Brady, Brenna L; Bassing, Craig H
2011-09-15
Developmental stage-specific regulation of transcriptional accessibility helps control V(D)J recombination. Vβ segments on unrearranged TCRβ alleles are accessible in CD4(-)/CD8(-) (double-negative [DN]) thymocytes, when they recombine, and inaccessible in CD4(+)/CD8(+) (double-positive [DP]) thymocytes, when they do not rearrange. Downregulation of Vβ accessibility on unrearranged alleles is linked with Lat-dependent β-selection signals that inhibit Vβ rearrangement, stimulate Ccnd3-driven proliferation, and promote DN-to-DP differentiation. Transcription and recombination of Vβs on VDJβ-rearranged alleles in DN cells has not been studied; Vβs upstream of functional VDJβ rearrangements have been found to remain accessible, yet not recombine, in DP cells. To elucidate contributions of β-selection signals in regulating Vβ transcription and recombination on VDJβ-rearranged alleles, we analyzed wild-type, Ccnd3(-/-), and Lat(-/-) mice containing a preassembled functional Vβ1DJCβ1 (Vβ1(NT)) gene. Vβ10 segments located just upstream of this VDJCβ1 gene were the predominant germline Vβs that rearranged in Vβ1(NT/NT) and Vβ1(NT/NT)Ccnd3(-/-) thymocytes, whereas Vβ4 and Vβ16 segments located further upstream rearranged at similar levels as Vβ10 in Vβ1(NT/NT)Lat(-/-) DN cells. We previously showed that Vβ4 and Vβ16, but not Vβ10, are transcribed on Vβ1(NT) alleles in DP thymocytes; we now demonstrate that Vβ4, Vβ16, and Vβ10 are transcribed at similar levels in Vβ1(NT/NT)Lat(-/-) DN cells. These observations indicate that suppression of Vβ rearrangements is not dependent on Ccnd3-driven proliferation, and DN residence can influence the repertoire of Vβs that recombine on alleles containing an assembled VDJCβ1 gene. Our findings also reveal that β-selection can differentially silence rearrangement of germline Vβ segments located proximal and distal to functional VDJβ genes.
Neural network for control of rearrangeable Clos networks.
Park, Y K; Cherkassky, V
1994-09-01
Rapid evolution in the field of communication networks requires high speed switching technologies. This involves a high degree of parallelism in switching control and routing performed at the hardware level. The multistage crossbar networks have always been attractive to switch designers. In this paper a neural network approach to controlling a three-stage Clos network in real time is proposed. This controller provides optimal routing of communication traffic requests on a call-by-call basis by rearranging existing connections, with a minimum length of rearrangement sequence so that a new blocked call request can be accommodated. The proposed neural network controller uses Paull's rearrangement algorithm, along with the special (least used) switch selection rule in order to minimize the length of rearrangement sequences. The functional behavior of our model is verified by simulations and it is shown that the convergence time required for finding an optimal solution is constant, regardless of the switching network size. The performance is evaluated for random traffic with various traffic loads. Simulation results show that applying the least used switch selection rule increases the efficiency in switch rearrangements, reducing the network convergence time. The implementation aspects are also discussed to show the feasibility of the proposed approach.
B cell receptor editing in tolerance and autoimmunity
Luning Prak, Eline T.; Monestier, Marc; Eisenberg, Robert A.
2010-01-01
Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by “editing” the specificities of their receptors with additional antibody gene rearrangements. Nemazee points out, “receptor editing separates receptor selection from cellular selection.”1 As such, editing complicates the Clonal Selection Hypothesis, because edited cells are not simply endowed for life with a single, invariant antigen receptor.2 For example, an edited B cell changes the specificity of its B cell receptor (BCR), and if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated, and the B cell can exhibit two specificities. Here we will describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire. PMID:21251012
USDA-ARS?s Scientific Manuscript database
Mutation and chromosomal rearrangements are the two main forces of increasing genetic diversity for natural selection to act upon, and ultimately drive the evolutionary process. Although genome evolution is a function of both forces, simultaneously, the ratio of each can be varied among different ge...
Ito, Tadashi; Nishiuchi, Emi; Fukuhara, Gaku; Inoue, Yoshihisa; Mori, Tadashi
2011-09-01
A series of 4-aryl-1,1-dicyanobutenes (1a-1f) with different substituents were synthesized to control the intramolecular donor-acceptor or charge-transfer (C-T) interactions in the ground state. Photoexcitation of these C-T substrates led to competitive cyclization and rearrangement, the ratio being critically controlled by various environmental factors, such as solvent polarity, temperature and static pressure, and also by excitation wavelength and supramolecular confinement (polyethylene voids). In non-polar solvents, the rearrangement was dominant (>10 : 1) for all examined substrates, while the cyclization was favoured in polar solvents, in particular at low temperatures. Selective excitation at the C-T band further enhanced the cyclization up to >50 : 1 ratios. More importantly, the cyclization/rearrangement ratio was revealed to be a linear function of the C-T transition energy. However, the substrates with a sterically demanding or highly electron-donating substituent failed to give the cyclization product.
Bao, Yun-Juan; Liang, Zhong; Mayfield, Jeffrey A.; McShan, William M.; Lee, Shaun W.; Ploplis, Victoria A.; Castellino, Francis J.
2016-01-01
Symmetric genomic rearrangements around replication axes in genomes are commonly observed in prokaryotic genomes, including Group A Streptococcus (GAS). However, asymmetric rearrangements are rare. Our previous studies showed that the hypervirulent invasive GAS strain, M23ND, containing an inactivated transcriptional regulator system, covRS, exhibits unique extensive asymmetric rearrangements, which reconstructed a genomic structure distinct from other GAS genomes. In the current investigation, we identified the rearrangement events and examined the genetic consequences and evolutionary implications underlying the rearrangements. By comparison with a close phylogenetic relative, M18-MGAS8232, we propose a molecular model wherein a series of asymmetric rearrangements have occurred in M23ND, involving translocations, inversions and integrations mediated by multiple factors, viz., rRNA-comX (factor for late competence), transposons and phage-encoded gene segments. Assessments of the cumulative gene orientations and GC skews reveal that the asymmetric genomic rearrangements did not affect the general genomic integrity of the organism. However, functional distributions reveal re-clustering of a broad set of CovRS-regulated actively transcribed genes, including virulence factors and metabolic genes, to the same leading strand, with high confidence (p-value ~10−10). The re-clustering of the genes suggests a potential selection advantage for the spatial proximity to the transcription complexes, which may contain the global transcriptional regulator, CovRS, and other RNA polymerases. Their proximities allow for efficient transcription of the genes required for growth, virulence and persistence. A new paradigm of survival strategies of GAS strains is provided through multiple genomic rearrangements, while, at the same time, maintaining genomic integrity. PMID:27329479
Tsakou, Eugenia; Agathagelidis, Andreas; Boudjoghra, Myriam; Raff, Thorsten; Dagklis, Antonis; Chatzouli, Maria; Smilevska, Tatjana; Bourikas, George; Merle-Beral, Helene; Manioudaki-Kavallieratou, Eleni; Anagnostopoulos, Achilles; Brüggemann, Monika; Davi, Frederic; Stamatopoulos, Kostas; Belessi, Chrysoula
2012-01-01
The frequent occurrence of stereotyped heavy complementarity-determining region 3 (VH CDR3) sequences among unrelated cases with chronic lymphocytic leukemia (CLL) is widely taken as evidence for antigen selection. Stereotyped VH CDR3 sequences are often defined by the selective association of certain immunoglobulin heavy diversity (IGHD) genes in specific reading frames with certain immunoglobulin heavy joining (IGHJ ) genes. To gain insight into the mechanisms underlying VH CDR3 restrictions and also determine the developmental stage when restrictions in VH CDR3 are imposed, we analyzed partial IGHD-IGHJ rearrangements (D-J) in 829 CLL cases and compared the productively rearranged D-J joints (that is, in-frame junctions without junctional stop codons) to (a) the productive immunoglobulin heavy variable (IGHV )-IGHD-IGHJ rearrangements (V-D-J) from the same cases and (b) 174 D-J rearrangements from 160 precursor B-cell acute lymphoblastic leukemia cases (pre-B acute lymphoblastic leukemia [ALL]). Partial D-J rearrangements were detected in 272/829 CLL cases (32.8%). Sequence analysis was feasible in 238 of 272 D-J rearrangements; 198 of 238 (83.2%) were productively rearranged. The D-J joints in CLL did not differ significantly from those in pre-B ALL, except for higher frequency of the IGHD7-27 and IGHJ6 genes in the latter. Among CLL carrying productively rearranged D-J, comparison of the IGHD gene repertoire in productive V-D-J versus D-J revealed the following: (a) overuse of IGHD reading frames encoding hydrophilic peptides among V-D-J and (b) selection of the IGHD3-3 and IGHD6-19 genes in V-D-J junctions. These results document that the IGHD and IGHJ gene biases in the CLL expressed VH CDR3 repertoire are not stochastic but are directed by selection operating at the immunoglobulin protein level. PMID:21968789
Blazier, J Chris; Ruhlman, Tracey A; Weng, Mao-Lun; Rehman, Sumaiyah K; Sabir, Jamal S M; Jansen, Robert K
2016-04-18
Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA.
A tandem cross-metathesis/semipinacol rearrangement reaction.
Plummer, Christopher W; Soheili, Arash; Leighton, James L
2012-05-18
An efficient and (E)-selective synthesis of a 6-alkylidenebicyclo[3.2.1]octan-8-one has been developed. The key step is a tandem cross-metathesis/semipinacol rearrangement reaction, wherein the Hoveyda-Grubbs II catalyst, or more likely a derivative thereof, serves as the Lewis acid for the rearrangement. Despite the fact that both the starting alkene and the cross-metathesis product are viable rearrangement substrates, only the latter rearranges, suggesting that the Lewis acidic species is generated only after the cross-metathesis reaction is complete.
Sinkora, Marek; Sun, Jishan; Sinkorová, Jana; Christenson, Ronald K; Ford, Steven P; Butler, John E
2003-02-15
B cell lymphogenesis in mammals occurs in various tissues during development but it is generally accepted that it operates by the same mechanism in all tissues. We show that in swine, the frequency of in-frame (IF) VDJ rearrangements differs among yolk sac, fetal liver, spleen, early thymus, bone marrow, and late thymus. All VDJ rearrangements recovered and analyzed on the 20th day of gestation (DG20) from the yolk sac were 100% IF. Those recovered at DG30 in the fetal liver were >90% IF, and this predominance of cells with apparently a single IF rearrangement continued in all organs until approximately DG45, which corresponds to the time when lymphopoiesis begins in the bone marrow. Thereafter, the proportion of IF rearrangements drops to approximately 71%, i.e., the value predicted whether VDJ rearrangement is random and both chromosomes were involved. Unlike other tissues, VDJs recovered from thymus after DG50 display a pattern suggesting no selection for IF rearrangements. Regardless of differences in the proportion of IF rearrangements, we observed no significant age- or tissue-dependent changes in CDR3 diversity, N region additions, or other characteristics of fetal VDJs during ontogeny. These findings indicate there are multiple sites of B cell lymphogenesis in fetal piglets and differences in the frequency of productive VDJ rearrangements at various sites. We propose the latter to result from differential selection or a developmentally dependent change in the intrinsic mechanism of VDJ rearrangement.
Remembrance of things past retrieved from the Paramecium genome.
Sperling, Linda
2011-01-01
Paramecium and other ciliates are the only unicellular eukaryotes that separate germinal and somatic functions. A germline micronucleus transmits the genetic information to sexual progeny, while a somatic macronucleus expresses the genetic information during vegetative growth to determine the phenotype. At each sexual generation, a new macronucleus develops from the zygotic nucleus through programmed rearrangements of the germline genome. Paramecium tetraurelia somatic genome sequencing, reviewed here, has provided insight into the organization and evolution of the genome. A series of at least 3 whole genome duplications was detected in the Paramecium lineage and selective pressures that determine the fate of the gene duplicates analyzed. Variability in the somatic DNA was characterized and could be attributed to the genome rearrangement processes. Since, in Paramecium, alternative genome rearrangement patterns can be inherited across sexual generations by homology-dependent epigenetic mechanisms and can affect phenotype, I discuss the possibility that ciliate nuclear dimorphism buffers genetic variation hidden in the germline. Copyright © 2011 Institut Pasteur. Published by Elsevier SAS. All rights reserved.
Blazier, J. Chris; Ruhlman, Tracey A.; Weng, Mao-Lun; Rehman, Sumaiyah K.; Sabir, Jamal S. M.; Jansen, Robert K.
2016-01-01
Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA. PMID:27087667
Immunoglobulin λ Gene Rearrangement Can Precede κ Gene Rearrangement
Berg, Jörg; Mcdowell, Mindy; Jäck, Hans-Martin; ...
1990-01-01
Imore » mmunoglobulin genes are generated during differentiation of B lymphocytes by joining gene segments. A mouse pre-B cell contains a functional immunoglobulin heavy-chain gene, but no light-chain gene. Although there is only one heavy-chain locus, there are two lightchain loci: κ and λ .t has been reported that κ loci in the germ-line configuration are never (in man) or very rarely (in the mouse) present in cells with functionally rearranged λ -chain genes. Two explanations have been proposed to explain this: (a) the ordered rearrangement theory, which postulates that light-chain gene rearrangement in the pre-B cell is first attempted at the κ locus, and that only upon failure to produce a functional κ chain is there an attempt to rearrange the λ locus; and (b) the stochastic theory, which postulates that rearrangement at the λ locus proceeds at a rate that is intrinsically much slower than that at the κ locus. We show here that λ -chain genes are generated whether or not the κ locus has lost its germ-line arrangement, a result that is compatible only with the stochastic theory.« less
Synthesis of enyne and aryl vinyl sulfoxides: functionalization via Pummerer rearrangement.
Souza, Frederico B; Shamim, Anwar; Argomedo, Luiz M Z; Pimenta, Daniel C; Stefani, Hélio A
2015-11-01
An efficient methodology for the synthesis of aryl-substituted vinyl sulfoxides through direct substitution of aryl-substituted alkynyl grignard reagents on menthyl-p-toluenesulfinate followed by Suzuki-Miyaura cross-coupling reaction has been developed. It has also been described that the reaction of alkyl-substituted and cycloalkyl-substituted alkynyl grignard reagents with menthyl-p-toluenesulfinate led to two products, i.e., alkynyl sulfoxide derivatives, as a result of substitution, and enyne sulfoxide derivatives, which resulted from substitution followed by Michael type addition. It was possible to selectively synthesize the enyne sulfoxide derivatives by changing the concentration of the grignard reagent. These alkenyl sulfoxides were transformed into the corresponding [Formula: see text]-thio aldehydes in high yields via additive Pummerer rearrangement.
ERIC Educational Resources Information Center
Gauthier, Roger-Francois; Le Gouvello, Margaux
2010-01-01
The history of education in France, with its inherited link between the Republic and the religion of knowledge, produces a specific form of educational functioning, consubstantial to a tradition of selection and a symptomatic lack of what elsewhere is called a curriculum. While the recent introduction of the "common grounding of knowledge and…
Heterogeneous activation in 2D colloidal glass-forming liquids classified by machine learning
NASA Astrophysics Data System (ADS)
Ma, Xiaoguang; Davidson, Zoey; Still, Tim; Ivancic, Robert; Schoenholz, Sam S.; Sussman, Daniel M.; Liu, A. J.; Yodh, A. G.
The trajectories of particles in colloidal glass-forming liquids are often characterized by long periods of ``in-cage'' fluctuations and rapid ``cage-breaking'' rearrangements. We study the rate of such rearrangements and its connection with local cage structures in a 2D binary mixture of poly(N-isopropyl acrylamide) spheres. We use the hopping function, Phop (t) , to identify rearrangements within particle trajectories. Then we obtain distributions of the residence time tR between consecutive rearrangements. The mean residence time tR (S) is found to correlate with the local configurations for the rearranging particles, characterized by 70 radial structural features and softness S, which ranks the structural similarities with respect to rearranging particles. Furthermore, tR (S) for particles with similar softness decays monotonically with increasing softness, indicating correlation between rearrangement rates and softness S. Finally we find that the conditional and full probability distribution functions, P (tR | S) and P (tR) , are well explained by a thermal activation model. We acknowledge financial supports from NSF-MRSEC DMR11-20901, NSF DMR16-07378, and NASA NNX08AO0G.
Golarai, Golijeh; Ghahremani, Dara G.; Eberhardt, Jennifer L.; Gabrieli, John D. E.
2015-01-01
Several regions of the human brain respond more strongly to faces than to other visual stimuli, such as regions in the amygdala (AMG), superior temporal sulcus (STS), and the fusiform face area (FFA). It is unclear if these brain regions are similar in representing the configuration or natural appearance of face parts. We used functional magnetic resonance imaging of healthy adults who viewed natural or schematic faces with internal parts that were either normally configured or randomly rearranged. Response amplitudes were reduced in the AMG and STS when subjects viewed stimuli whose configuration of parts were digitally rearranged, suggesting that these regions represent the 1st order configuration of face parts. In contrast, response amplitudes in the FFA showed little modulation whether face parts were rearranged or if the natural face parts were replaced with lines. Instead, FFA responses were reduced only when both configural and part information were reduced, revealing an interaction between these factors, suggesting distinct representation of 1st order face configuration and parts in the AMG and STS vs. the FFA. PMID:26594191
Hodgkin's disease biology: recent advances.
Jox, A; Wolf, J; Diehl, V
1997-11-01
The cellular origin of H-RS cells has been questioned for a long time. Recently, using single cell amplification of Ig genes evidence was obtained that H-RS cells clonally arise from B-cells. Sequence analysis of rearranged Ig genes demonstrated that H-RS cells develop within the germinal centre. H-RS cells in classical HD grow despite loss of function of their rearranged Ig genes. In contrast, the mutation pattern of rearranged Ig genes in L & H cells of lymphocyte-predominant HD frequently shows ongoing mutations indicating that these cell are still antigen selected. These molecular differences show that LP HD genetically differs from classical HD. H-RS cells escape from apoptosis within the germinal centre. However, the events leading to malignant transformation are still unknown. The association between EBV and HD has been repeatedly described, but the occurrence of EBV negative cases is hard to explain just by loss of EBV. The analysis of chromosomal aberrations in H-RS cells did not result in the description of a specific 'HD-gene'. Also the role of the T-lymphocytes surrounding the H-RS cells has remained an open question.
Catalytic and Thermal 1,2-Rearrangement of (α-Mercaptobenzyl)trimethylsilane
NASA Astrophysics Data System (ADS)
Zhang, Jie; Cui, Mengzhong; Feng, Shengyu; Sun, Xiaomin; Feng, Dacheng
2009-09-01
The mechanisms of catalytic and thermal 1,2-rearrangement of (α-mercaptobenzyl)trimethylsilane were studied by using density functional theory (DFT) at the MP2/6-31+G(d,p)//B3LYP/6-31G(d) levels. The results show that (α-mercaptobenzyl)trimethylsilane rearranges to (benzylthio)trimethylsilane through a trimethylsilyl group migration from C to S atom via a transition state of pentacoordinate Si atom with or without radical initiators. The low reaction activation energy (15.1 kcal/mol) is responsible for the fast rearrangement in the presence of radical initiators. Both radical and nonradical thermal rearrangement mechanisms were suggested, and the radical mechanism dominates through its self-catalyzing. These results are consistent with the experiment results. The activation energy (ΔHact = 15.1 kcal/mol) for the rate-determining step within the self-catalytic cycle is low enough to make (trimethylsilylbenzyl)thiyl radical be a reasonable catalyst for the thermal rearrangement. The catalytic and thermal 1,2-rearrangement mechanisms of (α-mercaptobenzyl)trimethylsilane, especially the self-catalytic radical mechanism, were revealed for the first time. The comparison of the rearrangement mechanisms between (α-mercaptobenzyl)trimethylsilane and silylmethanethiol discloses the factors in determining the reaction mechanism of such kinds of mercaptoalkyl-functionalized organosilanes. The phenyl group is found to be favorable for the radical rearrangement, thus making (α-mercaptobenzyl)trimethylsilane instable.
Marino, Federica Zito; Liguori, Giuseppina; Aquino, Gabriella; La Mantia, Elvira; Bosari, Silvano; Ferrero, Stefano; Rosso, Lorenzo; Gaudioso, Gabriella; De Rosa, Nicla; Scrima, Marianna; Martucci, Nicola; La Rocca, Antonello; Normanno, Nicola; Morabito, Alessandro; Rocco, Gaetano; Botti, Gerardo; Franco, Renato
2015-01-01
Background Non Small Cell Lung Cancer is a highly heterogeneous tumor. Histologic intratumor heterogeneity could be ‘major’, characterized by a single tumor showing two different histologic types, and ‘minor’, due to at least 2 different growth patterns in the same tumor. Therefore, a morphological heterogeneity could reflect an intratumor molecular heterogeneity. To date, few data are reported in literature about molecular features of the mixed adenocarcinoma. The aim of our study was to assess EGFR-mutations and ALK-rearrangements in different intratumor subtypes and/or growth patterns in a series of mixed adenocarcinomas and adenosquamous carcinomas. Methods 590 Non Small Cell Lung Carcinomas tumor samples were revised in order to select mixed adenocarcinomas with available tumor components. Finally, only 105 mixed adenocarcinomas and 17 adenosquamous carcinomas were included in the study for further analyses. Two TMAs were built selecting the different intratumor histotypes. ALK-rearrangements were detected through FISH and IHC, and EGFR-mutations were detected through IHC and confirmed by RT-PCR. Results 10/122 cases were ALK-rearranged and 7 from those 10 showing an intratumor heterogeneity of the rearrangements. 12/122 cases were EGFR-mutated, uniformly expressing the EGFR-mutated protein in all histologic components. Conclusion Our data suggests that EGFR-mutations is generally homogeneously expressed. On the contrary, ALK-rearrangement showed an intratumor heterogeneity in both mixed adenocarcinomas and adenosquamous carcinomas. The intratumor heterogeneity of ALK-rearrangements could lead to a possible impact on the therapeutic responses and the disease outcomes. PMID:26422230
Combinatorial structure of genome rearrangements scenarios.
Ouangraoua, Aïda; Bergeron, Anne
2010-09-01
In genome rearrangement theory, one of the elusive questions raised in recent years is the enumeration of rearrangement scenarios between two genomes. This problem is related to the uniform generation of rearrangement scenarios and the derivation of tests of statistical significance of the properties of these scenarios. Here we give an exact formula for the number of double-cut-and-join (DCJ) rearrangement scenarios between two genomes. We also construct effective bijections between the set of scenarios that sort a component as well studied combinatorial objects such as parking functions, labeled trees, and prüfer codes.
Somatic Rearrangement in B Cells: It's (Mostly) Nuclear Physics.
Aiden, Erez Lieberman; Casellas, Rafael
2015-08-13
We discuss how principles of nuclear architecture drive typical gene rearrangements in B lymphocytes, whereas translocation hot spots and recurrent lesions reflect the extent of AID-mediated DNA damage and selection. Copyright © 2015 Elsevier Inc. All rights reserved.
Capello, Daniela; Cerri, Michaela; Muti, Giuliana; Lucioni, Marco; Oreste, Pierluigi; Gloghini, Annunziata; Berra, Eva; Deambrogi, Clara; Franceschetti, Silvia; Rossi, Davide; Alabiso, Oscar; Morra, Enrica; Rambaldi, Alessandro; Carbone, Antonino; Paulli, Marco; Gaidano, Gianluca
2006-12-01
Post-transplant lymphoproliferative disorders (PTLD) derive from antigen-experienced B-cells and represent a major complication of solid organ transplantation. We characterized usage, mutation frequency and mutation pattern of immunoglobulin variable (IGV) gene rearrangements in 50 PTLD (polymorphic PTLD, n=10; diffuse large B-cell lymphoma, n=35; and Burkitt/Burkitt-like lymphoma, n=5). Among PTLD yielding clonal IGV amplimers, a functional IGV heavy chain (IGHV) rearrangement was found in 40/50 (80.0%) cases, whereas a potentially functional IGV light chain rearrangement was identified in 36/46 (78.3%) PTLD. By combining IGHV and IGV light chain rearrangements, 10/50 (20.0%) PTLD carried crippling mutations, precluding expression of a functional B-cell receptor (BCR). Immunohistochemistry showed detectable expression of IG light chains in only 18/43 (41.9%) PTLD. Failure to detect a functional IGV rearrangement associated with lack of IGV expression. Our data suggest that a large fraction of PTLD arise from germinal centre (GC)-experienced B-cells that display impaired BCR. Since a functional BCR is required for normal B-cell survival during GC transit, PTLD development may implicate rescue from apoptosis and expansion of B-cells that have failed the GC reaction. The high frequency of IGV loci inactivation appears to be a peculiar feature of PTLD among immunodeficiency-associated lymphoproliferations.
Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding
D'Angelo, Sara; Ferrara, Fortunato; Naranjo, Leslie; ...
2018-03-08
Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with themore » same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.« less
Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Angelo, Sara; Ferrara, Fortunato; Naranjo, Leslie
Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with themore » same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.« less
Mehio, Nada; Ivanov, Alexander S.; Ladshaw, Austin P.; ...
2015-11-22
Poly(acrylamidoxime) fibers are the current state of the art adsorbent for mining uranium from seawater. However, the competition between uranyl (UO 2 2+) and vanadium ions poses a challenge to mining on the industrial scale. In this work, we employ density functional theory (DFT) and coupled-cluster methods (CCSD(T)) in the restricted formalism to investigate potential binding motifs of the oxovanadium(IV) ion (VO 2+) with the formamidoximate ligand. Consistent with experimental EXAFS data, the hydrated six-coordinate complex is predicted to be preferred over the hydrated five-coordinate complex. Here, our investigation of formamidoximate-VO 2+ complexes universally identified the most stable binding motifmore » formed by chelating a tautomerically rearranged imino hydroxylamine via the imino nitrogen and hydroxylamine oxygen. The alternative binding motifs for amidoxime chelation via a non-rearranged tautomer and 2 coordination are found to be ~11 kcal/mol less stable. Ultimately, the difference in the most stable VO 2+ and UO 2 2+ binding conformation has important implications for the design of more selective UO 2 2+ ligands.« less
Santarpia, Mariacarmela; Altavilla, Giuseppe; Rosell, Rafael
2015-06-01
Crizotinib was the first clinically available anaplastic lymphoma kinase (ALK) inhibitor, showing remarkable activity against ALK-rearranged non-small-cell lung cancer (NSCLC). Despite initial responses, acquired resistance to crizotinib inevitably develops, with the brain being a common site of relapse. Alectinib is a highly selective, next-generation ALK inhibitor with potent inhibitory activity also against ALK mutations conferring resistance to crizotinib, including the gatekeeper L1196M substitution. In a Phase I/II study from Japan, alectinib was found to be highly active and safe in crizotinib-naïve, ALK-rearranged NSCLC patients. Alectinib also demonstrated promising antitumor activity in crizotinib-resistant patients, including those with CNS metastases. Based on these data, the drug received Breakthrough Therapy Designation by the US FDA and has been recently approved in Japan for the treatment of ALK-positive, advanced NSCLC patients. However, patients may eventually develop resistance to alectinib, highlighting the need for novel therapeutic strategies to further improve the management of ALK-rearranged NSCLC.
Cameron, Alex; Fisher, Brendan; Fisk, Nicholas; Hummel, Jessica; White, Jonathan M; Krenske, Elizabeth H; Rizzacasa, Mark A
2015-12-18
An approach to the dihydrooxepino[4,3-b]pyrrole core of diketopiperazine natural products which utilizes a vinyl pyrrole epoxide Cope rearrangement was investigated. It was found that an ester substituent on the epoxide was essential for the [3,3]-rearrangement to occur. Density functional calculations with M06-2X provided explanations for the effects of the pyrrole and ester groups on these rearrangements.
Evolution and Function of the TCR Vgamma9 Chain Repertoire: It’s Good to be Public
Pauza, C. David; Cairo, Cristiana
2015-01-01
Lymphocytes expressing a T cell receptor (TCR) composed of Vgamma9 and Vdelta2 chains represent a minor fraction of human thymocytes. Extrathymic selection throughout post-natal life causes the proportion of cells with a Vgamma9-JP rearrangement to increase and elevates the capacity for responding to non-peptidic phosphoantigens. Extrathymic selection is so powerful that phosphoantigen-reactive cells comprise about 1 in 40 circulating memory T cells from healthy adults and the subset can be expanded rapidly upon infection or in response to malignancy. Skewing of the gamma delta TCR repertoire is accompanied by selection for public gamma chain sequences such that many unrelated individuals overlap extensive in their circulating repertoire. This type of selection implies the presence of a monomorphic antigen-presenting molecule that is an object of current research but remains incompletely defined. While selection on a monomorphic presenting molecule may seem unusual, similar mechanisms shape the alpha beta T cell repertoire including the extreme examples of NKT or mucosal-associated invariant T cells (MAIT) and the less dramatic amplification of public Vbeta chain rearrangements driven by individual MHC molecules and associated with resistance to viral pathogens. Selecting and amplifying public T cell receptors whether alpha beta or gamma delta, are important steps in developing an anticipatory TCR repertoire. Cell clones expressing public TCR can accelerate the kinetics of response to pathogens and impact host survival. PMID:25769734
Recurrent DNA inversion rearrangements in the human genome
Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia; Domínguez-Vidaña, Rocío; Zepeda, Cinthya; Yañez, Omar; Gutiérrez, María; Lemus, Tzitziki; Valle, David; Avila, Ma. Carmen; Blanco, Daniel; Medina-Ruiz, Sofía; Meza, Karla; Ayala, Erandi; García, Delfino; Bustos, Patricia; González, Víctor; Girard, Lourdes; Tusie-Luna, Teresa; Dávila, Guillermo; Palacios, Rafael
2007-01-01
Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome. In particular, we have identified intrachromosomal identical repeats that are located in reverse orientation, which may lead to chromosomal inversions. A bioinformatic workflow pathway to select appropriate regions for analysis was developed. Three such regions overlapping with known human genes, located on chromosomes 3, 15, and 19, were analyzed. The relative proportion of wild-type to rearranged structures was determined in DNA samples from blood obtained from different, unrelated individuals. The results obtained indicate that recurrent genomic rearrangements occur at relatively high frequency in somatic cells. Interestingly, the rearrangements studied were significantly more abundant in adults than in newborn individuals, suggesting that such DNA rearrangements might start to appear during embryogenesis or fetal life and continue to accumulate after birth. The relevance of our results in regard to human genomic variation is discussed. PMID:17389356
Design strategies of fluorescent probes for selective detection among biothiols.
Niu, Li-Ya; Chen, Yu-Zhe; Zheng, Hai-Rong; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng
2015-10-07
Simple thiol derivatives, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play key roles in biological processes, and the fluorescent probes to detect such thiols in vivo selectively with high sensitivity and fast response times are critical for understanding their numerous functions. However, the similar structures and reactivities of these thiols pose considerable challenges to the development of such probes. This review focuses on various strategies for the design of fluorescent probes for the selective detection of biothiols. We classify the fluorescent probes for discrimination among biothiols according to reaction types between the probes and thiols such as cyclization with aldehydes, conjugate addition-cyclization with acrylates, native chemical ligation, and aromatic substitution-rearrangement.
Aisner, Dara L.; Nguyen, Teresa T.; Paskulin, Diego D.; Le, Anh T.; Haney, Jerry; Schulte, Nathan; Chionh, Fiona; Hardingham, Jenny; Mariadason, John; Tebbutt, Niall; Doebele, Robert C.; Weickhardt, Andrew J.; Varella-Garcia, Marileila
2014-01-01
Activated ALK and ROS1 tyrosine kinases, through gene fusions, has been found in lung adenocarcinomas and are highly sensitive to selective kinase inhibitors. This study aimed at identifying the presence of these rearrangements in human colorectal adenocarcinoma (CRC) specimens using a 4-target, 4-color break-apart fluorescence in situ hybridization (FISH) assay to simultaneously determine the genomic status of ALK and ROS1. Among the clinical CRC specimens analyzed, rearrangement-positive cases for both ALK and ROS1 were observed. The fusion partner for ALK was identified as EML4 and the fusion partner for one of the ROS1-positive cases was SLC34A2, the partner for the other ROS1-positive case remains to be identified. A small fraction of specimens presented duplicated or clustered copies of native ALK and ROS1. In addition, rearrangements were detected in samples that also harbored KRAS and BRAF mutations in two of the three cases. Interestingly, the ALK-positive specimen displayed marked intra-tumoral heterogeneity and rearrangement was also identified in regions of high-grade dysplasia. Despite the additional oncogenic events and tumor heterogeneity observed, elucidation of the first cases of ROS1 rearrangements and confirmation of ALK rearrangements support further evaluation of these genomic fusions as potential therapeutic targets in CRC. Implications ROS1 and ALK fusions occur in colorectal cancer and may have substantial impact in therapy selection. PMID:24296758
Plourde, Marie; Gingras, Hélène; Roy, Gaétan; Lapointe, Andréanne; Leprohon, Philippe; Papadopoulou, Barbara; Corbeil, Jacques; Ouellette, Marc
2014-01-01
Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment. PMID:24844805
Plevova, Karla; Francova, Hana Skuhrova; Burckova, Katerina; Brychtova, Yvona; Doubek, Michael; Pavlova, Sarka; Malcikova, Jitka; Mayer, Jiri; Tichy, Boris; Pospisilova, Sarka
2014-01-01
In chronic lymphocytic leukemia, usually a monoclonal disease, multiple productive immunoglobulin heavy chain gene rearrangements are identified sporadically. Prognostication of such cases based on immunoglobulin heavy variable gene mutational status can be problematic, especially if the different rearrangements have discordant mutational status. To gain insight into the possible biological mechanisms underlying the origin of the multiple rearrangements, we performed a comprehensive immunogenetic and immunophenotypic characterization of 31 cases with the multiple rearrangements identified in a cohort of 1147 patients with chronic lymphocytic leukemia. For the majority of cases (25/31), we provide evidence of the co-existence of at least two B lymphocyte clones with a chronic lymphocytic leukemia phenotype. We also identified clonal drifts in serial samples, likely driven by selection forces. More specifically, higher immunoglobulin variable gene identity to germline and longer complementarity determining region 3 were preferred in persistent or newly appearing clones, a phenomenon more pronounced in patients with stereotyped B-cell receptors. Finally, we report that other factors, such as TP53 gene defects and therapy administration, influence clonal selection. Our findings are relevant to clonal evolution in the context of antigen stimulation and transition of monoclonal B-cell lymphocytosis to chronic lymphocytic leukemia. PMID:24038023
TARGET researchers use various sequencing and array-based methods to examine the genomes, transcriptomes, and for some diseases epigenomes of select childhood cancers. This “multi-omic” approach generates a comprehensive profile of molecular alterations for each cancer type. Alterations are changes in DNA or RNA, such as rearrangements in chromosome structure or variations in gene expression, respectively. Through computational analyses and assays to validate biological function, TARGET researchers predict which alterations disrupt the function of a gene or pathway and promote cancer growth, progression, and/or survival. Researchers identify candidate therapeutic targets and/or prognostic markers from the cancer-associated alterations.
Non-Equilibrium Dynamics Contribute to Ion Selectivity in the KcsA Channel
Haas, Stephan; Farley, Robert A.
2014-01-01
The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation. PMID:24465882
Pailler, Emma; Adam, Julien; Barthélémy, Amélie; Oulhen, Marianne; Auger, Nathalie; Valent, Alexander; Borget, Isabelle; Planchard, David; Taylor, Melissa; André, Fabrice; Soria, Jean Charles; Vielh, Philippe; Besse, Benjamin; Farace, Françoise
2013-06-20
The diagnostic test for ALK rearrangement in non-small-cell lung cancer (NSCLC) for crizotinib treatment is currently done on tumor biopsies or fine-needle aspirations. We evaluated whether ALK rearrangement diagnosis could be performed by using circulating tumor cells (CTCs). The presence of an ALK rearrangement was examined in CTCs of 18 ALK-positive and 14 ALK-negative patients by using a filtration enrichment technique and filter-adapted fluorescent in situ hybridization (FA-FISH), a FISH method optimized for filters. ALK-rearrangement patterns were determined in CTCs and compared with those present in tumor biopsies. ALK-rearranged CTCs and tumor specimens were characterized for epithelial (cytokeratins, E-cadherin) and mesenchymal (vimentin, N-cadherin) marker expression. ALK-rearranged CTCs were monitored in five patients treated with crizotinib. All ALK-positive patients had four or more ALK-rearranged CTCs per 1 mL of blood (median, nine CTCs per 1 mL; range, four to 34 CTCs per 1 mL). No or only one ALK-rearranged CTC (median, one per 1 mL; range, zero to one per 1 mL) was detected in ALK-negative patients. ALK-rearranged CTCs harbored a unique (3'5') split pattern, and heterogeneous patterns (3'5', only 3') of splits were present in tumors. ALK-rearranged CTCs expressed a mesenchymal phenotype contrasting with heterogeneous epithelial and mesenchymal marker expressions in tumors. Variations in ALK-rearranged CTC levels were detected in patients being treated with crizotinib. ALK rearrangement can be detected in CTCs of patients with ALK-positive NSCLC by using a filtration technique and FA-FISH, enabling both diagnostic testing and monitoring of crizotinib treatment. Our results suggest that CTCs harboring a unique ALK rearrangement and mesenchymal phenotype may arise from clonal selection of tumor cells that have acquired the potential to drive metastatic progression of ALK-positive NSCLC.
Mechanisms Leading to Nonrandom, Nonhomologous Chromosomal Translocations in Leukemia
Gollin, Susanne M.
2007-01-01
Nonrandom, reciprocal translocations between nonhomologous chromosomes are critical cellular events that lead to malignant transformation. Therefore, understanding the mechanisms involved in these chromosomal rearrangements is essential for understanding the process of carcinogenesis. There has been substantial discussion in the literature over the past ten years about mechanisms involved in constitutional chromosomal rearrangements, including deletions, duplications, and translocations. Yet our understanding of the mechanisms of chromosomal rearrangements in cancer is still developing. This review presents what is known about the mechanisms involved in selected nonrandom chromosomal translocations in leukemia. PMID:17157028
Oncogenic rearrangements driving ionizing radiation–associated human cancer
Santoro, Massimo; Carlomagno, Francesca
2013-01-01
The Chernobyl nuclear disaster has caused a remarkable increase in radiation-induced papillary thyroid carcinoma in children and young adults. In this issue of the JCI, Ricarte-Filho and colleagues demonstrate that chromosomal rearrangements are the oncogenic “drivers” in most post-Chernobyl carcinomas and that they often lead to unscheduled activation of the MAPK signaling pathway. These findings represent a major step forward in our understanding of radiation-induced carcinogenesis and suggest various hypotheses about the mechanisms underlying the formation and selection of gene rearrangements during cancer cell evolution. PMID:24162670
Molecular Innovation in Ciliates with Complex Genome Rearrangements
NASA Astrophysics Data System (ADS)
Neme, R.; Landweber, L. F.
2017-07-01
We study molecular innovation in several ciliate species with unique massive genome rearrangements to understand how a radically distinct genome architecture can shape the process of acquiring new functions, genes and structures.
Kazama, Yusuke; Ishii, Kotaro; Hirano, Tomonari; Wakana, Taeko; Yamada, Mieko; Ohbu, Sumie; Abe, Tomoko
2017-12-01
Heavy-ion irradiation is a powerful mutagen that possesses high linear energy transfer (LET). Several studies have indicated that the value of LET affects DNA lesion formation in several ways, including the efficiency and the density of double-stranded break induction along the particle path. We assumed that the mutation type can be altered by selecting an appropriate LET value. Here, we quantitatively demonstrate differences in the mutation type induced by irradiation with two representative ions, Ar ions (LET: 290 keV μm -1 ) and C ions (LET: 30.0 keV μm -1 ), by whole-genome resequencing of the Arabidopsis mutants produced by these irradiations. Ar ions caused chromosomal rearrangements or large deletions (≥100 bp) more frequently than C ions, with 10.2 and 2.3 per mutant genome under Ar- and C-ion irradiation, respectively. Conversely, C ions induced more single-base substitutions and small indels (<100 bp) than Ar ions, with 28.1 and 56.9 per mutant genome under Ar- and C-ion irradiation, respectively. Moreover, the rearrangements induced by Ar-ion irradiation were more complex than those induced by C-ion irradiation, and tended to accompany single base substitutions or small indels located close by. In conjunction with the detection of causative genes through high-throughput sequencing, selective irradiation by beams with different effects will be a powerful tool for forward genetics as well as studies on chromosomal rearrangements. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Data re-arranging techniques leading to proper variable selections in high energy physics
NASA Astrophysics Data System (ADS)
Kůs, Václav; Bouř, Petr
2017-12-01
We introduce a new data based approach to homogeneity testing and variable selection carried out in high energy physics experiments, where one of the basic tasks is to test the homogeneity of weighted samples, mainly the Monte Carlo simulations (weighted) and real data measurements (unweighted). This technique is called ’data re-arranging’ and it enables variable selection performed by means of the classical statistical homogeneity tests such as Kolmogorov-Smirnov, Anderson-Darling, or Pearson’s chi-square divergence test. P-values of our variants of homogeneity tests are investigated and the empirical verification through 46 dimensional high energy particle physics data sets is accomplished under newly proposed (equiprobable) quantile binning. Particularly, the procedure of homogeneity testing is applied to re-arranged Monte Carlo samples and real DATA sets measured at the particle accelerator Tevatron in Fermilab at DØ experiment originating from top-antitop quark pair production in two decay channels (electron, muon) with 2, 3, or 4+ jets detected. Finally, the variable selections in the electron and muon channels induced by the re-arranging procedure for homogeneity testing are provided for Tevatron top-antitop quark data sets.
Gröschel, Stefan; Sanders, Mathijs A; Hoogenboezem, Remco; de Wit, Elzo; Bouwman, Britta A M; Erpelinck, Claudia; van der Velden, Vincent H J; Havermans, Marije; Avellino, Roberto; van Lom, Kirsten; Rombouts, Elwin J; van Duin, Mark; Döhner, Konstanze; Beverloo, H Berna; Bradner, James E; Döhner, Hartmut; Löwenberg, Bob; Valk, Peter J M; Bindels, Eric M J; de Laat, Wouter; Delwel, Ruud
2014-04-10
Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome. Copyright © 2014 Elsevier Inc. All rights reserved.
Weng, Mao-Lun; Blazier, John C; Govindu, Madhumita; Jansen, Robert K
2014-03-01
Geraniaceae plastid genomes are highly rearranged, and each of the four genera already sequenced in the family has a distinct genome organization. This study reports plastid genome sequences of six additional species, Francoa sonchifolia, Melianthus villosus, and Viviania marifolia from Geraniales, and Pelargonium alternans, California macrophylla, and Hypseocharis bilobata from Geraniaceae. These genome sequences, combined with previously published species, provide sufficient taxon sampling to reconstruct the ancestral plastid genome organization of Geraniaceae and the rearrangements unique to each genus. The ancestral plastid genome of Geraniaceae has a 4 kb inversion and a reduced, Pelargonium-like small single copy region. Our ancestral genome reconstruction suggests that a few minor rearrangements occurred in the stem branch of Geraniaceae followed by independent rearrangements in each genus. The genomic comparison demonstrates that a series of inverted repeat boundary shifts and inversions played a major role in shaping genome organization in the family. The distribution of repeats is strongly associated with breakpoints in the rearranged genomes, and the proportion and the number of large repeats (>20 bp and >60 bp) are significantly correlated with the degree of genome rearrangements. Increases in the degree of plastid genome rearrangements are correlated with the acceleration in nonsynonymous substitution rates (dN) but not with synonymous substitution rates (dS). Possible mechanisms that might contribute to this correlation, including DNA repair system and selection, are discussed.
Finding local genome rearrangements.
Simonaitis, Pijus; Swenson, Krister M
2018-01-01
The double cut and join (DCJ) model of genome rearrangement is well studied due to its mathematical simplicity and power to account for the many events that transform gene order. These studies have mostly been devoted to the understanding of minimum length scenarios transforming one genome into another. In this paper we search instead for rearrangement scenarios that minimize the number of rearrangements whose breakpoints are unlikely due to some biological criteria. One such criterion has recently become accessible due to the advent of the Hi-C experiment, facilitating the study of 3D spacial distance between breakpoint regions. We establish a link between the minimum number of unlikely rearrangements required by a scenario and the problem of finding a maximum edge-disjoint cycle packing on a certain transformed version of the adjacency graph. This link leads to a 3/2-approximation as well as an exact integer linear programming formulation for our problem, which we prove to be NP-complete. We also present experimental results on fruit flies, showing that Hi-C data is informative when used as a criterion for rearrangements. A new variant of the weighted DCJ distance problem is addressed that ignores scenario length in its objective function. A solution to this problem provides a lower bound on the number of unlikely moves necessary when transforming one gene order into another. This lower bound aids in the study of rearrangement scenarios with respect to chromatin structure, and could eventually be used in the design of a fixed parameter algorithm with a more general objective function.
Veits, Gesine K; Wenz, Donald R; Palmer, Leoni I; St Amant, André H; Hein, Jason E; Read de Alaniz, Javier
2015-08-21
This article describes the aza-Piancatelli rearrangement with hydroxylamines to 4-aminocyclopentenones and subsequent transformations that highlight the versatility of the cyclopentene scaffold and the value of the hydroxylamine nucleophile in this transformation.
Analysis of Expressed and Non-Expressed IGK Locus Rearrangements in Chronic Lymphocytic Leukemia
Belessi, Chrysoula; Stamatopoulos, Kostas; Hadzidimitriou, Anastasia; Hatzi, Katerina; Smilevska, Tatjana; Stavroyianni, Niki; Marantidou, Fotini; Paterakis, George; Fassas, Athanasios; Anagnostopoulos, Achilles; Laoutaris, Nikolaos
2005-01-01
Immunoglobulin κ (IGK) locus rearrangements were analyzed in parallel on cDNA/genomic DNA in 188 κ- and 103 λ-chronic lymphocytic leukemia (CLL) cases. IGKV-KDE and IGKJ-C-intron-KDE rearrangements were also analyzed on genomic DNA. In κ-CLL, only 3 of 188 cases carried double in-frame IGKV-J transcripts: in such cases, the possibility that leukemic cells expressed more than one κ chain cannot be excluded. Twenty-eight κ-CLL cases also carried nonexpressed (nontranscribed and/or out-of-frame) IGKV-J rearrangements. Taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 38% of κ-CLL cases carried biallelic IGK locus rearrangements. In λ-CLL, 69 IGKV-J rearrangements were detected in 64 of 103 cases (62%); 24 rearrangements (38.2%) were in-frame. Four cases carried in-frame IGKV-J transcripts but retained monotypic light-chain expression, suggesting posttranscriptional regulation of allelic exclusion. In all, taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 97% of λ-CLL cases had at least 1 rearranged IGK allele, in keeping with normal cells. IG repertoire comparisons in κ- versus λ-CLL revealed that CLL precursor cells tried many rearrangements on the same IGK allele before they became λ producers. Thirteen of 28 and 26 of 69 non-expressed sequences in, respectively, κ- or λ-CLL had < 100% homology to germline. This finding might be considered as evidence for secondary rearrangements occurring after the onset of somatic hypermutation, at least in some cases. The inactivation of potentially functional IGKV-J joints by secondary rearrangements indicates active receptor editing in CLL and provides further evidence for the role of antigen in CLL immunopathogenesis. PMID:16622520
Selinger, Christina I; Li, Bob T; Pavlakis, Nick; Links, Matthew; Gill, Anthony J; Lee, Adrian; Clarke, Stephen; Tran, Thang N; Lum, Trina; Yip, Po Yee; Horvath, Lisa; Yu, Bing; Kohonen-Corish, Maija RJ; O’Toole, Sandra A; Cooper, Wendy A
2016-01-01
Aims To assess the prevalence of ROS1 rearrangements in a retrospective and prospective diagnostic Australian cohort and evaluate the effectiveness of immunohistochemical screening. Methods A retrospective cohort of 278 early stage lung adenocarcinomas and an additional 104 prospective NSCLC cases referred for routine molecular testing were evaluated. ROS1 immunohistochemistry (IHC) was performed (D4D6 clone, Cell Signaling Technology) on all cases as well as fluorescence in situ hybridisation (FISH) using the ZytoVision and Abbott Molecular ROS1 FISH probes, with ≥15% of cells with split signals considered positive for rearrangement. Results Eighty eight cases (32%) from the retrospective cohort showed staining by ROS1 IHC, and one case (0.4%) showed ROS1 rearrangement by FISH. Nineteen of the prospective diagnostic cases showed ROS1 IHC staining of which 12 (12%) cases were confirmed as ROS1 rearranged by FISH. There were no ROS1 rearranged cases that showed no expression of ROS1 with IHC. The ROS1 rearranged cases in the prospective cohort were all EGFR wildtype and ALK rearrangement negative. The sensitivity of ROS1 IHC in the retrospective cohort was 100% and specificity was 76%. Conclusions ROS1 rearrangements are rare events in lung adenocarcinomas. Selection of cases for ROS1 FISH testing, by excluding EGFR/ALK positive cases and use of IHC to screen for potentially positive cases can be used to enrich for the likelihood of a identifying a ROS1 rearranged lung cancer and prevent the need to undertake expensive and time consuming FISH testing in all cases. PMID:27599111
Selinger, Christina I; Li, Bob T; Pavlakis, Nick; Links, Matthew; Gill, Anthony J; Lee, Adrian; Clarke, Stephen; Tran, Thang N; Lum, Trina; Yip, Po Y; Horvath, Lisa; Yu, Bing; Kohonen-Corish, Maija R J; O'Toole, Sandra A; Cooper, Wendy A
2017-02-01
To assess the prevalence of ROS1 rearrangements in a retrospective and prospective diagnostic Australian cohort and evaluate the effectiveness of immunohistochemical screening. A retrospective cohort of 278 early stage lung adenocarcinomas and an additional 104 prospective non-small-cell lung cancer (NSCLC) cases referred for routine molecular testing were evaluated. ROS1 immunohistochemistry (IHC) was performed (D4D6 clone, Cell Signaling Technology) on all cases as well as fluorescence in-situ hybridization (FISH) using the ZytoVision and Abbott Molecular ROS1 FISH probes, with ≥15% of cells with split signals considered positive for rearrangement. Eighty-eight cases (32%) from the retrospective cohort showed staining by ROS1 IHC, and one case (0.4%) showed ROS1 rearrangement by FISH. Nineteen of the prospective diagnostic cases showed ROS1 IHC staining, 12 (12%) cases of which were confirmed as ROS1 rearranged by FISH. There were no ROS1 rearranged cases that showed no expression of ROS1 with IHC. The ROS1 rearranged cases in the prospective cohort were all EGFR wild-type and anaplastic lymphoma kinase (ALK) rearrangement-negative. The sensitivity of ROS1 IHC in the retrospective cohort was 100% and specificity was 76%. ROS1 rearrangements are rare events in lung adenocarcinomas. Selection of cases for ROS1 FISH testing, by excluding EGFR/ALK-positive cases and use of IHC to screen for potentially positive cases, can be used to enrich for the likelihood of identifying a ROS1 rearranged lung cancer and prevent the need to undertake expensive and time-consuming FISH testing in all cases. © 2016 John Wiley & Sons Ltd.
Zhang, Michael S; Tran, Phuong M; Wolff, Alexander J; Tremblay, Mikaela M; Fosdick, Micaela G; Houtman, Jon C D
2018-05-01
Glycerol monolaurate (GML) is a monoglyceride with potent antimicrobial properties that suppresses T cell receptor (TCR)-induced signaling and T cell effector function. Actin rearrangement is needed for the interaction of T cells with antigen-presenting cells and for migration to sites of infection. Because of the critical role actin rearrangement plays in T cell effector function, we analyzed the effect of GML on the rearrangement of the actin cytoskeleton after TCR activation. We found that GML-treated human T cells were less adherent than untreated T cells and did not form actin ring structures but instead developed numerous inappropriate actin-mediated filopodia. The formation of these filopodia was not due to disruption of TCR-proximal regulators of actin or microtubule polymerization. Instead, total internal reflection fluorescence microscopy demonstrated mislocalization of actin nucleation protein Arp2 microclusters, but not those containing the adaptor proteins SLP-76 and WASp, or the actin nucleation protein ARPC3, which are necessary for TCR-induced actin rearrangement. Additionally, SLP-76 microclusters colocalized with WASp and WAVE microclusters but not with LAT. Together, our data suggest that GML alters actin cytoskeletal rearrangements and identify diverse functions for GML as a T cell-suppressive agent. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
SWI/SNF Subunits SMARCA4, SMARCD2 and DPF2 Collaborate in MLL-Rearranged Leukaemia Maintenance.
Cruickshank, V Adam; Sroczynska, Patrycja; Sankar, Aditya; Miyagi, Satoru; Rundsten, Carsten Friis; Johansen, Jens Vilstrup; Helin, Kristian
2015-01-01
Alterations in chromatin structure caused by deregulated epigenetic mechanisms collaborate with underlying genetic lesions to promote cancer. SMARCA4/BRG1, a core component of the SWI/SNF ATP-dependent chromatin-remodelling complex, has been implicated by its mutational spectrum as exerting a tumour-suppressor function in many solid tumours; recently however, it has been reported to sustain leukaemogenic transformation in MLL-rearranged leukaemia in mice. Here we further explore the role of SMARCA4 and the two SWI/SNF subunits SMARCD2/BAF60B and DPF2/BAF45D in leukaemia. We observed the selective requirement for these proteins for leukaemic cell expansion and self-renewal in-vitro as well as in leukaemia. Gene expression profiling in human cells of each of these three factors suggests that they have overlapping functions in leukaemia. The gene expression changes induced by loss of the three proteins demonstrate that they are required for the expression of haematopoietic stem cell associated genes but in contrast to previous results obtained in mouse cells, the three proteins are not required for the expression of c-MYC regulated genes.
Dual descriptors within the framework of spin-polarized density functional theory.
Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P
2008-08-14
Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent
2010-01-01
Cyclo-biphenalenyl biradicaloid molecular materials with chair- and boat-conformations are studied by restricted and broken-symmetry DFT using the M06 family of meta-GGA functionals. The global minima of these molecular materials are magnetically silent due to the sigma-bond connecting the two phenalenyls, while the sigma-bond may undergo low-barrier sigmatropic rearrangements via pi-pi bonded paramagnetic intermediates. The validation of theory is performed for the chair-conformation by comparing the sigma-bonded structures and the rearrangement barriers with experimental data. The boat-conformation is then studied using the validated functional. The electronic spectra of both chair- and boat-conformations are calculated and their applications in thermochromism are discussed.
A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons
Capozzi, Oronzo; Carbone, Lucia; Stanyon, Roscoe R.; Marra, Annamaria; Yang, Fengtang; Whelan, Christopher W.; de Jong, Pieter J.; Rocchi, Mariano; Archidiacono, Nicoletta
2012-01-01
Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human–gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans. PMID:22892276
Evolution of AF6-RAS association and its implications in mixed-lineage leukemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Matthew J.; Ottoni, Elizabeth; Ishiyama, Noboru
Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding ofmore » MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements.« less
Krishnankutty Nair, P; Corredig, M
2015-01-01
Concentrating milk is a common unit operation in the dairy industry. With the reduction of water, the particles interact more frequently with each other and the functionality of the casein micelles may depend on the interactions occurring during concentration. The objective of this research was to investigate the effect of concentration on the renneting properties of the casein micelles by comparing 2 concentration methods: ultrafiltration and osmotic stressing. Both methods selectively concentrate the protein fraction of milk, while the composition of the soluble phase is unaltered. To evaluate possible differences in the rearrangements of the casein micelles during concentration, renneting properties were evaluated with or without the addition of soluble caseins, added either before or after concentration. The results indicate that casein micelles undergo rearrangements during concentration and that shear during membrane filtration may play a role in affecting the final properties of the milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Le Merrer, Marie; Cohen-Addad, Sylvie; Höhler, Reinhard
2013-08-01
In aqueous foams, the diffusive gas transfer among neighboring bubbles drives a coarsening process which is accompanied by intermittent rearrangements of the structure. Using time-resolved diffusing-wave spectroscopy, we probe the dynamics of these events as a function of the rigidity of the gas-liquid interfaces, liquid viscosity, bubble size, and confinement pressure. We present in detail two independent techniques for analyzing the light scattering data, from which we extract the rearrangement duration. Our results show that interfacial rheology has a major impact on this duration. In the case of low interfacial rigidity, the rearrangements strongly slow down as the pressure is decreased close to the value zero where the bubble packing unjams. In contrast, if the interfaces are rigid, rearrangement durations are independent of the confinement pressure in the same investigated range. Using scaling arguments, we discuss dissipation mechanisms that may explain the observed dependency of the rearrangement dynamics on foam structure, pressure, and physicochemical solution properties.
Synthesis of HIV-Maturation Inhibitor BMS-955176 from Betulin by an Enabling Oxidation Strategy.
Ortiz, Adrian; Soumeillant, Maxime; Savage, Scott A; Strotman, Neil A; Haley, Matthew; Benkovics, Tamas; Nye, Jeffrey; Xu, Zhongmin; Tan, Yichen; Ayers, Sloan; Gao, Qi; Kiau, Susanne
2017-05-05
A concise and scalable second generation synthesis of HIV maturation inhibitor BMS-955176 is described. The synthesis is framed by an oxidation strategy highlighted by a Cu I mediated aerobic oxidation of betulin, a highly selective PIFA mediated dehydrogenation of an oxime, and a subsequent Lossen rearrangement which occurs through a unique reaction mechanism for the installation of the C17 amino functionality. The synthetic route proceeds in 7 steps with 47% overall yield and begins from the abundant and inexpensive natural product betulin.
Vargas, A Cristina; Selinger, Christina I; Satgunaseelan, Laveniya; Cooper, Wendy A; Gupta, Ruta; Stalley, Paul; Brown, Wendy; Soper, Judy; Schatz, Julie; Boyle, Richard; Thomas, David M; Tattersall, Martin H N; Bhadri, Vivek A; Maclean, Fiona; Bonar, S Fiona; Scolyer, Richard A; Karim, Rooshdiya Z; McCarthy, Stanley W; Mahar, Annabelle; O'Toole, Sandra A
2016-12-01
Recurrent Ewing sarcoma breakpoint region 1 (EWSR1) gene rearrangements characterize a select group of bone and soft tissue tumours. In our routine diagnostic practice with fluorescence in-situ hybridization (FISH), we have occasionally observed EWSR1 gene rearrangements in tumours not associated classically with EWSR1 translocations. This study aimed to review our institutional experience of this phenomenon and also to highlight the occurrence of unusual EWSR1 FISH signals (i.e. 5' centromeric region or 3' telomeric region signals) that do not fulfil the published diagnostic criteria for rearrangements. Using an EWSR1 break-apart probe, we performed FISH assays on formalin-fixed paraffin-embedded tissue sections from 135 bone and soft tissue specimens as part of their routine diagnostic work-up. EWSR1 gene rearrangements were identified in 51% of cases, 56% of which also showed an abnormal FISH signal pattern (in addition to classically rearranged signals). However, atypical FISH signals were present in 45% of the non-rearranged cases. In addition, we observed tumours unrelated to those described classically as EWSR1-associated that were technically EWSR1-rearranged in 6% of cases. Borderline levels of rearrangement (affecting 10-30% of lesional cells) were present in an additional 17% of these cases. While our study confirmed that FISH is a sensitive and specific tool in the diagnosis of EWSR1-associated tumours, atypical FISH signals and classical rearrangement in entities other than EWSR1-associated tumours can occur. Therefore, it is essential that the FISH result not be used as an isolated test, but must be evaluated in the context of clinical features, imaging, pathological and immunohistochemical findings. © 2016 John Wiley & Sons Ltd.
Clinical Activity of Alectinib in Advanced RET-Rearranged Non-Small Cell Lung Cancer.
Lin, Jessica J; Kennedy, Elizabeth; Sequist, Lecia V; Brastianos, Priscilla K; Goodwin, Kelly E; Stevens, Sara; Wanat, Alexandra C; Stober, Lisa L; Digumarthy, Subba R; Engelman, Jeffrey A; Shaw, Alice T; Gainor, Justin F
2016-11-01
Chromosomal rearrangements involving rearranged during transfection gene (RET) occur in 1% to 2% of NSCLCs and may confer sensitivity to rearranged during transfection (RET) inhibitors. Alectinib is an anaplastic lymphoma kinase tyrosine kinase inhibitor (TKI) that also has anti-RET activity in vitro. The clinical activity of alectinib in patients with RET-rearranged NSCLC has not yet been reported. We have described four patients with advanced RET-rearranged NSCLC who were treated with alectinib (600 mg twice daily [n = 3] or 900 mg twice daily [n = 1]) as part of single-patient compassionate use protocols or off-label use of the commercially available drug. Four patients with metastatic RET-rearranged NSCLC were identified. Three of the four had received prior RET TKIs, including cabozantinib and experimental RET inhibitors. In total, we observed two (50%) objective radiographic responses after treatment with alectinib (one confirmed and one unconfirmed), with durations of therapy of 6 months and more than 5 months (treatment ongoing), respectively. Notably, one of these two patients had his dose of alectinib escalated to 900 mg twice daily and had clinical improvement in central nervous system metastases. In addition, one patient (25%) experienced a best response of stable disease lasting approximately 6 weeks (the drug discontinued for toxicity). A fourth patient who was RET TKI-naive had primary progression while receiving alectinib. Alectinib demonstrated preliminary antitumor activity in patients with advanced RET-rearranged NSCLC, most of whom had received prior RET inhibitors. Larger prospective studies with longer follow-up are needed to assess the efficacy of alectinib in RET-rearranged NSCLC and other RET-driven malignancies. In parallel, development of more selective, potent RET TKIs is warranted. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Zhang, Ning-Ning; Liu, Yu-Tao; Ma, Li; Wang, Lin; Hao, Xue-Zhi; Yuan, Zheng; Lin, Dong-Mei; Li, Dan; Zhou, Yu-Jie; Lin, Hua; Han, Xiao-Hong; Sun, Yan; Shi, Yuankai
2014-01-01
Background This study aimed to elucidate clinical significance of anaplastic lymphoma kinase (ALK) rearrangement in selected advanced non-small cell lung cancer (NSCLC), to compare the application of different ALK detection methods, and especially evaluate a possible association between ALK expression and clinical outcomes in crizotinib-treated patients. Methods ALK status was assessed by fluorescent in situ hybridization (FISH), immunohistochemistry (IHC) and quantitative RT-PCR (qRT-PCR) in 173 selected advanced NSCLC patients. Clinicopathologic data, genotype status and survival outcomes were analyzed. Moreover, the association of ALK expression with clinical outcomes was evaluated in ALK FISH-positive crizotinib-treated patients including two patients with concurrent epidermal growth factor receptor (EGFR) mutation. Results The positivity detection rate of ALK rearrangement by FISH, IHC and qRT-PCR was 35.5% (59/166), 35.7% (61/171), and 27.9% (34/122), respectively. ALK rearrangement was observed predominantly in young patients, never or light smokers, and adenocarcinomas, especially with signet ring cell features and poor differentiation. Median progression-free survival (PFS) of crizotinib-treated patients was 7.6 months. The overall survival (OS) of these patients was longer compared with that of crizotinib-naive or wild-type cohorts, but there was no significant difference in OS compared with patients with EGFR mutation. ALK expression did not associate with PFS; but, when ALK expression was analyzed as a dichotomous variable, moderate and strong ALK expression had a decreased risk of death (P = 0.026). The two patients with concomitant EGFR and ALK alterations showed difference in ALK expression, response to EGFR and ALK inhibitors, and overall survival. Conclusions Selective enrichment according to clinicopathologic features in NSCLC patients could highly improve the positivity detection rate of ALK rearrangement for ALK-targeted therapy. IHC could provide more clues for clinical trial design and therapeutic strategies for ALK-positive NSCLC patients including patients with double genetic aberration of ALK and EGFR. PMID:24404167
Sumiya, Yosuke; Nagahata, Yutaka; Komatsuzaki, Tamiki; Taketsugu, Tetsuya; Maeda, Satoshi
2015-12-03
The significance of kinetic analysis as a tool for understanding the reactivity and selectivity of organic reactions has recently been recognized. However, conventional simulation approaches that solve rate equations numerically are not amenable to multistep reaction profiles consisting of fast and slow elementary steps. Herein, we present an efficient and robust approach for evaluating the overall rate constants of multistep reactions via the recursive contraction of the rate equations to give the overall rate constants for the products and byproducts. This new method was applied to the Claisen rearrangement of allyl vinyl ether, as well as a substituted allyl vinyl ether. Notably, the profiles of these reactions contained 23 and 84 local minima, and 66 and 278 transition states, respectively. The overall rate constant for the Claisen rearrangement of allyl vinyl ether was consistent with the experimental value. The selectivity of the Claisen rearrangement reaction has also been assessed using a substituted allyl vinyl ether. The results of this study showed that the conformational entropy in these flexible chain molecules had a substantial impact on the overall rate constants. This new method could therefore be used to estimate the overall rate constants of various other organic reactions involving flexible molecules.
Sehgal, D; Mage, R G; Schiaffella, E
1998-02-01
We investigated the molecular basis for the appearance of V(H)a2 allotype-bearing B cells in mutant Alicia rabbits. The mutation arose in an a2 rabbit; mutants exhibit altered expression of V(H) genes because of a small deletion encompassing V(H)1a2, the 3'-most gene in the V(H) locus. The V(H)1 gene is the major source of V(H)a allotype because this gene is preferentially rearranged in normal rabbits. In young homozygous ali/ali animals, the levels of a2 molecules found in the serum increase with age. In adult ali/ali rabbits, 20 to 50% of serum Igs and B cells bear a2 allotypic determinants. Previous studies suggested that positive selection results in expansion of a2 allotype-bearing B cells in the appendix of young mutant ali/ali rabbits. We separated appendix cells from a 6-wk-old Alicia rabbit by FACS based on the expression of surface IgM and a2 allotype. The VDJ portion of the expressed Ig mRNA was amplified from the IgM+ a2+ and IgM+ a2- populations by reverse transcriptase-PCR. The cDNAs from both populations were cloned and sequenced. Analysis of these sequences suggested that, in a2+ B cells, the first D proximal functional gene in Alicia rabbits, V(H)4a2, rearranged and was altered further by a gene conversion-like mechanism. Upstream V(H) genes were identified as potential gene sequence donors; V(H)9 was found to be the most frequently used gene donor. Among the a2- B cells, y33 was the most frequently rearranged gene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glodzik, Dominik; Morganella, Sandro; Davies, Helen
Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. Furthermore, the transcriptomicmore » consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.« less
Glodzik, Dominik; Morganella, Sandro; Davies, Helen; ...
2017-01-23
Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. Furthermore, the transcriptomicmore » consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.« less
Major pathologic response to alectinib in ALK-rearranged adenocarcinoma of the lung.
Imanishi, Naoko; Yoneda, Kazue; Taira, Akihiro; Ichiki, Yoshinobu; Sato, Naoko; Hisaoka, Masanori; Tanaka, Fumihiro
2018-03-09
Alectinib is a highly selective tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK) and provided a significantly prolonged progression-free survival compared with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC) harboring rearrangements of the ALK gene. Here, we present the first surgical case of ALK-rearranged lung adenocarcinoma with major pathological response in resected specimens after treatment with alectinib. A 65-year-old female with clinical stage IIIA-N2 ALK-rearranged adenocarcinoma originating from the left lower lobe presented. Involvement of lower para-tracheal node was pathologically confirmed by endobronchial ultrasound-guided biopsy. Alectinib was prescribed, as the patient may not tolerate radiotherapy due to a mental illness. After 3 months' treatment with alectinib, a remarkable radiological and metabolic response was achieved. The patient did not tolerate further continuation of alectinib treatment, and surgery was performed without any morbidity. Only < 10% tumor cells were viable in all resected specimens, indicating major pathological response to alectinib. Salvage surgery after alectinib treatment may be safe and effective for initially unresectable NSCLC harboring ALK-rearrangements.
Golding, Brandon; Luu, Anita; Jones, Robert; Viloria-Petit, Alicia M
2018-02-19
Lung cancer is the leading cause of death by cancer in North America. A decade ago, genomic rearrangements in the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase were identified in a subset of non-small cell lung carcinoma (NSCLC) patients. Soon after, crizotinib, a small molecule ATP-competitive ALK inhibitor was proven to be more effective than chemotherapy in ALK-positive NSCLC patients. Crizotinib and two other ATP-competitive ALK inhibitors, ceritinib and alectinib, are approved for use as a first-line therapy in these patients, where ALK rearrangement is currently diagnosed by immunohistochemistry and in situ hybridization. The clinical success of these three ALK inhibitors has led to the development of next-generation ALK inhibitors with even greater potency and selectivity. However, patients inevitably develop resistance to ALK inhibitors leading to tumor relapse that commonly manifests in the form of brain metastasis. Several new approaches aim to overcome the various mechanisms of resistance that develop in ALK-positive NSCLC including the knowledge-based alternate and successive use of different ALK inhibitors, as well as combined therapies targeting ALK plus alternative signaling pathways. Key issues to resolve for the optimal implementation of established and emerging treatment modalities for ALK-rearranged NSCLC therapy include the high cost of the targeted inhibitors and the potential of exacerbated toxicities with combination therapies.
The Robustness of a Signaling Complex to Domain Rearrangements Facilitates Network Evolution
Sato, Paloma M.; Yoganathan, Kogulan; Jung, Jae H.; Peisajovich, Sergio G.
2014-01-01
The rearrangement of protein domains is known to have key roles in the evolution of signaling networks and, consequently, is a major tool used to synthetically rewire networks. However, natural mutational events leading to the creation of proteins with novel domain combinations, such as in frame fusions followed by domain loss, retrotranspositions, or translocations, to name a few, often simultaneously replace pre-existing genes. Thus, while proteins with new domain combinations may establish novel network connections, it is not clear how the concomitant deletions are tolerated. We investigated the mechanisms that enable signaling networks to tolerate domain rearrangement-mediated gene replacements. Using as a model system the yeast mitogen activated protein kinase (MAPK)-mediated mating pathway, we analyzed 92 domain-rearrangement events affecting 11 genes. Our results indicate that, while domain rearrangement events that result in the loss of catalytic activities within the signaling complex are not tolerated, domain rearrangements can drastically alter protein interactions without impairing function. This suggests that signaling complexes can maintain function even when some components are recruited to alternative sites within the complex. Furthermore, we also found that the ability of the complex to tolerate changes in interaction partners does not depend on long disordered linkers that often connect domains. Taken together, our results suggest that some signaling complexes are dynamic ensembles with loose spatial constraints that could be easily re-shaped by evolution and, therefore, are ideal targets for cellular engineering. PMID:25490747
Claisen thermally rearranged (CTR) polymers
Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker
2016-01-01
Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538
Claisen thermally rearranged (CTR) polymers.
Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker
2016-07-01
Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications.
Calvete, Oriol; González, Josefa; Betrán, Esther; Ruiz, Alfredo
2012-01-01
Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ∼13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ∼9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics. PMID:22328714
Evidence for Ig Light Chain Isotype Exclusion in Shark B Lymphocytes Suggests Ordered Mechanisms.
Iacoangeli, Anna; Lui, Anita; Haines, Ashley; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen
2017-09-01
Unlike most vertebrates, the shark IgL gene organization precludes secondary rearrangements that delete self-reactive VJ rearranged genes. Nurse sharks express four L chain isotypes, κ, λ, σ, and σ-2, encoded by 35 functional minigenes or clusters. The sequence of gene activation/expression and receptor editing of these isotypes have not been studied. We therefore investigated the extent of isotypic exclusion in separated B cell subpopulations. Surface Ig (sIg)κ-expressing cells, isolated with mAb LK14 that recognizes Cκ, carry predominantly nonproductive rearrangements of other L chain isotypes. Conversely, after depletion with LK14, sIgM + cells contained largely nonproductive κ and enrichment for in-frame VJ of the others. Because some isotypic inclusion was observed at the mRNA level, expression in the BCR was examined. Functional λ mRNA was obtained, as expected, from the LK14-depleted population, but was also in sIgκ + splenocytes. Whereas λ somatic mutants from the depleted sample displayed evidence of positive selection, the λ genes in sIgκ + cells accumulated bystander mutations indicating a failure to express their products at the cell surface in association with the BCR H chain. In conclusion, a shark B cell expresses one L chain isotype at the surface and other isotypes as nonproductive VJ, sterile transcripts, or in-frame VJ whose products may not associate with the H chain. Based on the mRNA content found in the B cell subpopulations, an order of L chain gene activation is suggested as: σ-2 followed by κ, then σ and λ. Copyright © 2017 by The American Association of Immunologists, Inc.
Müller, Patrick; Hillebrandt, Sabina; Krufczik, Matthias; Bach, Margund; Kaufmann, Rainer; Hausmann, Michael; Heermann, Dieter W.
2015-01-01
It has been well established that the architecture of chromatin in cell nuclei is not random but functionally correlated. Chromatin damage caused by ionizing radiation raises complex repair machineries. This is accompanied by local chromatin rearrangements and structural changes which may for instance improve the accessibility of damaged sites for repair protein complexes. Using stably transfected HeLa cells expressing either green fluorescent protein (GFP) labelled histone H2B or yellow fluorescent protein (YFP) labelled histone H2A, we investigated the positioning of individual histone proteins in cell nuclei by means of high resolution localization microscopy (Spectral Position Determination Microscopy = SPDM). The cells were exposed to ionizing radiation of different doses and aliquots were fixed after different repair times for SPDM imaging. In addition to the repair dependent histone protein pattern, the positioning of antibodies specific for heterochromatin and euchromatin was separately recorded by SPDM. The present paper aims to provide a quantitative description of structural changes of chromatin after irradiation and during repair. It introduces a novel approach to analyse SPDM images by means of statistical physics and graph theory. The method is based on the calculation of the radial distribution functions as well as edge length distributions for graphs defined by a triangulation of the marker positions. The obtained results show that through the cell nucleus the different chromatin re-arrangements as detected by the fluorescent nucleosomal pattern average themselves. In contrast heterochromatic regions alone indicate a relaxation after radiation exposure and re-condensation during repair whereas euchromatin seemed to be unaffected or behave contrarily. SPDM in combination with the analysis techniques applied allows the systematic elucidation of chromatin re-arrangements after irradiation and during repair, if selected sub-regions of nuclei are investigated. PMID:26042422
Zhang, Yang; Máté, Gabriell; Müller, Patrick; Hillebrandt, Sabina; Krufczik, Matthias; Bach, Margund; Kaufmann, Rainer; Hausmann, Michael; Heermann, Dieter W
2015-01-01
It has been well established that the architecture of chromatin in cell nuclei is not random but functionally correlated. Chromatin damage caused by ionizing radiation raises complex repair machineries. This is accompanied by local chromatin rearrangements and structural changes which may for instance improve the accessibility of damaged sites for repair protein complexes. Using stably transfected HeLa cells expressing either green fluorescent protein (GFP) labelled histone H2B or yellow fluorescent protein (YFP) labelled histone H2A, we investigated the positioning of individual histone proteins in cell nuclei by means of high resolution localization microscopy (Spectral Position Determination Microscopy = SPDM). The cells were exposed to ionizing radiation of different doses and aliquots were fixed after different repair times for SPDM imaging. In addition to the repair dependent histone protein pattern, the positioning of antibodies specific for heterochromatin and euchromatin was separately recorded by SPDM. The present paper aims to provide a quantitative description of structural changes of chromatin after irradiation and during repair. It introduces a novel approach to analyse SPDM images by means of statistical physics and graph theory. The method is based on the calculation of the radial distribution functions as well as edge length distributions for graphs defined by a triangulation of the marker positions. The obtained results show that through the cell nucleus the different chromatin re-arrangements as detected by the fluorescent nucleosomal pattern average themselves. In contrast heterochromatic regions alone indicate a relaxation after radiation exposure and re-condensation during repair whereas euchromatin seemed to be unaffected or behave contrarily. SPDM in combination with the analysis techniques applied allows the systematic elucidation of chromatin re-arrangements after irradiation and during repair, if selected sub-regions of nuclei are investigated.
Chromosome speciation: Humans, Drosophila, and mosquitoes
Ayala, Francisco J.; Coluzzi, Mario
2005-01-01
Chromosome rearrangements (such as inversions, fusions, and fissions) may play significant roles in the speciation between parapatric (contiguous) or partly sympatric (geographically overlapping) populations. According to the “hybrid-dysfunction” model, speciation occurs because hybrids with heterozygous chromosome rearrangements produce dysfunctional gametes and thus have low reproductive fitness. Natural selection will, therefore, promote mutations that reduce the probability of intercrossing between populations carrying different rearrangements and thus promote their reproductive isolation. This model encounters a disabling difficulty: namely, how to account for the spread in a population of a chromosome rearrangement after it first arises as a mutation in a single individual. The “suppressed-recombination” model of speciation points out that chromosome rearrangements act as a genetic filter between populations. Mutations associated with the rearranged chromosomes cannot flow from one to another population, whereas genetic exchange will freely occur between colinear chromosomes. Mutations adaptive to local conditions will, therefore, accumulate differentially in the protected chromosome regions so that parapatric or partially sympatric populations will genetically differentiate, eventually evolving into different species. The speciation model of suppressed recombination has recently been tested by gene and DNA sequence comparisons between humans and chimpanzees, between Drosophila species, and between species related to Anopheles gambiae, the vector of malignant malaria in Africa. PMID:15851677
Tahara, Keishiro; Pan, Ling; Yamaguchi, Ryoko; Shimakoshi, Hisashi; Abe, Masaaki; Hisaeda, Yoshio
2017-10-01
Among the coenzyme B 12 -dependent enzymes, methylmalonyl-CoA mutase (MMCM) catalyzes the carbon-skeleton rearrangement reaction between R-methylmalonyl-CoA and succinyl-CoA. Diethyl 2-bromomethyl-2-phenylmalonate, an alkyl bromide substrate having two different migrating groups (phenyl and carboxylic ester groups) on the β-carbon, was applied to the electrolysis mediated by a hydrophobic vitamin B 12 model complex, heptamethyl cobyrinate perchlorate in this study. The electrolysis of the substrate at -1.0V vs. Ag-AgCl by light irradiation afforded the simple reduced product (diethyl 2-methyl-2-phenylmalonate) and the phenyl migrated product (diethyl 2-benzyl-2-phenylmalonate), as well as the electrolysis of the substrate at -1.5V vs. Ag-AgCl in the dark. The electrolysis of the substrate at -2.0V vs. Ag-AgCl afforded the carboxylic ester migrated product (diethyl phenylsuccinate) as the major product. The selectivity for the migrating group was successfully tuned by controlling the electrolysis potential. We clarified that the cathodic chemistry of the Co(III) alkylated heptamethyl cobyrinate is critical for the selectivity of the migrating group through mechanistic investigations and comparisons to the simple vitamin B 12 model complex, an imine/oxime-type cobalt complex. Copyright © 2017 Elsevier Inc. All rights reserved.
Ikaros promotes rearrangement of TCR alpha genes in an Ikaros null thymoma cell line
Collins, Bernard; Clambey, Eric T.; Scott-Browne, James; White, Janice; Marrack, Philippa; Hagman, James; Kappler, John W.
2014-01-01
Summary Ikaros is important in the development and maintenance of the lymphoid system, functioning in part by associating with chromatin-remodeling complexes. We have studied the functions of Ikaros in the transition from pre-T cell to the CD4+CD8+ thymocyte using an Ikaros null CD4−CD8− mouse thymoma cell line (JE131). We demonstrate that this cell line carries a single functional TCR β gene rearrangement and expresses a surface pre-TCR. JE131 cells also carry non-functional rearrangements on both alleles of their TCR α loci. Retroviral re-introduction of Ikaros dramatically increased the rate of transcription in the α locus and TCR Vα/Jα recombination resulting in the appearance of many new αβTCR+ cells. The process is RAG dependent, requires SWI/SNF chromatin-remodeling complexes and is coincident with the binding of Ikaros to the TCR α enhancer. Furthermore, knockdown of Mi2/NuRD complexes increased the frequency of TCR α rearrangement. Our data suggest that Ikaros controls Vα/Jα recombination in T cells by controlling access of the transcription and recombination machinery to the TCR α loci. The JE131 cell line should prove to be a very useful tool for studying the molecular details of this and other processes involved in the pre-T cell to αβTCR+ CD4+CD8+ thymocyte transition. PMID:23172374
Moskalev, Evgeny A; Frohnauer, Judith; Merkelbach-Bruse, Sabine; Schildhaus, Hans-Ulrich; Dimmler, Arno; Schubert, Thomas; Boltze, Carsten; König, Helmut; Fuchs, Florian; Sirbu, Horia; Rieker, Ralf J; Agaimy, Abbas; Hartmann, Arndt; Haller, Florian
2014-06-01
Recurrent gene fusions of anaplastic lymphoma receptor tyrosine kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) have been recently identified in ∼5% of non-small cell lung cancers (NSCLCs) and are targets for selective tyrosine kinase inhibitors. While fluorescent in situ hybridization (FISH) is the current gold standard for detection of EML4-ALK rearrangements, several limitations exist including high costs, time-consuming evaluation and somewhat equivocal interpretation of results. In contrast, targeted massive parallel sequencing has been introduced as a powerful method for simultaneous and sensitive detection of multiple somatic mutations even in limited biopsies, and is currently evolving as the method of choice for molecular diagnostic work-up of NSCLCs. We developed a novel approach for indirect detection of EML4-ALK rearrangements based on 454 massive parallel sequencing after reverse transcription and subsequent multiplex amplification (multiplex ALK RNA-seq) which takes advantage of unbalanced expression of the 5' and 3' ALK mRNA regions. Two lung cancer cell lines and a selected series of 32 NSCLC samples including 11 cases with EML4-ALK rearrangement were analyzed with this novel approach in comparison to ALK FISH, ALK qRT-PCR and EML4-ALK RT-PCR. The H2228 cell line with known EML4-ALK rearrangement showed 171 and 729 reads for 5' and 3' ALK regions, respectively, demonstrating a clearly unbalanced expression pattern. In contrast, the H1299 cell line with ALK wildtype status displayed no reads for both ALK regions. Considering a threshold of 100 reads for 3' ALK region as indirect indicator of EML4-ALK rearrangement, there was 100% concordance between the novel multiplex ALK RNA-seq approach and ALK FISH among all 32 NSCLC samples. Multiplex ALK RNA-seq is a sensitive and specific method for indirect detection of EML4-ALK rearrangements, and can be easily implemented in panel based molecular diagnostic work-up of NSCLCs by massive parallel sequencing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Gene context conservation of a higher order than operons.
Lathe, W C; Snel, B; Bork, P
2000-10-01
Operons, co-transcribed and co-regulated contiguous sets of genes, are poorly conserved over short periods of evolutionary time. The gene order, gene content and regulatory mechanisms of operons can be very different, even in closely related species. Here, we present several lines of evidence which suggest that, although an operon and its individual genes and regulatory structures are rearranged when comparing the genomes of different species, this rearrangement is a conservative process. Genomic rearrangements invariably maintain individual genes in very specific functional and regulatory contexts. We call this conserved context an uber-operon.
Genetic architecture and balancing selection: the life and death of differentiated variants.
Llaurens, Violaine; Whibley, Annabel; Joron, Mathieu
2017-05-01
Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co-occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems. © 2017 John Wiley & Sons Ltd.
Dynamics of Genome Rearrangement in Bacterial Populations
Darling, Aaron E.; Miklós, István; Ragan, Mark A.
2008-01-01
Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an over-representation of “symmetric inversions”—inversions with endpoints that are equally distant from the origin of chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of DNA replication are nearly three times more frequent. Our findings represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes. PMID:18650965
Kumwenda, Benjamin; Litthauer, Derek; Reva, Oleg
2014-09-25
Bacteria of genus Thermus inhabit both man-made and natural thermal environments. Several Thermus species have shown biotechnological potential such as reduction of heavy metals which is essential for eradication of heavy metal pollution; removing of organic contaminants in water; opening clogged pipes, controlling global warming among many others. Enzymes from thermophilic bacteria have exhibited higher activity and stability than synthetic or enzymes from mesophilic organisms. Using Meiothermus silvanus DSM 9946 as a reference genome, high level of coordinated rearrangements has been observed in extremely thermophilic Thermus that may imply existence of yet unknown evolutionary forces controlling adaptive re-organization of whole genomes of thermo-extremophiles. However, no remarkable differences were observed across species on distribution of functionally related genes on the chromosome suggesting constraints imposed by metabolic networks. The metabolic network exhibit evolutionary pressures similar to levels of rearrangements as measured by the cross-clustering index. Using stratigraphic analysis of donor-recipient, intensive gene exchanges were observed from Meiothermus species and some unknown sources to Thermus species confirming a well established DNA uptake mechanism as previously proposed. Global genome rearrangements were found to play an important role in the evolution of Thermus bacteria at both genomic and metabolic network levels. Relatively higher level of rearrangements was observed in extremely thermophilic Thermus strains in comparison to the thermo-tolerant Thermus scotoductus. Rearrangements did not significantly disrupt operons and functionally related genes. Thermus species appeared to have a developed capability for acquiring DNA through horizontal gene transfer as shown by the donor-recipient stratigraphic analysis.
κ chain monoallelic demethylation and the establishment of allelic exclusion
Mostoslavsky, Raul; Singh, Nandita; Kirillov, Andrei; Pelanda, Roberta; Cedar, Howard; Chess, Andrew; Bergman, Yehudit
1998-01-01
Allelic exclusion in κ light-chain synthesis is thought to result from a feedback mechanism by which the expression of a functional κ light chain on the surface of the B cell leads to an intracellular signal that down-regulates the V(D)J recombinase, thus precluding rearrangement of the other allele. Whereas such a feedback mechanism clearly plays a role in the maintenance of allelic exclusion, here we provide evidence suggesting that the initial establishment of allelic exclusion involves differential availability of the two κ alleles for rearrangement. Analysis of κ+ B-cell populations and of individual κ+ B cells that have rearranged only one allele demonstrates that in these cells, critical sites on the rearranged allele are unmethylated, whereas the nonrearranged allele remains methylated. This pattern is apparently generated by demethylation that is initiated at the small pre-B cell stage, on a single allele, in a process that occurs prior to rearrangement and requires the presence in cis of both the intronic and 3′ κ enhancers. Taken together with data demonstrating that undermethylation is required for rearrangement, these results indicate that demethylation may actually underly the process of allelic exclusion by directing the initial choice of a single κ allele for rearrangement. PMID:9637682
Rao, V Mohana
2012-01-01
Summary The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann) and 2-substituted malonamic acids 9 (Hofmann), their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate). The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl) products are α-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis. PMID:23019476
Phosphonate–Phosphinate Rearrangement
2014-01-01
LiTMP metalated dimethyl N-Boc-phosphoramidates derived from 1-phenylethylamine and 1,2,3,4-tetrahydronaphthalen-1-ylamine highly selectively at the CH3O group to generate short-lived oxymethyllithiums. These isomerized to diastereomeric hydroxymethylphosphonamidates (phosphate–phosphonate rearrangement). However, s-BuLi converted the dimethyl N-Boc-phosphoramidate derived from 1-phenylethylamine to the N-Boc α-aminophosphonate preferentially. Only s-BuLi deprotonated dimethyl hydroxymethylphosphonamidates at the benzylic position and dimethyl N-Boc α-aminophosphonates at the CH3O group to induce phosphonate–phosphinate rearrangements. In the former case, the migration of the phosphorus substituent from the nitrogen to the carbon atom followed a retentive course with some racemization because of the involvement of a benzyllithium as an intermediate. PMID:25525945
Ceritinib for treatment of ALK-rearranged advanced non-small-cell lung cancer.
Vansteenkiste, Johan F
2014-10-01
The anaplastic lymphoma kinase (ALK) gene plays a key role in the pathogenesis of selected tumors, including non-small-cell lung cancer (NSCLC). Patients with ALK-rearranged NSCLC are initially sensitive to the ALK inhibitor crizotinib but eventually become resistant, limiting its therapeutic potential. Ceritinib is an oral second-generation ALK inhibitor with greater preclinical antitumor potency than crizotinib in ALK-positive NSCLC. A Phase I trial of ceritinib in ALK-positive tumors demonstrated good activity in patients with advanced NSCLC, including those who had progressed on crizotinib. Adverse events are similar to those seen with other ALK tyrosine kinase inhibitors and are generally manageable. Ongoing trials are evaluating ceritinib in patients with ALK-rearranged NSCLC treated with prior chemotherapy and/or crizotinib.
Ohno, Yuko; Ogiyama, Yuki; Kubota, Yoshino; Kubo, Takuya; Ishii, Kojiro
2016-01-01
The centromeres of many eukaryotic chromosomes are established epigenetically on potentially variable tandem repeats; hence, these chromosomes are at risk of being acentric. We reported previously that artificially created acentric chromosomes in the fission yeast Schizosaccharomyces pombe can be rescued by end-to-end fusion with functional chromosomes. Here, we show that most acentric/functional chromosome fusion events in S. pombe cells harbouring an acentric chromosome I differed from the non-homologous end-joining-mediated rearrangements that result in deleterious dicentric fusions in normal cells, and were elicited by a previously unidentified homologous recombination (HR) event between chromosome end-associated sequences. The subtelomere repeats associated with the non-fusogenic ends were also destabilized in the surviving cells, suggesting a causal link between general subtelomere destabilization and acentric/functional chromosome fusion. A mutational analysis indicated that a non-canonical HR pathway was involved in the rearrangement. These findings are indicative of a latent mechanism that conditionally induces general subtelomere instability, presumably in the face of accidental centromere loss events, resulting in rescue of the fatal acentric chromosomes by interchromosomal HR. PMID:26433224
Jiang, Hanlun; Sheong, Fu Kit; Zhu, Lizhe; Gao, Xin; Bernauer, Julie; Huang, Xuhui
2015-07-01
Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.
Swee, Lee Kim; Tan, Zhen Wei; Sanecka, Anna; Yoshida, Nagisa; Patel, Harshil; Grotenbreg, Gijsbert; Frickel, Eva-Maria; Ploegh, Hidde L
2016-11-01
T-cell identity is established by the expression of a clonotypic T-cell receptor (TCR), generated by somatic rearrangement of TCRα and β genes. The properties of the TCR determine both the degree of self-reactivity and the repertoire of antigens that can be recognized. For CD8 T cells, the relationship between TCR identity-hence reactivity to self-and effector function(s) remains to be fully understood and has rarely been explored outside of the H-2 b haplotype. We measured the affinity of three structurally distinct CD8 T-cell-derived TCRs that recognize the identical H-2 L d -restricted epitope, derived from the Rop7 protein of Toxoplasma gondii We used CD8 T cells obtained from mice generated by somatic cell nuclear transfer as the closest approximation of primary T cells with physiological TCR rearrangements and TCR expression levels. First, we demonstrate the common occurrence of secondary rearrangements in endogenously rearranged loci. Furthermore, we characterized and compared the response of Rop7-specific CD8 T-cell clones upon Toxoplasma gondii infection as well as effector function and TCR signalling upon antigenic stimulation in vitro Antigen-independent TCR cross-linking in vitro uncovered profound intrinsic differences in the effector functions between T-cell clones. Finally, by assessing the degree of self-reactivity and comparing the transcriptomes of naive Rop7 CD8 T cells, we show that lower self-reactivity correlates with lower effector capacity, whereas higher self-reactivity is associated with enhanced effector function as well as cell cycle entry under physiological conditions. Altogether, our data show that potential effector functions and basal proliferation of CD8 T cells are set by self-reactivity thresholds. © 2016 The Authors.
Tandem catalytic allylic amination and [2,3]-Stevens rearrangement of tertiary amines.
Soheili, Arash; Tambar, Uttam K
2011-08-24
We have developed a catalytic allylic amination involving tertiary aminoesters and allylcarbonates, which is the first example of the use of tertiary amines as intermolecular nucleophiles in metal-catalyzed allylic substitution chemistry. This process is employed in a tandem ammonium ylide generation/[2,3]-rearrangement reaction, which formally represents a palladium-catalyzed Stevens rearrangement. Low catalyst loadings and mild reaction conditions are compatible with an unprecedented substrate scope for the ammonium ylide functionality, and products are generated in high yields and diastereoselectivities. Mechanistic studies suggested the reversible formation of an ammonium intermediate.
Nash, Aaron; Soheili, Arash; Tambar, Uttam K
2013-09-20
Unnatural cyclic amino acids are valuable tools in biomedical research and drug discovery. A two-step stereoselective strategy for converting simple glycine-derived aminoesters into unnatural cyclic amino acid derivatives has been developed. The process includes a palladium-catalyzed tandem allylic amination/[2,3]-Stevens rearrangement followed by a ruthenium-catalyzed ring-closing metathesis. The [2,3]-rearrangement proceeds with high diastereoselectivity through an exo transition state. Oppolzer's chiral auxiliary was utilized to access an enantiopure cyclic amino acid by this approach, which will enable future biological applications.
Ring Expansion and Rearrangements of Rhodium(II) Azavinyl Carbenes
Selander, Nicklas; Worrell, Brady T.
2013-01-01
An efficient, regioselective and convergent method for the ring expansion and rearrangement of 1-sulfonyl-1,2,3-triazoles under rhodium(II)-catalyzed conditions is described. These denitrogenative reactions form substituted enaminone and olefin-based products, which in the former case can be further functionalized to unique products rendering the sulfonyl triazole traceless. PMID:23161725
Identification of copy number variations and translocations in cancer cells from Hi-C data.
Chakraborty, Abhijit; Ay, Ferhat
2017-10-18
Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly affects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells harbor chromosomal abnormalities (e.g., copy number variations (CNVs) and translocations) altering their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture techniques (e.g., Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to simultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement locations de novo have been missing. In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), (Nurtdinov et al.) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments, and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing (WGS) data among chromosomes with CNV events for a breast cancer cell line (r=0.89) and capture most of the CNVs we simulate using Avesim. For HiCtrans predictions, we report evidence from the literature for 30 out of 90 translocations for eight of our cancer cell lines. Furthermore, we show that our tools identify and correctly classify relatively understudied rearrangements such as double minutes (DMs) and homogeneously staining regions (HSRs). Considering the inherent limitations of existing techniques for karyotyping (i.e., missing balanced rearrangements and those near repetitive regions), the accurate identification of CNVs and translocations in a cost-effective and high-throughput setting is still a challenge. Our results show that the set of tools we develop effectively utilize moderately sequenced Hi-C libraries (100-300 million reads) to identify known and de novo chromosomal rearrangements/abnormalities in well-established cancer cell lines. With the decrease in required number of cells and the increase in attainable resolution, we believe that our framework will pave the way towards comprehensive mapping of genomic rearrangements in primary cells from cancer patients using Hi-C. CNV calling: https://github.com/ay-lab/HiCnvTranslocation calling: https://github.com/ay-lab/HiCtransHi-C simulation: https://github.com/ay-lab/AveSim. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Tartar, Aurélien; Boucias, Drion G
2004-04-01
A fragment of the Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) plastid genome has been sequenced. The genome architecture was compared to that of both a non-photosynthetic relative (Prototheca wickerhamii) and a photosynthetic relative (Chlorella vulgaris). Comparative genomic analysis indicated that Helicosporidium and Prototheca are closely related genera. The analyses also revealed that the Helicosporidium sp. plastid genome has been rearranged. In particular, two ribosomal protein-encoding genes (rpl19 and rps23) appeared to have been transposed, or lost from the Helicosporidium sp. plastid genome. RT-PCR reactions demonstrated that the retained plastid genes were transcribed, suggesting that, despite rearrangement(s), the Helicosporidium sp. plastid genome has remained functional. The modified plastid genome architecture is a novel apomorphy that indicates that the Helicosporidia are highly derived green algae, more so than Prototheca spp. As such, they represent a promising model to study organellar genome reorganizations in parasitic protists.
Su, Xuan; He, Caiyun; Ma, Jiangjun; Tang, Tao; Zhang, Xiao; Ye, Zulu; Long, Yakang; Shao, Qiong
2016-01-01
RET/PTC rearrangements, resulting in aberrant activity of the RET protein tyrosine kinase receptor, occur exclusively in papillary thyroid cancer (PTC). In this study, we examined the association between RET/PTC rearrangements and thyroid hormone homeostasis, and explored whether concomitant diseases such as nodular goiter and Hashimoto's thyroiditis influenced this association. A total of 114 patients diagnosed with PTC were enrolled in this study. Thyroid hormone levels, clinicopathological parameters and lifestyle were obtained through medical records and surgical pathology reports. RET/PTC rearrangements were detected using TaqMan RT-PCR and validated by direct sequencing. No RET/PTC rearrangements were detected in benign thyroid tissues. RET/PTC rearrangements were detected in 23.68% (27/114) of PTC tissues. No association between thyroid function, clinicopathological parameters and lifestyle was observed either in total thyroid cancer patients or the subgroup of patients with concomitant disease. In the subgroup of PTC patients without concomitant disease, RET/PTC rearrangement was associated with multifocal cancer (P = 0.018). RET/PTC rearrangement was also correlated with higher TSH levels at one month post-surgery (P = 0.037). Based on likelihood-ratio regression analysis, the RET/PTC-positive PTC cases showed an increased risk of multifocal cancers in the thyroid gland (OR = 5.57, 95% CI, 1.39–22.33). Our findings suggest that concomitant diseases such as nodular goiter and Hashimoto's thyroiditis in PTC may be a confounding factor when examining the effects of RET/PTC rearrangements. Excluding the potential effect of this confounding factor showed that RET/PTC may confer an increased risk for the development of multifocal cancers in the thyroid gland. Aberrantly increased post-operative levels of TSH were also associated with RET/PTC rearrangement. Together, our data provides useful information for the treatment of papillary thyroid cancer. PMID:27802347
Kuliev, Anver; Janzen, Jeanine Cieslak; Zlatopolsky, Zev; Kirillova, Irina; Ilkevitch, Yury; Verlinsky, Yury
2010-07-01
Due to the limitations of preimplantation genetic diagnosis (PGD) for chromosomal rearrangements by interphase fluorescent in-situ hybridization (FISH) analysis, a method for obtaining chromosomes from single blastomeres was introduced by their fusion with enucleated or intact mouse zygotes, followed by FISH analysis of the resulting heterokaryons. Although this allowed a significant improvement in the accuracy of testing of both maternally and paternally derived translocations, it is still labour intensive and requires the availability of fertilized mouse oocytes, also creating ethical issues related to the formation of interspecies heterokaryons. This method was modified with a chemical conversion procedure that has now been clinically applied for the first time on 877 embryos from PGD cycles for chromosomal rearrangements and has become the method of choice for performing PGD for structural rearrangements. This is presented within the context of overall experience of 475 PGD cycles for translocations with pre-selection and transfer of balanced or normal embryos in 342 (72%) of these cycles, which resulted in 131 clinical pregnancies (38%), with healthy deliveries of 113 unaffected children. The spontaneous abortion rate in these cycles was as low as 17%, which confirms an almost five-fold reduction of spontaneous abortion rate following PGD for chromosomal rearrangements. 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
2010-01-01
Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs), and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb) was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously reported, to the two chromosomal ends. PMID:20653985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarlinton, D.; Strasser, A.; McLean, M.
1995-04-01
Mouse B cell precursors containing Ig D{sub H}J{sub H} junctions in one particular reading frame are selectively lost during B cell development. In this register, arbitrarily referred to as reading frame 2, D{sub H}J{sub H} junctions give rise to an open reading frame starting upstream of the D{sub H} element and including the D{sub H}J{sub H}-peptide fused to the constant region of IgM. Expression of this protein, called D{mu}, has been strongly implicated in the loss of B cell precursors containing reading frame 2 D{sub H}J{sub H} junctions. In an attempt to elucidate the means of D{mu} counterselection, we havemore » examined the reading frame distribution of D{sub H}J{sub H} junctions in peripheral B cells from mice transgenic for either the human bcl-2 oncogene or for a functionally rearranged Ig {mu} heavy chain. In bcl-2 transgenic mice, reading frame 2 accounted for < 5% of the D{sub H}J{sub H} junctions in peripheral B cells, a value not significantly different from controls. Reading frames 1 and 3 were equally represented among the remaining junctions. By contrast, the reading frame distribution of endogenous D{sub H}J{sub H} junctions in splenic B cells from Ig {mu} heavy chain transgenic mice showed no evidence of bias against D{mu} encoding D{sub H}J{sub H} junctions. Reading frames 2 and 3 accounted for 27% and 30% of the sequenced D{sub H}J{sub H} junctions, respectively, and the remaining 43% were reading frame 1. Thus although the presence of BCL-2 cannot prevent the selective loss of reading frame 2 D{sub H}J{sub H} B cells, a functional {mu} heavy chain can. These results suggest that D{mu}-expressing B cell precursors may be selectively lost because of the premature and inappropriate cessation of heavy chain gene rearrangement rather than because of the induction of an apoptotic process which can be blocked by BCL-2. 42 refs., 4 figs., 4 tabs.« less
Bentley, Stephen D.; Corton, Craig; Brown, Susan E.; Barron, Andrew; Clark, Louise; Doggett, Jon; Harris, Barbara; Ormond, Doug; Quail, Michael A.; May, Georgiana; Francis, David; Knudson, Dennis; Parkhill, Julian; Ishimaru, Carol A.
2008-01-01
Clavibacter michiganensis subsp. sepedonicus is a plant-pathogenic bacterium and the causative agent of bacterial ring rot, a devastating agricultural disease under strict quarantine control and zero tolerance in the seed potato industry. This organism appears to be largely restricted to an endophytic lifestyle, proliferating within plant tissues and unable to persist in the absence of plant material. Analysis of the genome sequence of C. michiganensis subsp. sepedonicus and comparison with the genome sequences of related plant pathogens revealed a dramatic recent evolutionary history. The genome contains 106 insertion sequence elements, which appear to have been active in extensive rearrangement of the chromosome compared to that of Clavibacter michiganensis subsp. michiganensis. There are 110 pseudogenes with overrepresentation in functions associated with carbohydrate metabolism, transcriptional regulation, and pathogenicity. Genome comparisons also indicated that there is substantial gene content diversity within the species, probably due to differential gene acquisition and loss. These genomic features and evolutionary dating suggest that there was recent adaptation for life in a restricted niche where nutrient diversity and perhaps competition are low, correlated with a reduced ability to exploit previously occupied complex niches outside the plant. Toleration of factors such as multiplication and integration of insertion sequence elements, genome rearrangements, and functional disruption of many genes and operons seems to indicate that there has been general relaxation of selective pressure on a large proportion of the genome. PMID:18192393
The He+H¯→He p¯+e+ rearrangement
NASA Astrophysics Data System (ADS)
Todd, Allan C.; Armour, Edward A. G.
2006-06-01
In this paper, we present a summary of our work in progress on calculating cross sections for the He+H¯→He p¯+e+ rearrangement process in He H¯ scattering. This has involved a study of the system He p¯ within the Born-Oppenheimer (BO) approximation using the Rayleigh-Ritz variational method. This work has been reported in [A.C. Todd, E.A.G. Armour, J. Phys. B 38 (2005) 3367] and is summarised here. Similar calculations are in progress for the He+H¯ entrance channel. We intend to use the entrance channel and rearrangement channel wave functions to obtain the cross sections for the rearrangement using the distorted wave Born approximation T-matrix method described elsewhere in these proceedings [E.A.G. Armour, S. Jonsell, Y. Liu, A.C. Todd, these Proceedings, doi:10.1016/j.nimb.2006.01.049].
Metabolism of 4-Chloronitrobenzene by the Yeast Rhodosporidium sp
Corbett, Michael D.; Corbett, Bernadette R.
1981-01-01
The yeast Rhodosporidium sp. metabolized 4-chloronitrobenzene by a reductive pathway to give 4-chloroacetanilide and 4-chloro-2-hydroxyacetanilide as the major final metabolites. The intermediate production of 4-chloronitrosobenzene, 4-chlorophenylhydroxylamine, and 4-chloroaniline was demonstrated by high-pressure liquid chromatography. Additional studies with selected metabolites established that the metabolite 4-chloro-2-hydroxyacetanilide was produced by an initial Bamberger rearrangement of the hydroxylamine metabolite, followed by acetylation. Direct C hydroxylation of the aromatic ring was not observed in this species. No hydroxamic acid production was detected, even though significant concentrations of the nitroso and hydroxylamine precursors to this functional group were observed. PMID:16345757
B lymphocyte selection and age-related changes in VH gene usage in mutant Alicia rabbits.
Zhu, X; Boonthum, A; Zhai, S K; Knight, K L
1999-09-15
Young Alicia rabbits use VHa-negative genes, VHx and VHy, in most VDJ genes, and their serum Ig is VHa negative. However, as Alicia rabbits age, VHa2 allotype Ig is produced at high levels. We investigated which VH gene segments are used in the VDJ genes of a2 Ig-secreting hybridomas and of a2 Ig+ B cells from adult Alicia rabbits. We found that 21 of the 25 VDJ genes used the a2-encoding genes, VH4 or VH7; the other four VDJ genes used four unknown VH gene segments. Because VH4 and VH7 are rarely found in VDJ genes of normal or young Alicia rabbits, we investigated the timing of rearrangement of these genes in Alicia rabbits. During fetal development, VH4 was used in 60-80% of nonproductively rearranged VDJ genes, and VHx and VHy together were used in 10-26%. These data indicate that during B lymphopoiesis VH4 is preferentially rearranged. However, the percentage of productive VHx- and VHy-utilizing VDJ genes increased from 38% at day 21 of gestation to 89% at birth (gestation day 31), whereas the percentage of VH4-utilizing VDJ genes remained at 15%. These data suggest that during fetal development, either VH4-utilizing B-lineage cells are selectively eliminated, or B cells with VHx- and VHy-utilizing VDJ genes are selectively expanded, or both. The accumulation of peripheral VH4-utilizing a2 B cells with age indicates that these B cells might be selectively expanded in the periphery. We discuss the possible selection mechanisms that regulate VH gene segment usage in rabbit B cells during lymphopoiesis and in the periphery.
Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.
Sandala, Gregory M; Smith, David M; Radom, Leo
2010-05-18
Enzymes accelerate chemical reactions with an exceptional selectivity that makes life itself possible. Understanding the factors responsible for this efficient catalysis is of utmost importance in our quest to harness the tremendous power of enzymes. Computational chemistry has emerged as an important adjunct to experimental chemistry and biochemistry in this regard, because it provides detailed insights into the relationship between structure and function in a systematic and straightforward manner. In this Account, we highlight our recent high-level theoretical investigations toward this end in studying the radical-based reactions catalyzed by enzymes dependent on coenzyme B(12) (or adenosylcobalamin, AdoCbl). In addition to their fundamental position in biology, the AdoCbl-dependent enzymes represent a valuable framework within which to understand Nature's method of efficiently handling high-energy species to execute very specific reactions. The AdoCbl-mediated reactions are characterized by the interchange of a hydrogen atom and a functional group on adjacent carbon atoms. Our calculations are consistent with the conclusion that the main role of AdoCbl is to provide a source of radicals, thus moving the 1,2-rearrangements onto the radical potential energy surface. Our studies also show that the radical rearrangement step is facilitated by partial proton transfer involving the substrate. Specifically, we observe that the energy requirements for radical rearrangement are reduced dramatically with appropriate partial protonation or partial deprotonation or sometimes (synergistically) both. Such interactions are particularly relevant to enzyme catalysis, because it is likely that the local amino acid environment in the active site of an enzyme can function in this capacity through hydrogen bonding. Finally, our calculations indicate that the intervention of a very stable radical along the reaction pathway may inactivate the enzyme, demonstrating that sustained catalysis depends on a delicate energy balance. Radical-based enzyme reactions are often difficult to probe experimentally, so theoretical investigations have a particularly valuable role to play in their study. Our research demonstrates that a small-model approach can provide important and revealing insights into the mechanism of action of AdoCbl-dependent enzymes.
Ikaros promotes rearrangement of TCR α genes in an Ikaros null thymoma cell line.
Collins, Bernard; Clambey, Eric T; Scott-Browne, James; White, Janice; Marrack, Philippa; Hagman, James; Kappler, John W
2013-02-01
Ikaros is important in the development and maintenance of the lymphoid system, functioning in part by associating with chromatin-remodeling complexes. We have studied the functions of Ikaros in the transition from pre-T cell to the CD4(+) CD8(+) thymocyte using an Ikaros null CD4(-) CD8(-) mouse thymoma cell line (JE131). We demonstrate that this cell line carries a single functional TCR β gene rearrangement and expresses a surface pre-TCR. JE131 cells also carry nonfunctional rearrangements on both alleles of their TCR α loci. Retroviral reintroduction of Ikaros dramatically increased the rate of transcription in the α locus and TCR Vα/Jα recombination resulting in the appearance of many new αβTCR(+) cells. The process is RAG dependent, requires switch/sucrose nonfermentable chromatin-remodeling complexes and is coincident with the binding of Ikaros to the TCR α enhancer. Furthermore, knockdown of Mi2/nucleosome remodeling and deacetylase complexes increased the frequency of TCR α rearrangement. Our data suggest that Ikaros controls Vα/Jα recombination in T cells by controlling access of the transcription and recombination machinery to the TCR α loci. The JE131 cell line should prove to be a very useful tool for studying the molecular details of this and other processes involved in the pre-T cell to αβTCR(+) CD4(+) CD8(+) thymocyte transition. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alvarez, J D; Anderson, S J; Loh, D Y
1995-08-01
Transcriptional activation of rearranging Ag receptor gene segments has been hypothesized to regulate their accessibility to V(D)J recombination. We analyzed the role of a functional promoter in the rearrangement of the murine TCR beta-chain locus using two transgenic minilocus constructs. These miniloci each contain an unrearranged V beta 8.3 gene. One has a wild-type V beta 8.3 gene, but the other has a V beta 8.3 gene with a promoter mutation that was previously shown to abrogate transcription in tissue culture. FACS analysis of thymus and lymph node cells from transgenic mouse lines showed that only the lines with the wild-type V beta 8.3 gene promoter express an 8.3 TCR beta-chain. Consistent with the protein expression data, V beta 8.3 gene transcripts were found only in the transgenic lines with the wild-type promoter. Using a quantitative PCR-based assay, it was shown that both types of transgenic lines recombine the V beta 8.3 gene at similar levels. Rearrangement of the transgenes was normal with respect to thymic development and junctional reading frame. Interestingly, both types of miniloci also underwent allelic exclusion in that recombination was blocked by the expression of a rearranged TCR beta-chain transgene. We conclude that a functional V beta gene promoter is not necessary for proper V(D)J recombination to occur.
Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta
2015-12-08
We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.
Long-range evolutionary constraints reveal cis-regulatory interactions on the human X chromosome
Naville, Magali; Ishibashi, Minaka; Ferg, Marco; Bengani, Hemant; Rinkwitz, Silke; Krecsmarik, Monika; Hawkins, Thomas A.; Wilson, Stephen W.; Manning, Elizabeth; Chilamakuri, Chandra S. R.; Wilson, David I.; Louis, Alexandra; Lucy Raymond, F.; Rastegar, Sepand; Strähle, Uwe; Lenhard, Boris; Bally-Cuif, Laure; van Heyningen, Veronica; FitzPatrick, David R.; Becker, Thomas S.; Roest Crollius, Hugues
2015-01-01
Enhancers can regulate the transcription of genes over long genomic distances. This is thought to lead to selection against genomic rearrangements within such regions that may disrupt this functional linkage. Here we test this concept experimentally using the human X chromosome. We describe a scoring method to identify evolutionary maintenance of linkage between conserved noncoding elements and neighbouring genes. Chromatin marks associated with enhancer function are strongly correlated with this linkage score. We test >1,000 putative enhancers by transgenesis assays in zebrafish to ascertain the identity of the target gene. The majority of active enhancers drive a transgenic expression in a pattern consistent with the known expression of a linked gene. These results show that evolutionary maintenance of linkage is a reliable predictor of an enhancer's function, and provide new information to discover the genetic basis of diseases caused by the mis-regulation of gene expression. PMID:25908307
A Complex 6p25 Rearrangement in a Child With Multiple Epiphyseal Dysplasia
Bedoyan, Jirair K.; Lesperance, Marci M.; Ackley, Todd; Iyer, Ramaswamy K.; Innis, Jeffrey W.; Misra, Vinod K.
2015-01-01
Genomic rearrangements are increasingly recognized as important contributors to human disease. Here we report on an 11½-year-old child with myopia, Duane retraction syndrome, bilateral mixed hearing loss, skeletal anomalies including multiple epiphyseal dysplasia, and global developmental delay, and a complex 6p25 genomic rearrangement. We have employed oligonucleotide-based comparative genomic hybridization arrays (aCGH) of different resolutions (44 and 244K) as well as a 1 M single nucleotide polymorphism (SNP) array to analyze this complex rearrangement. Our analyses reveal a complex rearrangement involving a ~2.21 Mb interstitial deletion, a ~240 kb terminal deletion, and a 70–80 kb region in between these two deletions that shows maintenance of genomic copy number. The interstitial deletion contains eight known genes, including three Forkhead box containing (FOX) transcription factors (FOXQ1, FOXF2, and FOXC1). The region maintaining genomic copy number partly overlaps the dual specificity protein phosphatase 22 (DUSP22) gene. Array analyses suggest a homozygous loss of genomic material at the 5′ end of DUSP22, which was corroborated using TaqMan® copy number analysis. It is possible that this homozygous genomic loss may render both copies of DUSP22 or its products non-functional. Our analysis suggests a rearrangement mechanism distinct from a previously reported replication-based error-prone mechanism without template switching for a specific 6p25 rearrangement with a 1.22 Mb interstitial deletion. Our study demonstrates the utility and limitations of using oligonucleotide-based aCGH and SNP array technologies of increasing resolutions in order to identify complex DNA rearrangements and gene disruptions. PMID:21204225
Uhlemann, Anne-Catrin; Kennedy, Adam D.; Martens, Craig; Porcella, Stephen F.; DeLeo, Frank R.; Lowy, Franklin D.
2012-01-01
Staphylococcus aureus is a frequent cause of serious infections and also a human commensal. The emergence of community-associated methicillin-resistant S. aureus led to a dramatic increase in skin and soft tissue infections worldwide. This epidemic has been driven by a limited number of clones, such as USA300 in the United States. To better understand the extent of USA300 evolution and diversification within communities, we performed comparative whole-genome sequencing of three clinical and five colonizing USA300 isolates collected longitudinally from three unrelated households over a 15-month period. Phylogenetic analysis that incorporated additional geographically diverse USA300 isolates indicated that all but one likely arose from a common recent ancestor. Although limited genetic adaptation occurred over the study period, the greatest genetic heterogeneity occurred between isolates from different households and within one heavily colonized household. This diversity allowed for a more accurate tracking of interpersonal USA300 transmission. Sequencing of persisting USA300 isolates revealed mutations in genes involved in major aspects of S. aureus function: adhesion, cell wall biosynthesis, virulence, and carbohydrate metabolism. Genetic variations also included accumulation of multiple polymorphisms within select genes of two multigene operons, suggestive of small genome rearrangements rather than de novo single point mutations. Such rearrangements have been underappreciated in S. aureus and may represent novel means of strain variation. Subtle genetic changes may contribute to USA300 fitness and persistence. Elucidation of small genome rearrangements reveals a potentially new and intriguing mechanism of directed S. aureus genome diversification in environmental niches and during pathogen–host interactions. PMID:23104992
Aroua, Safwan; Garcia-Borràs, Marc; Osuna, Sílvia; Yamakoshi, Yoko
2014-10-20
The effects of exohedral moieties and endohedral metal clusters on the isomerization of M3N@I(h)-C80 products from the Prato reaction through [1,5]-sigmatropic rearrangement were systematically investigated by using three types of fulleropyrrolidine derivatives and four different endohedral metal clusters. As a result, all types of derivatives provided the same ratios of the isomers for a given trimetallic nitride template (TNT) as the thermodynamic products, thus indicating that the size of the endohedral metal clusters inside C80 was the single essential factor in determining the equilibrium between the [6,6]-isomer (kinetic product) and the [5,6]-isomer. In all the derivatives, the [6,6]- and [5,6]-Prato adducts with larger metal clusters, such as Y3N and Gd3N, were equally stable, which is in good agreement with DFT calculations. The reaction rate of the rearrangement was dependent on both the substituent of exohedral functional groups and the endohedral metal-cluster size. Further DFT calculations and (13)C NMR spectroscopic studies were employed to rationalize the equilibrium in the rearrangement between the [6,6]- and [5,6]-fulleropyrrolidines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gupta, A; Morby, A P; Turner, J S; Whitton, B A; Robinson, N J
1993-01-01
Genomic rearrangements involving amplification of metallothionein (MT) genes have been reported in metal-tolerant eukaryotes. Similarly, we have recently observed amplification and rearrangement of a prokaryotic MT locus, smt, in cells of Synechococcus PCC 6301 selected for Cd tolerance. Following the characterization of this locus, the altered smt region has now been isolated from a Cd-tolerant cell line, C3.2, and its nucleotide sequence determined. This has identified a deletion within smtB, which encodes a trans-acting repressor of smt transcription. Two identical palindromic octanucleotides (5'-GCGATC-GC-3') traverse both borders of the excised element. This palindromic sequence is highly represented in the smt locus (7 occurrences in 1326 nucleotides) and analysis of the GenBank/EMBL/DDBJ DNA Nucleotide Sequence Data Libraries reveals that this is a highly iterated palindrome (HIP1) in other known sequences from Synechococcus strains (estimated to occur at an average frequency of once every c. 664 bp). HIP1 is also abundant in the genomes of other cyanobacteria. The functional significance of smtB deletion and the possible role of HIP1 in genome plasticity and adaptation in cyanobacteria are discussed.
Landscape of somatic mutations in 560 breast cancer whole-genome sequences
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...
2016-05-02
Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less
Landscape of somatic mutations in 560 breast cancer whole-genome sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan
Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less
Landscape of somatic mutations in 560 breast cancer whole genome sequences
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.
2016-01-01
We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926
Multiple convergent supergene evolution events in mating-type chromosomes.
Branco, Sara; Carpentier, Fantin; Rodríguez de la Vega, Ricardo C; Badouin, Hélène; Snirc, Alodie; Le Prieur, Stéphanie; Coelho, Marco A; de Vienne, Damien M; Hartmann, Fanny E; Begerow, Dominik; Hood, Michael E; Giraud, Tatiana
2018-05-21
Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.
Catalytic synthesis of amides via aldoximes rearrangement.
Crochet, Pascale; Cadierno, Victorio
2015-02-14
Amide bond formation reactions are among the most important transformations in organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method to generate secondary amides from ketoximes. However, under the acidic conditions commonly employed, aldoximes RHC=NOH rarely rearrange into the corresponding primary amides RC(=O)NH2. In recent years, it was demonstrated that this atom-economical transformation can be carried out efficiently and selectively with the help of metal catalysts. Several homogeneous and heterogenous systems have been described. In addition, protocols offering the option to generate the aldoximes in situ from the corresponding aldehydes and hydroxylamine, or even from alcohols, have also been developed, as well as a series of tandem processes allowing the access to N-substituted amide products. In this Feature article a comprehensive overview of the advances achieved in this particular research area is presented.
Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation
Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik
2016-01-01
Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891
Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation
NASA Astrophysics Data System (ADS)
Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I.; Lindahl, Erik; Elinder, Fredrik
2016-06-01
Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.
Perry, Matthew D.; Ng, Chai Ann; Vandenberg, Jamie I.
2013-01-01
Proteins that form ion-selective pores in the membrane of cells are integral to many rapid signaling processes, including regulating the rhythm of the heartbeat. In potassium channels, the selectivity filter is critical for both endowing an exquisite selectivity for potassium ions, as well as for controlling the flow of ions through the pore. Subtle rearrangements in the complex hydrogen-bond network that link the selectivity filter to the surrounding pore helices differentiate conducting (open) from nonconducting (inactivated) conformations of the channel. Recent studies suggest that beyond the selectivity filter, inactivation involves widespread rearrangements of the channel protein. Here, we use rate equilibrium free energy relationship analysis to probe the structural changes that occur during selectivity filter gating in Kv11.1 channels, at near atomic resolution. We show that the pore helix plays a crucial dynamic role as a bidirectional interface during selectivity filter gating. We also define the molecular bases of the energetic coupling between the pore helix and outer helix of the pore domain that occurs early in the transition from open to inactivated states, as well as the coupling between the pore helix and inner helix late in the transition. Our data demonstrate that the pore helices are more than just static structural elements supporting the integrity of the selectivity filter; instead they play a crucial dynamic role during selectivity filter gating. PMID:23471968
Han, Teng; Schatoff, Emma M; Murphy, Charles; Zafra, Maria Paz; Wilkinson, John E; Elemento, Olivier; Dow, Lukas E
2017-07-11
Defining the genetic drivers of cancer progression is a key in understanding disease biology and developing effective targeted therapies. Chromosome rearrangements are a common feature of human malignancies, but whether they represent bona fide cancer drivers and therapeutically actionable targets, requires functional testing. Here, we describe the generation of transgenic, inducible CRISPR-based mouse systems to engineer and study recurrent colon cancer-associated EIF3E-RSPO2 and PTPRK-RSPO3 chromosome rearrangements in vivo. We show that both Rspo2 and Rspo3 fusion events are sufficient to initiate hyperplasia and tumour development in vivo, without additional cooperating genetic events. Rspo-fusion tumours are entirely Wnt-dependent, as treatment with an inhibitor of Wnt secretion, LGK974, drives rapid tumour clearance from the intestinal mucosa without effects on normal intestinal crypts. Altogether, our study provides direct evidence that endogenous Rspo2 and Rspo3 chromosome rearrangements can initiate and maintain tumour development, and indicate a viable therapeutic window for LGK974 treatment of RSPO-fusion cancers.
Meng, Xiaoli; Jenkins, Rosalind E.; Berry, Neil G.; Maggs, James L.; Farrell, John; Lane, Catherine S.; Stachulski, Andrew V.; French, Neil S.; Naisbitt, Dean J.; Pirmohamed, Munir
2011-01-01
Covalent binding to proteins to form neoantigens is thought to be central to the pathogenesis of penicillin hypersensitivity reactions. We have undertaken detailed mass spectrometric studies to define the mechanism and protein chemistry of hapten formation from benzylpenicillin (BP) and its rearrangement product, benzylpenicillenic acid (PA). Mass spectrometric analysis of human serum albumin exposed to BP and PA in vitro revealed that at low concentrations (drug protein molar ratio 0.001:1) and during short time incubations BP and PA selectively target different residues, Lys199 and Lys525, respectively. Molecular modeling showed that the selectivity was a function of noncovalent interaction before covalent modification. With increased exposure to higher concentrations of BP and PA, multiple epitopes were detected on albumin, demonstrating that the multiplicity of hapten formation is a function of time and concentration. More importantly, we have demonstrated direct evidence that PA is a hapten accounting for the diastereoisomeric BP antigen formation in albumin isolated from the blood of patients receiving penicillin. Furthermore, PA was found to be more potent than BP with respect to stimulation of T cells from patients with penicillin hypersensitivity, illustrating the functional relevance of diastereoisomeric hapten formation. PMID:21680886
The mechanism of chromosome 7 inversion in human lymphocytes expressing chimeric gamma beta TCR.
Retière, C; Halary, F; Peyrat, M A; Le Deist, F; Bonneville, M; Hallet, M M
1999-01-15
Functional chimeric TCR chains, encoded by V gamma J gamma C beta or V gamma J beta C beta hybrid gene TCR, are expressed at the surface of a small fraction of alpha beta T lymphocytes in healthy individuals. Their frequency is dramatically increased in patients with ataxia-telangiectasia, a syndrome associated with inherited genomic instability. As the TCR gamma and beta loci are in an inverted orientation on chromosome 7, the generation of such hybrid genes requires at least an inversion event. Until now, neither the sequences involved in this genetic mechanism nor the number of recombinations leading to the formation of functional transcriptional units have been characterized. In this manuscript, we demonstrate that at least two rearrangements, involving classical recombination signal sequence and the V(D)J recombinase complex, lead to the formation of productive hybrid genes. A primary inversion 7 event between D beta and J gamma genic segments generates C gamma V beta and C beta V gamma hybrid loci. Within the C gamma V beta locus, secondary rearrangements between V gamma and J gamma or V gamma and J beta elements generate functional genes. Besides, our results suggest that secondary rearrangements were blocked in the C beta V gamma locus of normal but not ataxia-telangiectasia T lymphocytes. We also provide formal evidence that the same D beta-3' recombination signal sequence can be used in successive rearrangements with J gamma and J beta genic segments, thus showing that a signal joint has been involved in a secondary recombination event.
Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Hoffmann, Peter; Bowie, John H
2011-12-15
A joint experimental and theoretical investigation of the fragmentation behaviour of energised [M-H](-) anions from selected phosphorylated peptides has confirmed some of the most complex rearrangement processes yet to be reported for peptide negative ions. In particular: pSer and pThr (like pTyr) may transfer phosphate groups to C-terminal carboxyl anions and to the carboxyl anion side chains of Asp and Glu, and characteristic nucleophilic/cleavage reactions accompany or follow these rearrangements. pTyr may transfer phosphate to the side chains of Ser and Thr. The reverse reaction, namely transfer of a phosphate group from pSer or pThr to Tyr, is energetically unfavourable in comparison. pSer can transfer phosphate to a non-phosphorylated Ser. The non-rearranged [M-H](-) species yields more abundant product anions than its rearranged counterpart. If a peptide containing any or all of Ser, Thr and Tyr is not completely phosphorylated, negative-ion cleavages can determine the number of phosphated residues, and normally the positions of Ser, Thr and Tyr, but not which specific residues are phosphorylated. This is in accord with comments made earlier by Lehmann and coworkers. Copyright © 2011 John Wiley & Sons, Ltd.
Sayegh, Camil E.; Demaries, Sandra L.; Iacampo, Sandra; Ratcliffe, Michael J. H.
1999-01-01
Immunoglobulin gene rearrangement in avian B cell precursors generates surface Ig receptors of limited diversity. It has been proposed that specificities encoded by these receptors play a critical role in B lineage development by recognizing endogenous ligands within the bursa of Fabricius. To address this issue directly we have introduced a truncated surface IgM, lacking variable region domains, into developing B precursors by retroviral gene transfer in vivo. Cells expressing this truncated receptor lack endogenous surface IgM, and the low level of endogenous Ig rearrangements that have occurred within this population of cells has not been selected for having a productive reading frame. Such cells proliferate rapidly within bursal epithelial buds of normal morphology. In addition, despite reduced levels of endogenous light chain rearrangement, those light chain rearrangements that have occurred have undergone variable region diversification by gene conversion. Therefore, although surface expression of an Ig receptor is required for bursal colonization and the induction of gene conversion, the specificity encoded by the prediversified receptor is irrelevant and, consequently, there is no obligate ligand for V(D)J-encoded determinants of prediversified avian cell surface IgM receptor. PMID:10485907
Koshland, Douglas
2012-01-01
DNA double-strand breaks impact genome stability by triggering many of the large-scale genome rearrangements associated with evolution and cancer. One of the first steps in repairing this damage is 5′→3′ resection beginning at the break site. Recently, tools have become available to study the consequences of not extensively resecting double-strand breaks. Here we examine the role of Sgs1- and Exo1-dependent resection on genome stability using a non-selective assay that we previously developed using diploid yeast. We find that Saccharomyces cerevisiae lacking Sgs1 and Exo1 retains a very efficient repair process that is highly mutagenic to genome structure. Specifically, 51% of cells lacking Sgs1 and Exo1 repair a double-strand break using repetitive sequences 12–48 kb distal from the initial break site, thereby generating a genome rearrangement. These Sgs1- and Exo1-independent rearrangements depend partially upon a Rad51-mediated homologous recombination pathway. Furthermore, without resection a robust cell cycle arrest is not activated, allowing a cell with a single double-strand break to divide before repair, potentially yielding multiple progeny each with a different rearrangement. This profusion of rearranged genomes suggests that cells tolerate any dangers associated with extensive resection to inhibit mutagenic pathways such as break-distal recombination. The activation of break-distal recipient repeats and amplification of broken chromosomes when resection is limited raise the possibility that genome regions that are difficult to resect may be hotspots for rearrangements. These results may also explain why mutations in resection machinery are associated with cancer. PMID:22479212
Fun, Axel; van Maarseveen, Noortje M; Pokorná, Jana; Maas, Renée Em; Schipper, Pauline J; Konvalinka, Jan; Nijhuis, Monique
2011-08-24
Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different proteases. These findings highlight the complicated interactions between the viral protease and its substrate. By providing a better understanding of these interactions, we aim to help guide the development of second generation maturation inhibitors.
Karunakaran, Mohindar M; Göbel, Thomas W; Starick, Lisa; Walter, Lutz; Herrmann, Thomas
2014-04-01
Human Vγ9Vδ2 T cells recognize phosphorylated products of isoprenoid metabolism (phosphoantigens) PAg with TCR comprising Vγ9JP γ-chains and Vδ2 δ-chains dependent on butyrophilin 3 (BTN3) expressed by antigen-presenting cells. They are massively activated in many infections and show anti-tumor activity and so far, they have been considered to exist only in higher primates. We performed a comprehensive analysis of databases and identified the three genes in species of both placental magnorders, but not in rodents. The common occurrence or loss of in silico translatable Vγ9, Vδ2, and BTN3 genes suggested their co-evolution based on a functional relationship. In the peripheral lymphocytes of alpaca (Vicugna pacos), characteristic Vγ9JP rearrangements and in-frame Vδ2 rearrangements were found and could be co-expressed in a TCR-negative mouse T cell hybridoma where they rescued CD3 expression and function. Finally, database sequence analysis of the extracellular domain of alpaca BTN3 revealed complete conservation of proposed PAg binding residues of human BTN3A1. In summary, we show emergence and preservation of Vγ9 and Vδ2 TCR genes with the gene of the putative antigen-presenting molecule BTN3 in placental mammals and lay the ground for analysis of alpaca as candidate for a first non-primate species to possess Vγ9Vδ2 T cells.
Synthetic nat- or ent-steroids in as few as five chemical steps from epichlorohydrin
NASA Astrophysics Data System (ADS)
Kim, Wan Shin; Du, Kang; Eastman, Alan; Hughes, Russell P.; Micalizio, Glenn C.
2018-01-01
Today, more than 100 Food and Drug Administration-approved steroidal agents are prescribed daily for indications including heart failure, inflammation, pain and cancer. While triumphs in organic chemistry have enabled the establishment and sustained growth of the steroid pharmaceutical industry, the production of highly functionalized synthetic steroids of varying substitution and stereochemistry remains challenging, despite the numerous reports of elegant strategies for their de novo synthesis. Here, we describe an advance in chemical synthesis that has established an enantiospecific means to access novel steroids with unprecedented facility and flexibility through the sequential use of two powerful ring-forming reactions: a modern metallacycle-mediated annulative cross-coupling and a new acid-catalysed vinylcyclopropane rearrangement cascade. In addition to accessing synthetic steroids of either enantiomeric series, these steroidal products have been selectively functionalized within each of the four carbocyclic rings, a synthetic ent-steroid has been prepared on a multigram scale, the enantiomer of a selective oestrogen has been synthesized, and a novel ent-steroid with growth inhibitory properties in three cancer cell lines has been discovered.
Yu, Yuanyuan; Wang, Chunyu; He, Xinze; Yao, Xiaotong; Zu, Liansuo
2014-07-03
An unprecedented cascade strategy, used in conjunction with a redox isomerization, for the synthesis of 3-allyl pyrroles is reported. In a single step, readily accessible simple starting materials are transformed into highly substituted pyrroles with high efficiency. The products obtained contain allyl substituents, which can be readily elaborated to other useful functional groups. The reaction proceeds through an unusual (3 + 2) cycloaddition/skeletal rearrangement/redox isomerization pathway.
Telomerase activation by genomic rearrangements in high-risk neuroblastoma
Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L.; Sand, Frederik; Heuckmann, Johannes M.; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Glöckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R.; Savelyeva, Larissa; Watkins, Simon C.; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H.; Herrmann, Carl; O’Sullivan, Roderick J.; Westermann, Frank; Thomas, Roman K.; Fischer, Matthias
2016-01-01
Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system1. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive2–4. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type1,2,5. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours. PMID:26466568
Li, Yulong; Zhang, Rui; Peng, Rongxue; Ding, Jiansheng; Han, Yanxi; Wang, Guojing; Zhang, Kuo; Lin, Guigao; Li, Jinming
2016-06-01
Currently, several approaches are being used to detect echinoderm microtubule associated protein like 4 gene (EML4)-anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangement, but the performance of laboratories in China is unknown. To evaluate the proficiency of different laboratories in detecting EML4-ALK rearrangement, we organized a proficiency test (PT). We prepared formalin-fixed, paraffin-embedded samples derived from the xenograft tumor tissue of three non-small cell lung cancer cell lines with different EML4-ALK rearrangements and used PTs to evaluate the detection performance of laboratories in China. We received results from 94 laboratories that used different methods. Of the participants, 75.53% correctly identified all samples in the PT panel. Among the errors made by participants, false-negative errors were likely to occur. According to the methodology applied, 82.86%, 76.67%, 77.78%, and 66.67% of laboratories using reverse transcriptase polymerase chain reaction, fluorescence in situ hybridization, next-generation sequencing, and immunohistochemical analysis, respectively, could analyze all the samples correctly. Moreover, we have found that the laboratories' genotyping capacity is high, especially for variant 3. Our PT survey revealed that the performance and methodological problems of laboratories must be addressed to further increase the reproducibility and accuracy of detection of EML4-ALK rearrangement to ensure reliable results for selection of appropriate patients. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferri, Nicola; Ambrosetti, Alberto; Tkatchenko, Alexandre
2017-07-01
Electronic charge rearrangements at interfaces between organic molecules and solid surfaces play a key role in a wide range of applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. It is common to utilize electrostatics and Pauli pushback to control the interface electronic properties, while the ubiquitous van der Waals (vdW) interactions are often considered to have a negligible direct contribution (beyond the obvious structural relaxation). Here, we apply a fully self-consistent Tkatchenko-Scheffler vdW density functional to demonstrate that the weak vdW interactions can induce sizable charge rearrangements at hybrid metal/organic systems (HMOS). The complex vdW correlation potential smears out the interfacial electronic density, thereby reducing the charge transfer in HMOS, changes the interface work functions by up to 0.2 eV, and increases the interface dipole moment by up to 0.3 Debye. Our results suggest that vdW interactions should be considered as an additional control parameter in the design of hybrid interfaces with the desired electronic properties.
Genes and Junk in Plant Mitochondria—Repair Mechanisms and Selection
Christensen, Alan C.
2014-01-01
Plant mitochondrial genomes have very low mutation rates. In contrast, they also rearrange and expand frequently. This is easily understood if DNA repair in genes is accomplished by accurate mechanisms, whereas less accurate mechanisms including nonhomologous end joining or break-induced replication are used in nongenes. An important question is how different mechanisms of repair predominate in coding and noncoding DNA, although one possible mechanism is transcription-coupled repair (TCR). This work tests the predictions of TCR and finds no support for it. Examination of the mutation spectra and rates in genes and junk reveals what DNA repair mechanisms are available to plant mitochondria, and what selective forces act on the repair products. A model is proposed that mismatches and other DNA damages are repaired by converting them into double-strand breaks (DSBs). These can then be repaired by any of the DSB repair mechanisms, both accurate and inaccurate. Natural selection will eliminate coding regions repaired by inaccurate mechanisms, accounting for the low mutation rates in genes, whereas mutations, rearrangements, and expansions generated by inaccurate repair in noncoding regions will persist. Support for this model includes the structure of the mitochondrial mutS homolog in plants, which is fused to a double-strand endonuclease. The model proposes that plant mitochondria do not distinguish a damaged or mismatched DNA strand from the undamaged strand, they simply cut both strands and perform homology-based DSB repair. This plant-specific strategy for protecting future generations from mitochondrial DNA damage has the side effect of genome expansions and rearrangements. PMID:24904012
Stringer, J R; Kuhn, R M; Newman, J L; Meade, J C
1985-01-01
Cultured rat cells deficient in endogenous thymidine kinase activity (tk) were stably transformed with a recombination-indicator DNA substrate constructed in vitro by rearrangement of the herpes simplex virus tk gene sequences into a partially redundant permutation of the functional gene. The recombination-indicator DNA did not express tk, but was designed to allow formation of a functional tk gene via homologous recombination. A clonal cell line (519) was isolated that harbored several permuted herpes simplex virus tk genes. 519 cells spontaneously produced progeny that survived in medium containing hypoxanthine, aminopterin, and thymidine. Acquisition of resistance to hypoxanthine, aminopterin, and thymidine was accompanied by the rearrangement of the defective tk gene to functional configuration. The rearrangement apparently occurred by unequal exchange between one permuted tk gene and a replicated copy of itself. Recombination was between 500-base-pair tracts of DNA sequence homology that were separated by 3.4 kilobases. Exchanges occurred spontaneously at a frequency of approximately 5 X 10(-6) events per cell per generation. Recombination also mediated reversion to the tk- phenotype; however, the predominant mechanism by which cells escaped death in the presence of drugs rendered toxic by thymidine kinase was not recombination, but rather inactivation of the intact tk gene. Images PMID:3016511
Todua, Nino G; Mikaia, Anzor I
2016-01-01
Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS 1 spectra of unlabeled compounds to their 2 H and 13 C labeled analogs, and analysis of collision-induced dissociation data from MS 2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.
Todua, Nino G.; Mikaia, Anzor I.
2016-01-01
Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS1 spectra of unlabeled compounds to their 2H and 13C labeled analogs, and analysis of collision-induced dissociation data from MS2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested. PMID:27891187
Valentine, M C; Linabery, A M; Chasnoff, S; Hughes, A E O; Mallaney, C; Sanchez, N; Giacalone, J; Heerema, N A; Hilden, J M; Spector, L G; Ross, J A; Druley, T E
2014-01-01
Infant leukemia (IL) is a rare sporadic cancer with a grim prognosis. Although most cases are accompanied by MLL rearrangements and harbor very few somatic mutations, less is known about the genetics of the cases without MLL translocations. We performed the largest exome-sequencing study to date on matched non-cancer DNA from pairs of mothers and IL patients to characterize congenital variation that may contribute to early leukemogenesis. Using the COSMIC database to define acute leukemia-associated candidate genes, we find a significant enrichment of rare, potentially functional congenital variation in IL patients compared with randomly selected genes within the same patients and unaffected pediatric controls. IL acute myeloid leukemia (AML) patients had more overall variation than IL acute lymphocytic leukemia (ALL) patients, but less of that variation was inherited from mothers. Of our candidate genes, we found that MLL3 was a compound heterozygote in every infant who developed AML and 50% of infants who developed ALL. These data suggest a model by which known genetic mechanisms for leukemogenesis could be disrupted without an abundance of somatic mutation or chromosomal rearrangements. This model would be consistent with existing models for the establishment of leukemia clones in utero and the high rate of IL concordance in monozygotic twins. PMID:24301523
Lebœuf, David; Ciesielski, Jennifer
2012-01-01
Highly functionalized cyclopentenones can be generated stereospecifically by a chemoselective copper(II)-mediated Nazarov/Wagner-Meerwein rearrangement sequence of divinyl ketones. A detailed investigation of this sequence is described including a study of substrate scope and limitations. After the initial 4π electrocyclization, this reaction proceeds via two different sequential [1,2]-shifts, with selectivity that depends upon either migratory ability or the steric bulkiness of the substituents at C1 and C5. This methodology allows the creation of vicinal stereogenic centers, including adjacent quaternary centers. This sequence can also be achieved by using a catalytic amount of copper(II) in combination with NaBAr4f, a weak Lewis acid. During the study of the scope of the reaction, a partial or complete E / Z isomerization of the enone moiety was observed in some cases prior to the cyclization, which resulted in a mixture of diastereomeric products. Use of a Cu(II)-bisoxazoline complex prevented the isomerization, allowing high diastereoselectivity to be obtained in all substrate types. In addition, the reaction sequence was studied by DFT computations at the UB3LYP/6-31G(d,p) level, which are consistent with the proposed sequences observed, including E / Z isomerizations and chemoselective Wagner-Meerwein shifts. PMID:22471833
Han, Teng; Schatoff, Emma M.; Murphy, Charles; Zafra, Maria Paz; Wilkinson, John E.; Elemento, Olivier; Dow, Lukas E.
2017-01-01
Defining the genetic drivers of cancer progression is a key in understanding disease biology and developing effective targeted therapies. Chromosome rearrangements are a common feature of human malignancies, but whether they represent bona fide cancer drivers and therapeutically actionable targets, requires functional testing. Here, we describe the generation of transgenic, inducible CRISPR-based mouse systems to engineer and study recurrent colon cancer-associated EIF3E–RSPO2 and PTPRK–RSPO3 chromosome rearrangements in vivo. We show that both Rspo2 and Rspo3 fusion events are sufficient to initiate hyperplasia and tumour development in vivo, without additional cooperating genetic events. Rspo-fusion tumours are entirely Wnt-dependent, as treatment with an inhibitor of Wnt secretion, LGK974, drives rapid tumour clearance from the intestinal mucosa without effects on normal intestinal crypts. Altogether, our study provides direct evidence that endogenous Rspo2 and Rspo3 chromosome rearrangements can initiate and maintain tumour development, and indicate a viable therapeutic window for LGK974 treatment of RSPO-fusion cancers. PMID:28695896
Hemmat, Morteza; Yang, Xiaojing; Chan, Patricia; McGough, Robert A; Ross, Leslie; Mahon, Loretta W; Anguiano, Arturo L; Boris, Wang T; Elnaggar, Mohamed M; Wang, Jia-Chi J; Strom, Charles M; Boyar, Fatih Z
2014-01-01
Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient's developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient.
Conditional genomic rearrangement by designed meiotic recombination using VDE (PI-SceI) in yeast.
Fukuda, Tomoyuki; Ohya, Yoshikazu; Ohta, Kunihiro
2007-10-01
Meiotic recombination plays critical roles in the acquisition of genetic diversity and has been utilized for conventional breeding of livestock and crops. The frequency of meiotic recombination is normally low, and is extremely low in regions called "recombination cold domains". Here, we describe a new and highly efficient method to modulate yeast meiotic gene rearrangements using VDE (PI-SceI), an intein-encoded endonuclease that causes an efficient unidirectional meiotic gene conversion at its recognition sequence (VRS). We designed universal targeting vectors, by use of which the strain that inserts the VRS at a desired site is acquired. Meiotic induction of the strains provided unidirectional gene conversions and frequent genetic rearrangements of flanking genes with little impact on cell viability. This system thus opens the way for the designed modulation of meiotic gene rearrangements, regardless of recombinational activity of chromosomal domains. Finally, the VDE-VRS system enabled us to conduct meiosis-specific conditional knockout of genes where VDE-initiated gene conversion disrupts the target gene during meiosis, serving as a novel approach to examine the functions of genes during germination of resultant spores.
Krylov, Vadim B; Argunov, Dmitry A; Vinnitskiy, Dmitry Z; Verkhnyatskaya, Stella A; Gerbst, Alexey G; Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Huebner, Johannes; Holst, Otto; Siebert, Hans-Christian; Nifantiev, Nikolay E
2014-12-08
Great interest in natural furanoside-containing compounds has challenged the development of preparative methods for their synthesis. Herein a novel reaction in carbohydrate chemistry, namely a pyranoside-into-furanoside (PIF) rearrangement permitting the transformation of selectively O-substituted pyranosides into the corresponding furanosides is reported. The discovered process includes acid-promoted sulfation accompanied by rearrangement of the pyranoside ring into a furanoside ring followed by solvolytic O-desulfation. This process, which has no analogy in organic chemistry, was shown to be a very useful tool for the synthesis of furanoside-containing complex oligosaccharides, which was demonstrated by synthesizing disaccharide derivatives α-D-Galp-(1→3)-β-D-Galf-OPr, 3-O-s-lactyl-β-D-Galf-(1→3)-β-D-Glcp-OPr, and α-L-Fucf-(1→4)-β-D-GlcpA-OPr related to polysaccharides from the bacteria Klebsiella pneumoniae and Enterococcus faecalis and the brown seaweed Chordaria flagelliformis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elevated Rate of Genome Rearrangements in Radiation-Resistant Bacteria.
Repar, Jelena; Supek, Fran; Klanjscek, Tin; Warnecke, Tobias; Zahradka, Ksenija; Zahradka, Davor
2017-04-01
A number of bacterial, archaeal, and eukaryotic species are known for their resistance to ionizing radiation. One of the challenges these species face is a potent environmental source of DNA double-strand breaks, potential drivers of genome structure evolution. Efficient and accurate DNA double-strand break repair systems have been demonstrated in several unrelated radiation-resistant species and are putative adaptations to the DNA damaging environment. Such adaptations are expected to compensate for the genome-destabilizing effect of environmental DNA damage and may be expected to result in a more conserved gene order in radiation-resistant species. However, here we show that rates of genome rearrangements, measured as loss of gene order conservation with time, are higher in radiation-resistant species in multiple, phylogenetically independent groups of bacteria. Comparison of indicators of selection for genome organization between radiation-resistant and phylogenetically matched, nonresistant species argues against tolerance to disruption of genome structure as a strategy for radiation resistance. Interestingly, an important mechanism affecting genome rearrangements in prokaryotes, the symmetrical inversions around the origin of DNA replication, shapes genome structure of both radiation-resistant and nonresistant species. In conclusion, the opposing effects of environmental DNA damage and DNA repair result in elevated rates of genome rearrangements in radiation-resistant bacteria. Copyright © 2017 Repar et al.
Luquet, I; Laï, J L; Barin, C; Baranger, L; Bilhou-Nabera, C; Lippert, E; Gervais, C; Talmant, P; Cornillet-Lefebvre, P; Perot, C; Nadal, N; Mozziconacci, M J; Lafage-Pochitaloff, M; Eclache, V; Mugneret, F; Lefebvre, C; Herens, C; Speleman, F; Poirel, H; Tigaud, I; Cabrol, C; Rousselot, P; Daliphard, S; Imbert, M; Garand, R; Geneviève, F; Berger, R; Terre, C
2008-01-01
A series of 38 patients with acute myeloblastic leukemia (AML) with 49 or more chromosomes and without structural abnormalities was selected within the Groupe Francophone de Cytogénétique Hématologique (GFCH) to better define their characteristics. The median age of the patients was 65 years, and all FAB subtypes were represented. Although all chromosomes were gained, some seems to prevail: chromosome 8 (68%), 21 (47%), 19 (37%), and 13 and 14 (34% each). Since MLL rearrangement leads patients in a group with an unfavorable prognosis, search for cryptic rearrangements of MLL was performed in 34 patients and showed abnormalities in 5 (15%). When we applied the most frequent definition of complex karyotypes (three or more abnormalities), all patients with high hyperdiploid AML fall in the unfavorable category. Among the 18 patients without MLL rearrangement receiving an induction therapy, 16 (89%) reached CR and 6 (33%) were still alive after a 31-month median follow-up (14-61 months). Although this study was retrospective, these results suggest that high hyperdiploid AML without chromosome rearrangement seems to be a subgroup of uncommon AML (less than 1%), and may be better classified in the intermediate prognostic group.
Diaz, Marilyn; Stanfield, Robyn L; Greenberg, Andrew S; Flajnik, Martin F
2002-10-01
The new antigen receptor (IgNAR) family has been detected in all elasmobranch species so far studied and has several intriguing structural and functional features. IgNAR protein, found in both transmembrane and secretory forms, is a dimer of heavy chains with no associated light chains, with each chain of the dimer having a single free and flexible V region. Four rearrangement events (among 1V, 3D, and 1J germline genes) generate an expressed NAR V gene, resulting in long and diverse CDR3 regions that contain cysteine residues. IgNAR mutation frequency is very high and "selected" mutations are found only in genes encoding the secreted form, suggesting that the primary repertoire is entirely CDR3-based. Here we further analyzed the two IgNAR types, "type 1" having one cysteine in CDR3 and "type 2" with an even number (two or four) of CDR3 cysteines, and discovered that placement of the disulfide bridges in the IgNAR V domain differentially influences the selection of mutations in CDR1 and CDR2. Ontogenetic analyses showed that IgNAR sequences from young animals were infrequently mutated, consistent with the paradigm that the shark immune system must become mature before high levels of mutation accompanied with selection can occur. Nevertheless, also in agreement with the idea that the IgNAR repertoire is entirely CDR3-based, but unlike studies in most other vertebrates, N-region diversity is present in expressed IgNAR clones at birth. During the investigation of this early IgNAR repertoire we serendipitously detected a third type of IgNAR gene that is expressed in all neonatal tissues; later in life its expression is perpetuated only in the epigonal organ, a tissue recently shown to be a (the?) primary lymphoid tissue in elasmobranchs. This "type 3" IgNAR gene still undergoes three rearrangement events (two D regions are "germline-joined"), yet CDR3 sequences were exactly of the same length and very similar sequence, suggesting that "type 3" CDR3s are selected early in ontogeny, perhaps by a self-ligand.
2012-01-01
Background Mental retardation (MR) is a heterogeneous condition that affects 2-3% of the general population and is a public health problem in developing countries. Chromosomal abnormalities are an important cause of MR and subtelomeric rearrangements (STR) have been reported in 4-35% of individuals with idiopathic MR or an unexplained developmental delay, depending on the screening tests and patient selection criteria used. Clinical checklists such as that suggested by de Vries et al. have been used to improve the predictive value of subtelomeric screening. Findings Fifteen patients (1–20 years old; five females and ten males) with moderate to severe MR from a genetics outpatient clinic of the Gaffrée and Guinle Teaching Hospital (HUGG) of the Federal University of Rio de Janeiro State (UNIRIO) were screened with Multiprobe T FISH after normal high resolution karyotyping. No subtelomeric rearrangements were detected even though the clinical score of the patients ranged from four to seven. Conclusion In developing countries, FISH-based techniques such as Multiprobe T FISH are still expensive. Although Multiprobe T FISH is a good tool for detecting STR, in this study it did not detect STR in patients with unexplained MR/developmental delay even though these patients had a marked chromosomal imbalance. Our findings also show that clinical scores are not reliable predictors of STR. PMID:23259705
Cytomorphology of non-small cell lung carcinoma with anaplastic lymphoma kinase gene rearrangement.
Toll, Adam D; Maleki, Zahra
2015-01-01
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase demonstrating activating mutations in several malignancies including a subset (1-5%) of non-small cell lung carcinomas (NSCLC). Prior work examining, the histologic features of these tumors found a spectrum of findings, notably a solid/acinar pattern, as well as a mucinous cribriform pattern. We present the first study to date describing the cytomorphology of NSCLC harboring ALK rearrangements. A retrospective database search was conducted to identify cytologic specimens of NSCLC demonstrating ALK rearrangement. Cytogenetic analysis was performed with fluorescence in situ hybridization. A total of 12 patients were identified, 10 with available material. Cellular morphology and smear background was evaluated in the study group, as well as control cases lacking ALK rearrangement. A total of 25 specimens from 10 patients were obtained. Five patients never smoked, and four patients had a remote smoking history. ALK rearrangements were identified in cells with unique cytologic characteristics. All cases demonstrated moderate to poor differentiation with a predominance of single cells showing anisonucleosis and frequent intracytoplasmic neutrophils. The control cases showed cells with smaller, less pleomorphic nuclei, and smaller nucleoli with more clusters/tissue fragments. Several unique cytomorphologic features were consistently identified in the study population relative to the control population and include a prominence of single, markedly enlarged tumor cells with plasmacytoid features and anisonucleosis, as well as intracytoplasmic neutrophils. Larger studies are warranted to confirm our preliminary findings, as these features may help establish a more cost-effective means to select patients being tested for ALK mutational analysis. © 2014 Wiley Periodicals, Inc.
Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz
2017-10-07
Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.
NASA Astrophysics Data System (ADS)
Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz
2017-10-01
Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.
The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement
Peng, Yanhui; Loparev, Vladimir; Batra, Dhwani; Bowden, Katherine E.; Burroughs, Mark; Cassiday, Pamela K.; Davis, Jamie K.; Johnson, Taccara; Juieng, Phalasy; Knipe, Kristen; Mathis, Marsenia H.; Pruitt, Andrea M.; Rowe, Lori; Sheth, Mili; Tondella, M. Lucia; Williams, Margaret M.
2017-01-01
ABSTRACT Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genomic structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine the potential evolution of the chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. The observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigating disease resurgence and molecular epidemiology. IMPORTANCE Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though the coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a large number of repetitive mobile genetic elements that obstruct genome analysis. However, these mobile elements facilitate large rearrangements that alter the order and orientation of essential protein-encoding genes, which otherwise exhibit little nucleotide sequence diversity. By comparing the complete genome assemblies from 257 isolates, we show that specific rearrangements have been conserved throughout recent evolutionary history, perhaps by eliciting changes in gene expression, which may also provide useful information for molecular epidemiology. PMID:28167525
Platt, Adam; Morten, John; Ji, Qunsheng; Elvin, Paul; Womack, Chris; Su, Xinying; Donald, Emma; Gray, Neil; Read, Jessica; Bigley, Graham; Blockley, Laura; Cresswell, Carl; Dale, Angela; Davies, Amanda; Zhang, Tianwei; Fan, Shuqiong; Fu, Haihua; Gladwin, Amanda; Harrod, Grace; Stevens, James; Williams, Victoria; Ye, Qingqing; Zheng, Li; de Boer, Richard; Herbst, Roy S; Lee, Jin-Soo; Vasselli, James
2015-03-23
To determine the prevalence of RET rearrangement genes, RET copy number gains and expression in tumor samples from four Phase III non-small-cell lung cancer (NSCLC) trials of vandetanib, a selective inhibitor of VEGFR, RET and EGFR signaling, and to determine any association with outcome to vandetanib treatment. Archival tumor samples from the ZODIAC ( NCT00312377 , vandetanib ± docetaxel), ZEAL ( NCT00418886 , vandetanib ± pemetrexed), ZEPHYR ( NCT00404924 , vandetanib vs placebo) and ZEST ( NCT00364351 , vandetanib vs erlotinib) studies were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in 944 and 1102 patients. The prevalence of RET rearrangements by FISH was 0.7% (95% CI 0.3-1.5%) among patients with a known result. Seven tumor samples were positive for RET rearrangements (vandetanib, n = 3; comparator, n = 4). 2.8% (n = 26) of samples had RET amplification (innumerable RET clusters, or ≥7 copies in > 10% of tumor cells), 8.1% (n = 76) had low RET gene copy number gain (4-6 copies in ≥40% of tumor cells) and 8.3% (n = 92) were RET expression positive (signal intensity ++ or +++ in >10% of tumor cells). Of RET-rearrangement-positive patients, none had an objective response in the vandetanib arm and one patient responded in the comparator arm. Radiologic evidence of tumor shrinkage was observed in two patients treated with vandetanib and one treated with comparator drug. The objective response rate was similar in the vandetanib and comparator arms for patients positive for RET copy number gains or RET protein expression. We have identified prevalence for three RET biomarkers in a population predominated by non-Asians and smokers. RET rearrangement prevalence was lower than previously reported. We found no evidence of a differential benefit for efficacy by IHC and RET gene copy number gains. The low prevalence of RET rearrangements (0.7%) prevents firm conclusions regarding association of vandetanib treatment with efficacy in the RET rearrangement NSCLC subpopulation. Randomized Phase III clinical trials ( NCT00312377 , ZODIAC; NCT00418886 , ZEAL; NCT00364351 , ZEST; NCT00404924 , ZEPHYR).
Hartsink-Segers, S A; Beaudoin, J J; Luijendijk, M W J; Exalto, C; Pieters, R; Den Boer, M L
2015-02-01
Both tumour suppressor and oncogenic functions have been ascribed to the atypical zeta isoform of protein kinase C (PKCζ), whereas its constitutively active form PKMζ is almost exclusively expressed in the brain where it has a role in long-term memory. Using primers unique for either isoform, we found that both PKCζ and PKMζ were expressed in a subset of paediatric acute lymphoblastic leukaemia (ALL) cases carrying a TCF3 (E2A) chromosomal rearrangement. Combined PKCζ and PKMζ (PKC/Mζ) protein as well as phosphorylation levels were elevated in ALL cases, especially TCF3-rearranged precursor B-ALL cases, compared with normal bone marrow (P<0.01). Furthermore, high PKC/Mζ expression in primary ALL cells was associated with increased sensitivity to 6-thioguanine and 6-mercaptopurine (P<0.01), thiopurines used in ALL treatment. PKCζ is believed to stabilize mismatch-repair protein MSH2, facilitating thiopurine responsiveness in T-ALL. However, PKC/Mζ knockdown in a TCF3-rearranged cell line model decreased MSH2 expression but did not induce thiopurine resistance, indicative that the link between high PKC/Mζ levels and thiopurine sensitivity in paediatric precursor B-ALL is not directly causal. Collectively, our data indicate that thiopurine treatment may be effective, especially in paediatric TCF3-rearranged ALL and other patients with a high expression of PKC/Mζ.
Hartsink-Segers, S A; Beaudoin, J J; Luijendijk, M W J; Exalto, C; Pieters, R; Den Boer, M L
2015-01-01
Both tumour suppressor and oncogenic functions have been ascribed to the atypical zeta isoform of protein kinase C (PKCζ), whereas its constitutively active form PKMζ is almost exclusively expressed in the brain where it has a role in long-term memory. Using primers unique for either isoform, we found that both PKCζ and PKMζ were expressed in a subset of paediatric acute lymphoblastic leukaemia (ALL) cases carrying a TCF3 (E2A) chromosomal rearrangement. Combined PKCζ and PKMζ (PKC/Mζ) protein as well as phosphorylation levels were elevated in ALL cases, especially TCF3-rearranged precursor B-ALL cases, compared with normal bone marrow (P<0.01). Furthermore, high PKC/Mζ expression in primary ALL cells was associated with increased sensitivity to 6-thioguanine and 6-mercaptopurine (P<0.01), thiopurines used in ALL treatment. PKCζ is believed to stabilize mismatch-repair protein MSH2, facilitating thiopurine responsiveness in T-ALL. However, PKC/Mζ knockdown in a TCF3-rearranged cell line model decreased MSH2 expression but did not induce thiopurine resistance, indicative that the link between high PKC/Mζ levels and thiopurine sensitivity in paediatric precursor B-ALL is not directly causal. Collectively, our data indicate that thiopurine treatment may be effective, especially in paediatric TCF3-rearranged ALL and other patients with a high expression of PKC/Mζ. PMID:24990612
2013-01-01
Background B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy in pediatric patients and the leading cause of cancer-related death in children and young adults. Translocations of 9p24 involving JAK2 (9p24) and gain-of-function mutations of JAK2 with subsequent activation of the JAK2 kinase have been described in several hematological malignancies including B-ALL. However, rearrangements involving JAK2 are rare in B-ALL as only few cases have been described in the literature. Findings Herein, we present a case of pediatric B-ALL whose conventional cytogenetics revealed an abnormal karyotype with a reciprocal translocation involving 9p24 (JAK2) and 12p11.2. Fluorescence in situ hybridization (FISH) studies using the RP11-927H16 Spectrum Green JAK2 probe on previously G-banded metaphases confirmed the involvement of JAK2 in this rearrangement. Further FISH studies on the same previously G-banded metaphases using the LSI MLL probe helped to characterize an insertion of MLL into 6q27 as an additional abnormality in this karyotype. FISH studies performed on interphase nuclei also revealed an abnormal clone with MLL rearrangements in 23.6% of the nuclei examined as well as an abnormal clonal population with a deletion of the 5'IGH@ region in 88.3% of the nuclei examined. Conclusions Rearrangements of 9p24 can result in constitutive activation of JAK2, and have been observed in B-ALL. Rearrangements of the MLL gene have also been described extensively in B-ALL. However, rearrangements of MLL with a partner at 6q27 and in conjunction with a translocation involving JAK2 have not been previously described. This case pinpoints the importance of FISH and conventional cytogenetics to characterize complex rearrangements in which JAK2 and MLL are involved. The therapeutic targeting of JAK2 and MLL in cases like this may be prognostically beneficial. PMID:24274401
Dunn, Barbara; Paulish, Terry; Stanbery, Alison; Piotrowski, Jeff; Koniges, Gregory; Kroll, Evgueny; Louis, Edward J.; Liti, Gianni; Sherlock, Gavin; Rosenzweig, Frank
2013-01-01
Genome rearrangements are associated with eukaryotic evolutionary processes ranging from tumorigenesis to speciation. Rearrangements are especially common following interspecific hybridization, and some of these could be expected to have strong selective value. To test this expectation we created de novo interspecific yeast hybrids between two diverged but largely syntenic Saccharomyces species, S. cerevisiae and S. uvarum, then experimentally evolved them under continuous ammonium limitation. We discovered that a characteristic interspecific genome rearrangement arose multiple times in independently evolved populations. We uncovered nine different breakpoints, all occurring in a narrow ∼1-kb region of chromosome 14, and all producing an “interspecific fusion junction” within the MEP2 gene coding sequence, such that the 5′ portion derives from S. cerevisiae and the 3′ portion derives from S. uvarum. In most cases the rearrangements altered both chromosomes, resulting in what can be considered to be an introgression of a several-kb region of S. uvarum into an otherwise intact S. cerevisiae chromosome 14, while the homeologous S. uvarum chromosome 14 experienced an interspecific reciprocal translocation at the same breakpoint within MEP2, yielding a chimaeric chromosome; these events result in the presence in the cell of two MEP2 fusion genes having identical breakpoints. Given that MEP2 encodes for a high-affinity ammonium permease, that MEP2 fusion genes arise repeatedly under ammonium-limitation, and that three independent evolved isolates carrying MEP2 fusion genes are each more fit than their common ancestor, the novel MEP2 fusion genes are very likely adaptive under ammonium limitation. Our results suggest that, when homoploid hybrids form, the admixture of two genomes enables swift and otherwise unavailable evolutionary innovations. Furthermore, the architecture of the MEP2 rearrangement suggests a model for rapid introgression, a phenomenon seen in numerous eukaryotic phyla, that does not require repeated backcrossing to one of the parental species. PMID:23555283
2-Diazo-1-(4-hydroxyphenyl)ethanone: a versatile photochemical and synthetic reagent.
Senadheera, Sanjeewa N; Evans, Anthony S; Toscano, John P; Givens, Richard S
2014-02-01
α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rearrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii rearrangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a-c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 31 ns with a rate for appearance of 4a of k = 7.1 × 10(6) s(-1) in aq. acetonitrile (1 : 1 v : v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates.
Characterizing polymorphic inversions in human genomes by single-cell sequencing
Sanders, Ashley D.; Hills, Mark; Porubský, David; Guryev, Victor; Falconer, Ester; Lansdorp, Peter M.
2016-01-01
Identifying genomic features that differ between individuals and cells can help uncover the functional variants that drive phenotypes and disease susceptibilities. For this, single-cell studies are paramount, as it becomes increasingly clear that the contribution of rare but functional cellular subpopulations is important for disease prognosis, management, and progression. Until now, studying these associations has been challenged by our inability to map structural rearrangements accurately and comprehensively. To overcome this, we coupled single-cell sequencing of DNA template strands (Strand-seq) with custom analysis software to rapidly discover, map, and genotype genomic rearrangements at high resolution. This allowed us to explore the distribution and frequency of inversions in a heterogeneous cell population, identify several polymorphic domains in complex regions of the genome, and locate rare alleles in the reference assembly. We then mapped the entire genomic complement of inversions within two unrelated individuals to characterize their distinct inversion profiles and built a nonredundant global reference of structural rearrangements in the human genome. The work described here provides a powerful new framework to study structural variation and genomic heterogeneity in single-cell samples, whether from individuals for population studies or tissue types for biomarker discovery. PMID:27472961
Neural Correlates of Encoding Within- and Across-Domain Inter-Item Associations
Park, Heekyeong; Rugg, Michael D.
2012-01-01
The neural correlates of the encoding of associations between pairs of words, pairs of pictures, and word-picture pairs were compared. The aims were to determine first, whether the neural correlates of associative encoding vary according to study material and second, whether encoding of across- versus within-material item pairs is associated with dissociable patterns of hippocampal and perirhinal activity, as predicted by the ‘domain dichotomy’ hypothesis of medial temporal lobe (MTL) function. While undergoing fMRI scanning, subjects (n = 24) were presented with the three classes of study pairs, judging which of the denoted objects fit into the other. Outside of the scanner, subjects then undertook an associative recognition task, discriminating between intact study pairs, rearranged pairs comprising items that had been presented on different study trials, and unstudied item pairs. The neural correlates of successful associative encoding – subsequent associative memory effects – were operationalized as the difference in activity between study pairs correctly judged intact versus pairs incorrectly judged rearranged on the subsequent memory test. Pair type-independent subsequent memory effects were evident in the left inferior frontal gyrus (IFG) and the hippocampus. Picture-picture pairs elicited material-selective effects in regions of fusiform cortex that were also activated to a greater extent on picture trials than word trials, while word-word pairs elicited material-selective subsequent memory effects in left lateral temporal cortex. Contrary to the domain-dichotomy hypothesis, neither hippocampal nor perirhinal subsequent memory effects differed depending on whether they were elicited by within- versus across-material study pairs. It is proposed that the left IFG plays a domain-general role in associative encoding, that associative encoding can also be facilitated by enhanced processing in material-selective cortical regions, and that the hippocampus and perirhinal cortex contribute equally to the formation of inter-item associations regardless of whether the items belong to the same or to different processing domains. PMID:21254802
Biased immunoglobulin light chain gene usage in the shark1
Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen
2015-01-01
This study of a large family of kappa light (L) chain clusters in nurse shark completes the characterization of its classical immunoglobulin (Ig) gene content (two heavy chain classes, mu and omega, and four L chain isotopes, kappa, lambda, sigma, and sigma-2). The shark kappa clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over a ~500 bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ca. 39 kappa clusters are pre-rearranged in the germline (GL-joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, non-productive, and sterile transcripts of the kappa clusters compared to the other three L chain isotypes. Kappa cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and non-productive rearrangements. These results show that the individual activation of the spatially distant kappa clusters is non-random. Although both split and GL-joined kappa genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. PMID:26342033
Requirement for CDK6 in MLL-rearranged acute myeloid leukemia
Placke, Theresa; Faber, Katrin; Nonami, Atsushi; Putwain, Sarah L.; Salih, Helmut R.; Heidel, Florian H.; Krämer, Alwin; Root, David E.; Barbie, David A.; Krivtsov, Andrei V.; Armstrong, Scott A.; Hahn, William C.; Huntly, Brian J.; Sykes, Stephen M.; Milsom, Michael D.; Scholl, Claudia
2014-01-01
Chromosomal rearrangements involving the H3K4 methyltransferase mixed-lineage leukemia (MLL) trigger aberrant gene expression in hematopoietic progenitors and give rise to an aggressive subtype of acute myeloid leukemia (AML). Insights into MLL fusion-mediated leukemogenesis have not yet translated into better therapies because MLL is difficult to target directly, and the identity of the genes downstream of MLL whose altered transcription mediates leukemic transformation are poorly annotated. We used a functional genetic approach to uncover that AML cells driven by MLL-AF9 are exceptionally reliant on the cell-cycle regulator CDK6, but not its functional homolog CDK4, and that the preferential growth inhibition induced by CDK6 depletion is mediated through enhanced myeloid differentiation. CDK6 essentiality is also evident in AML cells harboring alternate MLL fusions and a mouse model of MLL-AF9–driven leukemia and can be ascribed to transcriptional activation of CDK6 by mutant MLL. Importantly, the context-dependent effects of lowering CDK6 expression are closely phenocopied by a small-molecule CDK6 inhibitor currently in clinical development. These data identify CDK6 as critical effector of MLL fusions in leukemogenesis that might be targeted to overcome the differentiation block associated with MLL-rearranged AML, and underscore that cell-cycle regulators may have distinct, noncanonical, and nonredundant functions in different contexts. PMID:24764564
Chen, H T; Alexander, C B; Mage, R G
1995-06-15
Normal rabbits preferentially rearrange the 3'-most VH gene, VH1, to encode Igs with VHa allotypes, which constitute the majority of rabbit serum Igs. A gene conversion-like mechanism is employed to diversify the primary Ab repertoire. In mutant Alicia rabbits that derived from a rabbit with VHa2 allotype, the VH1 gene was deleted. Our previous studies showed that the first functional gene (VH4) or VH4-like genes were rearranged in 2- to 8-wk-old homozygous Alicia. The VH1a2-like sequences that were found in splenic mRNA from 6-wk and older Alicia rabbits still had some residues that were typical of VH4. The appearances of sequences resembling that of VH1a2 may have been caused by gene conversions that altered the sequences of the rearranged VH or there may have been rearrangement of upstream VH1a2-like genes later in development. To investigate this further, we constructed a cosmid library and isolated a VH1a2-like gene, VH12-1-6, with a sequence almost identical to VH1a2. This gene had a deleted base in the heptamer of its recombination signal sequence. However, even if this defect diminished or eliminated its ability to rearrange, the a2-like gene could have acted as a donor for gene-conversion-like alteration of rearranged VH genes. Sequence comparisons suggested that this gene or a gene like it could have acted as a donor for gene conversion in mutant Alicia and in normal rabbits.
Biotransformation and Rearrangement of Laromustine.
Nassar, Alaa-Eldin F; Wisnewski, Adam V; King, Ivan
2016-08-01
This review highlights the recent research into the biotransformations and rearrangement of the sulfonylhydrazine-alkylating agent laromustine. Incubation of [(14)C]laromustine with rat, dog, monkey, and human liver microsomes produced eight radioactive components (C-1 to C-8). There was little difference in the metabolite profile among the species examined, partly because NADPH was not required for the formation of most components, which instead involved decomposition and/or hydrolysis. The exception was C-7, a hydroxylated metabolite, largely formed by CYP2B6 and CYP3A4/5. Liquid chromatography-multistage mass spectrometry (LC-MS(n)) studies determined that collision-induced dissociation, and not biotransformation or enzyme catalysis, produced the unique mass spectral rearrangement. Accurate mass measurements performed with a Fourier-transform ion cyclotron resonance mass spectrometer (FTICR-MS) significantly aided determination of the elemental compositions of the fragments and in the case of laromustine revealed the possibility of rearrangement. Further, collision-induced dissociation produced the loss of nitrogen (N2) and methylsulfonyl and methyl isocyanate moieties. The rearrangement, metabolite/decomposition products, and conjugation reactions were analyzed utilizing hydrogen-deuterium exchange, exact mass, (13)C-labeled laromustine, nuclear magnetic resonance spectroscopy (NMR), and LC-MS(n) experiments to assist with the assignments of these fragments and possible mechanistic rearrangement. Such techniques produced valuable insights into these functions: 1) Cytochrome P450 is involved in C-7 formation but plays little or no role in the conversion of [(14)C]laromustine to C-1 through C-6 and C-8; 2) the relative abundance of individual degradation/metabolite products was not species-dependent; and 3) laromustine produces several reactive intermediates that may produce the toxicities seen in the clinical trials. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
RNA-Mediated Epigenetic Programming of Genome Rearrangements
Nowacki, Mariusz; Shetty, Keerthi; Landweber, Laura F.
2012-01-01
RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha’s somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells. PMID:21801022
Detection of isotype switch rearrangement in bulk culture by PCR.
Max, E E; Mills, F C; Chu, C
2001-05-01
When a B lymphocyte changes from synthesizing IgM to synthesizing IgG, IgA, or IgE, this isotype switch is generally accompanied by a unique DNA rearrangement. The protocols in this unit describe two polymerase chain reaction (PCR)-based strategies for detecting switch rearrangements in bulk culture. The first involves direct PCR across the switch junctions, providing the opportunity for characterizing the recombination products by nucleotide sequence analysis; however, because of characteristics inherent to the PCR methodology this strategy cannot easily be used as a quantitative assay for recombination. A support protocol details the preparation of the 5' Su PCR probe for this protocol. The second basic protocol describes a method known as digestion-circularization PCR (DCPCR) that is more amenable to quantitation but yields no information on structure of the recombination products. Both techniques should be capable of detecting reciprocal deletion circles as well as functional recombination products remaining on the expressed chromosome.
Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex
Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C.; Conaway, Joan W.; Asturias, Francisco J.
2014-01-01
SUMMARY The multisubunit Mediator comprising ~30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. PMID:24882805
Cytological and molecular characterization of three gametoclones of citrus clementina
USDA-ARS?s Scientific Manuscript database
Three gametoclonal plants of Citrus clementina Hort. ex Tan., cv. Nules, designated ESP, FRA, and ITA (derived from three labs in Spain, France, and Italy, respectively), were selected for cytological and molecular characterization in order to elucidate genomic rearrangements provoked by haploidizat...
IJspeert, Hanna; van Schouwenburg, Pauline A.; van Zessen, David; Pico-Knijnenburg, Ingrid
2017-01-01
Antigen Receptor Galaxy (ARGalaxy) is a Web-based tool for analyses and visualization of TCR and BCR sequencing data of 13 species. ARGalaxy consists of four parts: the demultiplex tool, the international ImMunoGeneTics information system (IMGT) concatenate tool, the immune repertoire pipeline, and the somatic hypermutation (SHM) and class switch recombination (CSR) pipeline. Together they allow the analysis of all different aspects of the immune repertoire. All pipelines can be run independently or combined, depending on the available data and the question of interest. The demultiplex tool allows data trimming and demultiplexing, whereas with the concatenate tool multiple IMGT/HighV-QUEST output files can be merged into a single file. The immune repertoire pipeline is an extended version of our previously published ImmunoGlobulin Galaxy (IGGalaxy) virtual machine that was developed to visualize V(D)J gene usage. It allows analysis of both BCR and TCR rearrangements, visualizes CDR3 characteristics (length and amino acid usage) and junction characteristics, and calculates the diversity of the immune repertoire. Finally, ARGalaxy includes the newly developed SHM and CSR pipeline to analyze SHM and/or CSR in BCR rearrangements. It analyzes the frequency and patterns of SHM, Ag selection (including BASELINe), clonality (Change-O), and CSR. The functionality of the ARGalaxy tool is illustrated in several clinical examples of patients with primary immunodeficiencies. In conclusion, ARGalaxy is a novel tool for the analysis of the complete immune repertoire, which is applicable to many patient groups with disturbances in the immune repertoire such as autoimmune diseases, allergy, and leukemia, but it can also be used to address basic research questions in repertoire formation and selection. PMID:28416602
Kumar, Rashmi; Bach, Martina P; Mainoldi, Federica; Maruya, Mikako; Kishigami, Satoshi; Jumaa, Hassan; Wakayama, Teruhiko; Kanagawa, Osami; Fagarasan, Sidonia; Casola, Stefano
2015-02-03
In mammals, VDJ recombination is responsible for the establishment of a highly diversified preimmune antibody repertoire. Acquisition of a functional Ig heavy (H) chain variable (V) gene rearrangement is thought to prevent further recombination at the IgH locus. Here, we describe VHQ52(NT); Vκgr32(NT) Ig monoclonal mice reprogrammed from the nucleus of an intestinal IgA(+) plasma cell. In VHQ52(NT) mice, IgA replaced IgM to drive early B-cell development and peripheral B-cell maturation. In VHQ52(NT) animals, over 20% of mature B cells disrupted the single productive, nonautoimmune IgH rearrangement through VH replacement and exchanged it with a highly diversified pool of IgH specificities. VH replacement occurred in early pro-B cells, was independent of pre-B-cell receptor signaling, and involved predominantly one adjacent VH germ-line gene. VH replacement was also identified in 5% of peripheral B cells of mice inheriting a different productive VH rearrangement expressed in the form of an IgM H chain. In summary, editing of a productive IgH rearrangement through VH replacement can account for up to 20% of the IgH repertoire expressed by mature B cells.
Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing
Yang, Lixing; Lee, Mi-Sook; Lu, Hengyu; Oh, Doo-Yi; Kim, Yeon Jeong; Park, Donghyun; Park, Gahee; Ren, Xiaojia; Bristow, Christopher A.; Haseley, Psalm S.; Lee, Soohyun; Pantazi, Angeliki; Kucherlapati, Raju; Park, Woong-Yang; Scott, Kenneth L.; Choi, Yoon-La; Park, Peter J.
2016-01-01
Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions. We find that the 5′ fusion partners of functional fusions are often housekeeping genes, whereas the 3′ fusion partners are enriched in tyrosine kinases. We establish the oncogenic potential of ROR1-DNAJC6 and CEP85L-ROS1 fusions by showing that they can promote cell proliferation in vitro and tumor formation in vivo. Furthermore, we found that ∼4% of the samples have massively rearranged chromosomes, many of which are associated with upregulation of oncogenes such as ERBB2 and TERT. Although the sensitivity of detecting structural alterations from exomes is considerably lower than that from whole genomes, this approach will be fruitful for the multitude of exomes that have been and will be generated, both in cancer and in other diseases. PMID:27153396
2014-01-01
Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient’s developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient. PMID:25478007
Shear-induced reversibility of 2D colloidal suspensions in the presence of minimal thermal noise.
Farhadi, Somayeh; Arratia, Paulo E
2017-06-14
The effects of minimal thermal noise on particle rearrangements in cyclically sheared colloidal suspensions are experimentally investigated using particle tracking methods. Our experimental model system consists of polystyrene microspheres adsorbed at an oil-water interface, in which the particles exhibit small but non-negligible Brownian motion. Experiments are performed on bidisperse (1.0 and 1.2 μm in diameter) systems, which form area fractions of 0.20 and 0.32 at the interface. We first characterize the thermal (Brownian) noise using particle diffusivities at quiescent states, and show that under our experimental flow conditions both systems (0.20 and 0.32 area fraction) behave as athermal, in the sense that the particle diffusion time scale is larger than the flow time scale. We then characterize particle rearrangements as a function of strain amplitude, and show that small but finite levels of thermal noise affect the reversibility dynamics, even in effectively athermal systems. Our data indicate that as thermal noise is slightly increased in a cyclically sheared athermal system, the fraction of reversible rearrangements is reduced, the reversible cycles become unstable, and the rearrangement hysteresis is significantly hindered.
Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma.
Davis, R J; Bennicelli, J L; Macina, R A; Nycum, L M; Biegel, J A; Barr, F G
1995-12-01
The FKHR gene, which contains a forkhead DNA-binding motif, is fused to either PAX3 or PAX7 by the t(2;13) or t(1;13) translocation in alveolar rhabdomyosarcoma,respectively. These tumors express chimeric transcripts encoding the N-terminal portion of either PAX protein fused to the C-terminal portion of FKHR. To understand the structural basis and functional consequences of these translocations, we characterized the wild-type FKHR gene and its rearrangement in alveolar rhabdomyosarcomas. By isolating and analyzing phage, cosmid and YAC clones, we determined that FKHR consists of three exons spanning 140 kb and that several highly similar loci are present in other genomic regions. Exon 1 encodes the N-terminus of the forkhead domain and is embedded within demethylated CpG island. RNA analyses reveal FKHR transcripts initiate from a TATA-less promoter within this island. Exon 2 encodes the C-terminus of the forkhead domain and a transcription activation domain, whereas exon 3 encodes a large 3' untranslated region. The intron 1-exon 2 boundary precisely matches the FHKR fusion point in the chimeric transcripts found in alveolar rhabdomyosarcomas. Using pulsed-field and fluorescence in situ hybridization analyses, we demonstrate that the 130kb FKHR intron 1 is rearranged in t(2;13)-containing alveolar rhabdomyosarcomas. Our findings indicate that FKHR intron 1 provides a large target for DNA rearrangemnt. Rearrangement of this intron with PAX3 produces two important functional consequences: in-frame fusion of N-terminal PAX3 sequences to the FKHR transcriptional activation domain and disruption of the FKHR DNA binding domain.
Van Stipdonk, Michael J; Kerstetter, Dale R; Leavitt, Christopher M; Groenewold, Gary S; Steill, Jeffrey; Oomens, Jos
2008-06-14
Wavelength-selective infrared multiple-photon photodissociation (WS-IRMPD) was used to study isotopically-labeled ions generated by McLafferty rearrangement of nicotinyl-glycine-tert-butyl ester and betaine-glycine-tert-butyl ester. The tert-butyl esters were incubated in a mixture of D(2)O and CH(3)OD to induce solution-phase hydrogen-deuterium exchange and then converted to gas-phase ions using electrospray ionization. McLafferty rearrangement was used to generate the free-acid forms of the respective model peptides through transfer of an H atom and elimination of butene. The specific aim was to use vibrational spectra generated by WS-IRMPD to determine whether the H atom remains at the acid group, or migrates to one or more of the other exchangeable sites. Comparison of the IRMPD results in the region from 1200-1900 cm(-1) to theoretical spectra for different isotopically-labeled isomers clearly shows that the H atom is situated at the C-terminal acid group and migration to amide positions is negligible on the time scale of the experiment. The results of this study suggest that use of the McLafferty rearrangement for peptide esters could be an effective approach for generation of H-atom isotope tracers, in situ, for subsequent investigation of intramolecular proton migration during peptide fragmentation studies.
Scaldaferro, Marisel A; Grabiele, Mauro; Seijo, J Guillermo; Debat, Humberto; Romero, M Victoria; Ducasse, Daniel A; Prina, Alberto R; Moscone, Eduardo A
2014-01-01
To locate transient chromosome aberrations on a selected pepper cultivar and determine the tracing efficiency of different cytogenetic methods. Seeds from Capsicum baccatum var. pendulum cultivar 'Cayenne' were treated with an acute dose of X-rays (300 Gy) and chromosome aberrations were analysed by different cytogenetic methods [Feulgen, silver staining for nucleolus organizer regions (silver positive nucleolus organizing regions or AgNOR), fluorescent banding, fluorescence in situ hybridization (FISH) and meiotic analysis]. A rearranged chromosome carrying two nucleolus organizing regions (NOR) induced by ionizing radiation was detected in the cultivar, with the occurrence of a small reciprocal exchange between a chromosome of pair no. 1 and another chromosome of pair no. 3, both carrying active NOR in short arms and associated chromomycin A positive/diamidino-phenylindole negative (CMA+/DAPI-) heterochromatin. Meiotic analysis showed a quadrivalent configuration, confirming a reciprocal translocation between two chromosomes. The use of X-rays in Capsicum allowed us to develop and identify a pepper line with structural rearrangements between two NOR-carrying chromosomes. We postulate that all the cytological techniques employed in this research were efficient in the search for chromosome aberrations. Particularly, Feulgen and AgNOR were the most suitable in those cases of transient rearrangements, whereas fluorescent banding and FISH were appropriate for intransitive ones.
NMR analysis of seven selections of vermentino grape berry: metabolites composition and development.
Mulas, Gilberto; Galaffu, Maria Grazia; Pretti, Luca; Nieddu, Gianni; Mercenaro, Luca; Tonelli, Roberto; Anedda, Roberto
2011-02-09
The goal of this work was to study via NMR the unaltered metabolic profile of Sardinian Vermentino grape berry. Seven selections of Vermentino were harvested from the same vineyard. Berries were stored and extracted following an unbiased extraction protocol. Extracts were analyzed to investigate variability in metabolites concentration as a function of the clone, the position of berries in the bunch or growing area within the vineyard. Quantitative NMR and statistical analysis (PCA, correlation analysis, Anova) of the experimental data point out that, among the investigated sources of variation, the position of the berries within the bunch mainly influences the metabolic profile of berries, while the metabolic profile does not seem to be significantly influenced by growing area and clone. Significant variability of the amino acids such as arginine, proline, and organic acids (malic and citric) characterizes the rapid rearrangements of the metabolic profile in response to environmental stimuli. Finally, an application is described on the analysis of metabolite variation throughout the physiological development of berries.
Kodama, Tatsushi; Motoi, Noriko; Ninomiya, Hironori; Sakamoto, Hiroshi; Kitada, Kunio; Tsukaguchi, Toshiyuki; Satoh, Yasuko; Nomura, Kimie; Nagano, Hiroko; Ishii, Nobuya; Terui, Yasuhito; Hatake, Kiyohiko; Ishikawa, Yuichi
2014-11-01
EML4-ALK is a driver oncogene in non-small-cell lung cancer (NSCLC) and has been developed into a promising molecular target for antitumor agents. Although EML4-ALK is reported to be formed by inversion of chromosome 2, other mechanisms of this gene fusion remain unknown. This study aimed to examine the mechanism of EML4-ALK rearrangement using a novel cell line with the EML4-ALK fusion gene. An EML4-ALK-positive cell line, termed JFCR-LC649, was established from pleomorphic carcinoma, a rare subtype of NSCLC. We investigated the chromosomal aberrations using fluorescence in situ hybridization and comparative genomic hybridization (CGH). Alectinib/CH5424802, a selective ALK inhibitor, was evaluated in the antitumor activity against JFCR-LC649 in vitro and in vivo xenograft model. We established an EML4-ALK-positive cell line, termed JFCR-LC649, derived from a patient with NSCLC and revealed that the JFCR-LC649 cells harbor variant 3 of the EML4-ALK fusion with twofold copy number gain. Interestingly, comparative genomic hybridization and metaphase-fluorescence in situ hybridization analysis showed that in addition to two normal chromosome 2, JFCR-LC649 cells contained two aberrant chromosome 2 that were fragmented and scattered. These observations provided the first evidence that EML4-ALK fusion in JFCR-LC649 cells was formed in chromosome 2 by a distinct mechanism of genomic rearrangement, termed chromothripsis. Furthermore, a selective ALK inhibitor alectinib/CH5424802 suppressed tumor growth of the JFCR-LC649 cells through inhibition of phospho-ALK in vitro and in vivo in a xenograft model. Our results suggested that chromothripsis may be a mechanism of oncogenic rearrangement of EML4-ALK. In addition, alectinib was effective against EML4-ALK-positive tumors with ALK copy number gain mediated by chromothripsis.
The cytoskeletal scaffold Shank3 is recruited to pathogen-induced actin rearrangements
Huett, Alan; Leong, John M; Podolsky, Daniel K.; Xavier, Ramnik J.
2009-01-01
Summary The common gastrointestinal pathogens enteropathogenic Escherichia coli (EPEC) and Salmonella Typhimurium both reorganize the gut epithelial cell actin cytoskeleton to mediate pathogenesis, utilizing mimicry of the host signaling apparatus. The PDZ domain-containing protein Shank3, is a large cytoskeletal scaffold protein with known functions in neuronal morphology and synaptic signaling, and is also capable of acting as a scaffolding adaptor during Ret tyrosine kinase signaling in epithelial cells. Using immunofluorescent and functional RNA-interference approaches we show that Shank3 is present in both EPEC- and S. Typhimurium-induced actin rearrangements and is required for optimal EPEC pedestal formation. We propose that Shank3 is one of a number of host synaptic proteins likely to play key roles in bacteria-host interactions. PMID:19371741
van Karnebeek, C D M; Koevoets, C; Sluijter, S; Bijlsma, E; Smeets, D; Redeker, E; Hennekam, R; Hoovers, J
2002-01-01
Objective: The frequency of subtelomeric rearrangements in patients with unexplained mental retardation (MR) is uncertain, as most studies have been retrospective and case retrieval may have been biased towards cases more likely to have a chromosome anomaly. To ascertain the frequency of cytogenetic anomalies, including subtelomeric rearrangements, we prospectively screened a consecutive cohort of cases with unexplained MR in an academic tertiary centre. Methods: Inclusion criteria were: age <18 years at referral, IQ<85, no aetiological diagnosis after complete examination, which included karyotyping with high resolution banding (HRB). Results: In 266 karyotyped children, anomalies were detected in 20 (7.5%, seven numerical, 13 structural); 39 cases were analysed by FISH for specific interstitial microdeletions, and anomalies were found in nine (23%). FISH analyses for subtelomeric microdeletions were performed in 184 children (44% moderate-profound MR, 51% familial MR), and one rearrangement (0.5%) was identified in a non-familial MR female with mild MR (de novo deletion 12q24.33-qter). The number of probable polymorphisms was considerable: 2qter (n=7), Xpter (n=3), and Ypter (n=1). A significantly higher total number of malformations and minor anomalies was present in the cytogenetic anomaly group compared to the group without cytogenetic anomalies. Conclusions: The total frequency of cytogenetic anomalies in this prospective study was high (1:10), but the frequency of subtelomeric rearrangements was low. The most likely explanations are the high quality of HRB cytogenetic studies and the lack of clinical selection bias. Conventional cytogenetic analyses, combined with targeted microdeletion testing, remain the single most effective way of additional investigation in mentally retarded children, also in a tertiary centre. PMID:12161591
Analyzing the Fierz rearrangement freedom for local chiral two-nucleon potentials
NASA Astrophysics Data System (ADS)
Huth, L.; Tews, I.; Lynn, J. E.; Schwenk, A.
2017-11-01
Chiral effective field theory is a framework to derive systematic nuclear interactions. It is based on the symmetries of quantum chromodynamics and includes long-range pion physics explicitly, while shorter-range physics is expanded in a general operator basis. The number of low-energy couplings at a particular order in the expansion can be reduced by exploiting the fact that nucleons are fermions and therefore obey the Pauli exclusion principle. The antisymmetry permits the selection of a subset of the allowed contact operators at a given order. When local regulators are used for these short-range interactions, however, this "Fierz rearrangement freedom" is violated. In this paper, we investigate the impact of this violation at leading order (LO) in the chiral expansion. We construct LO and next-to-leading order (NLO) potentials for all possible LO-operator pairs and study their reproduction of phase shifts, the 4He ground-state energy, and the neutron-matter energy at different densities. We demonstrate that the Fierz rearrangement freedom is partially restored at NLO where subleading contact interactions enter. We also discuss implications for local chiral three-nucleon interactions.
Human Y chromosome copy number variation in the next generation sequencing era and beyond.
Massaia, Andrea; Xue, Yali
2017-05-01
The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.
Leitwein, Maeva; Guinand, Bruno; Pouzadoux, Juliette; Desmarais, Erick; Berrebi, Patrick; Gagnaire, Pierre-Alexandre
2017-01-01
High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta), a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π) was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout. PMID:28235829
The Manifestation of Chromosome Rearrangements in Unordered Asci of Neurospora
Perkins, David D.
1974-01-01
Rapid, effective techniques have been developed for detecting and characterizing chromosome aberrations in Neurospora by visual inspection of ascospores and asci. Rearrangements that are detectable by the presence of deficient, nonblack ascospores in test crosses make up 5 to 10% of survivors after UV doses giving 10-55% survival. Over 135 rearrangements have been diagnosed by classifying unordered asci according to numbers of defective spores. (These include 15 originally identified or analyzed by other workers.) About 100 reciprocal translocations (RT's) have been confirmed and mapped genetically, involving all combinations of the seven chromosomes. Thirty-three other rearrangements generate viable nontandem duplications in meiosis. These consist of insertional translocations (IT's) (15 confirmed), and of rearrangements that involve a chromosome tip (10 translocations and 3 pericentric inversions). No inversion has been found that does not include the centromere. A reciprocal translocation was found within one population in nature. When pairs of RT's that involve the same two chromosome arms were intercrossed, viable duplications were produced if the breakpoints overlapped in such a way that pairing resembled that of insertional translocations (27 combinations).—The rapid analytical technique depends on the following. Deficiency ascospores are usually nonblack (W: "white") and inviable, while nondeficient ascospores, even those that include duplications, are black (B) and viable. Thus RT's typically produce 50% black spores, and IT's 75% black. Asci are shot spontaneously from ripe perithecia, and can be collected in large numbers as groups of eight ascospores representing unordered tetrads, which fall into five classes: 8B:0W; 6B:2W, 4B:4W, 2B:6B, 0B:8W. In isosequential crosses, 90-95% of tetrads are 8:0. When a rearrangement is heterozygous, the frequencies of tetrad classes are diagnostic of the type of rearrangement, and provide information also on the positions of break points. With RT's, 8:0 (alternate centromere segregation) = 0:8 (adjacent-1), 4:4's require interstitial crossing over in a centromere-break point interval, and no 6:2's or 2:6's are expected. With IT's, duplications are viable, 8:0 = 4:4, 6:2's are from interstitial crossing over, 0:8's or 2:6's are rare. Tetrads from RT's that involve a chromosome tip resemble those from IT's, as do tetrads from intercrosses between partially overlapping RT's that involve identical chromosome arms.—Because viable duplications and other aneuploid derivatives regularly occur among the offspring of rearrangements such as insertional translocations, care must be taken in selecting stocks, and original strains should be kept for reference. PMID:4416353
Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun
2014-11-25
The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position among isolates but also functionally essential for a given species and to further evaluate the stability or flexibility of such genome structures across lineages are of importance. Based on a large number of multi-isolate pangenomic data, our analysis reveals that a subset of core genes is organized into a core-gene-defined genome organizational framework, or cGOF. Furthermore, the lineage-associated cGOFs among Gram-positive and Gram-negative bacteria behave differently: the former, composed of 2 to 4 segments, have their fragments symmetrically rearranged around the origin-terminus axis, whereas the latter show more complex segmentation and are partitioned asymmetrically into chromosomal structures. The definition of cGOFs provides new insights into prokaryotic genome organization and efficient guidance for genome assembly and analysis. Copyright © 2014 Kang et al.
Vidali, Veroniki P; Mitsopoulou, Kornilia P; Dakanali, Marianna; Demadis, Konstantinos D; Odysseos, Andreani D; Christou, Yiota A; Couladouros, Elias A
2013-11-01
A novel skeletal rearrangement of bicyclo[3.3.1]nonane-2,4,9-trione (16) to an unprecedented highly functionalized bicyclo[3.3.0]octane system (17), induced by an intramolecular Michael addition, is presented. This novel framework was found to be similarly active to hyperforin (1), against PC-3 cell lines. A mechanistic study was examined in detail, proposing a number of cascade transformations. Also, reactivity of the Δ(7,10)-double bond was examined under several conditions to explain the above results.
Duret, Laurent; Cohen, Jean; Jubin, Claire; Dessen, Philippe; Goût, Jean-François; Mousset, Sylvain; Aury, Jean-Marc; Jaillon, Olivier; Noël, Benjamin; Arnaiz, Olivier; Bétermier, Mireille; Wincker, Patrick; Meyer, Eric; Sperling, Linda
2008-01-01
Ciliates are the only unicellular eukaryotes known to separate germinal and somatic functions. Diploid but silent micronuclei transmit the genetic information to the next sexual generation. Polyploid macronuclei express the genetic information from a streamlined version of the genome but are replaced at each sexual generation. The macronuclear genome of Paramecium tetraurelia was recently sequenced by a shotgun approach, providing access to the gene repertoire. The 72-Mb assembly represents a consensus sequence for the somatic DNA, which is produced after sexual events by reproducible rearrangements of the zygotic genome involving elimination of repeated sequences, precise excision of unique-copy internal eliminated sequences (IES), and amplification of the cellular genes to high copy number. We report use of the shotgun sequencing data (>106 reads representing 13× coverage of a completely homozygous clone) to evaluate variability in the somatic DNA produced by these developmental genome rearrangements. Although DNA amplification appears uniform, both of the DNA elimination processes produce sequence heterogeneity. The variability that arises from IES excision allowed identification of hundreds of putative new IESs, compared to 42 that were previously known, and revealed cases of erroneous excision of segments of coding sequences. We demonstrate that IESs in coding regions are under selective pressure to introduce premature termination of translation in case of excision failure. PMID:18256234
Miranda, Pablo; Giraldez, Teresa; Holmgren, Miguel
2016-12-06
Large-conductance voltage- and calcium-activated K + (BK) channels are key physiological players in muscle, nerve, and endocrine function by integrating intracellular Ca 2+ and membrane voltage signals. The open probability of BK channels is regulated by the intracellular concentration of divalent cations sensed by a large structure in the BK channel called the "gating ring," which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. In contrast to Ca 2+ that binds to both RCK domains, Mg 2+ , Cd 2+ , or Ba 2+ interact preferentially with either one or the other. Interaction of cations with their binding sites causes molecular rearrangements of the gating ring, but how these motions occur remains elusive. We have assessed the separate contributions of each RCK domain to the cation-induced gating-ring structural rearrangements, using patch-clamp fluorometry. Here we show that Mg 2+ and Ba 2+ selectively induce structural movement of the RCK2 domain, whereas Cd 2+ causes motions of RCK1, in all cases substantially smaller than those elicited by Ca 2+ By combining divalent species interacting with unique sites, we demonstrate that RCK1 and RCK2 domains move independently when their specific binding sites are occupied. Moreover, binding of chemically distinct cations to both RCK domains is additive, emulating the effect of fully occupied Ca 2+ binding sites.
NASA Astrophysics Data System (ADS)
Helton, A. M.; Poole, G. C.; Payn, R. A.; Izurieta, C.; Wright, M.; Bernhardt, E. S.; Stanford, J. A.
2014-12-01
The unsteadiness of stream water age is now well established, but the controls on the age dynamics, and the adequate representation and prediction of those dynamics, are not. A basic distinction can be made between internal variability that arises from changes in the proportions of flow moving through the diverse flow pathways of a hydrologic system, and external variability that arises from the stochasticity of inputs and outputs (such as precipitation and streamflow). In this talk I will show how these two types of age variability can be formally defined and distinguished within the framework of rank StorAge Selection (rSAS) functions. Internal variability implies variations in time in the rSAS function, while external variability does not. This leads naturally to the definition of several modes of internal variability, reflecting generic ways that system flowpaths may be rearranged. This rearrangement may be induced by fluctuations in the system state (such as catchment wetness), or by longer-term changes in catchment structure (such as land use change). One type of change, the 'inverse storage effect' is characterized by an increase in the release of young water from the system in response to an increase in overall system storage. This effect can be seen in many hydrologic settings, and has important implications for the effect of altered hydroclimatic conditions on solute transport through a landscape. External variability, such as increased precipitation, can induce a decrease in mean transit time (and vice versa), but this effect is greatly enhanced if accompanied by an internal shift in flow pathways that increases the relative importance of younger water. These effects will be illustrated using data from field and experimental studies.
NASA Astrophysics Data System (ADS)
Harman, C. J.
2015-12-01
The unsteadiness of stream water age is now well established, but the controls on the age dynamics, and the adequate representation and prediction of those dynamics, are not. A basic distinction can be made between internal variability that arises from changes in the proportions of flow moving through the diverse flow pathways of a hydrologic system, and external variability that arises from the stochasticity of inputs and outputs (such as precipitation and streamflow). In this talk I will show how these two types of age variability can be formally defined and distinguished within the framework of rank StorAge Selection (rSAS) functions. Internal variability implies variations in time in the rSAS function, while external variability does not. This leads naturally to the definition of several modes of internal variability, reflecting generic ways that system flowpaths may be rearranged. This rearrangement may be induced by fluctuations in the system state (such as catchment wetness), or by longer-term changes in catchment structure (such as land use change). One type of change, the 'inverse storage effect' is characterized by an increase in the release of young water from the system in response to an increase in overall system storage. This effect can be seen in many hydrologic settings, and has important implications for the effect of altered hydroclimatic conditions on solute transport through a landscape. External variability, such as increased precipitation, can induce a decrease in mean transit time (and vice versa), but this effect is greatly enhanced if accompanied by an internal shift in flow pathways that increases the relative importance of younger water. These effects will be illustrated using data from field and experimental studies.
Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches
Toyoshima, Koh-ei; Asakawa, Kyosuke; Ishibashi, Naoko; Toki, Hiroshi; Ogawa, Miho; Hasegawa, Tomoko; Irié, Tarou; Tachikawa, Tetsuhiko; Sato, Akio; Takeda, Akira; Tsuji, Takashi
2012-01-01
Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibrissa stem cell region-derived cells, respectively. The bioengineered hair follicle develops the correct structures and forms proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibres. The bioengineered follicles also show restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy. PMID:22510689
Diagnostics of SHOX gene rearrangement in 46,XX women with idiopathic short stature.
Mitka, Magdalena; Bednarek, Michał; Kałużewski, Bogdan
2016-01-01
The SHOX gene has been mapped at the pseudoautosomal region 1 (PAR1) of chromosomes X (Xp22.33) and Y (Yp11.32). The loss of SHOX gene functionality is assumed to be responsible for the Leri-Weill syndrome formation and the disproportionate short stature (DSS). The SHOX gene rearrangements constitute the majority of cases of gene functionality loss. Therefore, a practical application of the method, which allows for the diagnostics of the gene rearrangements, becomes a primary issue. With such an assumption, the MLPA technique (multiplex ligation - dependent probe amplification) becomes the method of choice. DNA samples were evaluated in the study by means of the MLPA method. The DNA was isolated from peripheral blood of sixty-three (63) 46,XX patients with short stature. Out of the examined patients, deletions within the SHOX gene were found in five (5) patients, and duplication at the PAR1 regulatory region of the SHOX gene in one (1) case. The obtained results confirm the opinion that the MLPA method, while enabling the diagnostics of the etiopathogenetic factor of short stature, identified in approximately 9.5% of cases, is a useful tool in the diagnostics of SHOX gene deletion and duplication. (Endokrynol Pol 2016; 67 (4): 397-402).
Perkhofer, Lukas; Schmitt, Anna; Romero Carrasco, Maria Carolina; Ihle, Michaela; Hampp, Stephanie; Ruess, Dietrich Alexander; Hessmann, Elisabeth; Russell, Ronan; Lechel, André; Azoitei, Ninel; Lin, Qiong; Liebau, Stefan; Hohwieler, Meike; Bohnenberger, Hanibal; Lesina, Marina; Algül, Hana; Gieldon, Laura; Schröck, Evelin; Gaedcke, Jochen; Wagner, Martin; Wiesmüller, Lisa; Sipos, Bence; Seufferlein, Thomas; Reinhardt, Hans Christian; Frappart, Pierre-Olivier; Kleger, Alexander
2017-10-15
Pancreatic ductal adenocarcinomas (PDAC) harbor recurrent functional mutations of the master DNA damage response kinase ATM, which has been shown to accelerate tumorigenesis and epithelial-mesenchymal transition. To study how ATM deficiency affects genome integrity in this setting, we evaluated the molecular and functional effects of conditional Atm deletion in a mouse model of PDAC. ATM deficiency was associated with increased mitotic defects, recurrent genomic rearrangements, and deregulated DNA integrity checkpoints, reminiscent of human PDAC. We hypothesized that altered genome integrity might allow synthetic lethality-based options for targeted therapeutic intervention. Supporting this possibility, we found that the PARP inhibitor olaparib or ATR inhibitors reduced the viability of PDAC cells in vitro and in vivo associated with a genotype-selective increase in apoptosis. Overall, our results offered a preclinical mechanistic rationale for the use of PARP and ATR inhibitors to improve treatment of ATM-mutant PDAC. Cancer Res; 77(20); 5576-90. ©2017 AACR . ©2017 American Association for Cancer Research.
Consugar, Mark B.; Wong, Wai C.; Lundquist, Patrick A.; Rossetti, Sandro; Kubly, Vickie J.; Walker, Denise L.; Rangel, Laureano J.; Aspinwall, Richard; Niaudet, W. Patrick; Özen, Seza; David, Albert; Velinov, Milen; Bergstralh, Eric J.; Bae, Kyongtae T.; Chapman, Arlene B.; Guay-Woodford, Lisa M.; Grantham, Jared J.; Torres, Vicente E.; Sampson, Julian R.; Dawson, Brian D.; Harris, Peter C.
2009-01-01
Large DNA rearrangements account for about 8% of disease mutations and are more common in duplicated genomic regions, where they are difficult to detect. Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2. PKD1 is located in an intrachromosomally duplicated region. A tuberous sclerosis gene, TSC2, lies immediately adjacent to PKD1 and large deletions can result in the PKD1/TSC2 contiguous gene deletion syndrome. To rapidly identify large rearrangements, a multiplex ligation-dependent probe amplification assay was developed employing base-pair differences between PKD1 and the six pseudogenes to generate PKD1-specific probes. All changes in a set of 25 previously defined deletions in PKD1, PKD2 and PKD1/TSC2 were detected by this assay and we also found 14 new mutations at these loci. About 4% of the ADPKD patients in the CRISP study were found to have gross rearrangements, and these accounted for about a third of base-pair mutation negative families. Sensitivity of the assay showed that about 40% of PKD1/TSC contiguous gene deletion syndrome families contained mosaic cases. Characterization of a family found to be mosaic for a PKD1 deletion is discussed here to illustrate family risk and donor selection considerations. Our assay improves detection levels and the reliability of molecular testing of patients with ADPKD. PMID:18818683
Treating ALK-positive non-small cell lung cancer
Tsiara, Anna; Tsironis, Georgios; Lykka, Maria; Liontos, Michalis; Bamias, Aristotelis; Dimopoulos, Meletios-Athanasios
2018-01-01
Targeting genomic alterations, such as epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) gene rearrangements, have radically changed the treatment of patients with non-small cell lung cancer (NSCLC). In the case of ALK-rearranged gene, subsequent rapid development of effective genotype-directed therapies with ALK tyrosine kinase inhibitors (TKIs) triggered major advances in the personalized molecularly based approach of NSCLC. Crizotinib was the first-in-class ALK TKI with proven superiority over standard platinum-based chemotherapy for the 1st-line therapy of ALK-rearranged NSCLC patients. However, the acquired resistance to crizotinib and its diminished efficacy to the central nervous system (CNS) relapse led to the development of several novel ALK inhibitors, more potent and with different selectivity compared to crizotinib. To date, four ALK TKIs, crizotinib, ceritinib, alectinib and brigatinib have received approval from the Food and Drug Administration (FDA) and/or the European Medicines Agency (EMA) and even more agents are currently under investigation for the treatment of ALK-rearranged NSCLC. However, the optimal frontline approach and the exact sequence of ALK inhibitors are still under consideration. Recently announced results of phase III trials recognized higher efficacy of alectinib compared to crizotinib in first-line setting, even in patients with CNS involvement. In this review, we will discuss the current knowledge regarding the biology of the ALK-positive NSCLC, the available therapeutic inhibitors and we will focus on the raised issues from their use in clinical practise. PMID:29862230
NASA Astrophysics Data System (ADS)
Zhang, Zhikun; Sheng, Zhe; Yu, Weizhi; Wu, Guojiao; Zhang, Rui; Chu, Wen-Dao; Zhang, Yan; Wang, Jianbo
2017-10-01
The trifluoromethylthio (SCF3) functional group has been of increasing importance in drug design and development as a consequence of its unique electronic properties and high stability coupled with its high lipophilicity. As a result, methods to introduce this highly electronegative functional group have attracted considerable attention in recent years. Although significant progress has been made in the introduction of SCF3 functionality into a variety of molecules, there remain significant challenges regarding the enantioselective synthesis of SCF3-containing compounds. Here, an asymmetric trifluoromethylthiolation that proceeds through the enantioselective [2,3]-sigmatropic rearrangement of a sulfonium ylide generated from a metal carbene and sulfide (Doyle-Kirmse reaction) has been developed using chiral Rh(II) and Cu(I) catalysts. This transformation features mild reaction conditions and excellent enantioselectivities (up to 98% yield and 98% e.e.), thus providing a unique, highly efficient and enantioselective method for the construction of C(sp3)-SCF3 bonds bearing chiral centres.
Rearrangements of Allylic Sulfinates to Sulfones: A Mechanistic Study
ERIC Educational Resources Information Center
Ball, David B.; Mollard, Paul; Voigtritter, Karl R.; Ball, Jenelle L.
2010-01-01
Most current organic chemistry textbooks are organized by functional groups and those of us who teach organic chemistry use functional-group organization in our courses but ask students to learn organic chemistry from a mechanistic approach. To enrich and extend the chemical understanding and knowledge of pericyclic-type reactions for chemistry…
A three-sided rearrangeable switching network for a binary fat tree
NASA Astrophysics Data System (ADS)
Yen, Mao-Hsu; Yu, Chu; Shin, Haw-Yun; Chen, Sao-Jie
2011-06-01
A binary fat tree needs an internal node to interconnect the left-children, right-children and parent terminals to each other. In this article, we first propose a three-stage, 3-sided rearrangeable switching network for the implementation of a binary fat tree. The main component of this 3-sided switching network (3SSN) consists of a polygonal switch block (PSB) interconnected by crossbars. With the same size and the same number of switches as our 3SSN, a three-stage, 3-sided clique-based switching network is shown to be not rearrangeable. Also, the effects of the rearrangeable structure and the number of terminals on the network switch-efficiency are explored and a proper set of parameters has been determined to minimise the number of switches. We derive that a rearrangeable 3-sided switching network with switches proportional to N 3/2 is most suitable to interconnect N terminals. Moreover, we propose a new Polygonal Field Programmable Gate Array (PFPGA) that consists of logic blocks interconnected by our 3SSN, such that the logic blocks in this PFPGA can be grouped into clusters to implement different logic functions. Since the programmable switches usually have high resistance and capacitance and occupy a large area, we have to consider the effect of the 3SSN structure and the granularity of its cluster logic blocks on the switch efficiency of PFPGA. Experiments on benchmark circuits show that the switch and speed performances are significantly improved. Based on the experimental results, we can determine the parameters of PFPGA for the VLSI implementation.
MECP2 duplications in six patients with complex sex chromosome rearrangements
Breman, Amy M; Ramocki, Melissa B; Kang, Sung-Hae L; Williams, Misti; Freedenberg, Debra; Patel, Ankita; Bader, Patricia I; Cheung, Sau Wai
2011-01-01
Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1–4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1–3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements. PMID:21119712
Frequent NFIB-associated Gene Rearrangement in Adenoid Cystic Carcinoma of the Vulva.
Xing, Deyin; Bakhsh, Salwa; Melnyk, Nataliya; Isacson, Christina; Ho, Julie; Huntsman, David G; Gilks, C Blake; Ronnett, Brigitte M; Horlings, Hugo M
2017-05-01
Adenoid cystic carcinoma is a rare malignant tumor that usually arises in the major and minor salivary glands and other locations containing secretory glands, including the lower female genital tract. Lower female genital tract carcinomas with adenoid cystic differentiation can be subclassified into 2 distinct groups based on the presence or absence of high-risk HPV. Cervical mixed carcinomas with some adenoid cystic differentiation are high-risk HPV-related but pure adenoid cystic carcinomas of vulvar and cervical origin appear to be unrelated to high-risk HPV. Mechanisms by which normal cells give rise to an HPV-unrelated adenoid cystic carcinoma remain largely unknown. Studies demonstrate that chromosomal translocation involving the genes encoding the transcription factors MYB and NFIB functions as a driving force of adenoid cystic carcinomas development regardless of anatomic site. The current study used fluorescence in situ hybridization with 3 different probes including MYB break-apart probe, NFIB break-apart probe, and MYB-NFIB fusion probe to assess for the presence of gene rearrangements in adenoid cystic carcinomas of the vulva. Six (66.7%) of 9 vulvar adenoid cystic carcinomas demonstrated NFIB rearrangement. Of these 6 cases with a disturbed NFIB, only 2 cases (33.3%) were positive for a MYB rearrangement that was also confirmed by a positive MYB-NFIB fusion pattern. NFIB-associated gene rearrangement is a frequent genetic event in vulvar adenoid cystic carcinomas. Chromosome translocations involving NFIB but with an intact MYB indicate the presence of novel oncogenic mechanisms for the development of adenoid cystic carcinomas of the vulva.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheer, Adam M.; Welz, Oliver; Sasaki, Darryl Y.
The pulsed photolytic chlorine-initiated oxidation of methyl-tert-butyl ketone (MTbuK), di-tert-butyl ketone (DTbuK), and a series of partially deuterated diethyl ketones (DEK) is studied in the gas phase at 8 Torr and 550–650 K. Products are monitored as a function of reaction time, mass, and photoionization energy using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. The results establish that the primary 3-oxoalkyl radicals of those ketones, formed by abstraction of a hydrogen atom from the carbon atom in γ-position relative to the carbonyl oxygen, undergo a rapid rearrangement resulting in an effective 1,2-acyl group migration, similar to that inmore » a Dowd–Beckwith ring expansion. Without this rearrangement, peroxy radicals derived from MTbuK and DTbuK cannot undergo HO2 elimination to yield a closed-shell unsaturated hydrocarbon coproduct. However, not only are these coproducts observed, but they represent the dominant oxidation channels of these ketones under the conditions of this study. For MTbuK and DTbuK, the rearrangement yields a more stable tertiary radical, which provides the thermodynamic driving force for this reaction. Even in the absence of such a driving force in the oxidation of partially deuterated DEK, the 1,2-acyl group migration is observed. Quantum chemical (CBS-QB3) calculations show the barrier for gas-phase rearrangement to be on the order of 10 kcal mol–1. The MTbuK oxidation experiments also show several minor channels, including β-scission of the initial radicals and cyclic ether formation.« less
Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C
2016-10-25
More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepesheva, Galina I.; Park, Hee-Won; Hargrove, Tatiana Y.
2010-01-25
Sterol 14{alpha}-demethylase (14DM, the CYP51 family of cytochrome P450) is an essential enzyme in sterol biosynthesis in eukaryotes. It serves as a major drug target for fungal diseases and can potentially become a target for treatment of human infections with protozoa. Here we present 1.9 {angstrom} resolution crystal structures of 14DM from the protozoan pathogen Trypanosoma brucei, ligand-free and complexed with a strong chemically selected inhibitor N-1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl-4-(5-phenyl-1,3,4-oxadi-azol-2-yl)benzamide that we previously found to produce potent antiparasitic effects in Trypanosomatidae. This is the first structure of a eukaryotic microsomal 14DM that acts on sterol biosynthesis, and it differs profoundly from that ofmore » the water-soluble CYP51 family member from Mycobacterium tuberculosis, both in organization of the active site cavity and in the substrate access channel location. Inhibitor binding does not cause large scale conformational rearrangements, yet induces unanticipated local alterations in the active site, including formation of a hydrogen bond network that connects, via the inhibitor amide group fragment, two remote functionally essential protein segments and alters the heme environment. The inhibitor binding mode provides a possible explanation for both its functionally irreversible effect on the enzyme activity and its selectivity toward the 14DM from human pathogens versus the human 14DM ortholog. The structures shed new light on 14DM functional conservation and open an excellent opportunity for directed design of novel antiparasitic drugs.« less
Subunit architecture and functional modular rearrangements of the transcriptional mediator complex.
Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J
2014-06-05
The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.
High level of microsynteny and purifying selection affect the evolution of WRKY family in Gramineae.
Jin, Jing; Kong, Jingjing; Qiu, Jianle; Zhu, Huasheng; Peng, Yuancheng; Jiang, Haiyang
2016-01-01
The WRKY gene family, which encodes proteins in the regulation processes of diverse developmental stages, is one of the largest families of transcription factors in higher plants. In this study, by searching for interspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found 35 chromosomal segments of subgroup I genes of WRKY family (WRKY I) in four Gramineae species (Brachypodium, rice, sorghum, and maize) formed eight orthologous groups. After a stepwise gene-by-gene reciprocal comparison of all the protein sequences in the WRKY I gene flanking areas, highly conserved regions of microsynteny were found in the four Gramineae species. Most gene pairs showed conserved orientation within syntenic genome regions. Furthermore, tandem duplication events played the leading role in gene expansion. Eventually, environmental selection pressure analysis indicated strong purifying selection for the WRKY I genes in Gramineae, which may have been followed by gene loss and rearrangement. The results presented in this study provide basic information of Gramineae WRKY I genes and form the foundation for future functional studies of these genes. High level of microsynteny in the four grass species provides further evidence that a large-scale genome duplication event predated speciation.
Kersting, Anna R.; Bornberg-Bauer, Erich; Moore, Andrew D.; Grath, Sonja
2012-01-01
Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes demonstrate the importance of modularity for environmental adaptability of plants. PMID:22250127
Ring-rearrangement metathesis of nitroso Diels-Alder cycloadducts.
Vincent, Guillaume; Kouklovsky, Cyrille
2011-03-01
Strained nitroso Diels-Alder bicyclo[2.2.1] or [2.2.2] adducts functionalized with alkene side chains of diverse length undergo a ring-rearrangement metathesis process with external alkenes and Grubbs II or Hoveyda-Grubbs II ruthenium catalysts, under microwave irradiation or classical heating, to deliver cis-fused bicycles of various ring sizes, which contain a N-O bond. These scaffolds are of synthetic relevance for the generation of molecular diversity and to the total synthesis of alkaloids. The observation of unexpected reactions, such as epimerization or one-carbon homologation of the alkene side chain, is also reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017-03-24
NUT Midline Carcinoma; Triple Negative Breast Cancer; Non-small Cell Lung Cancer With Rearranged ALK Gene/Fusion Protein or KRAS Mutation; Castrate-resistant Prostate Cancer (CRPC); Pancreatic Ductal Adenocarcinoma
CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons
ERIC Educational Resources Information Center
Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine
2012-01-01
The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…
Interactive bibliographical database on color
NASA Astrophysics Data System (ADS)
Caivano, Jose L.
2002-06-01
The paper describes the methodology and results of a project under development, aimed at the elaboration of an interactive bibliographical database on color in all fields of application: philosophy, psychology, semiotics, education, anthropology, physical and natural sciences, biology, medicine, technology, industry, architecture and design, arts, linguistics, geography, history. The project is initially based upon an already developed bibliography, published in different journals, updated in various opportunities, and now available at the Internet, with more than 2,000 entries. The interactive database will amplify that bibliography, incorporating hyperlinks and contents (indexes, abstracts, keywords, introductions, or eventually the complete document), and devising mechanisms for information retrieval. The sources to be included are: books, doctoral dissertations, multimedia publications, reference works. The main arrangement will be chronological, but the design of the database will allow rearrangements or selections by different fields: subject, Decimal Classification System, author, language, country, publisher, etc. A further project is to develop another database, including color-specialized journals or newsletters, and articles on color published in international journals, arranged in this case by journal name and date of publication, but allowing also rearrangements or selections by author, subject and keywords.
Interstitial lung disease induced by alectinib (CH5424802/RO5424802).
Ikeda, Satoshi; Yoshioka, Hiroshige; Arita, Machiko; Sakai, Takahiro; Sone, Naoyuki; Nishiyama, Akihiro; Niwa, Takashi; Hotta, Machiko; Tanaka, Tomohiro; Ishida, Tadashi
2015-02-01
A 75-year-old woman with anaplastic lymphoma kinase (ALK)-rearranged Stage IV lung adenocarcinoma was administered the selective anaplastic lymphoma kinase inhibitor, alectinib, as a third-line treatment in a Phase 1-2 study. On the 102nd day, chest computed tomography showed diffuse ground glass opacities. Laboratory data revealed high serum levels of KL-6, SP-D and lactate dehydrogenase without any clinical symptoms. There was no evidence of infection. Marked lymphocytosis was seen in bronchoalveolar lavage fluid analysis, and transbronchial lung biopsy showed mild thickening of alveolar septa and lymphocyte infiltration. Interstitial lung disease was judged to be related to alectinib based on improvements in imaging findings and serum biomarkers after discontinuation of alectinib. To our knowledge, this is the first reported case of alectinib-induced interstitial lung disease. Alectinib is a promising drug for ALK-rearranged non-small cell lung cancer. Clinical trials of this selective anaplastic lymphoma kinase inhibitor will facilitate the meticulous elucidation of its long-term safety profile. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhao, Cong; Du, Weihong
2016-04-01
Cytoglobin (Cgb) is a member of hemoprotein family with roles in NO metabolism, fibrosis, and tumourigenesis. Similar to other hemoproteins, Cgb structure and functions are markedly influenced by distal key residues. The sixth ligand His(81) (E7) is crucial to exogenous ligand binding, heme pocket conformation, and physiological roles of this protein. However, the effects of other key residues on heme pocket and protein biological functions are not well known. In this work, a molecular dynamics (MD) simulation study of two single mutants in CO-ligated Cgb (L46FCgbCO and L46VCgbCO) and two double mutants (L46FH81QCgbCO and L46VH81QCgbCO) was conducted to explore the effects of the key distal residues Leu(46)(B10) and His(81)(E7) on Cgb structure and functions. Results indicated that the distal mutation of B10 and E7 affected CgbCO dynamic properties on loop region fluctuation, internal cavity rearrangement, and heme motion. The distal conformation change was reflected by the distal key residues Gln(62) (CD3) and Arg(84)(E10). The hydrogen bond between heme propionates with CD3 or E10 residues were evidently influenced by B10/E7 mutation. Furthermore, heme pocket rearrangement was also observed based on the distal pocket volume and occurrence rate of inner cavities. The mutual effects of B10 and E7 residues on protein conformational rearrangement and other dynamic features were expressed in current MD studies of CgbCO and its distal mutants, suggesting their crucial role in heme pocket stabilization, ligand binding, and Cgb biological functions. The mutation of distal B10 and E7 residues affects the dynamic features of carboxy cytoglobin.
Berg, Paul R; Star, Bastiaan; Pampoulie, Christophe; Sodeland, Marte; Barth, Julia M I; Knutsen, Halvor; Jakobsen, Kjetill S; Jentoft, Sissel
2016-03-17
Identification of genome-wide patterns of divergence provides insight on how genomes are influenced by selection and can reveal the potential for local adaptation in spatially structured populations. In Atlantic cod - historically a major marine resource - Northeast-Arctic- and Norwegian coastal cod are recognized by fundamental differences in migratory and non-migratory behavior, respectively. However, the genomic architecture underlying such behavioral ecotypes is unclear. Here, we have analyzed more than 8.000 polymorphic SNPs distributed throughout all 23 linkage groups and show that loci putatively under selection are localized within three distinct genomic regions, each of several megabases long, covering approximately 4% of the Atlantic cod genome. These regions likely represent genomic inversions. The frequency of these distinct regions differ markedly between the ecotypes, spawning in the vicinity of each other, which contrasts with the low level of divergence in the rest of the genome. The observed patterns strongly suggest that these chromosomal rearrangements are instrumental in local adaptation and separation of Atlantic cod populations, leaving footprints of large genomic regions under selection. Our findings demonstrate the power of using genomic information in further understanding the population dynamics and defining management units in one of the world's most economically important marine resources.
Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures.
Thomas, William D; Golomb, Miriam; Smith, George P
2010-12-15
Phage display is used to discover peptides or proteins with a desired target property-most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phages or peptides (TUPs), that lack the target behavior. Many TUPs are propagation related; they have mutations conferring a growth advantage and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus-strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus-strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus-strand origin. The founder's infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. Copyright © 2010 Elsevier Inc. All rights reserved.
Corruption of phage-display libraries by target-unrelated clones: Diagnosis and countermeasures
Thomas, William D.; Golomb, Miriam; Smith, George P.
2010-01-01
Phage display is used to discover peptides or proteins with a desired target property—most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior, and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phage (TUPs), that lack the target behavior. Many TUPs are propagation-related; they have mutations conferring a growth advantage, and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus strand origin. The founder’s infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. PMID:20692225
Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia.
Khaw, Seong Lin; Suryani, Santi; Evans, Kathryn; Richmond, Jennifer; Robbins, Alissa; Kurmasheva, Raushan T; Billups, Catherine A; Erickson, Stephen W; Guo, Yuelong; Houghton, Peter J; Smith, Malcolm A; Carol, Hernan; Roberts, Andrew W; Huang, David C S; Lock, Richard B
2016-09-08
The clinical success of the BCL-2-selective BH3-mimetic venetoclax in patients with poor prognosis chronic lymphocytic leukemia (CLL) highlights the potential of targeting the BCL-2-regulated apoptotic pathway in previously untreatable lymphoid malignancies. By selectively inhibiting BCL-2, venetoclax circumvents the dose-limiting, BCL-XL-mediated thrombocytopenia of its less selective predecessor navitoclax, while enhancing efficacy in CLL. We have previously reported the potent sensitivity of many high-risk childhood acute lymphoblastic leukemia (ALL) xenografts to navitoclax. Given the superior tolerability of venetoclax, here we have investigated its efficacy in childhood ALL. We demonstrate that in contrast to the clear dependence of CLL on BCL-2 alone, effective antileukemic activity in the majority of ALL xenografts requires concurrent inhibition of both BCL-2 and BCL-XL We identify BCL-XL expression as a key predictor of poor response to venetoclax and demonstrate that concurrent inhibition of both BCL-2 and BCL-XL results in synergistic killing in the majority of ALL xenografts. A notable exception is mixed lineage leukemia-rearranged infant ALL, where venetoclax largely recapitulates the activity of navitoclax, identifying this subgroup of patients as potential candidates for clinical trials of venetoclax in childhood ALL. Conversely, our findings provide a clear basis for progressing navitoclax into trials ahead of venetoclax in other subgroups.
IgV gene intraclonal diversification and clonal evolution in B-cell chronic lymphocytic leukaemia.
Bagnara, Davide; Callea, Vincenzo; Stelitano, Caterina; Morabito, Fortunato; Fabris, Sonia; Neri, Antonino; Zanardi, Sabrina; Ghiotto, Fabio; Ciccone, Ermanno; Grossi, Carlo Enrico; Fais, Franco
2006-04-01
Intraclonal diversification of immunoglobulin (Ig) variable (V) genes was evaluated in leukaemic cells from a B-cell chronic lymphocytic leukaemia (B-CLL) case over a 2-year period at four time points. Intraclonal heterogeneity was analysed by sequencing 305 molecular clones derived from polymerase chain reaction amplification of B-CLL cell IgV heavy (H) and light (C) chain gene rearrangements. Sequences were compared with evaluating intraclonal variation and the nature of somatic mutations. Although IgV intraclonal variation was detected at all time points, its level decreased with time and a parallel emergence of two more represented V(H)DJ(H) clones was observed. They differed by nine nucleotide substitutions one of which only caused a conservative replacement aminoacid change. In addition, one V(L)J(L) rearrangement became more represented over time. Analyses of somatic mutations suggest antigen selection and impairment of negative selection of neoplastic cells. In addition, a genealogical tree representing a model of clonal evolution of the neoplastic cells was created. It is of note that, during the period of study, the patient showed clinical progression of disease. We conclude that antigen stimulation and somatic hypermutation may participate in disease progression through the selection and expansion of neoplastic subclone(s).
Katsy, E I; Petrova, L P
2015-12-01
Alphaproteobacteria of the species Azospirillum brasilense have a multicomponent genome that undergoes frequent spontaneous rearrangements, yielding changes in the plasmid profiles of strains. Specifically, variants (Cd, Sp7.K2, Sp7.1, Sp7.4, Sp7.8, etc.) of the type strainA. brasilense Sp7 that had lost a 115-MDa plasmid were previously selected. In many of them, the molecular weight of a 90-MDa plasmid (p90 or pRhico), which is a kind of "depot" for glycopolymer biosynthesis genes, increased. In this study, a collection of primers was designed to the plasmid pRhico and to the DNA of prophage phiAb-Cd integrated in it. The use ofthese primers in polymerase chain reactions allowed the detection of the probable excision of phiAb-Cd phage from the DNA of A. brasilense variants Sp7.4 and Sp7.8 and other alterations of the pRhico structure in A. brasilense strains Cd, Sp7.K2, and Sp7.8. The developed primers and PCR conditions may be recoin mended for primary analysis of spontaneous plasmid rearrangements in A. brasilense Sp7 and related strains.
Hackett, N R; Bobovnikova, Y; Heyrovska, N
1994-01-01
Phenotypic variants of Halobacterium salinarium NRC-1 arise at a frequency of 10(-2). These result from transpositions of halobacterial insertion sequences and rearrangements mediated by halobacterial insertion sequences. We have tested the hypothesis that such mutations are confined to only a portion of the genome by comparing the chromosomal restriction map of H. salinarium NRC-1 and that of the derivative S9, which was made in 1969. The two chromosomes were mapped by using two-dimensional pulsed-field gel electrophoresis and the restriction enzymes AflII, AseI, and DraI. A comparison of the two deduced maps showed a domain of about 210 kbp to be subject to many rearrangements, including an inversion in S9 relative to NRC-1. However, the rest of the chromosome was conserved among NRC-1, S9, and an independent Halobacterium isolate, GRB, previously mapped by St. Jean et al. (A. St. Jean, B. A. Trieselmann, and R. L. Charlebois, Nucleic Acids Res. 22:1476-1483, 1994). This concurs with data from eubacteria suggesting strong selective forces maintaining gene order even in the face of rearrangement events occurring at a high frequency. Images PMID:8002597
Hackett, N R; Bobovnikova, Y; Heyrovska, N
1994-12-01
Phenotypic variants of Halobacterium salinarium NRC-1 arise at a frequency of 10(-2). These result from transpositions of halobacterial insertion sequences and rearrangements mediated by halobacterial insertion sequences. We have tested the hypothesis that such mutations are confined to only a portion of the genome by comparing the chromosomal restriction map of H. salinarium NRC-1 and that of the derivative S9, which was made in 1969. The two chromosomes were mapped by using two-dimensional pulsed-field gel electrophoresis and the restriction enzymes AflII, AseI, and DraI. A comparison of the two deduced maps showed a domain of about 210 kbp to be subject to many rearrangements, including an inversion in S9 relative to NRC-1. However, the rest of the chromosome was conserved among NRC-1, S9, and an independent Halobacterium isolate, GRB, previously mapped by St. Jean et al. (A. St. Jean, B. A. Trieselmann, and R. L. Charlebois, Nucleic Acids Res. 22:1476-1483, 1994). This concurs with data from eubacteria suggesting strong selective forces maintaining gene order even in the face of rearrangement events occurring at a high frequency.
Chen, Yan; Dave, Bhavana J; Zhu, Xiongzeng; Chan, Wing C; Iqbal, Javeed; Sanger, Warren G; Fu, Kai
2013-05-01
To study the similarities and differences of cytogenetic alterations in diffuse large B-cell lymphoma (DLBCL) between Asian and Caucasian patients, we compared the cytogenetic profiles of Chinese and American DLBCL cases by analyzing conventional karyotypes and select fluorescence in situ hybridization (FISH) findings. We used interphase FISH analyses to determine the incidence of the t(14;18) and BCL6 and MYC rearrangements. Immunohistochemical analysis was used to categorize the lymphomas into the germinal center B-cell-like (GCB) or non-GCB-DLBCL subtypes, according to the Hans algorithm. Our data suggested that Chinese patients had cytogenetic profiles for GCB-DLBCL that differed from those of their American counterparts; specifically, the Chinese GCB patients exhibited greater frequencies of BCL6 rearrangements and gains of 1q and 11q but lower incidence of the t(14;18). Non-GCB-DLBCL in both the Chinese and American patients was characterized by recurrent gains of 3/3q and 18/18q. The incidences of both BCL6 rearrangement and t(14;18) were similar in Chinese and American non-GCB-DLBCL cases. Copyright © 2013 Elsevier Inc. All rights reserved.
The pre-B cell receptor: turning autoreactivity into self-defense.
Vettermann, Christian; Jäck, Hans-Martin
2010-05-01
The first step in establishing the antibody repertoire in humans and mice is the rearrangement of immunoglobulin heavy chain (HC) genes in early B lineage cells. These cells then assemble microHCs with surrogate light chains (SLC) into a pre-B cell receptor (pre-BCR). We propose that the pre-BCR has evolved from an ancient autoreactive BCR, since the SLC is an autoreactive entity that binds to the pre-BCR itself and to other self-antigens. Abrogation of autoreactivity in the SLC diminishes pre-BCR signaling and impairs the clonal expansion of pre-B cells producing functional microHCs. Since SLC expression is restricted to pre-B cells, the autoreactivity encoded by the pre-BCR can be utilized to pre-select the antibody repertoire, while simultaneously avoiding the formation of autoreactive B lymphocytes. Copyright 2010 Elsevier Ltd. All rights reserved.
Rheology of U-Shaped Granular Particles
NASA Astrophysics Data System (ADS)
Hill, Matthew; Franklin, Scott
We study the response of cylindrical samples of U-shaped granular particles (staples) to extensional loads. Samples elongate in discrete bursts (events) corresponding to particles rearranging and re-entangling. Previous research on samples of constant cross-sectional area found a Weibullian weakest-link theory could explain the distribution of yield points. We now vary the cross-sectional area, and find that the maximum yield pressure (force/area) is a function of particle number density and independent of area. The probability distribution function of important event characteristics -- the stress increase before an event and stress released during an event -- both fall of inversely with magnitude, reminiscent of avalanche dynamics. Fourier transforms of the fluctuating force (or stress) scales inversely with frequency, suggesting dry friction plays a role in the rearrangements. Finally, there is some evidence that dynamics are sensitive to the stiffness of the tensile testing machine, although an explanation for this behavior is unknown.
NASA Astrophysics Data System (ADS)
Kleibeuker, J. E.; Zhong, Z.; Nishikawa, H.; Gabel, J.; Müller, A.; Pfaff, F.; Sing, M.; Held, K.; Claessen, R.; Koster, G.; Rijnders, G.
2014-12-01
We report the formation of a nonmagnetic band insulator at the isopolar interface between the antiferromagnetic Mott-Hubbard insulator LaTiO3 and the antiferromagnetic charge transfer insulator LaFeO3. By density-functional theory calculations, we find that the formation of this interface state is driven by the combination of O band alignment and crystal field splitting energy of the t2 g and eg bands. As a result of these two driving forces, the Fe 3 d bands rearrange and electrons are transferred from Ti to Fe. This picture is supported by x-ray photoelectron spectroscopy, which confirms the rearrangement of the Fe 3 d bands and reveals an unprecedented charge transfer up to 1.2 ±0.2 e-/interface unit cell in our LaTiO3/LaFeO3 heterostructures.
NASA Astrophysics Data System (ADS)
Jalbout, Abraham F.; Roy, Amlan K.; Shipar, Abul Haider; Ahmed, M. Samsuddin
Theoretical energy changes of various intermediates leading to the formation of the Amadori rearrangement products (ARPs) under different mechanistic assumptions have been calculated, by using open chain glucose (O-Glu)/closed chain glucose (A-Glu and B-Glu) and glycine (Gly) as a model for the Maillard reaction. Density functional theory (DFT) computations have been applied on the proposed mechanisms under different pH conditions. Thus, the possibility of the formation of different compounds and electronic energy changes for different steps in the proposed mechanisms has been evaluated. B-Glu has been found to be more efficient than A-Glu, and A-Glu has been found more efficient than O-Glu in the reaction. The reaction under basic condition is the most favorable for the formation of ARPs. Other reaction pathways have been computed and discussed in this work.0
Community-wide plasmid gene mobilization and selection
Sentchilo, Vladimir; Mayer, Antonia P; Guy, Lionel; Miyazaki, Ryo; Green Tringe, Susannah; Barry, Kerrie; Malfatti, Stephanie; Goessmann, Alexander; Robinson-Rechavi, Marc; van der Meer, Jan R
2013-01-01
Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host's chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions. PMID:23407308
Pailler, E.; Auger, N.; Lindsay, C. R.; Vielh, P.; Islas-Morris-Hernandez, A.; Borget, I.; Ngo-Camus, M.; Planchard, D.; Soria, J.-C.; Besse, B.; Farace, F.
2015-01-01
Background Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Patients and methods Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluorescence in situ hybridization (FA-FISH), ROS1 rearrangement was examined in CTCs from four ROS1-rearranged patients treated with the ROS1-inhibitor, crizotinib, and four ROS1-negative patients. ROS1-gene alterations observed in CTCs at baseline from ROS1-rearranged patients were compared with those present in tumor biopsies and in CTCs during crizotinib treatment. Numerical chromosomal instability (CIN) of CTCs was assessed by DNA content quantification and chromosome enumeration. Results ROS1 rearrangement was detected in the CTCs of all four patients with ROS1 rearrangement previously confirmed by tumor biopsy. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at baseline was 34.5 per 3 ml blood (range, 24–55). In ROS1-negative patients, median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 ml blood (range, 7–11). Tumor heterogeneity, assessed by ROS1 copy number, was significantly higher in baseline CTCs compared with paired tumor biopsies in the three patients experiencing PR or SD (P < 0.0001). Copy number in ROS1-rearranged CTCs increased significantly in two patients who progressed during crizotinib treatment (P < 0.02). CTCs from ROS1-rearranged patients had a high DNA content and gain of chromosomes, indicating high levels of aneuploidy and numerical CIN. Conclusion We provide the first proof-of-concept that CTCs can be used for noninvasive and sensitive detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged patients show considerable heterogeneity of ROS1-gene abnormalities and elevated numerical CIN, a potential mechanism to escape ROS1-inhibitor therapy in ROS1-rearranged NSCLC tumors. PMID:25846554
Horowitz, Julie E; Bassing, Craig H
2014-02-15
The RAG proteins are comprised of core endonuclease domains and noncore regions that modulate endonuclease activity. Mutation or deletion of noncore RAG regions in humans causes immunodeficiency and altered TCR repertoire, and mice expressing core but not full-length Rag1 (Rag1(C/C)) or Rag2 (Rag2(C/C)) exhibit lymphopenia, reflecting impaired V(D)J recombination and lymphocyte development. Rag1(C/C) mice display reduced D-to-J and V-to-DJ rearrangements of TCRβ and IgH loci, whereas Rag2(C/C) mice show decreased V-to-DJ rearrangements and altered Vβ/VH repertoire. Because Vβs/VHs only recombine to DJ complexes, the Rag1(C/C) phenotype could reflect roles for noncore RAG1 regions in promoting recombination during only the D-to-J step or during both steps. In this study, we demonstrate that a preassembled TCRβ gene, but not a preassembled DβJβ complex or the prosurvival BCL2 protein, completely rescues αβ T cell development in Rag1(C/C) mice. We find that Rag1(C/C) mice exhibit altered Vβ utilization in Vβ-to-DJβ rearrangements, increased usage of 3'Jα gene segments in Vα-to-Jα rearrangements, and abnormal changes in Vβ repertoire during αβ TCR selection. Inefficient Vβ/VH recombination signal sequences (RSSs) have been hypothesized to cause impaired V-to-DJ recombination on the background of a defective recombinase as in core-Rag mice. We show that replacement of the Vβ14 RSS with a more efficient RSS increases Vβ14 recombination and rescues αβ T cell development in Rag1(C/C) mice. Our data indicate that noncore RAG1 regions establish a diverse TCR repertoire by overcoming Vβ RSS inefficiency to promote Vβ recombination and αβ T cell development, and by modulating TCRβ and TCRα gene segment utilization.
Watanabe, Junko; Togo, Shinsaku; Sumiyoshi, Issei; Namba, Yukiko; Suina, Kentaro; Mizuno, Takafumi; Kadoya, Kotaro; Motomura, Hiroaki; Iwai, Moe; Nagaoka, Tetsutaro; Sasaki, Shinichi; Hayashi, Takuo; Uekusa, Toshimasa; Abe, Kanae; Urata, Yasuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kato, Shunsuke; Takahashi, Kazuhisa
2018-01-01
Anti-anaplastic lymphoma kinase (ALK)-targeted therapy dramatically improves therapeutic responses in patients with ALK-rearranged lung adenocarcinoma (Ad-LC). A few cases of squamous cell lung carcinoma (Sq-LC) with ALK rearrangement have been reported; however, the clinicopathological features and clinical outcomes following treatment with ALK inhibitors are unknown. We addressed this in the present study by retrospectively comparing the clinical characteristics of five patients with ALK-rearranged Sq-LC with those of patients with ALK-rearranged Ad-LC and by evaluating representative cases of ALK inhibitor responders and non-responders. The prevalence of ALK rearrangement in Sq-LCs was 1.36%. Progression-free survival (PFS) after initial treatment with crizotinib was significantly shorter in Sq-LC than in Ad-LC with ALK rearrangement (p = 0.033). Two ALK rearrangements assayed by fluorescence in situ hybridization (FISH)-positive/immunohistochemistry-negative cases did not respond to crizotinb, and PFS decreased following alectinib treatment of ALK-rearranged Sq-LC (p = 0.045). A rebiopsy revealed that responders to ceritinib harbored the L1196M mutation, which causes resistance to other ALK inhibitors. However, non-responders were resistant to all ALK inhibitors, despite the presence of ALK rearrangement in FISH-positive circulating tumor cells and circulating free DNA and absence of the ALK inhibitor resistance mutation. These results indicate that ALK inhibitors remain a reasonable therapeutic option for ALK-rearranged Sq-LC patients who have worse outcomes than ALK-rearranged Ad-LC patients and that resistance mechanisms are heterogeneous. Additionally, oncologists should be aware of the possibility of ALK-rearranged Sq-LC based on clinicopathological features, and plan second-line therapeutic strategies based on rebiopsy results in order to improve patient outcome. PMID:29844868
Watanabe, Junko; Togo, Shinsaku; Sumiyoshi, Issei; Namba, Yukiko; Suina, Kentaro; Mizuno, Takafumi; Kadoya, Kotaro; Motomura, Hiroaki; Iwai, Moe; Nagaoka, Tetsutaro; Sasaki, Shinichi; Hayashi, Takuo; Uekusa, Toshimasa; Abe, Kanae; Urata, Yasuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kato, Shunsuke; Takahashi, Kazuhisa
2018-05-08
Anti-anaplastic lymphoma kinase (ALK)-targeted therapy dramatically improves therapeutic responses in patients with ALK-rearranged lung adenocarcinoma (Ad-LC). A few cases of squamous cell lung carcinoma (Sq-LC) with ALK rearrangement have been reported; however, the clinicopathological features and clinical outcomes following treatment with ALK inhibitors are unknown. We addressed this in the present study by retrospectively comparing the clinical characteristics of five patients with ALK-rearranged Sq-LC with those of patients with ALK-rearranged Ad-LC and by evaluating representative cases of ALK inhibitor responders and non-responders. The prevalence of ALK rearrangement in Sq-LCs was 1.36%. Progression-free survival (PFS) after initial treatment with crizotinib was significantly shorter in Sq-LC than in Ad-LC with ALK rearrangement ( p = 0.033). Two ALK rearrangements assayed by fluorescence in situ hybridization (FISH)-positive/immunohistochemistry-negative cases did not respond to crizotinb, and PFS decreased following alectinib treatment of ALK-rearranged Sq-LC ( p = 0.045). A rebiopsy revealed that responders to ceritinib harbored the L1196M mutation, which causes resistance to other ALK inhibitors. However, non-responders were resistant to all ALK inhibitors, despite the presence of ALK rearrangement in FISH-positive circulating tumor cells and circulating free DNA and absence of the ALK inhibitor resistance mutation. These results indicate that ALK inhibitors remain a reasonable therapeutic option for ALK-rearranged Sq-LC patients who have worse outcomes than ALK-rearranged Ad-LC patients and that resistance mechanisms are heterogeneous. Additionally, oncologists should be aware of the possibility of ALK-rearranged Sq-LC based on clinicopathological features, and plan second-line therapeutic strategies based on rebiopsy results in order to improve patient outcome.
Mróz, Tomasz L.; Eves-van den Akker, Sebastian; Bernat, Agata; Skarzyńska, Agnieszka; Pryszcz, Leszek; Olberg, Madeline; Havey, Michael J.; Bartoszewski, Grzegorz
2018-01-01
Cucumber (Cucumis sativus L.) has a large, paternally transmitted mitochondrial genome. Cucumber plants regenerated from cell cultures occasionally show paternally transmitted mosaic (MSC) phenotypes, characterized by slower growth, chlorotic patterns on the leaves and fruit, lower fertility, and rearrangements in their mitochondrial DNAs (mtDNAs). MSC lines 3, 12, and 16 originated from different cell cultures all established using the highly inbred, wild-type line B. These MSC lines possess different rearrangements and under-represented regions in their mtDNAs. We completed RNA-seq on normalized and non-normalized cDNA libraries from MSC3, MSC12, and MSC16 to study their nuclear gene-expression profiles relative to inbred B. Results from both libraries indicated that gene expression in MSC12 and MSC16 were more similar to each other than MSC3. Forty-one differentially expressed genes (DEGs) were upregulated and one downregulated in the MSC lines relative to B. Gene functional classifications revealed that more than half of these DEGs are associated with stress-response pathways. Consistent with this observation, we detected elevated levels of hydrogen peroxide throughout leaf tissue in all MSC lines compared to wild-type line B. These results demonstrate that independently produced MSC lines with different mitochondrial polymorphisms show unique and shared nuclear responses. This study revealed genes associated with stress response that could become selection targets to develop cucumber cultivars with increased stress tolerance, and further support of cucumber as a model plant to study nuclear-mitochondrial interactions. PMID:29330162
Genetic Rearrangements Can Modify Chromatin Features at Epialleles
Foerster, Andrea M.; Dinh, Huy Q.; Sedman, Laura; Wohlrab, Bonnie; Mittelsten Scheid, Ortrun
2011-01-01
Analogous to genetically distinct alleles, epialleles represent heritable states of different gene expression from sequence-identical genes. Alleles and epialleles both contribute to phenotypic heterogeneity. While alleles originate from mutation and recombination, the source of epialleles is less well understood. We analyze active and inactive epialleles that were found at a transgenic insert with a selectable marker gene in Arabidopsis. Both converse expression states are stably transmitted to progeny. The silent epiallele was previously shown to change its state upon loss-of-function of trans-acting regulators and drug treatments. We analyzed the composition of the epialleles, their chromatin features, their nuclear localization, transcripts, and homologous small RNA. After mutagenesis by T-DNA transformation of plants carrying the silent epiallele, we found new active alleles. These switches were associated with different, larger or smaller, and non-overlapping deletions or rearrangements in the 3′ regions of the epiallele. These cis-mutations caused different degrees of gene expression stability depending on the nature of the sequence alteration, the consequences for transcription and transcripts, and the resulting chromatin organization upstream. This illustrates a tight dependence of epigenetic regulation on local structures and indicates that sequence alterations can cause epigenetic changes at some distance in regions not directly affected by the mutation. Similar effects may also be involved in gene expression and chromatin changes in the vicinity of transposon insertions or excisions, recombination events, or DNA repair processes and could contribute to the origin of new epialleles. PMID:22028669
Stabilization of perfect and imperfect tandem repeats by single-strand DNA exonucleases
Feschenko, Vladimir V.; Rajman, Luis A.; Lovett, Susan T.
2003-01-01
Rearrangements between tandemly repeated DNA sequences are a common source of genetic instability. Such rearrangements underlie several human genetic diseases. In many organisms, the mismatch-repair (MMR) system functions to stabilize repeats when the repeat unit is short or when sequence imperfections are present between the repeats. We show here that the action of single-stranded DNA (ssDNA) exonucleases plays an additional, important role in stabilizing tandem repeats, independent of their role in MMR. For perfect repeats of ≈100 bp in Escherichia coli that are not susceptible to MMR, exonuclease (Exo)-I, ExoX, and RecJ exonuclease redundantly inhibit deletion. Our data suggest that >90% of potential deletion events are avoided by the combined action of these three exonucleases. Imperfect tandem repeats, less prone to rearrangements, are stabilized by both the MMR-pathway and ssDNA-specific exonucleases. For 100-bp repeats containing four mispairs, ExoI alone aborts most deletion events, even in the presence of a functional MMR system. By genetic analysis, we show that the inhibitory effect of ssDNA exonucleases on deletion formation is independent of the MutS and UvrD proteins. Exonuclease degradation of DNA displaced during the deletion process may abort slipped misalignment. Exonuclease action is therefore a significant force in genetic stabilization of many forms of repetitive DNA. PMID:12538867
2013-01-01
The preparation of C-iodo-N-Ts-aziridines with excellent cis-diastereoselectivity has been achieved in high yields by the addition of diiodomethyllithium to N-tosylimines and N-tosylimine–HSO2Tol adducts. This addition-cyclization protocol successfully provided a wide range of cis-iodoaziridines, including the first examples of alkyl-substituted iodoaziridines, with the reaction tolerating both aryl imines and alkyl imines. An ortho-chlorophenyl imine afforded a β-amino gem-diiodide under the optimized reaction conditions due to a postulated coordinated intermediate preventing cyclization. An effective protocol to assess the stability of the sensitive iodoaziridine functional group to chromatography was also developed. As a result of the judicious choice of stationary phase, the iodoaziridines could be purified by column chromatography; the use of deactivated basic alumina (activity IV) afforded high yield and purity. Rearrangements of electron-rich aryl-iodoaziridines have been promoted, selectively affording either novel α-iodo-N-Ts-imines or α-iodo-aldehydes in high yield. PMID:23738857
Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.; Colin-York, Huw; Clausen, Mathias P.; Felce, James H.; Galiani, Silvia; Erlenkämper, Christoph; Santos, Ana M.; Heddleston, John M.; Pedroza-Pacheco, Isabela; Waithe, Dominic; de la Serna, Jorge Bernardino; Lagerholm, B. Christoffer; Liu, Tsung-li; Chew, Teng-Leong; Betzig, Eric; Davis, Simon J.; Eggeling, Christian
2017-01-01
T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions. PMID:28691087
Fève, Katia; Foissac, Sylvain; Pinton, Alain; Mompart, Florence; Esquerré, Diane; Faraut, Thomas; Yerle, Martine
2017-01-01
Reciprocal translocations are the most frequently occurring constitutional structural rearrangements in mammalian genomes. In phenotypically normal pigs, an incidence of 1/200 is estimated for such rearrangements. Even if constitutional translocations do not necessarily induce defects and diseases, they are responsible for significant economic losses in domestic animals due to reproduction failures. Over the last 30 years, advances in molecular and cytogenetic technologies have led to major improvements in the resolution of the characterization of translocation events. Characterization of translocation breakpoints helps to decipher the mechanisms that lead to such rearrangements and the functions of the genes that are involved in the translocation. Here, we describe the fine characterization of a reciprocal translocation t(3;4) (p1.3;q1.5) detected in a pig line. The breakpoint was identified at the base-pair level using a positional cloning and chromosome walking strategy in somatic cell hybrids that were generated from an animal that carries this translocation. We show that this translocation occurs within the ADAMTSL4 gene and results in a loss of expression in homozygous carriers. In addition, by taking this translocation as a model, we used a whole-genome next-generation mate-pair sequencing approach on pooled individuals to evaluate this strategy for high-throughput screening of structural rearrangements. PMID:29121641
Fan, Meng; Wang, Minglei; Zhang, Kai; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S
2017-02-01
Amorphous solids, such as metallic, polymeric, and colloidal glasses, display complex spatiotemporal response to applied deformations. In contrast to crystalline solids, during loading, amorphous solids exhibit a smooth crossover from elastic response to plastic flow. In this study, we investigate the mechanical response of binary Lennard-Jones glasses to athermal, quasistatic pure shear as a function of the cooling rate used to prepare them. We find several key results concerning the connection between strain-induced particle rearrangements and mechanical response. We show that the energy loss per strain dU_{loss}/dγ caused by particle rearrangements for more rapidly cooled glasses is larger than that for slowly cooled glasses. We also find that the cumulative energy loss U_{loss} can be used to predict the ductility of glasses even in the putative linear regime of stress versus strain. U_{loss} increases (and the ratio of shear to bulk moduli decreases) with increasing cooling rate, indicating enhanced ductility. In addition, we characterized the degree of reversibility of particle motion during a single shear cycle. We find that irreversible particle motion occurs even in the linear regime of stress versus strain. However, slowly cooled glasses, which undergo smaller rearrangements, are more reversible during a single shear cycle than rapidly cooled glasses. Thus, we show that more ductile glasses are also less reversible.
2012-01-01
Background Somatostatin and its related neuroendocrine peptides have a wide variety of physiological functions that are mediated by five somatostatin receptors with gene names SSTR1-5 in mammals. To resolve their evolution in vertebrates we have investigated the SSTR genes and a large number of adjacent gene families by phylogeny and conserved synteny analyses in a broad range of vertebrate species. Results We find that the SSTRs form two families that belong to distinct paralogons. We observe not only chromosomal similarities reflecting the paralogy relationships between the SSTR-bearing chromosome regions, but also extensive rearrangements between these regions in teleost fish genomes, including fusions and translocations followed by reshuffling through intrachromosomal rearrangements. These events obscure the paralogy relationships but are still tractable thanks to the many genomes now available. We have identified a previously unrecognized SSTR subtype, SSTR6, previously misidentified as either SSTR1 or SSTR4. Conclusions Two ancestral SSTR-bearing chromosome regions were duplicated in the two basal vertebrate tetraploidizations (2R). One of these ancestral SSTR genes generated SSTR2, -3 and -5, the other gave rise to SSTR1, -4 and -6. Subsequently SSTR6 was lost in tetrapods and SSTR4 in teleosts. Our study shows that extensive chromosomal rearrangements have taken place between related chromosome regions in teleosts, but that these events can be resolved by investigating several distantly related species. PMID:23194088
Ontogeny-Driven rDNA Rearrangement, Methylation, and Transcription, and Paternal Influence
Shiao, Yih-Horng; Leighty, Robert M.; Wang, Cuiju; Ge, Xin; Crawford, Erik B.; Spurrier, Joshua M.; McCann, Sean D.; Fields, Janet R.; Fornwald, Laura; Riffle, Lisa; Driver, Craig; Quiñones, Octavio A.; Wilson, Ralph E.; Kasprzak, Kazimierz S.; Travlos, Gregory S.; Alvord, W. Gregory; Anderson, Lucy M.
2011-01-01
Gene rearrangement occurs during development in some cell types and this genome dynamics is modulated by intrinsic and extrinsic factors, including growth stimulants and nutrients. This raises a possibility that such structural change in the genome and its subsequent epigenetic modifications may also take place during mammalian ontogeny, a process undergoing finely orchestrated cell division and differentiation. We tested this hypothesis by comparing single nucleotide polymorphism-defined haplotype frequencies and DNA methylation of the rDNA multicopy gene between two mouse ontogenic stages and among three adult tissues of individual mice. Possible influences to the genetic and epigenetic dynamics by paternal exposures were also examined for Cr(III) and acid saline extrinsic factors. Variables derived from litters, individuals, and duplicate assays in large mouse populations were examined using linear mixed-effects model. We report here that active rDNA rearrangement, represented by changes of haplotype frequencies, arises during ontogenic progression from day 8 embryos to 6-week adult mice as well as in different tissue lineages and is modifiable by paternal exposures. The rDNA methylation levels were also altered in concordance with this ontogenic progression and were associated with rDNA haplotypes. Sperm showed highest level of methylation, followed by lungs and livers, and preferentially selected haplotypes that are positively associated with methylation. Livers, maintaining lower levels of rDNA methylation compared with lungs, expressed more rRNA transcript. In vitro transcription demonstrated haplotype-dependent rRNA expression. Thus, the genome is also dynamic during mammalian ontogeny and its rearrangement may trigger epigenetic changes and subsequent transcriptional controls, that are further influenced by paternal exposures. PMID:21765958
Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: a new brain tumor entity?
Olsen, Thale Kristin; Panagopoulos, Ioannis; Meling, Torstein R.; Micci, Francesca; Gorunova, Ludmila; Thorsen, Jim; Due-Tønnessen, Bernt; Scheie, David; Lund-Iversen, Marius; Krossnes, Bård; Saxhaug, Cathrine; Heim, Sverre; Brandal, Petter
2015-01-01
Background We have previously characterized 19 ependymal tumors using Giemsa banding and high-resolution comparative genomic hybridization. The aim of this study was to analyze these tumors searching for fusion genes. Methods RNA sequencing was performed in 12 samples. Potential fusion transcripts were assessed by seed count and structural chromosomal aberrations. Transcripts of interest were validated using fluorescence in situ hybridization and PCR followed by direct sequencing. Results RNA sequencing identified rearrangements of the anaplastic lymphoma kinase gene (ALK) in 2 samples. Both tumors harbored structural aberrations involving the ALK locus 2p23. Tumor 1 had an unbalanced t(2;14)(p23;q22) translocation which led to the fusion gene KTN1-ALK. Tumor 2 had an interstitial del(2)(p16p23) deletion causing the fusion of CCDC88A and ALK. In both samples, the breakpoint of ALK was located between exons 19 and 20. Both patients were infants and both tumors were supratentorial. The tumors were well demarcated from surrounding tissue and had both ependymal and astrocytic features but were diagnosed and treated as ependymomas. Conclusions By combining karyotyping and RNA sequencing, we identified the 2 first ever reported ALK rearrangements in CNS tumors. Such rearrangements may represent the hallmark of a new entity of pediatric glioma characterized by both ependymal and astrocytic features. Our findings are of particular importance because crizotinib, a selective ALK inhibitor, has demonstrated effect in patients with lung cancer harboring ALK rearrangements. Thus, ALK emerges as an interesting therapeutic target in patients with ependymal tumors carrying ALK fusions. PMID:25795305
Human, Mouse, and Rat Genome Large-Scale Rearrangements: Stability Versus Speciation
Zhao, Shaying; Shetty, Jyoti; Hou, Lihua; Delcher, Arthur; Zhu, Baoli; Osoegawa, Kazutoyo; de Jong, Pieter; Nierman, William C.; Strausberg, Robert L.; Fraser, Claire M.
2004-01-01
Using paired-end sequences from bacterial artificial chromosomes, we have constructed high-resolution synteny and rearrangement breakpoint maps among human, mouse, and rat genomes. Among the >300 syntenic blocks identified are segments of over 40 Mb without any detected interspecies rearrangements, as well as regions with frequently broken synteny and extensive rearrangements. As closely related species, mouse and rat share the majority of the breakpoints and often have the same types of rearrangements when compared with the human genome. However, the breakpoints not shared between them indicate that mouse rearrangements are more often interchromosomal, whereas intrachromosomal rearrangements are more prominent in rat. Centromeres may have played a significant role in reorganizing a number of chromosomes in all three species. The comparison of the three species indicates that genome rearrangements follow a path that accommodates a delicate balance between maintaining a basic structure underlying all mammalian species and permitting variations that are necessary for speciation. PMID:15364903
Bhargava, Ragini; Carson, Caree R; Lee, Gabriella; Stark, Jeremy M
2017-01-24
A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.
Pailler, E; Auger, N; Lindsay, C R; Vielh, P; Islas-Morris-Hernandez, A; Borget, I; Ngo-Camus, M; Planchard, D; Soria, J-C; Besse, B; Farace, F
2015-07-01
Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluorescence in situ hybridization (FA-FISH), ROS1 rearrangement was examined in CTCs from four ROS1-rearranged patients treated with the ROS1-inhibitor, crizotinib, and four ROS1-negative patients. ROS1-gene alterations observed in CTCs at baseline from ROS1-rearranged patients were compared with those present in tumor biopsies and in CTCs during crizotinib treatment. Numerical chromosomal instability (CIN) of CTCs was assessed by DNA content quantification and chromosome enumeration. ROS1 rearrangement was detected in the CTCs of all four patients with ROS1 rearrangement previously confirmed by tumor biopsy. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at baseline was 34.5 per 3 ml blood (range, 24-55). In ROS1-negative patients, median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 ml blood (range, 7-11). Tumor heterogeneity, assessed by ROS1 copy number, was significantly higher in baseline CTCs compared with paired tumor biopsies in the three patients experiencing PR or SD (P < 0.0001). Copy number in ROS1-rearranged CTCs increased significantly in two patients who progressed during crizotinib treatment (P < 0.02). CTCs from ROS1-rearranged patients had a high DNA content and gain of chromosomes, indicating high levels of aneuploidy and numerical CIN. We provide the first proof-of-concept that CTCs can be used for noninvasive and sensitive detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged patients show considerable heterogeneity of ROS1-gene abnormalities and elevated numerical CIN, a potential mechanism to escape ROS1-inhibitor therapy in ROS1-rearranged NSCLC tumors. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl
2014-07-04
Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.
Balakrishnan, R; Bolten, B; Backman, K C
1994-01-28
A cassette of genes from bacteriophage lambda, when carried on a derivative of bacteriophage Mu, renders strains of Escherichia coli (and in principle other Mu-sensitive bacteria) capable of supporting lambda-based expression vectors, such as rearrangement vectors and pL vectors. The gene cassette contains a temperature-sensitive allele of the repressor gene, cIts857, and a shortened leftward operon comprising, oLpL, N, xis and int. Transfection and lysogenization of this cassette into various host bacteria is mediated by phage Mu functions. Examples of regulated expression of the gene encoding T4 DNA ligase are presented.
Biology of acute lymphoblastic leukemia (ALL): clinical and therapeutic relevance.
Graux, Carlos
2011-04-01
Acute lymphoblastic leukemia is a heterogeneous disease comprising several clinico-biological entities. Karyotyping of leukemic cells identifies recurrent chromosome rearrangements. These are usually translocations that activate genes encoding transcription factor regulating B- or T-cell differentiation. Gene expression-array confirms the prognostic relevance of ALL subgroups identified by specific chromosomal rearrangements and isolates new subgroups. Analysis of genomic copy number changes and high throughput sequencing reveal new cryptic deletions. The challenge is now to understand how these cooperative genetic lesions interact in order to have the molecular rationales needed to select new therapeutic targets and to develop and combine inhibitors with high levels of anti-leukemic specificity. The aim of this paper is to provide some data on the biology of acute lymphoblastic leukemia which are relevant in clinical practice. Copyright © 2011 Elsevier Ltd. All rights reserved.
A system for the detection of chromosomal rearrangements using Sordaria macrospora.
Arnaise, S; Leblon, G; Lares, L
1984-01-01
A system is described for the detection and diagnosis of induced chromosomal rearrangement using Sordaria macrospora. The system uses the property of the rearrangement to produce defective white ascospores as meiotic progeny from heterozygous crosses. Two reconstruction experiments have shown that this system is able to give reliable quantitative measures of rearrangement frequencies. Evidence for a photoreactivation process was obtained, suggesting that pyrimidine dimers may well be an important lesion in UV-induced chromosomal rearrangement. No evidence of induction of chromosomal rearrangement was obtained in experiments with the powerful chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine.
ERIC Educational Resources Information Center
Baker, William P.; Moore, Cathy Ronstadt
1998-01-01
Understanding antibody structure and function is difficult for many students. The rearrangement of constant and variable regions during antibody differentiation can be effectively simulated using a paper model. Describes a hands-on laboratory exercise which allows students to model antibody diversity using readily available resources. (PVD)
Mohan, Shruthi; Koshy, Teena; Vekatachalam, Perumal; Nampoothiri, Sheela; Yesodharan, Dhanya; Gowrishankar, Kalpana; Kumar, Jeevan; Ravichandran, Latha; Joseph, Santhosh; Chandrasekaran, Anupama; Paul, Solomon F. D.
2016-01-01
Background & objectives: Subtelomeres are prone to deleterious rearrangements owing to their proximity to unique sequences on the one end and telomeric repetitive sequences, which increase their tendency to recombine, on the other end. These subtelomeric rearrangements resulting in segmental aneusomy are reported to contribute to the aetiology of idiopathic intellectual disability/developmental delay (ID/DD). We undertook this study to estimate the frequency of subtelomeric rearrangements in children with ID/DD. Methods: One hundred and twenty seven children with idiopathic ID/DD were tested for subtelomeric rearrangements using karyotyping and FISH. Blood samples were cultured, harvested, fixed and GTG-banded using the standard protocols. Results: Rearrangements involving the subtelomeres were observed in 7.8 per cent of the tested samples. Detection of rearrangements visible at the resolution of the karyotype constituted 2.3 per cent, while those rearrangements detected only with FISH constituted 5.5 per cent. Five deletions and five unbalanced translocations were detected. Analysis of parental samples wherever possible was informative regarding the inheritance of the rearrangement. Interpretation & conclusions: The frequency of subtelomeric rearrangements observed in this study was within the reported range of 0-35 per cent. All abnormal genotypes were clinically correlated. Further analysis with array technologies presents a future prospect. Our results suggest the need to test individuals with ID/DD for subtelomeric rearrangements using sensitive methods such as FISH. PMID:27934799
Grundner, Sebastian; Markovits, Monica A C; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A; Hensen, Emiel J M; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A
2015-06-25
Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon-hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite.
Krawczyk, Paweł Adam; Ramlau, Rodryg Adam; Szumiło, Justyna; Kozielski, Jerzy; Kalinka-Warzocha, Ewa; Bryl, Maciej; Knopik-Dąbrowicz, Alina; Spychalski, Łukasz; Szczęsna, Aleksandra; Rydzik, Ewelina; Milanowski, Janusz
2013-01-01
Introduction ALK gene rearrangement is observed in a small subset (3–7%) of non-small cell lung cancer (NSCLC) patients. The efficacy of crizotinib was shown in lung cancer patients harbouring ALK rearrangement. Nowadays, the analysis of ALK gene rearrangement is added to molecular examination of predictive factors. Aim of the study The frequency of ALK gene rearrangement as well as the type of its irregularity was analysed by fluorescence in situ hybridisation (FISH) in tissue samples from NSCLC patients. Material and methods The ALK gene rearrangement was analysed in 71 samples including 53 histological and 18 cytological samples. The analysis could be performed in 56 cases (78.87%), significantly more frequently in histological than in cytological materials. The encountered problem with ALK rearrangement diagnosis resulted from the scarcity of tumour cells in cytological samples, high background fluorescence noises and fragmentation of cell nuclei. Results The normal ALK copy number without gene rearrangement was observed in 26 (36.62%) patients ALK gene polysomy without gene rearrangement was observed in 25 (35.21%) samples while in 3 (4.23%) samples ALK gene amplification was found. ALK gene rearrangement was observed in 2 (2.82%) samples from males, while in the first case the rearrangement coexisted with ALK amplification. In the second case, signet-ring tumour cells were found during histopathological examination and this patient was successfully treated with crizotinib with partial remission lasting 16 months. Conclusions FISH is a useful technique for ALK gene rearrangement analysis which allows us to specify the type of gene irregularities. ALK gene examination could be performed in histological as well as cytological (cellblocks) samples, but obtaining a reliable result in cytological samples depends on the cellularity of examined materials. PMID:24592134
Molecular profiling of ETS and non‐ETS aberrations in prostate cancer patients from northern India
Kunju, Lakshmi P.; Carskadon, Shannon L.; Pandey, Swaroop K.; Singh, Geetika; Pradeep, Immanuel; Tandon, Vini; Singhai, Atin; Goel, Apul; Amit, Sonal; Agarwal, Asha; Dinda, Amit K.; Seth, Amlesh; Tsodikov, Alexander; Chinnaiyan, Arul M.; Palanisamy, Nallasivam
2015-01-01
Abstract BACKGROUND Molecular stratification of prostate cancer (PCa) based on genetic aberrations including ETS or RAF gene‐rearrangements, PTEN deletion, and SPINK1 over‐expression show clear prognostic and diagnostic utility. Gene rearrangements involving ETS transcription factors are frequent pathogenetic somatic events observed in PCa. Incidence of ETS rearrangements in Caucasian PCa patients has been reported, however, occurrence in Indian population is largely unknown. The aim of this study was to determine the prevalence of the ETS and RAF kinase gene rearrangements, SPINK1 over‐expression, and PTEN deletion in this cohort. METHODS In this multi‐center study, formalin‐fixed paraffin embedded (FFPE) PCa specimens (n = 121) were procured from four major medical institutions in India. The tissues were sectioned and molecular profiling was done using immunohistochemistry (IHC), RNA in situ hybridization (RNA‐ISH) and/or fluorescence in situ hybridization (FISH). RESULTS ERG over‐expression was detected in 48.9% (46/94) PCa specimens by IHC, which was confirmed in a subset of cases by FISH. Among other ETS family members, while ETV1 transcript was detected in one case by RNA‐ISH, no alteration in ETV4 was observed. SPINK1 over‐expression was observed in 12.5% (12/96) and PTEN deletion in 21.52% (17/79) of the total PCa cases. Interestingly, PTEN deletion was found in 30% of the ERG‐positive cases (P = 0.017) but in only one case with SPINK1 over‐expression (P = 0.67). BRAF and RAF1 gene rearrangements were detected in ∼1% and ∼4.5% of the PCa cases, respectively. CONCLUSIONS This is the first report on comprehensive molecular profiling of the major spectrum of the causal aberrations in Indian men with PCa. Our findings suggest that ETS gene rearrangement and SPINK1 over‐expression patterns in North Indian population largely resembled those observed in Caucasian population but differed from Japanese and Chinese PCa patients. The molecular profiling data presented in this study could help in clinical decision‐making for the pursuit of surgery, diagnosis, and in selection of therapeutic intervention. Prostate 75:1051–1062, 2015. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc. PMID:25809148
Insights into structural variations and genome rearrangements in prokaryotic genomes.
Periwal, Vinita; Scaria, Vinod
2015-01-01
Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Basal Immunoglobulin Signaling Actively Maintains Developmental Stage in Immature B Cells
Tze, Lina E; Schram, Brian R; Lam, Kong-Peng; Hogquist, Kristin A; Hippen, Keli L; Liu, Jiabin; Shinton, Susan A; Otipoby, Kevin L; Rodine, Peter R; Vegoe, Amanda L; Kraus, Manfred; Hardy, Richard R; Schlissel, Mark S; Rajewsky, Klaus
2005-01-01
In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking “back-differentiation” of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms. PMID:15752064
Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy
Lee, J. H.; Luo, G.; Tung, I. C.; ...
2014-08-03
The A n+1B nO 3n+1 Ruddlesden–Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of themore » intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden–Popper phases. Lastly, we demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La 3Ni 2O 7.« less
FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery
Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo
2012-01-01
Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2–ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data. PMID:22570408
FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery.
Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo
2012-09-01
Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2-ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data.
Gross rearrangements within the 5'-untranslated region of the picornaviral genomes.
Pilipenko, E V; Blinov, V M; Agol, V I
1990-06-11
An analysis of reported nucleotide sequences revealed several cases of gross rearrangements in the 5'-untranslated region (5-UTR) of picornaviral genomes. A large (greater than 100 nt) duplication was discovered in a downstream region of poliovirus 5-UTR involved in the translational control. Properties of the poliovirus mutants with large deletions [Kuge and Nomoto (1987) J. Virol. 61, 1478-1487] show that a single copy of the appropriate repeating unit is compatible with a wild type phenotype of the virus. In contrast to poliovirus and another enterovirus genomes, human rhinovirus RNAs contain only a single copy of this repeating unit. Another similarly large repeat was found in an upstream segment of the bovine enterovirus 5-UTR. A comparison of the primary and secondary structures of cardio- and aphthovirus 5-UTRs demonstrated the existence of a large (ca. 250 nucleotides) insertion/deletion in a region preceding the poly(C) tract. The two latter rearrangements appear to involve elements of the viral genome replication machinery. Possible origin as well as evolutionary and functional implications of these structural peculiarities are discussed.
Churkin, Alexander; Barash, Danny
2008-01-01
Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure. A complete explanation of the application, called MultiRNAmute, is available at [1]. PMID:18445289
Deakin, Janine E; Kruger-Andrzejewska, Maya
2016-09-01
Chromosome rearrangements have been implicated in diseases, such as cancer, and speciation, but it remains unclear whether rearrangements are causal or merely a consequence of these processes. Two marsupial families with very different rates of karyotype evolution provide excellent models in which to study the role of chromosome rearrangements in a disease and evolutionary context. The speciose family Dasyuridae displays remarkable karyotypic conservation, with all species examined to date possessing nearly identical karyotypes. Despite the seemingly high degree of chromosome stability within this family, they appear prone to developing tumours, including transmissible devil facial tumours. In contrast, chromosome rearrangements have been frequent in the evolution of the species-rich family Macropodidae, which displays a high level of karyotypic diversity. In particular, the genus Petrogale (rock-wallabies) displays an extraordinary level of chromosome rearrangement among species. For six parapatric Petrogale species, it appears that speciation has essentially been caught in the act, providing an opportunity to determine whether chromosomal rearrangements are a cause or consequence of speciation in this system. This review highlights the reasons that these two marsupial families are excellent models for testing hypotheses for hotspots of chromosome rearrangement and deciphering the role of chromosome rearrangements in disease and speciation.
Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice
Hayakawa, Itaru; Kawasaki, Hiroshi
2010-01-01
It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. Here we delineate the structural changes of retinogeniculate projections in the C57BL/6 mouse in response to monocular enucleation (ME) after eye-specific segregation. When ME was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. Although this rearrangement was observed both along the dorsomedial-ventrolateral and outer-inner axes in the dLGN, it occurred more rapidly along the outer-inner axis. We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex. Taken together, our findings serve as a framework for the assessment of phenotypes of genetically altered mouse strains as well as provide insights into the mechanisms underlying the rearrangement of retinogeniculate projections. PMID:20544023
Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan.
Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin
2014-07-01
Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph(+)CML in Pakistan. The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low.
Sinnerbrink, Ingrid B; Meiser, Bettina; Halliday, Jane; Sherwen, Amanda; Amor, David J; Waters, Elizabeth; Rea, Felicity; Evans, Elizabeth; Rahman, Belinda; Kirk, Edwin P
2014-06-01
This study aims to assess the impact of prenatal diagnosis of de novo apparently balanced chromosome rearrangements (ABCRs) on maternal stress, family functioning and maternal plans of disclosure of genetic information to their child. All liveborn children with prenatally detected de novo ABCRs in two Australian states over a 10-year period (1994-2003) were retrospectively ascertained. Of 39 eligible cases, 16 (41%) participated in the study. Mothers of these children completed a questionnaire using standardized measures to assess family functioning, parental distress, parent-child interaction and child characteristics, with open-ended questions regarding disclosure. The majority of mothers appeared to experience normal levels of parenting stress, quality of parent-child interaction and healthy family functioning. However, most mothers recalled experiencing a significant degree of worry at the time of receiving their prenatal test results, and some mothers (4/15) reported receiving uncertain or conflicting results. Most mothers (13/15) conveyed an understanding of the importance of disclosing this genetic information to their child, and 12/15 conveyed their intention to make this disclosure. Most mothers reported normal parenting stress and family functioning, despite experiencing significant worry upon receiving results. Some children are at risk of nondisclosure of their carrier status. © 2014 John Wiley & Sons, Ltd.
GATA3 Abundance Is a Critical Determinant of T Cell Receptor β Allelic Exclusion
Ku, Chia-Jui; Sekiguchi, JoAnn M.; Panwar, Bharat; Guan, Yuanfang; Takahashi, Satoru; Yoh, Keigyou; Maillard, Ivan; Hosoya, Tomonori
2017-01-01
ABSTRACT Allelic exclusion describes the essential immunological process by which feedback repression of sequential DNA rearrangements ensures that only one autosome expresses a functional T or B cell receptor. In wild-type mammals, approximately 60% of cells have recombined the DNA of one T cell receptor β (TCRβ) V-to-DJ-joined allele in a functional configuration, while the second allele has recombined only the DJ sequences; the other 40% of cells have recombined the V to the DJ segments on both alleles, with only one of the two alleles predicting a functional TCRβ protein. Here we report that the transgenic overexpression of GATA3 leads predominantly to biallelic TCRβ gene (Tcrb) recombination. We also found that wild-type immature thymocytes can be separated into distinct populations based on intracellular GATA3 expression and that GATA3LO cells had almost exclusively recombined only one Tcrb locus (that predicted a functional receptor sequence), while GATA3HI cells had uniformly recombined both Tcrb alleles (one predicting a functional and the other predicting a nonfunctional rearrangement). These data show that GATA3 abundance regulates the recombination propensity at the Tcrb locus and provide new mechanistic insight into the historic immunological conundrum for how Tcrb allelic exclusion is mediated. PMID:28320875
Liu, Huitao; Cui, Peng; Zhan, Kehui; Lin, Qiang; Zhuo, Guoyin; Guo, Xiaoli; Ding, Feng; Yang, Wenlong; Liu, Dongcheng; Hu, Songnian; Yu, Jun; Zhang, Aimin
2011-03-29
Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non-coding sequences. Sequence rearrangement has produced novel chimeric ORFs, which may be candidate genes for CMS. Comparative analysis of several angiosperm mtDNAs indicated that non-coding sequences are the most frequently reorganized during mtDNA evolution in higher plants.
Zou, Hong; Jakovlić, Ivan; Chen, Rong; Zhang, Dong; Zhang, Jin; Li, Wen-Xiang; Wang, Gui-Tang
2017-11-02
Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes. The mitogenome is exceptionally large (17,901 bp) among the Chromadorea and, with 46 (pseudo-) genes, exhibits a unique architecture among nematodes. Six protein-coding genes (PCGs) and six tRNAs are duplicated. An additional (seventh) tRNA (Trp) was probably duplicated by the remolding of tRNA-Ser2 (missing). Two pairs of these duplicated PCGs might be functional; three were incomplete and one contained stop codons. Apart from Ala and Asp, all other duplicated tRNAs are conserved and probably functional. Only 19 unique tRNAs were found. Phylogenomic analysis included Gnathostomatidae (Spirurina) in the Camallanina suborder. Within the Nematoda, comparable PCG duplications were observed only in the enoplean Mermithidae family, but those result from mitochondrial recombination, whereas characteristics of the studied mitogenome suggest that likely rearrangement mechanisms are either a series of duplications, transpositions and random loss events, or duplication, fragmentation and subsequent reassembly of the mitogenome. We put forward a hypothesis that the evolution of mitogenomic architecture is extremely discontinuous, and that once a long period of stasis in gene order and content has been punctuated by a rearrangement event, such a destabilised mitogenome is much more likely to undergo subsequent rearrangement events, resulting in an exponentially accelerated evolutionary rate of mitogenomic rearrangements. Implications of this model are particularly important for the application of gene order similarity as an additive source of phylogenetic information. Chromadorean nematodes, and particularly Camallanina clade (with C. cotti as an example of extremely accelerated rate of rearrangements), might be a good model to further study this discontinuity in the dynamics of mitogenomic evolution.
Joseph, Noah; Reicher, Barak; Barda-Saad, Mira
2014-02-01
During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé. © 2013.
Serdyukova, Natalya A.; Perelman, Polina L.; Pavlova, Svetlana V.; Bulatova, Nina S.; Golenishchev, Feodor N.; Stanyon, Roscoe
2017-01-01
It has long been hypothesized that chromosomal rearrangements play a central role in different evolutionary processes, particularly in speciation and adaptation. Interchromosomal rearrangements have been extensively mapped using chromosome painting. However, intrachromosomal rearrangements have only been described using molecular cytogenetics in a limited number of mammals, including a few rodent species. This situation is unfortunate because intrachromosomal rearrangements are more abundant than interchromosomal rearrangements and probably contain essential phylogenomic information. Significant progress in the detection of intrachromosomal rearrangement is now possible, due to recent advances in molecular biology and bioinformatics. We investigated the level of intrachromosomal rearrangement in the Arvicolinae subfamily, a species-rich taxon characterized by very high rate of karyotype evolution. We made a set of region specific probes by microdissection for a single syntenic region represented by the p-arm of chromosome 1 of Alexandromys oeconomus, and hybridized the probes onto the chromosomes of four arvicolines (Microtus agrestis, Microtus arvalis, Myodes rutilus, and Dicrostonyx torquatus). These experiments allowed us to show the intrachromosomal rearrangements in the subfamily at a significantly higher level of resolution than previously described. We found a number of paracentric inversions in the karyotypes of M. agrestis and M. rutilus, as well as multiple inversions and a centromere shift in the karyotype of M. arvalis. We propose that during karyotype evolution, arvicolines underwent a significant number of complex intrachromosomal rearrangements that were not previously detected. PMID:28867774
Synthesis and transformations of new annulated pyranosides using the Pauson-Khand reaction.
Marco-Contelles, J; Ruiz-Caro, J
2001-09-28
The synthesis and transformations of new annulated pyranosides are described. These adducts were prepared by Pauson-Khand reaction on differently functionalized prop-2-ynyl-2,3-dideoxy-alpha-D-erythro-hex-2-enopyranosides (1-8). Compound 1 with a free hydroxyl group at C-4 afforded significant amounts of the hydrogenolysis product 12 in addition to the normal adduct 13. The C-4 O-protected similar precursors (2-8) gave PK products in yields ranging from 39 to 63%. Pauson-Khand adduct 19 provided intermediate 23 after selective manipulation. The oxidation plus decarbonylation synthetic sequence applied to intermediate 23 gave a poor yield of compound 24 using Wilkinson's catalyst. The t-butyl hydroperoxide promoted decarbonylation of product 23 afforded formate 25 in a typical Baeyer-Villiger rearrangement. The Ferrier-II reaction on intermediate 45, readily available from compound 9, afforded the hydrindane-type derivative 46 in 34% yield using a Ferrier-II type reaction.
Plant centromere organization: a dynamic structure with conserved functions.
Ma, Jianxin; Wing, Rod A; Bennetzen, Jeffrey L; Jackson, Scott A
2007-03-01
Although the structural features of centromeres from most multicellular eukaryotes remain to be characterized, recent analyses of the complete sequences of two centromeric regions of rice, together with data from Arabidopsis thaliana and maize, have illuminated the considerable size variation and sequence divergence of plant centromeres. Despite the severe suppression of meiotic chromosomal exchange in centromeric and pericentromeric regions of rice, the centromere core shows high rates of unequal homologous recombination in the absence of chromosomal exchange, resulting in frequent and extensive DNA rearrangement. Not only is the sequence of centromeric tandem and non-tandem repeats highly variable but also the copy number, spacing, order and orientation, providing ample natural variation as the basis for selection of superior centromere performance. This review article focuses on the structural and evolutionary dynamics of plant centromere organization and the potential molecular mechanisms responsible for the rapid changes of centromeric components.
1995-01-01
We have examined the extent of allelic exclusion at the T cell receptor (TCR) beta locus using monoclonal antibodies specific for V beta products. A small proportion (approximately 1%) of human peripheral blood T cells express two V beta as determined by flow cytometric analysis, isolation of representative clones, and sequencing of the corresponding V beta chains. Dual beta T cells are present in both the CD45R0+ and CD45R0- subset. These results indicate that dual beta expression is compatible with both central and peripheral selection. They also suggest that the substantial degree of TCR beta allelic exclusion is dependent only on asynchronous rearrangements at the beta locus, whereas the role of the pre-TCR is limited to signaling the presence of at least one functional beta protein. PMID:7699339
NASA Astrophysics Data System (ADS)
Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent
2015-05-01
Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels.
Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia
Khaw, Seong Lin; Suryani, Santi; Evans, Kathryn; Richmond, Jennifer; Robbins, Alissa; Kurmasheva, Raushan T.; Billups, Catherine A.; Erickson, Stephen W.; Guo, Yuelong; Houghton, Peter J.; Smith, Malcolm A.; Carol, Hernan; Roberts, Andrew W.; Huang, David C. S.
2016-01-01
The clinical success of the BCL-2-selective BH3-mimetic venetoclax in patients with poor prognosis chronic lymphocytic leukemia (CLL) highlights the potential of targeting the BCL-2-regulated apoptotic pathway in previously untreatable lymphoid malignancies. By selectively inhibiting BCL-2, venetoclax circumvents the dose-limiting, BCL-XL-mediated thrombocytopenia of its less selective predecessor navitoclax, while enhancing efficacy in CLL. We have previously reported the potent sensitivity of many high-risk childhood acute lymphoblastic leukemia (ALL) xenografts to navitoclax. Given the superior tolerability of venetoclax, here we have investigated its efficacy in childhood ALL. We demonstrate that in contrast to the clear dependence of CLL on BCL-2 alone, effective antileukemic activity in the majority of ALL xenografts requires concurrent inhibition of both BCL-2 and BCL-XL. We identify BCL-XL expression as a key predictor of poor response to venetoclax and demonstrate that concurrent inhibition of both BCL-2 and BCL-XL results in synergistic killing in the majority of ALL xenografts. A notable exception is mixed lineage leukemia–rearranged infant ALL, where venetoclax largely recapitulates the activity of navitoclax, identifying this subgroup of patients as potential candidates for clinical trials of venetoclax in childhood ALL. Conversely, our findings provide a clear basis for progressing navitoclax into trials ahead of venetoclax in other subgroups. PMID:27343252
Colombo, Monica; Cutrona, Giovanna; Reverberi, Daniele; Bruno, Silvia; Ghiotto, Fabio; Tenca, Claudya; Stamatopoulos, Kostas; Hadzidimitriou, Anastasia; Ceccarelli, Jenny; Salvi, Sandra; Boccardo, Simona; Calevo, Maria Grazia; De Santanna, Amleto; Truini, Mauro; Fais, Franco; Ferrarini, Manlio
2013-01-01
Marginal zone (MZ) B cells, identified as surface (s)IgMhighsIgDlowCD23low/−CD21+CD38− B cells, were purified from human spleens, and the features of their V(D)J gene rearrangements were investigated and compared with those of germinal center (GC), follicular mantle (FM) and switched memory (SM) B cells. Most MZ B cells were CD27+ and exhibited somatic hypermutations (SHM), although to a lower extent than SM B cells. Moreover, among MZ B-cell rearrangements, recurrent sequences were observed, some of which displayed intraclonal diversification. The same diversifying sequences were detected in very low numbers in GC and FM B cells and only when a highly sensitive, gene-specific polymerase chain reaction was used. This result indicates that MZ B cells could expand and diversify in situ and also suggested the presence of a number of activation-induced cytidine deaminase (AID)-expressing B cells in the MZ. The notion of antigen-driven expansion/selection in situ is further supported by the VH CDR3 features of MZ B cells with highly conserved amino acids at specific positions and by the finding of shared (“stereotyped”) sequences in two different spleens. Collectively, the data are consistent with the notion that MZ B cells are a special subset selected by in situ antigenic stimuli. PMID:23877718
Semantic memory influences episodic retrieval by increased familiarity.
Wang, Yujuan; Mao, Xinrui; Li, Bingcan; Lu, Baoqing; Guo, Chunyan
2016-07-06
The role of familiarity in associative recognition has been investigated in a number of studies, which have indicated that familiarity can facilitate recognition under certain circumstances. The ability of a pre-experimentally existing common representation to boost the contribution of familiarity has rarely been investigated. In addition, although many studies have investigated the interactions between semantic memory and episodic retrieval, the conditions that influence the presence of specific patterns were unclear. This study aimed to address these two questions. We manipulated the degree of overlap between the two representations using synonym and nonsynonym pairs in an associative recognition task. Results indicated that an increased degree of overlap enhanced recognition performance. The analysis of event-related potentials effects in the test phase showed that synonym pairs elicited both types of old/rearranged effects, whereas nonsynonym pairs elicited a late old/rearranged effect. These results confirmed that a common representation, irrespective of source, was necessary for assuring the presence of familiarity, but a common representation could not distinguish associative recognition depending on familiarity alone. Moreover, our expected double dissociation between familiarity and recollection was absent, which indicated that mode selection may be influenced by the degree of distinctness between old and rearranged pairs rather than the degree of overlap between representations.
Capturing ultrafast photoinduced local structural distortions of BiFeO 3
Wen, Haidan; Sassi, Michel JPC; Luo, Zhenlin; ...
2015-10-14
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO 3 film. The out-of-plane elongation of the unit cell is accompanied bymore » the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This uniaxial elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated nonequilibrium processes in polar materials.« less
Interactome disassembly during apoptosis occurs independent of caspase cleavage.
Scott, Nichollas E; Rogers, Lindsay D; Prudova, Anna; Brown, Nat F; Fortelny, Nikolaus; Overall, Christopher M; Foster, Leonard J
2017-01-12
Protein-protein interaction networks (interactomes) define the functionality of all biological systems. In apoptosis, proteolysis by caspases is thought to initiate disassembly of protein complexes and cell death. Here we used a quantitative proteomics approach, protein correlation profiling (PCP), to explore changes in cytoplasmic and mitochondrial interactomes in response to apoptosis initiation as a function of caspase activity. We measured the response to initiation of Fas-mediated apoptosis in 17,991 interactions among 2,779 proteins, comprising the largest dynamic interactome to date. The majority of interactions were unaffected early in apoptosis, but multiple complexes containing known caspase targets were disassembled. Nonetheless, proteome-wide analysis of proteolytic processing by terminal amine isotopic labeling of substrates (TAILS) revealed little correlation between proteolytic and interactome changes. Our findings show that, in apoptosis, significant interactome alterations occur before and independently of caspase activity. Thus, apoptosis initiation includes a tight program of interactome rearrangement, leading to disassembly of relatively few, select complexes. These early interactome alterations occur independently of cleavage of these protein by caspases. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3
Golczak, Marcin; Sears, Avery E.; Kiser, Philip D.; ...
2014-11-10
Cellular uptake of vitamin A, production of visual chromophore and triglyceride homeostasis in adipocytes depend on two representatives of the vertebrate N1pC/P60 protein family, lecithin:retinol acyltransferase (LRAT) and HRAS-like tumor suppressor 3 (HRASLS3). Both proteins function as lipid-metabolizing enzymes but differ in their substrate preferences and dominant catalytic activity. The mechanism of this catalytic diversity is not understood. In this paper, by using a gain-of-function approach, we identified a specific sequence responsible for the substrate specificity of N1pC/P60 proteins. A 2.2-Å crystal structure of the HRASLS3-LRAT chimeric enzyme in a thioester catalytic intermediate state revealed a major structural rearrangement accompaniedmore » by three-dimensional domain swapping dimerization not observed in native HRASLS proteins. Structural changes affecting the active site environment contributed to slower hydrolysis of the catalytic intermediate, supporting efficient acyl transfer. Finally, these findings reveal structural adaptation that facilitates selective catalysis and mechanism responsible for diverse substrate specificity within the LRAT-like enzyme family.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Haidan; Sassi, Michel; Luo, Zhenlin
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO 3 film. The out-of-plane elongation of the unit cell is accompanied bymore » the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials.« less
Capturing ultrafast photoinduced local structural distortions of BiFeO3
Wen, Haidan; Sassi, Michel; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell G.; Rosso, Kevin M.; Zhang, Xiaoyi
2015-01-01
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials. PMID:26463128
Capturing ultrafast photoinduced local structural distortions of BiFeO3.
Wen, Haidan; Sassi, Michel; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell G; Rosso, Kevin M; Zhang, Xiaoyi
2015-10-14
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Haidan; Sassi, Michel JPC; Luo, Zhenlin
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO 3 film. The out-of-plane elongation of the unit cell is accompanied bymore » the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This uniaxial elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated nonequilibrium processes in polar materials.« less
Capturing ultrafast photoinduced local structural distortions of BiFeO3
NASA Astrophysics Data System (ADS)
Wen, Haidan; Sassi, Michel; Luo, Zhenlin; Adamo, Carolina; Schlom, Darrell G.; Rosso, Kevin M.; Zhang, Xiaoyi
2015-10-01
The interaction of light with materials is an intensively studied research forefront, in which the coupling of radiation energy to selective degrees of freedom offers contact-free tuning of functionalities on ultrafast time scales. Capturing the fundamental processes and understanding the mechanism of photoinduced structural rearrangement are essential to applications such as photo-active actuators and efficient photovoltaic devices. Using ultrafast x-ray absorption spectroscopy aided by density functional theory calculations, we reveal the local structural arrangement around the transition metal atom in a unit cell of the photoferroelectric archetype BiFeO3 film. The out-of-plane elongation of the unit cell is accompanied by the in-plane shrinkage with minimal change of interaxial lattice angles upon photoexcitation. This anisotropic elastic deformation of the unit cell is driven by localized electric field as a result of photoinduced charge separation, in contrast to a global lattice constant increase and lattice angle variations as a result of heating. The finding of a photoinduced elastic unit cell deformation elucidates a microscopic picture of photocarrier-mediated non-equilibrium processes in polar materials.
Structural basis for host membrane remodeling induced by protein 2B of hepatitis A virus.
Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa; Macedo-Ribeiro, Sandra; Verdaguer, Núria
2015-04-01
The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus
Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa
2015-01-01
ABSTRACT The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. PMID:25589659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiernholm, N.B.J.; Verkoczy, L.K.; Berinstein, N.L.
1995-05-01
The constant region of the human Ig{lambda} locus consists of seven tandemly organized J-C gene segments. Although it has been established that the J-C{lambda}1, J-C{lambda}2, J-C{lambda}3, and J-C{lambda}7 gene segments are functional, and code for the four distinct Ig{lambda} isotypes found in human serum, the J-C{lambda}4, J-C{lambda}5, and J-C{lambda}6 gene segments are generally considered to be pseudogenes. Although one example of a functional J-C{lambda}6 gene segment has been documented, in the majority of cases, J-C{lambda}6 is rendered nonfunctional by virtue of a single duplication of four nucleotides, creating a premature translational arrest. We show here that rearrangements to the J-C{lambda}6more » gene segment do occur, and that such a rearrangement encodes an Ig{lambda} protein that lacks the terminal end of the constant region. We also show that this truncated protein is expressed on the surface with the IgH chain, creating an unusual surface Ig (sIg) receptor (sIg{triangle}CL). Cells that express this receptor on the surface do so at significantly reduced levels compared with clonally related variants, which express sIg receptors with conventional Ig{lambda} L chains. However, the effects of sIg cross-linking on tyrosine phosphorylation and surface expression of the CD25 and CD71 Ags are similar in cells that express conventional sIg receptors and in those that express sIg{triangle}CL receptors, suggesting that the latter could possibly function as an Ag receptor. 35 refs., 7 figs.« less
Rearrangements of organic peroxides and related processes
Yaremenko, Ivan A; Vil’, Vera A; Demchuk, Dmitry V
2016-01-01
Summary This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O–O-bond cleavage. Detailed information about the Baeyer−Villiger, Criegee, Hock, Kornblum−DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately. PMID:27559418
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuck-Muller, C.M.; Li, Shibo; Chen, H.
Intrachromosomal rearrangements usually result from three or fewer breaks. We report a complex intrachromosomal rearrangement resulting from five breaks in one chromosome 10 of a phenotypically normal father of two developmentally delayed children. GTG-banding analysis of the father`s rearranged chromosome 10 suggested an initial pericentric inversion followed by an insertion from the short arm into the terminal band of the long arm. To our knowledge, this rearrangement is the most complex ever reported in a single chromosome. Both children inherited a recombinant chromosome 10 with loss of the insertion and the segment distal to it. Mechanisms for both rearrangements aremore » proposed. 7 refs., 2 figs.« less
Rübben, Albert; Nordhoff, Ole
2013-01-01
Summary Most clinically distinguishable malignant tumors are characterized by specific mutations, specific patterns of chromosomal rearrangements and a predominant mechanism of genetic instability but it remains unsolved whether modifications of cancer genomes can be explained solely by mutations and selection through the cancer microenvironment. It has been suggested that internal dynamics of genomic modifications as opposed to the external evolutionary forces have a significant and complex impact on Darwinian species evolution. A similar situation can be expected for somatic cancer evolution as molecular key mechanisms encountered in species evolution also constitute prevalent mutation mechanisms in human cancers. This assumption is developed into a systems approach of carcinogenesis which focuses on possible inner constraints of the genome architecture on lineage selection during somatic cancer evolution. The proposed systems approach can be considered an analogy to the concept of evolvability in species evolution. The principal hypothesis is that permissive or restrictive effects of the genome architecture on lineage selection during somatic cancer evolution exist and have a measurable impact. The systems approach postulates three classes of lineage selection effects of the genome architecture on somatic cancer evolution: i) effects mediated by changes of fitness of cells of cancer lineage, ii) effects mediated by changes of mutation probabilities and iii) effects mediated by changes of gene designation and physical and functional genome redundancy. Physical genome redundancy is the copy number of identical genetic sequences. Functional genome redundancy of a gene or a regulatory element is defined as the number of different genetic elements, regardless of copy number, coding for the same specific biological function within a cancer cell. Complex interactions of the genome architecture on lineage selection may be expected when modifications of the genome architecture have multiple and possibly opposed effects which manifest themselves at disparate times and progression stages. Dissection of putative mechanisms mediating constraints exerted by the genome architecture on somatic cancer evolution may provide an algorithm for understanding and predicting as well as modifying somatic cancer evolution in individual patients. PMID:23336076
Alì, Greta; Proietti, Agnese; Pelliccioni, Serena; Niccoli, Cristina; Lupi, Cristiana; Sensi, Elisa; Giannini, Riccardo; Borrelli, Nicla; Menghi, Maura; Chella, Antonio; Ribechini, Alessandro; Cappuzzo, Federico; Melfi, Franca; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella
2014-11-01
Echinoderm microtubule associated proteinlike 4-anaplastic lymphoma receptor tyrosine kinase (EML4-ALK) translocation has been described in a subset of patients with non-small cell lung cancer (NSCLC) and has been shown to have oncogenic activity. Fluorescence in situ hybridization (FISH) is used to detect ALK-positive NSCLC, but it is expensive, time-consuming, and difficult for routine application. To evaluate the potential role of immunohistochemistry (IHC) as a screening tool to identify candidate cases for FISH analysis and for ALK inhibitor therapy in NSCLC. We performed FISH and IHC for ALK and mutational analysis for epidermal growth factor receptor (EGFR) and KRAS in 523 NSCLC specimens. We conducted IHC analysis with the monoclonal antibody D5F3 (Ventana Medical Systems, Tucson, Arizona) and a highly sensitive detection system. We also performed a MassARRAY-based analysis (Sequenom, San Diego, California) in a small subset of 11 samples to detect EML4-ALK rearrangement. Of the 523 NSCLC specimens, 20 (3.8%) were positive for ALK rearrangement by FISH analysis. EGFR and KRAS mutations were identified in 70 (13.4%) and 124 (23.7%) of the 523 tumor samples, respectively. ALK rearrangement and EGFR and KRAS mutations were mutually exclusive. Of 523 tumor samples analyzed, 18 (3.4%) were ALK(+) by IHC, 18 samples (3.4%) had concordant IHC and FISH results, and 2 ALK(+) cases (0.3%) by FISH failed to show ALK protein expression. In the 2 discrepant cases, we did not detect any mass peaks for the EML4-ALK variants by MassARRAY. Our results show that IHC may be a useful technique for selecting NSCLC cases to undergo ALK FISH analysis.
Mignon-Ravix, Cécile; Cacciagli, Pierre; Choucair, Nancy; Popovici, Cornel; Missirian, Chantal; Milh, Mathieu; Mégarbané, André; Busa, Tiffany; Julia, Sophie; Girard, Nadine; Badens, Catherine; Sigaudy, Sabine; Philip, Nicole; Villard, Laurent
2014-08-01
High-resolution array comparative genomic hybridization (a-CGH) enables the detection of intragenic rearrangements, such as single exon deletion or duplication. This approach can lead to the identification of new disease genes. We report on the analysis of 54 male patients presenting with intellectual deficiency (ID) and a family history suggesting X-linked (XL) inheritance or maternal skewed X-chromosome inactivation (XCI), using a home-made X-chromosome-specific microarray covering the whole human X-chromosome at high resolution. The majority of patients had whole genome array-CGH prior to the selection and we did not include large rearrangements such as MECP2 and FMR1 duplications. We identified four rearrangements considered as causative or potentially pathogenic, corresponding to a detection rate of 8%. Two CNVs affected known XLID genes and were therefore considered as causative (IL1RAPL1 and OPHN1 intragenic deletions). Two new CNVs were considered as potentially pathogenic as they affected interesting candidates for ID. The first CNV is a deletion of the first exon of the TRPC5 gene, encoding a cation channel implicated in dendrite growth and patterning, in a child presenting with ID and an autism spectrum disorder (ASD). The second CNV is a partial deletion of KLHL15, in a patient with severe ID, epilepsy, and anomalies of cortical development. In both cases, in spite of strong arguments for clinical relevance, we were not able at this stage to confirm pathogenicity of the mutations, and the causality of the variants identified in XLID remains to be confirmed. © 2014 Wiley Periodicals, Inc.
Tackling ALK in non-small cell lung cancer: the role of novel inhibitors
Facchinetti, Francesco; Di Maio, Massimo; Graziano, Paolo; Bria, Emilio; Rossi, Giulio; Novello, Silvia
2016-01-01
Crizotinib is an oral inhibitor of anaplastic lymphoma kinase (ALK) with remarkable clinical activity in patients suffering from ALK-rearranged non-small cell lung cancer (NSCLC), accounting to its superiority compared to chemotherapy. Unfortunately, virtually all ALK-rearranged tumors acquire resistance to crizotinib, frequently within one year since the treatment initiation. To date, therapeutic strategies to overcome crizotinib resistance have focused on the use of more potent and structurally different compounds. Second-generation ALK inhibitors such as ceritinib (LDK378), alectinib (CH5424802/RO5424802) and brigatinib (AP26113) have shown relevant clinical activity, consequently fostering their rapid clinical development and their approval by health agencies. The third-generation inhibitor lorlatinib (PF-06463922), selectively active against ALK and ROS1, harbors impressive biological potency; its efficacy in reversing resistance to crizotinib and to other ALK inhibitors is being proven by early clinical trials. The NTRK1-3 and ROS1 inhibitor entrectinib (RXDX-101) has been reported to act against NSCLC harboring ALK fusion proteins too. Despite the quick development of these novel agents, several issues remain to be discussed in the treatment of patients suffering from ALK-rearranged NSCLC. This position paper will discuss the development, the current evidence and approvals, as long as the future perspectives of new ALK inhibitors beyond crizotinib. Clinical behaviors of ALK-rearranged NSCLC vary significantly among patients and differential molecular events responsible of crizotinib resistance account for the most important quote of this heterogeneity. The precious availability of a wide range of active anti-ALK compounds should be approached in a critical and careful perspective, in order to develop treatment strategies tailored on the disease evolution of every single patient. PMID:27413712
Detection of gene expression changes at chromosomal rearrangement breakpoints in evolution
2012-01-01
Background We study the relation between genome rearrangements, breakpoints and gene expression. Genome rearrangement research has been concerned with the creation of breakpoints and their position in the chromosome, but the functional consequences of individual breakpoints remain virtually unknown, and there are no direct genome-wide studies of breakpoints from this point of view. A question arises of what the biological consequences of breakpoint creation are, rather than just their structural aspects. The question is whether proximity to the site of a breakpoint event changes the activity of a gene. Results We investigate this by comparing the distribution of distances to the nearest breakpoint of genes that are differentially expressed with the distribution of the same distances for the entire gene complement. We study this in data on whole blood tissue in human versus macaque, and in cerebral cortex tissue in human versus chimpanzee. We find in both data sets that the distribution of distances to the nearest breakpoint of "changed expression genes" differs little from this distance calculated for the rest of the gene complement. In focusing on the changed expression genes closest to the breakpoints, however, we discover that several of these have previously been implicated in the literature as being connected to the evolutionary divergence of humans from other primates. Conclusions We conjecture that chromosomal rearrangements occasionally interrupt the regulatory configurations of genes close to the breakpoint, leading to changes in expression. PMID:22536904
Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen
2016-01-01
Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965
Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia
Gu, Zhaohui; Churchman, Michelle; Roberts, Kathryn; Li, Yongjin; Liu, Yu; Harvey, Richard C.; McCastlain, Kelly; Reshmi, Shalini C.; Payne-Turner, Debbie; Iacobucci, Ilaria; Shao, Ying; Chen, I-Ming; Valentine, Marcus; Pei, Deqing; Mungall, Karen L.; Mungall, Andrew J.; Ma, Yussanne; Moore, Richard; Marra, Marco; Stonerock, Eileen; Gastier-Foster, Julie M.; Devidas, Meenakshi; Dai, Yunfeng; Wood, Brent; Borowitz, Michael; Larsen, Eric E.; Maloney, Kelly; Mattano Jr, Leonard A.; Angiolillo, Anne; Salzer, Wanda L.; Burke, Michael J.; Gianni, Francesca; Spinelli, Orietta; Radich, Jerald P.; Minden, Mark D.; Moorman, Anthony V.; Patel, Bella; Fielding, Adele K.; Rowe, Jacob M.; Luger, Selina M.; Bhatia, Ravi; Aldoss, Ibrahim; Forman, Stephen J.; Kohlschmidt, Jessica; Mrózek, Krzysztof; Marcucci, Guido; Bloomfield, Clara D.; Stock, Wendy; Kornblau, Steven; Kantarjian, Hagop M.; Konopleva, Marina; Paietta, Elisabeth; Willman, Cheryl L.; L. Loh, Mignon; P. Hunger, Stephen; Mullighan, Charles G.
2016-01-01
Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2D-BCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered. PMID:27824051
Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan
Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin
2014-01-01
Background and Objective: Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph+CML in Pakistan. Methods: The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. Results: All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. Conclusion: It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low. PMID:25097530
DEREGULATION OF DUX4 AND ERG IN ACUTE LYMPHOBLASTIC LEUKEMIA
Zhang, Jinghui; McCastlain, Kelly; Yoshihara, Hiroki; Xu, Beisi; Chang, Yunchao; Churchman, Michelle L.; Wu, Gang; Li, Yongjin; Wei, Lei; Iacobucci, Ilaria; Liu, Yu; Qu, Chunxu; Wen, Ji; Edmonson, Michael; Payne-Turner, Debbie; Kaufmann, Kerstin B.; Takayanagi, Shin-ichiro; Wienholds, Erno; Waanders, Esmé; Ntziachristos, Panagiotis; Bakogianni, Sofia; Wang, Jingjing; Aifantis, Iannis; Roberts, Kathryn G.; Ma, Jing; Song, Guangchun; Easton, John; Mulder, Heather L.; Chen, Xiang; Newman, Scott; Ma, Xiaotu; Rusch, Michael; Gupta, Pankaj; Boggs, Kristy; Vadodaria, Bhavin; Dalton, James; Liu, Yanling; Valentine, Marcus L; Ding, Li; Lu, Charles; Fulton, Robert S.; Fulton, Lucinda; Tabib, Yashodhan; Ochoa, Kerri; Devidas, Meenakshi; Pei, Deqing; Cheng, Cheng; Yang, Jun; Evans, William E.; Relling, Mary V.; Pui, Ching-Hon; Jeha, Sima; Harvey, Richard C.; Chen, I-Ming L; Willman, Cheryl L.; Marcucci, Guido; Bloomfield, Clara D.; Kohlschmidt, Jessica; Mrózek, Krzysztof; Paietta, Elisabeth; Tallman, Martin S.; Stock, Wendy; Foster, Matthew C.; Racevskis, Janis; Rowe, Jacob M.; Luger, Selina; Kornblau, Steven M.; Shurtleff, Sheila A; Raimondi, Susana C.; Mardis, Elaine R.; Wilson, Richard K.; Dick, John E.; Hunger, Stephen P; Loh, Mignon L.; Downing, James R.; Mullighan, Charles G.
2016-01-01
Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL).1,2 Here, we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG are hallmarks of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases, and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion. ERGalt utilizes a non-canonical first exon whose transcription was initiated by DUX4 binding. ERGalt retains the DNA-binding and transactivating domains of ERG, but inhibits wild-type ERG transcriptional activity and is transforming. These results illustrate a unique paradigm of transcription factor deregulation in leukemia, in which DUX4 deregulation results in loss-of-function of ERG, either by deletion or induction of expression of an isoform that is a dominant negative inhibitor of wild type ERG function. PMID:27776115
Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function
Lerit, Dorothy A.; Jordan, Holly A.; Poulton, John S.; Fagerstrom, Carey J.; Galletta, Brian J.; Peifer, Mark
2015-01-01
Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability. PMID:26150390
Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function.
Lerit, Dorothy A; Jordan, Holly A; Poulton, John S; Fagerstrom, Carey J; Galletta, Brian J; Peifer, Mark; Rusan, Nasser M
2015-07-06
Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle-dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability.
Faria, Luiz F O; Paschoal, Vitor H; Lima, Thamires A; Ferreira, Fabio F; Freitas, Rafael S; Ribeiro, Mauro C C
2017-10-26
A local order-disorder transition has been disclosed in the thermophysical behavior of the ionic liquid 1-benzyl-3-methylimidazolium dicyanamide, [Bzmim][N(CN) 2 ], and its microscopic nature revealed by spectroscopic techniques. Differential scanning calorimetry and specific heat measurements show a thermal event of small enthalpy variation taking place in the range 250-260 K, which is not due to crystallization or melting. Molecular dynamic simulations and X-ray diffraction measurements have been used to discuss the segregation of domains in the liquid structure of [Bzmim][N(CN) 2 ]. Raman and NMR spectroscopy measurements as a function of temperature indicate that the microscopic origin of the event observed in the calorimetric measurements comes from structural rearrangement involving the benzyl group. The results indicate that the characteristic structural heterogeneity allow for rearrangements within local domains implying the good glass-forming ability for the low viscosity ionic liquid [Bzmim][N(CN) 2 ]. This work sheds light on our understanding of the microscopic origin behind complex thermal behavior of ionic liquids.
Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling
NASA Astrophysics Data System (ADS)
Schwarze, C.; Gupta, A.; Hickel, T.; Darvishi Kamachali, R.
2017-05-01
We investigate the evolution of large number of δ' coherent precipitates from a supersaturated Al-8 at.% Li alloy using large-scale phase-field simulations. A chemomechanical cross-coupling between mechanical relaxation and diffusion is taken into account by considering the dependence of elastic constants of the matrix phase onto the local concentration of solute atoms. The elastic constants as a function of solute concentration have been obtained using density functional theory calculations. As a result of the coupling, inverse ripening has been observed where the smaller precipitates grow at the expense of the larger ones. This is due to size-dependent concentration gradients existing around the precipitates. At the same time, precipitates rearrange themselves as a consequence of minimization of the total elastic energy of the system. It is found that the anisotropy of the chemomechanical coupling leads to the formation of new patterns of elasticity in the matrix thereby resulting in new alignments of the precipitates.
Mechanisms of lithium transport in amorphous polyethylene oxide.
Duan, Yuhua; Halley, J W; Curtiss, Larry; Redfern, Paul
2005-02-01
We report calculations using a previously reported model of lithium perchlorate in polyethylene oxide in order to understand the mechanism of lithium transport in these systems. Using an algorithm suggested by Voter, we find results for the diffusion rate which are quite close to experimental values. By analysis of the individual events in which large lithium motions occur during short times, we find that no single type of rearrangement of the lithium environment characterizes these events. We estimate the free energies of the lithium ion as a function of position during these events by calculation of potentials of mean force and thus derive an approximate map of the free energy as a function of lithium position during these events. The results are consistent with a Marcus-like picture in which the system slowly climbs a free energy barrier dominated by rearrangement of the polymer around the lithium ions, after which the lithium moves very quickly to a new position. Reducing the torsion forces in the model causes the diffusion rates to increase.
Neto, Filipa; Klaus-Bergmann, Alexandra; Ong, Yu Ting; Alt, Silvanus; Vion, Anne-Clémence; Szymborska, Anna; Carvalho, Joana R; Hollfinger, Irene; Bartels-Klein, Eireen; Franco, Claudio A
2018-01-01
Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels. PMID:29400648
Transient isomers in the photodissociation of bromoiodomethane
NASA Astrophysics Data System (ADS)
Marcellini, Moreno; Nasedkin, Alexandr; Zietz, Burkhard; Petersson, Jonas; Vincent, Jonathan; Palazzetti, Federico; Malmerberg, Erik; Kong, Qingyu; Wulff, Michael; van der Spoel, David; Neutze, Richard; Davidsson, Jan
2018-04-01
The photochemistry of halomethanes is fascinating for the complex cascade reactions toward either the parent or newly synthesized molecules. Here, we address the structural rearrangement of photodissociated CH2IBr in methanol and cyclohexane, probed by time-resolved X-ray scattering in liquid solution. Upon selective laser cleavage of the C-I bond, we follow the reaction cascade of the two geminate geometrical isomers, CH2I-Br and CH2Br-I. Both meta-stable isomers decay on different time scales, mediated by solvent interaction, toward the original parent molecule. We observe the internal rearrangement of CH2Br-I to CH2I-Br in cyclohexane by extending the time window up to 3 μs. We track the photoproduct kinetics of CH2Br-I in methanol solution where only one isomer is observed. The effect of the polarity of solvent on the geminate recombination pathways is discussed.
Mitotic Recombination and Genetic Changes in Saccharomyces cerevisiae during Wine Fermentation
Puig, Sergi; Querol, Amparo; Barrio, Eladio; Pérez-Ortín, José E.
2000-01-01
Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 × 10−5 to 3 × 10−5 per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis. PMID:10788381
Sembongi, Hiroshi; Di Re, Miriam; Bokori-Brown, Monika; Holt, Ian J
2007-10-01
Rearrangements of mitochondrial DNA (mtDNA) are a well-recognized cause of human disease; deletions are more frequent, but duplications are more readily transmitted to offspring. In theory, partial duplications of mtDNA can be resolved to partially deleted and wild-type (WT) molecules, via homologous recombination. Therefore, the yeast CCE1 gene, encoding a Holliday junction resolvase, was introduced into cells carrying partially duplicated or partially triplicated mtDNA. Some cell lines carrying the CCE1 gene had substantial amounts of WT mtDNA suggesting that the enzyme can mediate intramolecular recombination in human mitochondria. However, high levels of expression of CCE1 frequently led to mtDNA loss, and so it is necessary to strictly regulate the expression of CCE1 in human cells to ensure the selection and maintenance of WT mtDNA.
RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence.
Galloway, Alison; Saveliev, Alexander; Łukasiak, Sebastian; Hodson, Daniel J; Bolland, Daniel; Balmanno, Kathryn; Ahlfors, Helena; Monzón-Casanova, Elisa; Mannurita, Sara Ciullini; Bell, Lewis S; Andrews, Simon; Díaz-Muñoz, Manuel D; Cook, Simon J; Corcoran, Anne; Turner, Martin
2016-04-22
Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-μ at the pre-BCR checkpoint. Copyright © 2016, American Association for the Advancement of Science.
Face-name learning in older adults: a benefit of hyper-binding.
Weeks, Jennifer C; Biss, Renée K; Murphy, Kelly J; Hasher, Lynn
2016-10-01
Difficulty remembering faces and corresponding names is a hallmark of cognitive aging, as is increased susceptibility to distraction. Given evidence that older adults spontaneously encode relationships between target pictures and simultaneously occurring distractors (a hyper-binding phenomenon), we asked whether memory for face-name pairs could be improved through prior exposure to faces presented with distractor names. In three experiments, young and older adults performed a selective attention task on faces while ignoring superimposed names. After a delay, they learned and were tested on face-name pairs that were either maintained or rearranged from the initial task but were not told of the connection between tasks. In each experiment, older but not younger participants showed better memory for maintained than for rearranged pairs, indicating that older adults' natural propensity to tacitly encode and bind relevant and irrelevant information can be employed to aid face-name memory performance.
Saeidian, Hamid; Babri, Mehran; Ashrafi, Davood; Sarabadani, Mansour; Naseri, Mohammad Taghi
2013-08-01
The electron-impact (EI) mass spectra of a series of O-alkyl methylphosphonothionocyanidates were studied for Chemical Weapons Convention (CWC) purposes. General EI fragmentation pathways were constructed and discussed, and collision-induced dissociation studies of the major EI ions were performed to confirm proposed fragment structures by analyzing fragment ions of deuterated analogs and by use of density functional theory (DFT) calculations. Thiono-thiolo rearrangement, McLafferty-type rearrangement, and a previously unknown intramolecular electrophilic aromatic substitution reaction were observed and confirmed. The study also focused on differentiation of isomeric compounds. Retention indices for all compounds, and an electrophilicity index for several compounds, are reported and interpreted.
Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors
Davare, Monika A.; Vellore, Nadeem A.; Wagner, Jacob P.; Eide, Christopher A.; Goodman, James R.; Drilon, Alexander; Deininger, Michael W.; O’Hare, Thomas; Druker, Brian J.
2015-01-01
Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib’s dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1G2032R mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure–function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies. PMID:26372962
Akyurek, Nalan; Uner, Aysegul; Benekli, Mustafa; Barista, Ibrahim
2012-09-01
Diffuse large B-cell lymphomas (DLBCLs) are a biologically heterogeneous group in which various gene alterations have been reported. The aim of this study was to investigate the frequency and prognostic impact of BCL2, BCL6, and MYC rearrangements in cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab (R-CHOP)-treated DLBCL cases. Tissue microarrays were constructed from 239 cases of DLBCL, and the expressions of CD10, BCL6, MUM1/IRF4, and BCL2 were evaluated by immunohistochemistry. MYC, BCL2, and BCL6 rearrangements were investigated by interphase fluorescence in situ hybridization on tissue microarrays. Survival analysis was constructed from 145 R-CHOP-treated patients. MYC, BCL2, and BCL6 rearrangements were detected in 14 (6%), 36 (15%), and 69 (29%) of 239 DLBCL patients. Double or triple rearrangements were detected in 7 (3%) of 239 DLBCL cases. Of these, 4 had BCL2 and MYC, 2 had BCL6 and MYC, and 1 had BCL2, BCL6, and MYC rearrangements. The prognosis of these cases was extremely poor, with a median survival of 9 months. MYC rearrangement was associated with significantly worse overall survival (P = .01), especially for the cases with GC phenotype (P = .009). BCL6 rearrangement also predicted significantly shorter overall survival (P = .04), especially for the non-GC phenotype (P = .03). BCL2 rearrangement had no prognostic impact on outcome. International Prognostic Index (P = .004) and MYC rearrangement (P = .009) were independent poor prognostic factors. Analysis of MYC gene rearrangement along with BCL2 and BCL6 is critical in identifying high-risk patients with poor prognosis. Copyright © 2011 American Cancer Society.
Ko, Young Sin; Hwang, Tae Sook; Kim, Ja Yeon; Choi, Yoon-La; Lee, Seung Eun; Han, Hye Seung; Kim, Wan Seop; Kim, Suk Kyeong; Park, Kyoung Sik
2017-04-12
Molecular markers are helpful diagnostic tools, particularly for cytologically indeterminate thyroid nodules. Preoperative RET/PTC1 rearrangement analysis in BRAF and RAS wild-type indeterminate thyroid nodules would permit the formulation of an unambiguous surgical plan. Cycle threshold values according to the cell count for detection of the RET/PTC1 rearrangement by real-time reverse transcription-polymerase chain reaction (RT-PCR) using fresh and routine air-dried TPC1 cells were evaluated. The correlation of RET/PTC1 rearrangement between fine-needle aspiration (FNA) and paired formalin-fixed paraffin-embedded (FFPE) specimens was analyzed. RET/PTC1 rearrangements of 76 resected BRAF and RAS wild-type classical PTCs were also analyzed. Results of RT-PCR and the Nanostring were compared. When 100 fresh and air-dried TPC1 cells were used, expression of RET/PTC1 rearrangement was detectable after 35 and 33 PCR cycles, respectively. The results of RET/PTC1 rearrangement in 10 FNA and paired FFPE papillary thyroid carcinoma (PTC) specimens showed complete correlation. Twenty-nine (38.2%) of 76 BRAF and RAS wild-type classical PTCs had RET/PTC1 rearrangement. Comparison of RET/PTC1 rearrangement analysis between RT-PCR and the Nanostring showed moderate agreement with a κ value of 0.56 ( p = 0.002). The RET/PTC1 rearrangement analysis by RT-PCR using routine air-dried FNA specimen was confirmed to be technically applicable. A significant proportion (38.2%) of the BRAF and RAS wild-type PTCs harbored RET/PTC1 rearrangements.
GENE-dosage effects on fitness in recent adaptive duplications: ace-1 in the mosquito Culex pipiens.
Labbé, Pierrick; Milesi, Pascal; Yébakima, André; Pasteur, Nicole; Weill, Mylène; Lenormand, Thomas
2014-07-01
Gene duplications have long been advocated to contribute to the evolution of new functions. The role of selection in their early spread is more controversial. Unless duplications are favored for a direct benefit of increased expression, they are likely detrimental. In this article, we investigated the case of duplications favored because they combine already functionally divergent alleles. Their gene-dosage/fitness relations are poorly known because selection may operate on both overall expression and duplicates relative dosage. Using the well-documented case of Culex pipiens resistance to insecticides, we compared strains with various ace-1 allele combinations, including two duplicated alleles carrying both susceptible and resistant copies. The overall protein activity was nearly additive, but, surprisingly, fitness correlated better with the relative proportion of susceptible and resistant copies rather than any absolute measure of activity. Gene dosage is thus crucial, duplications stabilizing a "heterozygote" phenotype. It corroborates the view that these were favored because they fix a permanent heterosis, thereby solving the irreducible trade-off between resistance and synaptic transmission. Moreover, we showed that the contrasted successes of the two duplicated alleles in natural populations depend on genetic changes unrelated to ace-1, confirming the probable implication of recessive sublethal mutations linked to structural rearrangements in some duplications. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism
Douam, Florian; Mancip, Jimmy; Mailly, Laurent; Montserret, Roland; Ding, Qiang; Verhoeyen, Els; Baumert, Thomas F.; Ploss, Alexander; Carbone, Alessandra
2018-01-01
Amino-acid coevolution can be referred to mutational compensatory patterns preserving the function of a protein. Viral envelope glycoproteins, which mediate entry of enveloped viruses into their host cells, are shaped by coevolution signals that confer to viruses the plasticity to evade neutralizing antibodies without altering viral entry mechanisms. The functions and structures of the two envelope glycoproteins of the Hepatitis C Virus (HCV), E1 and E2, are poorly described. Especially, how these two proteins mediate the HCV fusion process between the viral and the cell membrane remains elusive. Here, as a proof of concept, we aimed to take advantage of an original coevolution method recently developed to shed light on the HCV fusion mechanism. When first applied to the well-characterized Dengue Virus (DENV) envelope glycoproteins, coevolution analysis was able to predict important structural features and rearrangements of these viral protein complexes. When applied to HCV E1E2, computational coevolution analysis predicted that E1 and E2 refold interdependently during fusion through rearrangements of the E2 Back Layer (BL). Consistently, a soluble BL-derived polypeptide inhibited HCV infection of hepatoma cell lines, primary human hepatocytes and humanized liver mice. We showed that this polypeptide specifically inhibited HCV fusogenic rearrangements, hence supporting the critical role of this domain during HCV fusion. By combining coevolution analysis and in vitro assays, we also uncovered functionally-significant coevolving signals between E1 and E2 BL/Stem regions that govern HCV fusion, demonstrating the accuracy of our coevolution predictions. Altogether, our work shed light on important structural features of the HCV fusion mechanism and contributes to advance our functional understanding of this process. This study also provides an important proof of concept that coevolution can be employed to explore viral protein mediated-processes, and can guide the development of innovative translational strategies against challenging human-tropic viruses. PMID:29505618
Grundner, Sebastian; Markovits, Monica A. C.; Li, Guanna; ...
2015-06-25
Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. In conclusion, the similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towardsmore » methanol, in both the enzyme system and copper-exchanged mordenite.« less
Grundner, Sebastian; Markovits, Monica A.C.; Li, Guanna; Tromp, Moniek; Pidko, Evgeny A.; Hensen, Emiel J.M.; Jentys, Andreas; Sanchez-Sanchez, Maricruz; Lercher, Johannes A.
2015-01-01
Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon–hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite. PMID:26109507
Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control
Rothenberg, Ellen V.; Ungerbäck, Jonas; Champhekar, Ameya
2016-01-01
T lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of Innate Lymphoid Cells (ILCs) that share transcriptional regulation programs extensively with T cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly-common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate. PMID:26791859
The link between composition and balance in masterworks vs. paintings of lower artistic quality.
Vartanian, Oshin; Martindale, Colin; Podsiadlo, Jacob; Overbay, Shane; Borkum, Jonathan
2005-11-01
In painting, composition is commonly defined as the two-dimensional arrangement of elements within the canvas. Each element is considered to have a perceptual weight. The arrangement of these weighted elements determines how balanced a painting is. It has been suggested that due to superior composition, masterworks may be more balanced than works of lower artistic quality. We tested this hypothesis by instructing our participants to rate masterworks and selections of lower artistic quality on balance. This hypothesis was not supported. Second, it has been suggested that rearranging elements within a painting may have a more detrimental effect on composition (and by extension balance) in masterworks than in selections of lower artistic quality. This view associates works of higher artistic quality with visual rightness, thereby predicting that compositional change would be more likely to cause deviations from a visually right state in masterworks. We tested this hypothesis by displacing an element within each painting to a different location, and measuring the effect on balance. In accordance with recent findings in the literature, we also took into account the severity of the compositional alterations. The results demonstrated that compositional alteration affected balance ratings equally across masterworks and selections of lower artistic quality. These results demonstrate that, although balance is a function of compositional structure, balance on its own is not sufficient to distinguish between works of varying artistic quality. To the extent that balance is considered a function of composition, the results suggest that masterworks are distinguished from works of lower artistic quality for reasons other than solely composition.
Wards in the keyway: amino acids with anomalous pK(a)s in calycins.
Eberini, Ivano; Sensi, Cristina; Bovi, Michele; Molinari, Henriette; Galliano, Monica; Bonomi, Franco; Iametti, Stefania; Gianazza, Elisabetta
2012-12-01
As a follow-up to our recent analysis of the electrostatics of bovine β-lactoglobulin (Eberini et al. in Amino Acids 42:2019-2030, 2011), we investigated whether the occurrence in the native structure of calycins-the superfamily to which β-lactoglobulin belongs-of amino acids with anomalous pK (a)s is an infrequent or, on the contrary, a common occurrence, and whether or not a general pattern may be recognized. To this aim, we randomly selected four calycins we had either purified from natural sources or prepared with recombinant DNA technologies during our previous and current structural and functional studies on this family. Their pIs vary over several pH units and their known functions are as diverse as carriers, enzymes, immunomodulators and/or extracellular chaperones. In our survey, we used both in silico prediction methods and in vitro procedures, such as isoelectric focusing, electrophoretic titration curves and spectroscopic techniques. By comparing the results under native conditions (no exposure of the proteins to chaotropic agents) to those after protein unfolding (in the presence of 8 M urea), a shift is observed in the pK (a) of at least one amino acid per protein, which results in a measurable change in pI. Three types of amino acids are involved: Cys, Glu, and His, their position varies along the calycin sequence. Although no common mechanism may thus be recognized, we hypothesize that the 'normalization' of anomalous pK (a)s may be the phenomenon that accompanies, and favors, structural rearrangements such as those involved in ligand binding by these proteins. An interesting, if anecdotal, validation to this view comes from the behavior of human retinol binding protein, for which the pI of the folded and liganded protein is intermediate between those of the folded and unliganded and of the unfolded protein forms. Likewise, both solid (from crystallography) and solution state (from CD spectroscopy) data confirm that the protein undergoes structural rearrangement upon retinol binding.
Akhunov, Eduard D.; Sehgal, Sunish; Liang, Hanquan; Wang, Shichen; Akhunova, Alina R.; Kaur, Gaganpreet; Li, Wanlong; Forrest, Kerrie L.; See, Deven; Šimková, Hana; Ma, Yaqin; Hayden, Matthew J.; Luo, Mingcheng; Faris, Justin D.; Doležel, Jaroslav; Gill, Bikram S.
2013-01-01
Cycles of whole-genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, 35% of these gene structure rearrangements resulted in frame-shift mutations and premature termination codons. An increased codon mutation rate in the wheat lineage compared with Brachypodium distachyon was found for 17% of orthologs. The discovery of premature termination codons in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (21%–25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence between the duplicated homeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, nonsynonymous mutations, and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to the degeneration of a duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variations, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits. PMID:23124323
Evolutionary trajectory of Pack-MULEs is determined by their epigenetic status
USDA-ARS?s Scientific Manuscript database
Acquisition and rearrangement of host genes by transposable elements is one mechanism to increase gene diversity. The rice genome is replete in such sequences and while ~3,000 Pack- Mutator-like transposable elements containing gene sequences (Pack-MULEs) have been identified, their function remains...
USDA-ARS?s Scientific Manuscript database
Consumer communities are being re-arranged through unprecedented rates of human-mediated invasions and extinctions. Such changes in consumer composition and diversity potentially alter pressure and impact on resource populations. Although insect herbivore invasions are common, and exotic herbivores...
Yang, Kengran; Özçelik, V. Ongun; Garg, Nishant; ...
2018-01-01
Drying-induced nanoscopic alterations to the local atomic structure of silicate-activated slag and the mitigated effects of nano-ZrO2 are elucidated using in situ X-ray pair distribution function analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Kengran; Özçelik, V. Ongun; Garg, Nishant
Drying-induced nanoscopic alterations to the local atomic structure of silicate-activated slag and the mitigated effects of nano-ZrO2 are elucidated using in situ X-ray pair distribution function analysis.
Activation of C-H bonds by rare-earth metallocene-butyl complexes.
Grindell, Richard; Day, Benjamin M; Guo, Fu-Sheng; Pugh, Thomas; Layfield, Richard A
2017-09-05
The stable metallocene-butyl complexes [(Cp Me ) 2 M( n Bu)] 2 (M = Y, Dy) were synthesized and their reactivity towards to ferrocene and bulky N-heterocyclic carbenes investigated. Selective mono-deprotonation of ferrocene and a benzylic methyl group of IMes were observed, whereas a control reaction of (Cp Me ) 3 M with IMes resulted in a normal-to-abnormal NHC rearrangement.
Song, Zhengbo; Zheng, Yuhui; Wang, Xuzhou; Su, Haiyan; Zhang, Yiping; Song, Yong
2017-10-01
Anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) rearrangements represent two most frequent fusion targets in lung adenocarcinoma. Our study was intended to explore the clinicopathological characteristics, coexistence and treatment of ALK/ROS1-rearranged patients of lung adenocarcinoma without epidermal growth factor receptor (EGFR) mutation. Patients with wild-type EGFR mutation were screened for ALK/ROS1 at four domestic hospitals. ALK/ROS1 rearrangements were detected by reverse transcription-polymerase chain reaction (RT-PCR). Progression-free survival (PFS) curve was plotted with the Kaplan-Meier method. Among 732 eligible cases, ALK and ROS1 rearrangements were detected in 89 (12.2%) and 32 (4.4%) patients respectively. One patient harbored coexisting ALK/ROS1 fusion. Both ALK and ROS1-positive phenotypes were predominantly detected in younger non-smokers. More ALK/ROS1-rearranged patients were correlated with the expressions of TTF1, napsin A and solid predominant adenocarcinoma subtype. Thirty-three ALK and six ROS1 rearrangement patients received crizotinib treatment at an advanced stage. The median PFS was 9.5 months for ALK-positive patients and it was not attained in ROS1-rearranged counterparts. The frequency of ALK and ROS1 rearrangements is elevated in EGFR-wild-type patients and the phenomenon of coexisting ALK/ROS1 has remained extremely rare. The rearrangements of ALK/ROS1 are correlated with age, smoking status, expressions of TTF1 & napsin A and solid predominant adenocarcinoma subtype.
Song, Zhengbo; Zheng, Yuhui; Wang, Xuzhou; Su, Haiyan
2017-01-01
Background Anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) rearrangements represent two most frequent fusion targets in lung adenocarcinoma. Our study was intended to explore the clinicopathological characteristics, coexistence and treatment of ALK/ROS1-rearranged patients of lung adenocarcinoma without epidermal growth factor receptor (EGFR) mutation. Methods Patients with wild-type EGFR mutation were screened for ALK/ROS1 at four domestic hospitals. ALK/ROS1 rearrangements were detected by reverse transcription-polymerase chain reaction (RT-PCR). Progression-free survival (PFS) curve was plotted with the Kaplan-Meier method. Results Among 732 eligible cases, ALK and ROS1 rearrangements were detected in 89 (12.2%) and 32 (4.4%) patients respectively. One patient harbored coexisting ALK/ROS1 fusion. Both ALK and ROS1-positive phenotypes were predominantly detected in younger non-smokers. More ALK/ROS1-rearranged patients were correlated with the expressions of TTF1, napsin A and solid predominant adenocarcinoma subtype. Thirty-three ALK and six ROS1 rearrangement patients received crizotinib treatment at an advanced stage. The median PFS was 9.5 months for ALK-positive patients and it was not attained in ROS1-rearranged counterparts. Conclusions The frequency of ALK and ROS1 rearrangements is elevated in EGFR-wild-type patients and the phenomenon of coexisting ALK/ROS1 has remained extremely rare. The rearrangements of ALK/ROS1 are correlated with age, smoking status, expressions of TTF1 & napsin A and solid predominant adenocarcinoma subtype. PMID:29268402
Bartlett, Cynthia Huang; Mino-Kenudson, Mari; Cui, Jean; Iafrate, A. John
2012-01-01
Crizotinib, an ALK/MET/ROS1 inhibitor, was approved by the U.S. Food and Drug Administration for the treatment of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) in August 2011, merely 4 years after the first publication of ALK-rearranged NSCLC. The crizotinib approval was accompanied by the simultaneous approval of an ALK companion diagnostic fluorescent in situ hybridization assay for the detection of ALK-rearranged NSCLC. Crizotinib continued to be developed as an ALK and MET inhibitor in other tumor types driven by alteration in ALK and MET. Crizotinib has recently been shown to be an effective ROS1 inhibitor in ROS1-rearranged NSCLC, with potential future clinical applications in ROS1-rearranged tumors. Here we summarize the heterogeneity within the ALK- and ROS1-rearranged molecular subtypes of NSCLC. We review the past and future clinical development of crizotinib for ALK-rearranged NSCLC and the diagnostic assays to detect ALK-rearranged NSCLC. We highlight how the success of crizotinib has changed the paradigm of future drug development for targeted therapies by targeting a molecular-defined subtype of NSCLC despite its rarity and affected the practice of personalized medicine in oncology, emphasizing close collaboration between clinical oncologists, pathologists, and translational scientists. PMID:22989574
A Prediction Model for ROS1-Rearranged Lung Adenocarcinomas based on Histologic Features.
Zhou, Jianya; Zhao, Jing; Zheng, Jing; Kong, Mei; Sun, Ke; Wang, Bo; Chen, Xi; Ding, Wei; Zhou, Jianying
2016-01-01
To identify the clinical and histological characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) and build a prediction model to prescreen suitable patients for molecular testing. We identified 27 cases of ROS1-rearranged lung adenocarcinomas in 1165 patients with NSCLCs confirmed by real-time PCR and FISH and performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement and finally developed prediction model. Detected with ROS1 immunochemistry, 59 cases of 1165 patients had a certain degree of ROS1 expression. Among these cases, 19 cases (68%, 19/28) with 3+ and 8 cases (47%, 8/17) with 2+ staining were ROS1 rearrangement verified by real-time PCR and FISH. In the resected group, the acinar-predominant growth pattern was the most commonly observed (57%, 8/14), while in the biopsy group, solid patterns were the most frequently observed (78%, 7/13). Based on multiple logistic regression analysis, we determined that female sex, cribriform structure and the presence of psammoma body were the three most powerful indicators of ROS1 rearrangement, and we have developed a predictive model for the presence of ROS1 rearrangements in lung adenocarcinomas. Female, cribriform structure and presence of psammoma body were the three most powerful indicator of ROS1 rearrangement status, and predictive formula was helpful in screening ROS1-rearranged NSCLC, especially for ROS1 immunochemistry equivocal cases.
Oshima, Junko; Lee, Jennifer A; Breman, Amy M; Fernandes, Priscilla H; Babovic-Vuksanovic, Dusica; Ward, Patricia A; Wolfe, Lynne A; Eng, Christine M; Del Gaudio, Daniela
2011-07-01
Mucopolysaccharidosis type II (MPS II) is caused by mutations in the IDS gene, which encodes the lysosomal enzyme iduronate-2-sulfatase. In ∼20% of MPS II patients the disorder is caused by gross IDS structural rearrangements. We identified two male cases harboring complex rearrangements involving the IDS gene and the nearby pseudogene, IDSP1, which has been annotated as a low-copy repeat (LCR). In both cases the rearrangement included a partial deletion of IDS and an inverted insertion of the neighboring region. In silico analyses revealed the presence of repetitive elements as well as LCRs at the junctions of rearrangements. Our models illustrate two alternative consequences of rearrangements initiated by non-allelic homologous recombination of LCRs: resolution by a second recombination event (that is, Alu-mediated recombination), or resolution by non-homologous end joining repair. These complex rearrangements have the potential to be recurrent and may be present among those MSP II cases with previously uncharacterized aberrations involving IDS.
Kloosterman, Wigard P; Tavakoli-Yaraki, Masoumeh; van Roosmalen, Markus J; van Binsbergen, Ellen; Renkens, Ivo; Duran, Karen; Ballarati, Lucia; Vergult, Sarah; Giardino, Daniela; Hansson, Kerstin; Ruivenkamp, Claudia A L; Jager, Myrthe; van Haeringen, Arie; Ippel, Elly F; Haaf, Thomas; Passarge, Eberhard; Hochstenbach, Ron; Menten, Björn; Larizza, Lidia; Guryev, Victor; Poot, Martin; Cuppen, Edwin
2012-06-28
Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
Kim, Jisun; Geyer, Felipe C; Martelotto, Luciano G; Ng, Charlotte Ky; Lim, Raymond S; Selenica, Pier; Li, Anqi; Pareja, Fresia; Fusco, Nicola; Edelweiss, Marcia; Kumar, Rahul; Gularte-Merida, Rodrigo; Forbes, Andre N; Khurana, Ekta; Mariani, Odette; Badve, Sunil; Vincent-Salomon, Anne; Norton, Larry; Reis-Filho, Jorge S; Weigelt, Britta
2018-02-01
Breast adenoid cystic carcinoma (AdCC), a rare type of triple-negative breast cancer, has been shown to be driven by MYB pathway activation, most often underpinned by the MYB-NFIB fusion gene. Alternative genetic mechanisms, such as MYBL1 rearrangements, have been reported in MYB-NFIB-negative salivary gland AdCCs. Here we report on the molecular characterization by massively parallel sequencing of four breast AdCCs lacking the MYB-NFIB fusion gene. In two cases, we identified MYBL1 rearrangements (MYBL1-ACTN1 and MYBL1-NFIB), which were associated with MYBL1 overexpression. A third AdCC harboured a high-level MYB amplification, which resulted in MYB overexpression at the mRNA and protein levels. RNA-sequencing and whole-genome sequencing revealed no definite alternative driver in the fourth AdCC studied, despite high levels of MYB expression and the activation of pathways similar to those activated in MYB-NFIB-positive AdCCs. In this case, a deletion encompassing the last intron and part of exon 15 of MYB, including the binding site of ERG-1, a transcription factor that may downregulate MYB, and the exon 15 splice site, was detected. In conclusion, we demonstrate that MYBL1 rearrangements and MYB amplification probably constitute alternative genetic drivers of breast AdCCs, functioning through MYBL1 or MYB overexpression. These observations emphasize that breast AdCCs probably constitute a convergent phenotype, whereby activation of MYB and MYBL1 and their downstream targets can be driven by the MYB-NFIB fusion gene, MYBL1 rearrangements, MYB amplification, or other yet to be identified mechanisms. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
2-Diazo-1-(4-hydroxyphenyl)ethanone: A Versatile Photochemical and Synthetic Reagenta
Senadheera, Sanjeewa N.; Evans, Anthony S.; Toscano, John P.; Givens, Richard S.
2014-01-01
α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rerrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii reangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a–c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 15 ns with a rate for appearance of 4a of k = 7,1 × 106 s−1 in aq. acetonitrile (1:1 v:v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates. PMID:24305682
Nucleosome architecture throughout the cell cycle
Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto
2016-01-01
Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620
TopBP1 deficiency impairs V(D)J recombination during lymphocyte development
Kim, Jieun; Kyu Lee, Sung; Jeon, Yoon; Kim, Yehyun; Lee, Changjin; Ho Jeon, Sung; Shim, Jaegal; Kim, In-Hoo; Hong, Seokmann; Kim, Nayoung; Lee, Ho; Seong, Rho Hyun
2014-01-01
TopBP1 was initially identified as a topoisomerase II-β-binding protein and it plays roles in DNA replication and repair. We found that TopBP1 is expressed at high levels in lymphoid tissues and is essential for early lymphocyte development. Specific abrogation of TopBP1 expression resulted in transitional blocks during early lymphocyte development. These defects were, in major part, due to aberrant V(D)J rearrangements in pro-B cells, double-negative and double-positive thymocytes. We also show that TopBP1 was located at sites of V(D)J rearrangement. In TopBP1-deficient cells, γ-H2AX foci were found to be increased. In addition, greater amount of γ-H2AX product was precipitated from the regions where TopBP1 was localized than from controls, indicating that TopBP1 deficiency results in inefficient DNA double-strand break repair. The developmental defects were rescued by introducing functional TCR αβ transgenes. Our data demonstrate a novel role for TopBP1 as a crucial factor in V(D)J rearrangement during the development of B, T and iNKT cells. PMID:24442639
Phylogenetic Invariants for Metazoan Mitochondrial Genome Evolution.
Sankoff; Blanchette
1998-01-01
The method of phylogenetic invariants was developed to apply to aligned sequence data generated, according to a stochastic substitution model, for N species related through an unknown phylogenetic tree. The invariants are functions of the probabilities of the observable N-tuples, which are identically zero, over all choices of branch length, for some trees. Evaluating the invariants associated with all possible trees, using observed N-tuple frequencies over all sequence positions, enables us to rapidly infer the generating tree. An aspect of evolution at the genomic level much studied recently is the rearrangements of gene order along the chromosome from one species to another. Instead of the substitutions responsible for sequence evolution, we examine the non-local processes responsible for genome rearrangements such as inversion of arbitrarily long segments of chromosomes. By treating the potential adjacency of each possible pair of genes as a position", an appropriate substitution" model can be recognized as governing the rearrangement process, and a probabilistically principled phylogenetic inference can be set up. We calculate the invariants for this process for N=5, and apply them to mitochondrial genome data from coelomate metazoans, showing how they resolve key aspects of branching order.
Soheili, Arash; Tambar, Uttam K
2013-10-04
A formal total synthesis of (±)-amathaspiramide F through a tandem palladium-catalyzed allylic amination/[2,3]-Stevens rearrangement is reported. The unexpected diastereoselectivity of the [2,3]-Stevens rearrangement was controlled by the substitution patterns of an aromatic ring. This discovery represents a new stereocontrolling element for [2,3]-sigmatropic rearrangements in complex molecular settings.
A facile synthetic route to poly(p-phenylene terephthalamide) with dual functional groups.
Du, Shuming; Wang, Wenbin; Yan, Yan; Zhang, Jie; Tian, Ming; Zhang, Liqun; Wan, Xinhua
2014-09-07
Claisen rearrangement reaction was employed for the first time to obtain a novel PPTA bearing reactive allyl and hydroxyl groups which may act as a sizing agent of Kevlar fibers to improve the interface structure and interfacial adhesion of rubber or epoxy based composites.
Fourth Graders Make Inventions Using SCAMPER and Animal Adaptation Ideas
ERIC Educational Resources Information Center
Hussain, Mahjabeen; Carignan, Anastasia
2016-01-01
This study explores to what extent the SCAMPER (Substitute, Combine, Adapt, Modify, Put to another use, Eliminate, and Rearrange) technique combined with animal adaptation ideas learned through form and function analogy activities can help fourth graders generate creative ideas while augmenting their inventiveness. The sample consisted of 24…
Evaluation of Androgen Receptor Function in Prostate Cancer Prognosis and Therapeutic Stratification
2012-10-01
Miettinen, Wang et al. 2011) (Braun, Goltz et al. 2011) (Rosen, Sesterhenn et al. 2012), rabbit polyclonal anti-PSA antibody (DAKO, A056201-2... Goltz , et al. (2011). "ERG protein expression and genomic rearrangement status in primary and metastatic prostate cancer - a comparative study of two
Walck-Shannon, Elise; Lucas, Bethany; Chin-Sang, Ian; Reiner, David; Kumfer, Kraig; Cochran, Hunter; Bothfeld, William; Hardin, Jeff
2016-11-01
Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation.
Lucas, Bethany; Chin-Sang, Ian; Reiner, David; Kumfer, Kraig
2016-01-01
Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation. PMID:27861585
Structural Maturation of HIV-1 Reverse Transcriptase—A Metamorphic Solution to Genomic Instability
London, Robert E.
2016-01-01
Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development. PMID:27690082
Wang, Runze; Ming, Meiling; Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling; Wu, Jun
2017-01-01
MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear ( Pyrus ), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear.
Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling
2017-01-01
MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (Pyrus), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear. PMID:28924499
Leeman-Neill, Rebecca J.; Brenner, Alina V.; Little, Mark P.; Bogdanova, Tetiana I.; Hatch, Maureen; Zurnadzy, Liudmyla Y.; Mabuchi, Kiyohiko; Tronko, Mykola D.; Nikiforov, Yuri E.
2012-01-01
Background Childhood exposure to I-131 from the 1986 Chernobyl accident led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Methods We performed mutational analysis of 62 PTCs diagnosed in a Ukrainian cohort of patients who were <18 y.o. in 1986 and received 0.008-8.6 Gy of I-131 to the thyroid and explored associations between mutation types and I-131 dose and other characteristics. Results RET/PTC rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ rearrangement were identified. We found a significant negative association with I-131 dose for BRAF and RAS point mutations and a significant concave association with I-131 dose, with an inflection point at 1.6 Gy and odds ratio 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared to point mutations, rearrangements were associated with residence in the relatively iodine deficient Zhytomyr region, younger age at exposure or surgery, and male gender. Conclusions Our results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with I-131 dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and I-131 exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. PMID:23436219
Nilsson, R. Jonas A.; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L.; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A.M.; Thunnissen, Erik; Dingemans, Anne-Marie C.; Viteri, Santiago; Tannous, Bakhos A.; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F.; Wurdinger, Thomas
2016-01-01
Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone. PMID:26544515
Nilsson, R Jonas A; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A M; Thunnissen, Erik; Dingemans, Anne-Marie C; Viteri, Santiago; Tannous, Bakhos A; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F; Wurdinger, Thomas
2016-01-05
Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK- platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone.
Ranka, Karnamohit; Zhao, Ning; Yu, Long; Stanton, John F; Polfer, Nicolas C
2018-05-29
We report on the ultraviolet photodissociation (UVPD) chemistry of protonated tyrosine, iodotyrosine, and diiodotyrosine. Distonic loss of the iodine creates a high-energy radical at the aromatic ring that engages in hydrogen/proton rearrangement chemistry. Based on UVPD kinetics measurements, the appearance of this radical is coincident with the UV irradiation pulse (8 ns). Conversely, sequential UVPD product ions exhibit metastable decay on ca. 100 ns timescales. Infrared ion spectroscopy is capable of confirming putative structures of the rearrangement products as proton transfers from the imine and β-carbon hydrogens. Potential energy surfaces for the various reaction pathways indicate that the rearrangement chemistry is highly complex, compatible with a cascade of rearrangements, and that there is no preferred rearrangement pathway even in small molecular systems like these. Graphical Abstract.
Bekker-Méndez, Vilma Carolina; Miranda-Peralta, Enrique; Núñez-Enríquez, Juan Carlos; Olarte-Carrillo, Irma; Guerra-Castillo, Francisco Xavier; Pompa-Mera, Ericka Nelly; Ocaña-Mondragón, Alicia; Rangel-López, Angélica; Bernáldez-Ríos, Roberto; Medina-Sanson, Aurora; Jiménez-Hernández, Elva; Amador-Sánchez, Raquel; Peñaloza-González, José Gabriel; de Diego Flores-Chapa, José; Fajardo-Gutiérrez, Arturo; Flores-Lujano, Janet; Rodríguez-Zepeda, María Del Carmen; Dorantes-Acosta, Elisa María; Bolea-Murga, Victoria; Núñez-Villegas, Nancy; Velázquez-Aviña, Martha Margarita; Torres-Nava, José Refugio; Reyes-Zepeda, Nancy Carolina; González-Bonilla, Cesar; Mejía-Aranguré, Juan Manuel
2014-01-01
Mexico has one of the highest incidences of childhood leukemia worldwide and significantly higher mortality rates for this disease compared with other countries. One possible cause is the high prevalence of gene rearrangements associated with the etiology or with a poor prognosis of childhood acute lymphoblastic leukemia (ALL). The aims of this multicenter study were to determine the prevalence of the four most common gene rearrangements [ETV6-RUNX1, TCF3-PBX1, BCR-ABL1, and MLL rearrangements] and to explore their relationship with mortality rates during the first year of treatment in ALL children from Mexico City. Patients were recruited from eight public hospitals during 2010-2012. A total of 282 bone marrow samples were obtained at each child's diagnosis for screening by conventional and multiplex reverse transcription polymerase chain reaction to determine the gene rearrangements. Gene rearrangements were detected in 50 (17.7%) patients. ETV6-RUNX1 was detected in 21 (7.4%) patients, TCF3-PBX1 in 20 (7.1%) patients, BCR-ABL1 in 5 (1.8%) patients, and MLL rearrangements in 4 (1.4%) patients. The earliest deaths occurred at months 1, 2, and 3 after diagnosis in patients with MLL, ETV6-RUNX1, and BCR-ABL1 gene rearrangements, respectively. Gene rearrangements could be related to the aggressiveness of leukemia observed in Mexican children.
Bekker-Méndez, Vilma Carolina; Miranda-Peralta, Enrique; Núñez-Enríquez, Juan Carlos; Olarte-Carrillo, Irma; Guerra-Castillo, Francisco Xavier; Pompa-Mera, Ericka Nelly; Ocaña-Mondragón, Alicia; Bernáldez-Ríos, Roberto; Medina-Sanson, Aurora; Jiménez-Hernández, Elva; Amador-Sánchez, Raquel; Peñaloza-González, José Gabriel; de Diego Flores-Chapa, José; Fajardo-Gutiérrez, Arturo; Flores-Lujano, Janet; Rodríguez-Zepeda, María del Carmen; Dorantes-Acosta, Elisa María; Bolea-Murga, Victoria; Núñez-Villegas, Nancy; Velázquez-Aviña, Martha Margarita; Torres-Nava, José Refugio; Reyes-Zepeda, Nancy Carolina; González-Bonilla, Cesar; Mejía-Aranguré, Juan Manuel
2014-01-01
Mexico has one of the highest incidences of childhood leukemia worldwide and significantly higher mortality rates for this disease compared with other countries. One possible cause is the high prevalence of gene rearrangements associated with the etiology or with a poor prognosis of childhood acute lymphoblastic leukemia (ALL). The aims of this multicenter study were to determine the prevalence of the four most common gene rearrangements [ETV6-RUNX1, TCF3-PBX1, BCR-ABL1, and MLL rearrangements] and to explore their relationship with mortality rates during the first year of treatment in ALL children from Mexico City. Patients were recruited from eight public hospitals during 2010–2012. A total of 282 bone marrow samples were obtained at each child's diagnosis for screening by conventional and multiplex reverse transcription polymerase chain reaction to determine the gene rearrangements. Gene rearrangements were detected in 50 (17.7%) patients. ETV6-RUNX1 was detected in 21 (7.4%) patients, TCF3-PBX1 in 20 (7.1%) patients, BCR-ABL1 in 5 (1.8%) patients, and MLL rearrangements in 4 (1.4%) patients. The earliest deaths occurred at months 1, 2, and 3 after diagnosis in patients with MLL, ETV6-RUNX1, and BCR-ABL1 gene rearrangements, respectively. Gene rearrangements could be related to the aggressiveness of leukemia observed in Mexican children. PMID:25692130
A Prediction Model for ROS1-Rearranged Lung Adenocarcinomas based on Histologic Features
Zheng, Jing; Kong, Mei; Sun, Ke; Wang, Bo; Chen, Xi; Ding, Wei; Zhou, Jianying
2016-01-01
Aims To identify the clinical and histological characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) and build a prediction model to prescreen suitable patients for molecular testing. Methods and Results We identified 27 cases of ROS1-rearranged lung adenocarcinomas in 1165 patients with NSCLCs confirmed by real-time PCR and FISH and performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement and finally developed prediction model. Detected with ROS1 immunochemistry, 59 cases of 1165 patients had a certain degree of ROS1 expression. Among these cases, 19 cases (68%, 19/28) with 3+ and 8 cases (47%, 8/17) with 2+ staining were ROS1 rearrangement verified by real-time PCR and FISH. In the resected group, the acinar-predominant growth pattern was the most commonly observed (57%, 8/14), while in the biopsy group, solid patterns were the most frequently observed (78%, 7/13). Based on multiple logistic regression analysis, we determined that female sex, cribriform structure and the presence of psammoma body were the three most powerful indicators of ROS1 rearrangement, and we have developed a predictive model for the presence of ROS1 rearrangements in lung adenocarcinomas. Conclusions Female, cribriform structure and presence of psammoma body were the three most powerful indicator of ROS1 rearrangement status, and predictive formula was helpful in screening ROS1-rearranged NSCLC, especially for ROS1 immunochemistry equivocal cases. PMID:27648828
Asymptotic form of the charge exchange cross section in the three body rearrangement collisions
NASA Technical Reports Server (NTRS)
Omidvar, K.
1975-01-01
A three body general rearrangement collision is considered where the initial and final bound states are described by the hydrogen-like wave functions. Mathematical models are developed to establish the relationships of quantum number, the reduced mass, and the nuclear charge of the final state. It is shown that for the low lying levels, the reciprocal of n cubed scaling law at all incident energies is only approximately satisfied. The case of the symmetric collisions is considered and it is shown that for high n and high incident energy, E, the cross section behaves as the reciprocal of E cubed. Zeros and minima in the differential cross sections in the limit of high n for protons on atomic hydrogen and positrons on atomic hydrogen are given.
[Morphological spectrum of USP6 rearranged lesions].
Mechtersheimer, G; Werner, M
2018-03-01
USP6, also known as Tre-2 and TRE17, is an ubiquitase-specific proteinase that was identified more than two decades ago as a potential oncogene when it exhibited transforming properties upon overexpression in NIH 3T3 cells. Until recently, however, little was known about the function and the oncogenetic activation of USP6. The identification of rearrangements of the USP6 gene in aneurysmal bone cyst and in nodular fasciitis has not only led to a better understanding of the pathogenesis of these entities, but is also a useful tool in their diagnosis and differential diagnostic delineation from morphological mimics. In this review, the clinical, pathomorphological, and molecular genetic aspects of aneurysmal bone cyst and of nodular fasciitis, as well as from related lesions, are presented and discussed.
Structure-reactivity relationship of Amadori rearrangement products compared to related ketoses.
Kaufmann, Martin; Meissner, Philipp M; Pelke, Daniel; Mügge, Clemens; Kroh, Lothar W
2016-06-16
Structure-reactivity relationships of Amadori rearrangement products compared to their related ketoses were derived from multiple NMR spectroscopic techniques. Besides structure elucidation of six Amadori rearrangement products derived from d-glucose and d-galactose with l-alanine, l-phenylalanine and l-proline, especially quantitative (13)C selective saturation transfer NMR spectroscopy was applied to deduce information on isomeric systems. It could be shown exemplarily that the Amadori compound N-(1-deoxy-d-fructos-1-yl)-l-proline exhibits much higher isomerisation rates than d-fructose, which can be explained by C-1 substituent mediated intramolecular catalysis. In combination with a reduced carbonyl activity of Amadori compounds compared to their related ketoses which results in an increased acyclic keto isomer concentration, the results on isomerisation dynamics lead to a highly significant increased reactivity of Amadori compounds. This can be clearly seen, comparing approximated carbohydrate milieu stability time constants (ACuSTiC) which is 1 s for N-(1-deoxy-d-fructos-1-yl)-l-proline and 10 s for d-fructose at pD 4.20 ± 0.05 at 350 K. In addition, first NMR spectroscopic data are provided, which prove that α-pyranose of (amino acid substituted) d-fructose adopts both, (2)C5 and (5)C2 conformation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Andersson, Ulrika; Wibom, Carl; Cederquist, Kristina; Aradottir, Steina; Borg, Åke; Armstrong, Georgina N.; Shete, Sanjay; Lau, Ching C.; Bainbridge, Matthew N.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill; Lai, Rose; Il'yasova, Dora; Houlston, Richard S.; Schildkraut, Joellen; Bernstein, Jonine L.; Olson, Sara H.; Jenkins, Robert B.; Lachance, Daniel H.; Wrensch, Margaret; Davis, Faith G.; Merrell, Ryan; Johansen, Christoffer; Sadetzki, Siegal; Bondy, Melissa L.; Melin, Beatrice S.; Adatto, Phyllis; Morice, Fabian; Payen, Sam; McQuinn, Lacey; McGaha, Rebecca; Guerra, Sandra; Paith, Leslie; Roth, Katherine; Zeng, Dong; Zhang, Hui; Yung, Alfred; Aldape, Kenneth; Gilbert, Mark; Weinberger, Jeffrey; Colman, Howard; Conrad, Charles; de Groot, John; Forman, Arthur; Groves, Morris; Levin, Victor; Loghin, Monica; Puduvalli, Vinay; Sawaya, Raymond; Heimberger, Amy; Lang, Frederick; Levine, Nicholas; Tolentino, Lori; Saunders, Kate; Thach, Thu-Trang; Iacono, Donna Dello; Sloan, Andrew; Gerson, Stanton; Selman, Warren; Bambakidis, Nicholas; Hart, David; Miller, Jonathan; Hoffer, Alan; Cohen, Mark; Rogers, Lisa; Nock, Charles J; Wolinsky, Yingli; Devine, Karen; Fulop, Jordonna; Barrett, Wendi; Shimmel, Kristen; Ostrom, Quinn; Barnett, Gene; Rosenfeld, Steven; Vogelbaum, Michael; Weil, Robert; Ahluwalia, Manmeet; Peereboom, David; Staugaitis, Susan; Schilero, Cathy; Brewer, Cathy; Smolenski, Kathy; McGraw, Mary; Naska, Theresa; Rosenfeld, Steven; Ram, Zvi; Blumenthal, Deborah T.; Bokstein, Felix; Umansky, Felix; Zaaroor, Menashe; Cohen, Avi; Tzuk-Shina, Tzeela; Voldby, Bo; Laursen, René; Andersen, Claus; Brennum, Jannick; Henriksen, Matilde Bille; Marzouk, Maya; Davis, Mary Elizabeth; Boland, Eamon; Smith, Marcel; Eze, Ogechukwu; Way, Mahalia; Lada, Pat; Miedzianowski, Nancy; Frechette, Michelle; Paleologos, Nina; Byström, Gudrun; Svedberg, Eva; Huggert, Sara; Kimdal, Mikael; Sandström, Monica; Brännström, Nikolina; Hayat, Amina; Tihan, Tarik; Zheng, Shichun; Berger, Mitchel; Butowski, Nicholas; Chang, Susan; Clarke, Jennifer; Prados, Michael; Rice, Terri; Sison, Jeannette; Kivett, Valerie; Duo, Xiaoqin; Hansen, Helen; Hsuang, George; Lamela, Rosito; Ramos, Christian; Patoka, Joe; Wagenman, Katherine; Zhou, Mi; Klein, Adam; McGee, Nora; Pfefferle, Jon; Wilson, Callie; Morris, Pagan; Hughes, Mary; Britt-Williams, Marlin; Foft, Jessica; Madsen, Julia; Polony, Csaba; McCarthy, Bridget; Zahora, Candice; Villano, John; Engelhard, Herbert; Borg, Ake; Chanock, Stephen K; Collins, Peter; Elston, Robert; Kleihues, Paul; Kruchko, Carol; Petersen, Gloria; Plon, Sharon; Thompson, Patricia; Johansen, C.; Sadetzki, S.; Melin, B.; Bondy, Melissa L.; Lau, Ching C.; Scheurer, Michael E.; Armstrong, Georgina N.; Liu, Yanhong; Shete, Sanjay; Yu, Robert K.; Aldape, Kenneth D.; Gilbert, Mark R.; Weinberg, Jeffrey; Houlston, Richard S.; Hosking, Fay J.; Robertson, Lindsay; Papaemmanuil, Elli; Claus, Elizabeth B.; Claus, Elizabeth B.; Barnholtz-Sloan, Jill; Sloan, Andrew E.; Barnett, Gene; Devine, Karen; Wolinsky, Yingli; Lai, Rose; McKean-Cowdin, Roberta; Il'yasova, Dora; Schildkraut, Joellen; Sadetzki, Siegal; Yechezkel, Galit Hirsh; Bruchim, Revital Bar-Sade; Aslanov, Lili; Sadetzki, Siegal; Johansen, Christoffer; Kosteljanetz, Michael; Broholm, Helle; Bernstein, Jonine L.; Olson, Sara H.; Schubert, Erica; DeAngelis, Lisa; Jenkins, Robert B.; Yang, Ping; Rynearson, Amanda; Andersson, Ulrika; Wibom, Carl; Henriksson, Roger; Melin, Beatrice S.; Cederquist, Kristina; Aradottir, Steina; Borg, Åke; Merrell, Ryan; Lada, Patricia; Wrensch, Margaret; Wiencke, John; Wiemels, Joe; McCoy, Lucie; McCarthy, Bridget J.; Davis, Faith G.
2014-01-01
Background Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers. Methods Germline rearrangements in 146 glioma families (from the Gliogene Consortium; http://www.gliogene.org/) were examined using multiplex ligation-dependent probe amplification. These families all had at least 2 verified glioma cases and a third reported or verified glioma case in the same family or 2 glioma cases in the family with at least one family member affected with melanoma, colon, or breast cancer.The genomic areas covering TP53, CDKN2A, MLH1, and MSH2 were selected because these genes have been previously reported to be associated with cancer pedigrees known to include glioma. Results We detected a single structural rearrangement, a deletion of exons 1-6 in MSH2, in the proband of one family with 3 cases with glioma and one relative with colon cancer. Conclusions Large deletions and duplications are rare events in familial glioma cases, even in families with a strong family history of cancers that may be involved in known cancer syndromes. PMID:24723567
JCAR014 and Durvalumab in Treating Patients With Relapsed or Refractory B-cell Non-Hodgkin Lymphoma
2018-04-02
BCL2 Gene Rearrangement; BCL6 Gene Rearrangement; CD19 Positive; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; High-Grade B-Cell Lymphoma With MYC, BCL2, and BCL6 Rearrangements; MYC Gene Rearrangement; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma
Paul, Mishu; Balanarayan, P
2018-06-05
Plasmonic modes in single-molecule systems have been previously identified by scaling two-electron interactions in calculating excitation energies. Analysis of transition dipole moments for states of polyacenes based on configuration interaction is another method for characterising molecular plasmons. The principal features in the electronic absorption spectra of polyacenes are a low-intensity, lower-in-energy peak and a high-intensity, higher-in-energy peak. From calculations using time-dependent density functional theory with the B3LYP/cc-pVTZ basis set, both these peaks are found to result from the same set of electronic transitions, that is, HOMO-n to LUMO and HOMO to LUMO+n, where n varies as the number of fused rings increases. In this work, the excited states of polyacenes, naphthalene through pentacene, are analysed using electron densities and molecular electrostatic potential (MESP) topography. Compared to other excited states the bright and dark plasmonic states involve the least electron rearrangement. Quantitatively, the MESP topography indicates that the variance in MESP values and the displacement in MESP minima positions, calculated with respect to the ground state, are lowest for plasmonic states. The excited-state electronic density profiles and electrostatic potential topographies suggest the least electron rearrangement for the plasmonic states. Conversely, high electron rearrangement characterises a single-particle excitation. The molecular plasmon can be called an excited state most similar to the ground state in terms of one-electron properties. This is found to be true for silver (Ag 6 ) and sodium (Na 8 ) linear chains as well. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plummer, Christopher W; Wei, Carolyn S; Yozwiak, Carrie E; Soheili, Arash; Smithback, Sara O; Leighton, James L
2014-07-16
An approach to the synthesis of the (iso)cyclocitrinol core structure is described. The key step is a tandem Ireland Claisen/Cope rearrangement sequence, wherein the Ireland Claisen rearrangement effects ring contraction to a strained 10-membered ring, and that strain in turn drives the Cope rearrangement under unusually mild thermal conditions. A major side product was identified as resulting from an unexpected and remarkably facile [1,3]-sigmatropic rearrangement, and a tactic to disfavor the [1,3] pathway and increase the efficiency of the tandem reaction was rationally devised.
Abregrams or deleweds: A forty-year view of acronyms. [Abbreviations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowden, D.D.
New concepts often call for new words and abbreviated forms in the language. Not linguists, but persons who first envision, describe, and use new ideas are the ones who rearrange existing word combinations or create new terminology. Professional communicators do not prescribe usage, but can influence the selection of new words and especially acronyms. A practical knowledge of etymology, usage, and trends will help communicators make more discriminating choices.
Sigala, Paul A.; Kraut, Daniel A.; Caaveiro, Jose M. M.; Pybus, Brandon; Ruben, Eliza A.; Ringe, Dagmar; Petsko, Gregory A.; Herschlag, Daniel
2009-01-01
Enzymes are classically proposed to accelerate reactions by binding substrates within active site environments that are structurally preorganized to optimize binding interactions with reaction transition states rather than ground states. This is a remarkably formidable task considering the limited 0.1 – 1 Å scale of most substrate rearrangements. The flexibility of active site functional groups along the coordinate of substrate rearrangement, the distance scale on which enzymes can distinguish structural rearrangement, and the energetic significance of discrimination on that scale remain open questions that are fundamental to a basic physical understanding of enzyme active sites and catalysis. We bring together high resolution X-ray crystallography, 1H and 19F NMR spectroscopy, quantum mechanical calculations, and transition state analog binding measurements to test the distance scale on which non-covalent forces can constrain side chain and ligand relaxation or translation along a specific coordinate and the energetic consequences of such geometric constraints within the active site of bacterial ketosteroid isomerase (KSI). Our results strongly suggest that packing and binding interactions within the KSI active site can constrain local side chain reorientation and prevent hydrogen bond shortening by 0.1 Å or less. Further, this constraint has substantial energetic effects on ligand binding and stabilization of negative charge within the oxyanion hole. These results provide evidence that subtle geometric effects, indistinguishable in most X-ray crystallographic structures, can have significant energetic consequences and highlight the importance of using synergistic experimental approaches to dissect enzyme function. PMID:18808119
Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome.
Sharma, Divya; Cukras, Anthony R; Rogers, Elizabeth J; Southworth, Daniel R; Green, Rachel
2007-12-07
The fidelity of aminoacyl-tRNA selection by the ribosome depends on a conformational switch in the decoding center of the small ribosomal subunit induced by cognate but not by near-cognate aminoacyl-tRNA. The aminoglycosides paromomycin and streptomycin bind to the decoding center and induce related structural rearrangements that explain their observed effects on miscoding. Structural and biochemical studies have identified ribosomal protein S12 (as well as specific nucleotides in 16S ribosomal RNA) as a critical molecular contributor in distinguishing between cognate and near-cognate tRNA species as well as in promoting more global rearrangements in the small subunit, referred to as "closure." Here we use a mutational approach to define contributions made by two highly conserved loops in S12 to the process of tRNA selection. Most S12 variant ribosomes tested display increased levels of fidelity (a "restrictive" phenotype). Interestingly, several variants, K42A and R53A, were substantially resistant to the miscoding effects of paromomycin. Further characterization of the compromised paromomycin response identified a probable second, fidelity-modulating binding site for paromomycin in the 16S ribosomal RNA that facilitates closure of the small subunit and compensates for defects associated with the S12 mutations.
Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M
2016-05-01
The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Scott, D J; Leejeerajumnean, S; Brannigan, J A; Lewis, R J; Wilkinson, A J; Hoggett, J G
1999-11-12
The protein/protein interaction between SinI and SinR has been studied by analytical ultracentrifugation and gel electrophoresis in an attempt to understand how these proteins contribute to developmental control of sporulation in Bacillus subtilis. SinR was found to be tetrameric, while SinI was found to exist as monomers and dimers in a rapidly reversible equilibrium. Labelling of SinR by incorporating the tryptophan analogue 7-azatryptophan (7AW) into the protein in place of tryptophan shifts the UV absorbance spectrum, thus allowing selective monitoring of 7AWSinR at 315 nm using the UV absorption optics of the analytical ultracentrifuge. Selective monitoring of SinR in mixtures of SinR and SinI enables the binding and stoichiometry of the interaction to be investigated quantitatively and unambiguously. We demonstrate that the oligomeric forms of SinR and SinI re-arrange to form a tight 1:1 SinR:SinI complex, with no stable intermediate species. A fragment of SinR, SinR(1-69), which contains only the DNA-binding domain, was found to be monomeric, showing that the protein appears not to oligomerise in a similar manner to the Cro repressor, a protein with which it shares a marked structural similarity. Copyright 1999 Academic Press.
On differences of linear positive operators
NASA Astrophysics Data System (ADS)
Aral, Ali; Inoan, Daniela; Raşa, Ioan
2018-04-01
In this paper we consider two different general linear positive operators defined on unbounded interval and obtain estimates for the differences of these operators in quantitative form. Our estimates involve an appropriate K-functional and a weighted modulus of smoothness. Similar estimates are obtained for Chebyshev functional of these operators as well. All considerations are based on rearrangement of the remainder in Taylor's formula. The obtained results are applied for some well known linear positive operators.
2011-03-01
These two elements again address the local and global perspectives of functionality. Upon schedule request, the Variable Ranking Tool ( VRT ) in...Figure 1 enlarges, moves to the interior of the screen, and becomes actionable (Figure 5 provides an enlarged view of the VRT , Figure 6 shows how the...full display is rearranged). The VRT addresses global properties through the handling of groups of entities in the system. Globally, functional
The Ultrafast Wolff Rearrangement in the Gas Phase
NASA Astrophysics Data System (ADS)
Steinbacher, Andreas; Roeding, Sebastian; Brixner, Tobias; Nuernberger, Patrick
The Wolff rearrangement of gas-phase 5-diazo Meldrum's acid is disclosed with femtosecond ion spectroscopy. Distinct differences are found for 267 nm and 200 nm excitation, the latter leading to even two ultrafast rearrangement reactions.
Fas–Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis
Volpe, Elisabetta; Sambucci, Manolo; Battistini, Luca; Borsellino, Giovanna
2016-01-01
Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas–FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas–FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas–FasL in regulating Th17 and Treg cells’ functions, in the context of MS. PMID:27729910
Fas-Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis.
Volpe, Elisabetta; Sambucci, Manolo; Battistini, Luca; Borsellino, Giovanna
2016-01-01
Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas-FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas-FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas-FasL in regulating Th17 and Treg cells' functions, in the context of MS.
Analysis of genome rearrangement by block-interchanges.
Lu, Chin Lung; Lin, Ying Chih; Huang, Yen Lin; Tang, Chuan Yi
2007-01-01
Block-interchanges are a new kind of genome rearrangements that affect the gene order in a chromosome by swapping two nonintersecting blocks of genes of any length. More recently, the study of such rearrangements is becoming increasingly important because of its applications in molecular evolution. Usually, this kind of study requires to solve a combinatorial problem, called the block-interchange distance problem, which is to find a minimum number of block-interchanges between two given gene orders of linear/circular chromosomes to transform one gene order into another. In this chapter, we shall introduce the basics of block-interchange rearrangements and permutation groups in algebra that are useful in analyses of genome rearrangements. In addition, we shall present a simple algorithm on the basis of permutation groups to efficiently solve the block-interchange distance problem, as well as ROBIN, a web server for the online analyses of block-interchange rearrangements.
NASA Astrophysics Data System (ADS)
Popova, A.
The results of the experiments with two species of a green alga ?hlorella in spaceflight conditions and under altered gravity testified that the regular rearrangements has been revealed first of all in the cell mitochondriome. Such reorganizations were observed at auto- and geterotrophic regimes of the culture growth in the experiments of average duration (9-18 days) and also in long-term experiments (30 days - 4.5 months) (Popova, 1999). The mitochondria rearrangements become apparent at intensification of the cell proliferation, which results in increasing a relative volume of the mitohondria per cell (up to 5.3 % in microgravity compared to the control - 2.1 %). Moreover, the size of these organelles and their cristae increased in the experimental cells. The indicated mitochondria changes were accompanied by intensifying the electron density of a matrix and often by well-ordered topography of the cristae. Taking into account that the main set of the enzymes catalyzing the oxidative phosphorylation and conduction of the electrons are localized in the cristae membranes, the considerable growth of the mitochondria size and the cristae areas testified probably about a high functional activity of these organelles. Our investigations were carried out with the purpose to check the functional state of mitochondria under altered gravity (using slow horizontal clinorotator) and under influence of the inhibitory agent, separating an oxidation and oxidative phosphorylation. The ultrastructural peculiarities of the mitochondria as the energetic organelles were studied under the different 2,4- dinitrophenole concentrations and during the different terms of clinoritation at the logarithmic and stationary phases of Chlorella culture growth. The various characters of the mitochondria rearrangements and their relative volumes per cell were revealed under 2,4-dinitrophenole influence compared to the different terms of microgravity and altered gravity influences. The obtained results about various ultrastructural mitochondrial rearrangements and their total volume per cell under influence of 2,4- dinitrophenole are discussed by help of the obtained early data of adenylate content, activity, and topography of Mg2+-activated-ATPase in Chlorella cells under altered gravity.
Conditions for the Evolution of Gene Clusters in Bacterial Genomes
Ballouz, Sara; Francis, Andrew R.; Lan, Ruiting; Tanaka, Mark M.
2010-01-01
Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters. PMID:20168992
Chromosome Rearrangements Recovered following Transformation of Neurospora Crassa
Perkins, D. D.; Kinsey, J. A.; Asch, D. K.; Frederick, G. D.
1993-01-01
New chromosome rearrangements were found in 10% or more of mitotically stable transformants. This was shown for transformations involving a variety of different markers, vectors and recipient strains. Breakpoints were randomly distributed among the seven linkage groups. Controls using untransformed protoplasts of the same strains contained almost no rearrangements. A study of molecularly characterized Am(+) transformants showed that rearrangements are frequent when multiple ectopic integration events have occurred. In contrast, rearrangements are absent or infrequent when only the resident locus is restored to am(+) by a homologous event. Sequences of the transforming vector were genetically linked to breakpoints in 6 of 10 translocations that were examined using Southern hybridization or colony blots. PMID:8349106
Kim, Hyun-Kyoung; Park, Won Cheol; Lee, Kwang Man; Hwang, Hai-Li; Park, Seong-Yeol; Sorn, Sungbin; Chandra, Vishal; Kim, Kwang Gi; Yoon, Woong-Bae; Bae, Joon Seol; Shin, Hyoung Doo; Shin, Jong-Yeon; Seoh, Ju-Young; Kim, Jong-Il; Hong, Kyeong-Man
2014-01-01
The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS) for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs), which are abundant in solid tumors, can be utilized for identification of rearranged ends. As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB) in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP) microarray method entailing CNB-region refinement by competitor DNA. Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9%) were identified, and two polymerase chain reaction (PCR)-amplifiable rearrangements were obtained in six cases (66.7%). And significantly, TNGS-CNB, with its high positive identification rate (82.6%) of PCR-amplifiable rearrangements at candidate sites (19/23), just from filtering of aligned sequences, requires little effort for validation. Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.
Enterocyte loss of polarity and gut wound healing rely upon the F-actin-severing function of villin
USDA-ARS?s Scientific Manuscript database
Efficient wound healing is required to maintain the integrity of the intestinal epithelial barrier because of its constant exposure to a large variety of environmental stresses. This process implies a partial cell depolarization and the acquisition of a motile phenotype that involves rearrangements ...
[Effect of pineal peptides on neuroendocrine system after pinealectomy].
Khavinson, V Kh; Kvetnoĭ, I M; Popuchiev, V V; Iuzhakov, V V; Kotlova, L N
2001-01-01
Removal of the pineal gland leads to structural and functional rearrangement of gastric endocrine cells and thyroid C-cells in albino rats, as was shown by immunohistological methods and morphometry. Injection of pineal peptides epithalone and epithalamine eliminated these changes. Biological activity of epithalone is believed to be higher than that of epithalamine.
Subtelomeric Rearrangements and Copy Number Variations in People with Intellectual Disabilities
ERIC Educational Resources Information Center
Christofolini, D. M.; De Paula Ramos, M. A.; Kulikowski, L. D.; Da Silva Bellucco, F. T.; Belangero, S. I. N.; Brunoni, D.; Melaragno, M. I.
2010-01-01
Background: The most prevalent type of structural variation in the human genome is represented by copy number variations that can affect transcription levels, sequence, structure and function of genes. Method: In the present study, we used the multiplex ligation-dependent probe amplification (MLPA) technique and quantitative PCR for the detection…
Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity
ERIC Educational Resources Information Center
Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues
2007-01-01
The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, Shashi; Kumar, Ajay; Soni, Shivani
2006-04-21
Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched withmore » the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division.« less
Bala, Shashi; Kumar, Ajay; Soni, Shivani; Sinha, Sudha; Hanspal, Manjit
2006-04-21
Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched with the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division.
Leeman-Neill, Rebecca J; Brenner, Alina V; Little, Mark P; Bogdanova, Tetiana I; Hatch, Maureen; Zurnadzy, Liudmyla Y; Mabuchi, Kiyohiko; Tronko, Mykola D; Nikiforov, Yuri E
2013-05-15
Childhood exposure to iodine-131 from the 1986 nuclear accident in Chernobyl, Ukraine, led to a sharp increase in papillary thyroid carcinoma (PTC) incidence in regions surrounding the reactor. Data concerning the association between genetic mutations in PTCs and individual radiation doses are limited. Mutational analysis was performed on 62 PTCs diagnosed in a Ukrainian cohort of patients who were < 18 years old in 1986 and received 0.008 to 8.6 Gy of (131) I to the thyroid. Associations between mutation types and (131) I dose and other characteristics were explored. RET/PTC (ret proto-oncogene/papillary thyroid carcinoma) rearrangements were most common (35%), followed by BRAF (15%) and RAS (8%) point mutations. Two tumors carrying PAX8/PPARγ (paired box 8/peroxisome proliferator-activated receptor gamma) rearrangement were identified. A significant negative association with (131) I dose for BRAF and RAS point mutations and a significant concave association with (131) I dose, with an inflection point at 1.6 Gy and odds ratio of 2.1, based on a linear-quadratic model for RET/PTC and PAX8/PPARγ rearrangements were found. The trends with dose were significantly different between tumors with point mutations and rearrangements. Compared with point mutations, rearrangements were associated with residence in the relatively iodine-deficient Zhytomyr region, younger age at exposure or surgery, and male sex. These results provide the first demonstration of PAX8/PPARγ rearrangements in post-Chernobyl tumors and show different associations for point mutations and chromosomal rearrangements with (131) I dose and other factors. These data support the relationship between chromosomal rearrangements, but not point mutations, and (131) I exposure and point to a possible role of iodine deficiency in generation of RET/PTC rearrangements in these patients. Copyright © 2013 American Cancer Society.
2013-01-01
Background Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus, Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids. Results Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates. Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of triplicated 12S and 16S ribosomal RNA regions. Conclusions Phylogenetic analyses based on mitogenomic data support a close relationship between Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and second non-tandem duplication model for mt gene rearrangements and the recombination-based model for concerted evolution of duplicated mt regions. We also showed that specific nucleotide substitution and compositional patterns expected in duplicated and rearranged mt genes did not occur, suggesting no disadvantage in employing these genes for phylogenetic inference. PMID:24053406
ALK-rearranged pulmonary adenocarcinoma in Thai Patients: From diagnosis to treatment efficacy.
Incharoen, Pimpin; Reungwetwattana, Thanyanan; Saowapa, Sakditad; Kamprerasart, Kaettipong; Pangpunyakulchai, Duangjai; Arsa, Lalida; Jinawath, Artit
2016-05-03
Anaplastic lymphoma kinase (ALK) gene rearrangement is detected in 3% to 13% of non-small cell lung carcinoma patients, and these patients benefit from ALK inhibitors. The aim of this study was to determine the prevalence, the clinical and histological characteristics and the treatment outcomes of ALK-rearranged lung adenocarcinoma using immunohistochemistry (IHC) IHC, reverse transcription polymerase chain reaction (RT-PCR) and fluorescence in situ hybridization (FISH) methodologies. A total of 268 pulmonary adenocarcinoma patients were screened for ALK expression by ALK IHC, which was confirmed by FISH and/or RT-PCR for ALK gene rearrangement. The treatment outcomes of ALK-rearranged patients were retrospectively reviewed. ALK gene rearrangement was identified in 26 cases (9.7%) with no EGFR co-mutation, and it showed significant associations with younger age, female sex and non-smoker status (p < 0.05). A cribriform growth pattern was identified as the dominant histologic feature, and a solid signet ring cell component was focally present in a minority of the cases. Among 12 ALK-rearranged patients with conventional treatment, seven cases in the early stage of disease were cured and alive, and five patients in the late stage of the disease progressed and died, with a median overall survival (OS) at 14 months. Of the 14 patients receiving crizotinib, all of them had clinical benefit from crizotinib treatment, with one patient having a complete response (CR), 12 patients having a partial response (PR) and one patient having stable disease (SD). On the cutoff date, six of 14 patients were continuing crizotinib treatment with a median time of response of 7.5 (3-13) months, while eight patients had disease progression, and five of them died with a median OS at 8 months. ALK gene rearrangement tended to occur in younger, non-smoking, female patients. ALK IHC is a reliable screening method to detect ALK gene rearrangement. Crizotinib therapy provided treatment benefit in ALK-rearranged adenocarcinoma patients especially in advanced stages of the disease.
Zhang, Yun-Gang; Jin, Mu-Lan; Li, Li; Zhao, Hong-Ying; Zeng, Xuan; Jiang, Lei; Wei, Ping; Diao, Xiao-Li; Li, Xue; Cao, Qing; Tian, Xin-Xia
2013-01-01
Patients with ALK gene rearrangements often manifest dramatic responses to crizotinib, an ALK inhibitor. Accurate identification of patients with ALK-positive non-small cell lung cancer (NSCLC) is essential for the clinical application of ALK-targeted therapy. However, assessing EML4-ALK rearrangement in NSCLC remains challenging in routine pathology practice. The aim of this study was to compare the diagnostic accuracy of FISH, immunohistochemistry (IHC), and real-time quantitative RT-PCR (QPCR) methodologies for detection of EML4-ALK rearrangement in NSCLC and to appraise immunohistochemistry as a pre-screening tool. In this study, a total of 473 paraffin-embedded NSCLC samples from surgical resections and biopsies were analyzed by IHC with ALK antibody. ALK rearrangement was further confirmed by FISH and QPCR. ALK protein expression was detected in twenty patients (20/473, 4.2%). Of the 20 ALK-positive cases by IHC, 15 cases were further confirmed as ALK rearrangement by FISH, and 5 cases were not interpretable. Also, we evaluated 13 out of the 20 IHC-positive tissues by QPCR in additional to FISH, and found that 9 cases were positive and 2 cases were equivocal, whereas 2 cases were negative although they were positive by both IHC and FISH. The ALK status was concordant in 5 out of 8 cases that were interpretable by three methods. Additionally, none of the 110 IHC-negative cases with adenocarcinoma histology showed ALK rearrangements by FISH. Histologically, almost all the ALK-rearranged cases were adenocarcinoma, except that one case was sarcomatoid carcinoma. A solid signet-ring cell pattern or mucinous cribriform pattern was presented at least focally in all ALK-positive tumors. In conclusion, our findings suggested that ALK rearrangement was associated with ALK protein expression. The conventional IHC assay is a valuable tool for the pre-screening of patients with ALK rearrangement in clinical practice and a combination of FISH and QPCR is required for further confirmation.
Evolution of the Banana Genome (Musa acuminata) Is Impacted by Large Chromosomal Translocations
Martin, Guillaume; Carreel, Françoise; Coriton, Olivier; Hervouet, Catherine; Cardi, Céline; Derouault, Paco; Roques, Danièle; Salmon, Frédéric; Rouard, Mathieu; Sardos, Julie; Labadie, Karine; Baurens, Franc-Christophe; D’Hont, Angélique
2017-01-01
Abstract Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars. PMID:28575404
Yuan, Siqi; Zheng, Yuchi; Zeng, Xiaomao
2016-01-01
Recent improvements in next-generation sequencing (NGS) technologies can facilitate the obtainment of mitochondrial genomes. However, it is not clear whether NGS could be effectively used to reconstruct the mitogenome with high gene rearrangement. These high rearrangements would cause amplification failure, and/or assembly and alignment errors. Here, we choose two frogs with rearranged gene order, Amolops chunganensis and Quasipaa boulengeri, to test whether gene rearrangements affect the mitogenome assembly and alignment by using NGS. The mitogenomes with gene rearrangements are sequenced through Illumina MiSeq genomic sequencing and assembled effectively by Trinity v2.1.0 and SOAPdenovo2. Gene order and contents in the mitogenome of A. chunganensis and Q. boulengeri are typical neobatrachian pattern except for rearrangements at the position of “WANCY” tRNA genes cluster. Further, the mitogenome of Q. boulengeri is characterized with a tandem duplication of trnM. Moreover, we utilize 13 protein-coding genes of A. chunganensis, Q. boulengeri and other neobatrachians to reconstruct the phylogenetic tree for evaluating mitochondrial sequence authenticity of A. chunganensis and Q. boulengeri. In this work, we provide nearly complete mitochondrial genomes of A. chunganensis and Q. boulengeri. PMID:27994980
Drbalova, Jitka; Musilova, Petra; Kubickova, Svatava; Sebestova, Hana; Vahala, Jiri; Rubes, Jiri
2014-01-01
The T cell receptor (TCR) genes (TRA, TRB, TRD and TRG) reside in 3 different chromosomal regions. During the maturation of T lymphocytes, the TCR genes are rearranged by site-specific recombination, a process that also predisposes T cells to aberrant rearrangements. Illegitimate recombination between the TCR genes occurs at a low level in healthy individuals, but this frequency may correlate with the risk of lymphoma. The aim of this work was to investigate interlocus recombination in equids. Illegitimate rearrangements were studied in peripheral blood lymphocytes by FISH with painting and BAC probes and by sequencing of PCR products, and the frequencies of recombination were assessed in horses and 4 other equids. The presence of several trans-rearrangement products between the TRA and TRG genes was verified by PCR in all investigated equids. Frequencies of trans-rearrangements in horses are higher than in humans, and colocalization of the TCR genes on the same chromosome increases the incidence of trans-rearrangements between them. The orientation of the TCR genes does not impact interlocus recombination itself but does affect the viability of cells carrying its products and consequently the number of trans-rearrangements observed in lymphocytes.
Polyomavirus BK non-coding control region rearrangements in health and disease.
Sharma, Preety M; Gupta, Gaurav; Vats, Abhay; Shapiro, Ron; Randhawa, Parmjeet S
2007-08-01
BK virus is an increasingly recognized pathogen in transplanted patients. DNA sequencing of this virus shows considerable genomic variability. To understand the clinical significance of rearrangements in the non-coding control region (NCCR) of BK virus (BKV), we report a meta-analysis of 507 sequences, including 40 sequences generated in our own laboratory, for associations between rearrangements and disease, tissue tropism, geographic origin, and viral genotype. NCCR rearrangements were less frequent in (a) asymptomatic BKV viruria compared to patients viral nephropathy (1.7% vs. 22.5%), and (b) viral genotype 1 compared to other genotypes (2.4% vs. 11.2%). Rearrangements were commoner in malignancy (78.6%), and Norwegians (45.7%), and less common in East Indians (0%), and Japanese (4.3%). A surprising number of rearranged sequences were reported from mononuclear cells of healthy subjects, whereas most plasma sequences were archetypal. This difference could not be related to potential recombinase activity in lymphocytes, as consensus recombination signal sequences could not be found in the NCCR region. NCCR rearrangements are neither required nor a sufficient condition to produce clinical disease. BKV nephropathy and hemorrhagic cystitis are not associated with any unique NCCR configuration or nucleotide sequence.
Behjati, Sam; Tarpey, Patrick S.; Haase, Kerstin; ...
2017-06-23
Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation,more » we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. Lastly, it may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.« less
Cytogenomics of cancers: from chromosome to sequence.
Bernheim, Alain
2010-08-01
The role of acquired chromosomal rearrangements in oncogenesis (cytogenomics) and tumor progression is now well established. These alterations are multiple and diverse and the products of these rearranged genes play an essential role in the transformation and growth of cancer cells. The validity of this assumption is demonstrated by the development of specific inhibitors or antibodies that eliminate tumoral cells by targeting some of these changes. Imatinib, an inhibitor of the tyrosine kinase ABL, the prototype of these targeting drugs, is yielding complete remissions in most CML patients. Knowledge of chromosomal abnormalities is becoming an essential contribution to the diagnosis and prognosis of cancers but also for monitoring minimal residual disease or relapse. The concept of the "cytogenetic uniqueness" of each cancer has resulted in personalized treatment. This investigation will expound upon, besides the recurrent genomic alterations, the numerous products of perverted Darwinian selection at the cellular level. (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Wolf, Steffen; Jovancevic, Nikolina; Gelis, Lian; Pietsch, Sebastian; Hatt, Hanns; Gerwert, Klaus
2017-11-22
We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.
Rag Deletion in Peripheral T Cells Blocks TCR Revision
Hale, J. Scott; Ames, Kristina T.; Boursalian, Tamar E.; Fink, Pamela J.
2010-01-01
Mature CD4+Vβ5+ T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or T cell receptor (TCR) revision. In Vβ5 transgenic mice, this latter tolerance pathway results in the appearance of CD4+Vβ5−TCRβ+ T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of Vβ-DJβ recombination intermediates in peripheral CD4+ T cells. Because post-thymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We now show that Rag deletion in post-positive selection T cells in Vβ5 transgenic mice blocks TCR revision in vivo, and that mature peripheral T cells sorted to remove cells bearing endogenous TCRβ chains can express newly generated TCRβ molecules in adoptive hosts. These findings unambiguously demonstrate post-thymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4+ T cells. PMID:20435935
Cutting Edge: Rag deletion in peripheral T cells blocks TCR revision.
Hale, J Scott; Ames, Kristina T; Boursalian, Tamar E; Fink, Pamela J
2010-06-01
Mature CD4(+)Vbeta5(+) T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or TCR revision. In Vbeta5 transgenic mice, this latter tolerance pathway results in the appearance of CD4(+)Vbeta5(-)TCRbeta(+) T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of V(beta)-DJ(beta) recombination intermediates in peripheral CD4(+) T cells. Because postthymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We show in this study that Rag deletion in post-positive selection T cells in Vbeta5 transgenic mice blocks TCR revision in vivo and that mature peripheral T cells sorted to remove cells bearing endogenous TCRbeta-chains can express newly generated TCRbeta molecules in adoptive hosts. These findings unambiguously demonstrate postthymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4(+) T cells.
Kawamoto, Makoto; Ozono, Keigo; Oyama, Yasuhiro; Yamasaki, Akio; Oda, Yoshinao; Onishi, Hideya
2018-04-01
We previously reported that brain-derived neurotrophic factor (BDNF)/neurotrophic receptor tyrosine kinase 2 (NTRK2/TRKB) signaling contributes to induction of malignant phenotype of gallbladder cancer (GBC). Recently, pan-TRK inhibitors have been evaluated and their dramatic clinical activity is being shown for a variety of cancer types harboring an NTRK rearrangement in phase I trials. ONO-7579 is an oral pan-TRK inhibitor currently under investigation in phase I/II clinical trial for TRK-rearranged solid tumors. In this study, we evaluated the anticancer effect of ONO-7579 using GBC cells with or without KRAS mutant, NOZ, TYGBK-1. Our study showed that ONO-7579 had a suppressive effect on GBC proliferation in TYGBK-1, and on invasive potential and vascular endothelial growth factor expression in TYGBK-1 and NOZ. Our data indicated that ONO-7579 could be a promising treatment option for patients with GBC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behjati, Sam; Tarpey, Patrick S.; Haase, Kerstin
Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation,more » we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. Lastly, it may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.« less
A BAC clone fingerprinting approach to the detection of human genome rearrangements
Krzywinski, Martin; Bosdet, Ian; Mathewson, Carrie; Wye, Natasja; Brebner, Jay; Chiu, Readman; Corbett, Richard; Field, Matthew; Lee, Darlene; Pugh, Trevor; Volik, Stas; Siddiqui, Asim; Jones, Steven; Schein, Jacquie; Collins, Collin; Marra, Marco
2007-01-01
We present a method, called fingerprint profiling (FPP), that uses restriction digest fingerprints of bacterial artificial chromosome clones to detect and classify rearrangements in the human genome. The approach uses alignment of experimental fingerprint patterns to in silico digests of the sequence assembly and is capable of detecting micro-deletions (1-5 kb) and balanced rearrangements. Our method has compelling potential for use as a whole-genome method for the identification and characterization of human genome rearrangements. PMID:17953769
Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control.
Rothenberg, Ellen V; Ungerbäck, Jonas; Champhekar, Ameya
2016-01-01
T-lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of innate lymphoid cells (ILCs) that share transcriptional regulation programs extensively with T-cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate. © 2016 Elsevier Inc. All rights reserved.
Lorenz, Susanne; Barøy, Tale; Sun, Jinchang; Nome, Torfinn; Vodák, Daniel; Bryne, Jan-Christian; Håkelien, Anne-Mari; Fernandez-Cuesta, Lynnette; Möhlendick, Birte; Rieder, Harald; Szuhai, Karoly; Zaikova, Olga; Ahlquist, Terje C.; Thomassen, Gard O. S.; Skotheim, Rolf I.; Lothe, Ragnhild A.; Tarpey, Patrick S.; Campbell, Peter; Flanagan, Adrienne
2016-01-01
In contrast to many other sarcoma subtypes, the chaotic karyotypes of osteosarcoma have precluded the identification of pathognomonic translocations. We here report hundreds of genomic rearrangements in osteosarcoma cell lines, showing clear characteristics of microhomology-mediated break-induced replication (MMBIR) and end-joining repair (MMEJ) mechanisms. However, at RNA level, the majority of the fused transcripts did not correspond to genomic rearrangements, suggesting the involvement of trans-splicing, which was further supported by typical trans-splicing characteristics. By combining genomic and transcriptomic analysis, certain recurrent rearrangements were identified and further validated in patient biopsies, including a PMP22-ELOVL5 gene fusion, genomic structural variations affecting RB1, MTAP/CDKN2A and MDM2, and, most frequently, rearrangements involving TP53. Most cell lines (7/11) and a large fraction of tumor samples (10/25) showed TP53 rearrangements, in addition to somatic point mutations (6 patient samples, 1 cell line) and MDM2 amplifications (2 patient samples, 2 cell lines). The resulting inactivation of p53 was demonstrated by a deficiency of the radiation-induced DNA damage response. Thus, TP53 rearrangements are the major mechanism of p53 inactivation in osteosarcoma. Together with active MMBIR and MMEJ, this inactivation probably contributes to the exceptional chromosomal instability in these tumors. Although rampant rearrangements appear to be a phenotype of osteosarcomas, we demonstrate that among the huge number of probable passenger rearrangements, specific recurrent, possibly oncogenic, events are present. For the first time the genomic chaos of osteosarcoma is characterized so thoroughly and delivered new insights in mechanisms involved in osteosarcoma development and may contribute to new diagnostic and therapeutic strategies. PMID:26672768
Wan, Huanying; Shi, Guochao; Niu, Wenquan
2014-01-01
Objective This meta-analysis aimed to comprehensively examine the relationship between the clinicopathological and demographical characteristics and ALK rearrangements in patients with non-small cell lung cancer (NSCLC). Methods and Main Findings In total, 62 qualified articles including 1178 ALK rearranged cases from 20541 NSCLC patients were analyzed, and the data were extracted independently by two investigators. NSCLC patients with ALK rearrangements tended to be younger than those without (mean difference: −7.16 years; 95% confidence interval (95% CI): −9.35 to −4.96; P<0.00001), even across subgroups by race. Compared with female NSCLC patients, the odds ratio (OR) of carrying ALK rearrangements was reduced by 28% (95% CI: 0.58–0.90; P = 0.004) in males, and this reduction was potentiated in Asians, yet in opposite direction in Caucasians. Likewise, smokers were less likely to have ALK rearrangements than never-smokers (OR = 0.33; 95% CI: 0.25–0.44; P<0.00001), even in race-stratified subgroups. Moreover, compared with NSCLC patients with tumor stage IV, ALK rearrangements were underrepresented in those with tumor stage I–III (OR = 0.58; 95% CI: 0.44–0.78; P = 0.0002). Patients with lung adenocarcinomas had a significantly higher rate of ALK rearrangements (7.2%) than patients with non-adenocarcinoma (2.0%) (OR = 2.25; 95% CI: 1.54–3.27; P<0.0001). Conclusion Our findings demonstrate that ALK rearrangements tended to be present in NSCLC patients with no smoking habit, younger age and tumor stage IV. Moreover, race, age, gender, smoking status, tumor stage and histology might be potential sources of heterogeneity. PMID:24959902
Hirano, Tomonari; Kazama, Yusuke; Ishii, Kotaro; Ohbu, Sumie; Shirakawa, Yuki; Abe, Tomoko
2015-04-01
Heavy-ion beams are widely used for mutation breeding and molecular biology. Although the mutagenic effects of heavy-ion beam irradiation have been characterized by sequence analysis of some restricted chromosomal regions or loci, there have been no evaluations at the whole-genome level or of the detailed genomic rearrangements in the mutant genomes. In this study, using array comparative genomic hybridization (array-CGH) and resequencing, we comprehensively characterized the mutations in Arabidopsis thaliana genomes irradiated with Ar or Fe ions. We subsequently used this information to investigate the mutagenic effects of the heavy-ion beams. Array-CGH demonstrated that the average number of deleted areas per genome were 1.9 and 3.7 following Ar-ion and Fe-ion irradiation, respectively, with deletion sizes ranging from 149 to 602,180 bp; 81% of the deletions were accompanied by genomic rearrangements. To provide a further detailed analysis, the genomes of the mutants induced by Ar-ion beam irradiation were resequenced, and total mutations, including base substitutions, duplications, in/dels, inversions, and translocations, were detected using three algorithms. All three resequenced mutants had genomic rearrangements. Of the 22 DNA fragments that contributed to the rearrangements, 19 fragments were responsible for the intrachromosomal rearrangements, and multiple rearrangements were formed in the localized regions of the chromosomes. The interchromosomal rearrangements were detected in the multiply rearranged regions. These results indicate that the heavy-ion beams led to clustered DNA damage in the chromosome, and that they have great potential to induce complicated intrachromosomal rearrangements. Heavy-ion beams will prove useful as unique mutagens for plant breeding and the establishment of mutant lines. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
A potential inhibitory function of draxin in regulating mouse trunk neural crest migration.
Zhang, Sanbing; Su, Yuhong; Gao, Jinbao; Zhang, Chenbing; Tanaka, Hideaki
2017-01-01
Draxin is a repulsive axon guidance protein that plays important roles in the formation of three commissures in the central nervous system and dorsal interneuron 3 (dI3) in the chick spinal cord. In the present study, we report the expression pattern of mouse draxin in the embryonic mouse trunk spinal cord. In the presence of draxin, the longest net migration length of a migrating mouse trunk neural crest cell was significantly reduced. In addition, the relative number of apolar neural crest cells increased as the draxin treatment time increased. Draxin caused actin cytoskeleton rearrangement in the migrating trunk neural crest cells. Our data suggest that draxin may regulate mouse trunk neural crest cell migration by the rearrangement of cell actin cytoskeleton and by reducing the polarization activity of these cells subsequently.
Structure of adducts of isoindolo[2,1-a]benzimidazole derivatives with maleimides
NASA Astrophysics Data System (ADS)
Korolev, Oleksandr; Yegorova, Tatyana; Levkov, Igor; Malytskyy, Volodymyr; Shishkin, Oleg; Zubatyuk, Roman; Palamarchuk, Genadiy; Vedrenne, Marc; Baltas, Michel; Voitenko, Zoia
2015-03-01
The selectivity of formation and some mechanistic insights during the synthesis of substituted isoindolo[2,1-a]benzimidazoles are discussed. Furthermore, the reactions of the obtained products with maleimides were carried out. Two types rearrangement adducts together with intermediate Michael type adducts were isolated. The influence of the reaction conditions and reagents ratio is discussed. Specific spectral criteria for the identification of the Michael type adducts are indicated.
Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G
2011-09-02
We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.
Chromosomal Translocations in Black Flies (Diptera: Simuliidae)-Facilitators of Adaptive Radiation?
Adler, Peter H; Yadamsuren, Oyunchuluun; Procunier, William S
2016-01-01
A macrogenomic investigation of a Holarctic clade of black flies-the Simulium cholodkovskii lineage-provided a platform to explore the implications of a unique, synapomorphic whole-arm interchange in the evolution of black flies. Nearly 60 structural rearrangements were discovered in the polytene complement of the lineage, including 15 common to all 138 analyzed individuals, relative to the central sequence for the entire subgenus Simulium. Three species were represented, of which two Palearctic entities (Simulium cholodkovskii and S. decimatum) were sympatric; an absence of hybrids confirmed their reproductive isolation. A third (Nearctic) entity had nonhomologous sex chromosomes, relative to the other species, and is considered a separate species, for which the name Simulium nigricoxum is revalidated. A cytophylogeny is inferred and indicates that the two Palearctic taxa are sister species and these, in turn, are the sister group of the Nearctic species. The rise of the S. cholodkovskii lineage encompassed complex chromosomal and genomic restructuring phenomena associated with speciation in black flies, viz. expression of one and the same rearrangement as polymorphic, fixed, or sex linked in different species; taxon-specific differentiation of sex chromosomes; and reciprocal translocation of chromosome arms. The translocation is hypothesized to have occurred early in male spermatogonia, with the translocated chromosomal complement being transmitted to the X- and Y-bearing sperm during spermatogenesis, resulting in alternate disjunction of viable F1 translocation heterozygotes and the eventual formation of more viable and selectable F2 translocation homozygous progeny. Of 11 or 12 independently derived whole-arm interchanges known in the family Simuliidae, at least six are associated with subsequent speciation events, suggesting a facilitating role of translocations in adaptive radiations. The findings are discussed in the context of potential structural and functional interactions for future genomic research.
Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan
2018-06-01
Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.
Reciprocal genomic evolution in the ant–fungus agricultural symbiosis
Nygaard, Sanne; Hu, Haofu; Li, Cai; Schiøtt, Morten; Chen, Zhensheng; Yang, Zhikai; Xie, Qiaolin; Ma, Chunyu; Deng, Yuan; Dikow, Rebecca B.; Rabeling, Christian; Nash, David R.; Wcislo, William T.; Brady, Seán G.; Schultz, Ted R.; Zhang, Guojie; Boomsma, Jacobus J.
2016-01-01
The attine ant–fungus agricultural symbiosis evolved over tens of millions of years, producing complex societies with industrial-scale farming analogous to that of humans. Here we document reciprocal shifts in the genomes and transcriptomes of seven fungus-farming ant species and their fungal cultivars. We show that ant subsistence farming probably originated in the early Tertiary (55–60 MYA), followed by further transitions to the farming of fully domesticated cultivars and leaf-cutting, both arising earlier than previously estimated. Evolutionary modifications in the ants include unprecedented rates of genome-wide structural rearrangement, early loss of arginine biosynthesis and positive selection on chitinase pathways. Modifications of fungal cultivars include loss of a key ligninase domain, changes in chitin synthesis and a reduction in carbohydrate-degrading enzymes as the ants gradually transitioned to functional herbivory. In contrast to human farming, increasing dependence on a single cultivar lineage appears to have been essential to the origin of industrial-scale ant agriculture. PMID:27436133
Molecular mechanism of polyacrylate helix sense switching across its free energy landscape.
Pietropaolo, Adriana; Nakano, Tamaki
2013-04-17
Helical polymers with switchable screw sense are versatile frameworks for chiral functional materials. In this work, we reconstructed the free energy landscape of helical poly(2,7-bis(4-tert-butylphenyl)fluoren-9-yl acrylate) [poly(BBPFA)], as its racemization is selectively driven by light without any rearrangement of chemical bonds. The chirality inversion was enforced by atomistic free energy simulations using chirality indices as reaction coordinates. The free energy landscape reproduced the experimental electronic circular dichroism spectra. We propose that the chirality inversion of poly(BBPFA) proceeds from a left-handed 31 helix via multistate free energy pathways to reach the right-handed 31 helix. The inversion is triggered by the rotation of biphenyl units with an activation barrier of 38 kcal/mol. To the best of our knowledge, this is the first report on the chiral inversion mechanism of a helical polymer determined in a quantitative way in the framework of atomistic free energy simulations.
Lee, Sang-Guk; Park, Tae Sung; Cho, Sun Young; Lim, Gayoung; Park, Gwang Jin; Oh, Seung Hwan; Cho, Eun Hae; Chong, So Young; Huh, Ji Young
2011-01-01
SET-NUP214 rearrangements have been rarely reported in T-cell acute lymphoblastic leukemia (T-ALL), acute undifferentiated leukemia, and acute myeloid leukemia, and most documented cases have been associated with normal karyotypes in conventional cytogenetic analyses. Here, we describe a novel case of T-ALL associated with a mediastinal mass and a SET-NUP214 rearrangement, which was masked by a complex karyotype at the time of initial diagnosis. Using multiplex reverse transcriptase-polymerase chain reaction analysis, we detected a cryptic SET-NUP214 rearrangement in our patient. As only 11 cases (including the present study) of T-ALL with SET-NUP214 rearrangement have been reported, the clinical features and treatment outcomes have not been fully determined. Further studies are necessary to evaluate the incidence of SET-NUP214 rearrangement in T-ALL patients and the treatment responses as well as prognosis of these patients.
Recurrent Rearrangements of Human Amylase Genes Create Multiple Independent CNV Series.
Shwan, Nzar A A; Louzada, Sandra; Yang, Fengtang; Armour, John A L
2017-05-01
The human amylase gene cluster includes the human salivary (AMY1) and pancreatic amylase genes (AMY2A and AMY2B), and is a highly variable and dynamic region of the genome. Copy number variation (CNV) of AMY1 has been implicated in human dietary adaptation, and in population association with obesity, but neither of these findings has been independently replicated. Despite these functional implications, the structural genomic basis of CNV has only been defined in detail very recently. In this work, we use high-resolution analysis of copy number, and analysis of segregation in trios, to define new, independent allelic series of amylase CNVs in sub-Saharan Africans, including a series of higher-order expansions of a unit consisting of one copy each of AMY1, AMY2A, and AMY2B. We use fiber-FISH (fluorescence in situ hybridization) to define unexpected complexity in the accompanying rearrangements. These findings demonstrate recurrent involvement of the amylase gene region in genomic instability, involving at least five independent rearrangements of the pancreatic amylase genes (AMY2A and AMY2B). Structural features shared by fundamentally distinct lineages strongly suggest that the common ancestral state for the human amylase cluster contained more than one, and probably three, copies of AMY1. © 2017 WILEY PERIODICALS, INC.
Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes
Loviglio, M N; Leleu, M; Männik, K; Passeggeri, M; Giannuzzi, G; van der Werf, I; Waszak, S M; Zazhytska, M; Roberts-Caldeira, I; Gheldof, N; Migliavacca, E; Alfaiz, A A; Hippolyte, L; Maillard, A M; Loviglio, Maria Nicla; Männik, Katrin; van der Werf, Ilse; Giannuzzi, Giuliana; Zazhytska, Marianna; Gheldof, Nele; Migliavacca, Eugenia; Alfaiz, Ali A; Roberts-Caldeira, Inês; Hippolyte, Loyse; Maillard, Anne M; Ferrarini, Alessandra; Butschi, Florence Niel; Conrad, Bernard; Addor, Marie-Claude; Belfiore, Marco; Roetzer, Katharina; Dijck, Anke Van; Blaumeiser, Bettina; Kooy, Frank; Roelens, Filip; Dheedene, Annelies; Chiaie, Barbara Delle; Menten, Björn; Oostra, Ann; Caberg, Jean-Hubert; Carter, Melissa; Kellam, Barbara; Stavropoulos, Dimitri J; Marshall, Christian; Scherer, Stephen W; Weksberg, Rosanna; Cytrynbaum, Cheryl; Bassett, Anne; Lowther, Chelsea; Gillis, Jane; MacKay, Sara; Bache, Iben; Ousager, Lilian B; Smerdel, Maja Patricia; Graakjaer, Jesper; Kjaergaard, Susanne; Metspalu, Andres; Mathieu, Michele; Bonneau, Dominique; Guichet, Agnes; Parent, Philippe; Férec, Claude; Gerard, Marion; Plessis, Ghislaine; Lespinasse, James; Masurel, Alice; Marle, Nathalie; Faivre, Laurence; Callier, Patrick; Layet, Valerie; Meur, Nathalie Le; Le Goff, Céline; Duban-Bedu, Bénédicte; Sukno, Sylvie; Boute, Odile; Andrieux, Joris; Blanchet, Patricia; Geneviève, David; Puechberty, Jacques; Schneider, Anouck; Leheup, Bruno; Jonveaux, Philippe; Mercier, Sandra; David, Albert; Le Caignec, Cédric; de Pontual, Loic; Pipiras, Eva; Jacquette, Aurelia; Keren, Boris; Gilbert-Dussardier, Brigitte; Bilan, Frederic; Goldenberg, Alice; Chambon, Pascal; Toutain, Annick; Till, Marianne; Sanlaville, Damien; Leube, Barbara; Royer-Pokora, Brigitte; Grabe, Hans Jörgen; Schmidt, Carsten Oliver; Schurmann, Claudia; Homuth, Georg; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Bernardini, Laura; Novelli, Antonio; Micale, Lucia; Merla, Giuseppe; Zollino, Marcella; Mari, Francesca; Rizzo, Caterina Lo; Renieri, Alessandra; Silengo, Margherita; Vulto-van Silfhout, Anneke T; Schouten, Meyke; Pfundt, Rolph; de Leeuw, Nicole; Vansenne, Fleur; Maas, Saskia M; Barge-Schaapveld, Daniela QCM; Knegt, Alida C; Stadheim, Barbro; Rodningen, Olaug; Houge, Gunnar; Price, Sue; Hawkes, Lara; Campbell, Carolyn; Kini, Usha; Vogt, Julie; Walters, Robin; Blakemore, Alexandra; Gusella, James F; Shen, Yiping; Scott, Daryl; Bacino, Carlos A; Tsuchiya, Karen; Ladda, Roger; Sell, Susan; Asamoah, Alexander; Hamati, Aline I; Rosenfeld, Jill A; Shaffer, Lisa G; Mitchell, Elyse; Hodge, Jennelle C; Beckmann, Jacques S; Jacquemont, Sébastien; Reymond, Alexandre; Reymond, Alexandre; Ewans, Lisa J; Mowat, David; Walker, Jan; Amor, David J; Esch, Hilde Van; Leroy, Patricia; Caberg, Jean-Hubert; Bamforth, John-Steven; Babu, Deepti; Till, Marianne; Sanlaville, Damien; Geneviève, David; Puechberty, Jacques; Isidor, Bertrand; DiDonato, Nataliya; Hackmann, Karl; Passeggeri, Marzia; Haeringen, Arie van; Rosenfeld, Jill A; Shaffer, Lisa G; Smith, Rosemarie; Ellingwood, Sara; Farber, Darren M; Puri, Vinay; Zadeh, Neda; Weaver, David D; Miller, Mandy; Wilks, Timothy; Jorgez, Carolina J; Lafayette, DeeDee; Jacquemont, Sébastien; Van Dijck, A; Kooy, R F; Sanlaville, D; Rosenfeld, J A; Shaffer, L G; Andrieux, J; Marshall, C; Scherer, S W; Shen, Y; Gusella, J F; Thorsteinsdottir, U; Thorleifsson, G; Dermitzakis, E T; Deplancke, B; Beckmann, J S; Rougemont, J; Jacquemont, S; Reymond, A
2017-01-01
Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts’ maps could uncover functionally and clinically related genes. PMID:27240531
Kulikova, Vitalia V; Zakomirdina, Ludmila N; Dementieva, Irene S; Phillips, Robert S; Gollnick, Paul D; Demidkina, Tatyana V; Faleev, Nicolai G
2006-04-01
Tyr72 is located at the active site of tryptophanase (Trpase) from Proteus vulgaris. For the wild-type Trpase Tyr72 might be considered as the general acid catalyst at the stage of elimination of the leaving groups. The replacement of Tyr72 by Phe leads to a decrease in activity for L-tryptophan by 50,000-fold and to a considerable rearrangement of the active site of Trpase. This rearrangement leads to an increase of room around the alpha-C atom of any bound amino acid, such that covalent binding of alpha-methyl-substituted amino acids becomes possible (which cannot be realized in wild-type Trpase). The changes in reactivities of S-alkyl-L-cysteines provide evidence for an increase of congestion in the proximity of their side groups in the mutant enzyme as compared to wild-type enzyme. The observed alteration of catalytic properties in a large degree originates from a conformational change in the active site. The Y72F Trpase retains significant activity for L-serine, which allowed us to conclude that in the mutant enzyme, some functional group is present which fulfills the role of the general acid catalyst in reactions associated with elimination of small leaving groups.
A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements.
D'Souza-Schorey, C; Boshans, R L; McDonough, M; Stahl, P D; Van Aelst, L
1997-01-01
The ARF6 GTPase, the least conserved member of the ADP ribosylation factor (ARF) family, associates with the plasma membrane and intracellular endosome vesicles. Mutants of ARF6 defective in GTP binding and hydrolysis have a marked effect on endocytic trafficking and the gross morphology of the peripheral membrane system. Here we report that expression of the GTPase-defective mutant of ARF6, ARF6(Q67L), remodels the actin cytoskeleton by inducing actin polymerization at the cell periphery. This cytoskeletal rearrangement was inhibited by co-expression of ARF6(Q67L) with deletion mutants of POR1, a Rac1-interacting protein involved in membrane ruffling, but not with the dominant-negative mutant of Rac1, Rac1(S17N). A synergistic effect between POR1 and ARF6 for the induction of actin polymerization was detected. Furthermore, we observed that ARF6 interacts directly with POR1 and that this interaction was GTP dependent. These findings indicate that ARF6 and Rac1 function on distinct signaling pathways to mediate cytoskeletal reorganization, and suggest a role for POR1 as an important regulatory element in orchestrating cytoskeletal rearrangements at the cell periphery induced by ARF6 and Rac1. PMID:9312003
RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae.
Ivanyi-Nagy, Roland; Lavergne, Jean-Pierre; Gabus, Caroline; Ficheux, Damien; Darlix, Jean-Luc
2008-02-01
RNA chaperone proteins are essential partners of RNA in living organisms and viruses. They are thought to assist in the correct folding and structural rearrangements of RNA molecules by resolving misfolded RNA species in an ATP-independent manner. RNA chaperoning is probably an entropy-driven process, mediated by the coupled binding and folding of intrinsically disordered protein regions and the kinetically trapped RNA. Previously, we have shown that the core protein of hepatitis C virus (HCV) is a potent RNA chaperone that can drive profound structural modifications of HCV RNA in vitro. We now examined the RNA chaperone activity and the disordered nature of core proteins from different Flaviviridae genera, namely that of HCV, GBV-B (GB virus B), WNV (West Nile virus) and BVDV (bovine viral diarrhoea virus). Despite low-sequence similarities, all four proteins demonstrated general nucleic acid annealing and RNA chaperone activities. Furthermore, heat resistance of core proteins, as well as far-UV circular dichroism spectroscopy suggested that a well-defined 3D protein structure is not necessary for core-induced RNA structural rearrangements. These data provide evidence that RNA chaperoning-possibly mediated by intrinsically disordered protein segments-is conserved in Flaviviridae core proteins. Thus, besides nucleocapsid formation, core proteins may function in RNA structural rearrangements taking place during virus replication.
RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae
Ivanyi-Nagy, Roland; Lavergne, Jean-Pierre; Gabus, Caroline; Ficheux, Damien; Darlix, Jean-Luc
2008-01-01
RNA chaperone proteins are essential partners of RNA in living organisms and viruses. They are thought to assist in the correct folding and structural rearrangements of RNA molecules by resolving misfolded RNA species in an ATP-independent manner. RNA chaperoning is probably an entropy-driven process, mediated by the coupled binding and folding of intrinsically disordered protein regions and the kinetically trapped RNA. Previously, we have shown that the core protein of hepatitis C virus (HCV) is a potent RNA chaperone that can drive profound structural modifications of HCV RNA in vitro. We now examined the RNA chaperone activity and the disordered nature of core proteins from different Flaviviridae genera, namely that of HCV, GBV-B (GB virus B), WNV (West Nile virus) and BVDV (bovine viral diarrhoea virus). Despite low-sequence similarities, all four proteins demonstrated general nucleic acid annealing and RNA chaperone activities. Furthermore, heat resistance of core proteins, as well as far-UV circular dichroism spectroscopy suggested that a well-defined 3D protein structure is not necessary for core-induced RNA structural rearrangements. These data provide evidence that RNA chaperoning—possibly mediated by intrinsically disordered protein segments—is conserved in Flaviviridae core proteins. Thus, besides nucleocapsid formation, core proteins may function in RNA structural rearrangements taking place during virus replication. PMID:18033802
Colour image compression by grey to colour conversion
NASA Astrophysics Data System (ADS)
Drew, Mark S.; Finlayson, Graham D.; Jindal, Abhilash
2011-03-01
Instead of de-correlating image luminance from chrominance, some use has been made of using the correlation between the luminance component of an image and its chromatic components, or the correlation between colour components, for colour image compression. In one approach, the Green colour channel was taken as a base, and the other colour channels or their DCT subbands were approximated as polynomial functions of the base inside image windows. This paper points out that we can do better if we introduce an addressing scheme into the image description such that similar colours are grouped together spatially. With a Luminance component base, we test several colour spaces and rearrangement schemes, including segmentation. and settle on a log-geometric-mean colour space. Along with PSNR versus bits-per-pixel, we found that spatially-keyed s-CIELAB colour error better identifies problem regions. Instead of segmentation, we found that rearranging on sorted chromatic components has almost equal performance and better compression. Here, we sort on each of the chromatic components and separately encode windows of each. The result consists of the original greyscale plane plus the polynomial coefficients of windows of rearranged chromatic values, which are then quantized. The simplicity of the method produces a fast and simple scheme for colour image and video compression, with excellent results.
Valoti, Elisabetta; Alberti, Marta; Tortajada, Agustin; Garcia-Fernandez, Jesus; Gastoldi, Sara; Besso, Luca; Bresin, Elena; Remuzzi, Giuseppe; Rodriguez de Cordoba, Santiago; Noris, Marina
2015-01-01
Genomic aberrations affecting the genes encoding factor H (FH) and the five FH-related proteins (FHRs) have been described in patients with atypical hemolytic uremic syndrome (aHUS), a rare condition characterized by microangiopathic hemolytic anemia, thrombocytopenia, and ARF. These genomic rearrangements occur through nonallelic homologous recombinations caused by the presence of repeated homologous sequences in CFH and CFHR1-R5 genes. In this study, we found heterozygous genomic rearrangements among CFH and CFHR genes in 4.5% of patients with aHUS. CFH/CFHR rearrangements were associated with poor clinical prognosis and high risk of post-transplant recurrence. Five patients carried known CFH/CFHR1 genes, but we found a duplication leading to a novel CFHR1/CFH hybrid gene in a family with two affected subjects. The resulting fusion protein contains the first four short consensus repeats of FHR1 and the terminal short consensus repeat 20 of FH. In an FH-dependent hemolysis assay, we showed that the hybrid protein causes sheep erythrocyte lysis. Functional analysis of the FHR1 fraction purified from serum of heterozygous carriers of the CFHR1/CFH hybrid gene indicated that the FHR1/FH hybrid protein acts as a competitive antagonist of FH. Furthermore, sera from carriers of the hybrid CFHR1/CFH gene induced more C5b-9 deposition on endothelial cells than control serum. These results suggest that this novel genomic hybrid mediates disease pathogenesis through dysregulation of complement at the endothelial cell surface. We recommend that genetic screening of aHUS includes analysis of CFH and CFHR rearrangements, particularly before a kidney transplant. Copyright © 2015 by the American Society of Nephrology.
Local yield stress statistics in model amorphous solids
NASA Astrophysics Data System (ADS)
Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain
2018-03-01
We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.
Leong, Siew Hong; Lwin, Kyaw Myo; Lee, Sze Sing; Ng, Wai Har; Ng, Kia Min; Tan, Soo Yong; Ng, Bee Ling; Carter, Nigel P; Tang, Carol; Lian Kon, Oi
2017-01-01
Chromosomal rearrangements are common in cancer. More than 50% occur in common fragile sites and disrupt tumor suppressors. However, such rearrangements are not known in gastric cancer. Here we report recurrent 18q2 breakpoints in 6 of 17 gastric cancer cell lines. The rearranged chromosome 18, t(9;18), in MKN7 cells was flow sorted and identified by reverse chromosome painting. High-resolution tiling array hybridization mapped breakpoints to DOK6 (docking protein 6) intron 4 in FRA18C (18q22.2) and an intergenic region in 9q22.2. The same rearrangement was detected by FISH in 22% of 99 primary gastric cancers. Intron 4 truncation was associated with reduced DOK6 transcription. Analysis of The Cancer Genome Atlas stomach adenocarcinoma cohort showed significant correlation of DOK6 expression with histological and molecular phenotypes. Multiple oncogenic signaling pathways (gastrin-CREB, NGF-neurotrophin, PDGF, EGFR, ERK, ERBB4, FGFR1, RAS, VEGFR2 and RAF/MAP kinase) known to be active in aggressive gastric cancers were strikingly diminished in gastric cancers with low DOK6 expression. Median survival of patients with low DOK6 -expressing tumors was 2100 days compared with 533 days in patients with high DOK6 -expressing tumors (log-rank P = 0.0027). The level of DOK6 expression in tumors predicted patient survival independent of TNM stage. These findings point to new functions of human DOK6 as an adaptor that interacts with diverse molecular components of signaling pathways. Our data suggest that DOK6 expression is an integrated biomarker of multiple oncogenic signals in gastric cancer and identify FRA18C as a new cancer-associated fragile site.
Iannetta, Marco; Bellizzi, Anna; Lo Menzo, Sara; Anzivino, Elena; D'Abramo, Alessandra; Oliva, Alessandra; D'Agostino, Claudia; d'Ettorre, Gabriella; Pietropaolo, Valeria; Vullo, Vincenzo; Ciardi, Maria Rosa
2013-06-01
John Cunningham virus (JCV), the etiological agent of progressive multifocal leukoencephalopathy (PML), contains a hyper-variable non-coding control region usually detected in urine of healthy individuals as archetype form and in the brain and cerebrospinal fluid (CSF) of PML patients as rearranged form. We report a case of HIV-related PML with clinical, immunological and virological data longitudinally collected. On admission (t0), after 8-week treatment with a rescue highly active antiretroviral therapy (HAART), the patient showed a CSF-JCV load of 16,732 gEq/ml, undetectable HIV-RNA and an increase of CD4+ cell count. Brain magnetic resonance imaging (MRI) showed PML-compatible lesions without contrast enhancement. We considered PML-immune reconstitution inflammatory syndrome as plausible because of the sudden onset of neurological symptoms after the effective HAART. An experimental JCV treatment with mefloquine and mirtazapine was added to steroid boli. Two weeks later (t1), motor function worsened and MRI showed expanded lesions with cytotoxic oedema. CSF JCV-DNA increased (26,263 gEq/ml) and JCV viremia was detected. After 4 weeks (t2), JCV was detected only in CSF (37,719 gEq/ml), and 8 weeks after admission (t3), JC viral load decreased in CSF and JCV viremia reappeared. The patient showed high level of immune activation both in peripheral blood and CSF. He died 4 weeks later. Considering disease progression, combined therapy failure and immune hyper-activation, we finally classified the case as classical PML. The archetype variant found in CSF at t0/t3 and a rearranged sequence detected at t1/t2 suggest that PML can develop from an archetype virus and that the appearance of rearranged genotypes contribute to faster disease progression.
The potential of clofarabine in MLL-rearranged infant acute lymphoblastic leukaemia.
Stumpel, Dominique J P M; Schneider, Pauline; Pieters, Rob; Stam, Ronald W
2015-09-01
MLL-rearranged acute lymphoblastic leukaemia (ALL) in infants is the most difficult-to-treat type of childhood ALL, displaying a chemotherapy-resistant phenotype, and unique histone modifications, gene expression signatures and DNA methylation patterns. MLL-rearranged infant ALL responds remarkably well to nucleoside analogue drugs in vitro, such as cytarabine and cladribine, and to the demethylating agents decitabine and zebularine as measured by cytotoxicity assays. These observations led to the inclusion of cytarabine into the treatment regimens currently used for infants with ALL. However, survival chances for infants with MLL-rearranged ALL do still not exceed 30-40%. Here we explored the in vitro potential of the novel nucleoside analogue clofarabine for MLL-rearranged infant ALL. Therefore we used both cell line models as well as primary patient cells. Compared with other nucleoside analogues, clofarabine effectively targeted primary MLL-rearranged infant ALL cells at the lowest concentrations, with median LC50 values of ∼25 nM. Interestingly, clofarabine displayed synergistic cytotoxic effects in combination with cytarabine. Furthermore, at concentrations of 5-10nM clofarabine induced demethylation of the promoter region of the tumour suppressor gene FHIT (Fragile Histidine Triad), a gene typically hypermethylated in MLL-rearranged ALL. Demethylation of the FHIT promoter region was accompanied by subtle re-expression of this gene both at the mRNA and protein level. We conclude that clofarabine is an interesting candidate for further studies in MLL-rearranged ALL in infants. Copyright © 2015 Elsevier Ltd. All rights reserved.
D'Angelo, Carla S; Gajecka, Marzena; Kim, Chong A; Gentles, Andrew J; Glotzbach, Caron D; Shaffer, Lisa G; Koiffmann, Célia P
2009-06-01
The mechanisms involved in the formation of subtelomeric rearrangements are now beginning to be elucidated. Breakpoint sequencing analysis of 1p36 rearrangements has made important contributions to this line of inquiry. Despite the unique architecture of segmental duplications inherent to human subtelomeres, no common mechanism has been identified thus far and different nonexclusive recombination-repair mechanisms seem to predominate. In order to gain further insights into the mechanisms of chromosome breakage, repair, and stabilization mediating subtelomeric rearrangements in humans, we investigated the constitutional rearrangements of 1p36. Cloning of the breakpoint junctions in a complex rearrangement and three non-reciprocal translocations revealed similarities at the junctions, such as microhomology of up to three nucleotides, along with no significant sequence identity in close proximity to the breakpoint regions. All the breakpoints appeared to be unique and their occurrence was limited to non-repetitive, unique DNA sequences. Several recombination- or cleavage-associated motifs that may promote non-homologous recombination were observed in close proximity to the junctions. We conclude that NHEJ is likely the mechanism of DNA repair that generates these rearrangements. Additionally, two apparently pure terminal deletions were also investigated, and the refinement of the breakpoint regions identified two distinct genomic intervals ~25-kb apart, each containing a series of 1p36 specific segmental duplications with 90-98% identity. Segmental duplications can serve as substrates for ectopic homologous recombination or stimulate genomic rearrangements.
MicroRNA-106b~25 cluster is upregulated in relapsed MLL-rearranged pediatric acute myeloid leukemia
Verboon, Lonneke J.; Obulkasim, Askar; de Rooij, Jasmijn D.E.; Katsman, Jenny E.; Sonneveld, Edwin; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Pieters, Rob; Cloos, Jacqueline; Kaspers, Gertjan J.L.; Klusmann, Jan-Henning; Zwaan, Christian Michel; Fornerod, Maarten; van den Heuvel-Eibrink, Marry M.
2016-01-01
The most important reason for therapy failure in pediatric acute myeloid leukemia (AML) is relapse. In order to identify miRNAs that contribute to the clonal evolution towards relapse in pediatric AML, miRNA expression profiling of 127 de novo pediatric AML cases were used. In the diagnostic phase, no miRNA signatures could be identified that were predictive for relapse occurrence, in a large pediatric cohort, nor in a nested mixed lineage leukemia (MLL)-rearranged pediatric cohort. AML with MLL- rearrangements are found in 15-20% of all pediatric AML samples, and reveal a relapse rate up to 50% for certain translocation partner subgroups. Therefore, microRNA expression profiling of six paired initial diagnosis-relapse MLL-rearranged pediatric AML samples (test cohort) and additional eight paired initial diagnosis-relapse samples with MLL-rearrangements (validation cohort) was performed. A list of 53 differentially expressed miRNAs was identified of which the miR-106b~25 cluster, located in intron 13 of MCM7, was the most prominent. These differentially expressed miRNAs however could not predict a relapse in de novo AML samples with MLL-rearrangements at diagnosis. Furthermore, higher mRNA expression of both MCM7 and its upstream regulator E2F1 was found in relapse samples with MLL-rearrangements. In conclusion, we identified the miR-106b~25 cluster to be upregulated in relapse pediatric AML with MLL-rearrangements. PMID:27351222
Numerical Modelling Of The V-J Combinations Of The T Cell Receptor TRA/TRD Locus
Dariz, Aurélie; Baum, Thierry Pascal; Hierle, Vivien; Demongeot, Jacques; Marche, Patrice Noël; Jouvin-Marche, Evelyne
2010-01-01
T-Cell antigen Receptor (TR) repertoire is generated through rearrangements of V and J genes encoding α and β chains. The quantification and frequency for every V-J combination during ontogeny and development of the immune system remain to be precisely established. We have addressed this issue by building a model able to account for Vα-Jα gene rearrangements during thymus development of mice. So we developed a numerical model on the whole TRA/TRD locus, based on experimental data, to estimate how Vα and Jα genes become accessible to rearrangements. The progressive opening of the locus to V-J gene recombinations is modeled through windows of accessibility of different sizes and with different speeds of progression. Furthermore, the possibility of successive secondary V-J rearrangements was included in the modelling. The model points out some unbalanced V-J associations resulting from a preferential access to gene rearrangements and from a non-uniform partition of the accessibility of the J genes, depending on their location in the locus. The model shows that 3 to 4 successive rearrangements are sufficient to explain the use of all the V and J genes of the locus. Finally, the model provides information on both the kinetics of rearrangements and frequencies of each V-J associations. The model accounts for the essential features of the observed rearrangements on the TRA/TRD locus and may provide a reference for the repertoire of the V-J combinatorial diversity. PMID:20174554
Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; De Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.
2016-01-01
Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65–74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase. PMID:27874020
NASA Astrophysics Data System (ADS)
Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; de Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.
2016-11-01
Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.
Galián, José; Proença, Sónia JR; Vogler, Alfried P
2007-01-01
Background Genetic systems involving multiple X chromosomes have arisen repeatedly in sexually reproducing animals. Tiger beetles (Cicindelidae) exhibit a phylogenetically ancient multiple-X system typically consisting of 2–4 X chromosomes and a single Y. Because recombination rates are suppressed in sex chromosomes, changes in their numbers and movement of genes between sex chromosomes and autosomes, could have important consequences for gene evolution and rates of speciation induced by these rearrangements. However, it remains unclear how frequent these rearrangements are and which genes are affected. Results Karyotype analyses were performed for a total of 26 North American species in the highly diverse genus Cicindela, tallying the number of X chromosomes and autosomes during mitosis and meiosis. The chromosomal location of the ribosomal rRNA gene cluster (rDNA) was used as an easily scored marker for genic turnover between sex chromosomes or autosomes. The findings were assessed in the light of a recent phylogenetic analysis of the group. While autosome numbers remained constant throughout the lineage, sex chromosome numbers varied. The predominant karyotype was n = 9+X1X2X3Y which was also inferred to be the ancestral state, with several changes to X1X2Y and X1X2X3X4Y confined to phylogenetically isolated species. The total (haploid) numbers of rDNA clusters varied between two, three, and six (in one exceptional case), and clusters were localized either on the autosomes, the sex chromosomes, or both. Transitions in rDNA localization and in numbers of rDNA clusters varied independently of each other, and also independently of changes in sex chromosome numbers. Conclusion Changes of X chromosome numbers and transposition of the rDNA locus (and presumably other genes) between autosomes and sex chromosomes in Cicindela occur frequently, and are likely to be the result of fusions or fissions between X chromosomes, rather than between sex chromosomes and autosomes. Yet, translocations between sex chromosomes and autosomes appear to be common, as indicated by the patterns of rDNA localization. Rearranged karyotypes involving multiple sex chromosomes would reduce recombination, and hybrid dysgenesis selects against polymorphic populations. Hence, the high frequency of these rearrangements could be a cause of the great species diversity in Cicindela. PMID:17822542
10 CFR 2.909 - Rearrangement or suspension of proceedings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Rearrangement or suspension of proceedings. 2.909 Section 2.909 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND.../or National Security Information § 2.909 Rearrangement or suspension of proceedings. In any...
10 CFR 2.909 - Rearrangement or suspension of proceedings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Rearrangement or suspension of proceedings. 2.909 Section 2.909 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND.../or National Security Information § 2.909 Rearrangement or suspension of proceedings. In any...
An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides
DeKorver, Kyle A.; North, Troy D.; Hsung, Richard P.
2010-01-01
A novel thermal 3-aza-Claisen rearrangement of N-allyl ynamides for the synthesis of α-allyl imidates is described. Also, a sequential aza-Claisen, Pd-catalyzed Overman rearrangement is described for the synthesis of azapine-2-ones. PMID:21278848
RET/PTC Translocations and Clinico-Pathological Features in Human Papillary Thyroid Carcinoma
Romei, Cristina; Elisei, Rossella
2012-01-01
Thyroid carcinoma is the most frequent endocrine cancer accounting for 5–10% of thyroid nodules. Papillary histotype (PTC) is the most prevalent form accounting for 80% of all thyroid carcinoma. Although much is known about its epidemiology, pathogenesis, clinical, and biological behavior, the only documented risk factor for PTC is the ionizing radiation exposure. Rearrangements of the Rearranged during Transfection (RET) proto-oncogene are found in PTC and have been shown to play a pathogenic role. The first RET rearrangement, named RET/PTC, was discovered in 1987. This rearrangement constitutively activates the transcription of the RET tyrosine-kinase domain in follicular cell, thus triggering the signaling along the MAPK pathway and an uncontrolled proliferation. Up to now, 13 different types of RET/PTC rearrangements have been reported but the two most common are RET/PTC1 and RET/PTC3. Ionizing radiations are responsible for the generation of RET/PTC rearrangements, as supported by in vitro studies and by the evidence that RET/PTC, and particularly RET/PTC3, are highly prevalent in radiation induced PTC. However, many thyroid tumors without any history of radiation exposure harbor similar RET rearrangements. The overall prevalence of RET/PTC rearrangements varies from 20 to 70% of PTCs and they are more frequent in childhood than in adulthood thyroid cancer. Controversial data have been reported on the relationship between RET/PTC rearrangements and the PTC prognosis. RET/PTC3 is usually associated with a more aggressive phenotype and in particular with a greater tumor size, the solid variant, and a more advanced stage at diagnosis which are all poor prognostic factors. In contrast, RET/PTC1 rearrangement does not correlate with any clinical–pathological characteristics of PTC. Moreover, the RET protein and mRNA expression level did not show any correlation with the outcome of patients with PTC and no correlation between RET/PTC rearrangements and the expression level of the thyroid differentiation genes was observed. Recently, a diagnostic role of RET/PTC rearrangements has been proposed. It can be searched for in the mRNA extracted from cytological sample especially in case with indeterminate cytology. However, both the fact that it can be present in a not negligible percentage of benign cases and the technical challenge in extracting mRNA from cytological material makes this procedure not applicable at routine level, at least for the moment. PMID:22654872
Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector Daniel; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar
2017-09-01
BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements. Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described. a) this first comprehensive description of the spectrum in BRCA1/2 sheds light on the low frequency of recurrent mutations; b) this information is key in clinical practice to select adequate sequencing studies in our population, subsequently improve patient outcome and prevent damage associated to false normal reports resulting from the use of invalid population panels; c) panels of mutations from other populations should be cautiously validated before imported, even those of apparently similar origin, a concept to be considered beyond significance in Argentina.
Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector Daniel; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar
2017-01-01
BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements. Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described. In conclusion: a) this first comprehensive description of the spectrum in BRCA1/2 sheds light on the low frequency of recurrent mutations; b) this information is key in clinical practice to select adequate sequencing studies in our population, subsequently improve patient outcome and prevent damage associated to false normal reports resulting from the use of invalid population panels; c) panels of mutations from other populations should be cautiously validated before imported, even those of apparently similar origin, a concept to be considered beyond significance in Argentina. PMID:28947987
Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip
2014-01-01
Aim To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). Methods A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Results Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. Conclusions We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH. PMID:23969274
Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip
2014-01-01
To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH.
Sengupta, Raghuvir N.; Van Schie, Sabine N.S.; Giambaşu, George; Dai, Qing; Yesselman, Joseph D.; York, Darrin; Piccirilli, Joseph A.; Herschlag, Daniel
2016-01-01
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such “off-pathway” species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2′- and 3′-deoxy (–H) and −amino (–NH2) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3′-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2′-OH making no interaction. Upon S binding, a rearrangement occurs that allows both –OH groups to contact a different active site metal ion, termed MC, to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function. PMID:26567314
Sengupta, Raghuvir N; Van Schie, Sabine N S; Giambaşu, George; Dai, Qing; Yesselman, Joseph D; York, Darrin; Piccirilli, Joseph A; Herschlag, Daniel
2016-01-01
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such "off-pathway" species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2'- and 3'-deoxy (-H) and -amino (-NH(2)) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3'-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2'-OH making no interaction. Upon S binding, a rearrangement occurs that allows both -OH groups to contact a different active site metal ion, termed M(C), to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function. © 2015 Sengupta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
10 CFR 110.124 - Rearrangement or suspension of a hearing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Rearrangement or suspension of a hearing. 110.124 Section 110.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Special Procedures for Classified Information in Hearings § 110.124 Rearrangement or suspension of...
10 CFR 110.124 - Rearrangement or suspension of a hearing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Rearrangement or suspension of a hearing. 110.124 Section 110.124 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Special Procedures for Classified Information in Hearings § 110.124 Rearrangement or suspension of...
Synthesis of Methyl Cyclopentanecarboxylate: A Laboratory Experience in Carbon Rearrangement
ERIC Educational Resources Information Center
Orchard, Alexandra; Maniquis, Roxanne V.; Salzameda, Nicholas T.
2016-01-01
We present a novel guided inquiry second semester organic chemistry laboratory rearrangement experiment. Students performed the Favorskii Rearrangement to obtain methyl cyclopentanecarboxylate in good yields. The students learned about the individual steps of the Favorskii mechanism and were required to propose a complete reaction mechanism and…
NASA Astrophysics Data System (ADS)
Iwasaki, M.; Otani, R.; Ito, M.; Kamimura, M.
2016-05-01
We formulate the method of the absorbing boundary condition (ABC) in the coupled-rearrangement-channels variational method (CRCMV) for the three-body problem. In the present study, we handle the simple three-boson system, and the absorbing potential is introduced in the Jacobi coordinate in the individual rearrangement channels. The resonance parameters and the strength of the monopole breakup are compared with the complex scaling method (CSM). We have found that the CRCVM + ABC method nicely works in the threebody problem with the rearrangement channels.
Biallelic Germline Transcription at the κ Immunoglobulin Locus
Singh, Nandita; Bergman, Yehudit; Cedar, Howard; Chess, Andrew
2003-01-01
Rearrangement of antigen receptor genes generates a vast array of antigen receptors on lymphocytes. The establishment of allelic exclusion in immunoglobulin genes requires differential treatment of the two sequence identical alleles. In the case of the κ immunoglobulin locus, changes in chromatin structure, methylation, and replication timing of the two alleles are all potentially involved in regulating rearrangement. Additionally, germline transcription of the κ locus which precedes rearrangement has been proposed to reflect an opening of the chromatin structure rendering it available for rearrangement. As the initial restriction of rearrangement to one allele is critical to the establishment of allelic exclusion, a key question is whether or not germline transcription at the κ locus is monoallelic or biallelic. We have used a sensitive reverse transcription-polymerase chain reaction (RT-PCR) assay and an RNA–fluorescence in situ hybridization (FISH) to show that germline transcription of the κ locus is biallelic in wild-type immature B cells and in recombination activating gene (RAG)−/−, μ+ B cells. Therefore, germline transcription is unlikely to dictate which allele will be rearranged first and rather reflects a general opening on both alleles that must be accompanied by a mechanism allowing one of the two alleles to be rearranged first. PMID:12629064
Evolution of the Banana Genome (Musa acuminata) Is Impacted by Large Chromosomal Translocations.
Martin, Guillaume; Carreel, Françoise; Coriton, Olivier; Hervouet, Catherine; Cardi, Céline; Derouault, Paco; Roques, Danièle; Salmon, Frédéric; Rouard, Mathieu; Sardos, Julie; Labadie, Karine; Baurens, Franc-Christophe; D'Hont, Angélique
2017-09-01
Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Hong, Shaodong; Fang, Wenfeng; Hu, Zhihuang; Zhou, Ting; Yan, Yue; Qin, Tao; Tang, Yanna; Ma, Yuxiang; Zhao, Yuanyuan; Xue, Cong; Huang, Yan; Zhao, Hongyun; Zhang, Li
2014-01-01
The predictive power of age at diagnosis and smoking history for ALK rearrangements and EGFR mutations in non-small-cell lung cancer (NSCLC) remains not fully understood. In this cross-sectional study, 1160 NSCLC patients were prospectively enrolled and genotyped for EML4-ALK rearrangements and EGFR mutations. Multivariate logistic regression analysis was performed to explore the association between clinicopathological features and these two genetic aberrations. Receiver operating characteristic (ROC) curves methodology was applied to evaluate the predictive value. We showed that younger age at diagnosis was the only independent variable associated with EML4-ALK rearrangements (odds ratio (OR) per 5 years' increment, 0.68; p < 0.001), while lower tobacco exposure (OR per 5 pack-years' increment, 0.88; p < 0.001), adenocarcinoma (OR, 6.61; p < 0.001), and moderate to high differentiation (OR, 2.05; p < 0.001) were independently associated with EGFR mutations. Age at diagnosis was a very strong predictor of ALK rearrangements but poorly predicted EGFR mutations, while smoking pack-years may predict the presence of EGFR mutations and ALK rearrangements but with rather limited power. These findings should assist clinicians in assessing the likelihood of EML4-ALK rearrangements and EGFR mutations and understanding their biological implications in NSCLC. PMID:25434695
NASA Astrophysics Data System (ADS)
Grubbs, G. S. Grubbs, Ii; Cooke, S. A.; Novick, Stewart E.
2012-06-01
Claisen rearrangement ethers are a fundamental organic, pericyclic rearrangement reaction reagent. In the mechanism of a Claisen rearrangement, a vinyl allyl ether is needed to provide the necessary Lewis acid/base sites on the molecule for the rearrangement and are simply heated. This rearrangement was first discovered by heating up the title molecule, allyl phenyl ether. However, much like the Diels-Alder, Cope, and other pericyclic reactions, conformation and coordination of chemical groups is key to the Claisen mechanism. In this study, the authors present some structural characteristics of allyl phenyl ether from an analysis of the microwave spectra in the 8-14 GHz region using a CP-FTMW spectrometer. This is, to the authors knowledge, the first known microwave region study of the title molecule. Three conformers have been observed and assigned to date and will be discussed. Along with the rotational spectra, geometry calculations and potential energy surfaces performed at the MP2/6-311G++(3d,2p) level will be discussed and compared to the experimental results. Modeling the Claisen aromatic rearrangement mechanism using CP-FTMW spectroscopy will also be discussed. L. Claisen Chemische Berichte 45, 3157, October 1912.
Moodley, Yoshan; Uhr, Markus; Stamer, Christiana; Vauterin, Marc; Suerbaum, Sebastian; Achtman, Mark
2010-01-01
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown. PMID:20808891
Olbermann, Patrick; Josenhans, Christine; Moodley, Yoshan; Uhr, Markus; Stamer, Christiana; Vauterin, Marc; Suerbaum, Sebastian; Achtman, Mark; Linz, Bodo
2010-08-19
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI-carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown.
Zhang, Yun-Gang; Jin, Mu-Lan; Li, Li; Zhao, Hong-Ying; Zeng, Xuan; Jiang, Lei; Wei, Ping; Diao, Xiao-Li; Li, Xue; Cao, Qing; Tian, Xin-Xia
2013-01-01
Patients with ALK gene rearrangements often manifest dramatic responses to crizotinib, an ALK inhibitor. Accurate identification of patients with ALK-positive non-small cell lung cancer (NSCLC) is essential for the clinical application of ALK-targeted therapy. However, assessing EML4-ALK rearrangement in NSCLC remains challenging in routine pathology practice. The aim of this study was to compare the diagnostic accuracy of FISH, immunohistochemistry (IHC), and real-time quantitative RT-PCR (QPCR) methodologies for detection of EML4-ALK rearrangement in NSCLC and to appraise immunohistochemistry as a pre-screening tool. In this study, a total of 473 paraffin-embedded NSCLC samples from surgical resections and biopsies were analyzed by IHC with ALK antibody. ALK rearrangement was further confirmed by FISH and QPCR. ALK protein expression was detected in twenty patients (20/473, 4.2%). Of the 20 ALK-positive cases by IHC, 15 cases were further confirmed as ALK rearrangement by FISH, and 5 cases were not interpretable. Also, we evaluated 13 out of the 20 IHC-positive tissues by QPCR in additional to FISH, and found that 9 cases were positive and 2 cases were equivocal, whereas 2 cases were negative although they were positive by both IHC and FISH. The ALK status was concordant in 5 out of 8 cases that were interpretable by three methods. Additionally, none of the 110 IHC-negative cases with adenocarcinoma histology showed ALK rearrangements by FISH. Histologically, almost all the ALK-rearranged cases were adenocarcinoma, except that one case was sarcomatoid carcinoma. A solid signet-ring cell pattern or mucinous cribriform pattern was presented at least focally in all ALK-positive tumors. In conclusion, our findings suggested that ALK rearrangement was associated with ALK protein expression. The conventional IHC assay is a valuable tool for the pre-screening of patients with ALK rearrangement in clinical practice and a combination of FISH and QPCR is required for further confirmation. PMID:23741400
Shan, Guo-Dong; Hu, Feng-Ling; Yang, Ming; Chen, Hong-Tan; Chen, Wen-Guo; Wang, Yun-Gui; Chen, Li-Hua; Li, You-Ming; Xu, Guo-Qiang
2013-09-14
To study the diagnostic value of immunoglobulin heavy chain (IgH) and T-cell receptor γ (TCR-γ) gene monoclonal rearrangements in primary gastric lymphoma (PGL). A total of 48 patients with suspected PGL at our hospital were prospectively enrolled in this study from January 2009 to December 2011. The patients were divided into three groups (a PGL group, a gastric linitis plastica group, and a benign gastric ulcer group) based on the pathological results (gastric mucosal specimens obtained by endoscopy or surgery) and follow-up. Endoscopic ultrasonography (EUS) and EUS-guided biopsy were performed in all the patients. The tissue specimens were used for histopathological examination and for IgH and TCR-γ gene rearrangement polymerase chain reaction analyses. EUS and EUS-guided biopsy were successfully performed in all 48 patients. In the PGL group (n = 21), monoclonal IgH gene rearrangements were detected in 14 (66.7%) patients. A positive result for each set of primers was found in 12 (57.1%), 8 (38.1%), and 4 (19.0%) cases using FR1/JH, FR2/JH, and FR3/JH primers, respectively. Overall, 12 (75%) patients with mucosal-associated lymphoid tissue lymphoma (n = 16) and 2 (40%) patients with diffuse large B-cell lymphoma (n = 5) were positive for monoclonal IgH gene rearrangements. No patients in the gastric linitis plastica group (n = 17) and only one (10%) patient in the benign gastric ulcer group (n = 10) were positive for a monoclonal IgH gene rearrangement. No TCR-γ gene monoclonal rearrangements were detected. The sensitivity of monoclonal IgH gene rearrangements was 66.7% for a PGL diagnosis, and the specificity was 96.4%. In the PGL group, 8 (100%) patients with stage IIE PGL (n = 8) and 6 (46.1%) patients with stage IE PGL (n = 13) were positive for monoclonal IgH gene rearrangements. IgH gene rearrangements may be associated with PGL staging and may be useful for the diagnosis of PGL and for differentiating between PGL and gastric linitis plastica.
Models of metal binding structures in fulvic acid from the Suwannee River, Georgia
Leenheer, J.A.; Brown, G.K.; MacCarthy, P.; Cabaniss, S.E.
1998-01-01
Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The 'metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-1R spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short- chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca2+, Cd2+, Cu2+, Ni2+, and Zn2+ ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca2+ ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The `metal binding' fraction was characterized by quantitative 13C NMR, 1H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca2+ binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.
Williamson, Sean R; Bunde, Paula J; Montironi, Rodolfo; Lopez-Beltran, Antonio; Zhang, Shaobo; Wang, Mingsheng; Maclennan, Gregory T; Cheng, Liang
2013-10-01
Recently, a small subgroup of PEComas has been recognized to harbor rearrangements involving TFE3, a gene also involved in rearrangements in translocation-associated renal cell carcinomas and alveolar soft part sarcomas. The few TFE3 rearrangement-associated PEComas reported have exhibited distinctive pathologic characteristics contrasting to PEComas in general, including predominantly epithelioid nested or alveolar morphology and underexpression of muscle markers by immunohistochemistry. In this study, we report the clinicopathologic, immunohistochemical, and molecular features of a primary urinary bladder PEComa diagnosed by transurethral resection in a 55-year-old woman that clinically mimicked urothelial carcinoma. Light microscopy demonstrated mixed spindle cell and epithelioid morphology with the epithelioid component preferentially associated with blood vessels. Immunohistochemistry revealed positive staining for HMB45, tyrosinase, MiTF, cathepsin K, smooth muscle actin, and TFE3 protein. Fluorescence in situ hybridization for the TFE3 gene revealed a split signal pattern, indicating TFE3 rearrangement. X chromosome inactivation analysis demonstrated a clonal pattern despite the heterogenous appearance of the tumor. Unfortunately, despite surgical resection and sarcoma-directed therapy, the patient died of metastatic disease 12 months after diagnosis. This report adds to the known data regarding urinary bladder PEComas and PEComas with TFE3 rearrangement, indicating that both can pursue an aggressive course. Although the few reported TFE3-rearranged PEComas have predominantly lacked a spindle cell component and expression of smooth muscle actin and MiTF by immunohistochemistry, the findings in this study indicate that these features are sometimes present in TFE3-rearranged PEComas.
Yang, Hua; Cao, Tingting; Gao, Li; Wang, Lili; Zhu, Chengying; Xu, Yuanyuan; Jing, Yu; Zhu, Haiyan; Lv, Na; Yu, Li
2017-07-20
Occurrence of MLL (Mixed Lineage Leukemia) gene rearrangements indicates poor prognosis in acute myeloid leukemia (AML) patients. This is the first study to report the positive rate and distribution characteristics of MLL rearrangements in AML patients in north China. We used multiplex nested real time PCR (RT-PCR) to screen for incidence of 11 MLL rearrangements in 433 AML patients. Eleven MLL rearrangements included (MLL-PTD, MLL-AF9, MLL-ELL, MLL-AF10, MLL-AF17, MLL-AF6, MLL-ENL, MLL-AF1Q, MLL-CBP, MLL-AF1P, MLL-AFX1). There were 68 AML patients with MLL rearrangements, and the positive rate was 15.7%. MLL-PTD (4.84%) was detected in 21 patients, MLL-AF9 in 15, (3.46%), MLL-ELL in 10 (2.31%), MLL-AF10 in 8 (1.85%), MLL-AF1Q in 2 (0.46%), 3 cases each of MLL-AF17, MLL-AF6, MLL-ENL (0.69% each), a and single case each of MLL-CBP, MLL-AF1P, and MLL-AFX1 (0.23% each). The highest rate of MLL rearrangements was found in 24 patients with M5 subtype AML, occurring in 24 cases (35.3%). MLL rearrangements occurred in 21 patients with M2 subtype AML (30.9%), and in 10 patients with M4 subtype AML (14.7%). Screening fusion genes by multiplex nested RT-PCR is a convenient, fast, economical, and accurate method for diagnosis and predicting prognosis of AML.
2013-05-31
j] (11) A MATLAB code was written for finding the displacement at each node for all time steps. Material selected for the study was steel with 1 m...some of the dislocations are annihilated or rearranged. Various stages in the recovery are, entanglement of dislocations, cell formation, annihilation...frequency domain using an in-house pro- gram written in MATLAB . A time-domain signal obtained from nonlinear measurement and its corresponding fast
Analysis and Dynamics of the Chromosomal Complements of Wild Sparkling-Wine Yeast Strains
Nadal, Dolors; Carro, David; Fernández-Larrea, Juan; Piña, Benjamin
1999-01-01
We isolated Saccharomyces cerevisiae yeast strains that are able to carry out the second fermentation of sparkling wine from spontaneously fermenting musts in El Penedès (Spain) by specifically designed selection protocols. All of them (26 strains) showed one of two very similar mitochondrial DNA (mtDNA) restriction patterns, whereas their karyotypes differed. These strains showed high rates of karyotype instability, which were dependent on both the medium and the strain, during vegetative growth. In all cases, the mtDNA restriction pattern was conserved in strains kept under the same conditions. Analysis of different repetitive sequences in their genomes suggested that ribosomal DNA repeats play an important role in the changes in size observed in chromosome XII, whereas SUC genes or Ty elements did not show amplification or transposition processes that could be related to rearrangements of the chromosomes showing these sequences. Karyotype changes also occurred in monosporidic diploid derivatives. We propose that these changes originated mainly from ectopic recombination between repeated sequences interspersed in the genome. None of the rearranged karyotypes provided a selective advantage strong enough to allow the strains to displace the parental strains. The nature and frequency of these changes suggest that they may play an important role in the establishment and maintenance of the genetic diversity observed in S. cerevisiae wild populations. PMID:10103269
DeKorver, Kyle A; Wang, Xiao-Na; Walton, Mary C; Hsung, Richard P
2012-04-06
A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured.
DeKorver, Kyle A.; Wang, Xiao-Na; Walton, Mary C.; Hsung, Richard P.
2012-01-01
A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured. PMID:22414252
ERIC Educational Resources Information Center
Bi, Ai-Ling; Wang, Yue; Li, Bo-Qin; Wang, Qian-Qian; Ma, Ling; Yu, Hui; Zhao, Ling; Chen, Zhe-Yu
2010-01-01
Actin rearrangement plays an essential role in learning and memory; however, the spatial and temporal regulation of actin dynamics in different phases of associative memory has not been fully understood. Here, using the conditioned taste aversion (CTA) paradigm, we investigated the region-specific involvement of actin rearrangement-related…
Degradations and Rearrangement Reactions
NASA Astrophysics Data System (ADS)
Zhang, Jianbo
This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.
Atomic Rearrangements in Electron Attachment to Laser-Excited Molecules^*
NASA Astrophysics Data System (ADS)
Pinnaduwage, Lal; McCorkle, Dennis
1996-10-01
We report the observation of extensive atomic rearrangements in dissociative electron attachment to triethylamine " (Pinnaduwage and McCorkle, Chem.Phys. Lett. (in press, 1996))" and benzene laser excited to energies above their ionization thresholds. Large signal of "rearranged" negative ions, such as C_3^- (which is observed in both cases), were observed. This is in contrast to negative-ion formation via electron attachment to molecules in their ground states, where "rearranged" negative ions are comparatively weak and have been observed only occasionally. However, formation of "rearranged" positive ions is of common occurrence in the ionization of polyatomic molecules; it is possible that the formation of "rearranged" positive ions in the ionization processes, and the formation of such negative ions via electron attachment to excited states located close to the ionization threshold, are related. * Work supported by the LDRD Program of the Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the US Department of Energy under contract number DE-AC05-96OR22464, and by the National Science Foundation under contract CHE-93113949 with the Univ. of Tenn., Knoxville.
Mallick, Subrata; Kumar Pradhan, Saroj; Chandran, Muronia; Acharya, Manoj; Digdarsini, Tanmayee; Mohapatra, Rajaram
2011-01-01
Particle rearrangements, compaction under pressure and in vitro dissolution have been evaluated after melt dispersion of ibuprofen, Avicel and Aerosil. The Cooper–Eaton and Kuno equations were utilized for the determination of particle rearrangement and compression behavior from tap density and compact data. Particle rearrangement could be divided into two stages as primary and secondary rearrangement. Transitional tapping between the stages was found to be 20–25 taps in ibuprofen crystalline powder, which was increased up to 45 taps with all formulated powders. Compaction in the rearrangement stages was increased in all the formulations with respect to pure ibuprofen. Significantly increased compaction of ibuprofen under pressure can be achieved using Avicel by melt dispersion technique, which could be beneficial in ibuprofen tablet manufacturing by direct compression. SEM, FTIR and DSC have been utilized for physicochemical characterization of the melt dispersion powder materials. Dissolution of ibuprofen from compacted tablet of physical mixture and melt dispersion particles has also been improved greatly in the following order: Ibc
ROS1 rearrangement and response to crizotinib in Stage IV non-small cell lung cancer
Suryavanshi, Moushumi; Panigrahi, Manoj Kumar; Kumar, Dushyant; Verma, Haristuti; Saifi, Mumtaz; Dabas, Bharti; Batra, Ullas; Doval, Dinesh; Mehta, Anurag
2017-01-01
Background: The frequency of ROS1 rearrangement in non-small cell lung cancers has been reported from 1.6% to 2.3%. Materials and Methods: We examined 105 lung adenocarcinoma patients for ROS1 rearrangement which were negative for EGFR and anaplastic lymphoma kinase. Clinical characteristics of ROS1 rearranged patients and their responses to crizotinib therapy were studied. Results: Of the 105 patients, three cases were positive for ROS1 rearrangement by fluorescence in situ hybridization analysis. All of them showed heterogeneous pattern. All the 3 ROS1-positive patients were females in their forties and started on crizotinib. All of them responded to treatment. One of them developed resistance after 3 months. Another one showed marked systemic response but central nervous system lesions progressed. The third case is doing well till date with inactive lesions on positron emission tomography scan. Conclusions: The frequency of ROS1 rearrangement is low in non-small cell lung carcinoma, but their diagnosis offers patients an opportunity to receive highly effective targeted therapies. PMID:28869223
Hexose rearrangements upon fragmentation of N-glycopeptides and reductively aminated N-glycans.
Wuhrer, Manfred; Koeleman, Carolien A M; Deelder, André M
2009-06-01
Tandem mass spectrometry of glycans and glycoconjugates in protonated form is known to result in rearrangement reactions leading to internal residue loss. Here we studied the occurrence of hexose rearrangements in tandem mass spectrometry of N-glycopeptides and reductively aminated N-glycans by MALDI-TOF/TOF-MS/MS and ESI-ion trap-MS/MS. Fragmentation of proton adducts of oligomannosidic N-glycans of ribonuclease B that were labeled with 2-aminobenzamide and 2-aminobenzoic acid resulted in transfer of one to five hexose residues to the fluorescently tagged innermost N-acetylglucosamine. Glycopeptides from various biological sources with oligomannosidic glycans were likewise shown to undergo hexose rearrangement reactions, resulting in chitobiose cleavage products that have acquired one or two hexose moieties. Tryptic immunoglobulin G Fc-glycopeptides with biantennary N-glycans likewise showed hexose rearrangements resulting in hexose transfer to the peptide moiety retaining the innermost N-acetylglucosamine. Thus, as a general phenomenon, tandem mass spectrometry of reductively aminated glycans as well as glycopeptides may result in hexose rearrangements. This characteristic of glycopeptide MS/MS has to be considered when developing tools for de novo glycopeptide structural analysis.
Denmark, Scott E.; Marlin, John E.; Rajendra, G.
2012-01-01
The carbanion-accelerated Claisen rearrangement has been extended to include phosphorus carbanion-stabilizing groups. The appropriately substituted allyl vinyl ethers are synthesized by the nucleophilic addition of allyloxides to phosphorus-substituted allenes, which are obtained in one step from simple starting materials. The phosphorus-stabilized, carbanion-accelerated Claisen rearrangements proceed rapidly at room temperature in high yield, and the rearrangements are highly site and stereoselective. The first examples of asymmetric induction in the Claisen rearrangement with chiral, phosphorus, anion-stabilizing groups are described. The observed asymmetric induction is highly dependent on the structure of the auxiliary and the metal counterion involved. Both internal and relative diastereoselectivity are high. A model for the observed sense of internal diastereoselectivity is proposed that is founded in the current understanding of the structure of phosphorus-stabilized anions. PMID:23101563
Klaus, Verena; Wittmann, Stéphane; Senn, Hans M; Clark, J Stephen
2018-05-15
A novel method for the stereoselective construction of hexahydroazuleno[4,5-b]furans from simple precursors has been developed. The route involves the use of our recently developed Brønsted acid catalysed cyclisation reaction of acyclic ynenones to prepare fused 1-furanyl-2-alkenylcyclopropanes that undergo highly stereoselective thermal Cope rearrangement to produce fused tricyclic products. Substrates possessing an E-alkene undergo smooth Cope rearrangement at 40 °C, whereas the corresponding Z-isomers do not react at this temperature. Computational studies have been performed to explain the difference in behaviour of the E- and Z-isomers in the Cope rearrangement reaction. The hexahydroazuleno[4,5-b]furans produced by Cope rearrangement have potential as advanced intermediates for the synthesis of members of the guaianolide family of natural products.
Ovcharenko, V V; Pihlaja, K; Matosiuk, D
2001-01-01
The 70-eV electron ionisation (EI) mass spectra of the title compounds show clear differences between the 5-oxo and 7-oxo isomers due to regioselective fragmentations involving the ester function. Exceptionally abundant metastable peaks due to molecular ions fragmenting to [M -CO2](+.) were observed exclusively for the 7-oxo isomers, suggesting that the sufficiently long-lived molecular ions undergo a slow rearrangement preceding this fragmentation reaction. The results are contrasted to the available literature data on the ester group fragmentations involving the loss of CO2 and the EI mass spectrometry of pyrimidone beta-oxo esters. A reaction mechanism is proposed for the elimination of CO2 following ethyl group migration to the pyrimidone carbonyl oxygen. Copyright 2001 John Wiley & Sons, Ltd.
3D organization of synthetic and scrambled chromosomes.
Mercy, Guillaume; Mozziconacci, Julien; Scolari, Vittore F; Yang, Kun; Zhao, Guanghou; Thierry, Agnès; Luo, Yisha; Mitchell, Leslie A; Shen, Michael; Shen, Yue; Walker, Roy; Zhang, Weimin; Wu, Yi; Xie, Ze-Xiong; Luo, Zhouqing; Cai, Yizhi; Dai, Junbiao; Yang, Huanming; Yuan, Ying-Jin; Boeke, Jef D; Bader, Joel S; Muller, Héloïse; Koszul, Romain
2017-03-10
Although the design of the synthetic yeast genome Sc2.0 is highly conservative with respect to gene content, the deletion of several classes of repeated sequences and the introduction of thousands of designer changes may affect genome organization and potentially alter cellular functions. We report here the Hi-C-determined three-dimensional (3D) conformations of Sc2.0 chromosomes. The absence of repeats leads to a smoother contact pattern and more precisely tractable chromosome conformations, and the large-scale genomic organization is globally unaffected by the presence of synthetic chromosome(s). Two exceptions are synIII, which lacks the silent mating-type cassettes, and synXII, specifically when the ribosomal DNA is moved to another chromosome. We also exploit the contact maps to detect rearrangements induced in SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution) strains. Copyright © 2017, American Association for the Advancement of Science.
Xie, Weiwei; Zheng, Rongliang; Gan, Yu; Chang, Jianhua
2016-01-01
The Rearranged during transfection (RET) fusion gene is a newly identified oncogenic mutation in non-small cell lung cancer (NSCLC). The aim of this study is to explore the biological functions of the gene in tumorigenesis and metastasis in RET gene fusion-driven preclinical models. We also investigate the anti-tumor activity of Apatinib, a potent inhibitor of VEGFR-2, PDGFR-β, c-Src and RET, in RET-rearranged lung adenocarcinoma, together with the mechanisms underlying. Our results suggested that KIF5B-RET fusion gene promoted cell invasion and migration, which were probably mediated through Src signaling pathway. Apatinib exerted its anti-cancer effect not only via cytotoxicity, but also via inhibition of migration and invasion by suppressing RET/Src signaling pathway, supporting a potential role for Apatinib in the treatment of KIF5B-RET driven tumors. PMID:27494860
Lin, Chen; Wang, Shanshan; Xie, Weiwei; Zheng, Rongliang; Gan, Yu; Chang, Jianhua
2016-09-13
The Rearranged during transfection (RET) fusion gene is a newly identified oncogenic mutation in non-small cell lung cancer (NSCLC). The aim of this study is to explore the biological functions of the gene in tumorigenesis and metastasis in RET gene fusion-driven preclinical models. We also investigate the anti-tumor activity of Apatinib, a potent inhibitor of VEGFR-2, PDGFR-β, c-Src and RET, in RET-rearranged lung adenocarcinoma, together with the mechanisms underlying. Our results suggested that KIF5B-RET fusion gene promoted cell invasion and migration, which were probably mediated through Src signaling pathway. Apatinib exerted its anti-cancer effect not only via cytotoxicity, but also via inhibition of migration and invasion by suppressing RET/Src signaling pathway, supporting a potential role for Apatinib in the treatment of KIF5B-RET driven tumors.
Saisawang, Chonticha; Ketterman, Albert J.
2014-01-01
Glutathione transferases (GST) are an ancient superfamily comprising a large number of paralogous proteins in a single organism. This multiplicity of GSTs has allowed the copies to diverge for neofunctionalization with proposed roles ranging from detoxication and oxidative stress response to involvement in signal transduction cascades. We performed a comparative genomic analysis using FlyBase annotations and Drosophila melanogaster GST sequences as templates to further annotate the GST orthologs in the 12 Drosophila sequenced genomes. We found that GST genes in the Drosophila subgenera have undergone repeated local duplications followed by transposition, inversion, and micro-rearrangements of these copies. The colinearity and orientations of the orthologous GST genes appear to be unique in many of the species which suggests that genomic rearrangement events have occurred multiple times during speciation. The high micro-plasticity of the genomes appears to have a functional contribution utilized for evolution of this gene family. PMID:25310450
Valera, Alexandra; Epistolio, Samantha; Colomo, Lluis; Riva, Alice; Balagué, Olga; Dlouhy, Ivan; Tzankov, Alexandar; Bühler, Marco; Haralambieva, Eugenia; Campo, Elias; Soldini, Davide; Mazzucchelli, Luca; Martin, Vittoria
2016-08-01
MYC rearrangement can be detected in a subgroup of diffuse large B-cell lymphoma characterized by unfavorable prognosis. In contrast to Burkitt lymphoma, the correlation between MYC rearrangement and MYC protein expression in diffuse large B-cell lymphoma is less clear, as approximately one-third of rearranged cases show negative or low expression by immunohistochemistry. To better understand whether specific characteristics of the MYC rearrangement may influence its protein expression, we investigated 43 de novo diffuse large B-cell lymphoma positive for 8q24 rearrangement by FISH, using 14 Burkitt lymphoma for comparison. Different cell populations (clones), breakpoints (classical vs non-classical FISH patterns), partner genes (IGH vs non-IGH) and immunostaining were detected and analyzed using computerized image systems. In a subgroup of diffuse large B-cell lymphoma, we observed different clones within the same tumor distinguishing the founder clone with MYC rearrangement alone from other subclones, carrying MYC rearrangement coupled with loss/extra copies of derivatives/normal alleles. This picture, which we defined MYC genetic heteroclonality, was found in 42% of cases and correlated to negative MYC expression (P=0.026). Non-classical FISH breakpoints were detected in 16% of diffuse large B-cell lymphoma without affecting expression (P=0.040). Non-IGH gene was the preferential partner of rearrangement in those diffuse large B-cell lymphoma showing MYC heteroclonality (P=0.016) and/or non-classical FISH breakpoints (P=0.058). MYC heteroclonality was not observed in Burkitt lymphoma and all cases had positive MYC expression. Non-classical FISH MYC breakpoint and non-IGH partner were found in 29 and 20% of Burkitt lymphoma, respectively. In conclusion, MYC genetic heteroclonality is a frequent event in diffuse large B-cell lymphoma and may have a relevant role in modulating MYC expression.
Aristidou, Constantia; Theodosiou, Athina; Ketoni, Andria; Bak, Mads; Mehrjouy, Mana M; Tommerup, Niels; Sismani, Carolina
2018-01-01
Precise characterization of apparently balanced complex chromosomal rearrangements in non-affected individuals is crucial as they may result in reproductive failure, recurrent miscarriages or affected offspring. We present a family, where the non-affected father and daughter were found, using FISH and karyotyping, to be carriers of a three-way complex chromosomal rearrangement [t(6;7;10)(q16.2;q34;q26.1), de novo in the father]. The family suffered from two stillbirths, one miscarriage, and has a son with severe intellectual disability. In the present study, the family was revisited using whole-genome mate-pair sequencing. Interestingly, whole-genome mate-pair sequencing revealed a cryptic breakpoint on derivative (der) chromosome 6 rendering the rearrangement even more complex. FISH using a chromosome (chr) 6 custom-designed probe and a chr10 control probe confirmed that the interstitial chr6 segment, created by the two chr6 breakpoints, was translocated onto der(10). Breakpoints were successfully validated with Sanger sequencing, and small imbalances as well as microhomology were identified. Finally, the complex chromosomal rearrangement breakpoints disrupted the SIM1 , GRIK2 , CNTNAP2 , and PTPRE genes without causing any phenotype development. In contrast to the majority of maternally transmitted complex chromosomal rearrangement cases, our study investigated a rare case where a complex chromosomal rearrangement, which most probably resulted from a Type IV hexavalent during the pachytene stage of meiosis I, was stably transmitted from a fertile father to his non-affected daughter. Whole-genome mate-pair sequencing proved highly successful in identifying cryptic complexity, which consequently provided further insight into the meiotic segregation of chromosomes and the increased reproductive risk in individuals carrying the specific complex chromosomal rearrangement. We propose that such complex rearrangements should be characterized in detail using a combination of conventional cytogenetic and NGS-based approaches to aid in better prenatal preimplantation genetic diagnosis and counseling in couples with reproductive problems.
Le Guellec, Sophie; Velasco, Valérie; Pérot, Gaëlle; Watson, Sarah; Tirode, Franck; Coindre, Jean-Michel
2016-12-01
Subsets of primitive round-cell sarcomas remain difficult to diagnose and classify. Among these is a rare round-cell sarcoma that harbors a CIC gene rearrangement known as CIC-rearranged undifferentiated round-cell sarcoma, which is most commonly fused to the DUX4 gene. Owing to its aggressive clinical behavior and potential therapeutic implications, accurate identification of this novel soft tissue sarcoma is necessary. Definitive diagnosis requires molecular confirmation, but only a few centers are as yet able to perform this test. Several studies have shown that PEA3 subfamily genes, notably ETV4 (belonging to the family of ETS transcription factors), are upregulated in CIC-rearranged undifferentiated round-cell sarcomas. We performed a detailed immunohistochemical analysis to investigate ETV4 expression in CIC-rearranged undifferentiated round-cell sarcomas and their potential mimics (especially Ewing sarcomas). The study cohort included 17 cases of CIC-rearranged undifferentiated round-cell sarcomas, and 110 tumors that morphologically mimic CIC-rearranged undifferentiated round-cell sarcomas: 43 Ewing sarcomas, 25 alveolar rhabdomyosarcomas, 20 poorly differentiated round-cell synovial sarcomas, 10 desmoplastic round-cell tumors, 5 BCOR-CCNB3 sarcomas, 5 lymphoblastic lymphomas, and 2 rhabdoid tumors. All CIC-rearranged undifferentiated round-cell sarcomas (on core needle biopsies and open biopsies) were ETV4-positive with a strong diffuse nuclear pattern. Among the other 110 tumors, only six cases (four Ewing sarcomas, one alveolar rhabdomyosarcoma, and one desmoplastic round-cell tumor) showed focal (<5% of tumor cells) and very weak nuclear expression of ETV4; all other tumors were completely negative for ETV4. We conclude that systematic immunohistochemical analysis of ETV4 makes it possible to diagnose undifferentiated round-cell sarcomas (with no molecular markers for sarcoma-associated translocation) such as CIC-rearranged undifferentiated round-cell sarcoma.
NASA Astrophysics Data System (ADS)
Benderskii, Alexander; Bordenyuk, Andrey; Weeraman, Champika
2006-03-01
The recently developed spectrally- and time-resolved Sum Frequency Generation (STiR-SFG) is a surface-selective 3-wave mixing (IR+visible) spectroscopic technique capable of measuring ultrafast spectral evolution of vibrational coherences. A detailed description of this measurement will be presented, and a noniterative method or deconvolving the laser pulses will be introduced to obtain the molecular response function. STiR-SFG, combined with the frequency-domain SFG spectroscopy, was applied to study hydrogen bonding dynamics at aqueous interfaces (D2O/CaF2). Spectral dynamics of the OD-stretch on the 50-150 fs time scale provides real-time observation of ultrafast H-bond rearrangement. Tuning the IR wavelength to the blue or red side of the OD-stretch transition, we selectively monitor the dynamics of different sub-ensembles in the distribution of the H-bond structures. The blue-side excitation (weaker H-bonding) shows monotonic red-shift of the OD-frequency. In contrast, the red-side excitation (stronger H-bonding structures) produces a blue-shift and a recursion, which may indicate the presence of an underdamped intermolecular mode of interfacial water. Effect of electrolyte concentration on the H-bond dynamics will be discussed.
Di-Battista, Adriana; Meloni, Vera Ayres; da Silva, Magnus Dias; Moysés-Oliveira, Mariana; Melaragno, Maria Isabel
2016-12-01
In females carrying structural rearrangements of an X-chromosome, cells with the best dosage balance are preferentially selected, frequently resulting in a skewed inactivation pattern and amelioration of the phenotype. The Xp11.23-p11.22 region is involved in a recently described microduplication syndrome associated with severe clinical consequences in males and females, causing intellectual disability, behavior problems, epilepsy with electroencephalogram anomalies, minor facial anomalies, and early onset of puberty. Female carriers usually present an unusual X-chromosome inactivation pattern in favor of the aberrant chromosome, resulting in functional disomy of the duplicated segment. Here, we describe a girl carrying a de novo ∼9.7 Mb Xp11.3-p11.22 duplication of paternal origin and skewed X-chromosome inactivation pattern of the normal X-chromosome. We reviewed other cases previously reported and determined the minimal critical region possibly responsible for this unusual inactivation pattern. The critical region encompasses 36 RefSeq genes, including at least 10 oncogenes and/or genes related to the cell cycle control. We discuss the molecular mechanisms that underlie the positive selection of the cells with the active duplicated chromosome. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Newton, Robert L.; Parrish, Keith J.; Roman, Monsi C.; Takada, Kevin C.; Miller, Lee A.;
2013-01-01
A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.
Ostberg, Carl O.; Hauser, Lorenz; Pritchard, Victoria L.; Garza, John C.; Naish, Kerry A.
2013-01-01
Chromosome rearrangements suppressed recombination in the hybrids. This result supports several previous findings demonstrating that recombination suppression restricts gene flow between chromosomes that differ by arrangement. Conservation of synteny and map order between the hybrid and rainbow trout maps and minimal segregation distortion in the hybrids suggest rainbow and Yellowstone cutthroat trout genomes freely introgress across chromosomes with similar arrangement. Taken together, these results suggest that rearrangements impede introgression. Recombination suppression across rearrangements could enable large portions of non-recombined chromosomes to persist within admixed populations.
Noujaim, Jonathan; Jones, Robin L; Swansbury, John; Gonzalez, David; Benson, Charlotte; Judson, Ian; Fisher, Cyril; Thway, Khin
2017-01-01
Background: EWSR1 rearrangements were first identified in Ewing sarcoma, but the spectrum of EWSR1-rearranged neoplasms now includes many soft tissue tumour subtypes including desmoplastic small round cell tumour (DSRCT), myxoid liposarcoma (MLPS), extraskeletal myxoid chondrosarcoma (EMC), angiomatoid fibrous histiocytoma (AFH), clear cell sarcoma (CCS) and myoepithelial neoplasms. We analysed the spectrum of EWSR1-rearranged soft tissue neoplasms at our tertiary sarcoma centre, by assessing ancillary molecular diagnostic modalities identifying EWSR1-rearranged tumours and reviewing the results in light of our current knowledge of these and other Ewing sarcoma-like neoplasms. Methods: We retrospectively analysed all specimens tested for EWSR1 rearrangements by fluorescence in situ hybridisation (FISH) and/or reverse transcription–PCR (RT–PCR) over a 7-year period. Results: There was a total of 772 specimens. FISH was performed more often than RT–PCR (n=753, 97.5% vs n=445, 57.6%). In total, 210 (27.9%) specimens were FISH-positive for EWSR1 rearrangement compared to 111 (14.4%) that showed EWSR1 fusion transcripts with RT–PCR. Failure rates for FISH and RT–PCR were 2.5% and 18.0%. Of 109 round cell tumours with pathology consistent with Ewing sarcoma, 15 (13.8 %) cases were FISH-positive without an identifiable EWSR1 fusion transcript, 4 (3.7%) were FISH-negative but RT–PCR positive and 4 (3.7%) were negative for both. FISH positivity for DSRCT, MLPS, EMC, AFH and CCS was 86.3%, 4.3%, 58.5%, 60.0% and 87.9%, respectively. A positive FISH result led to diagnostic change in 40 (19.0%) EWSR1-rearranged cases. 13 FISH-positive cases remained unclassifiable. Conclusions: FISH is more sensitive for identifying EWSR1 rearrangements than RT–PCR. However, there can be significant morphologic and immunohistochemical overlap between groups of EWSR1-rearranged neoplasms, with important prognostic and therapeutic implications. FISH and RT–PCR should be used as complementary modalities in diagnosing EWSR1-rearranged neoplasms, but as tumour groups harbouring EWSR1 rearrangements are increasingly characterised and because given translocations involving EWSR1 and its partner genes are not always specific for tumour types, it is critical that these are evaluated by specialist soft tissue surgical pathologists noting the morphologic and immunohistochemical context. As RT–PCR using commercial primers is limited to only the most prevalent EWSR1 fusion transcripts, the incorporation of high-throughput sequencing technologies into the standard diagnostic repertoire to assess for multiple molecular abnormalities of soft tissue tumours in parallel (including detection of newly characterised Ewing sarcoma-like tumours) might be the most effective and efficient means of ancillary diagnosis in future. PMID:28141799
Evolution of Tumor Clones in Adult Acute Lymphoblastic Leukemia.
Smirnova, S Yu; Sidorova, Yu V; Ryzhikova, N V; Sychevskaya, K A; Parovichnikova, E N; Sudarikov, A B
2016-01-01
Clonal instability of a tumor cell population in acute lymphoblastic leukemia (ALL) may complicate the monitoring of a minimal residual disease (MRD) by means of patient-specific targets identified at the disease onset. Most of the data concerning the possible instability of rearranged clonal TCR and IG genes during disease recurrence were obtained for ALL in children. The appropriate features of adult ALL, which are known to differ from those of childhood ALL in certain biological characteristics and prognosis, remain insufficiently studied. The aim of this study was to assess the stability of IG and TCR gene rearrangements in adult ALL. Rearrangements were identified according to the BIOMED-2 protocol (PCR followed by fragment analysis). Mismatch in clonal rearrangements at onset and relapse was identified in 83% of patients, indicating clonal instability during treatment. Clonal evolution and diversity of IG and TCR gene rearrangements may be one of the tumor progression mechanisms. New rearrangements may emerge due to residual VDJ-recombinase activity in tumor cells. Also, many clonal IG and TCR gene rearrangements may be present at different levels at a diagnosis, but less abundant clones may be "invisible" due to limited detection sensitivity. Later, major clones may disappear in the course of chemotherapy, while others may proliferate. Investigation of clonal evolution and heterogeneity in ALL and their impact on the treatment efficacy will contribute to the identification of new prognostic factors and the development of therapeutic approaches.
Daveau, Romain; Combaret, Valérie; Pierre-Eugène, Cécile; Cazes, Alex; Louis-Brennetot, Caroline; Schleiermacher, Gudrun; Ferrand, Sandrine; Pierron, Gaëlle; Lermine, Alban; Frio, Thomas Rio; Raynal, Virginie; Vassal, Gilles; Barillot, Emmanuel; Delattre, Olivier; Janoueix-Lerosey, Isabelle
2013-01-01
Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis. PMID:23991058
Kim, Tae-Jung; Park, Chan Kwon; Yeo, Chang Dong; Park, Kihoon; Rhee, Chin Kook; Kim, Jusang; Kim, Seung Joon; Lee, Sang Haak; Lee, Kyo-Young; Yoon, Hyoung-Kyu
2014-09-01
Simultaneous genotyping has advantages in turnaround time and detecting the real mutational prevalence in unresectable non-small-cell lung cancer (NSCLC), a group not previously genetically characterized. We developed simultaneous panel of screening EGFR and KRAS mutations by direct sequencing or PNA clamping, and ALK rearrangement by fluorescent in situ hybridization (FISH) in multicenter manner. Of 510 NSCLC Korean patients, simultaneous genotyping identified mutations of EGFR (29.0%) and KRAS (8.6%) and rearrangement of ALK (9.2%). Seven patients had overlaps in mutations. Although several well-known associations between genotypes and clinical characteristics were identified, we found no relationship between ALK rearrangement and sex or smoking history. Unlike the other genotype mutations, ALK rearrangement was associated with advanced disease. Among the ALK-negative group, patients with 10-15% of ALK FISH split shared characteristics, such as younger age and advanced stage disease, more with the ALK-positive group (>15% ALK FISH split) than <10% ALK FISH split group. Simultaneous panel genotyping revealed more prevalent ALK rearrangements than reported in previous studies and their strong association with advanced stage irrespective of sex or smoking history. ALK rearrangement seems to be a marker for aggressive tumor biology and should be assessed in advanced disease. © 2014 Wiley Periodicals, Inc.
Constitutional chromoanasynthesis: description of a rare chromosomal event in a patient.
Plaisancié, Julie; Kleinfinger, Pascale; Cances, Claude; Bazin, Anne; Julia, Sophie; Trost, Detlef; Lohmann, Laurence; Vigouroux, Adeline
2014-10-01
Structural alterations in chromosomes are a frequent cause of cancers and congenital diseases. Recently, the phenomenon of chromosome crisis, consisting of a set of tens to hundreds of clustered genomic rearrangements, localized in one or a few chromosomes, was described in cancer cells under the term chromothripsis. Better knowledge and recognition of this catastrophic chromosome event has brought to light two distinct entities, chromothripsis and chromoanasynthesis. The complexity of these rearrangements and the original descriptions in tumor cells initially led to the thought that it was an acquired anomaly. In fact, a few patients have been reported with constitutional chromothripsis or chromoanasynthesis. Using microarray we identified a very complex chromosomal rearrangement in a patient who had a cytogenetically visible rearrangement of chromosome 18. The rearrangement contained more than 15 breakpoints localized on a single chromosome. Our patient displayed intellectual disability, behavioral troubles and craniofacial dysmorphism. Interestingly, the succession of duplications and triplications identified in our patient was not clustered on a single chromosomal region but spread over the entire chromosome 18. In the light of this new spectrum of chromosomal rearrangements, this report outlines the main features of these catastrophic events and discusses the underlying mechanism of the complex chromosomal rearrangement identified in our patient, which is strongly evocative of a chromoanasynthesis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Positive and negative regulation of V(D)J recombination by the E2A proteins.
Bain, G; Romanow, W J; Albers, K; Havran, W L; Murre, C
1999-01-18
A key feature of B and T lymphocyte development is the generation of antigen receptors through the rearrangement and assembly of the germline variable (V), diversity (D), and joining (J) gene segments. However, the mechanisms responsible for regulating developmentally ordered gene rearrangements are largely unknown. Here we show that the E2A gene products are essential for the proper coordinated temporal regulation of V(D)J rearrangements within the T cell receptor (TCR) gamma and delta loci. Specifically, we show that E2A is required during adult thymocyte development to inhibit rearrangements to the gamma and delta V regions that normally recombine almost exclusively during fetal thymocyte development. The continued rearrangement of the fetal Vgamma3 gene segment in E2A-deficient adult thymocytes correlates with increased levels of Vgamma3 germline transcripts and increased levels of double-stranded DNA breaks at the recombination signal sequence bordering Vgamma3. Additionally, rearrangements to a number of Vgamma and Vdelta gene segments used predominantly during adult development are significantly reduced in E2A-deficient thymocytes. Interestingly, at distinct stages of T lineage development, both the increased and decreased rearrangement of particular Vdelta gene segments is highly sensitive to the dosage of the E2A gene products, suggesting that the concentration of the E2A proteins is rate limiting for the recombination reaction involving these Vdelta regions.
Inspiring Examples in Rearrangements of Infinite Products
ERIC Educational Resources Information Center
Ramasinghe, W.
2007-01-01
It is well known that simple examples are really encouraging in the understanding of rearrangements of infinite series. In this paper a similar role is played by simple examples in the case of infinite products. Iterated products of double products seem to have a similar spirit of rearrangements of products, although they are not the same.…
Lecture Capture with Real-Time Rearrangement of Visual Elements: Impact on Student Performance
ERIC Educational Resources Information Center
Yu, P.-T.; Wang, B.-Y.; Su, M.-H.
2015-01-01
The primary goal of this study is to create and test a lecture-capture system that can rearrange visual elements while recording is still taking place, in such a way that student performance can be positively influenced. The system we have devised is capable of integrating and rearranging multimedia sources, including learning content, the…
Capes, Deborah L; Arcisio-Miranda, Manoel; Jarecki, Brian W; French, Robert J; Chanda, Baron
2012-02-14
Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicated in slow inactivation gating, which is important for spike frequency adaptation in neural circuits. However, it remains an open question whether gating transitions in the selectivity filter region are also actuated by voltage sensors. Here, we examine conformational coupling between each of the four voltage sensors and the outer pore of a eukaryotic voltage-dependent sodium channel. The voltage sensors of these sodium channels are not structurally symmetric and exhibit functional specialization. To track the conformational rearrangements of individual voltage-sensing domains, we recorded domain-specific gating pore currents. Our data show that, of the four voltage sensors, only the domain IV voltage sensor is coupled to the conformation of the selectivity filter region of the sodium channel. Trapping the outer pore in a particular conformation with a high-affinity toxin or disulphide crossbridge impedes the return of this voltage sensor to its resting conformation. Our findings directly establish that, in addition to the canonical electromechanical coupling between voltage sensor and inner pore gates of a sodium channel, gating transitions in the selectivity filter region are also coupled to the movement of a voltage sensor. Furthermore, our results also imply that the voltage sensor of domain IV is unique in this linkage and in the ability to initiate slow inactivation in sodium channels.
Hensing, Thomas; Schrock, Alexa B.; Allen, Justin; Sanford, Eric; Gowen, Kyle; Kulkarni, Atul; He, Jie; Suh, James H.; Lipson, Doron; Elvin, Julia A.; Yelensky, Roman; Chalmers, Zachary; Chmielecki, Juliann; Peled, Nir; Klempner, Samuel J.; Firozvi, Kashif; Frampton, Garrett M.; Molina, Julian R.; Menon, Smitha; Brahmer, Julie R.; MacMahon, Heber; Nowak, Jan; Ou, Sai-Hong Ignatius; Zauderer, Marjorie; Ladanyi, Marc; Zakowski, Maureen; Fischbach, Neil; Ross, Jeffrey S.; Stephens, Phil J.; Miller, Vincent A.; Wakelee, Heather
2016-01-01
Introduction. For patients with non-small cell lung cancer (NSCLC) to benefit from ALK inhibitors, sensitive and specific detection of ALK genomic rearrangements is needed. ALK break-apart fluorescence in situ hybridization (FISH) is the U.S. Food and Drug Administration approved and standard-of-care diagnostic assay, but identification of ALK rearrangements by other methods reported in NSCLC cases that tested negative for ALK rearrangements by FISH suggests a significant false-negative rate. We report here a large series of NSCLC cases assayed by hybrid-capture-based comprehensive genomic profiling (CGP) in the course of clinical care. Materials and Methods. Hybrid-capture-based CGP using next-generation sequencing was performed in the course of clinical care of 1,070 patients with advanced lung cancer. Each tumor sample was evaluated for all classes of genomic alterations, including base-pair substitutions, insertions/deletions, copy number alterations and rearrangements, as well as fusions/rearrangements. Results. A total of 47 patients (4.4%) were found to harbor ALK rearrangements, of whom 41 had an EML4-ALK fusion, and 6 had other fusion partners, including 3 previously unreported rearrangement events: EIF2AK-ALK, PPM1B-ALK, and PRKAR1A-ALK. Of 41 patients harboring ALK rearrangements, 31 had prior FISH testing results available. Of these, 20 were ALK FISH positive, and 11 (35%) were ALK FISH negative. Of the latter 11 patients, 9 received crizotinib based on the CGP results, and 7 achieved a response with median duration of 17 months. Conclusion. Comprehensive genomic profiling detected canonical ALK rearrangements and ALK rearrangements with noncanonical fusion partners in a subset of patients with NSCLC with previously negative ALK FISH results. In this series, such patients had durable responses to ALK inhibitors, comparable to historical response rates for ALK FISH-positive cases. Implications for Practice: Comprehensive genomic profiling (CGP) that includes hybrid capture and specific baiting of intron 19 of ALK is a highly sensitive, alternative method for identification of drug-sensitive ALK fusions in patients with non-small cell lung cancer (NSCLC) who had previously tested negative using standard ALK fluorescence in situ hybridization (FISH) diagnostic assays. Given the proven benefit of treatment with crizotinib and second-generation ALK inhibitors in patients with ALK fusions, CGP should be considered in patients with NSCLC, including those who have tested negative for other alterations, including negative results using ALK FISH testing. PMID:27245569
Ali, Siraj M; Hensing, Thomas; Schrock, Alexa B; Allen, Justin; Sanford, Eric; Gowen, Kyle; Kulkarni, Atul; He, Jie; Suh, James H; Lipson, Doron; Elvin, Julia A; Yelensky, Roman; Chalmers, Zachary; Chmielecki, Juliann; Peled, Nir; Klempner, Samuel J; Firozvi, Kashif; Frampton, Garrett M; Molina, Julian R; Menon, Smitha; Brahmer, Julie R; MacMahon, Heber; Nowak, Jan; Ou, Sai-Hong Ignatius; Zauderer, Marjorie; Ladanyi, Marc; Zakowski, Maureen; Fischbach, Neil; Ross, Jeffrey S; Stephens, Phil J; Miller, Vincent A; Wakelee, Heather; Ganesan, Shridar; Salgia, Ravi
2016-06-01
For patients with non-small cell lung cancer (NSCLC) to benefit from ALK inhibitors, sensitive and specific detection of ALK genomic rearrangements is needed. ALK break-apart fluorescence in situ hybridization (FISH) is the U.S. Food and Drug Administration approved and standard-of-care diagnostic assay, but identification of ALK rearrangements by other methods reported in NSCLC cases that tested negative for ALK rearrangements by FISH suggests a significant false-negative rate. We report here a large series of NSCLC cases assayed by hybrid-capture-based comprehensive genomic profiling (CGP) in the course of clinical care. Hybrid-capture-based CGP using next-generation sequencing was performed in the course of clinical care of 1,070 patients with advanced lung cancer. Each tumor sample was evaluated for all classes of genomic alterations, including base-pair substitutions, insertions/deletions, copy number alterations and rearrangements, as well as fusions/rearrangements. A total of 47 patients (4.4%) were found to harbor ALK rearrangements, of whom 41 had an EML4-ALK fusion, and 6 had other fusion partners, including 3 previously unreported rearrangement events: EIF2AK-ALK, PPM1B-ALK, and PRKAR1A-ALK. Of 41 patients harboring ALK rearrangements, 31 had prior FISH testing results available. Of these, 20 were ALK FISH positive, and 11 (35%) were ALK FISH negative. Of the latter 11 patients, 9 received crizotinib based on the CGP results, and 7 achieved a response with median duration of 17 months. Comprehensive genomic profiling detected canonical ALK rearrangements and ALK rearrangements with noncanonical fusion partners in a subset of patients with NSCLC with previously negative ALK FISH results. In this series, such patients had durable responses to ALK inhibitors, comparable to historical response rates for ALK FISH-positive cases. Comprehensive genomic profiling (CGP) that includes hybrid capture and specific baiting of intron 19 of ALK is a highly sensitive, alternative method for identification of drug-sensitive ALK fusions in patients with non-small cell lung cancer (NSCLC) who had previously tested negative using standard ALK fluorescence in situ hybridization (FISH) diagnostic assays. Given the proven benefit of treatment with crizotinib and second-generation ALK inhibitors in patients with ALK fusions, CGP should be considered in patients with NSCLC, including those who have tested negative for other alterations, including negative results using ALK FISH testing. ©AlphaMed Press.
Dvorak, Jan; Wang, Le; Zhu, Tingting; Jorgensen, Chad M; Deal, Karin R; Dai, Xiongtao; Dawson, Matthew W; Müller, Hans-Georg; Luo, Ming-Cheng; Ramasamy, Ramesh K; Dehghani, Hamid; Gu, Yong Q; Gill, Bikram S; Distelfeld, Assaf; Devos, Katrien M; Qi, Peng; You, Frank M; Gulick, Patrick J; McGuire, Patrick E
2018-05-16
Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum, and rice. Similar searches were initiated with genes annotated in the rice pseudomolecules. Matrices of colinear genes and rearrangements in their order were constructed. Optical Bionano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of colinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene colinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon, and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 colinear genes. The rates of acquisition of major rearrangements were greater in the wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice, and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit caused the fast evolution of the Triticeae genomes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Response to ERBB3-Directed Targeted Therapy in NRG1-Rearranged Cancers.
Drilon, Alexander; Somwar, Romel; Mangatt, Biju P; Edgren, Henrik; Desmeules, Patrice; Ruusulehto, Anja; Smith, Roger S; Delasos, Lukas; Vojnic, Morana; Plodkowski, Andrew J; Sabari, Joshua; Ng, Kenneth; Montecalvo, Joseph; Chang, Jason; Tai, Huichun; Lockwood, William W; Martinez, Victor; Riely, Gregory J; Rudin, Charles M; Kris, Mark G; Arcila, Maria E; Matheny, Christopher; Benayed, Ryma; Rekhtman, Natasha; Ladanyi, Marc; Ganji, Gopinath
2018-06-01
NRG1 rearrangements are oncogenic drivers that are enriched in invasive mucinous adenocarcinomas (IMA) of the lung. The oncoprotein binds ERBB3-ERBB2 heterodimers and activates downstream signaling, supporting a therapeutic paradigm of ERBB3/ERBB2 inhibition. As proof of concept, a durable response was achieved with anti-ERBB3 mAb therapy (GSK2849330) in an exceptional responder with an NRG1 -rearranged IMA on a phase I trial (NCT01966445). In contrast, response was not achieved with anti-ERBB2 therapy (afatinib) in four patients with NRG1 -rearranged IMA (including the index patient post-GSK2849330). Although in vitro data supported the use of either ERBB3 or ERBB2 inhibition, these clinical results were consistent with more profound antitumor activity and downstream signaling inhibition with anti-ERBB3 versus anti-ERBB2 therapy in an NRG1 -rearranged patient-derived xenograft model. Analysis of 8,984 and 17,485 tumors in The Cancer Genome Atlas and MSK-IMPACT datasets, respectively, identified NRG1 rearrangements with novel fusion partners in multiple histologies, including breast, head and neck, renal, lung, ovarian, pancreatic, prostate, and uterine cancers. Significance: This series highlights the utility of ERBB3 inhibition as a novel treatment paradigm for NRG1 -rearranged cancers. In addition, it provides preliminary evidence that ERBB3 inhibition may be more optimal than ERBB2 inhibition. The identification of NRG1 rearrangements across various solid tumors supports a basket trial approach to drug development. Cancer Discov; 8(6); 686-95. ©2018 AACR. See related commentary by Wilson and Politi, p. 676 This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.
DeScipio, Cheryl; Kaur, Maninder; Yaeger, Dinah; Innis, Jeffrey W.; Spinner, Nancy B.; Jackson, Laird G.; Krantz, Ian D.
2016-01-01
Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited disorder characterized by multisystem involvement, cognitive delay, limb defects, and characteristic facial features. Recently, mutations in NIPBL have been found in ~50% of individuals with CdLS. Numerous chromosomal rearrangements have been reported in individuals with CdLS. These rearrangements may be causative of a CdLS phenotype, result in a phenocopy, or be unrelated to the observed phenotype. We describe two half siblings with a der(3)t(3;12)(p25.3;p13.3) chromosomal rearrangement, clinical features resembling CdLS, and phenotypic overlap with the del(3)(p25) phenotype. Region-specific BAC probes were used to fine-map the breakpoint region by fluorescence in situ hybridization (FISH). FISH analysis places the chromosome 3 breakpoint distal to RP11-115G3 on 3p25.3; the chromosome 12 breakpoint is distal to BAC RP11-88D16 on 12p13.3. A review of published cases of terminal 3p deletions and terminal 12p duplications indicates that the findings in these siblings are consistent with the del(3)(p25) phenotype. Given the phenotypic overlap with CdLS, we have reviewed the reported cases of chromosomal rearrangements involved in CdLS to better elucidate other potential loci that could harbor additional CdLS genes. Additionally, to identify chromosome rearrangements, genome-wide array comparative genomic hybridization (CGH) was performed on eight individuals with typical CdLS and without identifiable deletion or mutation of NIPBL. No pathologic rearrangements were identified. PMID:16075459
QM/MM nonadiabatic dynamics simulations on photoinduced Wolff rearrangements of 1,2,3-thiadiazole
NASA Astrophysics Data System (ADS)
Liu, Xiang-Yang; Fang, Ye-Guang; Xie, Bin-Bin; Fang, Wei-Hai; Cui, Ganglong
2017-06-01
The photoinduced rearrangement reaction mechanism of 1,2,3-thiadiazole remains experimentally elusive. Two possible mechanisms have been proposed to date. The first is a stepwise mechanism via a thiocarbene intermediate; the second is an excited-state concerted rearrangement mechanism. Herein we have adopted both the electronic structure calculations and nonadiabatic dynamics simulations to study the photoinduced rearrangement reactions of 1,2,3-thiadiazole in the S2, S1, and S0 states in solution. On the basis of QM(CASPT2)/MM [quantum mechanics(complete active space self-consistent field second-order perturbation theory)/molecular mechanics] calculations, we have found that (1) the thiocarbene intermediate is not stable; thus, the stepwise mechanism should be unfavorable; (2) the excited-state decay from the S2 via S1 to S0 state is ultrafast and completed within ca. 200 fs; therefore, both the S2 and S1 states should not have a long enough time for the excited-state rearrangements. Instead, we have computationally proposed a modified photoinduced rearrangement mechanism. Upon irradiation, the S2 state is first populated (114.0 kcal/mol), followed by an ultrafast S2 → S1 → S0 excited-state decay along the S-N bond fission, which eventually leads to a very "hot" intermediate with the S-N bond broken (18.3 kcal/mol). Then, thermal rearrangements to thioketene, thiirene, and ethynethiol occur in a concerted asynchronous way. This mechanistic scenario has been verified by full-dimensional trajectory-based nonadiabatic dynamics simulations at the QM(CASPT2)/MM level. Finally, our present computational work provides experimentally interesting mechanistic insights into the photoinduced rearrangement reactions of cyclic and acyclic diazo compounds.
Advanced lung adenocarcinomas with ROS1-rearrangement frequently show hepatoid cell
Kong, Mei; Zhou, Jianya; Ding, Wei; Zhou, Jianying
2016-01-01
Defining distinctive histologic characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) may help identify cases that merit molecular testing. However, the majority of previous reports have focused on surgical specimens but only limited studies assessed histomorphology of advanced NSCLCs. In order to identify the clinical and histological characteristics of ROS1-rearranged advanced NSCLCs, we examined five hundred sixteen Chinese patients with advanced NSCLCs using ROS1 fluorescence in situ hybridization and real-time polymerase chain reaction and then analyzed for clinical and pathological features. We performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement. 19 tumors were identified with ROS1 rearrangement (3.7% of adenocarcinomas). 16 ROS1+ and 122 ROS1- samples with available medical records and enough tumor cells were included for histological analysis. Compared with ROS1-negative advanced NSCLCs, ROS1-rearranged advanced NSCLCs were associated with a younger age at presentation. ROS1 rearrangements were not significantly associated with sex, smoking history, drinking history and metastatic sites. The most common histological pattern was solid growth (12/16), followed by acinar (4/16) growth. 66.7% cases with solid growth pattern showed hepatoid cytology (8/12) and 75% cases with acinar growth pattern showed a cribriform structure (3/4). 18.8% cases were found to have abundant extracellular mucus or signet-ring cells (3/16). Only one case with solid growth pattern showed psammomatous calcifications. In conclusion, age, hepatoid cytology and cribriform structure are the independent predictors for ROS1-rearranged advanced NSCLCs, recognizing these may be helpful in finding candidates for genomic alterations, especially when available tissue samples are limited. PMID:27708233
Song, Fan; Zhou, Xuguo; Yang, Qianqian; Li, Zhihong; Cai, Wanzhi
2013-01-01
The superorder Psocodea has ∼10,000 described species in two orders: Psocoptera (barklice and booklice) and Phthiraptera (parasitic lice). One booklouse, Liposcelis bostrychophila and six species of parasitic lice have been sequenced for complete mitochondrial (mt) genomes; these seven species have the most rearranged mt genomes seen in insects. The mt genome of a barklouse, lepidopsocid sp., has also been sequenced and is much less rearranged than those of the booklouse and the parasitic lice. To further understand mt gene rearrangements in the Psocodea, we sequenced the mt genomes of two barklice, Psococerastis albimaculata and Longivalvus hyalospilus, the first representatives from the suborder Psocomorpha, which is the most species-rich suborder of the Psocodea. We found that these two barklice have the least rearranged mt genomes seen in the Psocodea to date: a protein-coding gene (nad3) and five tRNAs (trnN, trnS1, trnE, trnM and trnC) have translocated. Rearrangements of mt genes in these two barklice can be accounted for by two events of tandem duplication followed by random deletions. Phylogenetic analyses of the mt genome sequences support the view that Psocoptera is paraphyletic whereas Phthiraptera is monophyletic. The booklouse, L. bostrychophila (suborder Troctomorpha) is most closely related to the parasitic lice. The barklice (suborders Trogiomorpha and Psocomorpha) are closely related and form a monophyletic group. We conclude that mt gene rearrangement has been substantially faster in the lineage leading to the booklice and the parasitic lice than in the lineage leading to the barklice. Lifestyle change appears to be associated with the contrasting rates in mt gene rearrangements between the two lineages of the Psocodea. PMID:23630609
Gause, M; Hovhannisyan, H; Kan, T; Kuhfittig, S; Mogila, V; Georgiev, P
1998-01-01
The su(Hw) protein is responsible for the insulation mediated by the su(Hw)-binding region present in the gypsy retrotransposon. In the y2 mutant, su(Hw) protein partially inhibits yellow transcription by repressing the function of transcriptional enhancers located distally from the yellow promoter with respect to gypsy. y2 mutation derivatives have been induced by the insertion of two hobo copies on the both sides of gypsy: into the yellow intron and into the 5' regulatory region upstream of the wing and body enhancers. The hobo elements have the same structure and orientation, opposite to the direction of yellow transcription. In the sequence context, where two copies of hobo are separated by the su(Hw)-binding region, hobo-dependent rearrangements are frequently associated with duplications of the region between the hobo elements. Duplication of the su(Hw)-binding region strongly inhibits the insulation of the yellow promoter separated from the body and wing enhancers by gypsy. These results provide a better insight into mechanisms by which the su(Hw)-binding region affects the enhancer function. PMID:9649529
Atomistic Simulations of the pH Induced Functional Rearrangement of Influenza Hemagglutinin
NASA Astrophysics Data System (ADS)
Lin, Xingcheng; Noel, Jeffrey; Wang, Qinghua; Ma, Jianpeng; Onuchic, Jose
Influenza hemagglutinin (HA), a surface glycoprotein responsible for the entry and replication of flu viruses in their host cells, functions by starting a dramatic conformational rearrangement, which leads to a fusion of the viral and endosomal membranes. It has been claimed that a loop-to-coiled-coil transition of the B-loop domain of HA drives the HA-induced membrane fusion. On the lack of dynamical details, however, the microscopic picture for this proposed ``spring-loaded'' movement is missing. To elaborate on the transition of the B-loop, we performed a set of unbiased all-atom molecular dynamics simulations of the full B-loop structure with the CHARMM36 force field. The complete free-energy profile constructed from our simulations reveals a slow transition rate for the B-loop that is incompatible with a downhill process. Additionally, our simulations indicate two potential sources of kinetic traps in the structural switch of the B-loop: Desolvation barriers and non-native secondary structure formation. The slow timescale of the B-loop transition also confirms our previous discovery from simulations using a coarse-grained structure-based model, which identified two competitive pathways both with a slow B-loop transition for HA to guide the membrane fusion.
Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome
Whitford, Paul C.; Blanchard, Scott C.; Cate, Jamie H. D.; Sanbonmatsu, Karissa Y.
2013-01-01
Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233
Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.
Whitford, Paul C; Blanchard, Scott C; Cate, Jamie H D; Sanbonmatsu, Karissa Y
2013-01-01
Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.
Filimonov, Valeriy O; Dianova, Lidia N; Galata, Kristina A; Beryozkina, Tetyana V; Novikov, Mikhail S; Berseneva, Vera S; Eltsov, Oleg S; Lebedev, Albert T; Slepukhin, Pavel A; Bakulev, Vasiliy A
2017-04-21
High yield solvent-base-controlled, transition metal-free synthesis of 4,5-functionalized 1,2,3-thiadiazoles and 1,2,3-triazoles from 2-cyanothioacetamides and sulfonyl azides is described. Under diazo transfer conditions in the presence of a base in an aprotic solvent 2-cyanothioacetamides operating as C-C-S building blocks produce 5-amino-4-cyano-1,2,3-thiadiazoles exclusively. The use of alkoxide/alcohol system completely switches the reaction course due to the change of one of the reaction centers in the 2-cyanothioacetamide (C-C-N building block) resulting in the formation of 5-sulfonamido-1,2,3-triazole-4-carbothioamide sodium salts as the only products. The latter serve as good precursors for 5-amino-1,2,3-thiadiazole-4-carboximidamides, the products of Cornforth-type rearrangement occurring in neutral protic medium or under acid conditions. According to DFT calculations (B3LYP/6-311+G(d,p)) the rearrangement proceeds via intermediate formation of a diazo compound, and can be catalyzed by acids via the protonation of oxygen atom of the sulfonamide group.
Olafson, Katy N; Nguyen, Tam Q; Vekilov, Peter G; Rimer, Jeffrey D
2017-10-04
A versatile approach to control crystallization involves the use of modifiers, which are additives that interact with crystal surfaces and alter their growth rates. Elucidating a modifier's binding specificity to anisotropic crystal surfaces is a ubiquitous challenge that is critical to their design. In this study, we select hematin, a byproduct of malaria parasites, as a model system to examine the complementarity of modifiers (i.e., antimalarial drugs) to β-hematin crystal surfaces. We divide two antimalarials, chloroquine and amodiaquine, into segments consisting of a quinoline base, common to both drugs, and side chains that differentiate their modes of action. Using a combination of scanning probe microscopy, bulk crystallization, and analytical techniques, we show that the base and side chain work synergistically to reduce the rate of hematin crystallization. In contrast to general observations that modifiers retain their function upon segmentation, we show that the constituents do not act as modifiers. A systematic study of quinoline isomers and analogues shows how subtle rearrangement and removal of functional moieties can create effective constituents from previously ineffective modifiers, along with tuning their inhibitory modes of action. These findings highlight the importance of specific functional moieties in drug compounds, leading to an improved understanding of modifier-crystal interactions that could prove to be applicable to the design of new antimalarials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lochhead, Jeffrey J; Ronaldson, Patrick T; Davis, Thomas P
2017-07-01
A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.
Sorting permutations by prefix and suffix rearrangements.
Lintzmayer, Carla Negri; Fertin, Guillaume; Dias, Zanoni
2017-02-01
Some interesting combinatorial problems have been motivated by genome rearrangements, which are mutations that affect large portions of a genome. When we represent genomes as permutations, the goal is to transform a given permutation into the identity permutation with the minimum number of rearrangements. When they affect segments from the beginning (respectively end) of the permutation, they are called prefix (respectively suffix) rearrangements. This paper presents results for rearrangement problems that involve prefix and suffix versions of reversals and transpositions considering unsigned and signed permutations. We give 2-approximation and ([Formula: see text])-approximation algorithms for these problems, where [Formula: see text] is a constant divided by the number of breakpoints (pairs of consecutive elements that should not be consecutive in the identity permutation) in the input permutation. We also give bounds for the diameters concerning these problems and provide ways of improving the practical results of our algorithms.
Catelain, Cyril; Pailler, Emma; Oulhen, Marianne; Faugeroux, Vincent; Pommier, Anne-Laure; Farace, Françoise
2017-01-01
Circulating tumor cells (CTCs) hold promise as biomarkers to aid in patient treatment stratification and disease monitoring. Because the number of cells is a critical parameter for exploiting CTCs for predictive biomarker's detection, we developed a FISH (fluorescent in situ hybridization) method for CTCs enriched on filters (filter-adapted FISH [FA-FISH]) that was optimized for high cell recovery. To increase the feasibility and reliability of the analyses, we combined fluorescent staining and FA-FISH and developed a semi-automated microscopy method for optimal FISH signal identification in filtration-enriched CTCs . Here we present these methods and their use for the detection and characterization of ALK-, ROS1-, RET-rearrangement in CTCs from non-small-cell lung cancer and ERG-rearrangements in CTCs from prostate cancer patients.