as preferential ingestion of dead Listeria, clumping of bacteria, variations in autolytic activity, or release of Listericidins are unlikely. I conclude therefore that activated macrophages kill Listeria approximately 3 min after the cell and the bacterium first make contact.« less

  20. How Do CD4+ T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?

    PubMed Central

    Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne

    2014-01-01

    CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871

  1. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing

    PubMed Central

    Gameiro, Sofia R.; Jammed, Momodou L.; Wattenberg, Max M.; Tsang, Kwong Y.; Ferrone, Soldano; Hodge, James W.

    2014-01-01

    Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone. PMID:24480782

  2. Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties

    PubMed Central

    2008-01-01

    Polyguanidinium oxanorbornene (PGON) was synthesized from norbornene monomers via ring-opening metathesis polymerization. This polymer was observed to be strongly antibacterial against Gram-negative and Gram-positive bacteria as well as nonhemolytic against human red blood cells. Time-kill studies indicated that this polymer is lethal and not just bacteriostatic. In sharp contrast to previously reported SMAMPs (synthetic mimics of antimicrobial peptides), PGON did not disrupt membranes in vesicle-dye leakage assays and microscopy experiments. The unique biological properties of PGON, in same ways similar to cell-penetrating peptides, strongly encourage the examination of other novel guanidino containing macromolecules as powerful and selective antimicrobial agents. PMID:18850741

  3. Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host.

    PubMed

    Bouklas, Tejas; Alonso-Crisóstomo, Luz; Székely, Tamás; Diago-Navarro, Elizabeth; Orner, Erika P; Smith, Kalie; Munshi, Mansa A; Del Poeta, Maurizio; Balázsi, Gábor; Fries, Bettina C

    2017-05-01

    Similar to other yeasts, the human pathogen Candida glabrata ages when it undergoes asymmetric, finite cell divisions, which determines its replicative lifespan. We sought to investigate if and how aging changes resilience of C. glabrata populations in the host environment. Our data demonstrate that old C. glabrata are more resistant to hydrogen peroxide and neutrophil killing, whereas young cells adhere better to epithelial cell layers. Consequently, virulence of old compared to younger C. glabrata cells is enhanced in the Galleria mellonella infection model. Electron microscopy images of old C. glabrata cells indicate a marked increase in cell wall thickness. Comparison of transcriptomes of old and young C. glabrata cells reveals differential regulation of ergosterol and Hog pathway associated genes as well as adhesion proteins, and suggests that aging is accompanied by remodeling of the fungal cell wall. Biochemical analysis supports this conclusion as older cells exhibit a qualitatively different lipid composition, leading to the observed increased emergence of fluconazole resistance when grown in the presence of fluconazole selection pressure. Older C. glabrata cells accumulate during murine and human infection, which is statistically unlikely without very strong selection. Therefore, we tested the hypothesis that neutrophils constitute the predominant selection pressure in vivo. When we altered experimentally the selection pressure by antibody-mediated removal of neutrophils, we observed a significantly younger pathogen population in mice. Mathematical modeling confirmed that differential selection of older cells is sufficient to cause the observed demographic shift in the fungal population. Hence our data support the concept that pathogenesis is affected by the generational age distribution of the infecting C. glabrata population in a host. We conclude that replicative aging constitutes an emerging trait, which is selected by the host and may even play an unanticipated role in the transition from a commensal to a pathogen state.

  4. Undifferentiated Neuroblastoma Cells Are More Sensitive to Photogenerated Oxidative Stress Than Differentiated Cells.

    PubMed

    Lee, Chu-I; Perng, Jing-Huei; Chen, Huang-Yo; Hong, Yi-Ren; Wang, Jyh-Jye

    2015-09-01

    Neuroblastoma is one of the most aggressive cancers and has a complex form of differentiation. We hypothesized that advanced cellular differentiation may alter the susceptibility of neuroblastoma to photodynamic treatment (PDT) and confer selective survival advantage. We demonstrated that hematoporphyrin uptake by undifferentiated SH-SY5Y cells was lower than that of differentiated counterparts, yet the former were more susceptible to PDT-induced oxidative stress killing. Photogenerated reactive oxygen species (ROS) in undifferentiated cells efficiently stimulated cell cycle arrest at G2/M phase, mitochondrial apoptotic pathway activation, the sustained phosphorylation of Akt/GSK-3β and ERK. Differentiated cells with more resistance to PDT exhibited a ROS-independent and a prolonged activation of ERK. Both SH-SY5Y cells exposed to PDT exhibited ROS-independent p38 and JNK activation. These results may have important implications for neuroblastoma patients undergoing photodynamic therapy. © 2015 Wiley Periodicals, Inc.

  5. Competition-colonization dynamics: An ecology approach to quasispecies dynamics and virulence evolution in RNA viruses.

    PubMed

    Ojosnegros, Samuel; Beerenwinkel, Niko; Domingo, Esteban

    2010-07-01

    A single and purified clone of foot-and-mouth disease virus diversified in cell culture into two subpopulations that were genetically distinct. The subpopulation with higher virulence was a minority and was suppressed by the dominant but less virulent one. These two populations follow the competitioncolonization dynamics described in ecology. Virulent viruses can be regarded as colonizers because they killed the cells faster and they spread faster. The attenuated subpopulation resembles competitors because of its higher replication efficiency in coinfected cells. Our results suggest a new model for the evolution of virulence which is based on interactions between components of the quasispecies. Competition between viral mutants takes place at two levels, intracellular competition and competition for new cells. The two strategies are subjected to densitydependent selection.

  6. Ganetespib, an HSP90 inhibitor, kills Epstein-Barr virus (EBV)-infected B and T cells and reduces the percentage of EBV-infected cells in the blood.

    PubMed

    Shatzer, Amber; Ali, Mir A; Chavez, Mayra; Dowdell, Kennichi; Lee, Min-Jung; Tomita, Yusuke; El-Hariry, Iman; Trepel, Jane B; Proia, David A; Cohen, Jeffrey I

    2017-04-01

    HSP90 inhibitors have been shown to kill Epstein-Barr virus (EBV)-infected cells by reducing the level of EBV EBNA-1 and/or LMP1. We treated virus-infected cells with ganetespib, an HSP90 inhibitor currently being evaluated in multiple clinical trials for cancer and found that the drug killed EBV-positive B and T cells and reduced the level of both EBV EBNA-1 and LMP1. Treatment of cells with ganetespib also reduced the level of pAkt. Ganetespib delayed the onset of EBV-positive lymphomas and prolonged survival in SCID mice inoculated with one EBV-transformed B-cell line, but not another B-cell line. The former cell line showed lower levels of EBNA-1 after treatment with ganetespib in vitro. Treatment of a patient with T-cell chronic active EBV with ganetespib reduced the percentage of EBV-positive cells in the peripheral blood. These data indicate that HSP90 inhibitors may have a role in the therapy of certain EBV-associated diseases.

  7. Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules

    PubMed Central

    Dressel, Ralf; Guan, Kaomei; Nolte, Jessica; Elsner, Leslie; Monecke, Sebastian; Nayernia, Karim; Hasenfuss, Gerd; Engel, Wolfgang

    2009-01-01

    Background Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. Reviewers This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter. PMID:19715575

  8. Antibody-peptide-MHC fusion conjugates target non-cognate T cells to kill tumour cells.

    PubMed

    King, Ben C; Hamblin, Angela D; Savage, Philip M; Douglas, Leon R; Hansen, Ted H; French, Ruth R; Johnson, Peter W M; Glennie, Martin J

    2013-06-01

    Attempts to generate robust anti-tumour cytotoxic T lymphocyte (CTL) responses using immunotherapy are frequently thwarted by exhaustion and anergy of CTL recruited to tumour. One strategy to overcome this is to retarget a population of virus-specific CTL to kill tumour cells. Here, we describe a proof-of-principle study using a bispecific conjugate designed to retarget ovalbumin (OVA)-specific CTL to kill tumour cells via CD20. A single-chain trimer (SCT) consisting of MHCI H-2K(b)/SIINFEKL peptide/beta 2 microglobulin/BirA was expressed in bacteria, refolded and chemically conjugated to one (1:1; F2) or two (2:1; F3) anti-hCD20 Fab' fragments. In vitro, the [SCT × Fab'] (F2 and F3) redirected SIINFEKL-specific OT-I CTL to kill CD20(+) target cells, and in the presence of CD20(+) target cells to provide crosslinking, they were also able to induce proliferation of OT-I cells. In vivo, activated OT-I CTL could be retargeted to kill [SCT × Fab']-coated B cells from hCD20 transgenic (hCD20 Tg) mice and also EL4 and B16 mouse tumour cells expressing human CD20 (hCD20). Importantly, in a hCD20 Tg mouse model, [SCT × Fab'] administered systemically were able to retarget activated OT-I cells to deplete normal B cells, and their performance matched that of a bispecific antibody (BsAb) comprising anti-CD3 and anti-CD20. [SCT × Fab'] were also active therapeutically in an EL4 tumour model. Furthermore, measurement of serum cytokine levels suggests that [SCT × Fab'] are associated with a lower level of inflammatory cytokine release than the BsAb and so may be advantageous clinically in terms of reduced toxicity.

  9. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy.

    PubMed Central

    Huber, B E; Richards, C A; Krenitsky, T A

    1991-01-01

    An approach involving retroviral-mediated gene therapy for the treatment of neoplastic disease is described. This therapeutic approach is called "virus-directed enzyme/prodrug therapy" (VDEPT). The VDEPT approach exploits the transcriptional differences between normal and neoplastic cells to achieve selective killing of neoplastic cells. We now describe development of the VDEPT approach for the treatment of hepatocellular carcinoma. Replication-defective, amphotrophic retroviruses were constructed containing a chimeric varicella-zoster virus thymidine kinase (VZV TK) gene that is transcriptionally regulated by either the hepatoma-associated alpha-fetoprotein or liver-associated albumin transcriptional regulatory sequences. Subsequent to retroviral infection, expression of VZV TK was limited to either alpha-fetoprotein- or albumin-positive cells, respectively. VZV TK metabolically activated the nontoxic prodrug 6-methoxypurine arabinonucleoside (araM), ultimately leading to the formation of the cytotoxic anabolite adenine arabinonucleoside triphosphate (araATP). Cells that selectively expressed VZV TK became selectively sensitive to araM due to the VZV TK-dependent anabolism of araM to araATP. Hence, these retroviral-delivered chimeric genes generated tissue-specific expression of VZV TK, tissue-specific anabolism of araM to araATP, and tissue-specific cytotoxicity due to araM exposure. By utilizing such retroviral vectors, araM was anabolized to araATP in hepatoma cells, producing a selective cytotoxic effect. Images PMID:1654555

  10. Synergistic Photothermal and Antibiotic Killing of Biofilm-Associated Staphylococcus aureus Using Targeted Antibiotic-Loaded Gold Nanoconstructs.

    PubMed

    Meeker, Daniel G; Jenkins, Samir V; Miller, Emily K; Beenken, Karen E; Loughran, Allister J; Powless, Amy; Muldoon, Timothy J; Galanzha, Ekaterina I; Zharov, Vladimir P; Smeltzer, Mark S; Chen, Jingyi

    2016-04-08

    Resistance to conventional antibiotics is a growing public health concern that is quickly outpacing the development of new antibiotics. This has led the Infectious Diseases Society of America (IDSA) to designate Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species as "ESKAPE pathogens" on the basis of the rapidly decreasing availability of useful antibiotics. This emphasizes the urgent need for alternative therapeutic strategies to combat infections caused by these and other bacterial pathogens. In this study, we used Staphylococcus aureus ( S. aureus ) as a proof-of-principle ESKAPE pathogen to demonstrate that an appropriate antibiotic (daptomycin) can be incorporated into polydopamine-coated gold nanocages (AuNC@PDA) and that daptomycin-loaded AuNC@PDA can be conjugated to antibodies targeting a species-specific surface protein (staphylococcal protein A; Spa) as a means of achieving selective delivery of the nanoconstructs directly to the bacterial cell surface. Targeting specificity was confirmed by demonstrating a lack of binding to mammalian cells, reduced photothermal and antibiotic killing of the Spa-negative species Staphylococcus epidermidis , and reduced killing of S. aureus in the presence of unconjugated anti-Spa antibodies. We demonstrate that laser irradiation at levels within the current safety standard for use in humans can be used to achieve both a lethal photothermal effect and controlled release of the antibiotic, thus resulting in a degree of therapeutic synergy capable of eradicating viable S. aureus cells. The system was validated using planktonic bacterial cultures of both methicillin-sensitive and methicillin-resistant S. aureus strains and subsequently shown to be effective in the context of an established biofilm, thus indicating that this approach could be used to facilitate the effective treatment of intrinsically resistant biofilm infections.

  11. Adjuvant breast cancer therapy: current status and future strategies--growth kinetics and the improved drug therapy of breast cancer.

    PubMed

    Norton, L

    1999-02-01

    It is well-established that the adjuvant treatment of breast cancer is effective in prolonging both disease-free and overall survival. The pressing questions are how to improve on existing treatment, whether new agents should be incorporated into adjuvant regimens, and, if so, how they should best be utilized. The application of log-kill principles to the sigmoid growth curve characteristic of human cancers suggests that the chances of eradicating tumor will be increased by dose-dense schedules. If the tumor is composed of several cell lines with different sensitivities, the optimum therapy is likely to consist of several drugs given in sequence at a good dose and on a dense schedule. Such sequential chemotherapy, rather than the use of drugs given in combination at longer intervals, should maximize log-kill at the same time as minimizing tumor regrowth. There is now evidence that the actions of chemotherapy may involve Ras, tyrosine kinases (epidermal growth factor receptor, HER2), TC21, or similar molecules. This concept may provide important clues for optimizing the clinical applications of drug therapy and for designing new therapeutic approaches. It might also explain the reason why dose density may be more effective than other schedules of administration. New blood vessel formation is an obligatory step in the establishment of a tumor in its sigmoid growth course and there is evidence that taxanes adversely affect this process. Major practical advances in the curative drug therapy of cancer should follow the demonstration of better ways to maximize cell kill, the development of predictive in vitro methods of selecting active agents, the discovery of techniques to minimize both drug resistance and host-cell toxicity, and the improved understanding of cancer-stromal interactions and their therapeutic perturbation.

  12. Timelike Killing vectors and ergo surfaces in non-asymptotically flat spacetimes

    NASA Astrophysics Data System (ADS)

    Pelavas, N.

    2005-02-01

    Ergo surfaces are investigated in spacetimes with a cosmological constant. We find the existence of multiple timelike Killing vectors, each corresponding to a distinct ergo surface, with no one being preferred. Using a kinematic invariant, which provides a measure of hypersurface orthogonality, we explore its potential role in selecting a preferred timelike Killing vector and consequently a unique ergo surface.

  13. Interdisciplinary Studies on the Combat Readiness and Health Issues Faced by Military Personnel

    DTIC Science & Technology

    2008-09-01

    University of Texas T and operational at the University of Texas at Dallas Center for BrainHealth located at 2200 W. Mockingbird Lane, Dallas, Texas...cells), and the targeted cells have been efficiently killed with NIR. This work is now published (Chakravarty et al., 2008) (Appendix B...mononuclear cells bound only to the CNTs coupled to the anti-CD25 mAb. Most importantly, only the specifically targeted cells were killed after exposure to

  14. Cancer cell death processes in combining photothermal and photodynamic effects through surface plasmon resonance of gold nanoring (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    He, Yulu; Yu, Jian-He; Hsiao, Jen-Hung; Tu, Yi-Chou; Low, Meng Chun; Hua, Wei-Hsiang; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung; Zhang, Zhenxi

    2017-02-01

    In combining the photothermal and photodynamic effects for killing cancer cells through the localized surface plasmon resonance (LSP) of photosensitizer-linked Au nanorings (NRIs), which are up-taken by the cells, the cells can be killed via different processes, including necrosis and apoptosis. In particular, the dominating effect, either photothermal or photodynamic effect, for cancer cell killing leading to either necrosis or apoptosis process is an important issue to be understood for improving the therapy efficiency. In this paper, we demonstrate the study results in differentiating the necrosis and apoptosis processes of cell death under different laser illumination conditions. With the LSP resonance wavelength of the Au NRIs around 1064 nm, the illumination of a 1064-nm cw laser can mainly produce the photothermal effect. The illumination of a 1064-nm fs laser can lead to LSP resonance-assisted two-photon absorption of the photosensitizer (AlPcS) for generating singlet oxygen and hence the photodynamic effect, besides the photothermal effect. Also, the illumination of a 660-nm cw laser can result in single-photon absorption of the photosensitizer for generating singlet oxygen and the photodynamic effect. By comparing the necrosis and apoptosis distributions in dead cells between the cases of different laser illumination conditions, we can differentiate the cancer cell killing processes between the photothermal effect, photodynamic effect, and the mixed effect.

  15. Competition for Space Is Controlled by Apoptosis-Induced Change of Local Epithelial Topology.

    PubMed

    Tsuboi, Alice; Ohsawa, Shizue; Umetsu, Daiki; Sando, Yukari; Kuranaga, Erina; Igaki, Tatsushi; Fujimoto, Koichi

    2018-06-11

    During the initial stage of tumor progression, oncogenic cells spread despite spatial confinement imposed by surrounding normal tissue. This spread of oncogenic cells (winners) is thought to be governed by selective killing of surrounding normal cells (losers) through a phenomenon called "cell competition" (i.e., supercompetition). Although the mechanisms underlying loser elimination are increasingly apparent, it is not clear how winner cells selectively occupy the space made available following loser apoptosis. Here, we combined live imaging analyses of two different oncogenic clones (Yki/YAP activation and Ras activation) in the Drosophila epithelium with computer simulation of tissue mechanics to elucidate such a mechanism. Contrary to the previous expectation that cell volume loss after apoptosis of loser cells was simply compensated for by the faster proliferation of winner cells, we found that the lost volume was compensated for by rapid cell expansion of winners. Mechanistically, the rapid winner-dominated cell expansion was driven by apoptosis-induced epithelial junction remodeling, which causes re-connection of local cellular connectivity (cell topology) in a manner that selectively increases winner apical surface area. In silico experiments further confirmed that repetition of loser elimination accelerates tissue-scale winner expansion through topological changes over time. Our proposed mechanism for linking loser death and winner expansion provides a new perspective on how tissue homeostasis disruption can initiate from an oncogenic mutation. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases.

    PubMed

    Sashihara, T; Sueki, N; Ikegami, S

    2006-08-01

    Allergic diseases are reported to be caused by a skew in the balance between T helper type 1 and 2 cells. Because some lactic acid bacteria have been shown to stimulate IL-12 (p70) production, which in turn shifts the balance between the T helper type 1 and 2 cell response from the latter to the former, they have the potential to either prevent or ameliorate disease conditions or both. They have therefore been extensively studied in the recent past for their probiotic activities. Nevertheless, much less information is available concerning the microbial factors that determine the strain-dependent ability to affect the production of cytokines. The objectives of our study were first to select potentially probiotic lactobacilli that strongly stimulate cytokine production in vitro, and then to determine whether the selected Lactobacillus strains could suppress antigen-specific IgE production in vivo by using allergic model animals. Finally, our investigation was extended to analyze which bacterial components were responsible for the observed biological activity. Twenty strains of heat-killed lactobacilli isolated from humans were screened for their stimulatory activity for the production of IL-12 (p70) by murine splenocytes in vitro. The results showed that some strains of Lactobacillus plantarum and Lactobacillus gasseri had a higher stimulatory activity for IL-12 (p70) production than the other lactobacilli tested; however, this effect was strain dependent rather than species dependent. Oral administration of the heat-killed strains that showed higher stimulatory activity for IL-12 (p70) production tended to reduce the serum antigen-specific IgE levels in ovalbumin-sensitized BALB/c mice compared with the controls. Among the lactobacilli tested, L. gasseri OLL2809 showed the highest activity in reducing the level of antigen-specific IgE. Furthermore, the stimulatory activity for IL-12 (p70) production was found to be reduced after treating the lactobacilli with N-acetyl-muramidase and to be positively correlated with the amount of peptidoglycan in the cells. The present data suggest that L. gasseri OLL2809 is a good candidate for potential probiotics in terms of either the prevention or amelioration of allergic diseases or both. In addition, the strain-dependent stimulatory activity for IL-12 (p70) production was found to be due, at least in part, to the amount of peptidoglycan present in the cells.

  17. Prime, Shock, and Kill: Priming CD4 T Cells from HIV Patients with a BCL-2 Antagonist before HIV Reactivation Reduces HIV Reservoir Size

    PubMed Central

    Cummins, Nathan W.; Sainski, Amy M.; Dai, Haiming; Natesampillai, Sekar; Pang, Yuan-Ping; Bren, Gary D.; de Araujo Correia, Maria Cristina Miranda; Sampath, Rahul; Rizza, Stacey A.; O'Brien, Daniel; Yao, Joseph D.

    2016-01-01

    ABSTRACT Understanding how some HIV-infected cells resist the cytotoxicity of HIV replication is crucial to enabling HIV cure efforts. HIV killing of CD4 T cells that replicate HIV can involve HIV protease-mediated cleavage of procaspase 8 to generate a fragment (Casp8p41) that directly binds and activates the mitochondrial proapoptotic protein BAK. Here, we demonstrate that Casp8p41 also binds with nanomolar affinity to the antiapoptotic protein Bcl-2, which sequesters Casp8p41 and prevents apoptosis. Further, we show that central memory CD4 T cells (TCM) from HIV-infected individuals have heightened expression of BCL-2 relative to procaspase 8, possibly explaining the persistence of HIV-infected TCM despite generation of Casp8p41. Consistent with this hypothesis, the selective BCL-2 antagonist venetoclax induced minimal killing of uninfected CD4 T cells but markedly increased the death of CD4 T cells and diminished cell-associated HIV DNA when CD4 T cells from antiretroviral therapy (ART)-suppressed HIV patients were induced with αCD3/αCD28 to reactivate HIV ex vivo. Thus, priming CD4 T cells from ART suppressed HIV patients with a BCL-2 antagonist, followed by HIV reactivation, achieves reductions in cell-associated HIV DNA, whereas HIV reactivation alone does not. IMPORTANCE HIV infection is incurable due to a long-lived reservoir of HIV+ memory CD4 T cells, and no clinically relevant interventions have been identified that reduce the number of these HIV DNA-containing cells. Since postintegration HIV replication can result in HIV protease generation of Casp8p41, which activates BAK, causing infected CD4 T cell death, we sought to determine whether this occurs in memory CD4 T cells. Here, we demonstrate that memory CD4 T cells can generate Casp8p41 and yet are intrinsically resistant to death induced by diverse stimuli, including Casp8p41. Furthermore, BCL-2 expression is relatively increased in these cells and directly binds and inhibits Casp8p41's proapoptotic effects. Antagonizing BCL-2 with venetoclax derepresses this antagonism, resulting in death, preferentially in HIV DNA containing cells, since only these cells generate Casp8p41. Thus, BCL-2 antagonism is a clinically relevant intervention with the potential to reduce HIV reservoir size in patients. PMID:26842479

  18. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens

    PubMed Central

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L.; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60–70% killing) and A. baumannii (85–90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa, 60–80% E. cloacae and 20–60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa, but had reduced activity against biofilms of S. aureus and A. baumannii. Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae, and A. baumannii. Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections. PMID:28261570

  19. Human Salivary Protein Histatin 5 Has Potent Bactericidal Activity against ESKAPE Pathogens.

    PubMed

    Du, Han; Puri, Sumant; McCall, Andrew; Norris, Hannah L; Russo, Thomas; Edgerton, Mira

    2017-01-01

    ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumanni , Pseudomonas aeruginosa , and Enterobacter species) pathogens have characteristic multiple-drug resistance and cause an increasing number of nosocomial infections worldwide. Peptide-based therapeutics to treat ESKAPE infections might be an alternative to conventional antibiotics. Histatin 5 (Hst 5) is a salivary cationic histidine-rich peptide produced only in humans and higher primates. It has high antifungal activity against Candida albicans through an energy-dependent, non-lytic process; but its bactericidal effects are less known. We found Hst 5 has bactericidal activity against S. aureus (60-70% killing) and A. baumannii (85-90% killing) in 10 and 100 mM sodium phosphate buffer (NaPB), while killing of >99% of P. aeruginosa , 60-80% E. cloacae and 20-60% of E. faecium was found in 10 mM NaPB. Hst 5 killed 60% of biofilm cells of P. aeruginosa , but had reduced activity against biofilms of S. aureus and A. baumannii . Hst 5 killed 20% of K. pneumonia biofilm cells but not planktonic cells. Binding and uptake studies using FITC-labeled Hst 5 showed E. faecium and E. cloacae killing required Hst 5 internalization and was energy dependent, while bactericidal activity was rapid against P. aeruginosa and A. baumannii suggesting membrane disruption. Hst 5-mediated killing of S. aureus was both non-lytic and energy independent. Additionally, we found that spermidine conjugated Hst 5 (Hst5-Spd) had improved killing activity against E. faecium, E. cloacae , and A. baumannii . Hst 5 or its derivative has antibacterial activity against five out of six ESKAPE pathogens and may be an alternative treatment for these infections.

  20. Effect of primycin on growth-arrested cultures and cell integrity of Staphylococcus aureus.

    PubMed

    Feiszt, Péter; Schneider, György; Emődy, Levente

    2017-06-01

    Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect.

  1. Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser.

    PubMed

    Wood, John P M; Shibeeb, O'Sam; Plunkett, Malcolm; Casson, Robert J; Chidlow, Glyn

    2013-03-28

    To determine detailed effects to retinal cells and, in particular, neurons following laser photocoagulation using a conventional 532 nm Nd:YAG continuous wave (CW) laser. Furthermore, to determine whether a novel 3 ns pulse laser (retinal regeneration therapy; 2RT) could specifically ablate retinal pigment epithelium (RPE) cells without causing collateral damage to other retinal cells. Adult Dark Agouti (DA) rats were separated into four groups: control, CW laser (12.7 J/cm(2)/pulse, 100 ms pulse duration), or 3 ns pulse 2RT laser at one of two energy settings ("High," 2RT-H, 163 mJ/cm(2)/pulse; "Low," 2RT-L, 109 mJ/cm(2)/pulse). Animals were treated and killed after 6 hours to 7 days, and retina/RPE was analyzed by histologic assessment, Western blot, polymerase chain reaction, and immunohistochemistry. Both lasers caused focal loss of RPE cells with no destruction of Bruch's membrane; RPE cells were present at lesion sites again within 7 days of treatments. CW and 2RT-H treatments caused extensive and moderate damage, respectively, to the outer retina. There were no obvious effects to horizontal, amacrine, or ganglion cells, as defined by immunolabeling, but an activation of PKCα within bipolar cells was noted. There was little discernible damage to any cells other than the RPE with the 2RT-L treatment. Conventional laser photocoagulation caused death of RPE cells with associated widespread damage to the outer retina but little influence on the inner retina. The novel 3 ns 2RT laser, however, was able to selectively kill RPE cells without causing collateral damage to photoreceptors. Potential benefits of this laser for clinical treatment of diabetic macular edema are discussed.

  2. Simultaneous targeting of prostate stem cell antigen and prostate-specific membrane antigen improves the killing of prostate cancer cells using a novel modular T cell-retargeting system.

    PubMed

    Arndt, Claudia; Feldmann, Anja; Koristka, Stefanie; Cartellieri, Marc; Dimmel, Maria; Ehninger, Armin; Ehninger, Gerhard; Bachmann, Michael

    2014-09-01

    Recently, we described a novel modular platform technology in which T cell-recruitment and tumor-targeting domains of conventional bispecific antibodies are split to independent components, a universal effector module (EM) and replaceable monospecific/monovalent target modules (TMs) that form highly efficient T cell-retargeting complexes. Theoretically, our unique strategy should allow us to simultaneously retarget T cells to different tumor antigens by combining the EM with two or more different monovalent/monospecific TMs or even with bivalent/bispecific TMs, thereby overcoming limitations of a monospecific treatment such as the selection of target-negative tumor escape variants. In order to advance our recently introduced prostate stem cell antigen (PSCA)-specific modular system for a dual-targeting of prostate cancer cells, two additional TMs were constructed: a monovalent/monospecific TM directed against the prostate-specific membrane antigen (PSMA) and a bivalent/bispecific TM (bsTM) with specificity for PSMA and PSCA. The functionality of the novel dual-targeting strategies was analyzed by performing T cell activation and chromium release assays. Similar to the PSCA-specific modular system, the novel PSMA-specific modular system mediates an efficient target-dependent and -specific tumor cell lysis at low E:T ratios and picomolar Ab concentrations. Moreover, by combination of the EM with either the bispecific TM directed to PSMA and PSCA or both monospecifc TMs directed to either PSCA or PSMA, dual-specific targeting complexes were formed which allowed us to kill potential escape variants expressing only one or the other target antigen. Overall, the novel modular system represents a promising tool for multiple tumor targeting. © 2014 Wiley Periodicals, Inc.

  3. Bruton's tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia.

    PubMed

    Deng, J; Isik, E; Fernandes, S M; Brown, J R; Letai, A; Davids, M S

    2017-10-01

    Although the BTK inhibitor ibrutinib has transformed the management of patients with chronic lymphocytic leukemia (CLL), it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL-2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition.

  4. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia

    PubMed Central

    Deng, Jing; Isik, Elif; Fernandes, Stacey M.; Brown, Jennifer R.; Letai, Anthony; Davids, Matthew S.

    2017-01-01

    Although the BTK inhibitor ibrutinib has transformed the management of patients with CLL, it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition. PMID:28111464

  5. Immunoglobulin Fc domain fusion to TRAIL significantly prolongs its plasma half-life and enhances its antitumor activity.

    PubMed

    Wang, Haizhen; Davis, Jennifer S; Wu, Xiangwei

    2014-03-01

    TRAIL (Apo2L) is a potent inducer of cell death. Interest in TRAIL has increased, following the observation that TRAIL can selectively kill a wide variety of human cancer cells without killing normal cells both in vitro and when grown as xenografts. Therefore, TRAIL has been proposed as a promising anticancer agent and currently is being tested in clinical trials. However, recombinant TRAIL has a very short plasma half-life, which limits its therapeutic potential. To overcome this limitation, we investigated the ability of the human IgG1 fragment crystallizable region (Fc) to enhance TRAIL stability. In this report, we show that Fc-TRAIL chimeric protein displays higher specific activity in vitro and a significantly longer half-life in mice than recombinant human TRAIL (rh-TRAIL). No short-term toxicity, especially liver toxicity, was observed. More importantly, Fc-TRAIL was much more effective in inhibiting tumor growth in a xenograft tumor model compared with rh-TRAIL. Our data suggest that fusion of Fc to TRAIL is able to improve the bioavailability and activity of TRAIL both in vitro and in vivo, and Fc-TRAIL may be explored for future clinical applications in cancer treatment and prevention. ©2014 AACR.

  6. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation

    PubMed Central

    Granzin, Markus; Wagner, Juliane; Köhl, Ulrike; Cerwenka, Adelheid; Huppert, Volker; Ullrich, Evelyn

    2017-01-01

    Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an attractive option to increase NK cells in numbers and to improve their antitumor potential prior to clinical applications. Consequently, various strategies to generate NK cells for adoptive immunotherapy have been developed. Here, we give an overview of different NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture and expand NK cells. The selection of the respective cytokine combination is an important factor that directly affects NK cell maturation, proliferation, survival, distribution of NK cell subpopulations, activation, and function in terms of cytokine production and cytotoxic potential. Importantly, cytokines can upregulate the expression of certain activating receptors on NK cells, thereby increasing their responsiveness against tumor cells that express the corresponding ligands. Apart from using cytokines, cocultivation with autologous accessory non-NK cells or addition of growth-inactivated feeder cells are approaches for NK cell cultivation with pronounced effects on NK cell activation and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells become frequently dysfunctional in cancer patients, for instance, by downregulation of NK cell activating receptors, disabling them in their antitumor response. In such scenario, ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to overcome immunosuppression. In this review, we summarize the current knowledge on NK cell modulation by different ex vivo cultivation strategies focused on increasing NK cytotoxicity for clinical application in malignant diseases. Moreover, we critically discuss the technical and regulatory aspects and challenges underlying NK cell based therapeutic approaches in the clinics. PMID:28491060

  7. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    PubMed

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing.

    PubMed

    Pan, Deng; Kobayashi, Aya; Jiang, Peng; Ferrari de Andrade, Lucas; Tay, Rong En; Luoma, Adrienne M; Tsoucas, Daphne; Qiu, Xintao; Lim, Klothilda; Rao, Prakash; Long, Henry W; Yuan, Guo-Cheng; Doench, John; Brown, Myles; Liu, X Shirley; Wucherpfennig, Kai W

    2018-02-16

    Many human cancers are resistant to immunotherapy, for reasons that are poorly understood. We used a genome-scale CRISPR-Cas9 screen to identify mechanisms of tumor cell resistance to killing by cytotoxic T cells, the central effectors of antitumor immunity. Inactivation of >100 genes-including Pbrm1 , Arid2 , and Brd7 , which encode components of the PBAF form of the SWI/SNF chromatin remodeling complex-sensitized mouse B16F10 melanoma cells to killing by T cells. Loss of PBAF function increased tumor cell sensitivity to interferon-γ, resulting in enhanced secretion of chemokines that recruit effector T cells. Treatment-resistant tumors became responsive to immunotherapy when Pbrm1 was inactivated. In many human cancers, expression of PBRM1 and ARID2 inversely correlated with expression of T cell cytotoxicity genes, and Pbrm1 -deficient murine melanomas were more strongly infiltrated by cytotoxic T cells. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Mediation of host immune responses after immunization of neonatal calves with a heat-killed Mycobacterium avium subsp. paratuberculosis vaccine

    USDA-ARS?s Scientific Manuscript database

    A major drawback of current whole-cell vaccines for Mycobacterium avium subsp. paratuberculosis(MAP) is the interference with diagnostic tests for bovine tuberculosis and paratuberculosis. The current study was designed to explore effects of immunization with a heat-killed whole cell vaccine (Mycop...

  10. Response of selected microorganisms to experimental planetary environments

    NASA Technical Reports Server (NTRS)

    Foster, T. L.

    1981-01-01

    Anaerobic and aerobic sporeformers and non-sporeformers were cultivated anaerobically in nutrient media under various pressures (up to 1800 psi) of pure H2, CH4, NH3, and H2S. Viability assays were performed periodically to determine growth, survival, or spore survival. Hydrogen up to 1800 psi demonstrated little or no suppression of growth with the possible exception of Bacillus coagulans at 1800 psi. The obligate anaerobes grew very well. Under CH4 the obligate anaerobes again exhibited the most prolific growth, whereas the facultative anaerobes grew well except under higher pressures. Ammonia at low pressure was extremely toxic to all test organisms. At 100 psi all populations were killed within 24 hours except Staphylococcus aureus which survived for 72 hours and the Bacillus spp. which produced a surviving population of approximately 10,000 spores/ml. All populations in H2S were killed within 24 to 48 hours except Proteus mirabilis which decreased to 100 cells/ml and the Bacillus spp. Spore survival studies of two months duration demonstrated that B. coagulans and B. pumilus survived under all experimental conditions. Clostridium novyi type B and C. sporogenes were killed rapidly in NH3 and H2S and demonstrated no sporulation.

  11. PDE5 inhibitors enhance the lethality of [pemetrexed + sorafenib

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Dent, Paul

    2017-01-01

    The combination of pemetrexed and sorafenib has significant clinical activity against a wide variety of tumor types in patients and the present studies were performed to determine whether sildenafil enhances the killing potential of [pemetrexed + sorafenib]. In multiple genetically diverse lung cancer cell lines, sildenafil enhanced the lethality of [pemetrexed + sorafenib]. The three-drug combination reduced the activities of AKT, mTOR and STAT transcription factors; increased the activities of eIF2α and ULK-1; lowered the expression of MCL-1, BCL-XL, thioredoxin and SOD2; and increased the expression of Beclin1. Enhanced cell killing by sildenafil was blocked by inhibition of death receptor signaling and autophagosome formation. Enforced activation of STAT3 and AKT or inhibition of JNK significantly reduced cell killing. The enhanced cell killing caused by sildenafil was more reliant on increased PKG signaling than on the generation of nitric oxide. In vivo sildenafil enhanced the anti-tumor properties of [pemetrexed + sorafenib]. Based on our data we argue that additional clinical studies combining pemetrexed, sorafenib and sildenafil are warranted. PMID:28088782

  12. Active insecticides for Diaphania hyalinata selective for the natural enemy Solenopsis saevissima.

    PubMed

    Aguiar, Alex R; Alvarenga, Elson S; Lopes, Mayara C; Santos, Izailda B Dos; Galdino, Tarcisio V; Picanço, Marcelo C

    2016-09-01

    The objective of this study was to determine the toxicity of the nine synthetic dienamides against the insect pest Diaphania hyalinata (melonworm) and the selectivity of these substances for the predator Solenopsis saevissima (fire ant). Four bioassays were conducted. To begin with, the dienamides that caused high mortality of D. hyalinata have been selected. In the second bioassay the dose-mortality curves of the selected dienamides have been constructed. In the third bioassay, the survival curves for D. hyalinata and the elapsed time to kill 50% of their population have been determined. In the fourth biological test, the selectivity of the substances to the predator S. saevissima has been evaluated. The most active (2E,4E)-N-butylhexa-2,4-dienamide 3d has killed 95% of the melonworm, D. hyalinata, and less than 10% of the natural enemy S. saevissima. The results presented by this compound are superior to the outcome displayed by the commercial insecticide Malathion®. Three of the dienamides prepared in this manuscript have proven to be selective in killing the pest, but not the beneficial insect.

  13. Discovery of why acute lymphoblastic leukaemia cells are killed by asparaginase: Adventures of a young post-doctoral student, Bertha K Madras.

    PubMed

    Seeman, Philip

    2014-05-01

    A surprising finding was made by JG Kidd (1909-1991) that guinea pig serum could make tumours disappear in mice. A later finding made by JD Broome (1939-) showed that asparaginase could suppress or kill tumour cells. However, the major mystery was why were only tumour cells but not normal cells affected by the asparaginase? The biology underlying this mechanism was unravelled by a young post-doctoral student, Bertha K Madras (1942-) who hypothesized that cells with low asparagine synthetase are those that die following treatment with asparaginase. To test her theory, Madras developed an assay for asparagine synthetase. The hypothesis was supported by the results that cells with normal asparagine synthetase were protected, while cells with low levels of this enzyme were killed by asparaginase. The findings provide a clinical guide for the use of asparaginase in acute lymphoblastic leukaemia in children and adults. © IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing.

    PubMed

    Basu, Roshni; Whitlock, Benjamin M; Husson, Julien; Le Floc'h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C; Huse, Morgan

    2016-03-24

    The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Identification of potentially cytotoxic lesions induced by UVA photoactivation of DNA 4-thiothymidine in human cells

    PubMed Central

    Reelfs, Olivier; Macpherson, Peter; Ren, Xiaolin; Xu, Yao-Zhong; Karran, Peter; Young, Antony R.

    2011-01-01

    Photochemotherapy—in which a photosensitizing drug is combined with ultraviolet or visible radiation—has proven therapeutic effectiveness. Existing approaches have drawbacks, however, and there is a clinical need to develop alternatives offering improved target cell selectivity. DNA substitution by 4-thiothymidine (S4TdR) sensitizes cells to killing by ultraviolet A (UVA) radiation. Here, we demonstrate that UVA photoactivation of DNA S4TdR does not generate reactive oxygen or cause direct DNA breakage and is only minimally mutagenic. In an organotypic human skin model, UVA penetration is sufficiently robust to kill S4TdR-photosensitized epidermal cells. We have investigated the DNA lesions responsible for toxicity. Although thymidine is the predominant UVA photoproduct of S4TdR in dilute solution, more complex lesions are formed when S4TdR-containing oligonucleotides are irradiated. One of these, a thietane/S5-(6-4)T:T, is structurally related to the (6-4) pyrimidine:pyrimidone [(6-4) Py:Py] photoproducts induced by UVB/C radiation. These lesions are detectable in DNA from S4TdR/UVA-treated cells and are excised from DNA more efficiently by keratinocytes than by leukaemia cells. UVA irradiation also induces DNA interstrand crosslinking of S4TdR-containing duplex oligonucleotides. Cells defective in repairing (6-4) Py:Py DNA adducts or processing DNA crosslinks are extremely sensitive to S4TdR/UVA indicating that these lesions contribute significantly to S4TdR/UVA cytotoxicity. PMID:21890905

  16. Ruxolitinib synergizes with DMF to kill via BIM+BAD-induced mitochondrial dysfunction and via reduced SOD2/TRX expression and ROS.

    PubMed

    Tavallai, Mehrad; Booth, Laurence; Roberts, Jane L; McGuire, William P; Poklepovic, Andrew; Dent, Paul

    2016-04-05

    We determined whether the myelofibrosis drug ruxolitinib, an inhibitor of Janus kinases 1/2 (JAK1 and JAK2), could interact with the multiple sclerosis drug dimethyl-fumarate (DMF) to kill tumor cells; studies used the in vivo active form of the drug, mono-methyl fumarate (MMF). Ruxolitinib interacted with MMF to kill brain, breast, lung and ovarian cancer cells, and enhanced the lethality of standard of care therapies such as paclitaxel and temozolomide. MMF also interacted with other FDA approved drugs to kill tumor cells including Celebrex® and Gilenya®. The combination of [ruxolitinib + MMF] inactivated ERK1/2, AKT, STAT3 and STAT5; reduced expression of MCL-1, BCL-XL, SOD2 and TRX; increased BIM expression; decreased BAD S112 S136 phosphorylation; and enhanced pro-caspase 3 cleavage. Expression of activated forms of STAT3, MEK1 or AKT each significantly reduced drug combination lethality; prevented BAD S112 S136 dephosphorylation and decreased BIM expression; and preserved TRX, SOD2, MCL-1 and BCL-XL expression. The drug combination increased the levels of reactive oxygen species in cells, and over-expression of TRX or SOD2 prevented drug combination tumor cell killing. Over-expression of BCL-XL or knock down of BAX, BIM, BAD or apoptosis inducing factor (AIF) protected tumor cells. The drug combination increased AIF : HSP70 co-localization in the cytosol but this event did not prevent AIF : eIF3A association in the nucleus.

  17. Aptamer-based viability impedimetric sensor for bacteria.

    PubMed

    Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V

    2012-11-06

    The development of an aptamer-based viability impedimetric sensor for bacteria (AptaVISens-B) is presented. Highly specific DNA aptamers to live Salmonella typhimurium were selected via the cell-systematic evolution of ligands by exponential enrichment (SELEX) technique. Twelve rounds of selection were performed; each comprises a positive selection step against viable S. typhimurium and a negative selection step against heat killed S. typhimurium and a mixture of related pathogens, including Salmonella enteritidis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii to ensure the species specificity of the selected aptamers. The DNA sequence showing the highest binding affinity to the bacteria was further integrated into an impedimetric sensor via self-assembly onto a gold nanoparticle-modified screen-printed carbon electrode (GNP-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. typhimurium down to 600 CFU mL(-1) (equivalent to 18 live cells in 30 μL of assay volume) and distinguish it from other Salmonella species, including S. enteritidis and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based viability sensing of a variety of microorganisms, particularly viable but nonculturable (VBNC) bacteria, using a rapid, economic, and label-free electrochemical platform.

  18. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells?

    PubMed Central

    Cicchelero, Laetitia; Denies, Sofie; Devriendt, Bert; de Rooster, Hilde; Sanders, Niek N

    2015-01-01

    Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive. PMID:26587315

  19. Evaluation of the effects of a plasma activated medium on cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohades, S.; Laroussi, M., E-mail: mlarouss@odu.edu; Sears, J.

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma tomore » a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.« less

  20. Targeting Nrf2 with wogonin overcomes cisplatin resistance in head and neck cancer.

    PubMed

    Kim, Eun Hye; Jang, Hyejin; Shin, Daiha; Baek, Seung Ho; Roh, Jong-Lyel

    2016-11-01

    A principal limitation to the clinical use of cisplatin is the high incidence of chemoresistance to this drug. Combination treatments with other drugs may help to circumvent this problem. Wogonin, one of the major natural flavonoids, is known to reverse multidrug resistance in several types of cancers. We investigated the ability of wogonin to overcome cisplatin resistance in head and neck cancer (HNC) cells and further clarified its molecular mechanisms of action. Two cisplatin-resistant HNC cell lines (AMC-HN4R and -HN9R) and their parental and other human HNC cell lines were used. The effects of wogonin, either alone or in combination with cisplatin, were assessed in HNC cells and normal cells using cell cycle and death assays and by measuring cell viability, reactive oxygen species (ROS) production, and protein expression, and in tumor xenograft mouse models. Wogonin selectively killed HNC cells but spared normal cells. It inhibited nuclear factor erythroid 2-related factor 2 and glutathione S-transferase P in cisplatin-resistant HNC cells, resulting in increased ROS accumulation in HNC cells, an effect that could be blocked by the antioxidant N-acetyl-L-cysteine. Wogonin also induced selective cell death by targeting the antioxidant defense mechanisms enhanced in the resistant HNC cells and activating cell death pathways involving PUMA and PARP. Hence, wogonin significantly sensitized resistant HNC cells to cisplatin both in vitro and in vivo. Wogonin is a promising anticancer candidate that induces ROS accumulation and selective cytotoxicity in HNC cells and can help to overcome cisplatin-resistance in this cancer.

  1. Selective control of common crap: ineffectiveness of 2-(digeranylamino)-ethanol (GD-174) in pond trials

    USGS Publications Warehouse

    Gilderhus, P.A.; Burress, R.M.

    1983-01-01

    The candidate piscicide, 2-(digeranylamino)-ethanol, (commonly known as GD-174) was subjected to efficacy trials in ponds under a wide variety of conditions. Results of the trials were disappointing considering that laboratory tests had shown the compound to be selectively toxic to common carp (Cyprinus carpio). Results of pretreatment, on-site toxicity tests were misleading and indicated concentrations that failed to kill all of the carp in 19 of 23 ponds. In a few instances, the chemical killed the carp with little or no effect on nontarget fishes. No fish were killed in some trials and large numbers of nontarget fishes were killed in others. Twenty of 25 pond trials were judged to be unsuccessful. Success or failure of pond treatments could not be correlated with any particular combination of physical, chemical, and biological factors. Because the activity of GD-174 against mixed populations of fish cannot be predicted, further development of this compound as a selective toxicant for carp has been discontinued at the National Fishery Research Laboratory.

  2. Agonist antibody that induces human malignant cells to kill one another

    PubMed Central

    Yea, Kyungmoo; Zhang, Hongkai; Xie, Jia; Jones, Teresa M.; Lin, Chih-Wei; Francesconi, Walter; Berton, Fulvia; Fallahi, Mohammad; Sauer, Karsten; Lerner, Richard A.

    2015-01-01

    An attractive, but as yet generally unrealized, approach to cancer therapy concerns discovering agents that change the state of differentiation of the cancer cells. Recently, we discovered a phenomenon that we call “receptor pleiotropism” in which agonist antibodies against known receptors induce cell fates that are very different from those induced by the natural agonist to the same receptor. Here, we show that one can take advantage of this phenomenon to convert acute myeloblastic leukemic cells into natural killer cells. Upon induction with the antibody, these leukemic cells enter into a differentiation cascade in which as many as 80% of the starting leukemic cells can be differentiated. The antibody-induced killer cells make large amounts of perforin, IFN-γ, and granzyme B and attack and kill other members of the leukemic cell population. Importantly, induction of killer cells is confined to transformed cells, in that normal bone marrow cells are not induced to form killer cells. Thus, it seems possible to use agonist antibodies to change the differentiation state of cancer cells into those that attack and kill other members of the malignant clone from which they originate. PMID:26487683

  3. Depletion of tyrosyl DNA phosphodiesterase 2 activity enhances etoposide-mediated double-strand break formation and cell killing.

    PubMed

    Kont, Yasemin Saygideger; Dutta, Arijit; Mallisetty, Apurva; Mathew, Jeena; Minas, Tsion; Kraus, Christina; Dhopeshwarkar, Priyanka; Kallakury, Bhaskar; Mitra, Sankar; Üren, Aykut; Adhikari, Sanjay

    2016-07-01

    DNA topoisomerase 2 (Top2) poisons, including common anticancer drugs etoposide and doxorubicin kill cancer cells by stabilizing covalent Top2-tyrosyl-DNA 5'-phosphodiester adducts and DNA double-strand breaks (DSBs). Proteolytic degradation of the covalently attached Top2 leaves a 5'-tyrosylated blocked termini which is removed by tyrosyl DNA phosphodiesterase 2 (TDP2), prior to DSB repair through non-homologous end joining (NHEJ). Thus, TDP2 confers resistance of tumor cells to Top2-poisons by repairing such covalent DNA-protein adducts, and its pharmacological inhibition could enhance the efficacy of Top2-poisons. We discovered NSC111041, a selective inhibitor of TDP2, by optimizing a high throughput screening (HTS) assay for TDP2's 5'-tyrosyl phosphodiesterase activity and subsequent validation studies. We found that NSC111041 inhibits TDP2's binding to DNA without getting intercalated into DNA and enhanced etoposide's cytotoxicity synergistically in TDP2-expressing cells but not in TDP2 depleted cells. Furthermore, NSC111041 enhanced formation of etoposide-induced γ-H2AX foci presumably by affecting DSB repair. Immuno-histochemical analysis showed higher TDP2 expression in a sub-set of different type of tumor tissues. These findings underscore the feasibility of clinical use of suitable TDP2 inhibitors in adjuvant therapy with Top2-poisons for a sub-set of cancer patients with high TDP2 expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Genetically engineered T cells to target EGFRvIII expressing glioblastoma.

    PubMed

    Bullain, Szofia S; Sahin, Ayguen; Szentirmai, Oszkar; Sanchez, Carlos; Lin, Ning; Baratta, Elizabeth; Waterman, Peter; Weissleder, Ralph; Mulligan, Richard C; Carter, Bob S

    2009-09-01

    Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-zeta). After in vitro selection and expansion, MR1-zeta genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-gamma secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-zeta) or signaling (MR1-delzeta). MR1-zeta expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications.

  5. Spontaneous cytotoxic earthworm leukocytes kill K562 tumor cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-08-01

    Earthworm coelomocytes may act as effector cells which destroy targets in vitro. In a 51Cr release assay, Lumbricus coelomocyte effectors showed lytic activities of 3-14% against K562 human tumor cells when incubated 1-4 hr at 23 degrees C or 37 degrees C. Cytotoxicity was correlated with effector: target ratio. However, targets were not killed by incubating them in cell-free, 0.2 micron filtered coelomic fluid. The supernatant from coelomocytes cultured alone failed to kill K562 targets but coelomocyte lysates were toxic to target cells in a concentration-dependent manner. Coelomocytes were examined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When effectors and targets were examined under TEM, we found close apposition of effector granulocytic coelomocytes and target cell membranes but not with coelomocytes nor eleocytes at up to 15 min incubation. By SEM, effector cells appeared not only to be in close contact with targets, but instances of target lysis were observed. These results suggest that effector cell/target cell contact is essential for cytotoxicity to occur.

  6. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J., E-mail: bnickol@lumc.edu

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cellmore » killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.« less

  7. The Chinese Herbal Mixture Tien-Hsien Liquid Augments the Anticancer Immunity in Tumor Cell–Vaccinated Mice

    PubMed Central

    Yang, Pei-Ming; Du, Jia-Ling; Wang, George Nian-Kae; Chia, Jean-San; Hsu, Wei-Bin; Pu, Pin-Ching; Sun, Andy; Chiang, Chun-Pin; Wang, Won-Bo

    2016-01-01

    Background. The Chinese herbal mixture, Tien-Hsien liquid (THL), has been used as an anticancer dietary supplement for more than 20 years. Our previous studies have shown that THL can modulate immune responseand inhibit tumor growth. In this study, we further evaluated the effect of THL on anticancer immune response in mice vaccinated with γ-ray-irradiated tumor cells. Methods. The antitumor effect of THL was determined in mice vaccinated with low-tumorigenic CT-26-low colon cancer cells or γ-ray-irradiated high-tumorigenic CT-26-high colon cancer cells. The number of natural killer (NK) cells and T lymphocytes in the spleen was analyzed by flow cytometry. The tumor-killing activities of NK cells and cytotoxic T lymphocytes (CTLs) were analyzed by flow cytometry using YAC-1 and CT-26-high cells, respectively, as target cells. The levels of IFN-γ, IL-2, and TNF-α were determined by ELISA. Results. THL suppressed the growth of CT-26-high tumor in mice previously vaccinated with low-tumorigenic CT-26-low cells or γ-irradiated CT-26-high cells. THL increased the populations of NK cells and CD4+ T lymphocytes in the spleen and enhanced the tumor-killing activities of NK cells and CTL in mice vaccinated with γ-irradiated CT-26-high cells. THL increased the production of IFN-γ, IL-2, and TNF-α in mice vaccinated with γ-irradiated CT-26-high cells. Conclusion. THL can enhance the antitumor immune responses in mice vaccinated with killed tumor cells. These results suggest that THL may be used as a complementary medicine for cancer patients previously treated with killed tumor cell vaccines, radiotherapy, or chemotherapy. PMID:27252074

  8. Memory CD8+ T Cells Protect Dendritic Cells from CTL Killing1

    PubMed Central

    Watchmaker, Payal B.; Urban, Julie A.; Berk, Erik; Nakamura, Yutaro; Mailliard, Robbie B.; Watkins, Simon C.; van Ham, S. Marieke; Kalinski, Pawel

    2010-01-01

    CD8+ T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8+ T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8+ T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4+ and CD8+ T cell populations. Moreover, memory CD8+ T cells that release the DC-activating factor TNF-α before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4+ Th cells. The currently identified DC-protective function of memory CD8+ T cells helps to explain the phenomenon of CD8+ T cell memory, reduced dependence of recall responses on CD4+ T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization. PMID:18322193

  9. Selective toxicity of 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide toward hypoxic mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauth, A.M.; Mohindra, J.K.

    1981-12-01

    The chemotherapeutic agent 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC) is used in the treatment of malignant melanoma where response rates of 15 to 30% have been reported. Some current interest exists in combining DTIC chemotherapy with localized high-dose (800 rads)-per-fraction radiotherapy in the treatment of unresectable metastatic melanoma. The present work investigates the radiosensitizing and chemotherapeutic properties of DTIC in an in vitro system using Chinese hamster ovary or HeLa cells and in vivo, using the KHT transplantable murine tumor. No evidence of a radiosensitizing effect of DTIC was found towards hypoxic or aerobic cells either in vitro or in vivo. In vitro, highmore » drug concentrations (1 mg/ml) were approximately 5 times more effective in killing hypoxic Chinese hamster ovary or HeLa cells than in killing aerobic cells over exposure times of 0 to 12 hr. The degree of toxicity was drug dose and temperature dependent but was not highly dependent on cell number or cell type. In vivo plasma levels of DTIC were measured with high-pressure liquid chromatography after i.p. injection of drug into C3H mice. At the highest drug doses tested, near the 50% lethal dose in mice for DTIC (0.5 mg/g), the drug was toxic to both aerobic and hypoxic tumor cells with some evidence of increased toxicity towards hypoxic cells. The present work suggests that DTIC may be more efficiently activated under hypoxic conditions as compared to aerobic conditions. The increased toxicity of DTIC under hypoxic versus aerobic conditions may prove to be a feature of this drug that can be exploited in its clinical use and in the design of new analogs of DTIC.« less

  10. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells.

    PubMed

    Verrax, Julien; Vanbever, Stéphanie; Stockis, Julie; Taper, Henryk; Calderon, Pedro Buc

    2007-03-15

    Among different features of cancer cells, two of them have retained our interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress. Therefore, we took advantage of these features to develop an experimental approach by selectively exposing cancer cells to an oxidant insult induced by the combination of menadione (vitamin K(3)) and ascorbate (vitamin C). Ascorbate enhances the menadione redox cycling, increases the formation of reactive oxygen species and kills K562 cells as shown by more than 65% of LDH leakage after 24 hr of incubation. Since both lactate formation and ATP content are depressed by about 80% following ascorbate/menadione exposure, we suggest that the major intracellular event involved in such a cytotoxicity is related to the impairment of glycolysis. Indeed, NAD(+) is rapidly and severely depleted, a fact most probably related to a strong Poly(ADP-ribose) polymerase (PARP) activation, as shown by the high amount of poly-ADP-ribosylated proteins. The addition of N-acetylcysteine (NAC) restores most of the ATP content and the production of lactate as well. The PARP inhibitor dihydroxyisoquinoline (DiQ) was able to partially restore both parameters as well as cell death induced by ascorbate/menadione. These results suggest that the PARP activation induced by the oxidative stress is a major but not the only intracellular event involved in cell death by ascorbate/menadione. Due to the high energetic dependence of cancer cells on glycolysis, the impairment of such an essential pathway may explain the effectiveness of this combination to kill cancer cells. (c) 2006 Wiley-Liss, Inc.

  11. Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity.

    PubMed

    Jayakumar, Sundarraj; Patwardhan, Raghavendra S; Pal, Debojyoti; Singh, Babita; Sharma, Deepak; Kutala, Vijay Kumar; Sandur, Santosh Kumar

    2017-12-01

    Mitocurcumin is a derivative of curcumin, which has been shown to selectively enter mitochondria. Here we describe the anti-tumor efficacy of mitocurcumin in lung cancer cells and its mechanism of action. Mitocurcumin, showed 25-50 fold higher efficacy in killing lung cancer cells as compared to curcumin as demonstrated by clonogenic assay, flow cytometry and high throughput screening assay. Treatment of lung cancer cells with mitocurcumin significantly decreased the frequency of cancer stem cells. Mitocurcumin increased the mitochondrial reactive oxygen species (ROS), decreased the mitochondrial glutathione levels and induced strand breaks in the mitochondrial DNA. As a result, we observed increased BAX to BCL-2 ratio, cytochrome C release into the cytosol, loss of mitochondrial membrane potential and increased caspase-3 activity suggesting that mitocurcumin activates the intrinsic apoptotic pathway. Docking studies using mitocurcumin revealed that it binds to the active site of the mitochondrial thioredoxin reductase (TrxR2) with high affinity. In corroboration with the above finding, mitocurcumin decreased TrxR activity in cell free as well as the cellular system. The anti-cancer activity of mitocurcumin measured in terms of apoptotic cell death and the decrease in cancer stem cell frequency was accentuated by TrxR2 overexpression. This was due to modulation of TrxR2 activity to NADPH oxidase like activity by mitocurcumin, resulting in higher ROS accumulation and cell death. Thus, our findings reveal mitocurcumin as a potent anticancer agent with better efficacy than curcumin. This study also demonstrates the role of TrxR2 and mitochondrial DNA damage in mitocurcumin mediated killing of cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dormancy activation mechanism of oral cavity cancer stem cells.

    PubMed

    Chen, Xiang; Li, Xin; Zhao, Baohong; Shang, Dehao; Zhong, Ming; Deng, Chunfu; Jia, Xinshan

    2015-07-01

    Radiotherapy and chemotherapy are targeted primarily at rapidly proliferating cancer cells and are unable to eliminate cancer stem cells in the G0 phase. Thus, these treatments cannot prevent the recurrence and metastasis of cancer. Understanding the mechanisms by which cancer stem cells are maintained in the dormant G0 phase, and how they become active is key to developing new cancer therapies. The current study found that the anti-cancer drug 5-fluorouracil, acting on the oral squamous cell carcinoma KB cell line, selectively killed proliferating cells while sparing cells in the G0 phase. Bisulfite sequencing PCR showed that demethylation of the Sox2 promoter led to the expression of Sox2. This then resulted in the transformation of cancer stem cells from the G0 phase to the division stage and suggested that the transformation of cancer stem cells from the G0 phase to the division stage is closely related to an epigenetic modification of the cell.

  13. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    PubMed

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Trichinella spiralis: killing of newborn larvae by lung cells.

    PubMed

    Falduto, Guido H; Vila, Cecilia C; Saracino, María P; Calcagno, Marcela A; Venturiello, Stella M

    2015-02-01

    The migratory stage of Trichinella spiralis, the newborn larva (NBL), travels along the pulmonary microvascular system on its way to the skeletal muscle cells. The present work studies the capability of lung cells to kill NBL. For this purpose, in vitro cytotoxicity assays were performed using NBL, lung cell suspensions from Wistar rats, rat anti-NBL surface sera, and fresh serum as complement source. The cytotoxic activity of lung cells from rats infected on day 6 p.i. was compared with that from noninfected rats. Two and 20 h-old NBL (NBL2 and NBL20) were used as they had shown to exhibit different surface antigens altering their biological activity. Sera antibodies were analyzed by indirect immunofluorescence assay, and cell populations used in each assay were characterized by histological staining. The role of IgE in the cytotoxic attack against NBL was analyzed using heated serum. The FcεRI expression on cell suspensions was examined by flow cytometry. Results showed that lung cells were capable of killing NBL by antibody-dependent cell-mediated cytotoxicity (ADCC). Lung cells from infected animals yielded the highest mortality percentages of NBL, with NBL20 being the most susceptible to such attack. IgE yielded a critical role in the cytotoxic attack. Regarding the analysis of cell suspensions, cells from infected rats showed an increase in the percentage of eosinophils, neutrophils, and the number of cells expressing the FcεRI receptor. We conclude that lung cells are capable of killing NBL in the presence of specific antibodies, supporting the idea that the lung is one of the sites where the NBL death occurs due to ADCC.

  15. IFN-γ Stimulated Human Umbilical-Tissue-Derived Cells Potently Suppress NK Activation and Resist NK-Mediated Cytotoxicity In Vitro

    PubMed Central

    Noone, Cariosa; Kihm, Anthony; O'Dea, Shirley; Mahon, Bernard P.

    2013-01-01

    Umbilical cord tissue represents a unique source of cells with potential for cell therapy applications for multiple diseases. Human umbilical tissue-derived cells (hUTC) are a developmentally early stage, homogenous population of cells that are HLA-ABC dim, HLA-DR negative, and lack expression of co-stimulatory molecules in the unactivated state. The lack of HLA-DR and co-stimulatory molecule expression on unactivated hUTC may account for their reduced immunogenicity, facilitating their use in allogeneic settings. However, such approaches could be confounded by host innate cells such as natural killer (NK) cells. Here, we evaluate in vitro NK cell interactions with hUTC and compare them with human mesenchymal stem cells (MSC). Our investigations show that hUTC suppress NK activation, through prostaglandin-E2 secretion in a contact-independent manner. Prestimulation of hUTC or human MSC with interferon gamma (IFN-γ) induced expression of the tryptophan degrading enzyme indoleamine 2, 3 dioxygenase, facilitating enhanced suppression. However, resting NK cells of different killer immunoglobulin-like receptor haplotypes did not kill hUTC or MSC; only activated NK cells had the ability to kill nonstimulated hUTC and, to a lesser extent, MSC. The cell killing process involved signaling through the NKG2D receptor and the perforin/granzyme pathway; this was supported by CD54 (ICAM-1) expression by hUTC. IFN-γ-stimulated hUTC or hMSC were less susceptible to NK killing; in this case, protection was associated with elevated HLA-ABC expression. These data delineate the different mechanisms in a two-way interaction between NK cells and two distinct cell therapies, hUTC or hMSC, and how these interactions may influence their clinical applications. PMID:23795941

  16. Targeted Delivery of Ubiquitin-Conjugated BH3 Peptide-Based Mcl-1 Inhibitors into Cancer Cells

    PubMed Central

    2015-01-01

    BH3 peptides are key mediators of apoptosis and have served as the lead structures for the development of anticancer therapeutics. Previously, we reported the application of a simple cysteine-based side chain cross-linking chemistry to NoxaBH3 peptides that led to the generation of the cross-linked NoxaBH3 peptides with increased cell permeability and higher inhibitory activity against Mcl-1 (Muppidi, A., Doi, K., Edwardraja, S., Drake, E. J., Gulick, A. M., Wang, H.-G., Lin, Q. (2012) J. Am. Chem. Soc.134, 1473422920569). To deliver cross-linked NoxaBH3 peptides selectively into cancer cells for enhanced efficacy and reduced systemic toxicity, here we report the conjugation of the NoxaBH3 peptides with the extracellular ubiquitin, a recently identified endogenous ligand for CXCR4, a chemokine receptor overexpressed in cancer cells. The resulting ubiquitin-NoxaBH3 peptide conjugates showed increased inhibitory activity against Mcl-1 and selective killing of the CXCR4-expressing cancer cells. The successful delivery of the NoxaBH3 peptides by ubiquitin into cancer cells suggests that the ubiquitin/CXCR4 axis may serve as a general route for the targeted delivery of anticancer agents. PMID:24410055

  17. Cross-Priming of Naive Cd8 T Cells against Melanoma Antigens Using Dendritic Cells Loaded with Killed Allogeneic Melanoma Cells

    PubMed Central

    Berard, Frederic; Blanco, Patrick; Davoust, Jean; Neidhart-Berard, Eve-Marie; Nouri-Shirazi, Mahyar; Taquet, Nicolas; Rimoldi, Donata; Cerottini, Jean Charles; Banchereau, Jacques; Palucka, A. Karolina

    2000-01-01

    The goal of tumor immunotherapy is to elicit immune responses against autologous tumors. It would be highly desirable that such responses include multiple T cell clones against multiple tumor antigens. This could be obtained using the antigen presenting capacity of dendritic cells (DCs) and cross-priming. That is, one could load the DC with tumor lines of any human histocompatibility leukocyte antigen (HLA) type to elicit T cell responses against the autologous tumor. In this study, we show that human DCs derived from monocytes and loaded with killed melanoma cells prime naive CD45RA+CD27+CD8+ T cells against the four shared melanoma antigens: MAGE-3, gp100, tyrosinase, and MART-1. HLA-A201+ naive T cells primed by DCs loaded with HLA-A201− melanoma cells are able to kill several HLA-A201+ melanoma targets. Cytotoxic T lymphocyte priming towards melanoma antigens is also obtained with cells from metastatic melanoma patients. This demonstration of cross-priming against shared tumor antigens builds the basis for using allogeneic tumor cell lines to deliver tumor antigens to DCs for vaccination protocols. PMID:11104796

  18. Behavior of restriction–modification systems as selfish mobile elements and their impact on genome evolution

    PubMed Central

    Kobayashi, Ichizo

    2001-01-01

    Restriction–modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes. PMID:11557807

  19. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution.

    PubMed

    Kobayashi, I

    2001-09-15

    Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes.

  20. Detection of Wilms' tumor antigen--specific CTL in tumor-draining lymph nodes of patients with early breast cancer.

    PubMed

    Gillmore, Roopinder; Xue, Shao-An; Holler, Angelika; Kaeda, Jaspal; Hadjiminas, Dimitri; Healy, Vourneen; Dina, Roberto; Parry, Suzanne C; Bellantuono, Ilaria; Ghani, Yasmeen; Coombes, R Charles; Waxman, Jonathan; Stauss, Hans J

    2006-01-01

    The Wilms' tumor antigen (WT1) is overexpressed in approximately 90% of breast tumors and, thus, is a potential target antigen for the immunotherapy of breast cancer. We have tested the working hypotheses that WT1 can be immunogenic in patients with breast cancer and can stimulate CTL of sufficient avidity to kill tumor cells. Paired tumor-draining lymph node and peripheral blood samples were analyzed from five HLA-A2-positive patients with stage I/II breast cancer. Fluorescent HLA-A*0201/WT1 tetramers were used to quantify WT1-specific CTL and the functional capacity of the CTL was assessed using cytotoxicity assays and intracellular cytokine staining. WT1 tetramer-binding T cells expanded from all lymph node samples but none of the corresponding peripheral blood samples. Functional assays were carried out on T cells from the patient who had yielded the highest frequency of HLA-A*0201/WT1 tetramer-positive cells. The cytotoxicity assays showed WT1 peptide--specific killing activity of the CTL, whereas intracellular cytokine staining confirmed that the tetramer--positive T cells produced IFN-gamma after stimulation with WT1 peptide. These WT1-specific T cells killed HLA-A2-positive breast cancer cell lines treated with IFN-gamma but no killing was observed with untreated tumor cells. These results show that WT1-specific CTL can be expanded from the tumor-draining lymph nodes of breast cancer patients and that they can display peptide-specific effector function. However, the CTL only killed IFN-gamma-treated tumor targets expressing high levels of HLA-A2 and not tumor cells with low HLA expression. This suggests that induction of autologous WT1-specific CTL may offer only limited tumor protection and that strategies that allow a high level of peptide/MHC complex presentation and/or improve CTL avidity may be required.

  1. Caspase inhibitors protect neurons by enabling selective necroptosis of inflamed microglia.

    PubMed

    Fricker, Michael; Vilalta, Anna; Tolkovsky, Aviva M; Brown, Guy C

    2013-03-29

    Microglia are resident brain macrophages, which can cause neuronal loss when activated in infectious, ischemic, traumatic, and neurodegenerative diseases. Caspase-8 has both prodeath and prosurvival roles, mediating apoptosis and/or preventing RIPK1-mediated necroptosis depending on cell type and stimulus. We found that inflammatory stimuli (LPS, lipoteichoic acid, or TNF-α) caused an increase in caspase-8 IETDase activity in primary rat microglia without inducing apoptosis. Inhibition of caspase-8 with either Z-VAD-fmk or IETD-fmk resulted in necrosis of activated microglia. Inhibition of caspases with Z-VAD-fmk did not kill non-activated microglia, or astrocytes and neurons in any condition. Necrostatin-1, a specific inhibitor of RIPK1, prevented microglial caspase inhibition-induced death, indicating death was by necroptosis. In mixed cerebellar cultures of primary neurons, astrocytes, and microglia, LPS induced neuronal loss that was prevented by inhibition of caspase-8 (resulting in microglial necroptosis), and neuronal death was restored by rescue of microglia with necrostatin-1. We conclude that the activation of caspase-8 in inflamed microglia prevents their death by necroptosis, and thus, caspase-8 inhibitors may protect neurons in the inflamed brain by selectively killing activated microglia.

  2. Expansion of somatically reverted memory CD8+ T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus

    PubMed Central

    Low, Carol; Bell, Andrew I.; Abbott, Rachel J.M.; Phan, Tri Giang; Riminton, D. Sean; Choo, Sharon; Smart, Joanne M.; Lougaris, Vassilios; Giliani, Silvia; Buckley, Rebecca H.; Grimbacher, Bodo; Alvaro, Frank; Klion, Amy D.; Nichols, Kim E.; Adelstein, Stephen; Rickinson, Alan B.

    2012-01-01

    Patients with the primary immunodeficiency X-linked lymphoproliferative disease (XLP), which is caused by mutations in SH2D1A, are highly susceptible to Epstein-Barr virus (EBV) infection. Nonetheless, some XLP patients demonstrate less severe clinical manifestations after primary infection. SH2D1A encodes the adaptor molecule SLAM-associated protein (SAP), which is expressed in T and natural killer cells and is required for cytotoxicity against B cells, the reservoir for EBV. It is not known why the clinical presentation of XLP is so variable. In this study, we report for the first time the occurrence of somatic reversion in XLP. Reverted SAP-expressing cells resided exclusively within the CD8+ T cell subset, displayed a CD45RA−CCR7− effector memory phenotype, and were maintained at a stable level over time. Importantly, revertant CD8+ SAP+ T cells, but not SAP− cells, proliferated in response to EBV and killed EBV-infected B cells. As somatic reversion correlated with EBV infection, we propose that the virus exerts a selective pressure on the reverted cells, resulting in their expansion in vivo and host protection against ongoing infection. PMID:22493517

  3. Glycocalyx Engineering Reveals a Siglec-Based Mechanism for NK Cell Immunoevasion

    PubMed Central

    Hudak, Jason E.; Canham, Stephen M.; Bertozzi, Carolyn R.

    2013-01-01

    The increase of cell surface sialic acid is a characteristic shared by many tumor types. A correlation between hypersialylation and immunoprotection has been observed, but few hypotheses have provided a mechanistic understanding of this immunosuppressive phenomenon. Here, we show that increasing sialylated glycans on cancer cells inhibits human NK cell activation through the recruitment of Siglec-7. Key to these findings was the use of glycopolymers end-functionalized with phospholipids, which enable the introduction of synthetically defined glycans onto cancer cell surfaces. Remodeling the sialylation status of cancer cells affected the susceptibility to NK cell cytotoxicity via Siglec-7 engagement in a variety of tumor types. These results support a model in which hypersialylation offers a selective advantage to tumor cells under pressure from NK immunosurveillance by increasing Siglec ligands. We also exploited this finding to protect allogeneic and xenogeneic primary cells from NK-mediated killing suggesting the potential of Siglecs as therapeutic targets in cell transplant therapy. PMID:24292068

  4. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  5. Menadione reduction by pharmacological doses of ascorbate induces an oxidative stress that kills breast cancer cells.

    PubMed

    Beck, Raphaël; Verrax, Julien; Dejeans, Nicolas; Taper, Henryk; Calderon, Pedro Buc

    2009-01-01

    Oxidative stress generated by ascorbate-driven menadione redox cycling kills MCF7 cells by a concerted mechanism including glycolysis inhibition, loss of calcium homeostasis, DNA damage and changes in mitogen activated protein kinases (MAPK) activities. Cell death is mediated by necrosis rather than apoptosis or macroautophagy. Neither 3-methyladenine nor Z-VAD affects cytotoxicity by ascorbate/menadione (Asc/Men). BAPTA-AM, by restoring cellular capacity to reduce MTT, underlines the role of calcium in the necrotic process. Oxidative stress-mediated cell death is shown by the opposite effects of N-acetylcysteine and 3-aminotriazole. Moreover, oxidative stress induces DNA damage (protein poly-ADP-ribosylation and gamma-H2AX phosphorylation) and inhibits glycolysis. Asc/Men deactivates extracellular signal-regulated kinase (ERK) while activating p38, suggesting an additional mechanism to kill MCF7 cells. Since ascorbate is taken up by cancer cells and, due to their antioxidant enzyme deficiency, oxidative stress should affect cancer cells to a greater extent than normal cells. This differential sensitivity may have clinical applications.

  6. Effect of benzalkonium chloride on viability and energy metabolism in exponential- and stationary-growth-phase cells of Listeria monocytogenes.

    PubMed

    Luppens, S B; Abee, T; Oosterom, J

    2001-04-01

    The difference in killing exponential- and stationary-phase cells of Listeria monocytogenes by benzalkonium chloride (BAC) was investigated by plate counting and linked to relevant bioenergetic parameters. At a low concentration of BAC (8 mg liter(-1)), a similar reduction in viable cell numbers was observed for stationary-phase cells and exponential-phase cells (an approximately 0.22-log unit reduction), although their membrane potential and pH gradient were dissipated. However, at higher concentrations of BAC, exponential-phase cells were more susceptible than stationary-phase cells. At 25 mg liter(-1), the difference in survival on plates was more than 3 log units. For both types of cells, killing, i.e., more than 1-log unit reduction in survival on plates, coincided with complete inhibition of acidification and respiration and total depletion of ATP pools. Killing efficiency was not influenced by the presence of glucose, brain heart infusion medium, or oxygen. Our results suggest that growth phase is one of the major factors that determine the susceptibility of L. monocytogenes to BAC.

  7. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells

    PubMed Central

    Witkover, Aviva; Tanaka, Yuetsu; Fields, Paul; Bangham, Charles R. M.

    2016-01-01

    There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease. PMID:27893842

  8. Investigation of dynamic morphological changes of cancer cells during photoimmuno therapy (PIT) by low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Ogawa, Mikako; Yamauchi, Toyohiko; Iwai, Hidenao; Magata, Yasuhiro; Choyke, Peter L.; Kobayashi, Hisataka

    2014-03-01

    We have reported a new molecular-targeted cancer phototherapy, photoimmunotherapy (PIT), which killed implanted tumors in mice without side-effects. To understand the mechanism of cell killing with PIT, three-dimentional dynamic low-coherence quantitative phase microscopy (3D LC-QPM), a device developed by Hamamatsu Photonics K.K, was used to detect morphologic changes in cancer cells during PIT. 3T3/HER2 cells were incubated with anti-HER2 trastuzumab-IR700 (10 μg/mL, 0.1 μM as IR700) for 24 hours, then, three-dimensionally imaged with the LC-QPM during the exposure of two different optically filtered lights for excitation of IR700 (500-780 nm) and imaging (780-950 nm). For comparison with traditional PDT, the same experiments were performed with Photofrin (10 and 1 μM). Serial changes in the cell membrane were readily visualized on 3D LC-QPM. 3T3/HER2 cells began to swell rapidly after exposure to 500-780 nm light excitation. The cell volume reached a maximum within 1 min after continuous exposure, and then the cells appeared to burst. This finding suggests that PIT damages the cell membrane by photo-reaction inducing an influx of water into the cell causing swelling and bursting of the cells. Interestingly, even after only 5 seconds of light exposure, the cells demonstrated swelling and bursting albeit more slowly, implying that sufficient cumulative damage occurs on the cell membrane to induce lethal damage to cells even at minimal light exposure. Similar but non-selective membrane damage was shown in PDT-treated cells Photofrin. Thus, PIT induces sufficient damage to the cell membrane within 5 seconds to induce rapid necrotic cell death which can be observed directly with 3D LC-QPM. Further investigation is needed to evaluate the biochemical mechanisms underlying PIT-induced cellular membrane damage.

  9. Capsule Influences the Deposition of Critical Complement C3 Levels Required for the Killing of Burkholderia pseudomallei via NADPH-Oxidase Induction by Human Neutrophils

    PubMed Central

    Woodman, Michael E.; Worth, Randall G.; Wooten, R. Mark

    2012-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis and is a major mediator of sepsis in its endemic areas. Because of the low LD50 via aerosols and resistance to multiple antibiotics, it is considered a Tier 1 select agent by the CDC and APHIS. B. pseudomallei is an encapsulated bacterium that can infect, multiply, and persist within a variety of host cell types. In vivo studies suggest that macrophages and neutrophils are important for controlling B. pseudomallei infections, however few details are known regarding how neutrophils respond to these bacteria. Our goal is to describe the capacity of human neutrophils to control highly virulent B. pseudomallei compared to the relatively avirulent, acapsular B. thailandensis using in vitro analyses. B. thailandensis was more readily phagocytosed than B. pseudomallei, but both displayed similar rates of persistence within neutrophils, indicating they possess similar inherent abilities to escape neutrophil clearance. Serum opsonization studies showed that both were resistant to direct killing by complement, although B. thailandensis acquired significantly more C3 on its surface than B. pseudomallei, whose polysaccharide capsule significantly decreased the levels of complement deposition on the bacterial surface. Both Burkholderia species showed significantly enhanced uptake and killing by neutrophils after critical levels of C3 were deposited. Serum-opsonized Burkholderia induced a significant respiratory burst by neutrophils compared to unopsonized bacteria, and neutrophil killing was prevented by inhibiting NADPH-oxidase. In summary, neutrophils can efficiently kill B. pseudomallei and B. thailandensis that possess a critical threshold of complement deposition, and the relative differences in their ability to resist surface opsonization may contribute to the distinct virulence phenotypes observed in vivo. PMID:23251706

  10. Photodynamic therapy for localized infections – state of the art

    PubMed Central

    Dai, Tianhong; Huang, Ying-Ying; Hamblin, Michael R

    2009-01-01

    Photodynamic therapy (PDT) was discovered over one hundred years ago by observing the killing of microorganisms when harmless dyes and visible light were combined in vitro. Since then it has primarily been developed as a treatment for cancer, ophthalmologic disorders and in dermatology. However in recent years interest in the antimicrobial effects of PDT has revived and it has been proposed as a therapy for a large variety of localized infections. This revival of interest has largely been driven by the inexorable increase in drug resistance amongst many classes of pathogen. Advantages of PDT include equal killing effectiveness regardless of antibiotic resistance, and a lack of induction of PDT resistance. Disadvantages include the cessation of the antimicrobial effect when the light is turned off, and less than perfect selectivity for microbial cells over host tissue. This review will cover the use of PDT to kill or inactivate pathogens in ex vivo tissues and in biological materials such as blood. PDT has been successfully used to kill pathogens and even to save life in several animal models of localized infections such as surface wounds, burns, oral sites, abscesses and the middle ear. A large number of clinical studies of PDT for viral papillomatosis lesions and for acne refer to its anti-microbial effect, but it is unclear how important this microbial killing is to the overall therapeutic outcome. PDT for periodontitis is a rapidly growing clinical application and other dental applications are under investigation. PDT is being clinically studied for other dermatological infections such as leishmaniasis and mycobacteria. Antimicrobial PDT will become more important in the future as antibiotic resistance is only expected to continue to increase. PMID:19932449

  11. Intracellular hyperthermia mediated by nanoparticles in radiofrequency fields in the treatment of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Glazer, Evan Scott

    Intracellular hyperthermic therapy may prove to be a unique and novel approach to the management of pancreatic cancer. Utilizing the principle of photothermal destruction, selective killing of cancer cells with minimal injury to normal tissues may be possible. This dissertation investigated the role of antibody targeted metal nanoparticles and the cytotoxic effects of nonionizing radiofrequency fields in pancreatic cancer. Cancer cell death was induced by heat release from intracellular metal nanoparticles after radiofrequency field exposure. Fluorescent and gold nanoparticles were delivered with two antibodies, cetuximab and PAM-4, to pancreatic cancer cells in vitro and mouse xenografts in vivo. Selective delivery of these nanoparticles induced cell death in vitro and decreased tumor burden in vivo after whole animal RF field exposure. This occurred through both apoptosis and necrosis. In addition, activated caspase-3 was increased after antibody treatment and RF field exposure. Furthermore, although there was non-specific uptake by the liver and spleen in vivo, there was no evidence of acute or chronic toxicity in the animals. These results are in agreement with the principle that malignant cells are more thermally sensitive than normal cells or tissues. Selective intracellular delivery of metal nanoparticles coupled with whole body RF field exposure may be a beneficial therapy against micrometastases and unresectable pancreatic cancer in the future. Further studies are planned with more specific antibodies, other nanoparticles, and other cancer targets.

  12. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis

    PubMed Central

    Chen, Xin; He, Wan-ting; Hu, Lichen; Li, Jingxian; Fang, Yuan; Wang, Xin; Xu, Xiaozheng; Wang, Zhuo; Huang, Kai; Han, Jiahuai

    2016-01-01

    Necroptosis and pyroptosis are two forms of programmed cell death with a common feature of plasma membrane rupture. Here we studied the morphology and mechanism of pyroptosis in comparison with necroptosis. Different from necroptosis, pyroptosis undergoes membrane blebbing and produces apoptotic body-like cell protrusions (termed pyroptotic bodies) prior to plasma membrane rupture. The rupture in necroptosis is explosion-like, whereas in pyroptosis it leads to flattening of cells. It is known that the execution of necroptosis is mediated by mixed lineage kinase domain-like (MLKL) oligomers in the plasma membrane, whereas gasdermin-D (GSDMD) mediates pyroptosis after its cleavage by caspase-1 or caspase-11. We show that N-terminal fragment of GSDMD (GSDMD-N) generated by caspase cleavage also forms oligomer and migrates to the plasma membrane to kill cells. Both MLKL and GSDMD-N are lipophilic and the N-terminal sequences of both proteins are important for their oligomerization and plasma membrane translocation. Unlike MLKL which forms channels on the plasma membrane that induces influx of selected ions which osmotically swell the cells to burst, GSDMD-N forms non-selective pores and does not rely on increased osmolarity to disrupt cells. Our study reveals the pore-forming activity of GSDMD and channel-forming activity of MLKL determine different ways of plasma membrane rupture in pyroptosis and necroptosis. PMID:27573174

  13. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis.

    PubMed

    Chen, Xin; He, Wan-Ting; Hu, Lichen; Li, Jingxian; Fang, Yuan; Wang, Xin; Xu, Xiaozheng; Wang, Zhuo; Huang, Kai; Han, Jiahuai

    2016-09-01

    Necroptosis and pyroptosis are two forms of programmed cell death with a common feature of plasma membrane rupture. Here we studied the morphology and mechanism of pyroptosis in comparison with necroptosis. Different from necroptosis, pyroptosis undergoes membrane blebbing and produces apoptotic body-like cell protrusions (termed pyroptotic bodies) prior to plasma membrane rupture. The rupture in necroptosis is explosion-like, whereas in pyroptosis it leads to flattening of cells. It is known that the execution of necroptosis is mediated by mixed lineage kinase domain-like (MLKL) oligomers in the plasma membrane, whereas gasdermin-D (GSDMD) mediates pyroptosis after its cleavage by caspase-1 or caspase-11. We show that N-terminal fragment of GSDMD (GSDMD-N) generated by caspase cleavage also forms oligomer and migrates to the plasma membrane to kill cells. Both MLKL and GSDMD-N are lipophilic and the N-terminal sequences of both proteins are important for their oligomerization and plasma membrane translocation. Unlike MLKL which forms channels on the plasma membrane that induces influx of selected ions which osmotically swell the cells to burst, GSDMD-N forms non-selective pores and does not rely on increased osmolarity to disrupt cells. Our study reveals the pore-forming activity of GSDMD and channel-forming activity of MLKL determine different ways of plasma membrane rupture in pyroptosis and necroptosis.

  14. Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei

    PubMed Central

    Hongsing, Nuttaya; Thammawithan, Saengrawee; Daduang, Sakda; Klaynongsruang, Sompong; Tuanyok, Apichai; Patramanon, Rina

    2016-01-01

    Silver nanoparticles (AgNPs) have a strong antimicrobial activity against a variety of pathogenic bacteria. The killing mechanism of AgNPs involves direct physical membrane destruction and subsequent molecular damage from both AgNPs and released Ag+. Burkholderia pseudomallei is the causative agent of melioidosis, an endemic infectious disease primarily found in northern Australia and Southeast Asia. B. pseudomallei is intrinsically resistant to most common antibiotics. In this study, the antimicrobial activity and mechanism of AgNPs (10–20 nm) against B. pseudomallei were investigated. The MIC and MBC for nine B. pseudomallei strains ranged from 32–48 μg/mL and 96–128 μg/mL, respectively. Concentrations of AgNPs less than 256 μg/mL were not toxic to human red blood cells. AgNPs exhibited a two-phase mechanism: cell death induction and ROS induction. The first phase was a rapid killing step within 5 min, causing the direct damage of the cytoplasmic membrane of the bacterial cells, as observed by a time-kill assay and fluorescence microscopy. During the period of 5–30 min, the cell surface charge was rapidly neutralized from -8.73 and -7.74 to 2.85 and 2.94 mV in two isolates of B. pseudomallei, as revealed by zeta potential measurement. Energy-dispersive X-ray (EDX) spectroscopy showed the silver element deposited on the bacterial membrane, and TEM micrographs of the AgNP-treated B. pseudomallei cells showed severe membrane damage and cytosolic leakage at 1/5 MIC and cell bursting at MBC. During the killing effect the released Ag+ from AgNPs was only 3.9% from the starting AgNPs concentration as observed with ICP-OES experiment. In the second phase, the ROS induction occurred 1–4 hr after the AgNP treatment. Altogether, we provide direct kinetic evidence of the AgNPs killing mechanism, by which cell death is separable from the ROS induction and AgNPs mainly contributes in the killing action. AgNPs may be considered a potential candidate to develop a novel alternative agent for melioidosis treatment with fast action. PMID:27977746

  15. Gold nanorods coupled with upconverting nanophosphors for targeted thermal ablation and imaging of bladder cancer cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cho, Suehyun K.; Su, Lih-Jen; Flaig, Thomas W.; Park, Wounjhang

    2016-09-01

    NaYF4:Yb3+,Er3+ upconverting nanophosphors (UCNPs) are robust and stable nanoparticles that absorb near-infrared (NIR) photons and emit green and red visible photons through energy transfer upconversion. This mechanism provides UCNPs several advantages as a bioimaging agent over traditional fluorescence imaging agent in that NIR excitation allows high-contrast imaging without autofluorescence and that they can be used for deep-tissue imaging. However, additional surface modification of UCNPs is necessary for them to be biocompatible. We use an amphiphilic polymer (poly(maleic anhydride-alt-octadecene) (PMAO) and a hetero-functional polyethylene glycol with amine and thiol ends (NH2-PEG-SH)) to make the UCNPs water-soluble. This reaction yields a carboxylic group that allows functionalization with anti-epidermal growth factor receptor (aEGFR), which provides specific binding of UCNPs to EGFR-expressing bladder cancer cells. Additionally, the thiol ends of the PEGylated UCNPs are able to bind with gold nanorods (AuNRs) to create UCNP-AuNR complexes. The localized surface plasmon of the AuNR then allow localized heating of HTB9 bladder cancer cells, enabling in situ cell killing upon detection by UCNP fluorescence. Here, we report a successful synthesis, surface modification and conjugation of aEGFR functionalized UCNP-AuNR complexes and in vitro imaging and thermal ablation studies using them. Synthesis and surface modification of UCNP-AuNR complexes are confirmed by electron microscopy. Then, a combination of brightfield, NIR confocal fluorescence, and darkfield microscopy on the UCNP-AuNR treated bladder cancer cells revealed successful cancer targeting and imaging capabilities of the complex. Finally, cell viability assay showed that NIR irradiation of UCNP-AuNR conjugated cells resulted highly selective cell killing.

  16. Development and characterization of multifunctional nanoparticles for drug delivery to cancer cells

    NASA Astrophysics Data System (ADS)

    Nahire, Rahul Rajaram

    Lipid and polymeric nanoparticles, although proven to be effective drug delivery systems compared to free drugs, have shown considerable limitations pertaining to their uptake and release at tumor sites. Spatial and temporal control over the delivery of anticancer drugs has always been challenge to drug delivery scientists. Here, we have developed and characterized multifunctional nanoparticles (liposomes and polymersomes) which are targeted specifically to cancer cells, and release their contents with tumor specific internal triggers. To enable these nanoparticles to be tracked in blood circulation, we have imparted them with echogenic characteristic. Echogenicity of nanoparticles is evaluated using ultrasound scattering and imaging experiments. Nanoparticles demonstrated effective release with internal triggers such as elevated levels of MMP-9 enzyme found in the extracellular matrix of tumor cells, decreased pH of lysosome, and differential concentration of reducing agents in cytosol of cancer cells. We have also successfully demonstrated the sensitivity of these particles towards ultrasound to further enhance the release with internal triggers. To ensure the selective uptake by folate receptor- overexpressing cancer cells, we decorated these nanoparticles with folic acid on their surface. Fluorescence microscopic images showed significantly higher uptake of folate-targeted nanoparticles by MCF-7 (breast cancer) and PANC-1 (pancreatic cancer) cells compared to particles without any targeting ligand on their surface. To demonstrate the effectiveness of these nanoparticles to carry the drugs inside and kill cancer cells, we encapsulated doxorubicin and/or gemcitabine employing the pH gradient method. Drug loaded nanoparticles showed significantly higher killing of the cancer cells compared to their non-targeted counterparts and free drugs. With further development, these nanoparticles certainly have potential to be used as a multifunctional nanocarriers for image guided, targeted delivery of anticancer drugs.

  17. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    PubMed

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to <10 cGy h(-1) and involve multiple patients to detect patient variability. Results may suggest a preference for high dose rate brachytherapy or LDR brachytherapy without permanent retention of the implant seeds (hence the dose rates in peripheral tissues and organs remain above IDRE thresholds).

  18. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage.

    PubMed

    Santo, Christophe Espírito; Quaranta, Davide; Grass, Gregor

    2012-03-01

    Recently, copper (Cu) in its metallic form has regained interest for its antimicrobial properties. Use of metallic Cu surfaces in worldwide hospital trials resulted in remarkable reductions in surface contaminations. Yet, our understanding of why microbes are killed upon contact to the metal is still limited and different modes of action have been proposed. This knowledge, however, is crucial for sustained use of such surfaces in hospitals and other hygiene-sensitive areas. Here, we report on the molecular mechanisms by which the Gram-positive Staphylococcus haemolyticus is inactivated by metallic Cu. Staphylococcus haemolyticus was killed within minutes on Cu but not on stainless steel demonstrating the antimicrobial efficacy of metallic Cu. Inductively coupled plasma mass spectroscopy (ICP-MS) analysis and in vivo staining with Coppersensor-1 indicated that cells accumulated large amounts of Cu ions from metallic Cu surfaces contributing to lethal damage. Mutation rates of Cu- or steel-exposed cells were similarly low. Instead, live/dead staining indicated cell membrane damage in Cu- but not steel-exposed cells. These findings support a model of the cellular targets of metallic Cu toxicity in bacteria, which suggests that metallic Cu is not genotoxic and does not kill via DNA damage. In contrast, membranes constitute the likely Achilles' heel of Cu surface-exposed cells.

  19. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage

    PubMed Central

    Santo, Christophe Espírito; Quaranta, Davide; Grass, Gregor

    2012-01-01

    Recently, copper (Cu) in its metallic form has regained interest for its antimicrobial properties. Use of metallic Cu surfaces in worldwide hospital trials resulted in remarkable reductions in surface contaminations. Yet, our understanding of why microbes are killed upon contact to the metal is still limited and different modes of action have been proposed. This knowledge, however, is crucial for sustained use of such surfaces in hospitals and other hygiene-sensitive areas. Here, we report on the molecular mechanisms by which the Gram-positive Staphylococcus haemolyticus is inactivated by metallic Cu. Staphylococcus haemolyticus was killed within minutes on Cu but not on stainless steel demonstrating the antimicrobial efficacy of metallic Cu. Inductively coupled plasma mass spectroscopy (ICP-MS) analysis and in vivo staining with Coppersensor-1 indicated that cells accumulated large amounts of Cu ions from metallic Cu surfaces contributing to lethal damage. Mutation rates of Cu- or steel-exposed cells were similarly low. Instead, live/dead staining indicated cell membrane damage in Cu- but not steel-exposed cells. These findings support a model of the cellular targets of metallic Cu toxicity in bacteria, which suggests that metallic Cu is not genotoxic and does not kill via DNA damage. In contrast, membranes constitute the likely Achilles’ heel of Cu surface-exposed cells. PMID:22950011

  20. STAT3 inhibition as a therapeutic strategy for leukemia.

    PubMed

    Kanna, Rubashruti; Choudhary, Gaurav; Ramachandra, Nandini; Steidl, Ulrich; Verma, Amit; Shastri, Aditi

    2017-11-22

    Leukemia is characterized by selective overgrowth of malignant hematopoietic stem cells (HSC's) that interfere with HSC differentiation. Cytoreductive chemotherapy can kill rapidly dividing cancerous cells but cannot eradicate the malignant HSC pool leading to relapses. Leukemic stem cells have several dysregulated pathways and the Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) pathway are prominent among them. STAT3 is an important transcription factor that regulates cell growth, proliferation, and inhibits apoptosis. High STAT3 expression in leukemia has been associated with an increased risk for relapse and decreased overall survival. Multiple strategies for interfering with STAT3 activity in leukemic cells include inhibition of STAT3 phosphorylation, interfering with STAT3 interactions, preventing nuclear transfer, inhibiting transcription and causing interference in STAT: DNA binding. A better understanding of key interactions and upstream mediators of STAT3 activity will help facilitate the development of effective cancer therapies and may result in durable remissions.

  1. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  2. Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, L.A.; Goldberg, L.H.; Ley, R.D.

    Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somatic cells from BCNS patients to killing by UV radiation, we exposed skin fibroblasts established from unexposed skin biopsies of several BCNS and age- and sex-matched normal individuals to either UV-B (280-320 nm) or UV-C (254 nm) radiation and determined their survival. The results indicated thatmore » skin fibroblasts from BCNS patients were hypersensitive to killing by UV-B but not UV-C radiation as compared to skin fibroblasts from normal individuals. DNA repair studies indicated that the increased sensitivity of BCNS skin fibroblasts to killing by UV-B radiation was not due to a defect in the excision repair of pyrimidine dimers. These results indicate that there is an association between hypersensitivity of somatic cells to killing by UV-B radiation and the genetic predisposition to skin cancer in BCNS patients. In addition, these results suggest that DNA lesions (and repair processes) other than the pyrimidine dimer are also involved in the pathogenesis of sunlight-induced skin cancers in BCNS patients. More important, the UV-B sensitivity assay described here may be used as a diagnostic tool to identify presymptomatic individuals with BCNS.« less

  3. Antitumor Activities of Kushen: Literature Review

    PubMed Central

    Sun, Mingyu; Cao, Hongyan; Sun, Lin; Dong, Shu; Bian, Yanqin; Han, Jun; Zhang, Lijun; Ren, Shuang; Hu, Yiyang; Liu, Chenghai; Xu, Lieming; Liu, Ping

    2012-01-01

    To discover and develop novel natural compounds with therapeutic selectivity or that can preferentially kill cancer cells without significant toxicity to normal cells is an important area in cancer chemotherapy. Kushen, the dried roots of Sophora flavescens Aiton, has a long history of use in traditional Chinese medicine to treat inflammatory diseases and cancer. Kushen alkaloids (KS-As) and kushen flavonoids (KS-Fs) are well-characterized components in kushen. KS-As containing oxymatrine, matrine, and total alkaloids have been developed in China as anticancer drugs. More potent antitumor activities were identified in KS-Fs than in KS-As in vitro and in vivo. KS-Fs may be developed as novel antitumor agents. PMID:22969826

  4. A Tumor Cell-Selective Inhibitor of Mitogen-Activated Protein Kinase Phosphatases Sensitizes Breast Cancer Cells to Lymphokine-Activated Killer Cell Activity

    PubMed Central

    Kaltenmeier, Christof T.; Vollmer, Laura L.; Vernetti, Lawrence A.; Caprio, Lindsay; Davis, Keanu; Korotchenko, Vasiliy N.; Day, Billy W.; Tsang, Michael; Hulkower, Keren I.; Lotze, Michael T.

    2017-01-01

    Dual specificity mitogen-activated protein kinase (MAPK) phosphatases [dual specificity phosphatase/MAP kinase phosphatase (DUSP-MKP)] have been hypothesized to maintain cancer cell survival by buffering excessive MAPK signaling caused by upstream activating oncogenic products. A large and diverse body of literature suggests that genetic depletion of DUSP-MKPs can reduce tumorigenicity, suggesting that hyperactivating MAPK signaling by DUSP-MKP inhibitors could be a novel strategy to selectively affect the transformed phenotype. Through in vivo structure-activity relationship studies in transgenic zebrafish we recently identified a hyperactivator of fibroblast growth factor signaling [(E)-2-benzylidene-5-bromo-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI-215)] that is devoid of developmental toxicity and restores defective MAPK activity caused by overexpression of DUSP1 and DUSP6 in mammalian cells. Here, we hypothesized that BCI-215 could selectively affect survival of transformed cells. In MDA-MB-231 human breast cancer cells, BCI-215 inhibited cell motility, caused apoptosis but not primary necrosis, and sensitized cells to lymphokine-activated killer cell activity. Mechanistically, BCI-215 induced rapid and sustained phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) in the absence of reactive oxygen species, and its toxicity was partially rescued by inhibition of p38 but not JNK or ERK. BCI-215 also hyperactivated MKK4/SEK1, suggesting activation of stress responses. Kinase phosphorylation profiling documented BCI-215 selectively activated MAPKs and their downstream substrates, but not receptor tyrosine kinases, SRC family kinases, AKT, mTOR, or DNA damage pathways. Our findings support the hypothesis that BCI-215 causes selective cancer cell cytotoxicity in part through non-redox-mediated activation of MAPK signaling, and the findings also identify an intersection with immune cell killing that is worthy of further exploration. PMID:28154014

  5. Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes.

    PubMed

    Weiller, Markus; Latta, Markus; Kresse, Matthias; Lucas, Rudolf; Wendel, Albrecht

    2004-09-01

    The essential trace element selenium is also toxic at low doses. Since supplementation of selenium is discussed as cancer prophylaxis, we investigated whether or not bioavailable selenium compounds are selectively toxic on malignant cells by comparing primary and transformed liver cells as to the extent and mode of cell death. Sodium selenite and selenate exclusively induced necrosis in a concentration-dependent manner in all cell types investigated. In primary murine hepatocytes, the EC50 was 20 microM for selenite, 270 microM for selenate, and 30 microM for Se-methionine. In the human carcinoma cell line HepG2, the EC50 for selenite was 40 microM, and for selenate 1.1 mM, whereas Se-methionine was essentially non-toxic up to 10 mM. Similar results were found in murine Hepa1-6 cells. Exposure of primary murine cells to selenate or selenite resulted in increased lipid peroxidation. Toxicity was inhibited by superoxide dismutase plus catalase, indicating an important role for reactive oxygen intermediates. In primary hepatocytes, metabolical depletion of intracellular ATP by the ketohexose tagatose, significantly decreased the cytotoxicity of Se-methionine, while the one of selenite was increased. These data do not provide any in vitro evidence that bioavailable selenium compounds induce preferentially apoptotic cell death or selectively kill transformed hepatocytes.

  6. Photothermal and photoacoustic processes of laser activated nano-thermolysis of cells

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Mitskevich, Pavel; Smolnikova, Victoria; Potapnev, Michail; Konopleva, Marina; Andreeff, Michael; Oraevsky, Alexander

    2007-02-01

    Laser Activated Nano-Thermolysis was recently proposed for selective damage of individual target (cancer) cells by pulsed laser induced microbubbles around superheated clusters of optically absorbing nanoparticles (NP). One of the clinical applications of this technology is the elimination of residual tumor cells from human blood and bone marrow. Clinical standards for the safety and efficacy of such procedure require the development and verification of highly selective and controllable mechanisms of cell killing. Our previous experiments showed that laser-induced microbubble is the main damaging factor in the case cell irradiation by short laser pulses above the threshold. Our current aim was to study the cell damage mechanisms and analyze selectivity and efficacy of cell damage as a function of NP parameters, NP-cell interaction conditions, and conditions of bubble generation around NP and NP clusters in cells. Generation of laser-induced bubbles around gold NP with diameters 10-250 nm was studied in Acute Myeloblast Leukemia (AML) cultures, normal stem and model K562 human cells. Short laser pulses (10 ns, 532 nm) were applied to those cells in vitro and the processes in cells were investigated with photothermal, fluorescent and atomic force microscopies and also with fluorescence flow cytometry. We have found that the best selectivity of cell damage is achieved by (1) forming large clusters of optically absorbing NP in target cells and (2) irradiating the cells with single laser pulses with the lowest fluence that can generate microbubble only around large clusters but not around single NP. Laser microbubbles with the lifetime from 20 ns to 2000 ns generated in individual cells caused damage and lysis of the cellular membrane and consequently cell death. Laser microbubbles did not damage normal cells around the damaged target (tumor) cell. Laser irradiation with equal fluence did not cause any damage of cells without accumulated NP clusters.

  7. Cellular recovery from exposure to sub-optimal concentrations of AB toxins that inhibit protein synthesis

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin 1, exotoxin A, diphtheria toxin and ricin are all AB-type protein toxins that act within the host cytosol to kill the host cell through a pathway involving the inhibition of protein synthesis. It is thought that a single molecule of cytosolic toxin is sufficient to kill the host cell. In...

  8. Mitochondrial Fragmentation in Aspergillus fumigatus as Early Marker of Granulocyte Killing Activity

    PubMed Central

    Ruf, Dominik; Brantl, Victor; Wagener, Johannes

    2018-01-01

    The host's defense against invasive mold infections relies on diverse antimicrobial activities of innate immune cells. However, studying these mechanisms in vitro is complicated by the filamentous nature of such pathogens that typically form long, branched, multinucleated and compartmentalized hyphae. Here we describe a novel method that allows for the visualization and quantification of the antifungal killing activity exerted by human granulocytes against hyphae of the opportunistic pathogen Aspergillus fumigatus. The approach relies on the distinct impact of fungal cell death on the morphology of mitochondria that were visualized with green fluorescent protein (GFP). We show that oxidative stress induces complete fragmentation of the tubular mitochondrial network which correlates with cell death of affected hyphae. Live cell microscopy revealed a similar and non-reversible disruption of the mitochondrial morphology followed by fading of fluorescence in Aspergillus hyphae that were killed by human granulocytes. Quantitative microscopic analysis of fixed samples was subsequently used to estimate the antifungal activity. By utilizing this assay, we demonstrate that lipopolysaccharides as well as human serum significantly increase the killing efficacy of the granulocytes. Our results demonstrate that evaluation of the mitochondrial morphology can be utilized to assess the fungicidal activity of granulocytes against A. fumigatus hyphae. PMID:29868488

  9. Effect of octenidine hydrochloride on planktonic cells and biofilms of Listeria monocytogenes.

    PubMed

    Amalaradjou, Mary Anne Roshni; Norris, Carol E; Venkitanarayanan, Kumar

    2009-06-01

    Listeria monocytogenes is a food-borne pathogen capable of forming biofilms and persisting in food processing environments for extended periods of time, thereby potentially contaminating foods. The efficacy of octenidine hydrochloride (OH) for inactivating planktonic cells and preformed biofilms of L. monocytogenes was investigated at 37, 21, 8, and 4 degrees C in the presence and absence of organic matter (rehydrated nonfat dry milk). OH rapidly killed planktonic cells and biofilms of L. monocytogenes at all four temperatures. Moreover, OH was equally effective in killing L. monocytogenes biofilms on polystyrene and stainless steel matrices in the presence and absence of organic matter. The results underscore OH's ability to prevent establishment of L. monocytogenes biofilms by rapidly killing planktonic cells and to eliminate preformed biofilms, thus suggesting that it could be used as a disinfectant to prevent L. monocytogenes from persisting in food processing environments.

  10. Effect of Octenidine Hydrochloride on Planktonic Cells and Biofilms of Listeria monocytogenes▿

    PubMed Central

    Amalaradjou, Mary Anne Roshni; Norris, Carol E.; Venkitanarayanan, Kumar

    2009-01-01

    Listeria monocytogenes is a food-borne pathogen capable of forming biofilms and persisting in food processing environments for extended periods of time, thereby potentially contaminating foods. The efficacy of octenidine hydrochloride (OH) for inactivating planktonic cells and preformed biofilms of L. monocytogenes was investigated at 37, 21, 8, and 4°C in the presence and absence of organic matter (rehydrated nonfat dry milk). OH rapidly killed planktonic cells and biofilms of L. monocytogenes at all four temperatures. Moreover, OH was equally effective in killing L. monocytogenes biofilms on polystyrene and stainless steel matrices in the presence and absence of organic matter. The results underscore OH's ability to prevent establishment of L. monocytogenes biofilms by rapidly killing planktonic cells and to eliminate preformed biofilms, thus suggesting that it could be used as a disinfectant to prevent L. monocytogenes from persisting in food processing environments. PMID:19376913

  11. Immune Interventions to Eliminate the HIV Reservoir.

    PubMed

    Hsu, Denise C; Ananworanich, Jintanat

    2017-10-26

    Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.

  12. Selecting Great Lakes streams for lampricide treatment based on larval sea lamprey surveys

    USGS Publications Warehouse

    Christie, Gavin C.; Adams, Jean V.; Steeves, Todd B.; Slade, Jeffrey W.; Cuddy, Douglas W.; Fodale, Michael F.; Young, Robert J.; Kuc, Miroslaw; Jones, Michael L.

    2003-01-01

    The Empiric Stream Treatment Ranking (ESTR) system is a data-driven, model-based, decision tool for selecting Great Lakes streams for treatment with lampricide, based on estimates from larval sea lamprey (Petromyzon marinus) surveys conducted throughout the basin. The 2000 ESTR system was described and applied to larval assessment surveys conducted from 1996 to 1999. A comparative analysis of stream survey and selection data was conducted and improvements to the stream selection process were recommended. Streams were selected for treatment based on treatment cost, predicted treatment effectiveness, and the projected number of juvenile sea lampreys produced. On average, lampricide treatments were applied annually to 49 streams with 1,075 ha of larval habitat, killing 15 million larval and 514,000 juvenile sea lampreys at a total cost of $5.3 million, and marginal and mean costs of $85 and $10 per juvenile killed. The numbers of juvenile sea lampreys killed for given treatment costs showed a pattern of diminishing returns with increasing investment. Of the streams selected for treatment, those with > 14 ha of larval habitat targeted 73% of the juvenile sea lampreys for 60% of the treatment cost. Suggested improvements to the ESTR system were to improve accuracy and precision of model estimates, account for uncertainty in estimates, include all potentially productive streams in the process (not just those surveyed in the current year), consider the value of all larvae killed during treatment (not just those predicted to metamorphose the following year), use lake-specific estimates of damage, and establish formal suppression targets.

  13. A Small-Molecule Inhibitor of BCL6 Kills DLBCL Cells In Vitro and In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerchietti, L.C.; Ghetu, A.F.; Zhu, X.

    2010-09-22

    The BCL6 transcriptional repressor is the most frequently involved oncogene in diffuse large B cell lymphoma (DLBCL). We combined computer-aided drug design with functional assays to identify low-molecular-weight compounds that bind to the corepressor binding groove of the BCL6 BTB domain. One such compound disrupted BCL6/corepressor complexes in vitro and in vivo, and was observed by X-ray crystallography and NMR to bind the critical site within the BTB groove. This compound could induce expression of BCL6 target genes and kill BCL6-positive DLBCL cell lines. In xenotransplantation experiments, the compound was nontoxic and potently suppressed DLBCL tumors in vivo. The compoundmore » also killed primary DLBCLs from human patients.« less

  14. CD22 Ligands on a Natural N-Glycan Scaffold Efficiently Deliver Toxins to B-Lymphoma Cells.

    PubMed

    Peng, Wenjie; Paulson, James C

    2017-09-13

    CD22 is a sialic acid-binding immunoglobulin-like lectin (Siglec) that is highly expressed on B-cells and B cell lymphomas, and is a validated target for antibody and nanoparticle based therapeutics. However, cell targeted therapeutics are limited by their complexity, heterogeneity, and difficulties in production. We describe here a chemically defined natural N-linked glycan scaffold that displays high affinity CD22 glycan ligands and outcompetes the natural ligand for the receptor, resulting in single molecule binding to CD22 and endocytosis into cells. Binding affinity is increased by up to 1500-fold compared to the monovalent ligand, while maintaining the selectivity for hCD22 over other Siglecs. Conjugates of these multivalent ligands with auristatin and saporin toxins are efficiently internalized via hCD22 resulting in killing of B-cell lymphoma cells. This single molecule ligand targeting strategy represents an alternative to antibody- and nanoparticle-mediated approaches for delivery of agents to cells expressing CD22 and other Siglecs.

  15. The role of antimicrobial peptides in animal defenses

    NASA Astrophysics Data System (ADS)

    Hancock, Robert E. W.; Scott, Monisha G.

    2000-08-01

    It is becoming clear that the cationic antimicrobial peptides are an important component of the innate defenses of all species of life. Such peptides can be constitutively expressed or induced by bacteria or their products. The best peptides have good activities vs. a broad range of bacterial strains, including antibiotic-resistant isolates. They kill very rapidly, do not easily select resistant mutants, are synergistic with conventional antibiotics, other peptides, and lysozyme, and are able to kill bacteria in animal models. It is known that bacterial infections, especially when treated with antibiotics, can lead to the release of bacterial products such as lipopolysaccharide (LPS) and lipoteichoic acid, resulting in potentially lethal sepsis. In contrast to antibiotics, the peptides actually prevent cytokine induction by bacterial products in tissue culture and human blood, and they block the onset of sepsis in mouse models of endotoxemia. Consistent with this, transcriptional gene array experiments using a macrophage cell line demonstrated that a model peptide, CEMA, blocks the expression of many genes whose transcription was induced by LPS. The peptides do this in part by blocking LPS interaction with the serum protein LBP. In addition, CEMA itself has a direct effect on macrophage gene expression. Because cationic antimicrobial peptides are induced by LPS and are able to dampen the septic response of animal cells to LPS, we propose that, in addition to their role in direct and lysozyme-assisted killing of microbes, they have a role in feedback regulation of cytokine responses. We are currently developing variant peptides as therapeutics against antibiotic-resistant infections.

  16. Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress

    PubMed Central

    Lin, Wenwei; de Sessions, Paola Florez; Teoh, Garrett Hor Keong; Mohamed, Ahmad Naim Nazri; Zhu, Yuan O.; Koh, Vanessa Hui Qi; Ang, Michelle Lay Teng; Dedon, Peter C.; Hibberd, Martin Lloyd

    2016-01-01

    Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1. PMID:27324481

  17. Mouse Cytotoxic T Cell-derived Granzyme B Activates the Mitochondrial Cell Death Pathway in a Bim-dependent Fashion*

    PubMed Central

    Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M.; Froelich, Christopher J.; Pardo, Julián

    2015-01-01

    Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways. PMID:25605735

  18. The oncolytic compound LTX-401 targets the Golgi apparatus

    PubMed Central

    Zhou, Heng; Sauvat, Allan; Gomes-da-Silva, Lígia C; Durand, Sylvère; Forveille, Sabrina; Iribarren, Kristina; Yamazaki, Takahiro; Souquere, Sylvie; Bezu, Lucillia; Müller, Kevin; Leduc, Marion; Liu, Peng; Zhao, Liwei; Marabelle, Aurélien; Zitvogel, Laurence; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2016-01-01

    LTX-401 is an oncolytic amino acid derivative with potential immunogenic properties. Here, we demonstrate that LTX-401 selectively destroys the structure of the Golgi apparatus, as determined by means of ultrastructural analyses and fluorescence microscopic observation of cells expressing Golgi-targeted GFP reporters. Subcellular fractionation followed by mass spectrometric detection revealed that LTX-401 selectively enriched in the Golgi rather than in mitochondria or in the cytosol. The Golgi-dissociating agent Brefeldin A (BFA) reduced cell killing by LTX-401 as it partially inhibited LTX-401-induced mitochondrial release of cytochrome c and the activation of BAX. The cytotoxic effect of LTX-401 was attenuated by the double knockout of BAX and BAK, as well as the mitophagy-enforced depletion of mitochondria, yet was refractory to caspase inhibition. LTX-401 induced all major hallmarks of immunogenic cell death detectable with biosensor cell lines including calreticulin exposure, ATP release, HMGB1 exodus and a type-1 interferon response. Moreover, LTX-401-treated tumors manifested a strong lymphoid infiltration. Altogether these results support the contention that LTX-401 can stimulate immunogenic cell death through a pathway in which Golgi-localized LTX-401 operates upstream of mitochondrial membrane permeabilization. PMID:27588704

  19. Non-Covalent Functionalization of Carbon Nanovectors with an Antibody Enables Targeted Drug Delivery

    PubMed Central

    Berlin, Jacob M.; Pham, Tam T.; Sano, Daisuke; Mohamedali, Khalid A.; Marcano, Daniela C.; Myers, Jeffrey N.; Tour, James M.

    2011-01-01

    Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. We previously demonstrated that poly(ethylene glycol)-functionalized carbon nanovectors are able to sequester paclitaxel, a widely used hydrophobic cancer drug, by simple physisorption and deliver the drug for killing of cancer cells. The cell-killing when these drug-loaded carbon nanoparticles were used was equivalent to when a commercial formulation of paclitaxel was used. Here we show that by further mixing the drug-loaded nanoparticles with Cetuximab, a monoclonal antibody that recognizes the epidermal growth factor receptor (EGFR), paclitaxel is preferentially targeted to EGFR+ tumor cells in vitro. This supports progressing to in vivo studies. Moreover, the construct is unusual in that all three components are assembled through non-covalent interactions. Such non-covalent assembly could enable high-throughput screening of drug/antibody combinations. PMID:21736358

  20. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

Top