Identification of tissue-specific targeting peptide
NASA Astrophysics Data System (ADS)
Jung, Eunkyoung; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Seung-Hoon; Kim, Daejin; Park, Kisoo; Choi, Kihang; Choi, Yun-Jaie; Jung, Dong Hyun
2012-11-01
Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide "DKNLQLH" was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.
Eimer, Martin; Kiss, Monika; Nicholas, Susan
2011-12-01
When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features. Visual search arrays contained two different color singleton digits, and participants had to select one of these as target and report its parity. Target color was either known in advance (fixed color task) or had to be selected anew on each trial (free color-choice task). ERP correlates of spatially selective attentional target selection (N2pc) and working memory processing (SPCN) demonstrated rapid target selection and efficient exclusion of color singleton distractors from focal attention and working memory in the fixed color task. In the free color-choice task, spatially selective processing also emerged rapidly, but selection efficiency was reduced, with nontarget singleton digits capturing attention and gaining access to working memory. Results demonstrate the benefits of top-down task sets: Feature-specific advance preparation accelerates target selection, rapidly resolves attentional competition, and prevents irrelevant events from attracting attention and entering working memory.
Dasa, Siva Sai Krishna; Kelly, Kimberly A.
2016-01-01
Next-generation sequencing has enhanced the phage display process, allowing for the quantification of millions of sequences resulting from the biopanning process. In response, many valuable analysis programs focused on specificity and finding targeted motifs or consensus sequences were developed. For targeted drug delivery and molecular imaging, it is also necessary to find peptides that are selective—targeting only the cell type or tissue of interest. We present a new analysis strategy and accompanying software, PHage Analysis for Selective Targeted PEPtides (PHASTpep), which identifies highly specific and selective peptides. Using this process, we discovered and validated, both in vitro and in vivo in mice, two sequences (HTTIPKV and APPIMSV) targeted to pancreatic cancer-associated fibroblasts that escaped identification using previously existing software. Our selectivity analysis makes it possible to discover peptides that target a specific cell type and avoid other cell types, enhancing clinical translatability by circumventing complications with systemic use. PMID:27186887
Selective processing of multiple features in the human brain: effects of feature type and salience.
McGinnis, E Menton; Keil, Andreas
2011-02-09
Identifying targets in a stream of items at a given constant spatial location relies on selection of aspects such as color, shape, or texture. Such attended (target) features of a stimulus elicit a negative-going event-related brain potential (ERP), termed Selection Negativity (SN), which has been used as an index of selective feature processing. In two experiments, participants viewed a series of Gabor patches in which targets were defined as a specific combination of color, orientation, and shape. Distracters were composed of different combinations of color, orientation, and shape of the target stimulus. This design allows comparisons of items with and without specific target features. Consistent with previous ERP research, SN deflections extended between 160-300 ms. Data from the subsequent P3 component (300-450 ms post-stimulus) were also examined, and were regarded as an index of target processing. In Experiment A, predominant effects of target color on SN and P3 amplitudes were found, along with smaller ERP differences in response to variations of orientation and shape. Manipulating color to be less salient while enhancing the saliency of the orientation of the Gabor patch (Experiment B) led to delayed color selection and enhanced orientation selection. Topographical analyses suggested that the location of SN on the scalp reliably varies with the nature of the to-be-attended feature. No interference of non-target features on the SN was observed. These results suggest that target feature selection operates by means of electrocortical facilitation of feature-specific sensory processes, and that selective electrocortical facilitation is more effective when stimulus saliency is heightened.
Cell specific aptamer-photosensitizer conjugates as a molecular tool in photodynamic therapy
Mallikaratchy, Prabodhika; Tang, Zhiwen
2010-01-01
This paper describes the application of a molecular construct of a photosensitizer and an aptamer for photo-therapeutically targeting tumor cells. The key step in increasing selectivity in chemotherapeutic drugs is to create effective molecular platforms that could target cancer cells but not normal cells. Recently, we have developed a strategy via cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) to obtain cell specific aptamers using intact viable cells as targets to select aptamers that can recognize cell membrane proteins with high selectivity and excellent affinity. We have identified an aptamer TD05 that only recognizes Ramos cells, a Burkitt’s lymphoma cell line. Here, the high specificity of aptamers in target cell binding and an efficient phototherapy reagent, Ce6, are molecularly engineered to construct a highly selective Aptamer-photosensitizer conjugates (APS) to effectively destroy target cancer cells. Introduction of the APS conjugates followed by irradiation of light selectively destroyed target Ramos cells but not acute lymphoblastic leukemia and myeloid leukemia cell lines. This study demonstrates that the use of cancer specific aptamers conjugated to a photosensitizer will enhance the selectivity of photodynamic therapy. Coupled with the advantages of the cell-SELEX in generating multiple effective aptamers for diseased cell recognition, we will be able to develop highly efficient photosensitizer based therapeutical reagents for clinical applications. PMID:18058891
Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery
Wang, Hongyu; Li, Xin; Volk, David E.; Lokesh, Ganesh L.-R.; Elizondo-Riojas, Miguel-Angel; Li, Li; Nick, Alpa M.; Sood, Anil K.; Rosenblatt, Kevin P.; Gorenstein, David G.
2016-01-01
High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5′dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes. PMID:27839510
Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M Teresa; Buchholz, Frank
2016-07-22
Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.
Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter
2017-02-10
One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.
Feng, Lanfei; Vujicic, Snezana; Dietrich, Michael E; Litbarg, Natalia; Setty, Suman; Antoni, Angelika; Rauch, Joyce; Levine, Jerrold S
2018-05-16
The consequences of apoptosis extend beyond mere death of the cell. We have shown that receptor-mediated recognition of apoptotic target cells by viable kidney proximal tubular epithelial cells (PTECs) inhibits PTEC proliferation, growth, and survival. Here we tested the hypothesis that continual exposure to apoptotic targets can induce a phenotypic change in responding PTECs, as in other instances of natural selection. In particular, we demonstrate that repeated exposure to apoptotic targets leads to emergence of a PTEC line (denoted BU.MPT SEL ) resistant to apoptotic target-induced death. Resistance is exquisitely specific. Not only are BU.MPT SEL responders fully resistant to apoptotic target-induced death (~85% survival versus <10% survival of non-selected cells), but do so while retaining sensitivity to all other target-induced responses, including inhibition of proliferation and growth. Moreover, the resistance of BU.MPT SEL responders is specific to target-induced apoptosis, as apoptosis in response to other suicidal stimuli occurs normally. Comparison of the signaling events induced by apoptotic target exposure in selected versus non-selected responders indicated that the acquired resistance of BU.MPT SEL cells lies in a regulatory step affecting the generation of the pro-apoptotic protein, truncated BH3 interacting-domain death agonist (tBID), most likely at the level of BID cleavage by caspase-8. This specific adaptation has especial relevance for cancer, in which the prominence and persistence of cell death entail magnification of the post-mortem effects of apoptotic cells. Just as cancer cells acquire specific resistance to chemotherapeutic agents, we propose that cancer cells may also adapt to their ongoing exposure to apoptotic targets. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
ERIC Educational Resources Information Center
Eimer, Martin; Kiss, Monika; Nicholas, Susan
2011-01-01
When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features.…
Kandala, Divya T; Mohan, Nimmy; A, Vivekanand; A P, Sudheesh; G, Reshmi; Laishram, Rakesh S
2016-01-29
Almost all eukaryotic mRNAs have a poly (A) tail at the 3'-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3'-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3'-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3'-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kandala, Divya T.; Mohan, Nimmy; A, Vivekanand; AP, Sudheesh; G, Reshmi; Laishram, Rakesh S.
2016-01-01
Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. PMID:26496945
Active colloids as mobile microelectrodes for unified label-free selective cargo transport.
Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad
2018-02-22
Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.
Moon, Jihea; Kim, Giyoung; Park, Saet Byeol; Lim, Jongguk; Mo, Changyeun
2015-01-01
Whole-cell Systemic Evolution of Ligands by Exponential enrichment (SELEX) is the process by which aptamers specific to target cells are developed. Aptamers selected by whole-cell SELEX have high affinity and specificity for bacterial surface molecules and live bacterial targets. To identify DNA aptamers specific to Staphylococcus aureus, we applied our rapid whole-cell SELEX method to a single-stranded ssDNA library. To improve the specificity and selectivity of the aptamers, we designed, selected, and developed two categories of aptamers that were selected by two kinds of whole-cell SELEX, by mixing and combining FACS analysis and a counter-SELEX process. Using this approach, we have developed a biosensor system that employs a high affinity aptamer for detection of target bacteria. FAM-labeled aptamer sequences with high binding to S. aureus, as determined by fluorescence spectroscopic analysis, were identified, and aptamer A14, selected by the basic whole-cell SELEX using a once-off FACS analysis, and which had a high binding affinity and specificity, was chosen. The binding assay was evaluated using FACS analysis. Our study demonstrated the development of a set of whole-cell SELEX derived aptamers specific to S. aureus; this approach can be used in the identification of other bacteria. PMID:25884791
Moon, Jihea; Kim, Giyoung; Park, Saet Byeol; Lim, Jongguk; Mo, Changyeun
2015-04-15
Whole-cell Systemic Evolution of Ligands by Exponential enrichment (SELEX) is the process by which aptamers specific to target cells are developed. Aptamers selected by whole-cell SELEX have high affinity and specificity for bacterial surface molecules and live bacterial targets. To identify DNA aptamers specific to Staphylococcus aureus, we applied our rapid whole-cell SELEX method to a single-stranded ssDNA library. To improve the specificity and selectivity of the aptamers, we designed, selected, and developed two categories of aptamers that were selected by two kinds of whole-cell SELEX, by mixing and combining FACS analysis and a counter-SELEX process. Using this approach, we have developed a biosensor system that employs a high affinity aptamer for detection of target bacteria. FAM-labeled aptamer sequences with high binding to S. aureus, as determined by fluorescence spectroscopic analysis, were identified, and aptamer A14, selected by the basic whole-cell SELEX using a once-off FACS analysis, and which had a high binding affinity and specificity, was chosen. The binding assay was evaluated using FACS analysis. Our study demonstrated the development of a set of whole-cell SELEX derived aptamers specific to S. aureus; this approach can be used in the identification of other bacteria.
Lukianova-Hleb, Ekaterina Y.; Wagner, Daniel S.; Brenner, Malcolm K.; Lapotko, Dmitri O.
2012-01-01
Optimal cell therapies require efficient, selective and rapid delivery of molecular cargo into target cells without compromising their viability. Achieving these goals ex vivo in bulk heterogeneous multi-cell systems such as human grafts is impeded by low selectivity and speed of cargo delivery and by significant damage to target and non-target cells. We have developed a cell level approach for selective and guided trans-membrane injection of extracellular cargo into specific target cells using transient plasmonic nanobubbles (PNB) as cell-specific nano-injectors. As a technical platform for this method we developed a laser flow cell processing system. The PNB injection method and flow system were tested in heterogeneous cell suspensions of target and non-target cells for delivery of Dextran-FITC dye into squamous cell carcinoma HN31 cells and transfection of human T-cells with a green fluorescent protein-encoding plasmid. In both models the method demonstrated single cell type selectivity, high efficacy of delivery (96% both for HN31 cells T-cells), speed of delivery (nanoseconds) and viability of treated target cells (96% for HN31 cells and 75% for T-cells). The PNB injection method may therefore be beneficial for real time processing of human grafts without removal of physiologically important cells. PMID:22521612
Lukianova-Hleb, Ekaterina Y; Wagner, Daniel S; Brenner, Malcolm K; Lapotko, Dmitri O
2012-07-01
Optimal cell therapies require efficient, selective and rapid delivery of molecular cargo into target cells without compromising their viability. Achieving these goals ex vivo in bulk heterogeneous multi-cell systems such as human grafts is impeded by low selectivity and speed of cargo delivery and by significant damage to target and non-target cells. We have developed a cell level approach for selective and guided transmembrane injection of extracellular cargo into specific target cells using transient plasmonic nanobubbles (PNB) as cell-specific nano-injectors. As a technical platform for this method we developed a laser flow cell processing system. The PNB injection method and flow system were tested in heterogeneous cell suspensions of target and non-target cells for delivery of Dextran-FITC dye into squamous cell carcinoma HN31 cells and transfection of human T-cells with a green fluorescent protein-encoding plasmid. In both models the method demonstrated single cell type selectivity, high efficacy of delivery (96% both for HN31 cells T-cells), speed of delivery (nanoseconds) and viability of treated target cells (96% for HN31 cells and 75% for T-cells). The PNB injection method may therefore be beneficial for real time processing of human grafts without removal of physiologically important cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.
Zhang, Guoqiang; Wang, Jianfeng; Yang, Jin; Li, Wenjie; Deng, Yutian; Li, Jing; Huang, Jun; Hu, Songnian; Zhang, Bing
2015-08-05
To promote the clinical application of next-generation sequencing, it is important to obtain accurate and consistent variants of target genomic regions at low cost. Ion Proton, the latest updated semiconductor-based sequencing instrument from Life Technologies, is designed to provide investigators with an inexpensive platform for human whole exome sequencing that achieves a rapid turnaround time. However, few studies have comprehensively compared and evaluated the accuracy of variant calling between Ion Proton and Illumina sequencing platforms such as HiSeq 2000, which is the most popular sequencing platform for the human genome. The Ion Proton sequencer combined with the Ion TargetSeq Exome Enrichment Kit together make up TargetSeq-Proton, whereas SureSelect-Hiseq is based on the Agilent SureSelect Human All Exon v4 Kit and the HiSeq 2000 sequencer. Here, we sequenced exonic DNA from four human blood samples using both TargetSeq-Proton and SureSelect-HiSeq. We then called variants in the exonic regions that overlapped between the two exome capture kits (33.6 Mb). The rates of shared variant loci called by two sequencing platforms were from 68.0 to 75.3% in four samples, whereas the concordance of co-detected variant loci reached 99%. Sanger sequencing validation revealed that the validated rate of concordant single nucleotide polymorphisms (SNPs) (91.5%) was higher than the SNPs specific to TargetSeq-Proton (60.0%) or specific to SureSelect-HiSeq (88.3%). With regard to 1-bp small insertions and deletions (InDels), the Sanger sequencing validated rates of concordant variants (100.0%) and SureSelect-HiSeq-specific (89.6%) were higher than those of TargetSeq-Proton-specific (15.8%). In the sequencing of exonic regions, a combination of using of two sequencing strategies (SureSelect-HiSeq and TargetSeq-Proton) increased the variant calling specificity for concordant variant loci and the sensitivity for variant loci called by any one platform. However, for the sequencing of platform-specific variants, the accuracy of variant calling by HiSeq 2000 was higher than that of Ion Proton, specifically for the InDel detection. Moreover, the variant calling software also influences the detection of SNPs and, specifically, InDels in Ion Proton exome sequencing.
Hojjat-Farsangi, Mohammad
2014-08-08
Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK-TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK-TKIs have been developed for the treatment of cancer patients. Specific/selective RTK-TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK-TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs.
Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang
2016-01-01
The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397
Karimova, Madina; Splith, Victoria; Karpinski, Janet; Pisabarro, M. Teresa; Buchholz, Frank
2016-01-01
Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets. PMID:27444945
Rapid and selective updating of the target template in visual search.
Sha, Li Z; Remington, Roger W; Jiang, Yuhong V
2017-01-01
Frequent target stimuli are detected more rapidly than infrequent ones. Here, we examined whether the frequency effect reflected durable attentional biases toward frequent target features, and whether the effect was confined to featural properties that defined the target. Participants searched for two specific target colors among distractors of heterogeneous colors and reported the line orientation of the target. The target was more often in one specific feature (e.g., a specific color or a specific orientation) than another in a training phase. This frequency difference was removed or reversed in a testing phase. Experiments 1 and 2 showed that when frequency differences were introduced to the target's defining feature, participants more rapidly found the high-frequency target than the low-frequency target. However, changes in attention were not durable-the search advantage vanished immediately when the frequency differences were removed. Experiments 3-5 showed that only featural properties that defined the target facilitated search of the more frequent feature. Features that did not define the target, such as the target feature that participants reported, sped up response but did not facilitate search. These data showed that when searching for multiple targets in a feature search task, people selectively and rapidly adapt to the frequency in the target's defining feature.
Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang
2017-01-01
Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated “cocktail-party” listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the “cocktail-party” listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process. PMID:28239344
Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang
2017-01-01
Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated "cocktail-party" listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the "cocktail-party" listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process.
Yersinia pestis targets neutrophils via complement receptor 3
Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.
2015-01-01
Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083
Epidermal growth factor receptor and variant III targeted immunotherapy
Congdon, Kendra L.; Gedeon, Patrick C.; Suryadevara, Carter M.; Caruso, Hillary G.; Cooper, Laurence J.N.; Heimberger, Amy B.; Sampson, John H.
2014-01-01
Immunotherapeutic approaches to cancer have shown remarkable promise. A critical barrier to successfully executing such immune-mediated interventions is the selection of safe yet immunogenic targets. As patient deaths have occurred when tumor-associated antigens shared by normal tissue have been targeted by strong cellular immunotherapeutic platforms, route of delivery, target selection and the immune-mediated approach undertaken must work together to maximize efficacy with safety. Selected tumor-specific targets can spare potential toxicity to normal tissue; however, they are far less common than tumor-associated antigens and may not be present on all patients. In the context of immunotherapy for high-grade glioma, 2 of the most prominently studied antigens are the tumor-associated epidermal growth factor receptor and its tumor-specific genetic deletion variant III. In this review, we will summarize the immune-mediated strategies employed against these targets as well as the caveats particular to these approaches. PMID:25342601
TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.
Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H
2015-05-01
Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.
TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts
Bernstein, Diana L.; Le Lay, John E.; Ruano, Elena G.; Kaestner, Klaus H.
2015-01-01
Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator–like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics. PMID:25866970
Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data
2013-01-01
Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression. PMID:23369200
Evolution of a Histone H4-K16 Acetyl-Specific DNA Aptamer
Williams, Berea A. R.; Lin, Liyun; Lindsay, Stuart M.; Chaput, John C.
2009-01-01
We report the in vitro selection of DNA aptamers that bind to histone H4 proteins acetylated at lysine 16. The best aptamer identified in this selection binds to the target protein with a Kd of 21 nM, and discriminates against both the non-acetylated protein and histone H4 proteins acetylated at lysine 8. Comparative binding assays performed with a chip-quality antibody reveal that this aptamer binds to the acetylated histone target with similar affinity to a commercial antibody, but shows significantly greater specificity (15-fold versus 2,400-fold) for the target molecule. This result demonstrates that aptamers that are both modification and location specific can be generated to bind specific protein post-translational modifications. PMID:19385619
NASA Astrophysics Data System (ADS)
Lwin, Thinzar M.; Miyake, Kentaro; Murakami, Takashi; DeLong, Jonathan C.; Yazaki, Paul J.; Shivley, John E.; Clary, Bryan; Hoffman, Robert M.; Bouvet, Michael
2018-03-01
Specific tumor targeting can result in selective labeling of cancer in vivo for surgical navigation. In the present study, we show that the use of an anti-CEA antibody conjugated to the near-infrared (NIR) fluorescent dye, IRDye800CW, can selectively target and label pancreatic cancer and its metastases in a clinically relevant patient derived xenograft mouse model.
Signal transduction networks in rheumatoid arthritis
Hammaker, D; Sweeney, S; Firestein, G
2003-01-01
Signal transduction pathways regulate cellular responses to stress and play a critical role in inflammation. The complexity and specificity of signalling mechanisms represent major hurdles for developing effective, safe therapeutic interventions that target specific molecules. One approach is to dissect the pathways methodically to determine their hierarchy in various cell types and diseases. This approach contributed to the identification and prioritisation of specific kinases that regulate NF-κB and the mitogen activated protein (MAP) kinase cascade as especially attractive targets. Although significant issues remain with regard to the discovery of truly selective kinase inhibitors, the risks that accompany inhibition of fundamental signal transduction mechanisms can potentially be decreased by careful dissection of the pathways and rational target selection. PMID:14532158
Selecting Fully-Modified XNA Aptamers Using Synthetic Genetics.
Taylor, Alexander I; Holliger, Philipp
2018-06-01
This unit describes the application of "synthetic genetics," i.e., the replication of xeno nucleic acids (XNAs), artificial analogs of DNA and RNA bearing alternative backbone or sugar congeners, to the directed evolution of synthetic oligonucleotide ligands (XNA aptamers) specific for target proteins or nucleic acid motifs, using a cross-chemistry selective exponential enrichment (X-SELEX) approach. Protocols are described for synthesis of diverse-sequence XNA repertoires (typically 10 14 molecules) using DNA templates, isolation and panning for functional XNA sequences using targets immobilized on solid phase or gel shift induced by target binding in solution, and XNA reverse transcription to allow cDNA amplification or sequencing. The method may be generally applied to select fully-modified XNA aptamers specific for a wide range of target molecules. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Jury Selection in Child Sex Abuse Trials: A Case Analysis
ERIC Educational Resources Information Center
Cramer, Robert J.; Adams, Desiree D.; Brodsky, Stanley L.
2009-01-01
Child sex abuse cases have been the target of considerable psycho-legal research. The present paper offers an analysis of psychological constructs for jury selection in child sex abuse cases from the defense perspective. The authors specifically delineate general and case-specific jury selection variables. General variables include…
NASA Astrophysics Data System (ADS)
Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.
2017-09-01
The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.
Huyn, Steven T.; Burton, Jeremy B.; Sato, Makoto; Carey, Michael; Gambhir, Sanjiv S.; Wu, Lily
2009-01-01
Purpose With breast cancer, early detection and proper staging are critical, and will often influence both the treatment regimen and the therapeutic outcome for those affected with this disease. Improvements in these areas will play a profound role in reducing mortality from breast cancer. Experimental Design In this work we developed a breast cancer – targeted serotype 5 adenoviral vector, utilizing the tumor-specific mucin-1 promoter in combination with the two-step transcriptional amplification system, a system used to augment the activity of weak tissue – specific promoters. Results We showed the strong specificity of this tumor-selective adenovirus to express the luciferase optical imaging gene, leading to diagnostic signals that enabled detection of sentinel lymph node metastasis of breast cancer. Furthermore, we were able to target hepatic metastases following systemic administration of this mucin-1 selective virus. Conclusions Collectively, we showed that the amplified mucin-1 promoter – driven vector is able to deliver to and selectively express a desirable transgene in metastatic lesions of breast tumors. This work has strong clinical relevance to current diagnostic staging approaches, and could add to targeted therapeutic strategies to advance the fight against breast cancer. PMID:19366829
Screening phage display libraries for organ-specific vascular immunotargeting in vivo
Valadon, Philippe; Garnett, Jeff D.; Testa, Jacqueline E.; Bauerle, Marc; Oh, Phil; Schnitzer, Jan E.
2006-01-01
The molecular diversity of the luminal endothelial cell surface arising in vivo from local variations in genetic expression and tissue microenvironment may create opportunities for achieving targeted molecular imaging and therapies. Here, we describe a strategy to identify probes and their cognate antigens for targeting vascular endothelia of specific organs in vivo. We differentially screen phage libraries to select organ-targeting antibodies by using luminal endothelial cell plasma membranes isolated directly from tissue and highly enriched in natively expressed proteins exposed to the bloodstream. To obviate liver uptake of intravenously injected phage, we convert the phage-displayed antibodies into scFv-Fc fusion proteins, which then are able to rapidly target select organ(s) in vivo as visualized directly by γ-scintigraphic whole-body imaging. Mass spectrometry helps identify the antigen targets. This comprehensive strategy provides new promise for harnessing the power of phage display for mapping vascular endothelia natively in tissue and for achieving vascular targeting of specific tissues in vivo. PMID:16384919
The prospect of gene therapy for prostate cancer: update on theory and status.
Koeneman, K S; Hsieh, J T
2001-09-01
Molecularly based novel therapeutic agents are needed to address the problem of locally recurrent, or metastatic, advanced hormone-refractory prostate cancer. Recent basic science advances in mechanisms of gene expression, vector delivery, and targeting have rendered clinically relevant gene therapy to the prostatic fossa and distant sites feasible in the near future. Current research and clinical investigative efforts involving methods for more effective vector delivery and targeting, with enhanced gene expression to selected (specific) sites, are reviewed. These areas of research involve tissue-specific promoters, transgene exploration, vector design and delivery, and selective vector targeting. The 'vectorology' involved mainly addresses selective tissue homing with ligands, mechanisms of innate immune system evasion for durable transgene expression, and the possibility of repeat administration.
Toshima, Kazunobu
2013-05-01
Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.
Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.
2013-01-01
Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296
DNA targeting specificity of RNA-guided Cas9 nucleases.
Hsu, Patrick D; Scott, David A; Weinstein, Joshua A; Ran, F Ann; Konermann, Silvana; Agarwala, Vineeta; Li, Yinqing; Fine, Eli J; Wu, Xuebing; Shalem, Ophir; Cradick, Thomas J; Marraffini, Luciano A; Bao, Gang; Zhang, Feng
2013-09-01
The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here, we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications, we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.
High affinity ligands from in vitro selection: Complex targets
Morris, Kevin N.; Jensen, Kirk B.; Julin, Carol M.; Weil, Michael; Gold, Larry
1998-01-01
Human red blood cell membranes were used as a model system to determine if the systematic evolution of ligands by exponential enrichment (SELEX) methodology, an in vitro protocol for isolating high-affinity oligonucleotides that bind specifically to virtually any single protein, could be used with a complex mixture of potential targets. Ligands to multiple targets were generated simultaneously during the selection process, and the binding affinities of these ligands for their targets are comparable to those found in similar experiments against pure targets. A secondary selection scheme, deconvolution-SELEX, facilitates rapid isolation of the ligands to targets of special interest within the mixture. SELEX provides high-affinity compounds for multiple targets in a mixture and might allow a means for dissecting complex biological systems. PMID:9501188
Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J
2017-02-01
Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.
Reversibly Switchable, pH-Dependent Peptide Ligand Binding via 3,5-Diiodotyrosine Substitutions.
Ngambenjawong, Chayanon; Sylvestre, Meilyn; Gustafson, Heather H; Pineda, Julio Marco B; Pun, Suzie H
2018-04-20
Cell type-specific targeting ligands utilized in drug delivery applications typically recognize receptors that are overexpressed on the cells of interest. Nonetheless, these receptors may also be expressed, to varying extents, on off-target cells, contributing to unintended side effects. For the selectivity profile of targeting ligands in cancer therapy to be improved, stimuli-responsive masking of these ligands with acid-, redox-, or enzyme-cleavable molecules has been reported, whereby the targeting ligands are exposed in specific environments, e.g., acidic tumor hypoxia. One possible drawback of these systems lies in their one-time, permanent trigger, which enables the "demasked" ligands to bind off-target cells if released back into the systemic circulation. A promising strategy to address the aforementioned problem is to design ligands that show selective binding based on ionization state, which may be microenvironment-dependent. In this study, we report a systematic strategy to engineer low pH-selective targeting peptides using an M2 macrophage-targeting peptide (M2pep) as an example. 3,5-Diiodotyrosine mutagenesis into native tyrosine residues of M2pep confers pH-dependent binding behavior specific to acidic environment (pH 6) when the amino acid is protonated into the native tyrosine-like state. At physiological pH of 7.4, the hydroxyl group of 3,5-diiodotyrosine on the peptide is deprotonated leading to interruption of the peptide native binding property. Our engineered pH-responsive M2pep (Ac-Y-Î-Î) binds target M2 macrophages more selectively at pH 6 than at pH 7.4. In addition, 3,5-diiodotyrosine substitutions also improve serum stability of the peptide. Finally, we demonstrate pH-dependent reversibility in target binding via a postbinding peptide elution study. The strategy presented here should be applicable for engineering pH-dependent functionality of other targeting peptides with potential applications in physiology-dependent in vivo targeting applications (e.g., targeting hypoxic tumor/inflammation) or in in vitro receptor identification.
Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation
Sweet, Jennifer A.; Pace, Jonathan; Girgis, Fady; Miller, Jonathan P.
2016-01-01
Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS. PMID:27445709
Predicting selective drug targets in cancer through metabolic networks
Folger, Ori; Jerby, Livnat; Frezza, Christian; Gottlieb, Eyal; Ruppin, Eytan; Shlomi, Tomer
2011-01-01
The interest in studying metabolic alterations in cancer and their potential role as novel targets for therapy has been rejuvenated in recent years. Here, we report the development of the first genome-scale network model of cancer metabolism, validated by correctly identifying genes essential for cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which 40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It further predicts combinations of synthetic lethal drug targets, whose synergy is validated using available drug efficacy and gene expression measurements across the NCI-60 cancer cell line collection. Finally, potential selective treatments for specific cancers that depend on cancer type-specific downregulation of gene expression and somatic mutations are compiled. PMID:21694718
Kokla, Anna; Blouchos, Petros; Livaniou, Evangelia; Zikos, Christos; Kakabakos, Sotiris E; Petrou, Panagiota S; Kintzios, Spyridon
2013-12-01
Membrane engineering is a generic methodology for increasing the selectivity of a cell biosensor against a target molecule, by electroinserting target-specific receptor-like molecules on the cell surface. Previous studies have elucidated the biochemical aspects of the interaction between various analytes (including viruses) and their homologous membrane-engineered cells. In the present study, purified anti-biotin antibodies from a rabbit antiserum along with in-house prepared biotinylated bovine serum albumin (BSA) were used as a model antibody-antigen pair of molecules for facilitating membrane engineering experiments. It was proven, with the aid of fluorescence microscopy, that (i) membrane-engineered cells incorporated the specific antibodies in the correct orientation and that (ii) the inserted antibodies are selectively interacting with the homologous target molecules. This is the first time the actual working concept of membrane engineering has been visualized, thus providing a final proof of the concept behind this innovative process. In addition, the fluorescence microscopy measurements were highly correlated with bioelectric measurements done with the aid of a bioelectric recognition assay. Copyright © 2013 John Wiley & Sons, Ltd.
Epidermal growth factor receptor and variant III targeted immunotherapy.
Congdon, Kendra L; Gedeon, Patrick C; Suryadevara, Carter M; Caruso, Hillary G; Cooper, Laurence J N; Heimberger, Amy B; Sampson, John H
2014-10-01
Immunotherapeutic approaches to cancer have shown remarkable promise. A critical barrier to successfully executing such immune-mediated interventions is the selection of safe yet immunogenic targets. As patient deaths have occurred when tumor-associated antigens shared by normal tissue have been targeted by strong cellular immunotherapeutic platforms, route of delivery, target selection and the immune-mediated approach undertaken must work together to maximize efficacy with safety. Selected tumor-specific targets can spare potential toxicity to normal tissue; however, they are far less common than tumor-associated antigens and may not be present on all patients. In the context of immunotherapy for high-grade glioma, 2 of the most prominently studied antigens are the tumor-associated epidermal growth factor receptor and its tumor-specific genetic deletion variant III. In this review, we will summarize the immune-mediated strategies employed against these targets as well as the caveats particular to these approaches. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lin, Hong-Yu; Haegele, Joseph A.; Disare, Michael T.; Lin, Qishan; Aye, Yimon
2015-01-01
Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized “electrophile toolbox” with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology—T-REX (targetable reactive electrophiles & oxidants)—is established by: (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein—one of several redox-sensitive regulators of the Nrf2–ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2–ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background. PMID:25909755
Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon
2015-05-20
Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.
Prodrugs for Improving Tumor Targetability and Efficiency
Mahato, Rubi; Tai, Wanyi; Cheng, Kun
2011-01-01
As the mainstay in the treatment of various cancers for several decades, chemotherapy is successful but still faces challenges including non-selectivity and high toxicity. Improving the selectivity is therefore a critical step to improve the therapeutic efficacy of chemotherapy. Prodrug is one of the most promising approaches to increase the selectivity and efficacy of a chemotherapy drug. The classical prodrug approach is to improve the pharmaceutical properties (solubility, stability, permeability, irritation, distribution, etc.) via a simple chemical modification. This review will focus on various targeted prodrug designs that have been developed to increase the selectivity of chemotherapy drugs. Various tumor-targeting ligands, transporter-associated ligands, and polymers can be incorporated in a prodrug to enhance the tumor uptake. Prodrugs can also be activated by enzymes that are specifically expressed at a higher level in tumors, leading to a selective anti-tumor effect. This can be achieved by conjugating the enzyme to a tumor-specific antibody, or delivering a vector expressing the enzyme into tumor cells. PMID:21333700
Phage display: concept, innovations, applications and future.
Pande, Jyoti; Szewczyk, Magdalena M; Grover, Ashok K
2010-01-01
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field. Copyright © 2010 Elsevier Inc. All rights reserved.
Method and apparatus for noble gas atom detection with isotopic selectivity
Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.
1984-01-01
Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.
In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A
Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate
2015-01-01
A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5’-end including the 5’-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer. PMID:26221730
In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.
Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate
2015-01-01
A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.
Eckert, Randal; Qi, Fengxia; Yarbrough, Daniel K.; He, Jian; Anderson, Maxwell H.; Shi, Wenyuan
2006-01-01
Currently available antimicrobials exhibit broad killing with regard to bacterial genera and species. Indiscriminate killing of microbes by these conventional antibiotics can disrupt the ecological balance of the indigenous microbial flora, often resulting in negative clinical consequences. Species-specific antimicrobials capable of precisely targeting pathogenic bacteria without damaging benign microorganisms provide a means of avoiding this problem. In this communication, we report the successful creation of the first synthetic, target-specific antimicrobial peptide, G10KHc, via addition of a rationally designed Pseudomonas-specific targeting moiety (KH) to a generally killing peptide (novispirin G10). The resulting chimeric peptide showed enhanced bactericidal activity and faster killing kinetics against Pseudomonas spp. than G10 alone. The enhanced killing activities are due to increased binding and penetration of the outer membrane of Pseudomonas sp. cells. These properties were not observed in tests of untargeted bacterial species, and this specificity allowed G10KHc to selectively eliminate Pseudomonas spp. from mixed cultures. This work lays a foundation for generating target-specific “smart” antimicrobials to complement currently available conventional antibiotics. PMID:16569868
Cell selection and characterization of a novel human endothelial cell specific nanobody.
Ahmadvand, Davoud; Rasaee, Mohammad J; Rahbarizadeh, Fatemeh; Kontermann, Roland E; Sheikholislami, Farzaneh
2009-05-01
Antibody-based targeting of angiogenesis and vascular targeting therapy of cancer are extremely attractive conceptually and open new important diagnostic and therapeutic opportunities. Compelling evidence suggests that CD105 represents an ideal target for anti-angiogenic therapy and its presence in solid tumor vasculature has prognostic value. Camelids produce functional antibodies devoid of light chains and constant heavy chain domain (CH1). Nanobodies, the antigen-binding fragments of such heavy chain antibodies, are therefore comprised in one single domain. The aim of this study was to explore the possibilities of using anti-endoglin nanobody as an angiogenesis inhibitor. The anti-CD105 nanobody (AR-86a) was isolated from immune library by selections on purified antigens and target cells. Immunocytochemistry and FACS analysis showed that the purified nanobody reacted specifically with human umbilical vein endothelial cells (HUVECs) but not with other cell lines such as MDA-MB-453, Mel III, T-47D, MCF-7, AGO and HT 29. Further, selected nanobody potently inhibited proliferation of human endothelial cells and formation of capillary-like structures. This selected high affinity anti-endoglin nanobody may offer high specificity towards tumors with reduced side effects, and may be less likely to elicit drug resistance compared to conventional therapy.
Oligo-branched peptides for tumor targeting: from magic bullets to magic forks.
Falciani, Chiara; Pini, Alessandro; Bracci, Luisa
2009-02-01
Selective targeting of tumor cells is the final goal of research and drug discovery for cancer diagnosis, imaging and therapy. After the invention of hybridoma technology, the concept of magic bullet was introduced into the field of oncology, referring to selective killing of tumor cells, by specific antibodies. More recently, small molecules and peptides have also been proposed as selective targeting agents. We analyze the state of the art of tumor-selective agents that are presently available and tested in clinical settings. A novel approach based on 'armed' oligo-branched peptides as tumor targeting agents, is discussed and compared with existing tumor-selective therapies mediated by antibodies, small molecules or monomeric peptides. Oligo-branched peptides could be novel drugs that combine the advantages of antibodies and small molecules.
Production Of High Specific Activity Copper-67
Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.
2002-12-03
A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.
Production Of High Specific Activity Copper-67
Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.
2003-10-28
A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.
Bakhshinejad, Babak; Zade, Hesam Motaleb; Shekarabi, Hosna Sadat Zahed; Neman, Sara
2016-12-01
Phage display is known as a powerful methodology for the identification of targeting ligands that specifically bind to a variety of targets. The high-throughput screening of phage display combinatorial peptide libraries is performed through the affinity selection method of biopanning. Although phage display selection has proven very successful in the discovery of numerous high-affinity target-binding peptides with potential application in drug discovery and delivery, the enrichment of false-positive target-unrelated peptides (TUPs) without any actual affinity towards the target remains a major problem of library screening. Selection-related TUPs may emerge because of binding to the components of the screening system rather than the target. Propagation-related TUPs may arise as a result of faster growth rate of some phage clones enabling them to outcompete slow-propagating clones. Amplification of the library between rounds of biopanning makes a significant contribution to the selection of phage clones with propagation advantage. Distinguishing nonspecific TUPs from true target binders is of particular importance for the translation of biopanning findings from basic research to clinical applications. Different experimental and in silico approaches are applied to assess the specificity of phage display-derived peptides towards the target. Bioinformatic tools are playing a rapidly growing role in the analysis of biopanning data and identification of target-irrelevant TUPs. Recent progress in the introduction of efficient strategies for TUP detection holds enormous promise for the discovery of clinically relevant cell- and tissue-homing peptides and paves the way for the development of novel targeted diagnostic and therapeutic platforms in pharmaceutical areas.
Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel
2016-01-01
When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221
NASA Astrophysics Data System (ADS)
Ju, Soomi; Lee, Ki-Young; Min, Sun-Joon; Yoo, Yong Kyoung; Hwang, Kyo Seon; Kim, Sang Kyung; Yi, Hyunjung
2015-03-01
Although volatile organic compounds (VOCs) are becoming increasingly recognized as harmful agents and potential biomarkers, selective detection of the organic targets remains a tremendous challenge. Among the materials being investigated for target recognition, peptides are attractive candidates because of their chemical robustness, divergence, and their homology to natural olfactory receptors. Using a combinatorial peptide library and either a graphitic surface or phenyl-terminated self-assembled monolayer as relevant target surfaces, we successfully selected three interesting peptides that differentiate a single carbon deviation among benzene and its analogues. The heterogeneity of the designed target surfaces provided peptides with varying affinity toward targeted molecules and generated a set of selective peptides that complemented each other. Microcantilever sensors conjugated with each peptide quantitated benzene, toluene and xylene to sub-ppm levels in real time. The selection of specific receptors for a group of volatile molecules will provide a strong foundation for general approach to individually monitoring VOCs.
Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease.
Repanas, Kostas; Zingler, Nora; Layer, Liliana E; Schumann, Gerald G; Perrakis, Anastassis; Weichenrieder, Oliver
2007-01-01
The human LINE-1 endonuclease (L1-EN) is the targeting endonuclease encoded by the human LINE-1 (L1) retrotransposon. L1-EN guides the genomic integration of new L1 and Alu elements that presently account for approximately 28% of the human genome. L1-EN bears considerable technological interest, because its target selectivity may ultimately be engineered to allow the site-specific integration of DNA into defined genomic locations. Based on the crystal structure, we generated L1-EN mutants to analyze and manipulate DNA target site recognition. Crystal structures and their dynamic and functional analysis show entire loop grafts to be feasible, resulting in altered specificity, while individual point mutations do not change the nicking pattern of L1-EN. Structural parameters of the DNA target seem more important for recognition than the nucleotide sequence, and nicking profiles on DNA oligonucleotides in vitro are less well defined than the respective integration site consensus in vivo. This suggests that additional factors other than the DNA nicking specificity of L1-EN contribute to the targeted integration of non-LTR retrotransposons.
Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A
2016-12-01
Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.
Landscape phages and their fusion proteins targeted to breast cancer cells
Fagbohun, Olusegun A.; Bedi, Deepa; Grabchenko, Natalia I.; Deinnocentes, Patricia A.; Bird, Richard C.; Petrenko, Valery A.
2012-01-01
Breast cancer is a leading cause of death among women in the USA. The efficacy of existing anticancer therapeutics can be improved by targeting them through conjugation with ligands binding to cellular receptors. Recently, we developed a novel drug targeting strategy based on the use of pre-selected cancer-specific ‘fusion pVIII proteins’ (fpVIII), as targeting ligands. To study the efficiency of this approach in animal models, we developed a panel of breast cancer cell-binding phages as a source of targeted fpVIIIs. Two landscape phage peptide libraries (8-mer f8/8 and 9-mer f8/9) were screened to isolate 132 phage variants that recognize breast carcinoma cells MCF-7 and ZR-75-1 and internalize into the cells. When tested for their interaction with the breast cancer cells in comparison with liver cancer cells HepG2, human mammary cells MCF-10A cells and serum, 16 of the phage probes selectively interacted with the breast cancer cells whereas 32 bound both breast and liver cancer cells. The most prominent cancer-specific phage DMPGTVLP, demonstrating sub-nanomolar Kd in interaction with target cells, was used for affinity chromatography of cellular membrane molecules to reveal its potential binding receptor. The isolated protein was identified by direct sequencing as cellular surface nucleolin. This conclusion was confirmed by inhibition of the phage–cell interaction with nucleolin antibodies. Other prominent phage binders VPTDTDYS, VEEGGYIAA, and DWRGDSMDS demonstrate consensus motifs common to previously identified cancer-specific peptides. Isolated phage proteins exhibit inherent binding specificity towards cancer cells, demonstrating the functional activity of the selected fused peptides. The selected phages, their peptide inserts and intact fusion proteins can serve as promising ligands for the development of targeted nanomedicines and their study in model mice with xenograft of human cells MCF-7 and ZR-75-1. PMID:22490956
NASA Technical Reports Server (NTRS)
Hidalgo, Homero, Jr.
2000-01-01
An innovative methodology for determining structural target mode selection and mode selection based on a specific criterion is presented. An effective approach to single out modes which interact with specific locations on a structure has been developed for the X-33 Launch Vehicle Finite Element Model (FEM). We presented Root-Sum-Square (RSS) displacement method computes resultant modal displacement for each mode at selected degrees of freedom (DOF) and sorts to locate modes with highest values. This method was used to determine modes, which most influenced specific locations/points on the X-33 flight vehicle such as avionics control components, aero-surface control actuators, propellant valve and engine points for use in flight control stability analysis and for flight POGO stability analysis. Additionally, the modal RSS method allows for primary or global target vehicle modes to also be identified in an accurate and efficient manner.
Stuart, Christopher H; Singh, Ravi; Smith, Thomas L; D'Agostino, Ralph; Caudell, David; Balaji, K C; Gmeiner, William H
2016-05-01
To evaluate the potential use of zinc chelation for prostate cancer therapy using a new liposomal formulation of the zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). TPEN was encapsulated in nontargeted liposomes or liposomes displaying an aptamer to target prostate cancer cells overexpression prostate-specific membrane antigen. The prostate cancer selectivity and therapeutic efficacy of liposomal (targeted and nontargeted) and free TPEN were evaluated in vitro and in tumor-bearing mice. TPEN chelates zinc and results in reactive oxygen species imbalance leading to cell death. Delivery of TPEN using aptamer-targeted liposomes results in specific delivery to targeted cells. In vivo experiments show that TPEN-loaded, aptamer-targeted liposomes reduce tumor growth in a human prostate cancer xenograft model.
Interactions between the R2R3-MYB Transcription Factor, AtMYB61, and Target DNA Binding Sites
Prouse, Michael B.; Campbell, Malcolm M.
2013-01-01
Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing). The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators. PMID:23741471
CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites
Naito, Yuki; Hino, Kimihiro; Bono, Hidemasa; Ui-Tei, Kumiko
2015-01-01
Summary: CRISPRdirect is a simple and functional web server for selecting rational CRISPR/Cas targets from an input sequence. The CRISPR/Cas system is a promising technique for genome engineering which allows target-specific cleavage of genomic DNA guided by Cas9 nuclease in complex with a guide RNA (gRNA), that complementarily binds to a ∼20 nt targeted sequence. The target sequence requirements are twofold. First, the 5′-NGG protospacer adjacent motif (PAM) sequence must be located adjacent to the target sequence. Second, the target sequence should be specific within the entire genome in order to avoid off-target editing. CRISPRdirect enables users to easily select rational target sequences with minimized off-target sites by performing exhaustive searches against genomic sequences. The server currently incorporates the genomic sequences of human, mouse, rat, marmoset, pig, chicken, frog, zebrafish, Ciona, fruit fly, silkworm, Caenorhabditis elegans, Arabidopsis, rice, Sorghum and budding yeast. Availability: Freely available at http://crispr.dbcls.jp/. Contact: y-naito@dbcls.rois.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25414360
Jiang, Yunpeng; Wu, Xia; Gao, Xiaorong
2017-10-17
A top-down set can guide attention to enhance the processing of task-relevant objects. Many studies have found that the top-down set can be tuned to a category level. However, it is unclear whether the category-specific top-down set involving a central search task can exist outside the current area of attentional focus. To directly probe the neural responses inside and outside the current focus of attention, we recorded continuous EEG to measure the contralateral ERP components for central targets and the steady-state visual evoked potential (SSVEP) oscillations associated with a flickering checkerboard placed on the visual periphery. The relationship of color categories between targets and non-targets was manipulated to investigate the effect of category-specific top-down set. Results showed that when the color categories of targets and non-targets in the central search arrays were the same, larger SSVEP oscillations were evoked by target color peripheral checkerboards relative to the non-target color ones outside the current attentional focus. However, when the color categories of targets and non-targets were different, the peripheral checkerboards in two different colors of the same category evoked similar SSVEP oscillations, indicating the effects of category-specific top-down set. These results firstly demonstrate that the category-specific top-down set can affect the neural responses of peripheral distractors. The results could support the idea of a global selection account and challenge the attentional window account in selective attention. Copyright © 2017. Published by Elsevier B.V.
Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding
D'Angelo, Sara; Ferrara, Fortunato; Naranjo, Leslie; ...
2018-03-08
Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with themore » same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.« less
Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Angelo, Sara; Ferrara, Fortunato; Naranjo, Leslie
Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with themore » same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.« less
Effect of Ca2+ on the promiscuous target-protein binding of calmodulin
Westerlund, Annie M.
2018-01-01
Calmodulin (CaM) is a calcium sensing protein that regulates the function of a large number of proteins, thus playing a crucial part in many cell signaling pathways. CaM has the ability to bind more than 300 different target peptides in a Ca2+-dependent manner, mainly through the exposure of hydrophobic residues. How CaM can bind a large number of targets while retaining some selectivity is a fascinating open question. Here, we explore the mechanism of CaM selective promiscuity for selected target proteins. Analyzing enhanced sampling molecular dynamics simulations of Ca2+-bound and Ca2+-free CaM via spectral clustering has allowed us to identify distinct conformational states, characterized by interhelical angles, secondary structure determinants and the solvent exposure of specific residues. We searched for indicators of conformational selection by mapping solvent exposure of residues in these conformational states to contacts in structures of CaM/target peptide complexes. We thereby identified CaM states involved in various binding classes arranged along a depth binding gradient. Binding Ca2+ modifies the accessible hydrophobic surface of the two lobes and allows for deeper binding. Apo CaM indeed shows shallow binding involving predominantly polar and charged residues. Furthermore, binding to the C-terminal lobe of CaM appears selective and involves specific conformational states that can facilitate deep binding to target proteins, while binding to the N-terminal lobe appears to happen through a more flexible mechanism. Thus the long-ranged electrostatic interactions of the charged residues of the N-terminal lobe of CaM may initiate binding, while the short-ranged interactions of hydrophobic residues in the C-terminal lobe of CaM may account for selectivity. This work furthers our understanding of the mechanism of CaM binding and selectivity to different target proteins and paves the way towards a comprehensive model of CaM selectivity. PMID:29614072
Effect of Ca2+ on the promiscuous target-protein binding of calmodulin.
Westerlund, Annie M; Delemotte, Lucie
2018-04-01
Calmodulin (CaM) is a calcium sensing protein that regulates the function of a large number of proteins, thus playing a crucial part in many cell signaling pathways. CaM has the ability to bind more than 300 different target peptides in a Ca2+-dependent manner, mainly through the exposure of hydrophobic residues. How CaM can bind a large number of targets while retaining some selectivity is a fascinating open question. Here, we explore the mechanism of CaM selective promiscuity for selected target proteins. Analyzing enhanced sampling molecular dynamics simulations of Ca2+-bound and Ca2+-free CaM via spectral clustering has allowed us to identify distinct conformational states, characterized by interhelical angles, secondary structure determinants and the solvent exposure of specific residues. We searched for indicators of conformational selection by mapping solvent exposure of residues in these conformational states to contacts in structures of CaM/target peptide complexes. We thereby identified CaM states involved in various binding classes arranged along a depth binding gradient. Binding Ca2+ modifies the accessible hydrophobic surface of the two lobes and allows for deeper binding. Apo CaM indeed shows shallow binding involving predominantly polar and charged residues. Furthermore, binding to the C-terminal lobe of CaM appears selective and involves specific conformational states that can facilitate deep binding to target proteins, while binding to the N-terminal lobe appears to happen through a more flexible mechanism. Thus the long-ranged electrostatic interactions of the charged residues of the N-terminal lobe of CaM may initiate binding, while the short-ranged interactions of hydrophobic residues in the C-terminal lobe of CaM may account for selectivity. This work furthers our understanding of the mechanism of CaM binding and selectivity to different target proteins and paves the way towards a comprehensive model of CaM selectivity.
Fukuda, Masatora; Kurihara, Kei; Yamaguchi, Shota; Oyama, Yui; Deshimaru, Masanobu
2014-01-01
Adenosine-to-inosine (A-to-I) RNA editing is an endogenous regulatory mechanism involved in various biological processes. Site-specific, editing-state–dependent degradation of target RNA may be a powerful tool both for analyzing the mechanism of RNA editing and for regulating biological processes. Previously, we designed an artificial hammerhead ribozyme (HHR) for selective, site-specific RNA cleavage dependent on the A-to-I RNA editing state. In the present work, we developed an improved strategy for constructing a trans-acting HHR that specifically cleaves target editing sites in the adenosine but not the inosine state. Specificity for unedited sites was achieved by utilizing a sequence encoding the intrinsic cleavage specificity of a natural HHR. We used in vitro selection methods in an HHR library to select for an extended HHR containing a tertiary stabilization motif that facilitates HHR folding into an active conformation. By using this method, we successfully constructed highly active HHRs with unedited-specific cleavage. Moreover, using HHR cleavage followed by direct sequencing, we demonstrated that this ribozyme could cleave serotonin 2C receptor (HTR2C) mRNA extracted from mouse brain, depending on the site-specific editing state. This unedited-specific cleavage also enabled us to analyze the effect of editing state at the E and C sites on editing at other sites by using direct sequencing for the simultaneous quantification of the editing ratio at multiple sites. Our approach has the potential to elucidate the mechanism underlying the interdependencies of different editing states in substrate RNA with multiple editing sites. PMID:24448449
Development of MRM-based assays for the absolute quantitation of plasma proteins.
Kuzyk, Michael A; Parker, Carol E; Domanski, Dominik; Borchers, Christoph H
2013-01-01
Multiple reaction monitoring (MRM), sometimes called selected reaction monitoring (SRM), is a directed tandem mass spectrometric technique performed on to triple quadrupole mass spectrometers. MRM assays can be used to sensitively and specifically quantify proteins based on peptides that are specific to the target protein. Stable-isotope-labeled standard peptide analogues (SIS peptides) of target peptides are added to enzymatic digests of samples, and quantified along with the native peptides during MRM analysis. Monitoring of the intact peptide and a collision-induced fragment of this peptide (an ion pair) can be used to provide information on the absolute peptide concentration of the peptide in the sample and, by inference, the concentration of the intact protein. This technique provides high specificity by selecting for biophysical parameters that are unique to the target peptides: (1) the molecular weight of the peptide, (2) the generation of a specific fragment from the peptide, and (3) the HPLC retention time during LC/MRM-MS analysis. MRM is a highly sensitive technique that has been shown to be capable of detecting attomole levels of target peptides in complex samples such as tryptic digests of human plasma. This chapter provides a detailed description of how to develop and use an MRM protein assay. It includes sections on the critical "first step" of selecting the target peptides, as well as optimization of MRM acquisition parameters for maximum sensitivity of the ion pairs that will be used in the final method, and characterization of the final MRM assay.
Shinde, Santosh P; Banerjee, Amit Kumar; Arora, Neelima; Murty, U S N; Sripathi, Venkateswara Rao; Pal-Bhadra, Manika; Bhadra, Utpal
2015-03-01
Combating viral diseases has been a challenging task since time immemorial. Available molecular approaches are limited and not much effective for this daunting task. MicroRNA based therapies have shown promise in recent times. MicroRNAs are tiny non-coding RNAs that regulate translational repression of target mRNA in highly specific manner. In this study, we have determined the target regions for human and viral microRNAs in the conserved genomic regions of selected viruses of Flaviviridae family using miRanda and performed a comparative target selectivity analysis among them. Specific target regions were determined and they were compared extensively among themselves by exploring their position to determine the vicinity. Based on the multiplicity and cooperativity analysis, interaction maps were developed manually to represent the interactions between top-ranking miRNAs and genomes of the viruses considered in this study. Self-organizing map (SOM) was used to cluster the best-ranked microRNAs based on the vital physicochemical properties. This study will provide deep insight into the interrelation of the viral and human microRNAs interactions with the selected Flaviviridae genomes and will help to identify cross-species microRNA targets on the viral genome.
2016-10-01
human prostate cancer xenografts. We have selected peptides from bacteriophage display libraries that target TF and ErbB2/ErbB3. The peptides have been...facilitate biomarker-specific diagnosis. The specific aims of the proposal are to: 1) select peptides that target the ErbB2/3 heterodimer using novel...parallel in vitro/in vivo phage display techniques; 2) generate NIR-QDs decorated with TF- and ErbB2/3-avid peptides for in vivo molecular
ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage
Peng, Xiaohua; Gandhi, Varsha
2013-01-01
Targeting tumor cells is an important strategy to improve the selectivity of cancer therapies. With the advanced studies in cancer biology, we know that cancer cells are usually under increased oxidative stress. The high level of reactive oxygen species in cancer cells has been exploited for developing novel therapeutic strategies to preferentially kill cancer cells. Our group, amongst others, have used boronic acids/esters as triggers for developing ROS-activated anticancer prodrugs that target cancer cells. The selectivity was achieved by combining a specific reaction between boronates and H2O2 with the efficient masking of drug toxicity in the prodrug via boronates. Prodrugs activated via ferrocene-mediated oxidation have also been developed to improve the selectivity of anticancer drugs. We describe how the strategies of ROS-activation can be used for further development of new ROS-targeting prodrugs, eventually leading to novel approaches and/or combined technology for more efficient and selective treatment of cancers. PMID:22900465
Sørensen, Morten Dræby; Agerholm, Inge Errebo; Christensen, Britta; Kølvraa, Steen; Kristensen, Peter
2010-01-01
Abstract Rare cells not normally present in the peripheral bloodstream, such as circulating tumour cells, have potential applications for development of non-invasive methods for diagnostics or follow up. Obtaining these cells however require some means of discrimination, achievable by cell type specific antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV-irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies per single cell selection, including three highly K562 cell type specific. PMID:20726925
Prodrug strategy for cancer cell-specific targeting: A recent overview.
Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin
2017-10-20
The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.
Sahin, Deniz; Taflan, Sevket Onur; Yartas, Gizem; Ashktorab, Hassan; Smoot, Duane T
2018-04-25
Background: Gastric cancer is the second most common cancer among the malign cancer types. Inefficiency of traditional techniques both in diagnosis and therapy of the disease makes the development of alternative and novel techniques indispensable. As an alternative to traditional methods, tumor specific targeting small peptides can be used to increase the efficiency of the treatment and reduce the side effects related to traditional techniques. The aim of this study is screening and identification of individual peptides specifically targeted to human gastric cancer cells using a phage-displayed peptide library and designing specific peptide sequences by using experimentally-eluted peptide sequences. Methods: Here, MKN-45 human gastric cancer cells and HFE-145 human normal gastric epithelial cells were used as the target and control cells, respectively. 5 rounds of biopannning with a phage display 12-peptide library were applied following subtraction biopanning with HFE-145 control cells. The selected phage clones were established by enzyme-linked immunosorbent assay and immunofluorescence detection. We first obtain random phage clones after five biopanning rounds, determine the binding levels of each individual clone. Then, we analyze the frequencies of each amino acid in best binding clones to determine positively overexpressed amino acids for designing novel peptide sequences. Results: DE532 (VETSQYFRGTLS) phage clone was screened positive, showing specific binding on MKN-45 gastric cancer cells. DE-Obs (HNDLFPSWYHNY) peptide, which was designed by using amino acid frequencies of experimentally selected peptides in the 5th round of biopanning, showed specific binding in MKN-45 cells. Conclusion: Selection and characterization of individual clones may give us specifically binding peptides, but more importantly, data extracted from eluted phage clones may be used to design theoretical peptides with better binding properties than even experimentally selected ones. Both peptides, experimental and designed, may be potential candidates to be developed as useful diagnostic or therapeutic ligand molecules in gastric cancer research. Creative Commons Attribution License
Bidlingmaier, Scott; Su, Yang; Liu, Bin
2015-01-01
Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.
A hierarchical two-phase framework for selecting genes in cancer datasets with a neuro-fuzzy system.
Lim, Jongwoo; Wang, Bohyun; Lim, Joon S
2016-04-29
Finding the minimum number of appropriate biomarkers for specific targets such as a lung cancer has been a challenging issue in bioinformatics. We propose a hierarchical two-phase framework for selecting appropriate biomarkers that extracts candidate biomarkers from the cancer microarray datasets and then selects the minimum number of appropriate biomarkers from the extracted candidate biomarkers datasets with a specific neuro-fuzzy algorithm, which is called a neural network with weighted fuzzy membership function (NEWFM). In this context, as the first phase, the proposed framework is to extract candidate biomarkers by using a Bhattacharyya distance method that measures the similarity of two discrete probability distributions. Finally, the proposed framework is able to reduce the cost of finding biomarkers by not receiving medical supplements and improve the accuracy of the biomarkers in specific cancer target datasets.
Li, Juan; Wang, Fengshan; Sun, Deqing; Wang, Rongmei
2016-08-01
It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors.
Targeted Killing of Streptococcus mutans by a Pheromone-Guided “Smart” Antimicrobial Peptide
Eckert, Randal ; He, Jian; Yarbrough, Daniel K.; Qi, Fengxia; Anderson, Maxwell H.; Shi, Wenyuan
2006-01-01
Within the repertoire of antibiotics available to a prescribing clinician, the majority affect a broad range of microorganisms, including the normal flora. The ecological disruption resulting from antibiotic treatment frequently results in secondary infections or other negative clinical consequences. To address this problem, our laboratory has recently developed a new class of pathogen-selective molecules, called specifically (or selectively) targeted antimicrobial peptides (STAMPs), based on the fusion of a species-specific targeting peptide domain with a wide-spectrum antimicrobial peptide domain. In the current study, we focused on achieving targeted killing of Streptococcus mutans, a cavity-causing bacterium that resides in a multispecies microbial community (dental plaque). In particular, we explored the possibility of utilizing a pheromone produced by S. mutans, namely, the competence stimulating peptide (CSP), as a STAMP targeting domain to mediate S. mutans-specific delivery of an antimicrobial peptide domain. We discovered that STAMPs constructed with peptides derived from CSP were potent against S. mutans grown in liquid or biofilm states but did not affect other oral streptococci tested. Further studies showed that an 8-amino-acid region within the CSP sequence is sufficient for targeted delivery of the antimicrobial peptide domain to S. mutans. The STAMPs presented here are capable of eliminating S. mutans from multispecies biofilms without affecting closely related noncariogenic oral streptococci, indicating the potential of these molecules to be developed into “probiotic” antibiotics which could selectively eliminate pathogens while preserving the protective benefits of a healthy normal flora. PMID:17060534
Wang, Qi; Heizer, Esley; Rosa, Bruce A.; Wildman, Scott A.; Janetka, James W.; Mitreva, Makedonka
2016-01-01
Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3,000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite’s protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented that illustrate the close proximity of the indel to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. The study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. PMID:26829384
Wang, Qi; Heizer, Esley; Rosa, Bruce A; Wildman, Scott A; Janetka, James W; Mitreva, Makedonka
2016-04-01
Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite's protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented illustrating the close proximity of some indels to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. This study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. Copyright © 2016 Elsevier B.V. All rights reserved.
Teotia, Pooja; Chopra, Divyan A; Dravid, Shashank Manohar; Van Hook, Matthew J; Qiu, Fang; Morrison, John; Rizzino, Angie; Ahmad, Iqbal
2017-03-01
Glaucoma is a complex group of diseases wherein a selective degeneration of retinal ganglion cells (RGCs) lead to irreversible loss of vision. A comprehensive approach to glaucomatous RGC degeneration may include stem cells to functionally replace dead neurons through transplantation and understand RGCs vulnerability using a disease in a dish stem cell model. Both approaches require the directed generation of stable, functional, and target-specific RGCs from renewable sources of cells, that is, the embryonic stem cells and induced pluripotent stem cells. Here, we demonstrate a rapid and safe, stage-specific, chemically defined protocol that selectively generates RGCs across species, including human, by recapitulating the developmental mechanism. The de novo generated RGCs from pluripotent cells are similar to native RGCs at the molecular, biochemical, functional levels. They also express axon guidance molecules, and discriminate between specific and nonspecific targets, and are nontumorigenic. Stem Cells 2017;35:572-585. © 2016 AlphaMed Press.
Thiel, William H.; Bair, Thomas; Peek, Andrew S.; Liu, Xiuying; Dassie, Justin; Stockdale, Katie R.; Behlke, Mark A.; Miller, Francis J.; Giangrande, Paloma H.
2012-01-01
Background The broad applicability of RNA aptamers as cell-specific delivery tools for therapeutic reagents depends on the ability to identify aptamer sequences that selectively access the cytoplasm of distinct cell types. Towards this end, we have developed a novel approach that combines a cell-based selection method (cell-internalization SELEX) with high-throughput sequencing (HTS) and bioinformatics analyses to rapidly identify cell-specific, internalization-competent RNA aptamers. Methodology/Principal Findings We demonstrate the utility of this approach by enriching for RNA aptamers capable of selective internalization into vascular smooth muscle cells (VSMCs). Several rounds of positive (VSMCs) and negative (endothelial cells; ECs) selection were performed to enrich for aptamer sequences that preferentially internalize into VSMCs. To identify candidate RNA aptamer sequences, HTS data from each round of selection were analyzed using bioinformatics methods: (1) metrics of selection enrichment; and (2) pairwise comparisons of sequence and structural similarity, termed edit and tree distance, respectively. Correlation analyses of experimentally validated aptamers or rounds revealed that the best cell-specific, internalizing aptamers are enriched as a result of the negative selection step performed against ECs. Conclusions and Significance We describe a novel approach that combines cell-internalization SELEX with HTS and bioinformatics analysis to identify cell-specific, cell-internalizing RNA aptamers. Our data highlight the importance of performing a pre-clear step against a non-target cell in order to select for cell-specific aptamers. We expect the extended use of this approach to enable the identification of aptamers to a multitude of different cell types, thereby facilitating the broad development of targeted cell therapies. PMID:22962591
Bashari, O; Redko, B; Cohen, A; Luboshits, G; Gellerman, G; Firer, M A
2017-11-01
Metastatic castration-resistant prostate cancer (mCRPC) remains essentially incurable. Targeted Drug Delivery (TDD) systems may overcome the limitations of current mCRPC therapies. We describe the use of strict criteria to isolate novel prostate cancer cell targeting peptides that specifically deliver drugs into target cells. Phage from a libraries displaying 7mer peptides were exposed to PC-3 cells and only internalized phage were recovered. The ability of these phage to internalize into other prostate cancer cells (LNCaP, DU-145) was validated. The displayed peptides of selected phage clones were synthesized and their specificity for target cells was validated in vitro and in vivo. One peptide (P12) which specifically targeted PC-3 tumors in vivo was incorporated into mono-drug (Chlorambucil, Combretastatin or Camptothecin) and dual-drug (Chlorambucil/Combretastatin or Chlorambucil/Camptothecin) PDCs and the cytotoxic efficacy of these conjugates for target cells was tested. Conjugation of P12 into dual-drug PDCs allowed discovery of new drug combinations with synergistic effects. The use of strict selection criteria can lead to discovery of novel peptides for use as drug carriers for TDD. PDCs represent an effective alternative to current modes of free drug chemotherapy for prostate cancer. Copyright © 2017. Published by Elsevier B.V.
Unconscious semantic activation depends on feature-specific attention allocation.
Spruyt, Adriaan; De Houwer, Jan; Everaert, Tom; Hermans, Dirk
2012-01-01
We examined whether semantic activation by subliminally presented stimuli is dependent upon the extent to which participants assign attention to specific semantic stimulus features and stimulus dimensions. Participants pronounced visible target words that were preceded by briefly presented, masked prime words. Both affective and non-affective semantic congruence of the prime-target pairs were manipulated under conditions that either promoted selective attention for affective stimulus information or selective attention for non-affective semantic stimulus information. In line with our predictions, results showed that affective congruence had a clear impact on word pronunciation latencies only if participants were encouraged to assign attention to the affective stimulus dimension. In contrast, non-affective semantic relatedness of the prime-target pairs produced no priming at all. Our findings are consistent with the hypothesis that unconscious activation of (affective) semantic information is modulated by feature-specific attention allocation. Copyright © 2011 Elsevier B.V. All rights reserved.
2017-01-01
We present a sensor that exploits the phenomenon of upconversion luminescence to detect the presence of specific sequences of small oligonucleotides such as miRNAs among others. The sensor is based on NaYF4:Yb,Er@SiO2 nanoparticles functionalized with ssDNA that contain azide groups on the 3′ ends. In the presence of a target sequence, interstrand ligation is possible via the click-reaction between one azide of the upconversion probe and a DBCO-ssDNA-biotin probe present in the solution. As a result of this specific and selective process, biotin is covalently attached to the surface of the upconversion nanoparticles. The presence of biotin on the surface of the nanoparticles allows their selective capture on a streptavidin-coated support, giving a luminescent signal proportional to the amount of target strands present in the test samples. With the aim of studying the analytical properties of the sensor, total RNA samples were extracted from healthy mosquitoes and were spiked-in with a specific target sequence at different concentrations. The result of these experiments revealed that the sensor was able to detect 10–17 moles per well (100 fM) of the target sequence in mixtures containing 100 ng of total RNA per well. A similar limit of detection was found for spiked human serum samples, demonstrating the suitability of the sensor for detecting specific sequences of small oligonucleotides under real conditions. In contrast, in the presence of noncomplementary sequences or sequences having mismatches, the luminescent signal was negligible or conspicuously reduced. PMID:28332400
2013-07-01
expression of key proteins within each pathway to examine their individual and combined roles with respect to potential breast cancer immunotherapy. We...selected as our initial targets the IKKβ activator (canonical) or p52 (alternative) proteins . In order to harness inhibition of these pathways to...intended to knockdown protein expression of NF-κB modulators with exceptional specificity for TAMs. TAM-specific nanoparticle targeting offers an
Autoantigens in systemic autoimmunity: critical partner in pathogenesis
Rosen, A.; Casciola-Rosen, L.
2013-01-01
Understanding the mechanisms of human autoimmune rheumatic diseases presents a major challenge, due to marked complexity involving multiple domains, including genetics, environment and kinetics. In spite of this, the immune response in each of these diseases is largely specific, with distinct autoantibodies associated with different disease phenotypes. Defining the basis of such specificity will provide important insights into disease mechanism. Accumulating data suggest an interesting paradigm for antigen selection in autoimmunity, in which target tissue and immune effector pathways form a mutually reinforcing partnership. In this model, distinct autoantibody patterns in autoimmunity may be viewed as the integrated, amplified output of several interacting systems, including: (i) the specific target tissue, (ii) the immune effector pathways that modify antigen structure and cause tissue damage and dysfunction, and (iii) the homeostatic pathways activated in response to damage (e.g. regeneration/differentiation/cytokine effects). As unique antigen expression and structure may occur exclusively under these amplifying circumstances, it is useful to view the molecules targeted as ‘neo-antigens’, that is, antigens expressed under specific conditions, rather than ubiquitously. This model adds an important new dynamic element to selection of antigen targets in autoimmunity, and suggests that the amplifying loop will only be identified by studying the diseased target tissue in vivo. PMID:19493056
Prostate Cancer Relevant Antigens and Enzymes for Targeted Drug Delivery
Barve, Ashutosh; Jin, Wei; Cheng, Kun
2014-01-01
Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to lack of specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-specific antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency. PMID:24878184
Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.
Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois
2013-01-01
The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.
Targeting tumor glycolysis by a mitotropic agent.
Ganapathy-Kanniappan, Shanmugasundaram
2016-01-01
Metabolic reprogramming is one of the hallmarks of cancer. Altered metabolism in cancer cells is exemplified by enhanced glucose utilization, a biochemical signature that is clinically exploited for cancer diagnosis using positron-emission tomography and computed tomography imaging. Accordingly, disrupting the glucose metabolism of cancer cells has been contemplated as a potential therapeutic strategy against cancer. Experimental evidences indicate that targeting glucose metabolism by inhibition of glycolysis or oxidative phosphorylation promotes anticancer effects. Yet, successful clinical translation of antimetabolites or energy blockers to treat cancer remains a challenge, primarily due to lack of efficacy and/or systemic toxicity. Recently, using nanotechnology, Marrache and Dhar have documented the feasibility of delivering a glycolytic inhibitor through triphenylphosphonium (TPP), a mitotropic agent that selectively targets mitochondria based on membrane potential. Furthermore, by utilizing gold nanoparticles the investigators also demonstrated the potential for simultaneous induction of photothermal therapy, thus facilitating an additional line of attack on cancer cells. The report establishes that specific inhibition of tumor glycolysis is achievable through TPP-dependent selective targeting of cancer cells. This nanotechnological approach involving TPP-guided selective delivery of an antiglycolytic agent complemented with photothermal therapy provides a new window of opportunity for effective and specific targeting of tumor glycolysis.
An anti-PDGFRβ aptamer for selective delivery of small therapeutic peptide to cardiac cells.
Romanelli, Alessandra; Affinito, Alessandra; Avitabile, Concetta; Catuogno, Silvia; Ceriotti, Paola; Iaboni, Margherita; Modica, Jessica; Condorelli, Geroloma; Catalucci, Daniele
2018-01-01
Small therapeutic peptides represent a promising field for the treatment of pathologies such as cardiac diseases. However, the lack of proper target-selective carriers hampers their translation towards a potential clinical application. Aptamers are cell-specific carriers that bind with high affinity to their specific target. However, some limitations on their conjugation to small peptides and the functionality of the resulting aptamer-peptide chimera exist. Here, we generated a novel aptamer-peptide chimera through conjugation of the PDGFRβ-targeting Gint4.T aptamer to MP, a small mimetic peptide that via targeting of the Cavβ2 subunit of the L-type calcium channel (LTCC) can recover myocardial function in pathological heart conditions associated with defective LTCC function. The conjugation reaction was performed by click chemistry in the presence of N,N,N',N',N"-pentamethyldiethylenetriamine as a Cu (I) stabilizing agent in a DMSO-free aqueous buffer. When administered to cardiac cells, the Gint4.T-MP aptamer-peptide chimera was successfully internalized in cells, allowing the functional targeting of MP to LTCC. This approach represents the first example of the use of an internalizing aptamer for selective delivery of a small therapeutic peptide to cardiac cells.
Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity
Kalra, Priya; Dhiman, Abhijeet; Cho, William C.; Bruno, John G.; Sharma, Tarun K.
2018-01-01
Aptamers are structured nucleic acid molecules that can bind to their targets with high affinity and specificity. However, conventional SELEX (Systematic Evolution of Ligands by EXponential enrichment) methods may not necessarily produce aptamers of desired affinity and specificity. Thus, to address these questions, this perspective is intended to suggest some approaches and tips along with novel selection methods to enhance evolution of aptamers. This perspective covers latest novel innovations as well as a broad range of well-established approaches to improve the individual binding parameters (aptamer affinity, avidity, specificity and/or selectivity) of aptamers during and/or post-SELEX. The advantages and limitations of individual aptamer selection methods and post-SELEX optimizations, along with rational approaches to overcome these limitations are elucidated in each case. Further the impact of chosen selection milieus, linker-systems, aptamer cocktails and detection modules utilized in conjunction with target-specific aptamers, on the overall assay performance are discussed in detail, each with its own advantages and limitations. The simple variations suggested are easily available for facile implementation during and/or post-SELEX to develop ultrasensitive and specific assays. Finally, success studies of established aptamer-based assays are discussed, highlighting how they utilized some of the suggested methodologies to develop commercially successful point-of-care diagnostic assays. PMID:29868605
Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity.
Kalra, Priya; Dhiman, Abhijeet; Cho, William C; Bruno, John G; Sharma, Tarun K
2018-01-01
Aptamers are structured nucleic acid molecules that can bind to their targets with high affinity and specificity. However, conventional SELEX (Systematic Evolution of Ligands by EXponential enrichment) methods may not necessarily produce aptamers of desired affinity and specificity. Thus, to address these questions, this perspective is intended to suggest some approaches and tips along with novel selection methods to enhance evolution of aptamers. This perspective covers latest novel innovations as well as a broad range of well-established approaches to improve the individual binding parameters (aptamer affinity, avidity, specificity and/or selectivity) of aptamers during and/or post-SELEX. The advantages and limitations of individual aptamer selection methods and post-SELEX optimizations, along with rational approaches to overcome these limitations are elucidated in each case. Further the impact of chosen selection milieus, linker-systems, aptamer cocktails and detection modules utilized in conjunction with target-specific aptamers, on the overall assay performance are discussed in detail, each with its own advantages and limitations. The simple variations suggested are easily available for facile implementation during and/or post-SELEX to develop ultrasensitive and specific assays. Finally, success studies of established aptamer-based assays are discussed, highlighting how they utilized some of the suggested methodologies to develop commercially successful point-of-care diagnostic assays.
Recognition Imaging of Acetylated Chromatin Using a DNA Aptamer
Lin, Liyun; Fu, Qiang; Williams, Berea A.R.; Azzaz, Abdelhamid M.; Shogren-Knaak, Michael A.; Chaput, John C.; Lindsay, Stuart
2009-01-01
Histone acetylation plays an important role in the regulation of gene expression. A DNA aptamer generated by in vitro selection to be highly specific for histone H4 protein acetylated at lysine 16 was used as a recognition element for atomic force microscopy-based recognition imaging of synthetic nucleosomal arrays with precisely controlled acetylation. The aptamer proved to be reasonably specific at recognizing acetylated histones, with recognition efficiencies of 60% on-target and 12% off-target. Though this selectivity is much poorer than the >2000:1 equilibrium specificity of the aptamer, it is a large improvement on the performance of a ChIP-quality antibody, which is not selective at all in this application, and it should permit high-fidelity recognition with repeated imaging. The ability to image the precise location of posttranslational modifications may permit nanometer-scale investigation of their effect on chromatin structure. PMID:19751687
Langston, Lance D; Symington, Lorraine S
2005-06-15
Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.
Nguyen, Thi Quynh Ngoc; Lim, Kah Wai; Phan, Anh Tuân
2017-09-20
Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands.
Engineering a Cell-surface Aptamer Circuit for Targeted and Amplified Photodynamic Cancer Therapy
Han, Da; Zhu, Guizhi; Wu, Cuichen; Zhu, Zhi; Chen, Tao; Zhang, Xiaobing
2013-01-01
Photodynamic therapy (PDT) is one of the most promising and noninvasive methods for clinical treatment of different malignant diseases. Here, we present a novel strategy of designing an aptamer-based DNA nanocircuit capable of the selective recognition of cancer cells, controllable activation of photosensitizer and amplification of photodynamic therapeutic effect. The aptamers can selectively recognize target cancer cells and bind to the specific proteins on cell membranes. Then the overhanging catalyst sequence on aptamer can trigger a toehold-mediated catalytic strand displacement to activate photosensitizer and achieve amplified therapeutic effect. The specific binding-induced activation allows the DNA circuit to distinguish diseased cells from healthy cells, reducing damage to nearby healthy cells. Moreover, the catalytic amplification reaction will only take place close to the target cancer cells, resulting in a high local concentration of singlet oxygen to selectively kill the target cells. The principle employed in this study demonstrated the feasibility of assembling a DNA circuit on cell membranes and could further broaden the utility of DNA circuits for applications in biology, biotechnology, and biomedicine. PMID:23397942
Li, Hao; Ponder, Elizabeth L.; Verdoes, Martijn; Asbjornsdottir, Kristijana H.; Deu, Edgar; Edgington, Laura E.; Lee, Jeong Tae; Kirk, Christopher J.; Demo, Susan D.; Williamson, Kim C.; Bogyo, Matthew
2012-01-01
Summary The Plasmodium proteasome has been suggested to be a potential anti-malarial drug target, however toxicity of inhibitors has prevented validation of this enzyme in vivo. We report here a screen of a library of 670 analogs of the recently FDA approved inhibitor, carfilzomib, to identify compounds that selectively kill parasites. We identified one compound, PR3, that has significant parasite killing activity in vitro but dramatically reduced toxicity in host cells. We found that this parasite-specific toxicity is not due to selective targeting of the Plasmodium proteasome over the host proteasome, but instead is due to a lack of activity against one of the human proteasome subunits. Subsequently, we used PR3 to significantly reduce parasite load in P. berghei infected mice without host toxicity, thus validating the proteasome as a viable anti-malarial drug target. PMID:23142757
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases.
Citorik, Robert J; Mimee, Mark; Lu, Timothy K
2014-11-01
Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.
Design of the hairpin ribozyme for targeting specific RNA sequences.
Hampel, A; DeYoung, M B; Galasinski, S; Siwkowski, A
1997-01-01
The following steps should be taken when designing the hairpin ribozyme to cleave a specific target sequence: 1. Select a target sequence containing BN*GUC where B is C, G, or U. 2. Select the target sequence in areas least likely to have extensive interfering structure. 3. Design the conventional hairpin ribozyme as shown in Fig. 1, such that it can form a 4 bp helix 2 and helix 1 lengths up to 10 bp. 4. Synthesize this ribozyme from single-stranded DNA templates with a double-stranded T7 promoter. 5. Prepare a series of short substrates capable of forming a range of helix 1 lengths of 5-10 bp. 6. Identify these by direct RNA sequencing. 7. Assay the extent of cleavage of each substrate to identify the optimal length of helix 1. 8. Prepare the hairpin tetraloop ribozyme to determine if catalytic efficiency can be improved.
NASA Astrophysics Data System (ADS)
Talyzina, A. A.; Agapova, Yu. K.; Podshivalov, D. D.; Timofeev, V. I.; Sidorov-Biryukov, D. D.; Rakitina, T. V.
2017-11-01
DNA-Binding HU proteins are essential for the maintenance of genomic DNA supercoiling and compaction in prokaryotic cells and are promising pharmacological targets for the design of new antibacterial agents. The virtual screening for low-molecular-weight compounds capable of specifically interacting with the DNA-recognition loop of the HU protein from the mycoplasma Spiroplasma melliferum was performed. The ability of the initially selected ligands to form stable complexes with the protein target was assessed by molecular dynamics simulation. One compound, which forms an unstable complex, was eliminated by means of a combination of computational methods, resulting in a decrease in the number of compounds that will pass to the experimental test phase. This approach can be used to solve a wide range of problems related to the search for and validation of low-molecular-weight inhibitors specific for a particular protein target.
Kay, Chris; Collins, Jennifer A; Skotte, Niels H; Southwell, Amber L; Warby, Simon C; Caron, Nicholas S; Doty, Crystal N; Nguyen, Betty; Griguoli, Annamaria; Ross, Colin J; Squitieri, Ferdinando; Hayden, Michael R
2015-01-01
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder. PMID:26201449
MultiMiTar: a novel multi objective optimization based miRNA-target prediction method.
Mitra, Ramkrishna; Bandyopadhyay, Sanghamitra
2011-01-01
Machine learning based miRNA-target prediction algorithms often fail to obtain a balanced prediction accuracy in terms of both sensitivity and specificity due to lack of the gold standard of negative examples, miRNA-targeting site context specific relevant features and efficient feature selection process. Moreover, all the sequence, structure and machine learning based algorithms are unable to distribute the true positive predictions preferentially at the top of the ranked list; hence the algorithms become unreliable to the biologists. In addition, these algorithms fail to obtain considerable combination of precision and recall for the target transcripts that are translationally repressed at protein level. In the proposed article, we introduce an efficient miRNA-target prediction system MultiMiTar, a Support Vector Machine (SVM) based classifier integrated with a multiobjective metaheuristic based feature selection technique. The robust performance of the proposed method is mainly the result of using high quality negative examples and selection of biologically relevant miRNA-targeting site context specific features. The features are selected by using a novel feature selection technique AMOSA-SVM, that integrates the multi objective optimization technique Archived Multi-Objective Simulated Annealing (AMOSA) and SVM. MultiMiTar is found to achieve much higher Matthew's correlation coefficient (MCC) of 0.583 and average class-wise accuracy (ACA) of 0.8 compared to the others target prediction methods for a completely independent test data set. The obtained MCC and ACA values of these algorithms range from -0.269 to 0.155 and 0.321 to 0.582, respectively. Moreover, it shows a more balanced result in terms of precision and sensitivity (recall) for the translationally repressed data set as compared to all the other existing methods. An important aspect is that the true positive predictions are distributed preferentially at the top of the ranked list that makes MultiMiTar reliable for the biologists. MultiMiTar is now available as an online tool at www.isical.ac.in/~bioinfo_miu/multimitar.htm. MultiMiTar software can be downloaded from www.isical.ac.in/~bioinfo_miu/multimitar-download.htm.
Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.
Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O
1994-09-01
Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed preliminary grouping of three new hyperthermophilic isolates. Together with other group-specific rRNA-targeted oligonucleotide probes, these probes will facilitate rapid in situ monitoring of the populations present in hydrothermal systems and support cultivation attempts.
Target selection biases from recent experience transfer across effectors.
Moher, Jeff; Song, Joo-Hyun
2016-02-01
Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.
Identification of chondrocyte-binding peptides by phage display.
Cheung, Crystal S F; Lui, Julian C; Baron, Jeffrey
2013-07-01
As an initial step toward targeting cartilage tissue for potential therapeutic applications, we sought cartilage-binding peptides using phage display, a powerful technology for selection of peptides that bind to molecules of interest. A library of phage displaying random 12-amino acid peptides was iteratively incubated with cultured chondrocytes to select phage that bind cartilage. The resulting phage clones demonstrated increased affinity to chondrocytes by ELISA, when compared to a wild-type, insertless phage. Furthermore, the selected phage showed little preferential binding to other cell types, including primary skin fibroblast, myocyte and hepatocyte cultures, suggesting a tissue-specific interaction. Immunohistochemical staining revealed that the selected phage bound chondrocytes themselves and the surrounding extracellular matrix. FITC-tagged peptides were synthesized based on the sequence of cartilage-binding phage clones. These peptides, but not a random peptide, bound cultured chondrocytes, and extracelluar matrix. In conclusion, using phage display, we identified peptide sequences that specifically target chondrocytes. We anticipate that such peptides may be coupled to therapeutic molecules to provide targeted treatment for cartilage disorders. Copyright © 2013 Orthopaedic Research Society.
Targeted delivery of siRNA into breast cancer cells via phage fusion proteins.
Bedi, Deepa; Gillespie, James W; Petrenko, Vasily A; Ebner, Andreas; Leitner, Michael; Hinterdorfer, Peter; Petrenko, Valery A
2013-02-04
Nucleic acids, including antisense oligonucleotides, small interfering RNA (siRNA), aptamers, and rybozymes, emerged as versatile therapeutics due to their ability to interfere in a well-planned manner with the flow of genetic information from DNA to protein. However, a systemic use of NAs is hindered by their instability in physiological liquids and inability of intracellular accumulation in the site of action. We first evaluated the potential of cancer specific phage fusion proteins as targeting ligands that provide encapsulation, protection, and navigation of siRNA to the target cell. The tumor-specific proteins were isolated from phages that were affinity selected from a landscape phage library against target breast cancer cells. It was found that fusion phage coat protein fpVIII displaying cancer-targeting peptides can effectively encapsulate siRNAs and deliver them into the cells leading to specific silencing of the model gene GAPDH. Complexes of siRNA and phage protein form nanoparticles (nanophages), which were characterized by atomic force microscopy and ELISA, and their stability was demonstrated by resistance of encapsulated siRNA to degradation by serum nucleases. The phage protein/siRNA complexes can make a new type of highly selective, stable, active, and physiologically acceptable cancer nanomedicine.
Guellouz, Asma; Valerio-Lepiniec, Marie; Urvoas, Agathe; Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe
2013-01-01
We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a "filtration" procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×10(9) independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties.
Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe
2013-01-01
We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a “filtration” procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×109 independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties. PMID:24014183
NASA Astrophysics Data System (ADS)
Tsao, Shih-Ming; Lai, Ji-Ching; Horng, Horng-Er; Liu, Tu-Chen; Hong, Chin-Yih
2017-04-01
Aptamers are oligonucleotides that can bind to specific target molecules. Most aptamers are generated using random libraries in the standard systematic evolution of ligands by exponential enrichment (SELEX). Each random library contains oligonucleotides with a randomized central region and two fixed primer regions at both ends. The fixed primer regions are necessary for amplifying target-bound sequences by PCR. However, these extra-sequences may cause non-specific bindings, which potentially interfere with good binding for random sequences. The Magnetic-Assisted Rapid Aptamer Selection (MARAS) is a newly developed protocol for generating single-strand DNA aptamers. No repeat selection cycle is required in the protocol. This study proposes and demonstrates a method to isolate aptamers for C-reactive proteins (CRP) from a randomized ssDNA library containing no fixed sequences at 5‧ and 3‧ termini using the MARAS platform. Furthermore, the isolated primer-free aptamer was sequenced and binding affinity for CRP was analyzed. The specificity of the obtained aptamer was validated using blind serum samples. The result was consistent with monoclonal antibody-based nephelometry analysis, which indicated that a primer-free aptamer has high specificity toward targets. MARAS is a feasible platform for efficiently generating primer-free aptamers for clinical diagnoses.
Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.
2014-01-01
Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364
NASA Astrophysics Data System (ADS)
Terazono, Hideyuki; Kim, Hyonchol; Nomura, Fumimasa; Yasuda, Kenji
2016-06-01
We developed a microprocessing-assisted technique to select single-strand DNA aptamers that bind to unknown targets on the cell surface by modifying the conventional systematic evolution of ligands by exponential enrichment (cell-SELEX). Our technique involves 1) the specific selection of target-cell-surface-bound aptamers without leakage of intracellular components by trypsinization and 2) cloning of aptamers by microprocessing-assisted picking of single cells using magnetic beads. After cell-SELEX, the enriched aptamers were conjugated with magnetic beads. The aptamer-magnetic beads conjugates attached to target cells were collected individually by microassisted procedures using microneedles under a microscope. After that, the sequences of the collected magnetic-bead-bound aptamers were identified. As a result, a specific aptamer for the surface of target cells, e.g., human umbilical vein endothelial cells (HUVECs), was chosen and its specificity was examined using other cell types, e.g., HeLa cells. The results indicate that this microprocessing-assisted cell-SELEX method for identifying aptamers is applicable in biological research and clinical diagnostics.
Ji, Yuhang; Zhang, Lei; Zhu, Longyi; Lei, Jianping; Wu, Jie; Ju, Huangxian
2017-10-15
A binding-induced DNA walker-assisted signal amplification was developed for highly selective electrochemical detection of protein. Firstly, the track of DNA walker was constructed by self-assembly of the high density ferrocene (Fc)-labeled anchor DNA and aptamer 1 on the gold electrode surface. Sequentially, a long swing-arm chain containing aptamer 2 and walking strand DNA was introduced onto gold electrode through aptamers-target specific recognition, and thus initiated walker strand sequences to hybridize with anchor DNA. Then, the DNA walker was activated by the stepwise cleavage of the hybridized anchor DNA by nicking endonuclease to release multiple Fc molecules for signal amplification. Taking thrombin as the model target, the Fc-generated electrochemical signal decreased linearly with logarithm value of thrombin concentration ranging from 10pM to 100nM with a detection limit of 2.5pM under the optimal conditions. By integrating the specific recognition of aptamers to target with the enzymatic cleavage of nicking endonuclease, the aptasensor showed the high selectivity. The binding-induced DNA walker provides a promising strategy for signal amplification in electrochemical biosensor, and has the extensive applications in sensitive and selective detection of the various targets. Copyright © 2017 Elsevier B.V. All rights reserved.
Traditionally, gas chromatography – mass spectrometry (GC-MS) analysis has used a targeted approach called selected ion monitoring (SIM) to quantify specific compounds that may have adverse health effects. Due to method limitations and the constraints of preparing duplicat...
Li, Lixin; Piatek, Marek J; Atef, Ahmed; Piatek, Agnieszka; Wibowo, Anjar; Fang, Xiaoyun; Sabir, J S M; Zhu, Jian-Kang; Mahfouz, Magdy M
2012-03-01
Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.
Zharov, Vladimir P.; Mercer, Kelly E.; Galitovskaya, Elena N.; Smeltzer, Mark S.
2006-01-01
We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570 nm, 12 ns, 0.1–5 J/cm2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing. PMID:16239330
Effects of feature-selective and spatial attention at different stages of visual processing.
Andersen, Søren K; Fuchs, Sandra; Müller, Matthias M
2011-01-01
We investigated mechanisms of concurrent attentional selection of location and color using electrophysiological measures in human subjects. Two completely overlapping random dot kinematograms (RDKs) of two different colors were presented on either side of a central fixation cross. On each trial, participants attended one of these four RDKs, defined by its specific combination of color and location, in order to detect coherent motion targets. Sustained attentional selection while monitoring for targets was measured by means of steady-state visual evoked potentials (SSVEPs) elicited by the frequency-tagged RDKs. Attentional selection of transient targets and distractors was assessed by behavioral responses and by recording event-related potentials to these stimuli. Spatial attention and attention to color had independent and largely additive effects on the amplitudes of SSVEPs elicited in early visual areas. In contrast, behavioral false alarms and feature-selective modulation of P3 amplitudes to targets and distractors were limited to the attended location. These results suggest that feature-selective attention produces an early, global facilitation of stimuli having the attended feature throughout the visual field, whereas the discrimination of target events takes place at a later stage of processing that is only applied to stimuli at the attended position.
Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N
2016-12-01
Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.
Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N.
2016-01-01
ABSTRACT Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries. PMID:27715478
Uematsu, Shuta; Tabuchi, Yudai; Ito, Yuji; Taki, Masumi
2018-06-01
A peptide-type covalent binder for a target protein was obtained by combinatorial screening of fluoroprobe-conjugated peptide libraries on bacteriophage T7. The solvatochromic fluoroprobe works as a bait during the affinity selection process of phage display. To obtain the targeted covalent binder, the bait in the selected consensus peptide was altered into a reactive warhead possessing a sulfonyl fluoride. The reaction efficiency and site/position specificity of the covalent conjugation between the binder and the target protein were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and rationalized by a protein-ligand docking simulation.
Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems
Gomaa, Ahmed A.; Klumpe, Heidi E.; Luo, Michelle L.; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L.
2014-01-01
ABSTRACT CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of “smart” antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. PMID:24473129
Aptamers and methods for their in vitro selection and uses thereof
Doyle, Sharon A [Walnut Creek, CA; Murphy, Michael B [Severna Park, MD
2008-02-12
The present method is an improved in vitro selection protocol that relies on magnetic separations for DNA aptamer production that is relatively easy and scalable without the need for expensive robotics. The ability of aptamers selected by this method to recognize and bind their target protein with high affinity and specificity, and detail their uses in a number of assays is also described. Specific TTF1 and His6 aptamers were selected using the method described, and shown to be useful for enzyme-linked assays, Western blots, and affinity purification.
Aptamers and methods for their in vitro selection and uses thereof
Doyle, Sharon A [Walnut Creek, CA; Murphy, Michael B [Severna Park, MD
2012-01-31
The present method is an improved in vitro selection protocol that relies on magnetic separations for DNA aptamer production that is relatively easy and scalable without the need for expensive robotics. The ability of aptamers selected by this method to recognize and bind their target protein with high affinity and specificity, and detail their uses in a number of assays is also described. Specific TTF1 and His6 aptamers were selected using the method described, and shown to be useful for enzyme-linked assays, Western blots, and affinity purification.
Velásquez, André C.; Nomura, Kinya; Cooper, Max D.; ...
2017-04-19
The ability to target and manipulate protein-based cellular processes would accelerate plant research; yet, the technology to specifically and selectively target plant-expressed proteins is still in its infancy. Leucine-rich repeats (LRRs) are ubiquitously present protein domains involved in mediating protein–protein interactions. LRRs confer the binding specificity to the highly diverse variable lymphocyte receptor (VLR) antibodies (including VLRA, VLRB and VLRC types) that jawless vertebrates make as the functional equivalents of jawed vertebrate immunoglobulin-based antibodies. Here, VLRBs targeting an effector protein from a plant pathogen, HopM1, were developed by immunizing lampreys and using yeast surface display to select for high-affinity VLRBs.more » HopM1-specific VLRBs (VLRM1) were expressed in planta in the cytosol, the trans-Golgi network, and the apoplast. Expression of VLRM1 was higher when the protein localized to an oxidizing environment that would favor disulfide bridge formation (when VLRM1 was not localized to the cytoplasm), as disulfide bonds are necessary for proper VLR folding. VLRM1 specifically interacted in planta with HopM1 but not with an unrelated bacterial effector protein while HopM1 failed to interact with a non-specific VLRB. Later, VLRs may be used as flexible modules to bind proteins or carbohydrates of interest in planta, with broad possibilities for their use by binding directly to their targets and inhibiting their action, or by creating chimeric proteins with new specificities in which endogenous LRR domains are replaced by those present in VLRs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velásquez, André C.; Nomura, Kinya; Cooper, Max D.
The ability to target and manipulate protein-based cellular processes would accelerate plant research; yet, the technology to specifically and selectively target plant-expressed proteins is still in its infancy. Leucine-rich repeats (LRRs) are ubiquitously present protein domains involved in mediating protein–protein interactions. LRRs confer the binding specificity to the highly diverse variable lymphocyte receptor (VLR) antibodies (including VLRA, VLRB and VLRC types) that jawless vertebrates make as the functional equivalents of jawed vertebrate immunoglobulin-based antibodies. Here, VLRBs targeting an effector protein from a plant pathogen, HopM1, were developed by immunizing lampreys and using yeast surface display to select for high-affinity VLRBs.more » HopM1-specific VLRBs (VLRM1) were expressed in planta in the cytosol, the trans-Golgi network, and the apoplast. Expression of VLRM1 was higher when the protein localized to an oxidizing environment that would favor disulfide bridge formation (when VLRM1 was not localized to the cytoplasm), as disulfide bonds are necessary for proper VLR folding. VLRM1 specifically interacted in planta with HopM1 but not with an unrelated bacterial effector protein while HopM1 failed to interact with a non-specific VLRB. Later, VLRs may be used as flexible modules to bind proteins or carbohydrates of interest in planta, with broad possibilities for their use by binding directly to their targets and inhibiting their action, or by creating chimeric proteins with new specificities in which endogenous LRR domains are replaced by those present in VLRs.« less
Bhattacherjee, Abhishek; Dhara, Kaliprasanna; Chakraborti, Abhay Sankar
2016-07-25
Diabetes mellitus represents a major metabolic disorder affecting millions of people all over the world. Currently available therapeutic treatments are not good enough to control the long-term complications of diabetes. Active targeting via inclusion of a specific ligand on the nanoparticles provides effective therapeutic approach in different diseases. However, such specific drug delivery systems have not been explored much in diabetes due to lack of suitable biological targets in this disorder. Our objective is to synthesize a ligand-tagged drug-loaded nanoparticle for delivery of the drug at specific sites to enhance its therapeutic efficiency in diabetic condition. The nanoparticles have been prepared by using biocompatible ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester) dimers. Although advanced glycation end products (AGEs) are the root causes of diabetic complications, argpyrimidine, an AGE, possesses antioxidant and reducing activities. AGE interacts selectively with its cell surface receptors (RAGE), which are significantly increased in diabetic condition. We have selected RAGE as the target of argpyrimidine, which is tagged on the nanoparticles as a ligand. Rutin, having anti-hyperglycemic and anti-glycating activities, has been used for nanoencapsulation. Rutin-loaded argpyrimidine-tagged nanoparticles have been synthesized and characterized. We have demonstrated the drug releasing capacity and target specificity of the synthesised drug delivery system under ex vivo and in vivo conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs.
Ryan, Daniel E; Taussig, David; Steinfeld, Israel; Phadnis, Smruti M; Lunstad, Benjamin D; Singh, Madhurima; Vuong, Xuan; Okochi, Kenji D; McCaffrey, Ryan; Olesiak, Magdalena; Roy, Subhadeep; Yung, Chong Wing; Curry, Bo; Sampson, Jeffrey R; Bruhn, Laurakay; Dellinger, Douglas J
2018-01-25
CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence ('guide sequence') and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2'-O-methyl-3'-phosphonoacetate, or 'MP') incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs
Ryan, Daniel E; Taussig, David; Steinfeld, Israel; Phadnis, Smruti M; Lunstad, Benjamin D; Singh, Madhurima; Vuong, Xuan; Okochi, Kenji D; McCaffrey, Ryan; Olesiak, Magdalena; Roy, Subhadeep; Yung, Chong Wing; Curry, Bo; Sampson, Jeffrey R; Dellinger, Douglas J
2018-01-01
Abstract CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence (‘guide sequence’) and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2′-O-methyl-3′-phosphonoacetate, or ‘MP’) incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications. PMID:29216382
Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung
2017-11-17
With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.
Selective DNA demethylation by fusion of TDG with a sequence-specific DNA-binding domain
Gregory, David J.; Mikhaylova, Lyudmila; Fedulov, Alexey V.
2012-01-01
Our ability to selectively manipulate gene expression by epigenetic means is limited, as there is no approach for targeted reactivation of epigenetically silenced genes, in contrast to what is available for selective gene silencing. We aimed to develop a tool for selective transcriptional activation by DNA demethylation. Here we present evidence that direct targeting of thymine-DNA-glycosylase (TDG) to specific sequences in the DNA can result in local DNA demethylation at potential regulatory sequences and lead to enhanced gene induction. When TDG was fused to a well-characterized DNA-binding domain [the Rel-homology domain (RHD) of NFκB], we observed decreased DNA methylation and increased transcriptional response to unrelated stimulus of inducible nitric oxide synthase (NOS2). The effect was not seen for control genes lacking either RHD-binding sites or high levels of methylation, nor in control mock-transduced cells. Specific reactivation of epigenetically silenced genes may thus be achievable by this approach, which provides a broadly useful strategy to further our exploration of biological mechanisms and to improve control over the epigenome. PMID:22419066
Domain-Specific Control of Selective Attention
Lin, Szu-Hung; Yeh, Yei-Yu
2014-01-01
Previous research has shown that loading information on working memory affects selective attention. However, whether the load effect on selective attention is domain-general or domain-specific remains unresolved. The domain-general effect refers to the findings that load in one content (e.g. phonological) domain in working memory influences processing in another content (e.g., visuospatial) domain. Attentional control supervises selection regardless of information domain. The domain-specific effect refers to the constraint of influence only when maintenance and processing operate in the same domain. Selective attention operates in a specific content domain. This study is designed to resolve this controversy. Across three experiments, we manipulated the type of representation maintained in working memory and the type of representation upon which the participants must exert control to resolve conflict and select a target into the focus of attention. In Experiments 1a and 1b, participants maintained digits and nonverbalized objects, respectively, in working memory while selecting a target in a letter array. In Experiment 2, we presented auditory digits with a letter flanker task to exclude the involvement of resource competition within the same input modality. In Experiments 3a and 3b, we replaced the letter flanker task with an object flanker task while manipulating the memory load on object and digit representation, respectively. The results consistently showed that memory load modulated distractibility only when the stimuli of the two tasks were represented in the same domain. The magnitude of distractor interference was larger under high load than under low load, reflecting a lower efficacy of information prioritization. When the stimuli of the two tasks were represented in different domains, memory load did not modulate distractibility. Control of processing priority in selective attention demands domain-specific resources. PMID:24866977
Master, Adam; Wójcicka, Anna; Giżewska, Kamilla; Popławski, Piotr; Williams, Graham R.; Nauman, Alicja
2016-01-01
Background Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. Findings We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5’-untranslated region (5’UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5’UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5’UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5’UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5’UTRs of complex structure. Significance This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5’UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene and may have future application in gene therapy strategies to enhance expression of proteins including tumor suppressors. PMID:27171412
Grubert, Anna; Eimer, Martin
2013-10-01
To find out whether attentional target selection can be effectively guided by top-down task sets for multiple colors, we measured behavioral and ERP markers of attentional target selection in an experiment where participants had to identify color-defined target digits that were accompanied by a single gray distractor object in the opposite visual field. In the One Color task, target color was constant. In the Two Color task, targets could have one of two equally likely colors. Color-guided target selection was less efficient during multiple-color relative to single-color search, and this was reflected by slower response times and delayed N2pc components. Nontarget-color items that were presented in half of all trials captured attention and gained access to working memory when participants searched for two colors, but were excluded from attentional processing in the One Color task. Results demonstrate qualitative differences in the guidance of attentional target selection between single-color and multiple-color visual search. They suggest that top-down attentional control can be applied much more effectively when it is based on a single feature-specific attentional template. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Cancer Stratification by Molecular Imaging
Weber, Justus; Haberkorn, Uwe; Mier, Walter
2015-01-01
The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2). Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter), as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers. PMID:25749472
Nozari, Nazbanou; Hepner, Christopher R
2018-06-05
Competitive accounts of lexical selection propose that the activation of competitors slows down the selection of the target. Non-competitive accounts, on the other hand, posit that target response latencies are independent of the activation of competing items. In this paper, we propose a signal detection framework for lexical selection and show how a flexible selection criterion affects claims of competitive selection. Specifically, we review evidence from neurotypical and brain-damaged speakers and demonstrate that task goals and the state of the production system determine whether a competitive or a non-competitive selection profile arises. We end by arguing that there is conclusive evidence for a flexible criterion in lexical selection, and that integrating criterion shifts into models of language production is critical for evaluating theoretical claims regarding (non-)competitive selection.
2014-10-01
AD_________________ Award Number: W81XWH-12-1-0554 TITLE: Riboswitch-Mediated Aptamer Binding for...TITLE AND SUBTITLE Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively Target an Intracellular...for imaging and low toxicity for therapy. We will make a riboswitch consisting of two aptamers and a sensor region that can hybridize with the
Retroviral integration: Site matters
Demeulemeester, Jonas; De Rijck, Jan
2015-01-01
Here, we review genomic target site selection during retroviral integration as a multistep process in which specific biases are introduced at each level. The first asymmetries are introduced when the virus takes a specific route into the nucleus. Next, by co‐opting distinct host cofactors, the integration machinery is guided to particular chromatin contexts. As the viral integrase captures a local target nucleosome, specific contacts introduce fine‐grained biases in the integration site distribution. In vivo, the established population of proviruses is subject to both positive and negative selection, thereby continuously reshaping the integration site distribution. By affecting stochastic proviral expression as well as the mutagenic potential of the virus, integration site choice may be an inherent part of the evolutionary strategies used by different retroviruses to maximise reproductive success. PMID:26293289
A bend, flip and trap mechanism for transposon integration
Morris, Elizabeth R; Grey, Heather; McKenzie, Grant; Jones, Anita C; Richardson, Julia M
2016-01-01
Cut-and-paste DNA transposons of the mariner/Tc1 family are useful tools for genome engineering and are inserted specifically at TA target sites. A crystal structure of the mariner transposase Mos1 (derived from Drosophila mauritiana), in complex with transposon ends covalently joined to target DNA, portrays the transposition machinery after DNA integration. It reveals severe distortion of target DNA and flipping of the target adenines into extra-helical positions. Fluorescence experiments confirm dynamic base flipping in solution. Transposase residues W159, R186, F187 and K190 stabilise the target DNA distortions and are required for efficient transposon integration and transposition in vitro. Transposase recognises the flipped target adenines via base-specific interactions with backbone atoms, offering a molecular basis for TA target sequence selection. Our results will provide a template for re-designing mariner/Tc1 transposases with modified target specificities. DOI: http://dx.doi.org/10.7554/eLife.15537.001 PMID:27223327
Personalized gene silencing therapeutics for Huntington disease.
Kay, C; Skotte, N H; Southwell, A L; Hayden, M R
2014-07-01
Gene silencing offers a novel therapeutic strategy for dominant genetic disorders. In specific diseases, selective silencing of only one copy of a gene may be advantageous over non-selective silencing of both copies. Huntington disease (HD) is an autosomal dominant disorder caused by an expanded CAG trinucleotide repeat in the Huntingtin gene (HTT). Silencing both expanded and normal copies of HTT may be therapeutically beneficial, but preservation of normal HTT expression is preferred. Allele-specific methods can selectively silence the mutant HTT transcript by targeting either the expanded CAG repeat or single nucleotide polymorphisms (SNPs) in linkage disequilibrium with the expansion. Both approaches require personalized treatment strategies based on patient genotypes. We compare the prospect of safe treatment of HD by CAG- and SNP-specific silencing approaches and review HD population genetics used to guide target identification in the patient population. Clinical implementation of allele-specific HTT silencing faces challenges common to personalized genetic medicine, requiring novel solutions from clinical scientists and regulatory authorities. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Phonation takes precedence over articulation in development as well as evolution of language.
Oller, D Kimbrough
2014-12-01
Early human vocal development is characterized first by emerging control of phonation and later by prosodic and supraglottal articulation. The target article has missed the opportunity to use these facts in the characterization of evolution in language-specific brain mechanisms. Phonation appears to be the initial human-specific brain change for language, and it was presumably a key target of selection in early hominin evolution.
Varela, Miguel A; Curtis, Helen J; Douglas, Andrew GL; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew JA
2016-01-01
Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets. PMID:25990798
Varela, Miguel A; Curtis, Helen J; Douglas, Andrew G L; Hammond, Suzan M; O'Loughlin, Aisling J; Sobrido, Maria J; Scholefield, Janine; Wood, Matthew J A
2016-02-01
Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.
Selective targeting of G-protein-coupled receptor subtypes with venom peptides.
Näreoja, K; Näsman, J
2012-02-01
The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
How to make selective enforcement work : lessons from completed evaluations.
DOT National Transportation Integrated Search
1986-01-01
Selective enforcement, the practice of targeting specific traffic offenses which figure prominently in the crash problems experienced by a community, is an integral part of practically every traffic safety program. The purpose of this report was to s...
Probing protein flexibility reveals a mechanism for selective promiscuity
Pabon, Nicolas A; Camacho, Carlos J
2017-01-01
Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789
Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen
2017-01-01
Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs. PMID:28251165
Spiess, Katja; Jeppesen, Mads G; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen; Kledal, Thomas N; Rosenkilde, Mette M
2017-01-01
Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX 3 CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX 3 CR1, the endogenous receptor for CX 3 CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs.
Fisher, Lawrence; Tang, Tricia; Polonsky, William
2017-04-01
The rapid development of new medications and devices in diabetes research and clinical care has led to an increased need to assess their impact on health-related quality of life (HRQOL). Unfortunately, the lack of consensus definitions and guidelines has led to the use of HRQOL measures that are often imprecise and inappropriate. The goal of this report is to provide a practical structure to the definition and measurement of HRQOL in diabetes research and clinical care. Following a brief historical background to provide context, we define HRQOL and provide a three-step framework for scale selection: identify the specific, proximal intervention targets; decide how reaching these targets will affect HRQOL; and select appropriate measures based on sample diversity, the intervention and the targets using a 2×2 grid (generic vs. diabetes specific measures; global vs. component measures). Practical tips for scale selection include: gaining patient input to document important potential HRQOL effects, varying scale selection by patient characteristics, considering common HRQOL measurement problems, and considering the timing of HRQOL assessment. We emphasize the importance of a careful, planned evaluation of HRQOL in diabetes, rather than an "off the shelf" approach. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.
Bikard, David; Euler, Chad W; Jiang, Wenyan; Nussenzweig, Philip M; Goldberg, Gregory W; Duportet, Xavier; Fischetti, Vincent A; Marraffini, Luciano A
2014-11-01
Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas9 (refs.1,2) delivered by a bacteriophage. We show that Cas9, reprogrammed to target virulence genes, kills virulent, but not avirulent, Staphylococcus aureus. Reprogramming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also show that CRISPR-Cas9 antimicrobials function in vivo to kill S. aureus in a mouse skin colonization model. This technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner.
Toporkiewicz, Monika; Meissner, Justyna; Matusewicz, Lucyna; Czogalla, Aleksander; Sikorski, Aleksander F
2015-01-01
There are many problems directly correlated with the systemic administration of drugs and how they reach their target site. Targeting promises to be a hopeful strategy as an improved means of drug delivery, with reduced toxicity and minimal adverse side effects. Targeting exploits the high affinity of cell-surface-targeted ligands, either directly or as carriers for a drug, for specific retention and uptake by the targeted diseased cells. One of the most important parameters which should be taken into consideration in the selection of an appropriate ligand for targeting is the binding affinity (KD). In this review we focus on the importance of binding affinities of monoclonal antibodies, antibody derivatives, peptides, aptamers, DARPins, and small targeting molecules in the process of selection of the most suitable ligand for targeting of nanoparticles. In order to provide a critical comparison between these various options, we have also assessed each technology format across a range of parameters such as molecular size, immunogenicity, costs of production, clinical profiles, and examples of the level of selectivity and toxicity of each. Wherever possible, we have also assessed how incorporating such a targeted approach compares with, or is superior to, original treatments. PMID:25733832
Manczyk, Noah; Yates, Bradley P; Veggiani, Gianluca; Ernst, Andreas; Sicheri, Frank; Sidhu, Sachdev S
2017-05-01
Ubiquitin interacting motifs (UIMs) are short α-helices found in a number of eukaryotic proteins. UIMs interact weakly but specifically with ubiquitin conjugated to other proteins, and in so doing, mediate specific cellular signals. Here we used phage display to generate ubiquitin variants (UbVs) targeting the N-terminal UIM of the yeast Vps27 protein. Selections yielded UbV.v27.1, which recognized the cognate UIM with high specificity relative to other yeast UIMs and bound with an affinity more than two orders of magnitude higher than that of ubiquitin. Structural and mutational studies of the UbV.v27.1-UIM complex revealed the molecular details for the enhanced affinity and specificity of UbV.v27.1, and underscored the importance of changes at the binding interface as well as at positions that do not contact the UIM. Our study highlights the power of the phage display approach for selecting UbVs with unprecedented affinity and high selectivity for particular α-helical UIM domains within proteomes, and it establishes a general approach for the development of inhibitors targeting interactions of this type. © 2017 The Protein Society.
Yang, Ming; Peng, Zhihui; Ning, Yi; Chen, Yongzhe; Zhou, Qin; Deng, Le
2013-05-22
In this paper, a panel of single-stranded DNA aptamers with high affinity and specificity against Salmonella Paratyphi A was selected from an enriched oligonucleotide pool by a whole-cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedure, during which four other Salmonella serovars were used as counter-selection targets. It was determined through a fluorescence assay that the selected aptamers had high binding ability and specificity to this pathogen. The dissociation constant of these aptamers were up to nanomolar range, and aptamer Apt22 with the lowest Kd (47 ± 3 nM) was used in cell imaging experiments. To detect this bacteria with high specificity and cost-efficiently, a novel useful detection method was also constructed based on the noncovalent self-assembly of single-walled carbon nanotubes (SWNTs) and DNAzyme-labeled aptamer detection probes. The amounts of target bacteria could be quantified by exploiting chemoluminescence intensity changes at 420 nm and the detection limit of the method was 103 cfu/mL. This study demonstrated the applicability of Salmonella specific aptamers and their potential for use in the detection of Salmonella in food, clinical and environmental samples.
Antidepressive effects of targeting ELK-1 signal transduction.
Apazoglou, Kallia; Farley, Séverine; Gorgievski, Victor; Belzeaux, Raoul; Lopez, Juan Pablo; Grenier, Julien; Ibrahim, El Chérif; El Khoury, Marie-Anne; Tse, Yiu C; Mongredien, Raphaele; Barbé, Alexandre; de Macedo, Carlos E A; Jaworski, Wojciech; Bochereau, Ariane; Orrico, Alejandro; Isingrini, Elsa; Guinaudie, Chloé; Mikasova, Lenka; Louis, Franck; Gautron, Sophie; Groc, Laurent; Massaad, Charbel; Yildirim, Ferah; Vialou, Vincent; Dumas, Sylvie; Marti, Fabio; Mechawar, Naguib; Morice, Elise; Wong, Tak P; Caboche, Jocelyne; Turecki, Gustavo; Giros, Bruno; Tzavara, Eleni T
2018-05-07
Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted 2-4 . The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation 5-7 , but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1.
Zhang, Bo; Zhang, Lin; Dai, Ruixue; Yu, Meiying; Zhao, Guoping; Ding, Xiaoming
2013-01-01
Streptomyces bacteria are known for producing important natural compounds by secondary metabolism, especially antibiotics with novel biological activities. Functional studies of antibiotic-biosynthesizing gene clusters are generally through homologous genomic recombination by gene-targeting vectors. Here, we present a rapid and efficient method for construction of gene-targeting vectors. This approach is based on Streptomyces phage φBT1 integrase-mediated multisite in vitro site-specific recombination. Four 'entry clones' were assembled into a circular plasmid to generate the destination gene-targeting vector by a one-step reaction. The four 'entry clones' contained two clones of the upstream and downstream flanks of the target gene, a selectable marker and an E. coli-Streptomyces shuttle vector. After targeted modification of the genome, the selectable markers were removed by φC31 integrase-mediated in vivo site-specific recombination between pre-placed attB and attP sites. Using this method, part of the calcium-dependent antibiotic (CDA) and actinorhodin (Act) biosynthetic gene clusters were deleted, and the rrdA encoding RrdA, a negative regulator of Red production, was also deleted. The final prodiginine production of the engineered strain was over five times that of the wild-type strain. This straightforward φBT1 and φC31 integrase-based strategy provides an alternative approach for rapid gene-targeting vector construction and marker removal in streptomycetes.
Repurposing the CRISPR-Cas9 system for targeted DNA methylation.
Vojta, Aleksandar; Dobrinić, Paula; Tadić, Vanja; Bočkor, Luka; Korać, Petra; Julg, Boris; Klasić, Marija; Zoldoš, Vlatka
2016-07-08
Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co-expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine
2013-01-01
We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032
Signatures of DNA target selectivity by ETS transcription factors
Kim, Hye Mi
2017-01-01
ABSTRACT The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation. PMID:28301293
Signatures of DNA target selectivity by ETS transcription factors.
Poon, Gregory M K; Kim, Hye Mi
2017-05-27
The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.
The offer of chemistry to targeted therapy in cancer.
Jemel, Ikram; Jellali, Karim; Elloumi, Jihene; Aifa, Sami
2011-12-01
Cancer therapy is facing the big challenge of destroying selectively tumour cells without harming the normal tissues. Chemotherapy was trying from the beginning to kill malignant cells because of their proliferative activity since normal cells are in general quiescent. Meanwhile side effects were produced due to the destruction of some normal cells that need regular proliferation. The discovery of biomarkers led to the identification of molecular targets within tumour cells in order to kill them selectively. Chemistry followed the progress of biomarkers biotechnology by the production of target specific antagonists which were the subject of many patents. Meanwhile novel problems of tumour resistance appeared and made the battle against cancer a non stop development of new strategies and new weapons. As a consequence, paralleled activities of patenting biomarkers and chemical antagonists are continuously generated. The offer of chemistry does not actually limit the efficiency of Targeted therapy but the identification of biomarkers is still missing the exclusive specificity to tumour cells.
Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.
Cui, Wei; Li, Junbai; Decher, Gero
2016-02-10
Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protein Knockdown Technology: Application of Ubiquitin Ligase to Cancer Therapy.
Ohoka, Nobumichi; Shibata, Norihito; Hattori, Takayuki; Naito, Mikihiko
2016-01-01
Selective degradation of pathogenic proteins by small molecules in cells is a novel approach for development of therapeutic agents against various diseases, including cancer. We and others have developed a protein knockdown technology with a series of hybrid small compounds, called SNIPERs (Specific and Nongenetic IAP-dependent Protein ERasers); and peptidic chimeric molecules, called PROTACs (proteolysis-targeting chimeric molecules), which induce selective degradation of target proteins via the ubiquitin-proteasome pathway. These compounds include two different ligands connected by a linker; one is a ligand for a ubiquitin ligase and the other is a ligand for the target protein, which are expected to crosslink these proteins in cells. Theoretically, any cytosolic protein can be targeted for degradation by this technology. To date, several SNIPERs and PROTACs against various oncogenic proteins have been developed, which specifically induce polyubiquitylation and proteasomal degradation of the oncogenic proteins, resulting in cell death, growth arrest, or impaired migration of cancer cells. Thus, this protein knockdown technology has a great potential for cancer therapy.
Adams, R A; Schachtrup, C; Davalos, D; Tsigelny, I; Akassoglou, K
2007-01-01
The blood protein fibrinogen as a ligand for integrin and non-integrin receptors functions as the molecular nexus of coagulation, inflammation and immunity. Studies in animal models and in human disease have demonstrated that extravascular fibrinogen that is deposited in tissues upon vascular rupture is not merely a marker, but a mediator of diseases with an inflammatory component, such as rheumatoid arthritis, multiple sclerosis, sepsis, myocardial infarction and bacterial infection. The present article focuses on the recent discoveries of specific cellular targets and receptors for fibrinogen within tissues that have extended the role of fibrinogen from a coagulation factor to a regulator of inflammation and immunity. Fibrinogen has the potential for selective drug targeting that would target its proinflammatory properties without affecting its beneficial effects in hemostasis, since it interacts with different receptors to mediate blood coagulation and inflammation. Strategies to target receptors for fibrinogen and fibrin within the tissue microenvironment could reveal selective and disease-specific agents for therapeutic intervention in a variety of human diseases associated with fibrin deposition.
Genome organization and characteristics of soybean microRNAs
2012-01-01
Background microRNAs (miRNAs) are key regulators of gene expression and play important roles in many aspects of plant biology. The role(s) of miRNAs in nitrogen-fixing root nodules of leguminous plants such as soybean is not well understood. We examined a library of small RNAs from Bradyrhizobium japonicum-inoculated soybean roots and identified novel miRNAs. In order to enhance our understanding of miRNA evolution, diversification and function, we classified all known soybean miRNAs based on their phylogenetic conservation (conserved, legume- and soybean-specific miRNAs) and examined their genome organization, family characteristics and target diversity. We predicted targets of these miRNAs and experimentally validated several of them. We also examined organ-specific expression of selected miRNAs and their targets. Results We identified 120 previously unknown miRNA genes from soybean including 5 novel miRNA families. In the soybean genome, genes encoding miRNAs are primarily intergenic and a small percentage were intragenic or less than 1000 bp from a protein-coding gene, suggesting potential co-regulation between the miRNA and its parent gene. Difference in number and orientation of tandemly duplicated miRNA genes between orthologous genomic loci indicated continuous evolution and diversification. Conserved miRNA families are often larger in size and produce less diverse mature miRNAs than legume- and soybean-specific families. In addition, the majority of conserved and legume-specific miRNA families produce 21 nt long mature miRNAs with distinct nucleotide distribution and regulate a more conserved set of target mRNAs compared to soybean-specific families. A set of nodule-specific target mRNAs and their cognate regulatory miRNAs had inverse expression between root and nodule tissues suggesting that spatial restriction of target gene transcripts by miRNAs might govern nodule-specific gene expression in soybean. Conclusions Genome organization of soybean miRNAs suggests that they are actively evolving. Distinct family characteristics of soybean miRNAs suggest continuous diversification of function. Inverse organ-specific expression between selected miRNAs and their targets in the roots and nodules, suggested a potential role for these miRNAs in regulating nodule development. PMID:22559273
Munke, Anna; Persson, Jonas; Weiffert, Tanja; De Genst, Erwin; Meisl, Georg; Arosio, Paolo; Carnerup, Anna; Dobson, Christopher M; Vendruscolo, Michele; Knowles, Tuomas P J; Linse, Sara
2017-06-20
The aggregation of the amyloid β peptide (Aβ) into amyloid fibrils is a defining characteristic of Alzheimer's disease. Because of the complexity of this aggregation process, effective therapeutic inhibitors will need to target the specific microscopic steps that lead to the production of neurotoxic species. We introduce a strategy for generating fibril-specific antibodies that selectively suppress fibril-dependent secondary nucleation of the 42-residue form of Aβ (Aβ42). We target this step because it has been shown to produce the majority of neurotoxic species during aggregation of Aβ42. Starting from large phage display libraries of single-chain antibody fragments (scFvs), the three-stage approach that we describe includes ( i ) selection of scFvs with high affinity for Aβ42 fibrils after removal of scFvs that bind Aβ42 in its monomeric form; ( ii ) ranking, by surface plasmon resonance affinity measurements, of the resulting candidate scFvs that bind to the Aβ42 fibrils; and ( iii ) kinetic screening and analysis to find the scFvs that inhibit selectively the fibril-catalyzed secondary nucleation process in Aβ42 aggregation. By applying this approach, we have identified four scFvs that inhibit specifically the fibril-dependent secondary nucleation process. Our method also makes it possible to discard antibodies that inhibit elongation, an important factor because the suppression of elongation does not target directly the production of toxic oligomers and may even lead to its increase. On the basis of our results, we suggest that the method described here could form the basis for rationally designed immunotherapy strategies to combat Alzheimer's and related neurodegenerative diseases.
Social exclusion impairs distractor suppression but not target enhancement in selective attention.
Xu, Mengsi; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yuan, Shuge; Yang, Dong
2017-11-01
Social exclusion has been thought to weaken one's ability to exert inhibitory control. Existing studies have primarily focused on the relationship between exclusion and behavioral inhibition, and have reported that exclusion impairs behavioral inhibition. However, whether exclusion also affects selective attention, another important aspect of inhibitory control, remains unknown. Therefore, the current study aimed to explore whether social exclusion impairs selective attention, and to specifically examine its effect on two hypothesized mechanisms of selective attention: target enhancement and distractor suppression. The Cyberball game was used to manipulate social exclusion. Participants then performed a visual search task while event-related potentials were recorded. In the visual search task, target and salient distractor were either both presented laterally or one was presented on the vertical midline and the other laterally. Results showed that social exclusion differentially affected target and distractor processing. While exclusion impaired distractor suppression, reflected as smaller distractor-positivity (Pd) amplitudes for the exclusion group compared to the inclusion group, it did not affect target enhancement, reflected as similar target-negativity (Nt) amplitudes for both the exclusion and inclusion groups. Together, these results extend our understanding of the relationship between exclusion and inhibitory control, and suggest that social exclusion affects selective attention in a more complex manner than previously thought. Copyright © 2017. Published by Elsevier B.V.
She, Ji; Wang, Fei; Zhou, Jianjiang
2016-01-01
Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance. PMID:28009819
Ultra-Low-Power MEMS Selective Gas Sensors
NASA Technical Reports Server (NTRS)
Stetter, Joseph
2012-01-01
This innovation is a system for gas sensing that includes an ultra-low-power MEMS (microelectromechanical system) gas sensor, combined with unique electronic circuitry and a proprietary algorithm for operating the sensor. The electronics were created from scratch, and represent a novel design capable of low-power operation of the proprietary MEMS gas sensor platform. The algorithm is used to identify a specific target gas in a gas mixture, making the sensor selective to that target gas.
Evolution of I-SceI Homing Endonucleases with Increased DNA Recognition Site Specificity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Rakesh; Ho, Kwok Ki; Tenney, Kristen
2013-09-18
Elucidating how homing endonucleases undergo changes in recognition site specificity will facilitate efforts to engineer proteins for gene therapy applications. I-SceI is a monomeric homing endonuclease that recognizes and cleaves within an 18-bp target. It tolerates limited degeneracy in its target sequence, including substitution of a C:G{sub +4} base pair for the wild-type A:T{sub +4} base pair. Libraries encoding randomized amino acids at I-SceI residue positions that contact or are proximal to A:T{sub +4} were used in conjunction with a bacterial one-hybrid system to select I-SceI derivatives that bind to recognition sites containing either the A:T{sub +4} or the C:G{submore » +4} base pairs. As expected, isolates encoding wild-type residues at the randomized positions were selected using either target sequence. All I-SceI proteins isolated using the C:G{sub +4} recognition site included small side-chain substitutions at G100 and either contained (K86R/G100T, K86R/G100S and K86R/G100C) or lacked (G100A, G100T) a K86R substitution. Interestingly, the binding affinities of the selected variants for the wild-type A:T{sub +4} target are 4- to 11-fold lower than that of wild-type I-SceI, whereas those for the C:G{sub +4} target are similar. The increased specificity of the mutant proteins is also evident in binding experiments in vivo. These differences in binding affinities account for the observed -36-fold difference in target preference between the K86R/G100T and wild-type proteins in DNA cleavage assays. An X-ray crystal structure of the K86R/G100T mutant protein bound to a DNA duplex containing the C:G{sub +4} substitution suggests how sequence specificity of a homing enzyme can increase. This biochemical and structural analysis defines one pathway by which site specificity is augmented for a homing endonuclease.« less
Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles
Vannucci, Luca; Falvo, Elisabetta; Fornara, Manuela; Di Micco, Patrizio; Benada, Oldrich; Krizan, Jiri; Svoboda, Jan; Hulikova-Capkova, Katarina; Morea, Veronica; Boffi, Alberto; Ceci, Pierpaolo
2012-01-01
Background Nanoparticle-based systems are promising for the development of imaging and therapeutic agents. The main advantage of nanoparticles over traditional systems lies in the possibility of loading multiple functionalities onto a single molecule, which are useful for therapeutic and/or diagnostic purposes. These functionalities include targeting moieties which are able to recognize receptors overexpressed by specific cells and tissues. However, targeted delivery of nanoparticles requires an accurate system design. We present here a rationally designed, genetically engineered, and chemically modified protein-based nanoplatform for cell/tissue-specific targeting. Methods Our nanoparticle constructs were based on the heavy chain of the human protein ferritin (HFt), a highly symmetrical assembly of 24 subunits enclosing a hollow cavity. HFt-based nanoparticles were produced using both genetic engineering and chemical functionalization methods to impart several functionalities, ie, the α-melanocyte-stimulating hormone peptide as a melanoma-targeting moiety, stabilizing and HFt-masking polyethylene glycol molecules, rhodamine fluorophores, and magnetic resonance imaging agents. The constructs produced were extensively characterized by a number of physicochemical techniques, and assayed for selective melanoma-targeting in vitro and in vivo. Results Our HFt-based nanoparticle constructs functionalized with the α-melanocyte-stimulating hormone peptide moiety and polyethylene glycol molecules were specifically taken up by melanoma cells but not by other cancer cell types in vitro. Moreover, experiments in melanoma-bearing mice indicate that these constructs have an excellent tumor-targeting profile and a long circulation time in vivo. Conclusion By masking human HFt with polyethylene glycol and targeting it with an α-melanocyte-stimulating hormone peptide, we developed an HFt-based melanoma-targeting nanoplatform for application in melanoma diagnosis and treatment. These results could be of general interest, because the same strategy can be exploited to develop ad hoc nanoplatforms for specific delivery towards any cell/tissue type for which a suitable targeting moiety is available. PMID:22619508
Wolf, Dennis; Anto-Michel, Nathaly; Blankenbach, Hermann; Wiedemann, Ansgar; Buscher, Konrad; Hohmann, Jan David; Lim, Bock; Bäuml, Marina; Marki, Alex; Mauler, Maximilian; Duerschmied, Daniel; Fan, Zhichao; Winkels, Holger; Sidler, Daniel; Diehl, Philipp; Zajonc, Dirk M; Hilgendorf, Ingo; Stachon, Peter; Marchini, Timoteo; Willecke, Florian; Schell, Maximilian; Sommer, Björn; von Zur Muhlen, Constantin; Reinöhl, Jochen; Gerhardt, Teresa; Plow, Edward F; Yakubenko, Valentin; Libby, Peter; Bode, Christoph; Ley, Klaus; Peter, Karlheinz; Zirlik, Andreas
2018-02-06
Integrin-based therapeutics have garnered considerable interest in the medical treatment of inflammation. Integrins mediate the fast recruitment of monocytes and neutrophils to the site of inflammation, but are also required for host defense, limiting their therapeutic use. Here, we report a novel monoclonal antibody, anti-M7, that specifically blocks the interaction of the integrin Mac-1 with its pro-inflammatory ligand CD40L, while not interfering with alternative ligands. Anti-M7 selectively reduces leukocyte recruitment in vitro and in vivo. In contrast, conventional anti-Mac-1 therapy is not specific and blocks a broad repertoire of integrin functionality, inhibits phagocytosis, promotes apoptosis, and fuels a cytokine storm in vivo. Whereas conventional anti-integrin therapy potentiates bacterial sepsis, bacteremia, and mortality, a ligand-specific intervention with anti-M7 is protective. These findings deepen our understanding of ligand-specific integrin functions and open a path for a new field of ligand-targeted anti-integrin therapy to prevent inflammatory conditions.
Zhang, Lu; Xu, Jinhao; Ma, Jinbiao
2016-07-25
RNA-binding protein exerts important biological function by specifically recognizing RNA motif. SELEX (Systematic evolution of ligands by exponential enrichment), an in vitro selection method, can obtain consensus motif with high-affinity and specificity for many target molecules from DNA or RNA libraries. Here, we combined SELEX with next-generation sequencing to study the protein-RNA interaction in vitro. A pool of RNAs with 20 bp random sequences were transcribed by T7 promoter, and target protein was inserted into plasmid containing SBP-tag, which can be captured by streptavidin beads. Through only one cycle, the specific RNA motif can be obtained, which dramatically improved the selection efficiency. Using this method, we found that human hnRNP A1 RRMs domain (UP1 domain) bound RNA motifs containing AGG and AG sequences. The EMSA experiment indicated that hnRNP A1 RRMs could bind the obtained RNA motif. Taken together, this method provides a rapid and effective method to study the RNA binding specificity of proteins.
Lee, Joong-Jae; Kang, Jung Ae; Ryu, Yiseul; Han, Sang-Soo; Nam, You Ree; Rho, Jong Kook; Choi, Dae Seong; Kang, Sun-Woong; Lee, Dong-Eun; Kim, Hak-Sung
2017-03-01
The integration of a targeted delivery with a tumour-selective agent has been considered an ideal platform for achieving high therapeutic efficacy and negligible side effects in cancer therapy. Here, we present engineered protein nanoparticles comprising a tumour-selective oncolytic protein and a targeting moiety as a new format for the targeted cancer therapy. Apoptin from chicken anaemia virus (CAV) was used as a tumour-selective apoptotic protein. An EGFR-specific repebody, which is composed of LRR (Leucine-rich repeat) modules, was employed to play a dual role as a tumour-targeting moiety and a fusion partner for producing apoptin nanoparticles in E. coli, respectively. The repebody was genetically fused to apoptin, and the resulting fusion protein was shown to self-assemble into supramolecular repebody-apoptin nanoparticles with high homogeneity and stability as a soluble form when expressed in E. coli. The repebody-apoptin nanoparticles showed a remarkable anti-tumour activity with negligible side effects in xenograft mice through a cooperative action of the two protein components with distinct functional roles. The repebody-apoptin nanoparticles can be developed as a systemic injectable and tumour-selective therapeutic protein for targeted cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Puttini, Stefania; Ouvrard-Pascaud, Antoine; Palais, Gael; Beggah, Ahmed T; Gascard, Philippe; Cohen-Tannoudji, Michel; Babinet, Charles; Blot-Chabaud, Marcel; Jaisser, Frederic
2005-03-16
Functional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells.
Zou, Ying; Duan, Nuo; Wu, Shijia; Shen, Mofei; Wang, Zhouping
2018-06-06
Enterohemorrhagic Escherichia coli O157:H7 ( E. coli O157:H7) is known as an important food-borne pathogen related to public health. In this study, aptamers which could bind to different stages of E. coli O157:H7 (adjustment phase, log phase, and stationary phase) with high affinity and specificity were obtained by the whole cell-SELEX method through 14 selection rounds including three counter-selection rounds. Altogether, 32 sequences were obtained, and nine families were classified to select the optimal aptamer. To analyze affinity and specificity by flow cytometer, an ssDNA aptamer named Apt-5 was picked out as the optimal aptamer that recognizes different stages of E. coli O157:H7 specifically with the K d value of 9.04 ± 2.80 nM. In addition, in order to study the binding mechanism, target bacteria were treated by proteinase K and trypsin, indicating that the specific binding site is not protein on the cell membrane. Furthermore, when we treated E. coli O157:H7 with EDTA, the result showed that the binding site might be lipopolysaccharide (LPS) on the outer membrane of E. coli O157:H7.
Dorraj, Ghamar Soltan; Rassaee, Mohammad Javad; Latifi, Ali Mohammad; Pishgoo, Bahram; Tavallaei, Mahmood
2015-08-20
Troponin T and I are ideal markers which are highly sensitive and specific for myocardial injury and have shown better efficacy than earlier markers. Since aptamers are ssDNA or RNA that bind to a wide variety of target molecules, the purpose of this research was to select an aptamer from a 79bp single-stranded DNA (ssDNA) random library that was used to bind the Human Cardiac Troponin I from a synthetic nucleic acids library by systematic evolution of ligands exponential enrichment (Selex) based on several selection and amplification steps. Human Cardiac Troponin I protein was coated onto the surface of streptavidin magnetic beads to extract specific aptamer from a large and diverse random ssDNA initial oligonucleotide library. As a result, several aptamers were selected and further examined for binding affinity and specificity. Finally TnIApt 23 showed beast affinity in nanomolar range (2.69nM) toward the target protein. A simple and rapid colorimetric detection assay for Human Cardiac Troponin I using the novel and specific aptamer-AuNPs conjugates based on dot blot assay was developed. The detection limit for this protein using aptamer-AuNPs-based assay was found to be 5ng/ml. Copyright © 2015 Elsevier B.V. All rights reserved.
Targeted livestock grazing to improve and restore rangelands
USDA-ARS?s Scientific Manuscript database
Targeted grazing is the application of a specific kind of livestock at the appropriate season, duration, and intensity to accomplish defined vegetation or landscape goals. Grazing by wild and domestic animals is a powerful natural force working in all ecosystems. The ability of selective herbivory t...
The PEPvIII-KLH (CDX-110) vaccine in glioblastoma multiforme patients.
Heimberger, Amy B; Sampson, John H
2009-08-01
Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively, resulting in non-specific toxicity. Immune targeting of tumor-specific mutations may allow for more precise eradication of neoplastic cells. EGFR variant III (EGFRvIII) is a tumor-specific mutation that is widely expressed in GBM and other neoplasms and its expression enhances tumorigenicity. This in-frame deletion mutation splits a codon, resulting in a novel glycine at the fusion junction producing a tumor-specific epitope target for cellular or humoral immunotherapy. We have previously shown that vaccination with a peptide that spans the EGFRvIII fusion junction (PEPvIII-KLH/CDX-110) is an efficacious immunotherapy in syngeneic murine models. In this review, we summarize our results in GBM patients targeting this mutation in multiple, multi-institutional Phase II immunotherapy trials. These trials demonstrated that a selected population of GBM patients who received vaccines targeting EGFRvIII had an unexpectedly long survival time. Further therapeutic strategies and potential pitfalls of using this approach are discussed.
Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing.
Mahata, Barun; Biswas, Kaushik
2017-01-01
Precise and targeted genome editing using Transcription Activator-Like Effector Endonucleases (TALENs) has been widely used and proven to be an extremely effective and specific knockout strategy in both cultured cells and animal models. The current chapter describes a protocol for the construction and generation of TALENs using serial and hierarchical digestion and ligation steps, and using the synthesized TALEN pairs to achieve locus-specific targeted gene editing in mammalian cell lines using a modified clonal selection strategy in an easy and cost-efficient manner.
Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging.
Zhang, Liang; Habib, Amyn A; Zhao, Dawen
2016-06-21
Phosphatidylserine (PS), which is normally intracellular, becomes exposed on the outer surface of viable endothelial cells (ECs) of tumor vasculature. Utilizing a PS-targeting antibody, we have recently established a PS-targeted liposomal (PS-L) nanoplatform that has demonstrated to be highly tumor-selective. Because of the vascular lumen-exposed PS that is immediately accessible without a need to penetrate the intact blood brain barrier (BBB), we hypothesize that the systemically administered PS-L binds specifically to tumor vascular ECs, becomes subsequently internalized into the cells and then enables its cargos to be efficiently delivered to glioma parenchyma. To test this, we exploited the dual MRI/optical imaging contrast agents-loaded PS-L and injected it intravenously into mice bearing intracranial U87 glioma. At 24 h, both in vivo optical imaging and MRI depicted enhanced tumor contrast, distinct from the surrounding normal brain. Intriguingly, longitudinal MRI revealed temporal and spatial intratumoral distribution of the PS-L by following MRI contrast changes, which appeared punctate in tumor periphery at an earlier time point (4 h), but became clustering and disseminated throughout the tumor at 24 h post injection. Importantly, glioma-targeting specificity of the PS-L was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the glioma. Together, these results indicate that the PS-L nanoplatform enables the enhanced, glioma-targeted delivery of imaging contrast agents by crossing the tumor BBB efficiently, which may also serve as a useful nanoplatform for anti-glioma drugs.
Space pruning monotonic search for the non-unique probe selection problem.
Pappalardo, Elisa; Ozkok, Beyza Ahlatcioglu; Pardalos, Panos M
2014-01-01
Identification of targets, generally viruses or bacteria, in a biological sample is a relevant problem in medicine. Biologists can use hybridisation experiments to determine whether a specific DNA fragment, that represents the virus, is presented in a DNA solution. A probe is a segment of DNA or RNA, labelled with a radioactive isotope, dye or enzyme, used to find a specific target sequence on a DNA molecule by hybridisation. Selecting unique probes through hybridisation experiments is a difficult task, especially when targets have a high degree of similarity, for instance in a case of closely related viruses. After preliminary experiments, performed by a canonical Monte Carlo method with Heuristic Reduction (MCHR), a new combinatorial optimisation approach, the Space Pruning Monotonic Search (SPMS) method, is introduced. The experiments show that SPMS provides high quality solutions and outperforms the current state-of-the-art algorithms.
NASA Astrophysics Data System (ADS)
Cohen, Brian A.
The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed by external modification of the capsid with cancer cell-targeting G-quadruplex DNA aptamers to generate a tumor-specific photosensitizing agent. First, a cationic porphyrin is loaded into the capsids via nucleotide-driven packaging, a process that involves charge interaction between the porphyrin and the RNA inside the capsid. Results show that over 250 porphyrin molecules associate with the RNA within each MS2 capsid. Removal of RNA from the capsid severely inhibits the packaging of the cationic porphyrins. Porphyrin-virus constructs were then shown to photogenerate singlet oxygen, and cytotoxicity in non-targeted photodynamic treatment experiments. Next, each porphyrin-loaded capsid is externally modified with approximately 60 targeting DNA aptamers by employing a heterobifunctional crosslinking agent. The targeting aptamer is known to bind the protein nucleolin, a ubiquitous protein that is overexpressed on the cell surface by many cancer cell types. MCF-7 human breast carcinoma cells and MCF-10A human mammary epithelial cells were selected as an in vitro model for breast cancer and normal tissue, respectively. Fluorescently tagged virus-aptamer constructs are shown to selectively target MCF-7 cells versus MCF-10A cells. Finally, results are shown in which porphyrin-virus-aptamer constructs selectively target and kill cancer cells versus non-cancer cells. Specifically, the results show that MS2 is a viable candidate as an addressable nanodelivery vessel of photoactive compounds, and the implications are that the nucleotide-driven packaging approach for modifying MS2 can be used to impart new functionalities for a host of diagnostic or therapeutic applications.
Arboleya, Silvia; Ruas-Madiedo, Patricia; Margolles, Abelardo; Solís, Gonzalo; Salminen, Seppo; de Los Reyes-Gavilán, Clara G; Gueimonde, Miguel
2011-09-01
Most of the current commercial probiotic strains have not been selected for specific applications, but rather on the basis of their technological potential for use in diverse applications. Therefore, by selecting them from appropriate sources, depending on the target population, it is likely that better performing strains may be identified. Few strains have been specifically selected for human neonates, where the applications of probiotics may have a great positive impact. Breast-milk constitutes an interesting source of potentially probiotic bifidobacteria for inclusion in infant formulas and foods targeted to both pre-term and full-term infants. In this study six Bifidobacterium strains isolated from breast-milk were phenotypically and genotypically characterised according to international guidelines for probiotics. In addition, different in vitro tests were used to assess the safety and probiotic potential of the strains. Although clinical data would be needed before drawing any conclusion on the probiotic properties of the strains, our results indicate that some of them may have probiotic potential for their inclusion in products targeting infants. Copyright © 2010 Elsevier B.V. All rights reserved.
Camps, Montserrat; Rückle, Thomas; Ji, Hong; Ardissone, Vittoria; Rintelen, Felix; Shaw, Jeffrey; Ferrandi, Chiara; Chabert, Christian; Gillieron, Corine; Françon, Bernard; Martin, Thierry; Gretener, Denise; Perrin, Dominique; Leroy, Didier; Vitte, Pierre-Alain; Hirsch, Emilio; Wymann, Matthias P; Cirillo, Rocco; Schwarz, Matthias K; Rommel, Christian
2005-09-01
Phosphoinositide 3-kinases (PI3K) have long been considered promising drug targets for the treatment of inflammatory and autoimmune disorders as well as cancer and cardiovascular diseases. But the lack of specificity, isoform selectivity and poor biopharmaceutical profile of PI3K inhibitors have so far hampered rigorous disease-relevant target validation. Here we describe the identification and development of specific, selective and orally active small-molecule inhibitors of PI3Kgamma (encoded by Pik3cg). We show that Pik3cg(-/-) mice are largely protected in mouse models of rheumatoid arthritis; this protection correlates with defective neutrophil migration, further validating PI3Kgamma as a therapeutic target. We also describe that oral treatment with a PI3Kgamma inhibitor suppresses the progression of joint inflammation and damage in two distinct mouse models of rheumatoid arthritis, reproducing the protective effects shown by Pik3cg(-/-) mice. Our results identify selective PI3Kgamma inhibitors as potential therapeutic molecules for the treatment of chronic inflammatory disorders such as rheumatoid arthritis.
Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan
2017-10-01
Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Electrophysiological revelations of trial history effects in a color oddball search task.
Shin, Eunsam; Chong, Sang Chul
2016-12-01
In visual oddball search tasks, viewing a no-target scene (i.e., no-target selection trial) leads to the facilitation or delay of the search time for a target in a subsequent trial. Presumably, this selection failure leads to biasing attentional set and prioritizing stimulus features unseen in the no-target scene. We observed attention-related ERP components and tracked the course of attentional biasing as a function of trial history. Participants were instructed to identify color oddballs (i.e., targets) shown in varied trial sequences. The number of no-target scenes preceding a target scene was increased from zero to two to reinforce attentional biasing, and colors presented in two successive no-target scenes were repeated or changed to systematically bias attention to specific colors. For the no-target scenes, the presentation of a second no-target scene resulted in an early selection of, and sustained attention to, the changed colors (mirrored in the frontal selection positivity, the anterior N2, and the P3b). For the target scenes, the N2pc indicated an earlier allocation of attention to the targets with unseen or remotely seen colors. Inhibitory control of attention, shown in the anterior N2, was greatest when the target scene was followed by repeated no-target scenes with repeated colors. Finally, search times and the P3b were influenced by both color previewing and its history. The current results demonstrate that attentional biasing can occur on a trial-by-trial basis and be influenced by both feature previewing and its history. © 2016 Society for Psychophysiological Research.
Töllner, Thomas; Conci, Markus; Müller, Hermann J
2015-03-01
It is well established that we can focally attend to a specific region in visual space without shifting our eyes, so as to extract action-relevant sensory information from covertly attended locations. The underlying mechanisms that determine how fast we engage our attentional spotlight in visual-search scenarios, however, remain controversial. One dominant view advocated by perceptual decision-making models holds that the times taken for focal-attentional selection are mediated by an internal template that biases perceptual coding and selection decisions exclusively through target-defining feature coding. This notion directly predicts that search times remain unaffected whether or not participants can anticipate the upcoming distractor context. Here we tested this hypothesis by employing an illusory-figure localization task that required participants to search for an invariant target amongst a variable distractor context, which gradually changed--either randomly or predictably--as a function of distractor-target similarity. We observed a graded decrease in internal focal-attentional selection times--correlated with external behavioral latencies--for distractor contexts of higher relative to lower similarity to the target. Critically, for low but not intermediate and high distractor-target similarity, these context-driven effects were cortically and behaviorally amplified when participants could reliably predict the type of distractors. This interactive pattern demonstrates that search guidance signals can integrate information about distractor, in addition to target, identities to optimize distractor-target competition for focal-attentional selection. © 2014 Wiley Periodicals, Inc.
This article provides practical guidance on the use of passive sampling methods(PSMs) that target the freely dissolved concentration (Cfree) for improved exposure assessment of hydrophobic organic chemicals in sediments. Primary considerations for selecting a PSM for a specific a...
Rescue of Targeted Regions of Mammalian Chromosomes by in Vivo Recombination in Yeast
Kouprina, Natalya; Kawamoto, Kensaku; Barrett, J. Carl; Larionov, Vladimir; Koi, Minoru
1998-01-01
In contrast to other animal cell lines, the chicken pre-B cell lymphoma line, DT40, exhibits a high level of homologous recombination, which can be exploited to generate site-specific alterations in defined target genes or regions. In addition, the ability to generate human/chicken monochromosomal hybrids in the DT40 cell line opens a way for specific targeting of human genes. Here we describe a new strategy for direct isolation of a human chromosomal region that is based on targeting of the chromosome with a vector containing a yeast selectable marker, centromere, and an ARS element. This procedure allows rescue of the targeted region by transfection of total genomic DNA into yeast spheroplasts. Selection for the yeast marker results in isolation of chromosome sequences in the form of large circular yeast artificial chromosomes (YACs) up to 170 kb in size containing the targeted region. These YACs are generated by homologous recombination in yeast between common repeated sequences in the targeted chromosomal fragment. Alternatively, the targeted region can be rescued as a linear YACs when a YAC fragmentation vector is included in the yeast transformation mixture. Because the entire isolation procedure of the chromosomal region, once a target insertion is obtained, can be accomplished in ∼1 week, the new method greatly expands the utility of the homologous recombinationproficient DT40 chicken cell system. PMID:9647640
Xu, Jing; Zhu, Xing-Quan; Wang, Sheng-Yue; Xia, Chao-Ming
2012-01-01
Background Schistosomiasis japonica is a serious debilitating and sometimes fatal disease. Accurate diagnostic tests play a key role in patient management and control of the disease. However, currently available diagnostic methods are not ideal, and the detection of the parasite DNA in blood samples has turned out to be one of the most promising tools for the diagnosis of schistosomiasis. In our previous investigations, a 230-bp sequence from the highly repetitive retrotransposon SjR2 was identified and it showed high sensitivity and specificity for detecting Schistosoma japonicum DNA in the sera of rabbit model and patients. Recently, 29 retrotransposons were found in S. japonicum genome by our group. The present study highlighted the key factors for selecting a new perspective sensitive target DNA sequence for the diagnosis of schistosomiasis, which can serve as example for other parasitic pathogens. Methodology/Principal Findings In this study, we demonstrated that the key factors based on the bioinformatic analysis for selecting target sequence are the higher genome proportion, repetitive complete copies and partial copies, and active ESTs than the others in the chromosome genome. New primers based on 25 novel retrotransposons and SjR2 were designed and their sensitivity and specificity for detecting S. japonicum DNA were compared. The results showed that a new 303-bp sequence from non-long terminal repeat (LTR) retrotransposon (SjCHGCS19) had high sensitivity and specificity. The 303-bp target sequence was amplified from the sera of rabbit model at 3 d post-infection by nested-PCR and it became negative at 17 weeks post-treatment. Furthermore, the percentage sensitivity of the nested-PCR was 97.67% in 43 serum samples of S. japonicum-infected patients. Conclusions/Significance Our findings highlighted the key factors based on the bioinformatic analysis for selecting target sequence from S. japonicum genome, which provide basis for establishing powerful molecular diagnostic techniques that can be used for monitoring early infection and therapy efficacy to support schistosomiasis control programs. PMID:22479661
NASA Astrophysics Data System (ADS)
Shinde, Anant; Perinchery, Sandeep Menon; Murukeshan, Vadakke Matham
2017-04-01
An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.
Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases
Bikard, David; Euler, Chad; Jiang, Wenyan; Nussenzweig, Philip M.; Goldberg, Gregory W.; Duportet, Xavier; Fischetti, Vincent A.; Marraffini, Luciano A.
2014-01-01
Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas91, 2 delivered by a bacteriophage. We show that Cas9 re-programmed to target virulence genes kills virulent, but not avirulent, Staphylococcus aureus. Re-programming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes3, 4 and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also demonstrate the approach in vivo, showing its efficacy against S. aureus in a mouse skin colonization model. This new technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner. PMID:25282355
Structural Biology Insight for the Design of Sub-type Selective Aurora Kinase Inhibitors.
Sarvagalla, Sailu; Coumar, Mohane Selvaraj
2015-01-01
Aurora kinase A, B and C, are key regulators of mitosis and are over expressed in many of the human cancers, making them an ideal drug target for cancer chemotherapy. Currently, over a dozen of Aurora kinase inhibitors are in various phases of clinical development. The majority of the inhibitors (VX-680/MK-0457, PHA-739358, CYC116, SNS-314, AMG 900, AT-9283, SCH- 1473759, ABT-348, PF-03814735, R-763/AS-703569, KW-2449 and TAK-901) are pan-selective (isoform non-selective) and few are Aurora A (MLN8054, MLN8237, VX-689/MK5108 and ENMD 2076) and Aurora B (AZD1152 and GSK1070916) sub-type selective. Despite the intensive research efforts in the past decade, no Aurora kinase inhibitor has reached the market. Recent evidence suggests that the sub-type selective Aurora kinase A inhibitor could possess advantages over pan-selective Aurora inhibitors, by avoiding Aurora B mediated neutropenia. However, sub-type selective Aurora kinase A inhibitor design is very challenging due to the similarity in the active site among the isoforms. Structural biology and computational aspects pertaining to the design of Aurora kinase inhibitors were analyzed and found that a possible means to develop sub-type selective inhibitor is by targeting Aurora A specific residues (Leu215, Thr217 and Arg220) or Aurora B specific residues (Arg159, Glu161 and Lys164), near the solvent exposed region of the protein. Particularly, a useful strategy for the design of sub-type selective Aurora A inhibitor could be by targeting Thr217 residue as in the case of MLN8054. Further preclinical and clinical studies with the sub-type selective Aurora inhibitors could help bring them to the market for the treatment of cancer.
Structure-guided development of selective TbcatB inhibitors
Mallari, Jeremy P.; Shelat, Anang A.; Kosinski, Aaron; Caffrey, Conor R.; Connelly, Michele; Zhu, Fangyi; McKerrow, James H.; Guy, R. Kiplin
2009-01-01
The trypanosomal cathepsin TbcatB is essential for parasite survival and is an attractive therapeutic target. Herein we report the structure-guided development of TbcatB inhibitors with specificity relative to rhodesain and human cathepsins B and L. Inhibitors were tested for enzymatic activity, trypanocidal activity, and general cytotoxicity. These data chemically validate TbcatB as a drug target, and demonstrate that it is possible to potently and selectively inhibit TbcatB relative to trypanosomal and human homologues. PMID:19769357
Kraus, Jr., Robert H.; Zhou, Feng [Los Alamos, NM; Nolan, John P [Santa Fe, NM
2007-06-19
The present invention is directed to processes of separating, analyzing and/or collecting selected species within a target sample by use of magnetic microspheres including magnetic particles, the magnetic microspheres adapted for attachment to a receptor agent that can subsequently bind to selected species within the target sample. The magnetic microspheres can be sorted into a number of distinct populations, each population with a specific range of magnetic moments and different receptor agents can be attached to each distinct population of magnetic microsphere.
Targeted mutagenesis using CRISPR/Cas in inbred potatoes
USDA-ARS?s Scientific Manuscript database
Targeted mutagenesis using sequence-specific nucleases (SSNs) has been well established in several important crop species, but is in need of improvement in potato (Solanum tuberosum L.). For over a century, potatoes have been bred as autotetraploids (2n = 4x = 48), relying on F1 selections and clona...
Arndt, Claudia; Feldmann, Anja; Koristka, Stefanie; Cartellieri, Marc; Dimmel, Maria; Ehninger, Armin; Ehninger, Gerhard; Bachmann, Michael
2014-09-01
Recently, we described a novel modular platform technology in which T cell-recruitment and tumor-targeting domains of conventional bispecific antibodies are split to independent components, a universal effector module (EM) and replaceable monospecific/monovalent target modules (TMs) that form highly efficient T cell-retargeting complexes. Theoretically, our unique strategy should allow us to simultaneously retarget T cells to different tumor antigens by combining the EM with two or more different monovalent/monospecific TMs or even with bivalent/bispecific TMs, thereby overcoming limitations of a monospecific treatment such as the selection of target-negative tumor escape variants. In order to advance our recently introduced prostate stem cell antigen (PSCA)-specific modular system for a dual-targeting of prostate cancer cells, two additional TMs were constructed: a monovalent/monospecific TM directed against the prostate-specific membrane antigen (PSMA) and a bivalent/bispecific TM (bsTM) with specificity for PSMA and PSCA. The functionality of the novel dual-targeting strategies was analyzed by performing T cell activation and chromium release assays. Similar to the PSCA-specific modular system, the novel PSMA-specific modular system mediates an efficient target-dependent and -specific tumor cell lysis at low E:T ratios and picomolar Ab concentrations. Moreover, by combination of the EM with either the bispecific TM directed to PSMA and PSCA or both monospecifc TMs directed to either PSCA or PSMA, dual-specific targeting complexes were formed which allowed us to kill potential escape variants expressing only one or the other target antigen. Overall, the novel modular system represents a promising tool for multiple tumor targeting. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Harmon, Stephanie A.; Tuite, Michael J.; Jeraj, Robert
2016-10-01
Site selection for image-guided biopsies in patients with multiple lesions is typically based on clinical feasibility and physician preference. This study outlines the development of a selection algorithm that, in addition to clinical requirements, incorporates quantitative imaging data for automatic identification of candidate lesions for biopsy. The algorithm is designed to rank potential targets by maximizing a lesion-specific score, incorporating various criteria separated into two categories: (1) physician-feasibility category including physician-preferred lesion location and absolute volume scores, and (2) imaging-based category including various modality and application-specific metrics. This platform was benchmarked in two clinical scenarios, a pre-treatment setting and response-based setting using imaging from metastatic prostate cancer patients with high disease burden (multiple lesions) undergoing conventional treatment and receiving whole-body [18F]NaF PET/CT scans pre- and mid-treatment. Targeting of metastatic lesions was robust to different weighting ratios and candidacy for biopsy was physician confirmed. Lesion ranked as top targets for biopsy remained so for all patients in pre-treatment and post-treatment biopsy selection after sensitivity testing was completed for physician-biased or imaging-biased scenarios. After identifying candidates, biopsy feasibility was evaluated by a physician and confirmed for 90% (32/36) of high-ranking lesions, of which all top choices were confirmed. The remaining cases represented lesions with high anatomical difficulty for targeting, such as proximity to sciatic nerve. This newly developed selection method was successfully used to quantitatively identify candidate lesions for biopsies in patients with multiple lesions. In a prospective study, we were able to successfully plan, develop, and implement this technique for the selection of a pre-treatment biopsy location.
Salience-Based Selection: Attentional Capture by Distractors Less Salient Than the Target
Goschy, Harriet; Müller, Hermann Joseph
2013-01-01
Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience. PMID:23382820
NASA Astrophysics Data System (ADS)
Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.
2016-10-01
Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally, generally useful wavelength ranges are determined and the optimal amount of principal components is analyzed.
Pecot, Matthew Y.; Chen, Yi; Akin, Orkun; Chen, Zhenqing; Tsui, C.Y. Kimberly; Zipursky, S. Lawrence
2015-01-01
SUMMARY Neural circuit formation relies on interactions between axons and cells within the target field. While it is well established that target-derived signals act on axons to regulate circuit assembly, the extent to which axon-derived signals control circuit formation is not known. In the Drosophila visual system, anterograde signals numerically match R1–R6 photoreceptors with their targets by controlling target proliferation and neuronal differentiation. Here we demonstrate that additional axon-derived signals selectively couple target survival with layer-specificity. We show that Jelly belly (Jeb) produced by R1–R6 axons interacts with its receptor, anaplastic lymphoma kinase (Alk), on budding dendrites to control survival of L3 neurons, one of three postsynaptic targets. L3 axons then produce Netrin, which regulates the layer-specific targeting of another neuron within the same circuit. We propose that a cascade of axon-derived signals, regulating diverse cellular processes, provides a strategy for coordinating circuit assembly across different regions of the nervous system. PMID:24742459
Wang, Nanyi; Wang, Lirong; Xie, Xiang-Qun
2017-11-27
Molecular docking is widely applied to computer-aided drug design and has become relatively mature in the recent decades. Application of docking in modeling varies from single lead compound optimization to large-scale virtual screening. The performance of molecular docking is highly dependent on the protein structures selected. It is especially challenging for large-scale target prediction research when multiple structures are available for a single target. Therefore, we have established ProSelection, a docking preferred-protein selection algorithm, in order to generate the proper structure subset(s). By the ProSelection algorithm, protein structures of "weak selectors" are filtered out whereas structures of "strong selectors" are kept. Specifically, the structure which has a good statistical performance of distinguishing active ligands from inactive ligands is defined as a strong selector. In this study, 249 protein structures of 14 autophagy-related targets are investigated. Surflex-dock was used as the docking engine to distinguish active and inactive compounds against these protein structures. Both t test and Mann-Whitney U test were used to distinguish the strong from the weak selectors based on the normality of the docking score distribution. The suggested docking score threshold for active ligands (SDA) was generated for each strong selector structure according to the receiver operating characteristic (ROC) curve. The performance of ProSelection was further validated by predicting the potential off-targets of 43 U.S. Federal Drug Administration approved small molecule antineoplastic drugs. Overall, ProSelection will accelerate the computational work in protein structure selection and could be a useful tool for molecular docking, target prediction, and protein-chemical database establishment research.
An interplanetary targeting and orbit insertion maneuver design technique
NASA Technical Reports Server (NTRS)
Hintz, G. R.
1980-01-01
The paper describes a tradeoff in selecting a planetary encounter aimpoint and a spacecraft propulsive maneuver strategy in the Pioneer Venus Orbiter Mission. The method uses parametric data spanning a region of acceptable targeting aimpoints in the delivery space and the geometric considerations. Real-time maneuver adjustments accounted for known attitude control errors, orbit determination updates, and late changes in a targeting specification.
Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus
Cao, Xiaoxiao; Li, Shaohua; Chen, Liucun; Ding, Hongmei; Xu, Hua; Huang, Yanping; Li, Jie; Liu, Nongle; Cao, Weihong; Zhu, Yanjun; Shen, Beifen; Shao, Ningsheng
2009-01-01
In this article, a panel of ssDNA aptamers specific to Staphylococcus aureus was obtained by a whole bacterium-based SELEX procedure and applied to probing S. aureus. After several rounds of selection with S. aureus as the target and Streptococcus and S. epidermidis as counter targets, the highly enriched oligonucleic acid pool was sequenced and then grouped under different families on the basis of the homology of the primary sequence and the similarity of the secondary structure. Eleven sequences from different families were selected for further characterization by confocal imaging and flow cytometry analysis. Results showed that five aptamers demonstrated high specificity and affinity to S. aureus individually. The five aptamers recognize different molecular targets by competitive experiment. Combining these five aptamers had a much better effect than the individual aptamer in the recognition of different S. aureus strains. In addition, the combined aptamers can probe single S. aureus in pyogenic fluids. Our work demonstrates that a set of aptamers specific to one bacterium can be used in combination for the identification of the bacterium instead of a single aptamer. PMID:19498077
Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus.
Cao, Xiaoxiao; Li, Shaohua; Chen, Liucun; Ding, Hongmei; Xu, Hua; Huang, Yanping; Li, Jie; Liu, Nongle; Cao, Weihong; Zhu, Yanjun; Shen, Beifen; Shao, Ningsheng
2009-08-01
In this article, a panel of ssDNA aptamers specific to Staphylococcus aureus was obtained by a whole bacterium-based SELEX procedure and applied to probing S. aureus. After several rounds of selection with S. aureus as the target and Streptococcus and S. epidermidis as counter targets, the highly enriched oligonucleic acid pool was sequenced and then grouped under different families on the basis of the homology of the primary sequence and the similarity of the secondary structure. Eleven sequences from different families were selected for further characterization by confocal imaging and flow cytometry analysis. Results showed that five aptamers demonstrated high specificity and affinity to S. aureus individually. The five aptamers recognize different molecular targets by competitive experiment. Combining these five aptamers had a much better effect than the individual aptamer in the recognition of different S. aureus strains. In addition, the combined aptamers can probe single S. aureus in pyogenic fluids. Our work demonstrates that a set of aptamers specific to one bacterium can be used in combination for the identification of the bacterium instead of a single aptamer.
Moon, Jihea; Kim, Giyoung; Lee, Sangdae; Park, Saetbyeol
2013-11-01
Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized. © 2013 Elsevier B.V. All rights reserved.
Sadekar, S; Figueroa, I; Tabrizi, M
2015-07-01
Antibody drug conjugates (ADCs) are a multi-component modality comprising of an antibody targeting a cell-specific antigen, a potent drug/payload, and a linker that can be processed within cellular compartments to release payload upon internalization. Numerous ADCs are being evaluated in both research and clinical settings within the academic and pharmaceutical industry due to their ability to selectively deliver potent payloads. Hence, there is a clear need to incorporate quantitative approaches during early stages of drug development for effective modality design and target selection. In this review, we describe a quantitative approach and framework for evaluation of the interplay between drug- and systems-dependent properties (i.e., target expression, density, localization, turnover, and affinity) in order to deliver a sufficient amount of a potent payload into the relevant target cells. As discussed, theoretical approaches with particular considerations given to various key properties for the target and modality suggest that delivery of the payload into particular effect cells to be more sensitive to antigen concentrations for targets with slow turnover rates as compared to those with faster internalization rates. Further assessments also suggest that increasing doses beyond the threshold of the target capacity (a function of target internalization and expression) may not impact the maximum amount of payload delivered to the intended effect cells. This article will explore the important application of quantitative sciences in selection of the target and design of ADC modalities.
Vecchi, Lara; Petris, Gianluca; Bestagno, Marco; Burrone, Oscar R.
2012-01-01
The endoplasmic reticulum-associated degradation (ERAD) is a cellular quality control mechanism to dispose of misfolded proteins of the secretory pathway via proteasomal degradation. SEL1L is an ER-resident protein that participates in identification of misfolded molecules as ERAD substrates, therefore inducing their ER-to-cytosol retrotranslocation and degradation. We have developed a novel class of fusion proteins, termed degradins, composed of a fragment of SEL1L fused to a target-specific binding moiety located on the luminal side of the ER. The target-binding moiety can be a ligand of the target or derived from specific mAbs. Here, we describe the ability of degradins with two different recognition moieties to promote degradation of a model target. Degradins recognize the target protein within the ER both in secretory and membrane-bound forms, inducing their degradation following retrotranslocation to the cytosol. Thus, degradins represent an effective technique to knock-out proteins within the secretory pathway with high specificity. PMID:22523070
Specific GFP-binding artificial proteins (αRep): a new tool for in vitro to live cell applications
Chevrel, Anne; Urvoas, Agathe; de la Sierra-Gallay, Ines Li; Aumont-Nicaise, Magali; Moutel, Sandrine; Desmadril, Michel; Perez, Franck; Gautreau, Alexis; van Tilbeurgh, Herman; Minard, Philippe; Valerio-Lepiniec, Marie
2015-01-01
A family of artificial proteins, named αRep, based on a natural family of helical repeat was previously designed. αRep members are efficiently expressed, folded and extremely stable proteins. A large αRep library was constructed creating proteins with a randomized interaction surface. In the present study, we show that the αRep library is an efficient source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we selected by phage display αRep binders with nanomolar dissociation constants against the GFP. The structures of two independent αRep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally different binding modes. The affinity of the selected αReps for GFP proved sufficient for practically useful applications such as pull-down experiments. αReps are disulfide free proteins and are efficiently and functionally expressed in eukaryotic cells: GFP-specific αReps are clearly sequestrated by their cognate target protein addressed to various cell compartments. These results suggest that αRep proteins with tailor-made specificity can be selected and used in living cells to track, modulate or interfere with intracellular processes. PMID:26182430
Sullivan, R.; Santarpia, P.; Lavender, S.; Gittins, E.; Liu, Z.; Anderson, M.H.; He, J.; Shi, W.; Eckert, R.
2011-01-01
Background/Aims Streptococcus mutans, the major etiological agent of dental caries, has a measurable impact on domestic and global health care costs. Though persistent in the oral cavity despite conventional oral hygiene, S. mutans can be excluded from intact oral biofilms through competitive exclusion by other microorganisms. This suggests that therapies capable of selectively eliminating S. mutans while limiting the damage to the normal oral flora might be effective long-term interventions to fight cariogenesis. To meet this challenge, we designed C16G2, a novel synthetic specifically targeted antimicrobial peptide with specificity for S. mutans. C16G2 consists of a S. mutans-selective ‘targeting region’ comprised of a fragment from S. mutans competence stimulation peptide (CSP) conjoined to a ‘killing region’ consisting of a broad-spectrum antimicrobial peptide (G2). In vitro studies have indicated that C16G2 has robust efficacy and selectivity for S. mutans, and not other oral bacteria, and affects targeted bacteria within seconds of contact. Methods In the present study, we evaluated C16G2 for clinical utility in vitro, followed by a pilot efficacy study to examine the impact of a 0.04% (w/v) C16G2 rinse in an intra-oral remineralization/demineralization model. Results and Conclusions C16G2 rinse usage was associated with reductions in plaque and salivary S. mutans, lactic acid production, and enamel demineralization. The impact on total plaque bacteria was minimal. These results suggest that C16G2 is effective against S. mutans in vivo and should be evaluated further in the clinic. PMID:21860239
The SAMI Galaxy Survey: instrument specification and target selection
NASA Astrophysics Data System (ADS)
Bryant, J. J.; Owers, M. S.; Robotham, A. S. G.; Croom, S. M.; Driver, S. P.; Drinkwater, M. J.; Lorente, N. P. F.; Cortese, L.; Scott, N.; Colless, M.; Schaefer, A.; Taylor, E. N.; Konstantopoulos, I. S.; Allen, J. T.; Baldry, I.; Barnes, L.; Bauer, A. E.; Bland-Hawthorn, J.; Bloom, J. V.; Brooks, A. M.; Brough, S.; Cecil, G.; Couch, W.; Croton, D.; Davies, R.; Ellis, S.; Fogarty, L. M. R.; Foster, C.; Glazebrook, K.; Goodwin, M.; Green, A.; Gunawardhana, M. L.; Hampton, E.; Ho, I.-T.; Hopkins, A. M.; Kewley, L.; Lawrence, J. S.; Leon-Saval, S. G.; Leslie, S.; McElroy, R.; Lewis, G.; Liske, J.; López-Sánchez, Á. R.; Mahajan, S.; Medling, A. M.; Metcalfe, N.; Meyer, M.; Mould, J.; Obreschkow, D.; O'Toole, S.; Pracy, M.; Richards, S. N.; Shanks, T.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.
2015-03-01
The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107-1012 M⊙, and environments from isolated field galaxies through groups to clusters of ˜1015 M⊙.
Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J
2018-05-07
Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
2017-01-01
Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld. PMID:29211023
Hahn, Ulrich
2017-12-06
Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2'-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers-in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.
Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J. N.
2014-01-01
T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to non-viral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through co-culture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed one ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Employing CARL enables one aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity. PMID:24714354
Hara, Toshifumi; Jones, Matthew F.; Subramanian, Murugan; Li, Xiao Ling; Ou, Oliver; Zhu, Yuelin; Yang, Yuan; Wakefield, Lalage M.; Hussain, S. Perwez; Gaedcke, Jochen; Ried, Thomas; Luo, Ji; Caplen, Natasha J.; Lal, Ashish
2014-01-01
MicroRNAs (miRNAs) regulate the expression of hundreds of genes. However, identifying the critical targets within a miRNA-regulated gene network is challenging. One approach is to identify miRNAs that exert a context-dependent effect, followed by expression profiling to determine how specific targets contribute to this selective effect. In this study, we performed miRNA mimic screens in isogenic KRAS-Wild-type (WT) and KRAS-Mutant colorectal cancer (CRC) cell lines to identify miRNAs selectively targeting KRAS-Mutant cells. One of the miRNAs we identified as a selective inhibitor of the survival of multiple KRAS-Mutant CRC lines was miR-126. In KRAS-Mutant cells, miR-126 over-expression increased the G1 compartment, inhibited clonogenicity and tumorigenicity, while exerting no effect on KRAS-WT cells. Unexpectedly, the miR-126-regulated transcriptome of KRAS-WT and KRAS-Mutant cells showed no significant differences. However, by analyzing the overlap between miR-126 targets with the synthetic lethal genes identified by RNAi in KRAS-Mutant cells, we identified and validated a subset of miR-126-regulated genes selectively required for the survival and clonogenicity of KRAS-Mutant cells. Our strategy therefore identified critical target genes within the miR-126-regulated gene network. We propose that the selective effect of miR-126 on KRAS-Mutant cells could be utilized for the development of targeted therapy for KRAS mutant tumors. PMID:25245095
Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun
2016-06-04
Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to "Gopoong" and "K-1" were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information.
Shape recognition of microbial cells by colloidal cell imprints
NASA Astrophysics Data System (ADS)
Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.
2013-08-01
We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.
Hybrid value foraging: How the value of targets shapes human foraging behavior.
Wolfe, Jeremy M; Cain, Matthew S; Alaoui-Soce, Abla
2018-04-01
In hybrid foraging, observers search visual displays for multiple instances of multiple target types. In previous hybrid foraging experiments, although there were multiple types of target, all instances of all targets had the same value. Under such conditions, behavior was well described by the marginal value theorem (MVT). Foragers left the current "patch" for the next patch when the instantaneous rate of collection dropped below their average rate of collection. An observer's specific target selections were shaped by previous target selections. Observers were biased toward picking another instance of the same target. In the present work, observers forage for instances of four target types whose value and prevalence can vary. If value is kept constant and prevalence manipulated, participants consistently show a preference for the most common targets. Patch-leaving behavior follows MVT. When value is manipulated, observers favor more valuable targets, though individual foraging strategies become more diverse, with some observers favoring the most valuable target types very strongly, sometimes moving to the next patch without collecting any of the less valuable targets.
Su, Zhao-Zhong; Sarkar, Devanand; Emdad, Luni; Duigou, Gregory J; Young, Charles S H; Ware, Joy; Randolph, Aaron; Valerie, Kristoffer; Fisher, Paul B
2005-01-25
One impediment to effective cancer-specific gene therapy is the rarity of regulatory sequences targeting gene expression selectively in tumor cells. Although many tissue-specific promoters are recognized, few cancer-selective gene promoters are available. Progression-elevated gene-3 (PEG-3) is a rodent gene identified by subtraction hybridization that displays elevated expression as a function of transformation by diversely acting oncogenes, DNA damage, and cancer cell progression. The promoter of PEG-3, PEG-Prom, displays robust expression in a broad spectrum of human cancer cell lines with marginal expression in normal cellular counterparts. Whereas GFP expression, when under the control of a CMV promoter, is detected in both normal and cancer cells, when GFP is expressed under the control of the PEG-Prom, cancer-selective expression is evident. Mutational analysis identifies the AP-1 and PEA-3 transcription factors as primary mediators of selective, cancer-specific expression of the PEG-Prom. Synthesis of apoptosis-inducing genes, under the control of the CMV promoter, inhibits the growth of both normal and cancer cells, whereas PEG-Prom-mediated expression of these genes kills only cancer cells and spares normal cells. The efficacy of the PEG-Prom as part of a cancer gene therapeutic regimen is further documented by in vivo experiments in which PEG-Prom-controlled expression of an apoptosis-inducing gene completely inhibited prostate cancer xenograft growth in nude mice. These compelling observations indicate that the PEG-Prom, with its cancer-specific expression, provides a means of selectively delivering genes to cancer cells, thereby providing a crucial component in developing effective cancer gene therapies.
Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity
Tycko, Josh; Myer, Vic E.; Hsu, Patrick D.
2016-01-01
Summary Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance. PMID:27494557
Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping
2014-04-01
The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Mingshan; Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu; Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu
Constitutive NF-κB activation is required for survival of activated B cell-like subtype of diffuse large B cell lymphoma (ABC-DLBCL). However, current NF-κB targeting strategies lack cancer cell specificity. Here, we identified a novel inhibitor, piperlongumine, features direct binding to NF-κB p65 subunit and suppression of p65 nuclear import. This was accompanied by NF-κB reporter activity suppression and NF-κB target gene downregulation. Moreover, mutation of Cys{sup 38} to Ser in p65 abolished this effect of piperlongumine on inhibition of p65 nuclear import. Furthermore, we show that piperlongumine selectively inhibited proliferation and induced apoptosis of ABC-DLBCL cells. Most notably, it has beenmore » reported that piperlongumine did not affect normal cells even at high doses and was nontoxic to animals. Hence, our current study provides new insight into piperlongumine's mechanism of action and novel approach to ABC-DLBCL target therapy. - Highlights: • Current NF-κB targeting strategies lack cancer cell specificity. • Piperlongumine inhibits NF-κB p65 subunit nuclear import via directly binding to p65. • Piperlongumine selectively inhibits proliferation of ABC-DLBCL cells. • This study provides a novel approach to ABC-DLBCL target therapy.« less
Chung, Jongsuk; Son, Dae-Soon; Jeon, Hyo-Jeong; Kim, Kyoung-Mee; Park, Gahee; Ryu, Gyu Ha; Park, Woong-Yang; Park, Donghyun
2016-01-01
Targeted capture massively parallel sequencing is increasingly being used in clinical settings, and as costs continue to decline, use of this technology may become routine in health care. However, a limited amount of tissue has often been a challenge in meeting quality requirements. To offer a practical guideline for the minimum amount of input DNA for targeted sequencing, we optimized and evaluated the performance of targeted sequencing depending on the input DNA amount. First, using various amounts of input DNA, we compared commercially available library construction kits and selected Agilent’s SureSelect-XT and KAPA Biosystems’ Hyper Prep kits as the kits most compatible with targeted deep sequencing using Agilent’s SureSelect custom capture. Then, we optimized the adapter ligation conditions of the Hyper Prep kit to improve library construction efficiency and adapted multiplexed hybrid selection to reduce the cost of sequencing. In this study, we systematically evaluated the performance of the optimized protocol depending on the amount of input DNA, ranging from 6.25 to 200 ng, suggesting the minimal input DNA amounts based on coverage depths required for specific applications. PMID:27220682
Targeting Lysine Deacetylases (KDACs) in Parasites
Wang, Qi; Rosa, Bruce A.; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R.; Mitreva, Makedonka
2015-01-01
Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in targeting Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to address the challenges of targeting specific parasitic diseases while limiting host toxicity. PMID:26402733
Kaulich, Manuel; Lee, Yeon J; Lönn, Peter; Springer, Aaron D; Meade, Bryan R; Dowdy, Steven F
2015-04-20
Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Bandyopadhyay, Sanghamitra; Mitra, Ramkrishna
2009-10-15
Prediction of microRNA (miRNA) target mRNAs using machine learning approaches is an important area of research. However, most of the methods suffer from either high false positive or false negative rates. One reason for this is the marked deficiency of negative examples or miRNA non-target pairs. Systematic identification of non-target mRNAs is still not addressed properly, and therefore, current machine learning approaches are compelled to rely on artificially generated negative examples for training. In this article, we have identified approximately 300 tissue-specific negative examples using a novel approach that involves expression profiling of both miRNAs and mRNAs, miRNA-mRNA structural interactions and seed-site conservation. The newly generated negative examples are validated with pSILAC dataset, which elucidate the fact that the identified non-targets are indeed non-targets.These high-throughput tissue-specific negative examples and a set of experimentally verified positive examples are then used to build a system called TargetMiner, a support vector machine (SVM)-based classifier. In addition to assessing the prediction accuracy on cross-validation experiments, TargetMiner has been validated with a completely independent experimental test dataset. Our method outperforms 10 existing target prediction algorithms and provides a good balance between sensitivity and specificity that is not reflected in the existing methods. We achieve a significantly higher sensitivity and specificity of 69% and 67.8% based on a pool of 90 feature set and 76.5% and 66.1% using a set of 30 selected feature set on the completely independent test dataset. In order to establish the effectiveness of the systematically generated negative examples, the SVM is trained using a different set of negative data generated using the method in Yousef et al. A significantly higher false positive rate (70.6%) is observed when tested on the independent set, while all other factors are kept the same. Again, when an existing method (NBmiRTar) is executed with the our proposed negative data, we observe an improvement in its performance. These clearly establish the effectiveness of the proposed approach of selecting the negative examples systematically. TargetMiner is now available as an online tool at www.isical.ac.in/ approximately bioinfo_miu
Chen, Limei; Li, Haijuan; He, Haili; Wu, Haoxi; Jin, Yongdong
2015-07-07
Fast and accurate identification of cancer cells from healthy normal cells in a simple, generic way is very crucial for early cancer detection and treatment. Although functional nanoparticles, like fluorescent quantum dots and plasmonic Au nanoparticles (NPs), have been successfully applied for cancer cell imaging and photothermal therapy, they suffer from the main drawback of needing time-consuming targeting preparation for specific cancer cell detection and selective ablation. The lack of a generic and effective method therefore limits their potential high-throughput cancer cell preliminary screening and theranostic applications. We report herein a generic in vitro method for fast, targeting-free (avoiding time-consuming preparations of targeting moiety for specific cancer cells) visual screening and selective killing of cancer cells from normal cells, by using glucose-responsive/-sensitive glucose oxidase-modified Ag/Au nanoshells (Ag/Au-GOx NSs) as a smart plasmonic theranostic agent. The method is generic to some extent since it is based on the distinct localized surface plasmon resonance (LSPR) responses (and colors) of the smart nanoprobe with cancer cells (typically have a higher glucose uptake level) and normal cells.
Arrondeau, Jennifer; Huillard, Olivier; Tlemsani, Camille; Cessot, Anatole; Boudou-Rouquette, Pascaline; Blanchet, Benoit; Thomas-Schoemann, Audrey; Vidal, Michel; Tigaud, Jean-Marie; Durand, Jean-Philippe; Alexandre, Jerome; Goldwasser, Francois
2015-05-01
The platelet-derived growth factor receptor (PDGFR) pathway has important functions in cell growth and, by overexpression or mutation, could also be a driver for tumor development. Moreover, PDGFR is expressed in a tumoral microenvironment and could promote tumorigenesis. With these biological considerations, the PDGFR pathway could be an interesting target for therapeutics. Currently, there are many molecules under development that target the PDGFR pathway in different types of cancer. In this review, the authors report the different molecules under development, as well as those approved albeit briefly, which inhibit the PDGFR pathway. Furthermore, the authors summarize their specificities, their toxicities, and their development. Currently, most PDGFR kinase inhibitors are multikinase inhibitors and therefore do not simply target the PDGFR pathway. The development of more specific PDGFR inhibitors could improve drug efficacy. Moreover, selecting tumors harboring mutations or amplifications of PDGFR could improve outcomes associated with the use of these molecules. The authors believe that new technologies, such as kinome arrays or pharmacologic assays, could be of benefit to understanding resistance mechanisms and develop more selective PDGFR inhibitors.
2017-05-01
developed CRISPR technology to examine if Twist enhances ATX and LPAR1 expression. Specifically, we performed lentiviral transduction of Twist...targeting gRNA into breast cancer cells MDA-MB-578 and SUM-1315, and selected single cell colony with Twist knockout. We chose CRISPR -gRNA over the...shRNA system which was originally proposed, as CRISPR provides higher specificity and fewer off-target effects. To verify knockout of Twist, we first
Duellman, Tyler; Warren, Christopher; Yang, Jay
2014-01-01
Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221
Chang, Mengqi; Lv, Hongyi; Zhang, Weilong; Ma, Chunhui; He, Xue; Zhao, Shunli; Zhang, Zhi-Wei; Zeng, Yi-Xin; Song, Shuhui; Niu, Yamei; Tong, Wei-Min
2017-09-01
N 6 -methyladenosine (m 6 A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m 6 A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m 6 A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m 6 A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m 6 A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain. © 2017 The Authors.
Sethi, Isha; Gluck, Christian; Zhou, Huiqing
2017-01-01
Abstract Although epidermal keratinocyte development and differentiation proceeds in similar fashion between humans and mice, evolutionary pressures have also wrought significant species-specific physiological differences. These differences between species could arise in part, by the rewiring of regulatory network due to changes in the global targets of lineage-specific transcriptional master regulators such as p63. Here we have performed a systematic and comparative analysis of the p63 target gene network within the integrated framework of the transcriptomic and epigenomic landscape of mouse and human keratinocytes. We determined that there exists a core set of ∼1600 genomic regions distributed among enhancers and super-enhancers, which are conserved and occupied by p63 in keratinocytes from both species. Notably, these DNA segments are typified by consensus p63 binding motifs under purifying selection and are associated with genes involved in key keratinocyte and skin-centric biological processes. However, the majority of the p63-bound mouse target regions consist of either murine-specific DNA elements that are not alignable to the human genome or exhibit no p63 binding in the orthologous syntenic regions, typifying an occupancy lost subset. Our results suggest that these evolutionarily divergent regions have undergone significant turnover of p63 binding sites and are associated with an underlying inactive and inaccessible chromatin state, indicative of their selective functional activity in the transcriptional regulatory network in mouse but not human. Furthermore, we demonstrate that this selective targeting of genes by p63 correlates with subtle, but measurable transcriptional differences in mouse and human keratinocytes that converges on major metabolic processes, which often exhibit species-specific trends. Collectively our study offers possible molecular explanation for the observable phenotypic differences between the mouse and human skin and broadly informs on the prevailing principles that govern the tug-of-war between evolutionary forces of rigidity and plasticity over transcriptional regulatory programs. PMID:28505376
Targeting therapeutics to the glomerulus with nanoparticles.
Zuckerman, Jonathan E; Davis, Mark E
2013-11-01
Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Liu, Pei; Han, Lei; Wang, Fei; Petrenko, Valery A; Liu, Aihua
2016-08-15
Staphylococcus aureus (S. aureus) is one of the most ubiquitous pathogens in public healthcare worldwide. It holds great insterest in establishing robust analytical method for S. aureus. Herein, we report a S. aureus-specific recognition element, isolated from phage monoclone GQTTLTTS, which was selected from f8/8 landscape phage library against S. aureus in a high-throughput way. By functionalizing cysteamine (CS)-stabilized gold nanoparticles (CS-AuNPs) with S. aureus-specific pVIII fusion protein (fusion-pVIII), a bifunctional nanoprobe (CS-AuNPs@fusion-pVIII) for S. aureus was developed. In this strategy, the CS-AuNPs@fusion-pVIII could be induced to aggregate quickly in the presence of target S. aureus, resulting in a rapid colorimetric response of gold nanoparticles. More importantly, the as-designed probe exhibited excellent selectivity over other bacteria. Thus, the CS-AuNPs@fusion-pVIII could be used as the indicator of target S. aureus. This assay can detect as low as 19CFUmL(-1)S. aureus within 30min. Further, this approach can be applicable to detect S. aureus in real water samples. Due to its sensitivity, specificity and rapidness, this proposed method is promising for on-site testing of S. aureus without using any costly instruments. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Jinyang; Liu, Yucheng; Ji, Xinghu; He, Zhike
2016-09-15
In this work, a versatile dumbbell molecular (DM) probe was designed and employed in the sensitively homogeneous bioassay. In the presence of target molecule, the DM probe was protected from the digestion of exonucleases. Subsequently, the protected DM probe specifically bound to the intercalation dye and resulted in obvious fluorescence signal which was used to determine the target molecule in return. This design allows specific and versatile detection of diverse targets with easy operation and no sophisticated fluorescence labeling. Integrating the idea of target-protecting DM probe with adenosine triphosphate (ATP) involved ligation reaction, the DM probe with 5'-end phosphorylation was successfully constructed for ATP detection, and the limitation of detection was found to be 4.8 pM. Thanks to its excellent selectivity and sensitivity, this sensing strategy was used to detect ATP spiked in human serum as well as cellular ATP. Moreover, the proposed strategy was also applied in the visual detection of ATP in droplet-based microfluidic platform with satisfactory results. Similarly, combining the principle of target-protecting DM probe with streptavidin (SA)-biotin interaction, the DM probe with 3'-end biotinylation was developed for selective and sensitive SA determination, which demonstrated the robustness and versatility of this design. Copyright © 2016 Elsevier B.V. All rights reserved.
Ecology of Problem Individuals and the Efficacy of Selective Wildlife Management.
Swan, George J F; Redpath, Steve M; Bearhop, Stuart; McDonald, Robbie A
2017-07-01
As a result of ecological and social drivers, the management of problems caused by wildlife is becoming more selective, often targeting specific animals. Narrowing the sights of management relies upon the ecology of certain 'problem individuals' and their disproportionate contribution to impacts upon human interests. We assess the ecological evidence for problem individuals and confirm that some individuals or classes can be both disproportionately responsible and more likely to reoffend. The benefits of management can sometimes be short-lived, and selective management can affect tolerance of wildlife for better or worse, but, when effectively targeted, selective management can bring benefits by mitigating impact and conflict, often in a more socially acceptable way. Copyright © 2017 Elsevier Ltd. All rights reserved.
Target Selection for the SDSS-III MARVELS Survey
NASA Astrophysics Data System (ADS)
Paegert, Martin; Stassun, Keivan G.; De Lee, Nathan; Pepper, Joshua; Fleming, Scott W.; Sivarani, Thirupathi; Mahadevan, Suvrath; Mack, Claude E., III; Dhital, Saurav; Hebb, Leslie; Ge, Jian
2015-06-01
We present the target selection process for the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III. MARVELS is a medium-resolution (R ∼ 11,000) multi-fiber spectrograph capable of obtaining radial velocities for 60 objects at a time in order to find brown dwarfs and giant planets. The survey was configured to target dwarf stars with effective temperatures approximately between 4500 and 6250 K. For the first 2 years MARVELS relied on low-resolution spectroscopic pre-observations to estimate the effective temperature and log (g) for candidate stars and then selected suitable dwarf stars from this pool. Ultimately, the pre-observation spectra proved ineffective at filtering out giant stars; many giants were incorrectly classified as dwarfs, resulting in a giant contamination rate of ∼30% for the first phase of the MARVELS survey. Thereafter, the survey instead applied a reduced proper motion cut to eliminate giants and used the Infrared Flux Method to estimate effective temperatures, using only extant photmetric and proper-motion catalog information. The target selection method introduced here may be useful for other surveys that need to rely on extant catalog data for selection of specific stellar populations.
Luo, Zhaofeng; Zhou, Hongmin; Jiang, Hao; Ou, Huichao; Li, Xin; Zhang, Liyun
2015-04-21
Aptamers have attracted much attention due to their ability to bind to target molecules with high affinity and specificity. The development of an approach capable of efficiently generating aptamers through systematic evolution of ligands by exponential enrichment (SELEX) is particularly challenging. Herein, a fraction collection approach in capillary electrophoresis SELEX (FCE-SELEX) for the partition of a bound DNA-target complex is developed. By integrating fraction collection with a facile oil seal method for avoiding contamination while amplifying the bound DNA-target complex, in a single round of selection, a streptavidin-binding aptamer (SBA) has been generated. The affinity of aptamer SBA-36 for streptavidin (SA) is determined as 30.8 nM by surface plasmon resonance (SPR). Selectivity and biotin competition experiments demonstrate that the SBA-36 aptamer selected by FCE-SELEX is as efficient as those from other methods. Based on the ability of fraction collection in partition and collection of the aptamer-target complex from the original DNA library, FCE-SELEX can be a universal tool for the development of aptamers.
A systematic approach to evolve aptamers with new specificities
USDA-ARS?s Scientific Manuscript database
Aptamers are single-stranded nucleic acids with high affinities and specificities for the targets against which they are selected. Both features, along with an ability to be integrated into a large variety of sensors, make possible a wide-range of aptamer applications. However, changing aptamer sp...
Dynamic interactions between visual working memory and saccade target selection
Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew
2014-01-01
Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628
Targeting solid tumors with non-pathogenic obligate anaerobic bacteria.
Taniguchi, Shun'ichiro; Fujimori, Minoru; Sasaki, Takayuki; Tsutsui, Hiroko; Shimatani, Yuko; Seki, Keiichi; Amano, Jun
2010-09-01
Molecular-targeting drugs with fewer severe adverse effects are attracting great attention as the next wave of cancer treatment. There exist, however, populations of cancer cells resistant to these drugs that stem from the instability of tumor cells and/or the existence of cancer stem cells, and thus specific toxicity is required to destroy them. If such selectivity is not available, these targets may be sought out not by the cancer cell types themselves, but rather in their adjacent cancer microenvironments by means of hypoxia, low pH, and so on. The anaerobic conditions present in malignant tumor tissues have previously been regarded as a source of resistance in cancer cells against conventional therapy. However, there now appears to be a way to make use of these limiting factors as a selective target. In this review, we will refer to several trials, including our own, to direct attention to the utilizable anaerobic conditions present in malignant tumor tissues and the use of bacteria as carriers to target them. Specifically, we have been developing a method to attack solid cancers using the non-pathogenic obligate anaerobic bacterium Bifidobacterium longum as a vehicle to selectively recognize and target the anaerobic conditions in solid cancer tissues. We will also discuss the existence of low oxygen pressure in tumor masses in spite of generally enhanced angiogenesis, overview current cancer therapies, especially the history and present situation of bacterial utility to treat solid tumors, and discuss the rationality and future possibilities of this novel mode of cancer treatment. © 2010 Japanese Cancer Association.
PSMA-Targeted Theranostic Nanocarrier for Prostate Cancer
Flores, Orielyz; Santra, Santimukul; Kaittanis, Charalambos; Bassiouni, Rania; Khaled, Amr S; Khaled, Annette R.; Grimm, Jan; Perez, J Manuel
2017-01-01
Herein, we report the use of a theranostic nanocarrier (Folate-HBPE(CT20p)) to deliver a therapeutic peptide to prostate cancer tumors that express PSMA (folate hydrolase 1). The therapeutic peptide (CT20p) targets and inhibits the chaperonin-containing TCP-1 (CCT) protein-folding complex, is selectively cytotoxic to cancer cells, and is non-toxic to normal tissue. With the delivery of CT20p to prostate cancer cells via PSMA, a dual level of cancer specificity is achieved: (1) selective targeting to PSMA-expressing prostate tumors, and (2) specific cytotoxicity to cancer cells with minimal toxicity to normal cells. The PSMA-targeting theranostic nanocarrier can image PSMA-expressing cells and tumors when a near infrared dye is used as cargo. Meanwhile, it can be used to treat PSMA-expressing tumors when a therapeutic, such as the CT20p peptide, is encapsulated within the nanocarrier. Even when these PSMA-targeting nanocarriers are taken up by macrophages, minimal cell death is observed in these cells, in contrast with doxorubicin-based therapeutics that result in significant macrophage death. Incubation of PSMA-expressing prostate cancer cells with the Folate-HBPE(CT20p) nanocarriers induces considerable changes in cell morphology, reduction in the levels of integrin β1, and lower cell adhesion, eventually resulting in cell death. These results are relevant as integrin β1 plays a key role in prostate cancer invasion and metastatic potential. In addition, the use of the developed PSMA-targeting nanocarrier facilitates the selective in vivo delivery of CT20p to PSMA-positive tumor, inducing significant reduction in tumor size. PMID:28744329
The PEP-3-KLH (CDX-110) vaccine in glioblastoma multiforme patients
Heimberger, Amy B.; Sampson, John H
2009-01-01
Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively resulting in non-specific toxicity. Immune targeting of tumor-specific mutations may allow for more precise eradication of neoplastic cells. The epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific mutation that is widely expressed on GBM and other neoplasms and its expression enhances tumorigenicity. This in-frame deletion mutation splits a codon resulting in a novel glycine at the fusion junction producing a tumor-specific epitope target for cellular or humoral immunotherapy. We have previously shown that vaccination with a peptide that spans the EGFRvIII fusion junction (PEPvIII-KLH/CDX-110) is an efficacious immunotherapy in syngeneic murine models. In this review, we summarize our results in GBM patients targeting this mutation in multiple, multi-institutional Phase II immunotherapy trials. These trials demonstrated that a selected population of GBM patients who received the vaccines targeting EGFRvIII had an unexpectedly long survival time. Further therapeutic strategies and potential pitfalls using this approach are discussed. PMID:19591631
Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase.
Kulkarni, Shilpa; Das, Sudipto; Funk, Colin D; Murray, Diana; Cho, Wonhwa
2002-04-12
The activation of 5-lipoxygenase (5-LO) involves its calcium-dependent translocation to the nuclear envelope, where it catalyzes the two-step transformation of arachidonic acid into leukotriene A(4), leading to the synthesis of various leukotrienes. To understand the mechanism by which 5-LO is specifically targeted to the nuclear envelope, we studied the membrane binding properties of the amino-terminal domain of 5-LO, which has been proposed to have a C2 domain-like structure. The model building, electrostatic potential calculation, and in vitro membrane binding studies of the isolated C2-like domain of 5-LO and selected mutants show that this Ca(2+)-dependent domain selectively binds zwitterionic phosphatidylcholine, which is conferred by tryptophan residues (Trp(13), Trp(75), and Trp(102)) located in the putative Ca(2+)-binding loops. The spatiotemporal dynamics of the enhanced green fluorescence protein-tagged C2-like domain of 5-LO and mutants in living cells also show that the phosphatidylcholine selectivity of the C2-like domain accounts for the specific targeting of 5-LO to the nuclear envelope. Together, these results show that the C2-like domain of 5-LO is a genuine Ca(2+)-dependent membrane-targeting domain and that the subcellular localization of the domain is governed in large part by its membrane binding properties.
de Veer, Simon J; Swedberg, Joakim E; Brattsand, Maria; Clements, Judith A; Harris, Jonathan M
2016-12-01
Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2' led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.
Rauniyar, Navin
2015-01-01
The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379
Ferrante, Oscar; Patacca, Alessia; Di Caro, Valeria; Della Libera, Chiara; Santandrea, Elisa; Chelazzi, Leonardo
2018-05-01
The cognitive system has the capacity to learn and make use of environmental regularities - known as statistical learning (SL), including for the implicit guidance of attention. For instance, it is known that attentional selection is biased according to the spatial probability of targets; similarly, changes in distractor filtering can be triggered by the unequal spatial distribution of distractors. Open questions remain regarding the cognitive/neuronal mechanisms underlying SL of target selection and distractor filtering. Crucially, it is unclear whether the two processes rely on shared neuronal machinery, with unavoidable cross-talk, or they are fully independent, an issue that we directly addressed here. In a series of visual search experiments, participants had to discriminate a target stimulus, while ignoring a task-irrelevant salient distractor (when present). We systematically manipulated spatial probabilities of either one or the other stimulus, or both. We then measured performance to evaluate the direct effects of the applied contingent probability distribution (e.g., effects on target selection of the spatial imbalance in target occurrence across locations) as well as its indirect or "transfer" effects (e.g., effects of the same spatial imbalance on distractor filtering across locations). By this approach, we confirmed that SL of both target and distractor location implicitly bias attention. Most importantly, we described substantial indirect effects, with the unequal spatial probability of the target affecting filtering efficiency and, vice versa, the unequal spatial probability of the distractor affecting target selection efficiency across locations. The observed cross-talk demonstrates that SL of target selection and distractor filtering are instantiated via (at least partly) shared neuronal machinery, as further corroborated by strong correlations between direct and indirect effects at the level of individual participants. Our findings are compatible with the notion that both kinds of SL adjust the priority of specific locations within attentional priority maps of space. Copyright © 2017 Elsevier Ltd. All rights reserved.
Let's get specific: the relationship between specificity and affinity.
Eaton, B E; Gold, L; Zichi, D A
1995-10-01
The factors that lead to high-affinity binding are a good fit between the surfaces of the two molecules in their ground state and charge complementarity. Exactly the same factors give high specificity for a target. We argue that selection for high-affinity binding automatically leads to highly specific binding. This principle can be used to simplify screening approaches aimed at generating useful drugs.
Functionalized Nanopipettes: A Sensitive Tool for Pathogen Detection
NASA Astrophysics Data System (ADS)
Actis, P.; Jejelowo, O.; Pourmand, N.
2010-04-01
Nanopipette technology is capable of detecting and functional analyzing biomolecules. Preliminary experiments are demonstrating the sensitivity and selectivity of the technique with specific proteins targeting environmental toxins.
MacLean, Mary H; Giesbrecht, Barry
2015-07-01
Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.
The Detection of Protein via ZnO Resonant Raman Scattering Signal
NASA Astrophysics Data System (ADS)
Shan, Guiye; Yang, Guoliang; Wang, Shuang; Liu, Yichun
2008-03-01
Detecting protein with high sensitivity and specificity is essential for disease diagnostics, drug screening and other application. Semiconductor nanoparticles show better properties than organic dye molecules when used as markers for optical measurements. We used ZnO nanoparticles as markers for detecting protein in resonant Raman scattering measurements. The highly sensitive detection of proteins was achieved by an antibody-based sandwich assay. A probe for the target protein was constructed by binding the ZnO/Au nanoparticles to a primary antibody by eletrostatic interaction between Au and the antibody. A secondary antibody, which could be specifically recognized by target protein, was attached to a solid surface. The ZnO/Au-antibody probe could specifically recognize and bind to the complex of the target protein and secondary antibody. Our measurements using the resonant Raman scattering signal of ZnO nanoparticles showed good selectivity and sensitivity for the target protein.
Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Boudreau, Dominique K; Bergeron, Michel G
2015-04-01
Recombinase polymerase amplification (RPA) technology relies on three major proteins, recombinase proteins, single-strand binding proteins, and polymerases, to specifically amplify nucleic acid sequences in an isothermal format. The performance of RPA with respect to sequence mismatches of closely-related non-target molecules is not well documented and the influence of the number and distribution of mismatches in DNA sequences on RPA amplification reaction is not well understood. We investigated the specificity of RPA by testing closely-related species bearing naturally occurring mismatches for the tuf gene sequence of Pseudomonas aeruginosa and/or Mycobacterium tuberculosis and for the cfb gene sequence of Streptococcus agalactiae. In addition, the impact of the number and distribution of mismatches on RPA efficiency was assessed by synthetically generating 14 types of mismatched forward primers for detecting five bacterial species of high diagnostic relevance such as Clostridium difficile, Staphylococcus aureus, S. agalactiae, P. aeruginosa, and M. tuberculosis as well as Bacillus atropheus subsp. globigii for which we use the spores as internal control in diagnostic assays. A total of 87 mismatched primers were tested in this study. We observed that target specific RPA primers with mismatches (n > 1) at their 3'extrimity hampered RPA reaction. In addition, 3 mismatches covering both extremities and the center of the primer sequence negatively affected RPA yield. We demonstrated that the specificity of RPA was multifactorial. Therefore its application in clinical settings must be selected and validated a priori. We recommend that the selection of a target gene must consider the presence of closely-related non-target genes. It is advisable to choose target regions with a high number of mismatches (≥36%, relative to the size of amplicon) with respect to closely-related species and the best case scenario would be by choosing a unique target gene. Copyright © 2014 Elsevier Ltd. All rights reserved.
DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets.
Cereto-Massagué, Adrià; Guasch, Laura; Valls, Cristina; Mulero, Miquel; Pujadas, Gerard; Garcia-Vallvé, Santiago
2012-06-15
Decoys are molecules that are presumed to be inactive against a target (i.e. will not likely bind to the target) and are used to validate the performance of molecular docking or a virtual screening workflow. The Directory of Useful Decoys database (http://dud.docking.org/) provides a free directory of decoys for use in virtual screening, though it only contains a limited set of decoys for 40 targets.To overcome this limitation, we have developed an application called DecoyFinder that selects, for a given collection of active ligands of a target, a set of decoys from a database of compounds. Decoys are selected if they are similar to active ligands according to five physical descriptors (molecular weight, number of rotational bonds, total hydrogen bond donors, total hydrogen bond acceptors and the octanol-water partition coefficient) without being chemically similar to any of the active ligands used as an input (according to the Tanimoto coefficient between MACCS fingerprints). To the best of our knowledge, DecoyFinder is the first application designed to build target-specific decoy sets. A complete description of the software is included on the application home page. A validation of DecoyFinder on 10 DUD targets is provided as Supplementary Table S1. DecoyFinder is freely available at http://URVnutrigenomica-CTNS.github.com/DecoyFinder.
Validation and characterization of a novel method for selective vagal deafferentation of the gut.
Diepenbroek, Charlene; Quinn, Danielle; Stephens, Ricky; Zollinger, Benjamin; Anderson, Seth; Pan, Annabelle; de Lartigue, Guillaume
2017-10-01
There is a lack of tools that selectively target vagal afferent neurons (VAN) innervating the gut. We use saporin (SAP), a potent neurotoxin, conjugated to the gastronintestinal (GI) hormone cholecystokinin (CCK-SAP) injected into the nodose ganglia (NG) of male Wistar rats to specifically ablate GI-VAN. We report that CCK-SAP ablates a subpopulation of VAN in culture. In vivo, CCK-SAP injection into the NG reduces VAN innervating the mucosal and muscular layers of the stomach and small intestine but not the colon, while leaving vagal efferent neurons intact. CCK-SAP abolishes feeding-induced c-Fos in the NTS, as well as satiation by CCK or glucagon like peptide-1 (GLP-1). CCK-SAP in the NG of mice also abolishes CCK-induced satiation. Therefore, we provide multiple lines of evidence that injection of CCK-SAP in NG is a novel selective vagal deafferentation technique of the upper GI tract that works in multiple vertebrate models. This method provides improved tissue specificity and superior separation of afferent and efferent signaling compared with vagotomy, capsaicin, and subdiaphragmatic deafferentation. NEW & NOTEWORTHY We develop a new method that allows targeted lesioning of vagal afferent neurons that innervate the upper GI tract while sparing vagal efferent neurons. This reliable approach provides superior tissue specificity and selectivity for vagal afferent over efferent targeting than traditional approaches. It can be used to address questions about the role of gut to brain signaling in physiological and pathophysiological conditions. Copyright © 2017 the American Physiological Society.
Social comparisons in adults with type 2 diabetes: Patients' reasons for target selection.
Arigo, Danielle; Cornell, Max; Smyth, Joshua M
2018-07-01
To examine reasons for selecting a social comparison target (i.e. a specific other for relative self-evaluation), and their influence on affect and motivation for self-care, in type 2 diabetes (T2DM). Adults with T2DM (n = 180, M A1c = 7.6%) chose to read about one of four targets. Participants rated five reasons for their choice (strongly disagree - strongly agree), and rated affect and self-care motivation before and after reading. To boost confidence in my ability to manage diabetes was rated highest overall (ps < 0.01), though choosing worse-off (vs. better-off) targets was associated with to gain useful information about how to improve (p = 0.04, [Formula: see text] = 0.05). Selection in order to feel better worked for those who chose better-off targets; choosing worse-off targets for this purpose worsened mood and stress (ps < 0.04, [Formula: see text]s = 0.02). Choosing worse-off targets to learn about similar others reduced self-care motivation (p < 0.01, [Formula: see text] = 0.05). Selection in order to boost confidence showed increased motivation only among those who chose better-off targets (p = 0.01). Patients' reasons for a particular comparison are associated with short-term changes in affect and self-care motivation, and warrant greater empirical and clinical attention.
van der Kant, Rik; Jonker, Caspar T. H.; Wijdeven, Ruud H.; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques
2015-01-01
Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway. PMID:26463206
Selective Attention and Sensory Modality in Aging: Curses and Blessings.
Van Gerven, Pascal W M; Guerreiro, Maria J S
2016-01-01
The notion that selective attention is compromised in older adults as a result of impaired inhibitory control is well established. Yet it is primarily based on empirical findings covering the visual modality. Auditory and especially, cross-modal selective attention are remarkably underexposed in the literature on aging. In the past 5 years, we have attempted to fill these voids by investigating performance of younger and older adults on equivalent tasks covering all four combinations of visual or auditory target, and visual or auditory distractor information. In doing so, we have demonstrated that older adults are especially impaired in auditory selective attention with visual distraction. This pattern of results was not mirrored by the results from our psychophysiological studies, however, in which both enhancement of target processing and suppression of distractor processing appeared to be age equivalent. We currently conclude that: (1) age-related differences of selective attention are modality dependent; (2) age-related differences of selective attention are limited; and (3) it remains an open question whether modality-specific age differences in selective attention are due to impaired distractor inhibition, impaired target enhancement, or both. These conclusions put the longstanding inhibitory deficit hypothesis of aging in a new perspective.
Event-related potentials during visual selective attention in children of alcoholics.
van der Stelt, O; Gunning, W B; Snel, J; Kok, A
1998-12-01
Event-related potentials were recorded from 7- to 18-year-old children of alcoholics (COAs, n = 50) and age- and sex-matched control children (n = 50) while they performed a visual selective attention task. The task was to attend selectively to stimuli with a specified color (red or blue) in an attempt to detect the occurrence of target stimuli. COAs manifested a smaller P3b amplitude to attended-target stimuli over the parietal and occipital scalp than did the controls. A more specific analysis indicated that both the attentional relevance and the target properties of the eliciting stimulus determined the observed P3b amplitude differences between COAs and controls. In contrast, no significant group differences were observed in attention-related earlier occurring event-related potential components, referred to as frontal selection positivity, selection negativity, and N2b. These results represent neurophysiological evidence that COAs suffer from deficits at a late (semantic) level of visual selective information processing that are unlikely a consequence of deficits at earlier (sensory) levels of selective processing. The findings support the notion that a reduced visual P3b amplitude in COAs represents a high-level processing dysfunction indicating their increased vulnerability to alcoholism.
Moutel, Sandrine; Bery, Nicolas; Bernard, Virginie; Keller, Laura; Lemesre, Emilie; de Marco, Ario; Ligat, Laetitia; Rain, Jean-Christophe; Favre, Gilles; Olichon, Aurélien; Perez, Franck
2016-01-01
In vitro selection of antibodies allows to obtain highly functional binders, rapidly and at lower cost. Here, we describe the first fully synthetic phage display library of humanized llama single domain antibody (NaLi-H1: Nanobody Library Humanized 1). Based on a humanized synthetic single domain antibody (hs2dAb) scaffold optimized for intracellular stability, the highly diverse library provides high affinity binders without animal immunization. NaLi-H1 was screened following several selection schemes against various targets (Fluorescent proteins, actin, tubulin, p53, HP1). Conformation antibodies against active RHO GTPase were also obtained. Selected hs2dAb were used in various immunoassays and were often found to be functional intrabodies, enabling tracking or inhibition of endogenous targets. Functionalization of intrabodies allowed specific protein knockdown in living cells. Finally, direct selection against the surface of tumor cells produced hs2dAb directed against tumor-specific antigens further highlighting the potential use of this library for therapeutic applications. DOI: http://dx.doi.org/10.7554/eLife.16228.001 PMID:27434673
Yankelov, Rami; Yungerman, Irena; Srebnik, Simcha
2017-07-01
Polymer-based protein recognition systems have enormous potential within clinical and diagnostic fields due to their reusability, biocompatibility, ease of manufacturing, and potential specificity. Imprinted polymer matrices have been extensively studied and applied as a simple technique for creating artificial polymer-based recognition gels for a target molecule. Although this technique has been proven effective when targeting small molecules (such as drugs), imprinting of proteins have so far resulted in materials with limited selectivity due to the large molecular size of the protein and aqueous environment. Using coarse-grained molecular simulation, we investigate the relation between protein makeup, polymer properties, and the selectivity of imprinted gels. Nonspecific binding that results in poor selectivity is shown to be strongly dependent on surface chemistry of the template and competitor proteins as well as on polymer chemistry. Residence time distributions of proteins diffusing within the gels provide a transparent picture of the relation between polymer constitution, protein properties, and the nonspecific interactions with the imprinted gel. The pronounced effect of protein surface chemistry on imprinted gel specificity is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.
Hoepfner, Dominic; McNamara, Case W.; Lim, Chek Shik; Studer, Christian; Riedl, Ralph; Aust, Thomas; McCormack, Susan L.; Plouffe, David M.; Meister, Stephan; Schuierer, Sven; Plikat, Uwe; Hartmann, Nicole; Staedtler, Frank; Cotesta, Simona; Schmitt, Esther K.; Petersen, Frank; Supek, Frantisek; Glynne, Richard J.; Tallarico, John A.; Porter, Jeffrey A.; Fishman, Mark C.; Bodenreider, Christophe; Diagana, Thierry T.; Movva, N. Rao; Winzeler, Elizabeth A.
2012-01-01
Summary With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited. PMID:22704625
Hoepfner, Dominic; McNamara, Case W; Lim, Chek Shik; Studer, Christian; Riedl, Ralph; Aust, Thomas; McCormack, Susan L; Plouffe, David M; Meister, Stephan; Schuierer, Sven; Plikat, Uwe; Hartmann, Nicole; Staedtler, Frank; Cotesta, Simona; Schmitt, Esther K; Petersen, Frank; Supek, Frantisek; Glynne, Richard J; Tallarico, John A; Porter, Jeffrey A; Fishman, Mark C; Bodenreider, Christophe; Diagana, Thierry T; Movva, N Rao; Winzeler, Elizabeth A
2012-06-14
With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited. Copyright © 2012 Elsevier Inc. All rights reserved.
The insecticide target in the PSST subunit of complex I.
Schuler, F; Casida, J E
2001-10-01
Current insecticides have been selected by sifting and winnowing hundreds of thousands of synthetic chemicals and natural products to obtain commercial preparations of optimal effectiveness and safety. This process has often ended up with compounds of high potency as inhibitors of the electron transport chain and more specifically of complex I (NADH:ubiquinone oxidoreductase). Many classes of chemicals are involved and the enzyme is one of the most complicated known, with 43 subunits catalyzing electron transfer from NADH to ubiquinone through flavin mononucleotide and up to eight iron-sulfur clusters. We used a potent photoaffinity ligand, (trifluoromethyl)diazirinyl[3H]pyridaben, to localize the insecticide target to a single high-affinity site in the PSST subunit that couples electron transfer from iron-sulfur cluster N2 to ubiquinone. Most importantly, all of the potent complex I-inhibiting pesticides, despite their great structural diversity, compete for this same specific binding domain in PSST. Finding their common mode of action and target provides insight into shared toxicological features and potential selection for resistant pests.
Biasing the brain's attentional set: I. cue driven deployments of intersensory selective attention.
Foxe, John J; Simpson, Gregory V; Ahlfors, Seppo P; Saron, Clifford D
2005-10-01
Brain activity associated with directing attention to one of two possible sensory modalities was examined using high-density mapping of human event-related potentials. The deployment of selective attention was based on visually presented symbolic cue-words instructing subjects on a trial-by-trial basis, which sensory modality to attend. We measured the spatio-temporal pattern of activation in the approximately 1 second period between the cue-instruction and a subsequent compound auditory-visual imperative stimulus. This allowed us to assess the flow of processing across brain regions involved in deploying and sustaining inter-sensory selective attention, prior to the actual selective processing of the compound audio-visual target stimulus. Activity over frontal and parietal areas showed sensory specific increases in activation during the early part of the anticipatory period (~230 ms), probably representing the activation of fronto-parietal attentional deployment systems for top-down control of attention. In the later period preceding the arrival of the "to-be-attended" stimulus, sustained differential activity was seen over fronto-central regions and parieto-occipital regions, suggesting the maintenance of sensory-specific biased attentional states that would allow for subsequent selective processing. Although there was clear sensory biasing in this late sustained period, it was also clear that both sensory systems were being prepared during the cue-target period. These late sensory-specific biasing effects were also accompanied by sustained activations over frontal cortices that also showed both common and sensory specific activation patterns, suggesting that maintenance of the biased state includes top-down inputs from generators in frontal cortices, some of which are sensory-specific regions. These data support extensive interactions between sensory, parietal and frontal regions during processing of cue information, deployment of attention, and maintenance of the focus of attention in anticipation of impending attentionally relevant input.
Targeted polymeric nanoparticles for cancer gene therapy
Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.
2015-01-01
In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296
Cannabinoid CB2 receptor as a new phototherapy target for the inhibition of tumor growth.
Jia, Ningyang; Zhang, Shaojuan; Shao, Pin; Bagia, Christina; Janjic, Jelena M; Ding, Ying; Bai, Mingfeng
2014-06-02
The success of targeted cancer therapy largely relies upon the selection of target and the development of efficient therapeutic agents that specifically bind to the target. In the current study, we chose a cannabinoid CB2 receptor (CB2R) as a new target and used a CB2R-targeted photosensitizer, IR700DX-mbc94, for phototherapy treatment. IR700DX-mbc94 was prepared by conjugating a photosensitizer, IR700DX, to mbc94, whose binding specificity to CB2R has been previously demonstrated. We found that phototherapy treatment using IR700DX-mbc94 greatly inhibited the growth of CB2R positive tumors but not CB2R negative tumors. In addition, phototherapy treatment with nontargeted IR700DX did not show significant therapeutic effect. Similarly, treatment with IR700DX-mbc94 without light irradiation or light irradiation without the photosensitizer showed no tumor-inhibitory effect. Taken together, IR700DX-mbc94 is a promising phototherapy agent with high target-specificity. Moreover, CB2R appears to have great potential as a phototherapeutic target for cancer treatment.
2015-12-01
Award Number: W81XWH-12-1-0554 TITLE: Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively...ADDRESS. 1. REPORT DATE December 2015 2. REPORT TYPE Final 3. DATES COVERED 15Sep2012 - 14Sep2015 4. TITLE AND SUBTITLE Riboswitch-Mediated Aptamer ...with very high specificity, low background for imaging and low toxicity for therapy. We will make a riboswitch consisting of two aptamers and a
The Role of Color in Search Templates for Real-world Target Objects.
Nako, Rebecca; Smith, Tim J; Eimer, Martin
2016-11-01
During visual search, target representations (attentional templates) control the allocation of attention to template-matching objects. The activation of new attentional templates can be prompted by verbal or pictorial target specifications. We measured the N2pc component of the ERP as a temporal marker of attentional target selection to determine the role of color signals in search templates for real-world search target objects that are set up in response to word or picture cues. On each trial run, a word cue (e.g., "apple") was followed by three search displays that contained the cued target object among three distractors. The selection of the first target was based on the word cue only, whereas selection of the two subsequent targets could be controlled by templates set up after the first visual presentation of the target (picture cue). In different trial runs, search displays either contained objects in their natural colors or monochromatic objects. These two display types were presented in different blocks (Experiment 1) or in random order within each block (Experiment 2). RTs were faster, and target N2pc components emerged earlier for the second and third display of each trial run relative to the first display, demonstrating that pictures are more effective than word cues in guiding search. N2pc components were triggered more rapidly for targets in the second and third display in trial runs with colored displays. This demonstrates that when visual target attributes are fully specified by picture cues, the additional presence of color signals in target templates facilitates the speed with which attention is allocated to template-matching objects. No such selection benefits for colored targets were found when search templates were set up in response to word cues. Experiment 2 showed that color templates activated by word cues can even impair the attentional selection of noncolored targets. Results provide new insights into the status of color during the guidance of visual search for real-world target objects. Color is a powerful guiding feature when the precise visual properties of these objects are known but seems to be less important when search targets are specified by word cues.
Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells
Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon
2016-01-01
Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs. PMID:27376325
Bender, Ruben R; Muth, Anke; Schneider, Irene C; Friedel, Thorsten; Hartmann, Jessica; Plückthun, Andreas; Maisner, Andrea; Buchholz, Christian J
2016-06-01
Receptor-targeted lentiviral vectors (LVs) can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV) glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance). Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV) glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4) was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.
NASA Astrophysics Data System (ADS)
Yan, Lu; Gao, Yunxiang; Pierce, Ryan; Dai, Liming; Kim, Julian; Zhang, Mei
2014-04-01
Tumor-associated macrophage (TAM) is increasingly being viewed as a target of great interest in tumor microenvironment due to its important role in the progression and metastasis of cancers. It has been shown that TAM indeed overexpresses unique surface marker legumain. In this study, we designed and synthesized a Y-shaped legumain-targeting peptide (Y-Leg) with functional groups allowing for further conjugation with imaging and therapeutic moieties (vide infra). The in vitro cell experiments using FITC-conjugated Y-Leg revealed its specific and selective interaction with M2-polarized macrophages (i.e., TAMs) with preference to M1 macrophages, and that the interaction was not interfered with by conjugating FITC to its functional group. Further, we constructed a nanotube system by grafting Y-Leg onto oxidized carbon nanotubes (OCNTs) loaded with paramagnetic Fe3O4 nanoparticles. The intravenous injection of the resultant Y-Leg-OCNT/Fe3O4 nanotubes to 4T1 mammary tumor-bearing mouse led to the magnetic resonance imaging (MRI) of TAM-infiltrated tumor microenvironment, revealing the targeting specificity of Y-Leg-conjugated nanotubes in vivo. The Y shape of peptide and its functional groups containing amines and imidazole can protonate at different pHs, contributing to the in vitro and in vivo targeting specificity. This study represents the first development of novel peptide and peptide-grafted nanotube system targeting M2-polarized TAMs in vivo. The methodology developed in this study is applicable to the construction of various multifunctional nanoparticle systems for selectively targeting, imaging and manipulating of TAMs for the diagnosis and treatment of cancers and inflammatory diseases identified with macrophage-infiltrated disease tissue.
Understanding the abstract role of speech in communication at 12 months.
Martin, Alia; Onishi, Kristine H; Vouloumanos, Athena
2012-04-01
Adult humans recognize that even unfamiliar speech can communicate information between third parties, demonstrating an ability to separate communicative function from linguistic content. We examined whether 12-month-old infants understand that speech can communicate before they understand the meanings of specific words. Specifically, we test the understanding that speech permits the transfer of information about a Communicator's target object to a Recipient. Initially, the Communicator selectively grasped one of two objects. In test, the Communicator could no longer reach the objects. She then turned to the Recipient and produced speech (a nonsense word) or non-speech (coughing). Infants looked longer when the Recipient selected the non-target than the target object when the Communicator had produced speech but not coughing (Experiment 1). Looking time patterns differed from the speech condition when the Recipient rather than the Communicator produced the speech (Experiment 2), and when the Communicator produced a positive emotional vocalization (Experiment 3), but did not differ when the Recipient had previously received information about the target by watching the Communicator's selective grasping (Experiment 4). Thus infants understand the information-transferring properties of speech and recognize some of the conditions under which others' information states can be updated. These results suggest that infants possess an abstract understanding of the communicative function of speech, providing an important potential mechanism for language and knowledge acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.
Antibody-mediated targeting of replication-competent retroviral vectors.
Tai, Chien-Kuo; Logg, Christopher R; Park, Jinha M; Anderson, W French; Press, Michael F; Kasahara, Noriyuki
2003-05-20
Replication-competent murine leukemia virus (MLV) vectors can be engineered to achieve high efficiency gene transfer to solid tumors in vivo and tumor-restricted replication, however their safety can be further enhanced by redirecting tropism of the virus envelope. We have therefore tested the targeting capability and replicative stability of ecotropic and amphotropic replication-competent retrovirus (RCR) vectors containing two tandem repeats from the immunoglobulin G-binding domain of Staphylococcal protein A inserted into the proline-rich "hinge" region of the envelope, which enables modular use of antibodies of various specificities for vector targeting. The modified envelopes were efficiently expressed and incorporated into virions, were capable of capturing monoclonal anti-HER2 antibodies, and mediated efficient binding of the virus-antibody complex to HER2-positive target cells. While infectivity was markedly reduced by pseudotyping with targeted envelopes alone, coexpression of wild-type envelope rescued efficient cellular entry. Both ecotropic and amphotropic RCR vector/anti-HER2 antibody complexes achieved significant enhancement of transduction on murine target cells overexpressing HER2, which could be competed by preincubation with excess free antibodies. Interestingly, HER2-expressing human breast cancer cells did not show enhancement of transduction despite efficient antibody-mediated cell surface binding, suggesting that target cell-specific parameters markedly affect the efficiency of post-binding entry processes. Serial replication of targeted vectors resulted in selection of Z domain deletion variants, but reduction of the overall size of the vector genome enhanced its stability. Application of antibody-mediated targeting to the initial localization of replication-competent virus vectors to tumor sites will thus require optimized target selection and vector design.
Generator-specific targets of mitochondrial reactive oxygen species.
Bleier, Lea; Wittig, Ilka; Heide, Heinrich; Steger, Mirco; Brandt, Ulrich; Dröse, Stefan
2015-01-01
To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for "signaling" and "damaging" ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.
Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula
2016-01-01
Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types. PMID:27494133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dezhi; Zhan, Qingwen; Chen, Yuche
This study proposes an optimization model that simultaneously incorporates the selection of logistics infrastructure investments and subsidies for green transport modes to achieve specific CO 2 emission targets in a regional logistics network. The proposed model is formulated as a bi-level formulation, in which the upper level determines the optimal selection of logistics infrastructure investments and subsidies for green transport modes such that the benefit-cost ratio of the entire logistics system is maximized. The lower level describes the selected service routes of logistics users. A genetic and Frank-Wolfe hybrid algorithm is introduced to solve the proposed model. The proposed modelmore » is applied to the regional logistics network of Changsha City, China. Findings show that using the joint scheme of the selection of logistics infrastructure investments and green subsidies is more effective than using them solely. In conclusion, carbon emission reduction targets can significantly affect logistics infrastructure investments and subsidy levels.« less
Colorectal cancer chemoprevention: the potential of a selective approach.
Ben-Amotz, Oded; Arber, Nadir; Kraus, Sarah
2010-10-01
Colorectal cancer (CRC) is a leading cause of cancer death, and therefore demands special attention. Novel recent approaches for the chemoprevention of CRC focus on selective targeting of key pathways. We review the study by Zhang and colleagues, evaluating a selective approach targeting APC-deficient premalignant cells using retinoid-based therapy and TNF-related apoptosis-inducing ligand (TRAIL). This study demonstrates that induction of TRAIL-mediated death signaling contributes to the chemopreventive value of all-trans-retinyl acetate (RAc) by sensitizing premalignant adenoma cells for apoptosis without affecting normal cells. We discuss these important findings, raise few points that deserve consideration, and may further contribute to the development of RAc-based combination therapies with improved efficacy. The authors clearly demonstrate a synergistic interaction between TRAIL, RAc and APC, which leads to the specific cell death of premalignant target cells. The study adds to the growing body of literature related to CRC chemoprevention, and provides solid data supporting a potentially selective approach for preventing CRC using RAc and TRAIL.
Mao, Yu-Ting; Zhu, Julia X; Hanamura, Kenji; Iurilli, Giuliano; Datta, Sandeep Robert; Dalva, Matthew B
2018-05-16
Dendritic filopodia select synaptic partner axons by interviewing the cell surface of potential targets, but how filopodia decipher the complex pattern of adhesive and repulsive molecular cues to find appropriate contacts is unknown. Here, we demonstrate in cortical neurons that a single cue is sufficient for dendritic filopodia to reject or select specific axonal contacts for elaboration as synaptic sites. Super-resolution and live-cell imaging reveals that EphB2 is located in the tips of filopodia and at nascent synaptic sites. Surprisingly, a genetically encoded indicator of EphB kinase activity, unbiased classification, and a photoactivatable EphB2 reveal that simple differences in the kinetics of EphB kinase signaling at the tips of filopodia mediate the choice between retraction and synaptogenesis. This may enable individual filopodia to choose targets based on differences in the activation rate of a single tyrosine kinase, greatly simplifying the process of partner selection and suggesting a general principle. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Dezhi; Zhan, Qingwen; Chen, Yuche; ...
2016-03-14
This study proposes an optimization model that simultaneously incorporates the selection of logistics infrastructure investments and subsidies for green transport modes to achieve specific CO 2 emission targets in a regional logistics network. The proposed model is formulated as a bi-level formulation, in which the upper level determines the optimal selection of logistics infrastructure investments and subsidies for green transport modes such that the benefit-cost ratio of the entire logistics system is maximized. The lower level describes the selected service routes of logistics users. A genetic and Frank-Wolfe hybrid algorithm is introduced to solve the proposed model. The proposed modelmore » is applied to the regional logistics network of Changsha City, China. Findings show that using the joint scheme of the selection of logistics infrastructure investments and green subsidies is more effective than using them solely. In conclusion, carbon emission reduction targets can significantly affect logistics infrastructure investments and subsidy levels.« less
Wang, Hongtao; Li, Guisheng; Kwon, Woo-Saeng; Yang, Deok-Chun
2016-01-01
Panax ginseng is one of the most valuable medicinal plants in the Orient. The low level of genetic variation has limited the application of molecular markers for cultivar authentication and marker-assisted selection in cultivated ginseng. To exploit DNA polymorphism within ginseng cultivars, ginseng expressed sequence tags (ESTs) were searched against the potential intron polymorphism (PIP) database to predict the positions of introns. Intron-flanking primers were then designed in conserved exon regions and used to amplify across the more variable introns. Sequencing results showed that single nucleotide polymorphisms (SNPs), as well as indels, were detected in four EST-derived introns, and SNP markers specific to “Gopoong” and “K-1” were first reported in this study. Based on cultivar-specific SNP sites, allele-specific polymerase chain reaction (PCR) was conducted and proved to be effective for the authentication of ginseng cultivars. Additionally, the combination of a simple NaOH-Tris DNA isolation method and real-time allele-specific PCR assay enabled the high throughput selection of cultivars from ginseng fields. The established real-time allele-specific PCR assay should be applied to molecular authentication and marker assisted selection of P. ginseng cultivars, and the EST intron-targeting strategy will provide a potential approach for marker development in species without whole genomic DNA sequence information. PMID:27271615
Cohen, Nicole A.; Stewart, Michelle L.; Gavathiotis, Evripidis; Tepper, Jared L.; Bruekner, Susanne R.; Koss, Brian; Opferman, Joseph T.; Walensky, Loren D.
2012-01-01
SUMMARY Cancer cells hijack BCL-2 family survival proteins to suppress the death effectors and thereby enforce an immortal state. This is accomplished biochemically by an anti-apoptotic surface groove that neutralizes the pro-apoptotic BH3 α-helix of death proteins. Anti-apoptotic MCL-1 in particular has emerged as a ubiquitous resistance factor in cancer. Whereas targeting the BCL-2 anti-apoptotic subclass effectively restores the death pathway in BCL-2-dependent cancer, the development of molecules tailored to the binding specificity of MCL-1 has lagged. We previously discovered that a hydrocarbon-stapled MCL-1 BH3 helix is an exquisitely selective MCL-1 antagonist. By deploying this unique reagent in a competitive screen, we identified an MCL-1 inhibitor molecule that selectively targets the BH3-binding groove of MCL-1, neutralizes its biochemical lockhold on apoptosis, and induces caspase activation and leukemia cell death in the specific context of MCL-1 dependence. PMID:22999885
Bispecific small molecule-antibody conjugate targeting prostate cancer.
Kim, Chan Hyuk; Axup, Jun Y; Lawson, Brian R; Yun, Hwayoung; Tardif, Virginie; Choi, Sei Hyun; Zhou, Quan; Dubrovska, Anna; Biroc, Sandra L; Marsden, Robin; Pinstaff, Jason; Smider, Vaughn V; Schultz, Peter G
2013-10-29
Bispecific antibodies, which simultaneously target CD3 on T cells and tumor-associated antigens to recruit cytotoxic T cells to cancer cells, are a promising new approach to the treatment of hormone-refractory prostate cancer. Here we report a site-specific, semisynthetic method for the production of bispecific antibody-like therapeutics in which a derivative of the prostate-specific membrane antigen-binding small molecule DUPA was selectively conjugated to a mutant αCD3 Fab containing the unnatural amino acid, p-acetylphenylalanine, at a defined site. Homogeneous conjugates were generated in excellent yields and had good solubility. The efficacy of the conjugate was optimized by modifying the linker structure, relative binding orientation, and stoichiometry of the ligand. The optimized conjugate showed potent and selective in vitro activity (EC50 ~ 100 pM), good serum half-life, and potent in vivo activity in prophylactic and treatment xenograft mouse models. This semisynthetic approach is likely to be applicable to the generation of additional bispecific agents using drug-like ligands selective for other cell-surface receptors.
Selective in vivo metabolic cell-labeling-mediated cancer targeting
Wang, Hua; Wang, Ruibo; Cai, Kaimin; He, Hua; Liu, Yang; Yen, Jonathan; Wang, Zhiyu; Xu, Ming; Sun, Yiwen; Zhou, Xin; Yin, Qian; Tang, Li; Dobrucki, Iwona T; Dobrucki, Lawrence W; Chaney, Eric J; Boppart, Stephen A; Fan, Timothy M; Lezmi, Stéphane; Chen, Xuesi; Yin, Lichen; Cheng, Jianjun
2017-01-01
Distinguishing cancer cells from normal cells through surface receptors is vital for cancer diagnosis and targeted therapy. Metabolic glycoengineering of unnatural sugars provides a powerful tool to manually introduce chemical receptors onto the cell surface; however, cancer-selective labeling still remains a great challenge. Herein we report the design of sugars that can selectively label cancer cells both in vitro and in vivo. Specifically, we inhibit the cell-labeling activity of tetraacetyl-N-azidoacetylmannosamine (Ac4ManAz) by converting its anomeric acetyl group to a caged ether bond that can be selectively cleaved by cancer-overexpressed enzymes and thus enables the overexpression of azido groups on the surface of cancer cells. Histone deacetylase and cathepsin L-responsive acetylated azidomannosamine, one such enzymatically activatable Ac4ManAz analog developed, mediated cancer-selective labeling in vivo, which enhanced tumor accumulation of a dibenzocyclooctyne–doxorubicin conjugate via click chemistry and enabled targeted therapy against LS174T colon cancer, MDA-MB-231 triple-negative breast cancer and 4T1 metastatic breast cancer in mice. PMID:28192414
Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance?
Gilbert, P; Allison, D G; McBain, A J
2002-01-01
Microbial biofilm has become inexorably linked with man's failure to control them by antibiotic and biocide regimes that are effective against suspended bacteria. This failure relates to a localized concentration of biofilm bacteria, and their extracellular products (exopolymers and extracellular enzymes), that moderates the access of the treatment agent and starves the more deeply placed cells. Biofilms, therefore, typically present gradients of physiology and concentration for the imposed treatment agent, which enables the less susceptible clones to survive. Such clones might include efflux mutants in addition to genotypes with modifications in single gene products. Clonal expansion following subeffective treatment would, in the case of many antibiotics, lead to the emergence of a resistant population. This tends not to occur for biocidal treatments where the active agent exhibits multiple pharmacological activity towards a number of specific cellular targets. Whilst resistance development towards biocidal agents is highly unlikely, subeffective exposure will lead to the selection of less susceptible clones, modified either in efflux or in their most susceptible target. The latter might also confer resistance to antibiotics where the target is shared. Thus, recent reports have demonstrated that sublethal concentrations of the antibacterial and antifungal agent triclosan can select for resistant mutants in Escherichia coli and that this agent specifically targets the enzyme enoyl reductase that is involved in lipid biosynthesis. Triclosan may, therefore, select for mutants in a target that is shared with the anti-E. coli diazaborine compounds and the antituberculosis drug isoniazid. Although triclosan may be a uniquely specific biocide, sublethal concentrations of less specific antimicrobial agents may also select for mutations within their most sensitive targets, some of which might be common to therapeutic agents. Sublethal treatment with chemical antimicrobial agents has also been demonstrated to induce the expression of multidrug efflux pumps and efflux mutants. Whilst efflux does not confer protection against use concentrations of biocidal products it is sufficient to confer protection against therapeutic doses of many antibiotics. It has, therefore, been widely speculated that biocide misuse may have an insidious effect, contributing to the evolution and persistence of drug resistance within microbial communities. Whilst such notions are supported by laboratory studies that utilize pure cultures, recent evidence has strongly refuted such linkage within the general environment where complex, multispecies biofilms predominate and where biocidal products are routinely deployed. In such situations the competition, for nutrients and space, between community members of disparate sensitivities far outweighs any potential benefits bestowed by the changes in an individual's antimicrobial susceptibility.
Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity
Anastassiadis, Theonie; Deacon, Sean W.; Devarajan, Karthik; Ma, Haiching; Peterson, Jeffrey R.
2011-01-01
Small-molecule protein kinase inhibitors are central tools for elucidating cellular signaling pathways and are promising therapeutic agents. Due to evolutionary conservation of the ATP-binding site, most kinase inhibitors that target this site promiscuously inhibit multiple kinases. Interpretation of experiments utilizing these compounds is confounded by a lack of data on the comprehensive kinase selectivity of most inhibitors. Here we profiled the activity of 178 commercially available kinase inhibitors against a panel of 300 recombinant protein kinases using a functional assay. Quantitative analysis revealed complex and often unexpected kinase-inhibitor interactions, with a wide spectrum of promiscuity. Many off-target interactions occur with seemingly unrelated kinases, revealing how large-scale profiling can be used to identify multi-targeted inhibitors of specific, diverse kinases. The results have significant implications for drug development and provide a resource for selecting compounds to elucidate kinase function and for interpreting the results of experiments that use them. PMID:22037377
Effects of task-irrelevant grouping on visual selection in partial report.
Lunau, Rasmus; Habekost, Thomas
2017-07-01
Perceptual grouping modulates performance in attention tasks such as partial report and change detection. Specifically, grouping of search items according to a task-relevant feature improves the efficiency of visual selection. However, the role of task-irrelevant feature grouping is not clearly understood. In the present study, we investigated whether grouping of targets by a task-irrelevant feature influences performance in a partial-report task. In this task, participants must report as many target letters as possible from a briefly presented circular display. The crucial manipulation concerned the color of the elements in these trials. In the sorted-color condition, the color of the display elements was arranged according to the selection criterion, and in the unsorted-color condition, colors were randomly assigned. The distractor cost was inferred by subtracting performance in partial-report trials from performance in a control condition that had no distractors in the display. Across five experiments, we manipulated trial order, selection criterion, and exposure duration, and found that attentional selectivity was improved in sorted-color trials when the exposure duration was 200 ms and the selection criterion was luminance. This effect was accompanied by impaired selectivity in unsorted-color trials. Overall, the results suggest that the benefit of task-irrelevant color grouping of targets is contingent on the processing locus of the selection criterion.
Desai, Tanvi J; Toombs, Jason E; Minna, John D; Brekken, Rolf A; Udugamasooriya, Damith Gomika
2016-05-24
Phosphatidylserine (PS) is an anionic phospholipid maintained on the inner-leaflet of the cell membrane and is externalized in malignant cells. We previously launched a careful unbiased selection targeting biomolecules (e.g. protein, lipid or carbohydrate) distinct to cancer cells by exploiting HCC4017 lung cancer and HBEC30KT normal epithelial cells derived from the same patient, identifying HCC4017 specific peptide-peptoid hybrid PPS1. In this current study, we identified PS as the target of PPS1. We validated direct PPS1 binding to PS using ELISA-like assays, lipid dot blot and liposome based binding assays. In addition, PPS1 recognized other negatively charged and cancer specific lipids such as phosphatidic acid, phosphatidylinositol and phosphatidylglycerol. PPS1 did not bind to neutral lipids such as phosphatidylethanolamine found in cancer and phosphatidylcholine and sphingomyelin found in normal cells. Further we found that the dimeric version of PPS1 (PPS1D1) displayed strong cytotoxicity towards lung cancer cell lines that externalize PS, but not normal cells. PPS1D1 showed potent single agent anti-tumor activity and enhanced the efficacy of docetaxel in mice bearing H460 lung cancer xenografts. Since PS and anionic phospholipid externalization is common across many cancer types, PPS1 may be an alternative to overcome limitations of protein targeted agents.
Hamula, Camille L A; Peng, Hanyong; Wang, Zhixin; Tyrrell, Gregory J; Li, Xing-Fang; Le, X Chris
2016-03-15
Streptococcus pyogenes is a clinically important pathogen consisting of various serotypes determined by different M proteins expressed on the cell surface. The M type is therefore a useful marker to monitor the spread of invasive S. pyogenes in a population. Serotyping and nucleic acid amplification/sequencing methods for the identification of M types are laborious, inconsistent, and usually confined to reference laboratories. The primary objective of this work is to develop a technique that enables generation of aptamers binding to specific M-types of S. pyogenes. We describe here an in vitro technique that directly used live bacterial cells and the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) strategy. Live S. pyogenes cells were incubated with DNA libraries consisting of 40-nucleotides randomized sequences. Those sequences that bound to the cells were separated, amplified using polymerase chain reaction (PCR), purified using gel electrophoresis, and served as the input DNA pool for the next round of SELEX selection. A specially designed forward primer containing extended polyA20/5Sp9 facilitated gel electrophoresis purification of ssDNA after PCR amplification. A counter-selection step using non-target cells was introduced to improve selectivity. DNA libraries of different starting sequence diversity (10(16) and 10(14)) were compared. Aptamer pools from each round of selection were tested for their binding to the target and non-target cells using flow cytometry. Selected aptamer pools were then cloned and sequenced. Individual aptamer sequences were screened on the basis of their binding to the 10 M-types that were used as targets. Aptamer pools obtained from SELEX rounds 5-8 showed high affinity to the target S. pyogenes cells. Tests against non-target Streptococcus bovis, Streptococcus pneumoniae, and Enterococcus species demonstrated selectivity of these aptamers for binding to S. pyogenes. Several aptamer sequences were found to bind preferentially to the M11 M-type of S. pyogenes. Estimated binding dissociation constants (Kd) were in the low nanomolar range for the M11 specific sequences; for example, sequence E-CA20 had a Kd of 7±1 nM. These affinities are comparable to those of a monoclonal antibody. The improved bacterial cell-SELEX technique is successful in generating aptamers selective for S. pyogenes and some of its M-types. These aptamers are potentially useful for detecting S. pyogenes, achieving binding profiles of the various M-types, and developing new M-typing technologies for non-specialized laboratories or point-of-care testing. Copyright © 2015 Elsevier Inc. All rights reserved.
Campbell, Samuel; Suwan, Keittisak; Waramit, Sajee; Aboagye, Eric Ofori; Hajitou, Amin
2018-04-21
The previously developed adeno-associated virus/phage (AAVP) vector, a hybrid between M13 bacteriophage (phage) viruses that infect bacteria only and human Adeno-Associated Virus (AAV), is a promising tool in targeted gene therapy against cancer. AAVP can be administered systemically and made tissue specific through the use of ligand-directed targeting. Cancer cells and tumor-associated blood vessels overexpress the α ν integrin receptors, which are involved in tumor angiogenesis and tumor invasion. AAVP is targeted to these integrins via a double cyclic RGD4C ligand displayed on the phage capsid. Nevertheless, there remain significant host-defense hurdles to the use of AAVP in targeted gene delivery and subsequently in gene therapy. We previously reported that histone deacetylation in cancer constitutes a barrier to AAVP. Herein, to improve AAVP-mediated gene delivery to cancer cells, we combined the vector with selective adjuvant chemicals that inhibit specific histone deacetylases (HDAC). We examined the effects of the HDAC inhibitor C1A that mainly targets HDAC6 and compared this to sodium butyrate, a pan-HDAC inhibitor with broad spectrum HDAC inhibition. We tested the effects on melanoma, known for HDAC6 up-regulation, and compared this side by side with a normal human kidney HEK293 cell line. Varying concentrations were tested to determine cytotoxic levels as well as effects on AAVP gene delivery. We report that the HDAC inhibitor C1A increased AAVP-mediated transgene expression by up to ~9-fold. These findings indicate that selective HDAC inhibition is a promising adjuvant treatment for increasing the therapeutic value of AAVP.
NASA Astrophysics Data System (ADS)
Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba
2016-03-01
Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond conventional treatments.
Imatinib: A Breakthrough of Targeted Therapy in Cancer
Iqbal, Naveed
2014-01-01
Deregulated protein tyrosine kinase activity is central to the pathogenesis of human cancers. Targeted therapy in the form of selective tyrosine kinase inhibitors (TKIs) has transformed the approach to management of various cancers and represents a therapeutic breakthrough. Imatinib was one of the first cancer therapies to show the potential for such targeted action. Imatinib, an oral targeted therapy, inhibits tyrosine kinases specifically BCR-ABL, c-KIT, and PDGFRA. Apart from its remarkable success in CML and GIST, Imatinib benefits various other tumors caused by Imatinib-specific abnormalities of PDGFR and c-KIT. Imatinib has also been proven to be effective in steroid-refractory chronic graft-versus-host disease because of its anti-PDGFR action. This paper is a comprehensive review of the role of Imatinib in oncology. PMID:24963404
Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery
Kesharwani, Prashant; Iyer, Arun K.
2015-01-01
Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. Dendrimers having properties resembling biomolecules, with well-defined 3D nanopolymeric architectures, are emerging as a highly attractive class of drug and gene delivery vector. The presence of numerous peripheral functional groups on hyperbranched dendrimers affords efficient conjugation of targeting ligands and biomarkers that can recognize and bind to receptors overexpressed on cancer cells for tumor-cell-specific delivery. The present review compiles the recent advances in dendrimer-mediated drug and gene delivery to tumors by passive and active targeting principles with illustrative examples. PMID:25555748
Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).
Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E
2017-01-01
Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
Hanauer, Jan RH; Gottschlich, Lisa; Riehl, Dennis; Rusch, Tillmann; Koch, Vivian; Friedrich, Katrin; Hutzler, Stefan; Prüfer, Steffen; Friedel, Thorsten; Hanschmann, Kay-Martin; Münch, Robert C; Jost, Christian; Plückthun, Andreas; Cichutek, Klaus; Buchholz, Christian J; Mühlebach, Michael D
2016-01-01
To target oncolytic measles viruses (MV) to tumors, we exploit the binding specificity of designed ankyrin repeat proteins (DARPins). These DARPin-MVs have high tumor selectivity while maintaining excellent oncolytic potency. Stability, small size, and efficacy of DARPins allowed the generation of MVs simultaneously targeted to tumor marker HER2/neu and cancer stem cell (CSC) marker EpCAM. For optimization, the linker connecting both DARPins was varied in flexibility and length. Flexibility had no impact on fusion helper activity whereas length had. MVs with bispecific MV-H are genetically stable and revealed the desired double-target specificity. In vitro, the cytolytic activity of bispecific MVs was superior or comparable to mono-targeted viruses depending on the target cells. In vivo, therapeutic efficacy of the bispecific viruses was validated in an orthotopic ovarian carcinoma model revealing an effective reduction of tumor mass. Finally, the power of bispecific targeting was demonstrated on cocultures of different tumor cells thereby mimicking tumor heterogeneity in vitro, more closely reflecting real tumors. Here, bispecific excelled monospecific viruses in efficacy. DARPin-based targeting domains thus allow the generation of efficacious oncolytic viruses with double specificity, with the potential to handle intratumoral variation of antigen expression and to simultaneously target CSCs and the bulk tumor mass. PMID:27119117
Wu, Zining; Graybill, Todd L; Zeng, Xin; Platchek, Michael; Zhang, Jean; Bodmer, Vera Q; Wisnoski, David D; Deng, Jianghe; Coppo, Frank T; Yao, Gang; Tamburino, Alex; Scavello, Genaro; Franklin, G Joseph; Mataruse, Sibongile; Bedard, Katie L; Ding, Yun; Chai, Jing; Summerfield, Jennifer; Centrella, Paolo A; Messer, Jeffrey A; Pope, Andrew J; Israel, David I
2015-12-14
DNA-encoded small-molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, this technology has been used with soluble protein targets that are produced and used in a purified state. Here, we describe a cell-based method for identifying small-molecule ligands from DNA-encoded libraries against integral membrane protein targets. We use this method to identify novel, potent, and specific inhibitors of NK3, a member of the tachykinin family of G-protein coupled receptors (GPCRs). The method is simple and broadly applicable to other GPCRs and integral membrane proteins. We have extended the application of DNA-encoded library technology to membrane-associated targets and demonstrate the feasibility of selecting DNA-tagged, small-molecule ligands from complex combinatorial libraries against targets in a heterogeneous milieu, such as the surface of a cell.
Targeted Molecular Imaging of Cancer Cells Using MS2-Based 129 Xe NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Keunhong; Netirojjanakul, Chawita; Munch, Henrik K.
Targeted, selective, and highly sensitive 129Xe NMR nanoscale biosensors have been synthesized using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized 129Xe NMR signal contrast and hyper-CEST 129Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized 129Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.
Method and apparatus for detection of fluorescently labeled materials
Stern, David; Fiekowsky, Peter
2004-05-25
Fluorescently marked targets bind to a substrate 230 synthesized with polymer sequences at known locations. The targets are detected by exposing selected regions of the substrate 230 to light from a light source 100 and detecting the photons from the light fluoresced therefrom, and repeating the steps of exposure and detection until the substrate 230 is completely examined. The resulting data can be used to determine binding affinity of the targets to specific polymer sequences.
Fan, Li-Qiang; Du, Guo-Xiu; Li, Peng-Fei; Li, Ming-Wei; Sun, Yao; Zhao, Li-Ming
2016-12-01
Lack of satisfactory specificity towards tumor cells and poor intracellular delivery efficacy are the major drawbacks with conventional cancer chemotherapy. Conjugated anticancer drugs to targeting moieties e.g. to peptides with the ability to recognize cancer cells and to cell penetrating peptide can improve these characteristics, respectively. Combining a tumor homing peptide with an appropriate cell-penetrating peptide can enhance the tumor-selective internalization efficacy of the carrying cargo molecules. In the present study, the breast cancer homing ability of SP90 peptide and the synergistic effect of SP90 with a cell-penetrating peptide(C peptide) were evaluated. SP90 and chimeric peptide SP90-C specifically targeted cargo molecule into breast cancer cells, especially triple negative MDA-MB-231 cell, in a dose- and time-dependent manner, but not normal breast cells and other cancer cells, while C peptide alone had no cell-selectivity. SP90-C increased the intracellular delivery efficiency by 12-fold or 10-fold compared to SP90 or C peptide alone, respectively. SP90 and SP90-C conjugation increased the anti-proliferative and apoptosis-inducing activity of HIV-1 Vpr, a potential novel anticancer protein drug, to breast cancer cell but not normal breast cell by arresting cells in G2/M phase. With excellent breast cancer cell-selective penetrating efficacy, SP90-C appears as a promising candidate vector for targeted anti-cancer drug delivery. SP90-VPR-C is a potential novel breast cancer-targeted anticancer agent for its high anti-tumor activity and low toxicity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Nonviral siRNA delivery for gene silencing in neurodegenerative diseases.
Prakash, Satya; Malhotra, Meenakshi; Rengaswamy, Venkatesh
2010-01-01
Linking genes with the underlying mechanisms of diseases is one of the biggest challenges of genomics-driven drug discovery research. Designing an inhibitor for any neurodegenerative disease that effectively halts the pathogenicity of the disease is yet to be achieved. The challenge lies in crossing the blood-brain barrier (BBB)/blood-cerebrospinal fluid barrier (BCSFB) to reach the catalytic pockets of the enzyme/protein involved in the molecular mechanism of the disease process. Designing siRNA with exquisite specificity may result in selective suppression of the disease-linked gene. Although siRNA is the most promising method, it loses its potency in downregulating the gene due to its inherent instability, off-target effects, and lack of on-target effective delivery systems. Viral as well as nonviral delivery methods have been effectively tested in vivo for silencing of molecular targets and have resulted in significant efficacy in animal models of Alzheimer's disease, amyotrophic lateral sclerosis (ALS), anxiety, depression, encephalitis, glioblastoma, Huntington's disease, neuropathic pain, and spinocerebellar ataxia. To realize the full therapeutic potential of siRNA for neurodegenerative diseases, we need to overcome many hurdles and challenges such as selecting suitable tissue-specific delivery vectors, minimizing the off-target effects, and achieving distribution in sufficient concentrations at the target tissue without any side effects. Cationic nanoparticle-mediated targeted siRNA delivery for therapeutic purposes has gained considerable clinical importance as a result of its promising efficacy.
Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.
2015-01-01
Summary We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each target locus. We introduce a self-cleaving palindromic sgRNA plasmid and a short double-stranded DNA sequence encoding the desired locus-specific sgRNA into target cells, allowing them to produce a locus-specific sgRNA plasmid through homologous recombination. scCRISPR enables efficient generation of gene knockouts (∼88% mutation rate) at approximately one-sixth the cost of plasmid-based sgRNA construction with only 2 hr of preparation for each targeted site. Additionally, we demonstrate efficient site-specific knockin of GFP transgenes without any plasmid cloning or genome-integrated selection cassette in mouse and human embryonic stem cells (2%–4% knockin rate) through PCR-based addition of short homology arms. scCRISPR substantially lowers the bar on mouse and human transgenesis. PMID:26527385
Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun
2014-01-01
It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes. PMID:24185846
Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun; Cha, Hyung Joon
2014-01-01
It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes.
The waiting time problem in a model hominin population.
Sanford, John; Brewer, Wesley; Smith, Franzine; Baumgardner, John
2015-09-17
Functional information is normally communicated using specific, context-dependent strings of symbolic characters. This is true within the human realm (texts and computer programs), and also within the biological realm (nucleic acids and proteins). In biology, strings of nucleotides encode much of the information within living cells. How do such information-bearing nucleotide strings arise and become established? This paper uses comprehensive numerical simulation to understand what types of nucleotide strings can realistically be established via the mutation/selection process, given a reasonable timeframe. The program Mendel's Accountant realistically simulates the mutation/selection process, and was modified so that a starting string of nucleotides could be specified, and a corresponding target string of nucleotides could be specified. We simulated a classic pre-human hominin population of at least 10,000 individuals, with a generation time of 20 years, and with very strong selection (50% selective elimination). Random point mutations were generated within the starting string. Whenever an instance of the target string arose, all individuals carrying the target string were assigned a specified reproductive advantage. When natural selection had successfully amplified an instance of the target string to the point of fixation, the experiment was halted, and the waiting time statistics were tabulated. Using this methodology we tested the effect of mutation rate, string length, fitness benefit, and population size on waiting time to fixation. Biologically realistic numerical simulations revealed that a population of this type required inordinately long waiting times to establish even the shortest nucleotide strings. To establish a string of two nucleotides required on average 84 million years. To establish a string of five nucleotides required on average 2 billion years. We found that waiting times were reduced by higher mutation rates, stronger fitness benefits, and larger population sizes. However, even using the most generous feasible parameters settings, the waiting time required to establish any specific nucleotide string within this type of population was consistently prohibitive. We show that the waiting time problem is a significant constraint on the macroevolution of the classic hominin population. Routine establishment of specific beneficial strings of two or more nucleotides becomes very problematic.
Minireview: Challenges and Opportunities in Development of PPAR Agonists
Bortolini, Michele; Tadayyon, Moh; Bopst, Martin
2014-01-01
The clinical impact of the fibrate and thiazolidinedione drugs on dyslipidemia and diabetes is driven mainly through activation of two transcription factors, peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ. However, substantial differences exist in the therapeutic and side-effect profiles of specific drugs. This has been attributed primarily to the complexity of drug-target complexes that involve many coregulatory proteins in the context of specific target gene promoters. Recent data have revealed that some PPAR ligands interact with other non-PPAR targets. Here we review concepts used to develop new agents that preferentially modulate transcriptional complex assembly, target more than one PPAR receptor simultaneously, or act as partial agonists. We highlight newly described on-target mechanisms of PPAR regulation including phosphorylation and nongenomic regulation. We briefly describe the recently discovered non-PPAR protein targets of thiazolidinediones, mitoNEET, and mTOT. Finally, we summarize the contributions of on- and off-target actions to select therapeutic and side effects of PPAR ligands including insulin sensitivity, cardiovascular actions, inflammation, and carcinogenicity. PMID:25148456
Target specific compound identification using a support vector machine.
Plewczynski, Dariusz; von Grotthuss, Marcin; Spieser, Stephane A H; Rychlewski, Leszek; Wyrwicz, Lucjan S; Ginalski, Krzysztof; Koch, Uwe
2007-03-01
In many cases at the beginning of an HTS-campaign, some information about active molecules is already available. Often known active compounds (such as substrate analogues, natural products, inhibitors of a related protein or ligands published by a pharmaceutical company) are identified in low-throughput validation studies of the biochemical target. In this study we evaluate the effectiveness of a support vector machine applied for those compounds and used to classify a collection with unknown activity. This approach was aimed at reducing the number of compounds to be tested against the given target. Our method predicts the biological activity of chemical compounds based on only the atom pairs (AP) two dimensional topological descriptors. The supervised support vector machine (SVM) method herein is trained on compounds from the MDL drug data report (MDDR) known to be active for specific protein target. For detailed analysis, five different biological targets were selected including cyclooxygenase-2, dihydrofolate reductase, thrombin, HIV-reverse transcriptase and antagonists of the estrogen receptor. The accuracy of compound identification was estimated using the recall and precision values. The sensitivities for all protein targets exceeded 80% and the classification performance reached 100% for selected targets. In another application of the method, we addressed the absence of an initial set of active compounds for a selected protein target at the beginning of an HTS-campaign. In such a case, virtual high-throughput screening (vHTS) is usually applied by using a flexible docking procedure. However, the vHTS experiment typically contains a large percentage of false positives that should be verified by costly and time-consuming experimental follow-up assays. The subsequent use of our machine learning method was found to improve the speed (since the docking procedure was not required for all compounds from the database) and also the accuracy of the HTS hit lists (the enrichment factor).
Mak, Wai Shun; Tran, Stephen; Marcheschi, Ryan; Bertolani, Steve; Thompson, James; Baker, David; Liao, James C; Siegel, Justin B
2015-11-24
The ability to biosynthetically produce chemicals beyond what is commonly found in Nature requires the discovery of novel enzyme function. Here we utilize two approaches to discover enzymes that enable specific production of longer-chain (C5-C8) alcohols from sugar. The first approach combines bioinformatics and molecular modelling to mine sequence databases, resulting in a diverse panel of enzymes capable of catalysing the targeted reaction. The median catalytic efficiency of the computationally selected enzymes is 75-fold greater than a panel of naively selected homologues. This integrative genomic mining approach establishes a unique avenue for enzyme function discovery in the rapidly expanding sequence databases. The second approach uses computational enzyme design to reprogramme specificity. Both approaches result in enzymes with >100-fold increase in specificity for the targeted reaction. When enzymes from either approach are integrated in vivo, longer-chain alcohol production increases over 10-fold and represents >95% of the total alcohol products.
Mertes, Christine; Schneider, Daniel
2018-01-01
Using event-related potentials (ERPs) of the electroencephalogram, we investigated how cognitive control is altered by the scope of an attentional template currently activated in visual working memory. Participants performed a spatial cuing task where an irrelevant color singleton cue was presented prior to a target array. Blockwise, the target was either a red circle or a gray square and had to be searched within homogenous (gray circles) or heterogeneous non-targets (differently colored circles or various shapes). Thereby we aimed to trigger the adoption of different attentional templates: a broader singleton or a narrower, more specific feature template. ERP markers of attentional selection and inhibitory control showed that the amount of cognitive control was overall enhanced when participants searched on the basis of a feature-specific template: the analysis revealed reduced selection (N2pc, frontal P2) and pronounced inhibition (negative shift of frontal N2) of the irrelevant color cue when participants searched for a feature target. On behavioral level attentional capture was most pronounced in the color condition with no differentiation between the task-induced scopes of the attentional template. PMID:29628884
Evolving targeted therapies for right ventricular failure.
Di Salvo, Thomas G
2015-01-01
Although right and left ventricular embryological origins, morphology and cardiodynamics differ, the notion of selectively targeted right ventricular therapies remains controversial. This review focuses on both the currently evolving pharmacologic agents targeting right ventricular failure (metabolic modulators, phosphodiesterase type V inhibitors) and future therapeutic approaches including epigenetic modulation by miRNAs, chromatin binding complexes, long non-coding RNAs, genomic editing, adoptive gene transfer and gene therapy, cell regeneration via cell transplantation and cell reprogramming and cardiac tissue engineering. Strategies for adult right ventricular regeneration will require a more holistic approach than strategies for adult left ventricular failure. Instances of right ventricular failure requiring global reconstitution of right ventricular myocardium, attractive approaches include: i) myocardial patches seeded with cardiac fibroblasts reprogrammed into cardiomyocytes in vivo by small molecules, miRNAs or other epigenetic modifiers; and ii) administration of miRNAs, lncRNAs or small molecules by non-viral vector delivery systems targeted to fibroblasts (e.g., episomes) to stimulate in vivo reprogramming of fibroblasts into cardiomyocytes. For selected heritable genetic myocardial diseases, genomic editing affords exciting opportunities for allele-specific silencing by site-specific directed silencing, mutagenesis or gene excision. Genomic editing by adoptive gene transfer affords similarly exciting opportunities for restoration of myocardial gene expression.
STAT3 or USF2 Contributes to HIF Target Gene Specificity
Pawlus, Matthew R.; Wang, Liyi; Murakami, Aya; Dai, Guanhai; Hu, Cheng-Jun
2013-01-01
The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein. PMID:23991099
Visuospatial selective attention in chickens.
Sridharan, Devarajan; Ramamurthy, Deepa L; Schwarz, Jason S; Knudsen, Eric I
2014-05-13
Voluntary control of attention promotes intelligent, adaptive behaviors by enabling the selective processing of information that is most relevant for making decisions. Despite extensive research on attention in primates, the capacity for selective attention in nonprimate species has never been quantified. Here we demonstrate selective attention in chickens by applying protocols that have been used to characterize visual spatial attention in primates. Chickens were trained to localize and report the vertical position of a target in the presence of task-relevant distracters. A spatial cue, the location of which varied across individual trials, indicated the horizontal, but not vertical, position of the upcoming target. Spatial cueing improved localization performance: accuracy (d') increased and reaction times decreased in a space-specific manner. Distracters severely impaired perceptual performance, and this impairment was greatly reduced by spatial cueing. Signal detection analysis with an "indecision" model demonstrated that spatial cueing significantly increased choice certainty in localizing targets. By contrast, error-aversion certainty (certainty of not making an error) remained essentially constant across cueing protocols, target contrasts, and individuals. The results show that chickens shift spatial attention rapidly and dynamically, following principles of stimulus selection that closely parallel those documented in primates. The findings suggest that the mechanisms that control attention have been conserved through evolution, and establish chickens--a highly visual species that is easily trained and amenable to cutting-edge experimental technologies--as an attractive model for linking behavior to neural mechanisms of selective attention.
Fission yeast retrotransposon Tf1 integration is targeted to 5' ends of open reading frames.
Behrens, R; Hayles, J; Nurse, P
2000-12-01
Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100-420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed.
Fission yeast retrotransposon Tf1 integration is targeted to 5′ ends of open reading frames
Behrens, Ralf; Hayles, Jacky; Nurse, Paul
2000-01-01
Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100–420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed. PMID:11095681
Alcohol highway safety : problem update
DOT National Transportation Integrated Search
1998-04-01
Author's abstract: This document examines new literature and data on selected alcohol-crash targets or problems that have become available since the November 1989 State of Knowledge review. Specifically, this update addresses research since the 1989 ...
AirMSPI PODEX Big Sur Ellipsoid Images
Atmospheric Science Data Center
2013-12-11
... Browse Images from the PODEX 2013 Campaign Big Sur target 02/03/2013 Ellipsoid-projected Select link to ... Version number For more information, see the Data Product Specifications (DPS) ...
Szelag, Malgorzata; Czerwoniec, Anna; Wesoly, Joanna; Bluyssen, Hans A. R.
2015-01-01
Signal transducers and activators of transcription (STATs) facilitate action of cytokines, growth factors and pathogens. STAT activation is mediated by a highly conserved SH2 domain, which interacts with phosphotyrosine motifs for specific STAT-receptor contacts and STAT dimerization. The active dimers induce gene transcription in the nucleus by binding to a specific DNA-response element in the promoter of target genes. Abnormal activation of STAT signaling pathways is implicated in many human diseases, like cancer, inflammation and auto-immunity. Searches for STAT-targeting compounds, exploring the phosphotyrosine (pTyr)-SH2 interaction site, yielded many small molecules for STAT3 but sparsely for other STATs. However, many of these inhibitors seem not STAT3-specific, thereby questioning the present modeling and selection strategies of SH2 domain-based STAT inhibitors. We generated new 3D structure models for all human (h)STATs and developed a comparative in silico docking strategy to obtain further insight into STAT-SH2 cross-binding specificity of a selection of previously identified STAT3 inhibitors. Indeed, by primarily targeting the highly conserved pTyr-SH2 binding pocket the majority of these compounds exhibited similar binding affinity and tendency scores for all STATs. By comparative screening of a natural product library we provided initial proof for the possibility to identify STAT1 as well as STAT3-specific inhibitors, introducing the ‘STAT-comparative binding affinity value’ and ‘ligand binding pose variation’ as selection criteria. In silico screening of a multi-million clean leads (CL) compound library for binding of all STATs, likewise identified potential specific inhibitors for STAT1 and STAT3 after docking validation. Based on comparative virtual screening and docking validation, we developed a novel STAT inhibitor screening tool that allows identification of specific STAT1 and STAT3 inhibitory compounds. This could increase our understanding of the functional role of these STATs in different diseases and benefit the clinical need for more drugable STAT inhibitors with high specificity, potency and excellent bioavailability. PMID:25710482
A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic at low nanomolar concentrations to the same 4 of 12 human lung cancer cell lines. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible inhibitors of stearoyl CoA desaturase (SCD). SCD is recognized as a promising biological target in cancer and metabolic disease.
Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.
2016-07-05
The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.
Shmelkov, Evgeny; Krachmarov, Chavdar; Grigoryan, Arsen V.; Pinter, Abraham; Statnikov, Alexander; Cardozo, Timothy
2014-01-01
The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs). Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design. PMID:24587168
RNAi: a potential new class of therapeutic for human genetic disease.
Seyhan, Attila A
2011-11-01
Dominant negative genetic disorders, in which a mutant allele of a gene causes disease in the presence of a second, normal copy, have been challenging since there is no cure and treatments are only to alleviate the symptoms. Current therapies involving pharmacological and biological drugs are not suitable to target mutant genes selectively due to structural indifference of the normal variant of their targets from the disease-causing mutant ones. In instances when the target contains single nucleotide polymorphism (SNP), whether it is an enzyme or structural or receptor protein are not ideal for treatment using conventional drugs due to their lack of selectivity. Therefore, there is a need to develop new approaches to accelerate targeting these previously inaccessible targets by classical therapeutics. Although there is a cooling trend by the pharmaceutical industry for the potential of RNA interference (RNAi), RNAi and other RNA targeting drugs (antisense, ribozyme, etc.) still hold their promise as the only drugs that provide an opportunity to target genes with SNP mutations found in dominant negative disorders, genes specific to pathogenic tumor cells, and genes that are critical for mediating the pathology of various other diseases. Because of its exquisite specificity and potency, RNAi has attracted a considerable interest as a new class of therapeutic for genetic diseases including amyotrophic lateral sclerosis, Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), spinocerebellar ataxia, dominant muscular dystrophies, and cancer. In this review, progress and challenges in developing RNAi therapeutics for genetic diseases will be discussed.
Sequencing Needs for Viral Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, S N; Lam, M; Mulakken, N J
2004-01-26
We built a system to guide decisions regarding the amount of genomic sequencing required to develop diagnostic DNA signatures, which are short sequences that are sufficient to uniquely identify a viral species. We used our existing DNA diagnostic signature prediction pipeline, which selects regions of a target species genome that are conserved among strains of the target (for reliability, to prevent false negatives) and unique relative to other species (for specificity, to avoid false positives). We performed simulations, based on existing sequence data, to assess the number of genome sequences of a target species and of close phylogenetic relatives (''nearmore » neighbors'') that are required to predict diagnostic signature regions that are conserved among strains of the target species and unique relative to other bacterial and viral species. For DNA viruses such as variola (smallpox), three target genomes provide sufficient guidance for selecting species-wide signatures. Three near neighbor genomes are critical for species specificity. In contrast, most RNA viruses require four target genomes and no near neighbor genomes, since lack of conservation among strains is more limiting than uniqueness. SARS and Ebola Zaire are exceptional, as additional target genomes currently do not improve predictions, but near neighbor sequences are urgently needed. Our results also indicate that double stranded DNA viruses are more conserved among strains than are RNA viruses, since in most cases there was at least one conserved signature candidate for the DNA viruses and zero conserved signature candidates for the RNA viruses.« less
Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.
Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V
2016-12-01
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Dao, KinhLuan Lenny D.
Cancer is the second leading cause of death after cardiovascular disease in the United State. Despite extensive research in development of antitumor drugs, most of these therapeutic entities often possess nonspecific toxicity, thus they can only be used to treat tumors in higher doses or more frequently. Because of the cytotoxicity and severe side effects, the drug therapeutic window normally is limited. Beside the toxicity issue, antitumor drug are also not selectively taken up by tumor cells, thus the necessitating concentrations that would eradicate the tumor can often not be used. In addition, tumor cells tend to develop resistance against the anticancer drugs after prolonged treatment. Therefore, alleviating the systemic cytotoxicity and side effects, improving in tumor selectivity, high potency, and therapeutic efficacy are still major obstacles in the area of anticancer drug development. A more promising approach for developing a selective agent for cancer is to conjugate a potent therapeutic drug, or an imaging agent with a targeting group, such as antibody or a high binding-specificity small molecule, that selectively recognize the overexpressed antigens or proteins on tumor cells. My research combines several approaches to describe this strategy via using different targeting molecules to different diseases, as well as different potent cytotoxic drugs for different therapies. Three studies related to the preparation and biological evaluation of new therapeutic agents, such as estradiol-drug hybrids, cell membrane targeted molecular imaging agents, and multifunctional NPs will be discussed. The preliminary results of these studies indicated that our new reagents achieved their initial objectives and can be further improved for optimized synthesis and in vivo experiments. The first study describes the method in which we employed a modular assembly approach to synthesize a novel 11beta-substituted steroidal anti-estrogen. The key intermediate was synthesized with an azido-tetraethylene glycol moiety that could be coupled to a complementary doxorubicin benzoyl hydrazone, functionalized with a propargyl tetraethylene glycol moiety. Huisgen [3+2] cycloaddition chemistry gave the final hybrid which was evaluated for receptor binding to demonstrate ER-affinity and for cytotoxicity in ER(+)-MCF-7 and ER(-)-MDA-MB-231 breast cancer cell lines. The anti-estrogen-doxorubicin hybrid demonstrated enhanced (>70-fold) selectivity for ER(+)-cells versus ER(-)-cells and enhanced efficacy compared to doxorubicin alone. The reversal of these effects by co-administration of estradiol demonstrated that the presence of the anti-estrogenic component was critical for selectivity and cytotoxicity in ER(+)-MCF-7 human breast cancer cells. The results suggest that this approach the basis for developing selective therapeutic agents for ER(+)-cancer cells with reduced effects on non-target tissues.1,2 The second study describes our use of 11beta-AE for targeting ER membrane targeting in hormone-dependent breast cancer, and of a urea-based prostate specific membrane antigen (PSMA) inhibitor for targeting PSMA membrane receptors in androgen-independent of prostate cancer. These derivatives were used to prepare a series of molecular imaging probes. We have successfully established our model compound, 11beta-AE radiolabeled with 18F-fluoro-OEG-azide, for in vivo imaging.3 The third study describes a strategy based on the design and synthesis of a multifunctional gold nanoparticulate (mfAuNPs) drug delivery system that can be used for prostate cancer therapy. We have utilized a convergent modular assembly approach to prepare individual components such as a) prostate specific membrane antigen (PSMA) ligands for targeting; b) pH-sensitive doxorubicin; and c) Re/99Tc chelating complex for radioimaging. The components can be assembled with a terminal lipoic acid or thiolated ethylene glycol oligomer for attachment to the Au surface. Initial in vitro studies with the PSMA-targeted mfAuNPs demonstrated significant selective uptake and localization properties in LnCaP and PC-3 prostate cancer cells.4 References: (1) Dao, K.-L.; Hanson, R. N.: Targeting the Estrogen Receptor using Steroid-Therapeutic Drug Conjugates (Hybrids). Bioconjugate Chemistry 2012. DOI: 10.1021/bc300378e. (2) Dao, K.-L.; Sawant, R. R.; Hendricks, J. A.; Ronga, V.; Torchilin, V. P.; Hanson, R. N.: Design, Synthesis, and Initial Biological Evaluation of a Steroidal Anti-Estrogen-Doxorubicin Bioconjugate for Targeting Estrogen Receptor-Positive Breast Cancer Cells. Bioconjugate Chemistry 2012, 23, 785-795. (3) Design, Synthesis, and in vivo PET imaging of radioligand 18F-11beta-substituted estradiol (18F-11betaAE) in breast cancer (manuscript in prep.) (4) Prostate Cancer-Specific Drug Delivery and Imaging Systems: Design, Synthesis, and Biological Evaluation of Multi-functional Gold Nanoparticles (manuscript in prep.)
Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes
NASA Astrophysics Data System (ADS)
Kandavelou, Karthikeyan; Chandrasegaran, Srinivasan
Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.
Kopperi, Matias; Riekkola, Marja-Liisa
2016-05-12
Selective adsorbents for solid-phase extraction are needed to meet the low concentration requirements of new environmental quality standard directives, especially for the analysis of estrogens in wastewater. In this work, bulk polymerization procedures were first optimized for the synthesis of non-imprinted polymers (NIP) with low non-specific adsorption of nonpolar compounds in aqueous environments. Water-compatible molecularly imprinted polymers (MIP) were then synthetized by increasing the selectivity of the polymer towards steroids with a testosterone template (average imprinting factor > 10). In addition, the affinity of synthetized entrapped β-cyclodextrin-epichlorohydrin polymers (ECD) towards steroids was clarified. The polymers were applied to the extraction of spiked wastewater effluent samples and their performance compared to commercially available adsorbents. The selectivity of the studied adsorbents was evaluated utilizing liquid chromatography ‒ mass spectrometry as well as comprehensive two-dimensional gas chromatography ‒ time-of-flight mass spectrometry. Affinity between adsorbents and steroids as well as matrix removal potential were measured with targeted methodologies, and two novel non-targeted methodologies were proposed to quantitatively measure adsorbent selectivity by utilizing chemometrics. Semi-quantitative selectivity was measured from the ratio of peak areas between steroidal and other compounds. Semi-qualitative selectivity was calculated from the ratio between the number of tentatively identified steroidal and other compounds. The synthetized polymers provided good matrix removal potential (ion suppression 15-30%) and semi-qualitative selectivity (∼4 units) compared to the commercial adsorbents (ion suppression 45-80%, selectivity < 3 units). Simple non-targeted approaches provided a novel method of quantifying the selectivity of extraction. Copyright © 2016 Elsevier B.V. All rights reserved.
The design strategy of selective PTP1B inhibitors over TCPTP.
Li, XiangQian; Wang, LiJun; Shi, DaYong
2016-08-15
Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages
Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai
2006-01-01
Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance. PMID:16723570
Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard
2016-01-01
Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.
Kazemi-Lomedasht, Fatemeh; Behdani, Mahdi; Habibi-Anbouhi, Mahdi; Shahbazzadeh, Delavar
2016-06-01
Camel single domain antibody known as Nanobody™ refers to a novel class of monoclonal antibodies with appropriate pharmacological properties. Nanobody is an antigen-binding site of camel heavy chain antibody also known as VHH. Expression in a microbial system, stability in difficult conditions and extremes of PH, and nanomolar affinity to target an appropriate drug format makes Nanobody a potential for drug discovery. Needs for Nanobody function evaluation in animal models turned our interest to develop anti-mouse vascular endothelial growth factor (mVEGF) Nanobodies using phage display as a potent technique in the isolation of antibodies. Isolation of anti-mVEGF Nanobodies was performed on Camelus dromedarius immune library through four consecutive rounds of biopanning on immobilized mVEGF. Enrichment of the Nanobody library was monitored by polyclonal phage-ELISA, and specific Nanobodies were selected using periplasmic extract-ELISA. Selected Nanobodies were expressed in WK6 Escherichia coli cells and purified using immobilized metal affinity chromatography. Specificity and affinity of selected Nanobodies were evaluated on immobilized mVEGF. Results demonstrated the successful enrichment of the Nanobody library. Two clones named Nb5 and Nb10 were selected through screening procedures according to their signal value in periplasmic extract-ELISA. Selected Nanobodies specifically reacted to mVEGF, but cross-reactivity with other antigens was not observed. Evaluated affinity for the Nanobodies was in nanomolar range. Taken together, according to the results, the selected Nanobodies promise to be a novel tool in research and for further development of diagnostic or therapeutic purposes in pharmaceutical science.
Tang, Jie; Suga, Nobuo
2009-01-01
In auditory cortex of the mustached bat, the FF (F means frequency modulation), dorsal fringe (DF) and ventral fringe (VF) areas consist of “combination-sensitive” neurons tuned to the pair of an emitted biosonar pulse and its echo with a specific delay (best delay: BD). The DF and VF areas are hierarchically at a higher level than the FF area. Focal electric stimulation of the FF area evokes “centrifugal” BD shifts of DF neurons, i.e., shifts away from the BD of the stimulated FF neurons, whereas stimulation of the DF neurons evokes “centripetal” BD shifts of FF neurons, i.e., shifts toward the BD of the stimulated DF neurons. In our current studies, we found that the feed forward projection from FF neurons evokes centrifugal BD shifts of VF neurons, that the feedback projection from VF neurons evokes centripetal BD shifts of FF neurons, that the contralateral projection from DF neurons evokes centripetal BD shifts of DF neurons, and that the centripetal BD shifts evoked by the DF and VF neurons are 2.5 times larger than the centrifugal BD shifts evoked by the FF neurons. The centrifugal BD shifts shape the selective neural representation of a specific target-distance, whereas the centripetal BD shifts expand the representation of the selected specific target-distance to focus on the processing of the target information at a specific distance. The centrifugal and centripetal BD shifts evoked by the feed forward and feedback projections promote finer analysis of a target at shorter distances. PMID:19494145
Cell-specific occupancy of an extended repertoire of CREM and CREB binding loci in male germ cells
2010-01-01
Background CREB and CREM are closely related factors that regulate transcription in response to various stress, metabolic and developmental signals. The CREMτ activator isoform is selectively expressed in haploid spermatids and plays an essential role in murine spermiogenesis. Results We have used chromatin immunoprecipitation coupled to sequencing (ChIP-seq) to map CREM and CREB target loci in round spermatids from adult mouse testis and spermatogonia derived GC1-spg cells respectively. We identify more than 9000 genomic loci most of which are cell-specifically occupied. Despite the fact that round spermatids correspond to a highly specialised differentiated state, our results show that they have a remarkably accessible chromatin environment as CREM occupies more than 6700 target loci corresponding not only to the promoters of genes selectively expressed in spermiogenesis, but also of genes involved in functions specific to other cell types. The expression of only a small subset of these target genes are affected in the round spermatids of CREM knockout animals. We also identify a set of intergenic binding loci some of which are associated with H3K4 trimethylation and elongating RNA polymerase II suggesting the existence of novel CREB and CREM regulated transcripts. Conclusions We demonstrate that CREM and CREB occupy a large number of promoters in highly cell specific manner. This is the first study of CREM target promoters directly in a physiologically relevant tissue in vivo and represents the most comprehensive experimental analysis of CREB/CREM regulatory potential to date. PMID:20920259
Masaki, Noritaka; Okazaki, Shigetoshi
2018-01-01
The recent development of quantum cascade lasers (QCLs) has facilitated the irradiation of a mid-infrared laser beam that is specifically absorbed by a target molecular bond. Aiming for a selective delivery of laser energy to a specific absorption at 1,738 cm−1 by the ester bonds of triacylglycerol (TAG), a QCL beam with a wavenumber of 1,710 cm−1 was irradiated to 3T3–L1 adipocytes and preadipocytes. Neutral red staining, and FITC-labeled annexin V and ethidium homodimer-III assays revealed the occurrence of adipocyte-specific cell death 24 h after QCL irradiation. The selective delivery of laser energy to endogenous molecules can affect biological processes in a living organism. PMID:29760972
Masaki, Noritaka; Okazaki, Shigetoshi
2018-05-01
The recent development of quantum cascade lasers (QCLs) has facilitated the irradiation of a mid-infrared laser beam that is specifically absorbed by a target molecular bond. Aiming for a selective delivery of laser energy to a specific absorption at 1,738 cm -1 by the ester bonds of triacylglycerol (TAG), a QCL beam with a wavenumber of 1,710 cm -1 was irradiated to 3T3-L1 adipocytes and preadipocytes. Neutral red staining, and FITC-labeled annexin V and ethidium homodimer-III assays revealed the occurrence of adipocyte-specific cell death 24 h after QCL irradiation. The selective delivery of laser energy to endogenous molecules can affect biological processes in a living organism.
NASA Astrophysics Data System (ADS)
Miller, Sharon J.; Lee, Cameron M.; Joshi, Bishnu P.; Gaustad, Adam; Seibel, Eric J.; Wang, Thomas D.
2012-02-01
Gastrointestinal cancers are heterogeneous and can overexpress several protein targets that can be imaged simultaneously on endoscopy using multiple molecular probes. We aim to demonstrate a multispectral scanning fiber endoscope for wide-field fluorescence detection of colonic dysplasia. Excitation at 440, 532, and 635 nm is delivered into a single spiral scanning fiber, and fluorescence is collected by a ring of light-collecting optical fibers placed around the instrument periphery. Specific-binding peptides are selected with phage display technology using the CPC;Apc mouse model of spontaneous colonic dysplasia. Validation of peptide specificity is performed on flow cytometry and in vivo endoscopy. The peptides KCCFPAQ, AKPGYLS, and LTTHYKL are selected and labeled with 7-diethylaminocoumarin-3-carboxylic acid (DEAC), 5-carboxytetramethylrhodamine (TAMRA), and CF633, respectively. Separate droplets of KCCFPAQ-DEAC, AKPGYLS-TAMRA, and LTTHYKL-CF633 are distinguished at concentrations of 100 and 1 μM. Separate application of the fluorescent-labeled peptides demonstrate specific binding to colonic adenomas. The average target/background ratios are 1.71+/-0.19 and 1.67+/-0.12 for KCCFPAQ-DEAC and AKPGYLS-TAMRA, respectively. Administration of these two peptides together results in distinct binding patterns in the blue and green channels. Specific binding of two or more peptides can be distinguished in vivo using a novel multispectral endoscope to localize colonic dysplasia on real-time wide-field imaging.
Selective Inhibition of Plant Serine Hydrolases by Agrochemicals Revealed by Competitive ABPP
Kaschani, Farnusch; Nickel, Sabrina; Pandey, Bikram; Cravatt, Benjamin F.; Kaiser, Markus; van der Hoorn, Renier A. L.
2013-01-01
Organophosphate and –phosphonates and their thiol derivatives are often used in agroindustry as herbicides and insecticides, but their potential off-targets in the plant and their consumers are poorly investigated. Here, we use competitive Activity-based Protein Profiling (ABPP) of serine hydrolases (SHs) to detect targets of these agrochemicals and other compounds in Arabidopsis thaliana. Using broad-range and specific probes, and by overexpression of various SHs in planta, we are able to confirm eight SH-compound interactions, including selective inhibition of carboxylesterase CXE12, prolyloligopeptidase, methylesterase MES2 and tripeptidyl peptidase TPP2. These observations can be used for the design of novel probes and selective inhibitors and may help to assess physiological effects of agrochemicals on crop plants. PMID:21764588
Accardo, Antonella; Salsano, Giuseppina; Morisco, Anna; Aurilio, Michela; Parisi, Antonio; Maione, Francesco; Cicala, Carla; Tesauro, Diego; Aloj, Luigi; De Rosa, Giuseppe; Morelli, Giancarlo
2012-01-01
Objectives Drug delivery systems consisting of liposomes displaying a cell surface receptor-targeting peptide are being developed to specifically deliver chemotherapeutic drugs to tumors overexpressing a target receptor. This study addresses novel liposome composition approaches to specifically target tissues overexpressing bombesin (BN) receptors. Methods A new amphiphilic peptide derivative (MonY-BN) containing the BN(7–14) peptide, the DTPA (diethylenetriaminepentaacetate) chelating agent, a hydrophobic moiety with two C18 alkyl chains, and polyethylene glycol spacers, has been synthesized by solid-phase methods. Liposomes have been generated by co-aggregation of MonY-BN with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The structural and biological properties of these new target-selective drug-delivery systems have been characterized. Results Liposomes with a DSPC/MonY-BN (97/3 molar ratio) composition showed a diameter of 145.5 ± 31.5 nm and a polydispersity index of 0.20 ± 0.05. High doxorubicin (Dox) loading was obtained with the remote pH gradient method using citrate as the inner buffer. Specific binding to PC-3 cells of DSPC/MonY-BN liposomes was obtained (2.7% ± 0.3%, at 37°C), compared with peptide-free DSPC liposomes (1.4% ± 0.2% at 37°C). Incubation of cells with DSPC/ MonY-BN/Dox showed significantly lower cell survival compared with DSPC/Dox-treated cells, in the presence of 100 ng/mL and 300 ng/mL drug amounts, in cytotoxicity experiments. Intravenous treatment of PC-3 xenograft-bearing mice with DSPC/MonY-BN/Dox at 10 mg/kg Dox dose produced higher tumour growth inhibition (60%) compared with nonspecific DSPC/ Dox liposomes (36%) relative to control animals. Conclusion The structural and loading properties of DSPC/MonY-BN liposomes along with the observed in-vitro and in-vivo activity are encouraging for further development of this approach for target-specific cancer chemotherapy. PMID:22619538
Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis
NASA Astrophysics Data System (ADS)
Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju
2016-02-01
Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.
Gomaa, Ahmed A; Klumpe, Heidi E; Luo, Michelle L; Selle, Kurt; Barrangou, Rodolphe; Beisel, Chase L
2014-01-28
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of "smart" antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions, what remains elusive is a generalized and programmable strategy that can distinguish between even closely related microorganisms and that allows for fine control over the composition of a microbial population. This study demonstrates that RNA-directed immune systems in bacteria and archaea called CRISPR-Cas systems can provide such a strategy. These systems can be employed to selectively and quantitatively remove individual bacterial strains based purely on sequence information, creating opportunities in the treatment of multidrug-resistant infections, the control of industrial fermentations, and the study of microbial consortia.
Extreme selective sweeps independently targeted the X chromosomes of the great apes
Nam, Kiwoong; Munch, Kasper; Hobolth, Asger; Dutheil, Julien Yann; Veeramah, Krishna R.; Woerner, August E.; Hammer, Michael F.; Mailund, Thomas; Schierup, Mikkel Heide
2015-01-01
The unique inheritance pattern of the X chromosome exposes it to natural selection in a way that is different from that of the autosomes, potentially resulting in accelerated evolution. We perform a comparative analysis of X chromosome polymorphism in 10 great ape species, including humans. In most species, we identify striking megabase-wide regions, where nucleotide diversity is less than 20% of the chromosomal average. Such regions are found exclusively on the X chromosome. The regions overlap partially among species, suggesting that the underlying targets are partly shared among species. The regions have higher proportions of singleton SNPs, higher levels of population differentiation, and a higher nonsynonymous-to-synonymous substitution ratio than the rest of the X chromosome. We show that the extent to which diversity is reduced is incompatible with direct selection or the action of background selection and soft selective sweeps alone, and therefore, we suggest that very strong selective sweeps have independently targeted these specific regions in several species. The only genomic feature that we can identify as strongly associated with loss of diversity is the location of testis-expressed ampliconic genes, which also have reduced diversity around them. We hypothesize that these genes may be responsible for selective sweeps in the form of meiotic drive caused by an intragenomic conflict in male meiosis. PMID:25941379
Target-directed catalytic metallodrugs
Joyner, J.C.; Cowan, J.A.
2013-01-01
Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vs metal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements. PMID:23828584
Johnson, L. Jeffrey
2012-01-01
Isoprenoid biosynthesis is essential for survival of all living organisms. More than 50,000 unique isoprenoids occur naturally, with each constructed from two simple five-carbon precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Two pathways for the biosynthesis of IPP and DMAPP are found in nature. Humans exclusively use the mevalonate (MVA) pathway, while most bacteria, including all Gram-negative and many Gram-positive species, use the unrelated methylerythritol phosphate (MEP) pathway. Here we report the development of a novel, whole-cell phenotypic screening platform to identify compounds that selectively inhibit the MEP pathway. Strains of Salmonella enterica serovar Typhimurium were engineered to have separately inducible MEP (native) and MVA (nonnative) pathways. These strains, RMC26 and CT31-7d, were then used to differentiate MVA pathway- and MEP pathway-specific perturbation. Compounds that inhibit MEP pathway-dependent bacterial growth but leave MVA-dependent growth unaffected represent MEP pathway-selective antibacterials. This screening platform offers three significant results. First, the compound is antibacterial and is therefore cell permeant, enabling access to the intracellular target. Second, the compound inhibits one or more MEP pathway enzymes. Third, the MVA pathway is unaffected, suggesting selectivity for targeting the bacterial versus host pathway. The cell lines also display increased sensitivity to two reported MEP pathway-specific inhibitors, further biasing the platform toward inhibitors selective for the MEP pathway. We demonstrate development of a robust, high-throughput screening platform that combines phenotypic and target-based screening that can identify MEP pathway-selective antibacterials simply by monitoring optical density as the readout for cell growth/inhibition. PMID:22777049
Roberson, DP; Binshtok, AM; Blasl, F; Bean, BP; Woolf, CJ
2011-01-01
BACKGROUND AND PURPOSE We have developed a strategy to target the permanently charged lidocaine derivative lidocaine N-ethyl bromide (QX-314) selectively into nociceptive sensory neurons through the large-pore transient receptor potential cation channel subfamily V (TRPV1) noxious heat detector channel. This involves co-administration of QX-314 and a TRPV1 agonist to produce a long-lasting local analgesia. For potential clinical use we propose using lidocaine as the TRPV1 agonist, because it activates TRPV1 at clinical doses. EXPERIMENTAL APPROACH We conducted experiments in rats to determine optimal concentrations and ratios of lidocaine and QX-314 that produce the greatest degree and duration of pain-selective block when administered nearby the sciatic nerve: reduction in the response to noxious mechanical (pinch) and to radiant heat stimuli, with minimal disruption in motor function (grip strength). KEY RESULTS A combination of 0.5% QX-314 and 2% lidocaine produced 1 h of non-selective sensory and motor block followed by >9 h of pain-selective block, where grip strength was unimpaired. QX-314 at this concentration had no effect by itself, while 2% lidocaine by itself produced 1 h of non-selective block. The combination of 0.5% QX-314 and 2% lidocaine was the best of the many tested, in terms of the duration and selectivity of local analgesia. CONCLUSIONS AND IMPLICATIONS Targeting charged sodium channel blockers into specific sets of axons via activation of differentially expressed large-pore channels provides an opportunity to produce prolonged local analgesia, and represents an example of how exploiting ion channels as a drug delivery port can be used to increase the specificity and efficacy of therapeutics. PMID:21457220
Huseby, Douglas L; Pietsch, Franziska; Brandis, Gerrit; Garoff, Linnéa; Tegehall, Angelica; Hughes, Diarmaid
2017-05-01
Ciprofloxacin is an important antibacterial drug targeting Type II topoisomerases, highly active against Gram-negatives including Escherichia coli. The evolution of resistance to ciprofloxacin in E. coli always requires multiple genetic changes, usually including mutations affecting two different drug target genes, gyrA and parC. Resistant mutants selected in vitro or in vivo can have many different mutations in target genes and efflux regulator genes that contribute to resistance. Among resistant clinical isolates the genotype, gyrA S83L D87N, parC S80I is significantly overrepresented suggesting that it has a selective advantage. However, the evolutionary or functional significance of this high frequency resistance genotype is not fully understood. By combining experimental data and mathematical modeling, we addressed the reasons for the predominance of this specific genotype. The experimental data were used to model trajectories of mutational resistance evolution under different conditions of drug exposure and population bottlenecks. We identified the order in which specific mutations are selected in the clinical genotype, showed that the high frequency genotype could be selected over a range of drug selective pressures, and was strongly influenced by the relative fitness of alternative mutations and factors affecting mutation supply. Our data map for the first time the fitness landscape that constrains the evolutionary trajectories taken during the development of clinical resistance to ciprofloxacin and explain the predominance of the most frequently selected genotype. This study provides strong support for the use of in vitro competition assays as a tool to trace evolutionary trajectories, not only in the antibiotic resistance field. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
James, Scott E; Greenberg, Philip D; Jensen, Michael C; Lin, Yukang; Wang, Jinjuan; Till, Brian G; Raubitschek, Andrew A; Forman, Stephen J; Press, Oliver W
2008-05-15
We have targeted CD22 as a novel tumor-associated Ag for recognition by human CTL genetically modified to express chimeric TCR (cTCR) recognizing this surface molecule. CD22-specific cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR(+) CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR(+) CTL exhibited lower levels of maximum lysis and lower Ag sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of Ag engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope, but constructed as a truncated CD22 molecule to approximate the length of a TCR:peptide-MHC complex. The reduced sensitivity of CD22-specific cTCR(+) CTL for Ag-induced triggering of effector functions has potential therapeutic applications, because such cells selectively lysed B cell lymphoma lines expressing high levels of CD22, but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength, and consequently Ag sensitivity, can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate Ag density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Deng-Liang; Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou; Song, Yan-Ling
2014-10-31
Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the idealmore » antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.« less
Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seula; Woo, Jong Kyu; Jung, Yuchae
In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less
PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing.
Malina, Abba; Cameron, Christopher J F; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry
2015-12-08
In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification.
PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing
Malina, Abba; Cameron, Christopher J. F.; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry
2015-01-01
In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification. PMID:26644285
ELEGANT ENVIRONMENTAL IMMUNOASSAYS
Immunochemical methods are based on selective antibodies directed to a particular target analyte. The specific binding between antibody and analyte can be used for detection and quantitation. Methods such as the enzyme-linked immunosorbent assay (ELISA) can provide a sensitiv...
AirMSPI PODEX BigSur Terrain Images
Atmospheric Science Data Center
2013-12-13
... Browse Images from the PODEX 2013 Campaign Big Sur target (Big Sur, California) 02/03/2013 Terrain-projected Select ... Version number For more information, see the Data Product Specifications (DPS) ...
Hi-Plex for Simple, Accurate, and Cost-Effective Amplicon-based Targeted DNA Sequencing.
Pope, Bernard J; Hammet, Fleur; Nguyen-Dumont, Tu; Park, Daniel J
2018-01-01
Hi-Plex is a suite of methods to enable simple, accurate, and cost-effective highly multiplex PCR-based targeted sequencing (Nguyen-Dumont et al., Biotechniques 58:33-36, 2015). At its core is the principle of using gene-specific primers (GSPs) to "seed" (or target) the reaction and universal primers to "drive" the majority of the reaction. In this manner, effects on amplification efficiencies across the target amplicons can, to a large extent, be restricted to early seeding cycles. Product sizes are defined within a relatively narrow range to enable high-specificity size selection, replication uniformity across target sites (including in the context of fragmented input DNA such as that derived from fixed tumor specimens (Nguyen-Dumont et al., Biotechniques 55:69-74, 2013; Nguyen-Dumont et al., Anal Biochem 470:48-51, 2015), and application of high-specificity genetic variant calling algorithms (Pope et al., Source Code Biol Med 9:3, 2014; Park et al., BMC Bioinformatics 17:165, 2016). Hi-Plex offers a streamlined workflow that is suitable for testing large numbers of specimens without the need for automation.
Aptamers: Active Targeting Ligands for Cancer Diagnosis and Therapy
Wu, Xu; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun
2015-01-01
Aptamers, including DNA, RNA and peptide aptamers, are a group of promising recognition units that can specifically bind to target molecules and cells. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required. They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we summarized recent applications of DNA and RNA aptamers in cancer theranostics. The specific binding ability of aptamers to cancer-related markers and cancer cells ensured their high performance for early diagnosis of cancer. Meanwhile, the efficient targeting ability of aptamers to cancer cells and tissues provided a promising way to deliver imaging agents and drugs for cancer imaging and therapy. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for different types of cancers, which might be a powerful tool for cancer treatment. PMID:25699094
Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.
Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui
2016-01-19
Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.
Targeted estrogen delivery reverses the metabolic syndrome
Finan, Brian; Yang, Bin; Ottaway, Nickki; Stemmer, Kerstin; Müller, Timo D; Yi, Chun-Xia; Habegger, Kirk; Schriever, Sonja C; García-Cáceres, Cristina; Kabra, Dhiraj G; Hembree, Jazzminn; Holland, Jenna; Raver, Christine; Seeley, Randy J; Hans, Wolfgang; Irmler, Martin; Beckers, Johannes; de Angelis, Martin Hrabě; Tiano, Joseph P; Mauvais-Jarvis, Franck; Perez-Tilve, Diego; Pfluger, Paul; Zhang, Lianshan; Gelfanov, Vasily; DiMarchi, Richard D; Tschöp, Matthias H
2013-01-01
We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1–targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1–estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. PMID:23142820
The unique peptidome: Taxon-specific tryptic peptides as biomarkers for targeted metaproteomics.
Mesuere, Bart; Van der Jeugt, Felix; Devreese, Bart; Vandamme, Peter; Dawyndt, Peter
2016-09-01
The Unique Peptide Finder (http://unipept.ugent.be/peptidefinder) is an interactive web application to quickly hunt for tryptic peptides that are unique to a particular species, genus, or any other taxon. Biodiversity within the target taxon is represented by a set of proteomes selected from a monthly updated list of complete and nonredundant UniProt proteomes, supplemented with proprietary proteomes loaded into persistent local browser storage. The software computes and visualizes pan and core peptidomes as unions and intersections of tryptic peptides occurring in the selected proteomes. In addition, it also computes and displays unique peptidomes as the set of all tryptic peptides that occur in all selected proteomes but not in any UniProt record not assigned to the target taxon. As a result, the unique peptides can serve as robust biomarkers for the target taxon, for example, in targeted metaproteomics studies. Computations are extremely fast since they are underpinned by the Unipept database, the lowest common ancestor algorithm implemented in Unipept and modern web technologies that facilitate in-browser data storage and parallel processing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MicroRNA Silencing Improves the Tumor Specificity of Adenoviral Transgene Expression
Card, Paul B.; Hogg, Richard T.; del Alcazar, Carlos Gil
2012-01-01
Adenoviral technology has been thoroughly evaluated for delivering genetic material to tumor tissue and the surrounding microenvironment. Almost any gene can be cloned into an adenovirus (Ad) vector, which when combined with strong, constitutively active promoters permit up to a million-fold amplification of the transgene in a single adenoviral particle, thus facilitating their use in cancer therapy and imaging. However, widespread infection of the liver and other non-targeted tissues by Ad vectors is a substantial problem that often results in significant liver inflammation and hepatotoxicity at doses required to achieve efficient tumor transduction. miR-122 is a highly expressed liver-specific microRNA that provides a unique opportunity for down-regulating adenoviral transgene expression in liver tissue. The binding of endogenous miRNAs to complementary miRNA targeting elements (miRTs) incorporated into the 3′ untranslated region of adenoviral transgenes interferes with message stability and/or protein translation, and miRT elements against miR-122 (miRT-122) can selectively reduce adenoviral transgene expression in the liver. Previous studies using miR-122-based regulation, with and without other types of transcriptional targeting, have yielded promising preliminary results. However, investigations to date evaluating miRT-122 elements for improving tumor specificity have used either non-tumor bearing animals or direct intratumoral injection as the mode of delivery. In the present study, we confirmed the ability of miRT-122 sequences to selectively down-regulate adenoviral luciferase expression in the liver in vitro and in vivo, and show that this strategy can improve tumor specific transgene expression in a HT1080 human fibrosarcoma model. Rapid growth and the inefficient flow of blood through tumor neovasculature often results in profound hypoxia, which provides additional opportunities for targeting solid tumors and their microenvironment using vectors incorporating hypoxia-responsive promoters to drive transgene expression. We therefore employed a combinatorial approach using miRT-122 elements with hypoxia-responsive transcriptional targeting to further improve the tumor specific expression of an adenoviral reporter gene. Results from this investigation reveal that miRT122 elements alone decrease off-target liver expression and improve tumor specificity of adenoviral vectors. Furthermore, increased tumor specificity can be achieved by combining miRT-122 elements with hypoxia-responsive promoters. PMID:22555510
Layzer, Juliana M; Sullenger, Bruce A
2007-01-01
By using the in vitro selection method SELEX against the complex mixture of GLA proteins and utilizing methods to deconvolute the resulting ligands, we were able to successfully generate 2'-ribo purine, 2'-fluoro pyrimidine aptamers to various individual targets in the GLA protein proteome that ranged in concentration from 10 nM to 1.4 microM in plasma. Perhaps not unexpectedly, the majority of the aptamers isolated following SELEX bind the most abundant protein in the mixture, prothrombin (FII), with high affinity. We show that by deselecting the dominant prothrombin aptamer the selection can be redirected. By using this DeSELEX approach, we were able to shift the selection toward other sequences and to less abundant protein targets and obtained an aptamer to Factor IX (FIX). We also demonstrate that by using an RNA library that is focused around a proteome, purified protein targets can then be used to rapidly generate aptamers to the protein targets that are rare in the initial mixture such as Factor VII (FVII) and Factor X (FX). Moreover, for all four proteins targeted (FII, FVII, FIX, and FX), aptamers were identified that could inhibit the individual protein's activitity in coagulation assays. Thus, by applying the concepts of DeSELEX and focused library selection, aptamers specific for any protein in a particular proteome can theoretically be generated, even when the proteins in the mixture are present at very different concentrations.
Molecular Vaccines for Malaria
2010-01-01
T cell phenotype from pro-inflammatory (Th I) ro anti -inflammatory (Th2).1 A particularly interesting example of rhe interplay of immune selection ...medi- ated responses specifically targeting one or more protective anti - gens. Molecular vaccines are to be contrasted with whole organism vaccines...development, namely the empirical selection and testing of an immunogen •correspondence to: joseph T. Bruder; Email: jbruder@genvec.com Submitted
Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors
2014-01-01
Background SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. Results The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Conclusion Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity. PMID:25678957
Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.
2011-01-01
Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692
The genomic landscape of rapid repeated evolutionary ...
Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch
Data integration to prioritize drugs using genomics and curated data.
Louhimo, Riku; Laakso, Marko; Belitskin, Denis; Klefström, Juha; Lehtonen, Rainer; Hautaniemi, Sampsa
2016-01-01
Genomic alterations affecting drug target proteins occur in several tumor types and are prime candidates for patient-specific tailored treatments. Increasingly, patients likely to benefit from targeted cancer therapy are selected based on molecular alterations. The selection of a precision therapy benefiting most patients is challenging but can be enhanced with integration of multiple types of molecular data. Data integration approaches for drug prioritization have successfully integrated diverse molecular data but do not take full advantage of existing data and literature. We have built a knowledge-base which connects data from public databases with molecular results from over 2200 tumors, signaling pathways and drug-target databases. Moreover, we have developed a data mining algorithm to effectively utilize this heterogeneous knowledge-base. Our algorithm is designed to facilitate retargeting of existing drugs by stratifying samples and prioritizing drug targets. We analyzed 797 primary tumors from The Cancer Genome Atlas breast and ovarian cancer cohorts using our framework. FGFR, CDK and HER2 inhibitors were prioritized in breast and ovarian data sets. Estrogen receptor positive breast tumors showed potential sensitivity to targeted inhibitors of FGFR due to activation of FGFR3. Our results suggest that computational sample stratification selects potentially sensitive samples for targeted therapies and can aid in precision medicine drug repositioning. Source code is available from http://csblcanges.fimm.fi/GOPredict/.
Early Probe and Drug Discovery in Academia: A Minireview.
Roy, Anuradha
2018-02-09
Drug discovery encompasses processes ranging from target selection and validation to the selection of a development candidate. While comprehensive drug discovery work flows are implemented predominantly in the big pharma domain, early discovery focus in academia serves to identify probe molecules that can serve as tools to study targets or pathways. Despite differences in the ultimate goals of the private and academic sectors, the same basic principles define the best practices in early discovery research. A successful early discovery program is built on strong target definition and validation using a diverse set of biochemical and cell-based assays with functional relevance to the biological system being studied. The chemicals identified as hits undergo extensive scaffold optimization and are characterized for their target specificity and off-target effects in in vitro and in animal models. While the active compounds from screening campaigns pass through highly stringent chemical and Absorption, Distribution, Metabolism, and Excretion (ADME) filters for lead identification, the probe discovery involves limited medicinal chemistry optimization. The goal of probe discovery is identification of a compound with sub-µM activity and reasonable selectivity in the context of the target being studied. The compounds identified from probe discovery can also serve as starting scaffolds for lead optimization studies.
Chen, Junjun; Dexheimer, Thomas S.; Ai, Yongxing; Liang, Qin; Villamil, Mark A.; Inglese, James; Maloney, David J; Jadhav, Ajit; Simeonov, Anton; Zhuang, Zhihao
2012-01-01
Ubiquitin-specific proteases (USPs) have in recent years emerged as a promising therapeutic target class. We identified selective small-molecule inhibitors against a deubiquitinase complex, the human USP1/UAF1, through quantitative high throughput screening (qHTS) of a collection of bioactive molecules. The top inhibitors, pimozide and GW7647, inhibited USP1/UAF1 noncompetitively with a Ki of 0.5 and 0.7 μM respectively, and displayed selectivity against a number of deubiquitinases, deSUMOylase and cysteine proteases. The USP1/UAF1 inhibitors act synergistically with cisplatin in inhibiting cisplatin-resistant non-small cell lung cancer (NSCLC) cell proliferation. USP1/UAF1 represents a promising target for drug intervention because of its involvement in translesion synthesis and Fanconi anemia pathway important for normal DNA damage response. Our results support USP1/UAF1 as a potential therapeutic target and provide the first example of targeting the USP/WD40 repeat protein complex for inhibitor discovery. PMID:22118673
ERIC Educational Resources Information Center
Swerdloff, Matthew
2013-01-01
The purpose of this study was to investigate the specific effects of targeted English Language Arts (ELA) instruction using multimedia applications. Student reading comprehension, student attitude toward computers, and student attitude toward school were measured in this study. The study also examined the perceptions, of selected students, of the…
Formulation/preparation of functionalized nanoparticles for in vivo targeted drug delivery.
Gu, Frank; Langer, Robert; Farokhzad, Omid C
2009-01-01
Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly(D: ,L: -lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.
Targeted drug delivery using genetically engineered diatom biosilica.
Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H
2015-11-10
The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.
NASA Astrophysics Data System (ADS)
Harney, Robert C.
1997-03-01
A novel methodology offering the potential for resolving two of the significant problems of implementing multisensor target recognition systems, i.e., the rational selection of a specific sensor suite and optimal allocation of requirements among sensors, is presented. Based on a sequence of conjectures (and their supporting arguments) concerning the relationship of extractable information content to recognition performance of a sensor system, a set of heuristics (essentially a reformulation of Johnson's criteria applicable to all sensor and data types) is developed. An approach to quantifying the information content of sensor data is described. Coupling this approach with the widely accepted Johnson's criteria for target recognition capabilities results in a quantitative method for comparing the target recognition ability of diverse sensors (imagers, nonimagers, active, passive, electromagnetic, acoustic, etc.). Extension to describing the performance of multiple sensors is straightforward. The application of the technique to sensor selection and requirements allocation is discussed.
Yoshida, Kimiko; Goto, Naoko; Ohnami, Shumpei; Aoki, Kazunori
2012-01-01
The targeting of gene transfer at the cell-entry level is one of the most attractive challenges in vector development. However, attempts to redirect adenovirus vectors to alternative receptors by engineering the capsid-coding region have shown limited success, because the proper targeting ligands on the cells of interest are generally unknown. To overcome this limitation, we have constructed a random peptide library displayed on the adenoviral fiber knob, and have successfully selected targeted vectors by screening the library on cancer cell lines in vitro. The infection of targeted vectors was considered to be mediated by specific receptors on target cells. However, the expression levels and kinds of cell surface receptors may be substantially different between in vitro culture and in vivo tumor tissue. Here, we screened the peptide display-adenovirus library in the peritoneal dissemination model of AsPC-1 pancreatic cancer cells. The vector displaying a selected peptide (PFWSGAV) showed higher infectivity in the AsPC-1 peritoneal tumors but not in organs and other peritoneal tumors as compared with a non-targeted vector. Furthermore, the infectivity of the PFWSGAV-displaying vector for AsPC-1 peritoneal tumors was significantly higher than that of a vector displaying a peptide selected by in vitro screening, indicating the usefulness of in vivo screening in exploring the targeting vectors. This vector-screening system can facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:23029088
Developing a Telescope Simulator Towards a Global Autonomous Robotic Telescope Network
NASA Astrophysics Data System (ADS)
Giakoumidis, N.; Ioannou, Z.; Dong, H.; Mavridis, N.
2013-05-01
A robotic telescope network is a system that integrates a number of telescopes to observe a variety of astronomical targets without being operated by a human. This system autonomously selects and observes targets in accordance to an optimized target. It dynamically allocates telescope resources depending on the observation requests, specifications of the telescopes, target visibility, meteorological conditions, daylight, location restrictions and availability and many other factors. In this paper, we introduce a telescope simulator, which can control a telescope to a desired position in order to observe a specific object. The system includes a Client Module, a Server Module, and a Dynamic Scheduler module. We make use and integrate a number of open source software to simulate the movement of a robotic telescope, the telescope characteristics, the observational data and weather conditions in order to test and optimize our system.
Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.
van der Els, Simon; James, Jennelle K; Kleerebezem, Michiel; Bron, Peter A
2018-04-15
CRISPR-Cas9 technology has been exploited for the removal or replacement of genetic elements in a wide range of prokaryotes and eukaryotes. Here, we describe the extension of the Cas9 application toolbox to the industrially important dairy species Lactococcus lactis The Cas9 expression vector pLABTarget, encoding the Streptocccus pyogenes Cas9 under the control of a constitutive promoter, was constructed, allowing plug and play introduction of short guide RNA (sgRNA) sequences to target specific genetic loci. Introduction of a pepN -targeting derivative of pLABTarget into L. lactis strain MG1363 led to a strong reduction in the number of transformants obtained, which did not occur in a pepN deletion derivative of the same strain, demonstrating the specificity and lethality of the Cas9-mediated double-strand breaks in the lactococcal chromosome. Moreover, the same pLABTarget derivative allowed the selection of a pepN deletion subpopulation from its corresponding single-crossover plasmid integrant precursor, accelerating the construction and selection of gene-specific deletion derivatives in L. lactis Finally, pLABTarget, which contained sgRNAs designed to target mobile genetic elements, allowed the effective curing of plasmids, prophages, and integrative conjugative elements (ICEs). These results establish that pLABTarget enables the effective exploitation of Cas9 targeting in L. lactis , while the broad-host-range vector used suggests that this toolbox could readily be expanded to other Gram-positive bacteria. IMPORTANCE Mobile genetic elements in Lactococcus lactis and other lactic acid bacteria (LAB) play an important role in dairy fermentation, having both positive and detrimental effects during the production of fermented dairy products. The pLABTarget vector offers an efficient cloning platform for Cas9 application in lactic acid bacteria. Targeting Cas9 toward mobile genetic elements enabled their effective curing, which is of particular interest in the context of potentially problematic prophages present in a strain. Moreover, Cas9 targeting of other mobile genetic elements enables the deciphering of their contribution to dairy fermentation processes and further establishment of their importance for product characteristics. Copyright © 2018 American Society for Microbiology.
Phage protein-targeted cancer nanomedicines
Petrenko, V.A.; Jayanna, P.K.
2015-01-01
Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review. PMID:24269681
Strategies for targeting primate neural circuits with viral vectors
El-Shamayleh, Yasmine; Ni, Amy M.
2016-01-01
Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level. PMID:27052579
Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer
Lukianova-Hleb, Ekaterina Y.; Oginsky, Alexander O.; Samaniego, Adam P.; Shenefelt, Derek L.; Wagner, Daniel S.; Hafner, Jason H.; Farach-Carson, Mary C.; Lapotko, Dmitri O.
2011-01-01
Theranostic applications require coupling of diagnosis and therapy, a high degree of specificity and adaptability to delivery methods compatible with clinical practice. The tunable physical and biological effects of selective targeting and activation of plasmonic nanobubbles (PNB) were studied in a heterogeneous biological microenvironment of prostate cancer and stromal cells. All cells were targeted with conjugates of gold nanoparticles (NPs) through an antibody-receptor-endocytosis-nanocluster mechanism that produced NP clusters. The simultaneous pulsed optical activation of intracellular NP clusters at several wavelengths resulted in higher optical contrast and therapeutic selectivity of PNBs compared with those of gold NPs alone. The developed mechanism was termed “rainbow plasmonic nanobubbles.” The cellular effect of rainbow PNBs was tuned in situ in target cells, thus supporting a theranostic algorithm of prostate cancer cell detection and follow-up guided destruction without damage to collateral cells. The specificity and tunability of PNBs is promising for theranostic applications and we discuss a fiber optic platform that will capitalize on these features to bring theranostic tools to the clinic. PMID:21547151
Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho
2015-01-01
Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346
Iwazawa, J; Ohue, S; Hashimoto, N; Mitani, T
2014-02-01
To compare the accuracy of computer software analysis using three different target-definition protocols to detect tumour feeder vessels for transarterial chemoembolization of hepatocellular carcinoma. C-arm computed tomography (CT) data were analysed for 81 tumours from 57 patients who had undergone chemoembolization using software-assisted detection of tumour feeders. Small, medium, and large-sized targets were manually defined for each tumour. The tumour feeder was verified when the target tumour was enhanced on selective C-arm CT of the investigated vessel during chemoembolization. The sensitivity, specificity, and accuracy of the three protocols were evaluated and compared. One hundred and eight feeder vessels supplying 81 lesions were detected. The sensitivity of the small, medium, and large target protocols was 79.8%, 91.7%, and 96.3%, respectively; specificity was 95%, 88%, and 50%, respectively; and accuracy was 87.5%, 89.9%, and 74%, respectively. The sensitivity was significantly higher for the medium (p = 0.003) and large (p < 0.001) target protocols than for the small target protocol. The specificity and accuracy were higher for the small (p < 0.001 and p < 0.001, respectively) and medium (p < 0.001 and p < 0.001, respectively) target protocols than for the large target protocol. The overall accuracy of software-assisted automated feeder analysis in transarterial chemoembolization for hepatocellular carcinoma is affected by the target definition size. A large target definition increases sensitivity and decreases specificity in detecting tumour feeders. A target size equivalent to the tumour size most accurately predicts tumour feeders. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Zarschler, K; Prapainop, K; Mahon, E; Rocks, L; Bramini, M; Kelly, P M; Stephan, H; Dawson, K A
2014-06-07
For effective localization of functionalized nanoparticles at diseased tissues such as solid tumours or metastases through biorecognition, appropriate targeting vectors directed against selected tumour biomarkers are a key prerequisite. The diversity of such vector molecules ranges from proteins, including antibodies and fragments thereof, through aptamers and glycans to short peptides and small molecules. Here, we analyse the specific nanoparticle targeting capabilities of two previously suggested peptides (D4 and GE11) and a small camelid single-domain antibody (sdAb), representing potential recognition agents for the epidermal growth factor receptor (EGFR). We investigate specificity by way of receptor RNA silencing techniques and look at increasing complexity in vitro by introducing increasing concentrations of human or bovine serum. Peptides D4 and GE11 proved problematic to employ and conjugation resulted in non-receptor specific uptake into cells. Our results show that sdAb-functionalized particles can effectively target the EGFR, even in more complex bovine and human serum conditions where targeting specificity is largely conserved for increasing serum concentration. In human serum however, an inhibition of overall nanoparticle uptake is observed with increasing protein concentration. For highly affine targeting ligands such as sdAbs, targeting a receptor such as EGFR with low serum competitor abundance, receptor recognition function can still be partially realised in complex conditions. Here, we stress the value of evaluating the targeting efficiency of nanoparticle constructs in realistic biological milieu, prior to more extensive in vivo studies.
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka
2017-02-01
Near infrared photoimmunotherapy (NIR-PIT) is a new type of molecularly-targeted photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting target-specific cell-surface molecules. When exposed to NIR light, the conjugate rapidly induces a highly-selective cell death only in receptor-positive, MAb-IR700-bound cells. Current immunotherapies for cancer seek to modulate the balance among different immune cell populations, thereby promoting anti-tumor immune responses. However, because these are systemic therapies, they often cause treatment-limiting autoimmune adverse effects. It would be ideal to manipulate the balance between suppressor and effector cells within the tumor without disturbing homeostasis elsewhere in the body. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are well-known immune-suppressor cells that play a key role in tumor immuno-evasion and have been the target of systemic immunotherapies. We used CD25-targeted NIR-PIT to selectively deplete Tregs, thus activating CD8+ T and NK cells and restoring local anti-tumor immunity. This not only resulted in regression of the treated tumor but also induced responses in separate untreated tumors of the same cell-line derivation. We conclude that CD25-targeted NIR-PIT causes spatially selective depletion of Tregs, thereby providing an alternative approach to cancer immunotherapy that can treat not only local tumors but also distant metastatic tumors.
Olesen, Emma T B; Rützler, Michael R; Moeller, Hanne B; Praetorius, Helle A; Fenton, Robert A
2011-08-02
In the kidney, the actions of vasopressin on its type-2 receptor (V2R) induce increased water reabsorption alongside polyphosphorylation and membrane targeting of the water channel aquaporin-2 (AQP2). Loss-of-function mutations in the V2R cause X-linked nephrogenic diabetes insipidus. Treatment of this condition would require bypassing the V2R to increase AQP2 membrane targeting, but currently no specific pharmacological therapy is available. The present study examined specific E-prostanoid receptors for this purpose. In vitro, prostaglandin E2 (PGE2) and selective agonists for the E-prostanoid receptors EP2 (butaprost) or EP4 (CAY10580) all increased trafficking and ser-264 phosphorylation of AQP2 in Madin-Darby canine kidney cells. Only PGE2 and butaprost increased cAMP and ser-269 phosphorylation of AQP2. Ex vivo, PGE2, butaprost, or CAY10580 increased AQP2 phosphorylation in isolated cortical tubules, whereas PGE2 and butaprost selectively increased AQP2 membrane accumulation in kidney slices. In vivo, a V2R antagonist caused a severe urinary concentrating defect in rats, which was greatly alleviated by treatment with butaprost. In conclusion, EP2 and EP4 agonists increase AQP2 phosphorylation and trafficking, likely through different signaling pathways. Furthermore, EP2 selective agonists can partially compensate for a nonfunctional V2R, providing a rationale for new treatment strategies for hereditary nephrogenic diabetes insipidus.
Olesen, Emma T. B.; Rützler, Michael R.; Moeller, Hanne B.; Praetorius, Helle A.; Fenton, Robert A.
2011-01-01
In the kidney, the actions of vasopressin on its type-2 receptor (V2R) induce increased water reabsorption alongside polyphosphorylation and membrane targeting of the water channel aquaporin-2 (AQP2). Loss-of-function mutations in the V2R cause X-linked nephrogenic diabetes insipidus. Treatment of this condition would require bypassing the V2R to increase AQP2 membrane targeting, but currently no specific pharmacological therapy is available. The present study examined specific E-prostanoid receptors for this purpose. In vitro, prostaglandin E2 (PGE2) and selective agonists for the E-prostanoid receptors EP2 (butaprost) or EP4 (CAY10580) all increased trafficking and ser-264 phosphorylation of AQP2 in Madin-Darby canine kidney cells. Only PGE2 and butaprost increased cAMP and ser-269 phosphorylation of AQP2. Ex vivo, PGE2, butaprost, or CAY10580 increased AQP2 phosphorylation in isolated cortical tubules, whereas PGE2 and butaprost selectively increased AQP2 membrane accumulation in kidney slices. In vivo, a V2R antagonist caused a severe urinary concentrating defect in rats, which was greatly alleviated by treatment with butaprost. In conclusion, EP2 and EP4 agonists increase AQP2 phosphorylation and trafficking, likely through different signaling pathways. Furthermore, EP2 selective agonists can partially compensate for a nonfunctional V2R, providing a rationale for new treatment strategies for hereditary nephrogenic diabetes insipidus. PMID:21768374
Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong
2015-08-07
Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.
Searching for Life on Mars: Selection of Molecular Targets for ESA's Aurora ExoMars Mission
NASA Astrophysics Data System (ADS)
Parnell, John; Cullen, David; Sims, Mark R.; Bowden, Stephen; Cockell, Charles S.; Court, Richard; Ehrenfreund, Pascale; Gaubert, Francois; Grant, William; Parro, Victor; Rohmer, Michel; Sephton, Mark; Stan-Lotter, Helga; Steele, Andrew; Toporski, Jan; Vago, Jorge
2007-08-01
The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.
Searching for life on Mars: selection of molecular targets for ESA's aurora ExoMars mission.
Parnell, John; Cullen, David; Sims, Mark R; Bowden, Stephen; Cockell, Charles S; Court, Richard; Ehrenfreund, Pascale; Gaubert, Francois; Grant, William; Parro, Victor; Rohmer, Michel; Sephton, Mark; Stan-Lotter, Helga; Steele, Andrew; Toporski, Jan; Vago, Jorge
2007-08-01
The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.
Mapping Proteome-Wide Interactions of Reactive Chemicals Using Chemoproteomic Platforms
Counihan, Jessica L.; Ford, Breanna; Nomura, Daniel K.
2015-01-01
A large number of pharmaceuticals, endogenous metabolites, and environmental chemicals act through covalent mechanisms with protein targets. Yet, their specific interactions with the proteome still remain poorly defined for most of these reactive chemicals. Deciphering direct protein targets of reactive small-molecules is critical in understanding their biological action, off-target effects, potential toxicological liabilities, and development of safer and more selective agents. Chemoproteomic technologies have arisen as a powerful strategy that enable the assessment of proteome-wide interactions of these irreversible agents directly in complex biological systems. We review here several chemoproteomic strategies that have facilitated our understanding of specific protein interactions of irreversibly-acting pharmaceuticals, endogenous metabolites, and environmental electrophiles to reveal novel pharmacological, biological, and toxicological mechanisms. PMID:26647369
Kulkarni, Harshad R; Singh, Aviral; Langbein, Thomas; Schuchardt, Christiane; Mueller, Dirk; Zhang, Jingjing; Lehmann, Coline; Baum, Richard P
2018-06-01
Alterations at the molecular level are a hallmark of cancer. Prostate cancer is associated with the overexpression of prostate-specific membrane antigen (PSMA) in a majority of cases, predominantly in advanced tumors, increasing with the grade or Gleason's score. PSMA can be selectively targeted using radiolabeled PSMA ligands. These small molecules binding the PSMA can be radiolabeled with γ-emitters like 99m Tc and 111 In or positron emitters like 68 Ga and 18 F for diagnosis as well as with their theranostic pairs such as 177 Lu (β-emitter) or 225 Ac (α-emitter) for therapy. This review summarizes the theranostic role of PSMA ligands for molecular imaging and targeted molecular radiotherapy, moving towards precision oncology.
A pretargeted nanoparticle system for tumor cell labeling
Gunn, Jonathan; Park, Steven I.; Veiseh, Omid; Press, Oliver W.; Zhang, Miqin
2011-01-01
Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope. PMID:21107453
A pretargeted nanoparticle system for tumor cell labeling.
Gunn, Jonathan; Park, Steven I; Veiseh, Omid; Press, Oliver W; Zhang, Miqin
2011-03-01
Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope.
Kurusu, Mitsuhiko; Cording, Amy; Taniguchi, Misako; Menon, Kaushiki; Suzuki, Emiko; Zinn, Kai
2008-01-01
Summary In Drosophila embryos and larvae, a small number of identified motor neurons innervate body wall muscles in a highly stereotyped pattern. Although genetic screens have identified many proteins that are required for axon guidance and synaptogenesis in this system, little is known about the mechanisms by which muscle fibers are defined as targets for specific motor axons. To identify potential target labels, we screened 410 genes encoding cell-surface and secreted proteins, searching for those whose overexpression on all muscle fibers causes motor axons to make targeting errors. Thirty such genes were identified, and a number of these were members of a large gene family encoding proteins whose extracellular domains contain leucine-rich repeat (LRR) sequences, which are protein interaction modules. By manipulating gene expression in muscle 12, we showed that four LRR proteins participate in the selection of this muscle as the appropriate synaptic target for the RP5 motor neuron. PMID:18817735
Kim, Hyun Seok; Mendiratta, Saurabh; Kim, Jiyeon; Pecot, Chad Victor; Larsen, Jill E.; Zubovych, Iryna; Seo, Bo Yeun; Kim, Jimi; Eskiocak, Banu; Chung, Hannah; McMillan, Elizabeth; Wu, Sherry; De Brabander, Jef; Komurov, Kakajan; Toombs, Jason E.; Wei, Shuguang; Peyton, Michael; Williams, Noelle; Gazdar, Adi F.; Posner, Bruce A.; Brekken, Rolf; Sood, Anil K.; Deberardinis, Ralph J.; Roth, Michael G.; Minna, John D.; White, Michael A.
2013-01-01
SUMMARY Context-specific molecular vulnerabilities that arise during tumor evolution represent an attractive intervention target class. However, the frequency and diversity of somatic lesions detected among lung tumors can confound efforts to identify these targets. To confront this challenge, we have applied parallel screening of chemical and genetic perturbations within a panel of molecularly annotated NSCLC lines to identify intervention opportunities tightly linked to molecular response indicators predictive of target sensitivity. Anchoring this analysis on a matched tumor/normal cell model from a lung adenocarcinoma patient identified three distinct target/response-indicator pairings that are represented with significant frequencies (6–16%) in the patient population. These include NLRP3 mutation/inflammasome activation-dependent FLIP addiction, co-occuring KRAS and LKB1 mutation-driven COPI addiction, and selective sensitivity to a synthetic indolotriazine that is specified by a 7-gene expression signature. Target efficacies were validated in vivo, and mechanism of action studies uncovered new cancer cell biology. PMID:24243015
Kim, Hyun Seok; Mendiratta, Saurabh; Kim, Jiyeon; Pecot, Chad Victor; Larsen, Jill E; Zubovych, Iryna; Seo, Bo Yeun; Kim, Jimi; Eskiocak, Banu; Chung, Hannah; McMillan, Elizabeth; Wu, Sherry; De Brabander, Jef; Komurov, Kakajan; Toombs, Jason E; Wei, Shuguang; Peyton, Michael; Williams, Noelle; Gazdar, Adi F; Posner, Bruce A; Brekken, Rolf A; Sood, Anil K; Deberardinis, Ralph J; Roth, Michael G; Minna, John D; White, Michael A
2013-10-24
Context-specific molecular vulnerabilities that arise during tumor evolution represent an attractive intervention target class. However, the frequency and diversity of somatic lesions detected among lung tumors can confound efforts to identify these targets. To confront this challenge, we have applied parallel screening of chemical and genetic perturbations within a panel of molecularly annotated NSCLC lines to identify intervention opportunities tightly linked to molecular response indicators predictive of target sensitivity. Anchoring this analysis on a matched tumor/normal cell model from a lung adenocarcinoma patient identified three distinct target/response-indicator pairings that are represented with significant frequencies (6%-16%) in the patient population. These include NLRP3 mutation/inflammasome activation-dependent FLIP addiction, co-occurring KRAS and LKB1 mutation-driven COPI addiction, and selective sensitivity to a synthetic indolotriazine that is specified by a seven-gene expression signature. Target efficacies were validated in vivo, and mechanism-of-action studies informed generalizable principles underpinning cancer cell biology. Copyright © 2013 Elsevier Inc. All rights reserved.
Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications
Ruscito, Annamaria; DeRosa, Maria C.
2016-01-01
Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then used in various applications. These applications range from therapeutic uses to biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is needed for the protection and wellbeing of humans and animals. However, the small molecular weights of these targets, including the drastic size difference between the target and the oligonucleotides, make it challenging to select, characterize, and apply aptamers for their detection. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed. PMID:27242994
Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing
2008-02-01
Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.
π-Clamp-mediated cysteine conjugation
NASA Astrophysics Data System (ADS)
Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.
2016-02-01
Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.
Novel method for in vitro depletion of T cells by monoclonal antibody-targeted photosensitization.
Berki, T; Németh, P
1998-02-01
An immunotargeting method (called photo-immunotargeting) has been developed for selective in vitro cell destruction. The procedure combines the photosensitizing (toxic) effect of light-induced dye-molecules, e.g., hematoporphyrin (HP) and the selective binding ability of monoclonal antibodies (mAb) to cell surface molecules. The photosensitizer HP molecules were covalently attached to monoclonal antibodies (a-Thy-1) recognizing an antigen on the surface of T lymphocytes, and used for T cell destruction. To increase the selectivity of the conventional targeting methods, a physical activation step (local light irradiation) as a second degree of specificity was employed. The HP in conjugated form was sufficient to induce T cell (thymocytes, EL-4 cell line) death after irradiation at 400 nm, at tenfold lower concentration compared to the photosensitizing effect of unbound HP. The selective killing of T lymphocytes (bearing the Thy-1 antigen) in a mixed cell population was demonstrated after a treatment with the phototoxic conjugate and light irradiation. This method can be useful for selective destruction of one population (target cell) in an in vitro heterogeneous cell mixture, e.g., in bone marrow transplants for T cell depletion to avoid graft vs. host reaction.
Characteristics of spectro-temporal modulation frequency selectivity in humans.
Oetjen, Arne; Verhey, Jesko L
2017-03-01
There is increasing evidence that the auditory system shows frequency selectivity for spectro-temporal modulations. A recent study of the authors has shown spectro-temporal modulation masking patterns that were in agreement with the hypothesis of spectro-temporal modulation filters in the human auditory system [Oetjen and Verhey (2015). J. Acoust. Soc. Am. 137(2), 714-723]. In the present study, that experimental data and additional data were used to model this spectro-temporal frequency selectivity. The additional data were collected to investigate to what extent the spectro-temporal modulation-frequency selectivity results from a combination of a purely temporal amplitude-modulation filter and a purely spectral amplitude-modulation filter. In contrast to the previous study, thresholds were measured for masker and target modulations with opposite directions, i.e., an upward pointing target modulation and a downward pointing masker modulation. The comparison of this data set with previous corresponding data with the same direction from target and masker modulations indicate that a specific spectro-temporal modulation filter is required to simulate all aspects of spectro-temporal modulation frequency selectivity. A model using a modified Gabor filter with a purely temporal and a purely spectral filter predicts the spectro-temporal modulation masking data.
Nanophotosensitizers toward advanced photodynamic therapy of Cancer.
Lim, Chang-Keun; Heo, Jeongyun; Shin, Seunghoon; Jeong, Keunsoo; Seo, Young Hun; Jang, Woo-Dong; Park, Chong Rae; Park, Soo Young; Kim, Sehoon; Kwon, Ick Chan
2013-07-01
Photodynamic therapy (PDT) is a non-invasive treatment modality for selective destruction of cancer and other diseases and involves the colocalization of light, oxygen, and a photosensitizer (PS) to achieve photocytotoxicity. Although this therapeutic method has considerably improved the quality of life and life expectancy of cancer patients, further advances in selectivity and therapeutic efficacy are required to overcome numerous side effects related to classical PDT. The application of nanoscale photosensitizers (NPSs) comprising molecular PSs and nanocarriers with or without other biological/photophysical functions is a promising approach for improving PDT. In this review, we focus on four nanomedical approaches for advanced PDT: (1) nanocarriers for targeted delivery of PS, (2) introduction of active targeting moieties for disease-specific PDT, (3) stimulus-responsive NPSs for selective PDT, and (4) photophysical improvements in NPS for enhanced PDT efficacy. ► Conservation of normal tissues demands non-invasive therapeutic methods. ► PDT is a light-activated, non-invasive modality for selective destruction of cancers.► Success of PDT requires further advances to overcome the limitations of classical PDT. ►Nanophotosensitizers help improve target selectivity and therapeutic efficacy of PDT. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
IMMUNOCHEMICAL APPLICATIONS IN ENVIRONMENTAL SCIENCE
Immunochemical methods are based on selective antibodies combining with a particular target analyte or analyte group. The specific binding between antibody and analyte can be used to detect environmental contaminants in a variety of sample matrixes. Immunoassay methods provide ...
Analytical applications of aptamers
NASA Astrophysics Data System (ADS)
Tombelli, S.; Minunni, M.; Mascini, M.
2007-05-01
Aptamers are single stranded DNA or RNA ligands which can be selected for different targets starting from a library of molecules containing randomly created sequences. Aptamers have been selected to bind very different targets, from proteins to small organic dyes. Aptamers are proposed as alternatives to antibodies as biorecognition elements in analytical devices with ever increasing frequency. This in order to satisfy the demand for quick, cheap, simple and highly reproducible analytical devices, especially for protein detection in the medical field or for the detection of smaller molecules in environmental and food analysis. In our recent experience, DNA and RNA aptamers, specific for three different proteins (Tat, IgE and thrombin), have been exploited as bio-recognition elements to develop specific biosensors (aptasensors). These recognition elements have been coupled to piezoelectric quartz crystals and surface plasmon resonance (SPR) devices as transducers where the aptamers have been immobilized on the gold surface of the crystals electrodes or on SPR chips, respectively.
Mutants of Cre recombinase with improved accuracy
Eroshenko, Nikolai; Church, George M.
2013-01-01
Despite rapid advances in genome engineering technologies, inserting genes into precise locations in the human genome remains an outstanding problem. It has been suggested that site-specific recombinases can be adapted towards use as transgene delivery vectors. The specificity of recombinases can be altered either with directed evolution or via fusions to modular DNA-binding domains. Unfortunately, both wildtype and altered variants often have detectable activities at off-target sites. Here we use bacterial selections to identify mutations in the dimerization surface of Cre recombinase (R32V, R32M, and 303GVSdup) that improve the accuracy of recombination. The mutants are functional in bacteria, in human cells, and in vitro (except for 303GVSdup, which we did not purify), and have improved selectivity against both model off-target sites and the entire E. coli genome. We propose that destabilizing binding cooperativity may be a general strategy for improving the accuracy of dimeric DNA-binding proteins. PMID:24056590
Protein-targeted corona phase molecular recognition
Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.
2016-01-01
Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890
Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation.
Zheng, Jing; Tan, Chunyan; Xue, Pengcheng; Cao, Jiakun; Liu, Feng; Tan, Ying; Jiang, Yuyang
2016-02-19
Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. Copyright © 2016 Elsevier Inc. All rights reserved.
STK Integrated Message Production List Editor (SIMPLE) for CEO Operations
NASA Technical Reports Server (NTRS)
Trenchard, Mike; Heydorn, James
2014-01-01
Late in fiscal year 2011, the Crew Earth Observations (CEO) team was tasked to upgrade and replace its mission planning and mission operations software systems, which were developed in the Space Shuttle era of the 1980s and 1990s. The impetuses for this change were the planned transition of all workstations to the Windows 7 64-bit operating system and the desire for more efficient and effective use of Satellite Tool Kit (STK) software required for reliable International Space Station (ISS) Earth location tracking. An additional requirement of this new system was the use of the same SQL database of CEO science sites from the SMMS, which was also being developed. STK Integrated Message Production List Editor (SIMPLE) is the essential, all-in-one tool now used by CEO staff to perform daily ISS mission planning to meet its requirement to acquire astronaut photography of specific sites on Earth. The sites are part of a managed, long-term database that has been defined and developed for scientific, educational, and public interest. SIMPLE's end product is a set of basic time and location data computed for an operator-selected set of targets that the ISS crew will be asked to photograph (photography is typically planned 12 to 36 hours out). The CEO operator uses SIMPLE to (a) specify a payload operations planning period; (b) acquire and validate the best available ephemeris data (vectors) for the ISS during the planning period; (c) ingest and display mission-specific site information from the CEO database; (d) identify and display potential current dynamic event targets as map features; (e) compute and display time and location information for each target; (f) screen and select targets based on known crew availability constraints, obliquity constraints, and real-time evaluated constraints to target visibility due to illumination (sun elevation) and atmospheric conditions (weather); and finally (g) incorporate basic, computed time and location information for each selected target into the daily CEO Target List product (message) for submission to ISS payload planning and integration teams for their review and approval prior to uplink. SIMPLE requires and uses the following resources: an ISS mission planning period Greenwich Mean Time start date/time and end date/time), the best available ISS mission ephemeris data (vectors) for that planning period, the STK software package configured for the ISS, and an ISS mission-specific subset of the CEO sites database. The primary advantages realized by the development and implementation of SIMPLE into the CEO payload operations support activity are a smooth transition to the Windows 7 operating system upon scheduled workstation refresh; streamlining of the input and verification of the current ISS ephemeris (vector data); seamless incorporation of selected contents of the SQL database of science sites; the ability to tag and display potential dynamic event opportunities on orbit track maps; simplification of the display and selection of encountered sites based on crew availability, illumination, obliquity, and weather constraints; the incorporation of high-quality mapping of the Earth with various satellite-based datasets for use in describing targets; and the ability to encapsulate and export the essential selected target elements in XML format for use by onboard Earth-location systems, such as Worldmap. SIMPLE is a carefully designed and crafted in-house software package that includes detailed help files for the user and meticulous internal documentation for future modifications. It was delivered in February 2012 for test and evaluation. Following acceptance, it was implemented for CEO mission operations support in May 2012.
Detection of magnetically enhanced cancer tumors using SQUID magnetometry: A feasibility study
NASA Astrophysics Data System (ADS)
Kenning, G. G.; Rodriguez, R.; Zotev, V. S.; Moslemi, A.; Wilson, S.; Hawel, L.; Byus, C.; Kovach, J. S.
2005-01-01
Nanoparticles bound to various biological molecules and pharmacological agents can be administered systemically, to humans without apparent toxicity. This opens an era in the targeting of specific tissues and disease processes for noninvasive imaging and treatment. An important class of particles used predominantly for magnetic resonance imaging is based on iron-oxide ferrites. We performed computer simulations using experimentally determined values for concentrations of superparamagnetic particles achievable in specific tissues of the mouse in vivo and concentrations of particles linked to monoclonal antibodies specific to antigens of two human cancer cell lines in vitro. An instrument to target distance of 12cm, into the body, was selected as relevant to our goal of developing a rapid inexpensive method of scanning the body for occult disease. The simulations demonstrate the potential feasibility of superconducting quantum interference device magnetometry to detect induced magnetic fields in focal concentrations of superparamagnetic particles targeted, in vivo, to sites of disease.
Advancement and applications of peptide phage display technology in biomedical science.
Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung
2016-01-19
Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.
Crooke, Rosanne M; Graham, Mark J
2013-01-01
Antisense oligonucleotides (ASOs) are a new class of specific therapeutic agents that alter the intermediary metabolism of mRNA, resulting in the suppression of disease-associated gene products. ASOs exert their pharmacological effects after hybridizing, via Watson-Crick base pairing, to a specific target RNA. If appropriately designed, this event results in the recruitment of RNase H, the degradation of targeted mRNA or pre-mRNA, and subsequent inhibition of the synthesis of a specific protein. A key advantage of the technology is the ability to selectively inhibit targets that cannot be modulated by traditional therapeutics such as structural proteins, transcription factors, and, of topical interest, lipoproteins. In this chapter, we will first provide an overview of antisense technology, then more specifically describe the status of lipoprotein-related genes that have been studied using the antisense platform, and finally, outline the general methodology required to design and evaluate the in vitro and in vivo efficacy of those drugs.
Deu, Edgar; Yang, Zhimou; Wang, Flora; Klemba, Michael; Bogyo, Matthew
2010-01-01
Background High throughput screening (HTS) is one of the primary tools used to identify novel enzyme inhibitors. However, its applicability is generally restricted to targets that can either be expressed recombinantly or purified in large quantities. Methodology and Principal Findings Here, we described a method to use activity-based probes (ABPs) to identify substrates that are sufficiently selective to allow HTS in complex biological samples. Because ABPs label their target enzymes through the formation of a permanent covalent bond, we can correlate labeling of target enzymes in a complex mixture with inhibition of turnover of a substrate in that same mixture. Thus, substrate specificity can be determined and substrates with sufficiently high selectivity for HTS can be identified. In this study, we demonstrate this method by using an ABP for dipeptidyl aminopeptidases to identify (Pro-Arg)2-Rhodamine as a specific substrate for DPAP1 in Plasmodium falciparum lysates and Cathepsin C in rat liver extracts. We then used this substrate to develop highly sensitive HTS assays (Z’>0.8) that are suitable for use in screening large collections of small molecules (i.e >300,000) for inhibitors of these proteases. Finally, we demonstrate that it is possible to use broad-spectrum ABPs to identify target-specific substrates. Conclusions We believe that this approach will have value for many enzymatic systems where access to large amounts of active enzyme is problematic. PMID:20700487
Cell-specific optoporation with near-infrared ultrafast laser and functionalized gold nanoparticles
NASA Astrophysics Data System (ADS)
Bergeron, Eric; Boutopoulos, Christos; Martel, Rosalie; Torres, Alexandre; Rodriguez, Camille; Niskanen, Jukka; Lebrun, Jean-Jacques; Winnik, Françoise M.; Sapieha, Przemyslaw; Meunier, Michel
2015-10-01
Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm2 and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44+ MDA-MB-231 and CD44+ ARPE-19 cells than to non-targeted CD44- 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm-2 at 250 Hz or 60-80 mJ cm-2 at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions.Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm2 and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44+ MDA-MB-231 and CD44+ ARPE-19 cells than to non-targeted CD44- 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm-2 at 250 Hz or 60-80 mJ cm-2 at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions. Electronic supplementary information (ESI) available: Characterization of functionalized gold nanoparticles by UV-visible-NIR spectroscopy and zeta potential measurements; selectivity of cell targeting with functionalized gold nanoparticles by immunofluorescence, flow cytometry and scanning electron microscopy; selective treatment of targeted cells with functionalized gold nanoparticles and ultrafast laser. See DOI: 10.1039/c5nr05650k
Oberoi, Pranav; Jabulowsky, Robert A; Bähr-Mahmud, Hayat; Wels, Winfried S
2013-01-01
Natural killer (NK) cells are highly specialized effectors of the innate immune system that hold promise for adoptive cancer immunotherapy. Their cell killing activity is primarily mediated by the pro-apoptotic serine protease granzyme B (GrB), which enters targets cells with the help of the pore-forming protein perforin. We investigated expression of a chimeric GrB fusion protein in NK cells as a means to augment their antitumoral activity. For selective targeting to tumor cells, we fused the epidermal growth factor receptor (EGFR) peptide ligand transforming growth factor α (TGFα) to human pre-pro-GrB. Established human NKL natural killer cells transduced with a lentiviral vector expressed this GrB-TGFα (GrB-T) molecule in amounts comparable to endogenous wildtype GrB. Activation of the genetically modified NK cells by cognate target cells resulted in the release of GrB-T together with endogenous granzymes and perforin, which augmented the effector cells' natural cytotoxicity against NK-sensitive tumor cells. Likewise, GrB-T was released into the extracellular space upon induction of degranulation with PMA and ionomycin. Secreted GrB-T fusion protein displayed specific binding to EGFR-overexpressing tumor cells, enzymatic activity, and selective target cell killing in the presence of an endosomolytic activity. Our data demonstrate that ectopic expression of a targeted GrB fusion protein in NK cells is feasible and can enhance antitumoral activity of the effector cells.
Liang, Xue-Hai; Sun, Hong; Shen, Wen; Wang, Shiyu; Yao, Joyee; Migawa, Michael T; Bui, Huynh-Hoa; Damle, Sagar S; Riney, Stan; Graham, Mark J; Crooke, Rosanne M; Crooke, Stanley T
2017-09-19
A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation.
Zhyvoloup, Alexander; Melamed, Anat; Anderson, Ian; Planas, Delphine; Lee, Chen-Hsuin; Kriston-Vizi, Janos; Ketteler, Robin; Merritt, Andy; Routy, Jean-Pierre; Ancuta, Petronela; Bangham, Charles R M; Fassati, Ariberto
2017-07-01
HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation.
Controlling range expansion in habitat networks by adaptively targeting source populations.
Hock, Karlo; Wolff, Nicholas H; Beeden, Roger; Hoey, Jessica; Condie, Scott A; Anthony, Kenneth R N; Possingham, Hugh P; Mumby, Peter J
2016-08-01
Controlling the spread of invasive species, pests, and pathogens is often logistically limited to interventions that target specific locations at specific periods. However, in complex, highly connected systems, such as marine environments connected by ocean currents, populations spread dynamically in both space and time via transient connectivity links. This results in nondeterministic future distributions of species in which local populations emerge dynamically and concurrently over a large area. The challenge, therefore, is to choose intervention locations that will maximize the effectiveness of the control efforts. We propose a novel method to manage dynamic species invasions and outbreaks that identifies the intervention locations most likely to curtail population expansion by selectively targeting local populations most likely to expand their future range. Critically, at any point during the development of the invasion or outbreak, the method identifies the local intervention that maximizes the long-term benefit across the ecosystem by restricting species' potential to spread. In so doing, the method adaptively selects the intervention targets under dynamically changing circumstances. To illustrate the effectiveness of the method we applied it to controlling the spread of crown-of-thorns starfish (Acanthaster sp.) outbreaks across Australia's Great Barrier Reef. Application of our method resulted in an 18-fold relative improvement in management outcomes compared with a random targeting of reefs in putative starfish control scenarios. Although we focused on applying the method to reducing the spread of an unwanted species, it can also be used to facilitate the spread of desirable species through connectivity networks. For example, the method could be used to select those fragments of habitat most likely to rebuild a population if they were sufficiently well protected. © 2016 Society for Conservation Biology.
SapTrap, a Toolkit for High-Throughput CRISPR/Cas9 Gene Modification in Caenorhabditis elegans.
Schwartz, Matthew L; Jorgensen, Erik M
2016-04-01
In principle, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 allows genetic tags to be inserted at any locus. However, throughput is limited by the laborious construction of repair templates and guide RNA constructs and by the identification of modified strains. We have developed a reagent toolkit and plasmid assembly pipeline, called "SapTrap," that streamlines the production of targeting vectors for tag insertion, as well as the selection of modified Caenorhabditis elegans strains. SapTrap is a high-efficiency modular plasmid assembly pipeline that produces single plasmid targeting vectors, each of which encodes both a guide RNA transcript and a repair template for a particular tagging event. The plasmid is generated in a single tube by cutting modular components with the restriction enzyme SapI, which are then "trapped" in a fixed order by ligation to generate the targeting vector. A library of donor plasmids supplies a variety of protein tags, a selectable marker, and regulatory sequences that allow cell-specific tagging at either the N or the C termini. All site-specific sequences, such as guide RNA targeting sequences and homology arms, are supplied as annealed synthetic oligonucleotides, eliminating the need for PCR or molecular cloning during plasmid assembly. Each tag includes an embedded Cbr-unc-119 selectable marker that is positioned to allow concurrent expression of both the tag and the marker. We demonstrate that SapTrap targeting vectors direct insertion of 3- to 4-kb tags at six different loci in 10-37% of injected animals. Thus SapTrap vectors introduce the possibility for high-throughput generation of CRISPR/Cas9 genome modifications. Copyright © 2016 by the Genetics Society of America.
Bispecific small molecule–antibody conjugate targeting prostate cancer
Kim, Chan Hyuk; Axup, Jun Y.; Lawson, Brian R.; Yun, Hwayoung; Tardif, Virginie; Choi, Sei Hyun; Zhou, Quan; Dubrovska, Anna; Biroc, Sandra L.; Marsden, Robin; Pinstaff, Jason; Smider, Vaughn V.; Schultz, Peter G.
2013-01-01
Bispecific antibodies, which simultaneously target CD3 on T cells and tumor-associated antigens to recruit cytotoxic T cells to cancer cells, are a promising new approach to the treatment of hormone-refractory prostate cancer. Here we report a site-specific, semisynthetic method for the production of bispecific antibody-like therapeutics in which a derivative of the prostate-specific membrane antigen-binding small molecule DUPA was selectively conjugated to a mutant αCD3 Fab containing the unnatural amino acid, p-acetylphenylalanine, at a defined site. Homogeneous conjugates were generated in excellent yields and had good solubility. The efficacy of the conjugate was optimized by modifying the linker structure, relative binding orientation, and stoichiometry of the ligand. The optimized conjugate showed potent and selective in vitro activity (EC50 ∼100 pM), good serum half-life, and potent in vivo activity in prophylactic and treatment xenograft mouse models. This semisynthetic approach is likely to be applicable to the generation of additional bispecific agents using drug-like ligands selective for other cell-surface receptors. PMID:24127589
Recombinant human antibody fragment against tetanus toxoid produced by phage display.
Neelakantam, B; Sridevi, N V; Shukra, A M; Sugumar, P; Samuel, S; Rajendra, L
2014-03-01
Phage display technology is a powerful in vitro method for the identification of specific monoclonal antibodies (antibody fragments) to an antigenic target and allows the rapid generation and selection of high affinity, fully human antibodies directed toward any disease target appropriate for antibody therapy. In the present study, we exploited the phage display technology for the selection of an antigen binding fragment (Fabs) toward tetanus toxoid using human naïve phage antibody library constructed from peripheral blood lymphocytes of naïve human donors. The phages displaying Fab were subjected to three rounds of bio-panning with tetanus toxoid as antigen on a solid phase. The high affinity antibody fragments were expressed in HB2151 strain of Escherichia coli and purified by immobilized metal affinity chromatography. The binding activity and specificity of the antibody fragment was established by its reactivity toward tetanus toxoid and non-reactivity toward other related toxins as determined by enzyme-linked immunosorbent assay and immunoblot analysis. The selected Fab fragment forming the antigen-binding complexes with the toxoid in flocculation assay indicates that the Fab may have a potential neutralizing ability toward antigen.
Advances in the Study of Aptamer-Protein Target Identification Using the Chromatographic Approach.
Drabik, Anna; Ner-Kluza, Joanna; Mielczarek, Przemyslaw; Civit, Laia; Mayer, Günter; Silberring, Jerzy
2018-06-01
Ever since the development of the process known as the systematic evolution of ligands by exponential enrichment (SELEX), aptamers have been widely used in a variety of studies, including the exploration of new diagnostic tools and the discovery of new treatment methods. Aptamers' ability to bind to proteins with high affinity and specificity, often compared to that of antibodies, enables the search for potential cancer biomarkers and helps us understand the mechanisms of carcinogenesis. The blind spot of those investigations is usually the difficulty in the selective extraction of targets attached to the aptamer. There are many studies describing the cell SELEX for the prime choice of aptamers toward living cancer cells or even whole tumors in the animal models. However, a dilemma arises when a large number of proteins are being identified as potential targets, which is often the case. In this article, we present a new analytical approach designed to selectively target proteins bound to aptamers. During studies, we have focused on the unambiguous identification of the molecular targets of aptamers characterized by high specificity to the prostate cancer cells. We have compared four assay approaches using electrophoretic and chromatographic methods for "fishing out" aptamer protein targets followed by mass spectrometry identification. We have established a new methodology, based on the fluorescent-tagged oligonucleotides commonly used for flow-cytometry experiments or as optic aptasensors, that allowed the detection of specific aptamer-protein interactions by mass spectrometry. The use of atto488-labeled aptamers for the tracking of the formation of specific aptamer-target complexes provides the possibility of studying putative protein counterparts without needing to apply enrichment techniques. Significantly, changes in the hydrophobic properties of atto488-labeled aptamer-protein complexes facilitate their separation by reverse-phase chromatography combined with fluorescence detection followed by mass-spectrometry-based protein identification. These comparative results of several methodological approaches confirmed the universal applicability of this method to studying aptamer-protein interactions with high sensitivity, showing superior properties compared with pull-down techniques.
Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen-pyropheophorbide conjugate.
Fernandez Gacio, Ana; Fernandez-Marcos, Carlos; Swamy, Narasimha; Dunn, Darra; Ray, Rahul
2006-10-15
We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens. 2006 Wiley-Liss, Inc.
In vitro selection using a dual RNA library that allows primerless selection
Jarosch, Florian; Buchner, Klaus; Klussmann, Sven
2006-01-01
High affinity target-binding aptamers are identified from random oligonucleotide libraries by an in vitro selection process called Systematic Evolution of Ligands by EXponential enrichment (SELEX). Since the SELEX process includes a PCR amplification step the randomized region of the oligonucleotide libraries need to be flanked by two fixed primer binding sequences. These primer binding sites are often difficult to truncate because they may be necessary to maintain the structure of the aptamer or may even be part of the target binding motif. We designed a novel type of RNA library that carries fixed sequences which constrain the oligonucleotides into a partly double-stranded structure, thereby minimizing the risk that the primer binding sequences become part of the target-binding motif. Moreover, the specific design of the library including the use of tandem RNA Polymerase promoters allows the selection of oligonucleotides without any primer binding sequences. The library was used to select aptamers to the mirror-image peptide of ghrelin. Ghrelin is a potent stimulator of growth-hormone release and food intake. After selection, the identified aptamer sequences were directly synthesized in their mirror-image configuration. The final 44 nt-Spiegelmer, named NOX-B11-3, blocks ghrelin action in a cell culture assay displaying an IC50 of 4.5 nM at 37°C. PMID:16855281
Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity.
Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun
2018-06-29
We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.
Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity
NASA Astrophysics Data System (ADS)
Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun
2018-06-01
We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.
Stoltenburg, Regina; Krafčiková, Petra; Víglaský, Viktor; Strehlitz, Beate
2016-09-21
Aptamers for whole cell detection are selected mostly by the Cell-SELEX procedure. Alternatively, the use of specific cell surface epitopes as target during aptamer selections allows the development of aptamers with ability to bind whole cells. In this study, we integrated a formerly selected Protein A-binding aptamer PA#2/8 in an assay format called ELONA (Enzyme-Linked OligoNucleotide Assay) and evaluated the ability of the aptamer to recognise and bind to Staphylococcus aureus presenting Protein A on the cell surface. The full-length aptamer and one of its truncated variants could be demonstrated to specifically bind to Protein A-expressing intact cells of S. aureus, and thus have the potential to expand the portfolio of aptamers that can act as an analytical agent for the specific recognition and rapid detection of the bacterial pathogen. The functionality of the aptamer was found to be based on a very complex, but also highly variable structure. Two structural key elements were identified. The aptamer sequence contains several G-clusters allowing folding into a G-quadruplex structure with the potential of dimeric and multimeric assembly. An inverted repeat able to form an imperfect stem-loop at the 5'-end also contributes essentially to the aptameric function.
Stoltenburg, Regina; Krafčiková, Petra; Víglaský, Viktor; Strehlitz, Beate
2016-01-01
Aptamers for whole cell detection are selected mostly by the Cell-SELEX procedure. Alternatively, the use of specific cell surface epitopes as target during aptamer selections allows the development of aptamers with ability to bind whole cells. In this study, we integrated a formerly selected Protein A-binding aptamer PA#2/8 in an assay format called ELONA (Enzyme-Linked OligoNucleotide Assay) and evaluated the ability of the aptamer to recognise and bind to Staphylococcus aureus presenting Protein A on the cell surface. The full-length aptamer and one of its truncated variants could be demonstrated to specifically bind to Protein A-expressing intact cells of S. aureus, and thus have the potential to expand the portfolio of aptamers that can act as an analytical agent for the specific recognition and rapid detection of the bacterial pathogen. The functionality of the aptamer was found to be based on a very complex, but also highly variable structure. Two structural key elements were identified. The aptamer sequence contains several G-clusters allowing folding into a G-quadruplex structure with the potential of dimeric and multimeric assembly. An inverted repeat able to form an imperfect stem-loop at the 5′-end also contributes essentially to the aptameric function. PMID:27650576
Selection of peptides interfering with protein-protein interaction.
Gaida, Annette; Hagemann, Urs B; Mattay, Dinah; Räuber, Christina; Müller, Kristian M; Arndt, Katja M
2009-01-01
Cell physiology depends on a fine-tuned network of protein-protein interactions, and misguided interactions are often associated with various diseases. Consequently, peptides, which are able to specifically interfere with such adventitious interactions, are of high interest for analytical as well as medical purposes. One of the most abundant protein interaction domains is the coiled-coil motif, and thus provides a premier target. Coiled coils, which consist of two or more alpha-helices wrapped around each other, have one of the simplest interaction interfaces, yet they are able to confer highly specific homo- and heterotypic interactions involved in virtually any cellular process. While there are several ways to generate interfering peptides, the combination of library design with a powerful selection system seems to be one of the most effective and promising approaches. This chapter guides through all steps of such a process, starting with library options and cloning, detailing suitable selection techniques and ending with purification for further down-stream characterization. Such generated peptides will function as versatile tools to interfere with the natural function of their targets thereby illuminating their down-stream signaling and, in general, promoting understanding of factors leading to specificity and stability in protein-protein interactions. Furthermore, peptides interfering with medically relevant proteins might become important diagnostics and therapeutics.
Selective Individual Primary Cell Capture Using Locally Bio-Functionalized Micropores
Liu, Jie; Bombera, Radoslaw; Leroy, Loïc; Roupioz, Yoann; Baganizi, Dieudonné R.; Marche, Patrice N.; Haguet, Vincent; Mailley, Pascal; Livache, Thierry
2013-01-01
Background Solid-state micropores have been widely employed for 6 decades to recognize and size flowing unlabeled cells. However, the resistive-pulse technique presents limitations when the cells to be differentiated have overlapping dimension ranges such as B and T lymphocytes. An alternative approach would be to specifically capture cells by solid-state micropores. Here, the inner wall of 15-µm pores made in 10 µm-thick silicon membranes was covered with antibodies specific to cell surface proteins of B or T lymphocytes. The selective trapping of individual unlabeled cells in a bio-functionalized micropore makes them recognizable just using optical microscopy. Methodology/Principal Findings We locally deposited oligodeoxynucleotide (ODN) and ODN-conjugated antibody probes on the inner wall of the micropores by forming thin films of polypyrrole-ODN copolymers using contactless electro-functionalization. The trapping capabilities of the bio-functionalized micropores were validated using optical microscopy and the resistive-pulse technique by selectively capturing polystyrene microbeads coated with complementary ODN. B or T lymphocytes from a mouse splenocyte suspension were specifically immobilized on micropore walls functionalized with complementary ODN-conjugated antibodies targeting cell surface proteins. Conclusions/Significance The results showed that locally bio-functionalized micropores can isolate target cells from a suspension during their translocation throughout the pore, including among cells of similar dimensions in complex mixtures. PMID:23469221
Klose, Diana; Saunders, Ute; Barth, Stefan; Fischer, Rainer; Jacobi, Annett Marita; Nachreiner, Thomas
2016-02-17
In an earlier study we developed a unique strategy allowing us to specifically eliminate antigen-specific murine B cells via their distinct B cell receptors using a new class of fusion proteins. In the present work we elaborated our idea to demonstrate the feasibility of specifically addressing and eliminating human memory B cells. The present study reveals efficient adaptation of the general approach to selectively target and eradicate human memory B cells. In order to demonstrate the feasibility we engineered a fusion protein following the principle of recombinant immunotoxins by combining a model antigen (tetanus toxoid fragment C, TTC) for B cell receptor targeting and a truncated version of Pseudomonas aeruginosa exotoxin A (ETA') to induce apoptosis after cellular uptake. The TTC-ETA' fusion protein not only selectively bound to a TTC-reactive murine B cell hybridoma cell line in vitro but also to freshly isolated human memory B cells from immunized donors ex vivo. Specific toxicity was confirmed on an antigen-specific population of human CD27(+) memory B cells. This protein engineering strategy can be used as a generalized platform approach for the construction of therapeutic fusion proteins with disease-relevant antigens as B cell receptor-binding domains, offering a promising approach for the specific depletion of autoreactive B-lymphocytes in B cell-driven autoimmune diseases.
The future of EPAC-targeted therapies: agonism versus antagonism.
Parnell, Euan; Palmer, Timothy M; Yarwood, Stephen J
2015-04-01
Pharmaceutical manipulation of cAMP levels exerts beneficial effects through the regulation of the exchange protein activated by cAMP (EPAC) and protein kinase A (PKA) signalling routes. Recent attention has turned to the specific regulation of EPAC isoforms (EPAC1 and EPAC2) as a more targeted approach to cAMP-based therapies. For example, EPAC2-selective agonists could promote insulin secretion from pancreatic β cells, whereas EPAC1-selective agonists may be useful in the treatment of vascular inflammation. By contrast, EPAC1 and EPAC2 antagonists could both be useful in the treatment of heart failure. Here we discuss whether the best way forward is to design EPAC-selective agonists or antagonists and the current strategies being used to develop isoform-selective, small-molecule regulators of EPAC1 and EPAC2 activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Selective inhibition of plant serine hydrolases by agrochemicals revealed by competitive ABPP.
Kaschani, Farnusch; Nickel, Sabrina; Pandey, Bikram; Cravatt, Benjamin F; Kaiser, Markus; van der Hoorn, Renier A L
2012-01-15
Organophosphate and -phosphonates and their thio derivatives are often used in agroindustry as herbicides and insecticides, but their potential off-targets in the plant are poorly investigated. Here, we use competitive activity-based protein profiling (ABPP) of serine hydrolases (SHs) to detect targets of these agrochemicals and other compounds in Arabidopsis thaliana. Using broad-range and specific probes, and by overexpression of various SHs in planta, we are able to confirm eight SH-compound interactions, including selective inhibition of carboxylesterase CXE12, prolyloligopeptidase, methylesterase MES2 and tripeptidyl peptidase TPP2. These observations can be used for the design of novel probes and selective inhibitors and may help to assess physiological effects of agrochemicals on crop plants. Copyright © 2011 Elsevier Ltd. All rights reserved.
Perréard, Camille; d'Orlyé, Fanny; Griveau, Sophie; Liu, Baohong; Bedioui, Fethi; Varenne, Anne
2017-10-01
There is a great demand for integrating sample treatment into μTASs. In this context, we developed a new sol-gel phase for extraction of trace compounds in complex matrices. For this purpose, the incorporation of aptamers in silica-based gel within PDMS/glass microfluidic channels was performed for the first time by a one-step sol-gel process. The effective gel attachment onto microchannel walls and aptamer incorporation in the polymerized gel were evaluated using fluorescence microscopy. A good gel stability and aptamer incorporation inside the microchannel was demonstrated upon rinsing and over storage time. The ability of gel-encapsulated aptamers to interact with its specific target (either sulforhodamine B as model fluorescent target, or diclofenac, a pain killer drug) was assessed too. The binding capacity of entrapped aptamers was quantified (in the micromolar range) and the selectivity of the interaction was evidenced. Preservation of aptamers binding affinity to target molecules was therefore demonstrated. Dissociation constant of the aptamer-target complex and interaction selectivity were evaluated similar to those in bulk solution. This opens the way to new selective on-chip SPE techniques for sample pretreatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Friedman, Adam D; Kim, Dongwook; Liu, Rihe
2015-01-01
When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and specifically deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials.
Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H.; Pessi, Gabriella; Eberl, Leo; Robinson, John A.
2016-01-01
Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. PMID:26627837
Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo
Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D
2016-01-01
Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans. PMID:26567514
Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo.
Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D
2016-06-01
Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans.
SRF selectively controls tip cell invasive behavior in angiogenesis.
Franco, Claudio A; Blanc, Jocelyne; Parlakian, Ara; Blanco, Raquel; Aspalter, Irene M; Kazakova, Natalia; Diguet, Nicolas; Mylonas, Elena; Gao-Li, Jacqueline; Vaahtokari, Anne; Penard-Lacronique, Virgine; Fruttiger, Markus; Rosewell, Ian; Mericskay, Mathias; Gerhardt, Holger; Li, Zhenlin
2013-06-01
Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.
Selection of a novel CD19 aptamer for targeted delivery of doxorubicin to lymphoma cells.
Hu, Yan; Li, Xiaoou; An, Yacong; Duan, Jinhong; Yang, Xian-Da
2018-06-01
CD19 is overexpressed in most human B cell malignancies and considered an important tumor marker for diagnosis and treatment. Aptamers are oligonucleotides that may potentially serve as tumor-homing ligand for targeted cancer therapy with excellent affinity and specificity. In this study, we selected a novel CD19 aptamer (LC1) that was a 59-nucleotide single strand DNA. The aptamer could bind to recombinant CD19 protein with a K d of 85.4 nM, and had minimal cross reactivity to bovine serum albumin (BSA) or ovalbumin (OVA). Moreover, the aptamer was found capable of binding with the CD19-positive lymphoma cells (Ramos and Raji), but not the CD19-negative cell lines (Jurkat and NB4). An aptamer-doxorubicin complex (Apt-Dox) was also formulated, and selectively delivered doxorubicin to CD19-positive lymphoma cells in vitro . The results indicate that aptamer LC1 can recognize CD19-positive tumor cells and may potentially function as a CD19-targeting ligand.
Sequence-based design of bioactive small molecules that target precursor microRNAs
Velagapudi, Sai Pradeep; Gallo, Steven M.; Disney, Matthew D.
2014-01-01
Oligonucleotides are designed to target RNA using base pairing rules, however, they are hampered by poor cellular delivery and non-specific stimulation of the immune system. Small molecules are preferred as lead drugs or probes, but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA precursors and identified bioactive small molecules that inhibit biogenesis by binding to nuclease processing sites (41% hit rate). Amongst 29 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Importantly, microRNA profiling shows that 1 only significantly effects microRNA-96 biogenesis and is more selective than an oligonucleotide. PMID:24509821
Selectively Targeting T- and B-Cell Lymphomas: A Benzothiazole Antagonist of α4β1 Integrin
Carpenter, Richard D.; Andrei, Mirela; Aina, Olulanu H.; Lau, Edmond Y.; Lightstone, Felice C.; Liu, Ruiwu; Lam, Kit S.; Kurth, Mark J.
2011-01-01
Current cancer chemotherapeutic agents clinically deployed today are designed to be indiscriminately cytotoxic, however achieving selective targeting of cancer malignancies would allow for improved diagnostic and chemotherapeutic tools. Integrin α4β1, a heterodimeric cell surface receptor, is believed to have a relaxed conformation in normal cells and an active conformation in cancerous cells, specifically T- and B-cell lymphomas. This highly attractive yet poorly understood receptor has been selectively targeted with the bisaryl urea peptidomimetic antagonist 1. However, concerns regarding its preliminary pharmacokinetic (PK) profile provided an impetus to change the pharmacophore from a bisaryl urea to a 2-arylaminobenzothiazole moiety, resulting in an analog with improved physicochemical properties, solubility and kidney:tumor ratio while maintaining potency (6; IC50 = 53 pM). The results presented herein utilized heterocyclic and solid-phase chemistry, cell adhesion assay, and in vivo optical imaging using the cyanine dye Cy5.5 conjugate. PMID:19072684
USDA-ARS?s Scientific Manuscript database
Selection of the composite MARC III population for markers allowed better estimates of effects and inheritance of markers for targeted carcass quality traits (n=254) and nontargeted traits and an evaluation of SNP specific residual variance models for tenderness. Genotypic effects of CAPN1 haplotyp...
Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression
Goldberg, Michael S.
2012-01-01
The development of cancer-specific therapeutics has been limited because most healthy cells and cancer cells depend on common pathways. Pyruvate kinase (PK) exists in M1 (PKM1) and M2 (PKM2) isoforms. PKM2, whose expression in cancer cells results in aerobic glycolysis and is suggested to bestow a selective growth advantage, is a promising target. Because many oncogenes impart a common alteration in cell metabolism, inhibition of the M2 isoform might be of broad applicability. We show that several small interfering (si) RNAs designed to target mismatches between the M2 and M1 isoforms confer specific knockdown of the former, resulting in decreased viability and increased apoptosis in multiple cancer cell lines but less so in normal fibroblasts or endothelial cells. In vivo delivery of siPKM2 additionally causes substantial tumor regression of established xenografts. Our results suggest that the inherent nucleotide-level specificity of siRNA can be harnessed to develop therapeutics that target isoform-specific exons in genes exhibiting differential splicing patterns in various cell types. PMID:22271574
Personal glucose meters for detection and quantification of a broad range of analytes
Lu, Yi; Xiang, Yu
2015-02-03
A general methodology for the development of highly sensitive and selective sensors that can achieve portable, low-cost and quantitative detection of a broad range of targets using only a personal glucose meter (PGM) is disclosed. The method uses recognition molecules that are specific for a target agent, enzymes that can convert an enzyme substrate into glucose, and PGM. Also provided are sensors, which can include a solid support to which is attached a recognition molecule that permits detection of a target agent, wherein the recognition molecule specifically binds to the target agent in the presence of the target agent but not significantly to other agents as well as an enzyme that can catalyze the conversion of a substance into glucose, wherein the enzyme is attached directly or indirectly to the recognition molecule, and wherein in the presence of the target agent the enzyme can convert the substance into glucose. The disclosed sensors can be part of a lateral flow device. Methods of using such sensors for detecting target agents are also provided.
Yankson, Kweku K.; Steck, Todd R.
2009-01-01
We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108
Hubble Space Telescope: The GO and GTO Observing Programs. Version 1.0
NASA Technical Reports Server (NTRS)
Saha, Abhijit
1990-01-01
Selected information from the current Hubble Space Telescope (HST) science programs for the Guaranteed Time Observers (GTO's) and General Observers (GO's) is presented. Included are program abstracts, detailed listings of specific targets, and exposure information.
Structure and function of polyglycine hydrolases
USDA-ARS?s Scientific Manuscript database
Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave polyglycine linkers of targeted plant defense chitinases. Unlike typical endoproteases that cleave a specific peptide bond, these 640 amino acid glycoproteins selectively cleave one of multiple peptide bonds within polyglyci...
Yang, Jing; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C
2015-03-03
Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner.
Selection of peptidoglycan-specific aptamers for bacterial cells identification.
Ferreira, Iêda Mendes; de Souza Lacerda, Camila Maria; de Faria, Lígia Santana; Corrêa, Cristiane Rodrigues; de Andrade, Antero Silva Ribeiro
2014-12-01
Peptidoglycan is a highly complex and essential macromolecule of bacterial outer cell wall; it is a heteropolymer made up of linear glycan strands cross-linked by peptides. Peptidoglycan has a particular composition which makes it a possible target for specific bacterial recognition. Aptamers are single-stranded DNA or RNA oligonucleotides that bind to target molecules with high affinity and specificity. Aptamers can be labeled with different radioisotopes and possess several properties that make them suitable for molecular imaging. The purpose of this study was to obtain aptamers for use as radiopharmaceutical in bacterial infection diagnosis. Two aptamers (Antibac1 and Antibac2) against peptidoglycan were selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology. The dissociation constant (Kd) for Antibac1 was 0.415 + 0.047 μM and for Antibac2 was 1.261 + 0.280 μM. These aptamers labeled with (32)P showed high affinity for Staphylococcus aureus cells. The binding to S. aureus and Escherichia coli in vitro were significantly higher than for Candida albicans and human fibroblasts, demonstrating their specificity for bacterial cells. These results point Antibac1 and Antibac2 as promising tools for bacterial infections identification.
PDE4 as a target for cognition enhancement
Richter, Wito; Menniti, Frank S.; Zhang, Han-Ting; Conti, Marco
2014-01-01
Introduction The second messengers cAMP and cGMP mediate fundamental aspects of brain function relevant to memory, learning and cognitive functions. Consequently, cyclic nucleotide phosphodiesterases (PDEs), the enzymes that inactivate the cyclic nucleotides, are promising targets for the development of cognition-enhancing drugs. Areas covered PDE4 is the largest of the eleven mammalian PDE families. This review covers the properties and functions of the PDE4 family, highlighting procognitive and memory-enhancing effects associated with their inactivation. Expert opinion PAN-selective PDE4 inhibitors exert a number of memory- and cognition-enhancing effects and have neuroprotective and neuroregenerative properties in preclinical models. The major hurdle for their clinical application is to target inhibitors to specific PDE4 isoforms relevant to particular cognitive disorders to realize the therapeutic potential while avoiding side effects, in particular emesis and nausea. The PDE4 family comprises four genes, PDE4A-D, each expressed as multiple variants. Progress to date stems from characterization of rodent models with selective ablation of individual PDE4 subtypes, revealing that individual subtypes exert unique and non-redundant functions in the brain. Thus, targeting specific PDE4 subtypes, as well as splicing variants or conformational states, represents a promising strategy to separate the therapeutic benefits from the side effects of PAN-PDE4 inhibitors. PMID:23883342
Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration.
Karaoglu Hanzatian, Denise; Schwartz, Annette; Gizatullin, Farid; Erickson, Jamie; Deng, Kangwen; Villanueva, Ruth; Stedman, Christopher; Harris, Cristina; Ghayur, Tariq; Goodearl, Andrew
2018-05-17
Therapeutic monoclonal antibodies and endogenous IgG antibodies show limited uptake into the central nervous system (CNS) due to the blood-brain barrier (BBB), which regulates and controls the selective and specific transport of both exogenous and endogenous materials to the brain. The use of natural transport mechanisms, such as receptor-mediated transcytosis (RMT), to deliver antibody therapeutics into the brain have been studied in rodents and monkeys. Recent successful examples include monovalent bispecific antibodies and mono- or bivalent fusion proteins; however, these formats do not have the capability to bind to both the CNS target and the BBB transport receptor in a bivalent fashion as a canonical antibody would. Dual-variable-domain immunoglobulin (DVD-Ig) proteins offer a bispecific format where monoclonal antibody-like bivalency to both the BBB receptor and the therapeutic target is preserved, enabling independent engineering of binding affinity, potency, valency, epitope and conformation, essential for successful generation of clinical candidates for CNS applications with desired drug-like properties. Each of these parameters can affect the binding and transcytosis ability mediated by different receptors on the brain endothelium differentially, allowing exploration of diverse properties. Here, we describe generation and characterization of several different DVD-Ig proteins, specific for four different CNS targets, capable of crossing the BBB through transcytosis mediated by the transferrin receptor 1 (TfR1). After systemic administration of each DVD-Ig, we used two independent methods in parallel to observe specific uptake into the brain. An electrochemiluminescent-based sensitive quantitative assay and a semi-quantitative immunohistochemistry technique were used for brain concentration determination and biodistribution/localization in brain, respectively. Significantly enhanced brain uptake and retention was observed for all TfR1 DVD-Ig proteins regardless of the CNS target or the systemic administration route selected.
Qeli, Ermir; Omasits, Ulrich; Goetze, Sandra; Stekhoven, Daniel J; Frey, Juerg E; Basler, Konrad; Wollscheid, Bernd; Brunner, Erich; Ahrens, Christian H
2014-08-28
The in silico prediction of the best-observable "proteotypic" peptides in mass spectrometry-based workflows is a challenging problem. Being able to accurately predict such peptides would enable the informed selection of proteotypic peptides for targeted quantification of previously observed and non-observed proteins for any organism, with a significant impact for clinical proteomics and systems biology studies. Current prediction algorithms rely on physicochemical parameters in combination with positive and negative training sets to identify those peptide properties that most profoundly affect their general detectability. Here we present PeptideRank, an approach that uses learning to rank algorithm for peptide detectability prediction from shotgun proteomics data, and that eliminates the need to select a negative dataset for the training step. A large number of different peptide properties are used to train ranking models in order to predict a ranking of the best-observable peptides within a protein. Empirical evaluation with rank accuracy metrics showed that PeptideRank complements existing prediction algorithms. Our results indicate that the best performance is achieved when it is trained on organism-specific shotgun proteomics data, and that PeptideRank is most accurate for short to medium-sized and abundant proteins, without any loss in prediction accuracy for the important class of membrane proteins. Targeted proteomics approaches have been gaining a lot of momentum and hold immense potential for systems biology studies and clinical proteomics. However, since only very few complete proteomes have been reported to date, for a considerable fraction of a proteome there is no experimental proteomics evidence that would allow to guide the selection of the best-suited proteotypic peptides (PTPs), i.e. peptides that are specific to a given proteoform and that are repeatedly observed in a mass spectrometer. We describe a novel, rank-based approach for the prediction of the best-suited PTPs for targeted proteomics applications. By building on methods developed in the field of information retrieval (e.g. web search engines like Google's PageRank), we circumvent the delicate step of selecting positive and negative training sets and at the same time also more closely reflect the experimentalist´s need for selecting e.g. the 5 most promising peptides for targeting a protein of interest. This approach allows to predict PTPs for not yet observed proteins or for organisms without prior experimental proteomics data such as many non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Graff, Jeremy R.; Konicek, Bruce W.; Vincent, Thomas M.; Lynch, Rebecca L.; Monteith, David; Weir, Spring N.; Schwier, Phil; Capen, Andrew; Goode, Robin L.; Dowless, Michele S.; Chen, Yuefeng; Zhang, Hong; Sissons, Sean; Cox, Karen; McNulty, Ann M.; Parsons, Stephen H.; Wang, Tao; Sams, Lillian; Geeganage, Sandaruwan; Douglass, Larry E.; Neubauer, Blake Lee; Dean, Nicholas M.; Blanchard, Kerry; Shou, Jianyong; Stancato, Louis F.; Carter, Julia H.; Marcusson, Eric G.
2007-01-01
Expression of eukaryotic translation initiation factor 4E (eIF4E) is commonly elevated in human and experimental cancers, promoting angiogenesis and tumor growth. Elevated eIF4E levels selectively increase translation of growth factors important in malignancy (e.g., VEGF, cyclin D1) and is thereby an attractive anticancer therapeutic target. Yet to date, no eIF4E-specific therapy has been developed. Herein we report development of eIF4E-specific antisense oligonucleotides (ASOs) designed to have the necessary tissue stability and nuclease resistance required for systemic anticancer therapy. In mammalian cultured cells, these ASOs specifically targeted the eIF4E mRNA for destruction, repressing expression of eIF4E-regulated proteins (e.g., VEGF, cyclin D1, survivin, c-myc, Bcl-2), inducing apoptosis, and preventing endothelial cells from forming vessel-like structures. Most importantly, intravenous ASO administration selectively and significantly reduced eIF4E expression in human tumor xenografts, significantly suppressing tumor growth. Because these ASOs also target murine eIF4E, we assessed the impact of eIF4E reduction in normal tissues. Despite reducing eIF4E levels by 80% in mouse liver, eIF4E-specific ASO administration did not affect body weight, organ weight, or liver transaminase levels, thereby providing the first in vivo evidence that cancers may be more susceptible to eIF4E inhibition than normal tissues. These data have prompted eIF4E-specific ASO clinical trials for the treatment of human cancers. PMID:17786246
de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M
2016-01-01
Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.
Wilson, Kris; Webster, Scott P; Iredale, John P; Zheng, Xiaozhong; Homer, Natalie Z; Pham, Nhan T; Auer, Manfred; Mole, Damian J
2017-12-15
The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.
NASA Astrophysics Data System (ADS)
Wilson, Kris; Webster, Scott P.; Iredale, John P.; Zheng, Xiaozhong; Homer, Natalie Z.; Pham, Nhan T.; Auer, Manfred; Mole, Damian J.
2018-01-01
The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.
Surgical treatment of Parkinson’s disease: Past, present, and future
Duker, Andrew P.; Espay, Alberto J.
2013-01-01
Advances in functional neurosurgery have expanded the treatment of Parkinson’s disease (PD), from early lesional procedures to targeted electrical stimulation of specific nodes in the basal ganglia circuitry. Deep brain stimulation (DBS), applied to selected patients with Parkinson’s disease (PD) and difficult-to-manage motor fluctuations, yields substantial reductions in off time and dyskinesia. Outcomes for DBS targeting the two major studied targets in PD, the subthalamic nucleus (STN) and the internal segment of the globus pallidus (GPi), appear to be broadly similar and the choice is best made based on individual patient factors and surgeon preference. Emerging concepts in DBS include examination of new targets, such as the potential efficacy of pedunculopontine nucleus (PPN) stimulation for treatment of freezing and falls, the utilization of pathologic oscillations in the beta band to construct an adaptive “closed-loop” DBS, and new technologies, including segmented electrodes to steer current toward specific neural populations. PMID:23896506
Will nanotechnology influence targeted cancer therapy?
Grimm, Jan; Scheinberg, David A.
2011-01-01
The rapid development of techniques that enable synthesis (and manipulation) of matter on the nanometer scale, as well as the development of new nano-materials, will play a large role in disease diagnosis and treatment, specifically in targeted cancer therapy. Targeted nanocarriers are an intriguing means to selectively deliver high concentrations of cytotoxic agents or imaging labels directly to the cancer site. Often solubility issues and an unfavorable biodistribution can result in a suboptimal response of novel agents even though they are very potent. New nanoparticulate formulations allow simultaneous imaging and therapy (“theranostics”), which can provide a realistic means for the clinical implementation of such otherwise suboptimal formulations. In this review we will not attempt to provide a complete overview of the rapidly enlarging field of nanotechnology in cancer; rather, we will present properties specific to nanoparticles, and examples of their uses, which demonstrate their importance for targeted cancer therapy. PMID:21356476
Effects of paired-object affordance in search tasks across the adult lifespan.
Wulff, Melanie; Stainton, Alexandra; Rotshtein, Pia
2016-06-01
The study investigated the processes underlying the retrieval of action information about functional object pairs, focusing on the contribution of procedural and semantic knowledge. We further assessed whether the retrieval of action knowledge is affected by task demands and age. The contribution of procedural knowledge was examined by the way objects were selected, specifically whether active objects were selected before passive objects. The contribution of semantic knowledge was examined by manipulating the relation between targets and distracters. A touchscreen-based search task was used testing young, middle-aged, and elderly participants. Participants had to select by touching two targets among distracters using two search tasks. In an explicit action search task, participants had to select two objects which afforded a mutual action (e.g., functional pair: hammer-nail). Implicit affordance perception was tested using a visual color-matching search task; participants had to select two objects with the same colored frame. In both tasks, half of the colored targets also afforded an action. Overall, middle-aged participants performed better than young and elderly participants, specifically in the action task. Across participants in the action task, accuracy was increased when the distracters were semantically unrelated to the functional pair, while the opposite pattern was observed in the color task. This effect was enhanced with increased age. In the action task all participants utilized procedural knowledge, i.e., selected the active object before the passive object. This result supports the dual-route account from vision to action. Semantic knowledge contributed to both the action and the color task, but procedural knowledge associated with the direct route was primarily retrieved when the task was action-relevant. Across the adulthood lifespan, the data show inverted U-shaped effects of age on the retrieval of action knowledge. Age also linearly increased the involvement of the indirect (semantic) route and the integration of information of the direct and the indirect routes in selection processes. Copyright © 2016 Elsevier Inc. All rights reserved.
DNA capture elements for rapid detection and identification of biological agents
NASA Astrophysics Data System (ADS)
Kiel, Johnathan L.; Parker, Jill E.; Holwitt, Eric A.; Vivekananda, Jeeva
2004-08-01
DNA capture elements (DCEs; aptamers) are artificial DNA sequences, from a random pool of sequences, selected for their specific binding to potential biological warfare agents. These sequences were selected by an affinity method using filters to which the target agent was attached and the DNA isolated and amplified by polymerase chain reaction (PCR) in an iterative, increasingly stringent, process. Reporter molecules were attached to the finished sequences. To date, we have made DCEs to Bacillus anthracis spores, Shiga toxin, Venezuelan Equine Encephalitis (VEE) virus, and Francisella tularensis. These DCEs have demonstrated specificity and sensitivity equal to or better than antibody.
Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald
2014-12-10
A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.
Rebelo, Márcia A; Alves, Thais F R; de Lima, Renata; Oliveira, José M; Vila, Marta M D C; Balcão, Victor M; Severino, Patrícia; Chaud, Marco V
2016-10-01
Tissue engineering plays a significant role both in the re-establishment of functions and regeneration of organic tissues. Success in manufacturing projects for biological scaffolds, for the purpose of tissue regeneration, is conditioned by the selection of parameters such as the biomaterial, the device architecture, and the specificities of the cells making up the organic tissue to create, in vivo, a microenvironment that preserves and further enhances the proliferation of a specific cell phenotype. To support this approach, we have screened scientific publications that show biomedical applications of scaffolds, biomechanical, morphological, biochemical, and hemodynamic characteristics of the target organic tissues, and the possible interactions between different cell matrices and biological scaffolds. This review article provides an overview on the biomedical application of scaffolds and on the characteristics of the (bio)materials commonly used for manufacturing these biological devices used in tissue engineering, taking into consideration the cellular specificity of the target tissue. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1483-1494, 2016. © 2015 Wiley Periodicals, Inc.
Zhou, Zhan; Zou, Yangyun; Liu, Gangbiao; Zhou, Jingqi; Wu, Jingcheng; Zhao, Shimin; Su, Zhixi; Gu, Xun
2017-08-29
Human genes exhibit different effects on fitness in cancer and normal cells. Here, we present an evolutionary approach to measure the selection pressure on human genes, using the well-known ratio of the nonsynonymous to synonymous substitution rate in both cancer genomes ( C N / C S ) and normal populations ( p N / p S ). A new mutation-profile-based method that adopts sample-specific mutation rate profiles instead of conventional substitution models was developed. We found that cancer-specific selection pressure is quite different from the selection pressure at the species and population levels. Both the relaxation of purifying selection on passenger mutations and the positive selection of driver mutations may contribute to the increased C N / C S values of human genes in cancer genomes compared with the p N / p S values in human populations. The C N / C S values also contribute to the improved classification of cancer genes and a better understanding of the onco-functionalization of cancer genes during oncogenesis. The use of our computational pipeline to identify cancer-specific positively and negatively selected genes may provide useful information for understanding the evolution of cancers and identifying possible targets for therapeutic intervention.
Expansion of Protein Farnesyltransferase Specificity Using “Tunable” Active Site Interactions
Hougland, James L.; Gangopadhyay, Soumyashree A.; Fierke, Carol A.
2012-01-01
Post-translational modifications play essential roles in regulating protein structure and function. Protein farnesyltransferase (FTase) catalyzes the biologically relevant lipidation of up to several hundred cellular proteins. Site-directed mutagenesis of FTase coupled with peptide selectivity measurements demonstrates that molecular recognition is determined by a combination of multiple interactions. Targeted randomization of these interactions yields FTase variants with altered and, in some cases, bio-orthogonal selectivity. We demonstrate that FTase specificity can be “tuned” using a small number of active site contacts that play essential roles in discriminating against non-substrates in the wild-type enzyme. This tunable selectivity extends in vivo, with FTase variants enabling the creation of bioengineered parallel prenylation pathways with altered substrate selectivity within a cell. Engineered FTase variants provide a novel avenue for probing both the selectivity of prenylation pathway enzymes and the effects of prenylation pathway modifications on the cellular function of a protein. PMID:22992747
Farra, Rossella; Musiani, Francesco; Perrone, Francesca; Čemažar, Maja; Kamenšek, Urška; Tonon, Federica; Abrami, Michela; Ručigaj, Aleš; Grassi, Mario; Pozzato, Gabriele; Bonazza, Deborah; Zanconati, Fabrizio; Forte, Giancarlo; El Boustani, Maguie; Scarabel, Lucia; Garziera, Marica; Russo Spena, Concetta; De Stefano, Lucia; Salis, Barbara; Toffoli, Giuseppe; Rizzolio, Flavio; Grassi, Gabriele; Dapas, Barbara
2018-03-28
Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.
Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia.
Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris
2015-11-25
The challenge for glycogen synthase kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML), may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy.
Modeling HIV-1 Drug Resistance as Episodic Directional Selection
Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L.; Scheffler, Konrad
2012-01-01
The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance. PMID:22589711
Modeling HIV-1 drug resistance as episodic directional selection.
Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L; Scheffler, Konrad
2012-01-01
The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.
Radiogenetic therapy: strategies to overcome tumor resistance.
Marples, B; Greco, O; Joiner, M C; Scott, S D
2003-01-01
The aim of cancer gene therapy is to selectively kill malignant cells at the tumor site, by exploiting traits specific to cancer cells and/or solid tumors. Strategies that take advantage of biological features common to different tumor types are particularly promising, since they have wide clinical applicability. Much attention has focused on genetic methods that complement radiotherapy, the principal treatment modality, or that exploit hypoxia, the most ubiquitous characteristic of most solid cancers. The goal of this review is to highlight two promising gene therapy methods developed specifically to target the tumor volume that can be readily used in combination with radiotherapy. The first approach uses radiation-responsive gene promoters to control the selective expression of a suicide gene (e.g., herpes simplex virus thymidine kinase) to irradiated tissue only, leading to targeted cell killing in the presence of a prodrug (e.g., ganciclovir). The second method utilizes oxygen-dependent promoters to produce selective therapeutic gene expression and prodrug activation in hypoxic cells, which are refractive to conventional radiotherapy. Further refining of tumor targeting can be achieved by combining radiation and hypoxia responsive elements in chimeric promoters activated by either and dual stimuli. The in vitro and in vivo studies described in this review suggest that the combination of gene therapy and radiotherapy protocols has potential for use in cancer care, particularly in cases currently refractory to treatment as a result of inherent or hypoxia-mediated radioresistance.
Chapman, Mark A; Pashley, Catherine H; Wenzler, Jessica; Hvala, John; Tang, Shunxue; Knapp, Steven J; Burke, John M
2008-11-01
Genomic scans for selection are a useful tool for identifying genes underlying phenotypic transitions. In this article, we describe the results of a genome scan designed to identify candidates for genes targeted by selection during the evolution of cultivated sunflower. This work involved screening 492 loci derived from ESTs on a large panel of wild, primitive (i.e., landrace), and improved sunflower (Helianthus annuus) lines. This sampling strategy allowed us to identify candidates for selectively important genes and investigate the likely timing of selection. Thirty-six genes showed evidence of selection during either domestication or improvement based on multiple criteria, and a sequence-based test of selection on a subset of these loci confirmed this result. In view of what is known about the structure of linkage disequilibrium across the sunflower genome, these genes are themselves likely to have been targeted by selection, rather than being merely linked to the actual targets. While the selection candidates showed a broad range of putative functions, they were enriched for genes involved in amino acid synthesis and protein catabolism. Given that a similar pattern has been detected in maize (Zea mays), this finding suggests that selection on amino acid composition may be a general feature of the evolution of crop plants. In terms of genomic locations, the selection candidates were significantly clustered near quantitative trait loci (QTL) that contribute to phenotypic differences between wild and cultivated sunflower, and specific instances of QTL colocalization provide some clues as to the roles that these genes may have played during sunflower evolution.
Nitschke, Katja; Barriga, Alejandro; Schmidt, Julia; Timm, Jörg; Viazov, Sergei; Kuntzen, Thomas; Kim, Arthur Y; Lauer, Georg M; Allen, Todd M; Gaudieri, Silvana; Rauch, Andri; Lange, Christian M; Sarrazin, Christoph; Eiermann, Thomas; Sidney, John; Sette, Alessandro; Thimme, Robert; López, Daniel; Neumann-Haefelin, Christoph
2014-01-01
HLA-B*27 is associated with spontaneous HCV genotype 1 clearance. HLA-B*27-restricted CD8+ T cells target three NS5B epitopes. Two of these epitopes are dominantly targeted in the majority of HLA-B*27+ patients. In chronic infection, viral escape occurs consistently in these two epitopes. The third epitope (NS5B2820) was dominantly targeted in an acutely infected patient. This was in contrast, however, to the lack of recognition and viral escape in the large majority of HLA-B*27+ patients. Here, we set out to determine the host factors contributing to selective targeting of this epitope. Four-digit HLA class I typing and viral sequence analyses were performed in 78 HLA-B*27+ patients with chronic HCV genotype 1 infection. CD8+ T cell analyses were performed in a subset of patients. In addition, HLA/peptide affinity was compared for HLA-B*27:02 and 05. The NS5B2820 epitope is only restricted by the HLA-B*27 subtype HLA-B*27:02 (that is frequent in Mediterranean populations), but not by the prototype HLA-B*27 subtype B*27:05. Indeed, the epitope is very dominant in HLA-B*27:02+ patients and is associated with viral escape mutations at the anchor position for HLA-binding in 12 out of 13 HLA-B*27:02+ chronically infected patients. The NS5B2820 epitope is immunodominant in the context of HLA-B*27:02, but is not restricted by other HLA-B*27 subtypes. This finding suggests an important role of HLA subtypes in the restriction of HCV-specific CD8+ responses. With minor HLA subtypes covering up to 39% of specific populations, these findings may have important implications for the selection of epitopes for global vaccines. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs.
Meldrum, Brian
2002-06-01
Classical screening tests (maximal electroshock, MES, and threshold pentylenetetrazol, PTZ) employ non-epileptic rodents and identify antiepileptic drugs (AEDs) with mechanisms of action associated with significant CNS side effects. Thus MES identifies drugs acting on Na+ channels that produce cerebellar toxicity. It may be possible to produce novel AEDs more selectively targeted at voltage-sensitive (VS) ion channels. There is little specific evidence for the likely success of this strategy with subunit selective agents targeted at the different VS Na+ channels. Drugs targeted at specific VS Ca++ channels (T, N, P/Q types) may be useful in generalised seizures. There are many as yet unexplored possibilities relating to K+ channels. GABA related drugs acting on PTZ clonic seizures tend to induce sedation and muscle hypotonia. Studies in mice, particularly with knock-in mutations, but also with subunit selective agents acting via the GABA(A) benzodiazepine site, suggest that it is possible to produce agents which do or do not induce particular side effects (sedative, hypnotic, anxiolytic, muscle relaxant, amnesia, anaesthesia). Whether these findings transfer to man has yet to be established. Acquired epilepsy in rodents (e.g. kindling or spontaneous seizures following chemically- or electrically-induced status epilepticus) or acquired epilepsy in man (following prolonged febrile seizures or traumatic brain injury) is associated with multiple changes in the function and subunit composition of ion channels and receptor molecules. Optimal screening of novel AEDs, both for efficacy and side effects, requires models with receptor and ion channel changes similar to those in the target human syndrome.
Small Molecule Screen for Candidate Antimalarials Targeting Plasmodium Kinesin-5*
Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J.
2014-01-01
Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable “next generation” target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are “druggable.” One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease. PMID:24737313
Kagan, Valerian E.; Wipf, Peter; Stoyanovsky, Detcho; Greenberger, Joel S.; Borisenko, Grigory; Belikova, Natalia A.; Yanamala, Naveena; Samhan Arias, Alejandro K.; Tungekar, Muhammad A.; Jiang, Jianfei; Tyurina, Yulia Y.; Ji, Jing; Klein-Seetharaman, Judith; Pitt, Bruce R.; Shvedova, Anna A; Bayır, Hülya
2009-01-01
Effective regulation of highly compartmentalized production of reactive oxygen species and peroxidation reactions in mitochondria requires targeting of small molecule antioxidants and antioxidant enzymes into the organelles. This review describes recently developed approaches to mitochondrial targeting of small biologically active molecules based on: (i) preferential accumulation in mitochondria because of their hydrophobicity and positive charge (hydrophobic cations), (ii) binding with high affinity to an intra-mitochondrial constituent, and (iii) metabolic conversions by specific mitochondrial enzymes to reveal an active entity. In addition, targeted delivery of antioxidant enzymes via expression of leader-sequences directing the proteins into mitochondria is considered. Examples of successful antioxidant and anti-apoptotic protection based on the ability of targeted cargoes to inhibit cytochrome c-catalyzed peroxidation of a mitochondria-specific phospholipid cardiolipin, in vitro and in vivo are presented. Particular emphasis is placed on the employment of triphenylphosphonium- and hemi-gramicidin S-moieties as two effective vehicles for mitochondrial delivery of antioxidants. PMID:19716396
Oh, Phil; Borgström, Per; Witkiewicz, Halina; Li, Yan; Borgström, Bengt J; Chrastina, Adrian; Iwata, Koji; Zinn, Kurt R; Baldwin, Richard; Testa, Jacqueline E; Schnitzer, Jan E
2007-03-01
How effectively and quickly endothelial caveolae can transcytose in vivo is unknown, yet critical for understanding their function and potential clinical utility. Here we use quantitative proteomics to identify aminopeptidase P (APP) concentrated in caveolae of lung endothelium. Electron microscopy confirms this and shows that APP antibody targets nanoparticles to caveolae. Dynamic intravital fluorescence microscopy reveals that targeted caveolae operate effectively as pumps, moving antibody within seconds from blood across endothelium into lung tissue, even against a concentration gradient. This active transcytosis requires normal caveolin-1 expression. Whole body gamma-scintigraphic imaging shows rapid, specific delivery into lung well beyond that achieved by standard vascular targeting. This caveolar trafficking in vivo may underscore a key physiological mechanism for selective transvascular exchange and may provide an enhanced delivery system for imaging agents, drugs, gene-therapy vectors and nanomedicines. 'In vivo proteomic imaging' as described here integrates organellar proteomics with multiple imaging techniques to identify an accessible target space that includes the transvascular pumping space of the caveola.
Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets
Humphries, Edward S. A.
2015-01-01
Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307
NASA Astrophysics Data System (ADS)
Kamstra, Rhiannon L.; Dadgar, Saedeh; Wigg, John; Chowdhury, Morshed A.; Phenix, Christopher P.; Floriano, Wely B.
2014-11-01
Our group has recently demonstrated that virtual screening is a useful technique for the identification of target-specific molecular probes. In this paper, we discuss some of our proof-of-concept results involving two biologically relevant target proteins, and report the development of a computational script to generate large databases of fluorescence-labelled compounds for computer-assisted molecular design. The virtual screening of a small library of 1,153 fluorescently-labelled compounds against two targets, and the experimental testing of selected hits reveal that this approach is efficient at identifying molecular probes, and that the screening of a labelled library is preferred over the screening of base compounds followed by conjugation of confirmed hits. The automated script for library generation explores the known reactivity of commercially available dyes, such as NHS-esters, to create large virtual databases of fluorescence-tagged small molecules that can be easily synthesized in a laboratory. A database of 14,862 compounds, each tagged with the ATTO680 fluorophore was generated with the automated script reported here. This library is available for downloading and it is suitable for virtual ligand screening aiming at the identification of target-specific fluorescent molecular probes.
Evolutionary transitions to new DNA methyltransferases through target site expansion and shrinkage.
Rockah-Shmuel, Liat; Tawfik, Dan S
2012-12-01
DNA-binding and modifying proteins show high specificity but also exhibit a certain level of promiscuity. Such latent promiscuous activities comprise the starting points for new protein functions, but this hypothesis presents a paradox: a new activity can only evolve if it already exists. How then, do novel activities evolve? DNA methyltransferases, for example, are highly divergent in their target sites, but how transitions toward novel sites occur remains unknown. We performed laboratory evolution of the DNA methyltransferase M.HaeIII. We found that new target sites emerged primarily through expansion of the original site, GGCC, and the subsequent shrinkage of evolved expanded sites. Variants evolved for sites that are promiscuously methylated by M.HaeIII [GG((A)/(T))CC and GGCGCC] carried mutations in 'gate-keeper' residues. They could thereby methylate novel target sites such as GCGC and GGATCC that were neither selected for nor present in M.HaeIII. These 'generalist' intermediates were further evolved to obtain variants with novel target specificities. Our results demonstrate the ease by which new DNA-binding and modifying specificities evolve and the mechanism by which they occur at both the protein and DNA levels.
Design of RGD-ATWLPPR peptide conjugates for the dual targeting of αVβ3 integrin and neuropilin-1.
Thoreau, Fabien; Vanwonterghem, Laetitia; Henry, Maxime; Coll, Jean-Luc; Boturyn, Didier
2018-05-18
Targeting the tumour microenvironment is a promising strategy to detect and/or treat cancer. The design of selective compounds that co-target several receptors frequently overexpressed in solid tumours may allow a reliable and selective detection of tumours. Here we report the modular synthesis of compounds encompassing ligands of αVβ3 integrin and neuropilin-1 that are overexpressed in the tumour microenvironment. These compounds were then evaluated through cellular experiments and imaging of tumours in mice. We observed that the peptide that displays both ligands is more specifically accumulating in the tumours than in controls. Simultaneous interaction with αVβ3 integrin and NRP1 induces NRP1 stabilization at the cell membrane surface which is not observed with the co-injection of the controls.
Ganai, Shabir Ahmad
2018-01-01
Histone deacetylase inhibitors, the small molecules modulating the biological activity of histone deacetylases are emerging as potent chemotherapeutic agents. Despite their considerable therapeutic benefits in disease models, the lack of isoform specificity culminates in debilitating off target effects, raising serious concerns regarding their applicability. This emphasizes the pressing and unmet medical need of designing isoform selective inhibitors for safe and effective anticancer therapy. Keeping these grim facts in view, the current article sheds light on structural basis of off-targeting. Furthermore, the article discusses extensively the role of in silico strategies such as Molecular Docking, Molecular Dynamics Simulation and Energetically-optimized structure based pharmacophore approach in designing on-target inhibitors against classical HDACs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Janvier, Monique; Regnault, Béatrice; Grimont, Patrick
2003-09-01
Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.
Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan
2016-08-26
Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. Copyright © 2016 Elsevier Inc. All rights reserved.
Kebebe, Dereje; Liu, Yuanyuan; Wu, Yumei; Vilakhamxay, Maikhone; Liu, Zhidong; Li, Jiawei
2018-01-01
Cancer has become one of the leading causes of mortality globally. The major challenges of conventional cancer therapy are the failure of most chemotherapeutic agents to accumulate selectively in tumor cells and their severe systemic side effects. In the past three decades, a number of drug delivery approaches have been discovered to overwhelm the obstacles. Among these, nanocarriers have gained much attention for their excellent and efficient drug delivery systems to improve specific tissue/organ/cell targeting. In order to enhance targeting efficiency further and reduce limitations of nanocarriers, nanoparticle surfaces are functionalized with different ligands. Several kinds of ligand-modified nanomedicines have been reported. Cell-penetrating peptides (CPPs) are promising ligands, attracting the attention of researchers due to their efficiency to transport bioactive molecules intracellularly. However, their lack of specificity and in vivo degradation led to the development of newer types of CPP. Currently, activable CPP and tumor-targeting peptide (TTP)-modified nanocarriers have shown dramatically superior cellular specific uptake, cytotoxicity, and tumor growth inhibition. In this review, we discuss recent advances in tumor-targeting strategies using CPPs and their limitations in tumor delivery systems. Special emphasis is given to activable CPPs and TTPs. Finally, we address the application of CPPs and/or TTPs in the delivery of plant-derived chemotherapeutic agents. PMID:29563797
Biased selection of propagation-related TUPs from phage display peptide libraries.
Zade, Hesam Motaleb; Keshavarz, Reihaneh; Shekarabi, Hosna Sadat Zahed; Bakhshinejad, Babak
2017-08-01
Phage display is rapidly advancing as a screening strategy in drug discovery and drug delivery. Phage-encoded combinatorial peptide libraries can be screened through the affinity selection procedure of biopanning to find pharmaceutically relevant cell-specific ligands. However, the unwanted enrichment of target-unrelated peptides (TUPs) with no true affinity for the target presents an important barrier to the successful screening of phage display libraries. Propagation-related TUPs (Pr-TUPs) are an emerging but less-studied category of phage display-derived false-positive hits that are displayed on the surface of clones with faster propagation rates. Despite long regarded as an unbiased selection system, accumulating evidence suggests that biopanning may create biological bias toward selection of phage clones with certain displayed peptides. This bias can be dependent on or independent of the displayed sequence and may act as a major driving force for the isolation of fast-growing clones. Sequence-dependent bias is reflected by censorship or over-representation of some amino acids in the displayed peptide and sequence-independent bias is derived from either point mutations or rare recombination events occurring in the phage genome. It is of utmost interest to clean biopanning data by identifying and removing Pr-TUPs. Experimental and bioinformatic approaches can be exploited for Pr-TUP discovery. With no doubt, obtaining deeper insight into how Pr-TUPs emerge during biopanning and how they could be detected provides a basis for using cell-targeting peptides isolated from phage display screening in the development of disease-specific diagnostic and therapeutic platforms.
Designing highly active siRNAs for therapeutic applications.
Walton, S Patrick; Wu, Ming; Gredell, Joseph A; Chan, Christina
2010-12-01
The discovery of RNA interference (RNAi) generated considerable interest in developing short interfering RNAs (siRNAs) for understanding basic biology and as the active agents in a new variety of therapeutics. Early studies showed that selecting an active siRNA was not as straightforward as simply picking a sequence on the target mRNA and synthesizing the siRNA complementary to that sequence. As interest in applying RNAi has increased, the methods for identifying active siRNA sequences have evolved from focusing on the simplicity of synthesis and purification, to identifying preferred target sequences and secondary structures, to predicting the thermodynamic stability of the siRNA. As more specific details of the RNAi mechanism have been defined, these have been incorporated into more complex siRNA selection algorithms, increasing the reliability of selecting active siRNAs against a single target. Ultimately, design of the best siRNA therapeutics will require design of the siRNA itself, in addition to design of the vehicle and other components necessary for it to function in vivo. In this minireview, we summarize the evolution of siRNA selection techniques with a particular focus on one issue of current importance to the field, how best to identify those siRNA sequences likely to have high activity. Approaches to designing active siRNAs through chemical and structural modifications will also be highlighted. As the understanding of how to control the activity and specificity of siRNAs improves, the potential utility of siRNAs as human therapeutics will concomitantly grow. © 2010 The Authors Journal compilation © 2010 FEBS.
NASA Astrophysics Data System (ADS)
Valiya Peedikakkal, Liyana; Steventon, Victoria; Furley, Andrew; Cadby, Ashley J.
2017-12-01
We demonstrate a simple illumination system based on a digital mirror device which allows for fine control over the power and pattern of illumination. We apply this to localization microscopy (LM), specifically stochastic optical reconstruction microscopy (STORM). Using this targeted STORM, we were able to image a selected area of a labelled cell without causing photo-damage to the surrounding areas of the cell.
Literature Review on Anti-Terrorism and Selected Bibliography on Terrorism.
1988-04-01
quickly outdated because of the frequency with which new events must be listed, catalogued, and analyzed. For example, in the first months of this b...likely, the 4P terrorist group) attempts to make the target government appear unable to respond credibly to threats to the public security. Because pure...usually outdated by publication time. While a historical perspective can be gained from the chronologies of specific target groups and areas, such as
Learning a Nonmediated Route for Response Selection in Task Switching
Schneider, Darryl W.; Logan, Gordon D.
2015-01-01
Two modes of response selection—a mediated route involving categorization and a nonmediated route involving instance-based memory retrieval—have been proposed to explain response congruency effects in task-switching situations. In the present study, we sought a better understanding of the development and characteristics of the nonmediated route. In two experiments involving training and transfer phases, we investigated practice effects at the level of individual target presentations, transfer effects associated with changing category–response mappings, target-specific effects from comparisons of old and new targets during transfer, and the percentage of early responses associated with task-nonspecific response selection (the target preceded the task cue on every trial). The training results suggested that the nonmediated route is quickly learned in the context of target–cue order and becomes increasingly involved in response selection with practice. The transfer results suggested that the target–response instances underlying the nonmediated route involve abstract response labels coding response congruency that can be rapidly remapped to alternative responses but not rewritten when category–response mappings change after practice. Implications for understanding the nonmediated route and its relationship with the mediated route are discussed. PMID:25663003
Specific responses of human hippocampal neurons are associated with better memory.
Suthana, Nanthia A; Parikshak, Neelroop N; Ekstrom, Arne D; Ison, Matias J; Knowlton, Barbara J; Bookheimer, Susan Y; Fried, Itzhak
2015-08-18
A population of human hippocampal neurons has shown responses to individual concepts (e.g., Jennifer Aniston) that generalize to different instances of the concept. However, recordings from the rodent hippocampus suggest an important function of these neurons is their ability to discriminate overlapping representations, or pattern separate, a process that may facilitate discrimination of similar events for successful memory. In the current study, we explored whether human hippocampal neurons can also demonstrate the ability to discriminate between overlapping representations and whether this selectivity could be directly related to memory performance. We show that among medial temporal lobe (MTL) neurons, certain populations of neurons are selective for a previously studied (target) image in that they show a significant decrease in firing rate to very similar (lure) images. We found that a greater proportion of these neurons can be found in the hippocampus compared with other MTL regions, and that memory for individual items is correlated to the degree of selectivity of hippocampal neurons responsive to those items. Moreover, a greater proportion of hippocampal neurons showed selective firing for target images in good compared with poor performers, with overall memory performance correlated with hippocampal selectivity. In contrast, selectivity in other MTL regions was not associated with memory performance. These findings show that a substantial proportion of human hippocampal neurons encode specific memories that support the discrimination of overlapping representations. These results also provide previously unidentified evidence consistent with a unique role of the human hippocampus in orthogonalization of representations in declarative memory.
ERIC Educational Resources Information Center
Yee, Penny L.
This study investigates the role of specific inhibitory processes in lexical ambiguity resolution. An attentional view of inhibition and a view based on specific automatic inhibition between nodes predict different results when a neutral item is processed between an ambiguous word and a related target. Subjects were 32 English speakers with normal…
Berger, M M; Gradwohl-Matis, I; Brunauer, A; Ulmer, H; Dünser, M W
2015-07-01
Perioperative fluid management plays a fundamental role in maintaining organ perfusion, and is considered to affect morbidity and mortality. Targets according to which fluid therapy should be administered are poorly defined. This systematic review aimed to identify specific targets for perioperative fluid therapy. The PubMed database (January 1993-December 2013) and reference lists were searched to identify clinical trials which evaluated specific targets of perioperative fluid therapy and reported clinically relevant perioperative endpoints in adult patients. Only studies in which targeted fluid therapy was the sole intervention were included into the main data analysis. A pooled data analysis was used to compare mortality between goal-directed fluid therapy and control interventions. Thirty-six clinical studies were selected. Sixteen studies including 1224 patients specifically evaluated targeted fluid therapy and were included into the main data analysis. Three specific targets for perioperative fluid therapy were identified: a systolic or pulse pressure variation <10-12%, an increase in stroke volume <10%, and a corrected flow time of 0.35-0.4 s in combination with an increase in stroke volume <10%. Targeting any one of these goals resulted in less postoperative complications (pooled data analysis: OR 0.53; CI95, 0.34-0.83; P=0.005) and a shorter length of intensive care unit/hospital stay, but no difference in postoperative mortality (pooled data analysis: OR 0.61; CI95, 0.33-1.11; P=0.12). This systematic review identified three goals for perioperative fluid administration, targeting of which appeared to be associated with less postoperative complications and shorter intensive care unit/hospital lengths of stay. Perioperative mortality remained unaffected.
A Medium-Throughput Single Cell CRISPR-Cas9 Assay to Assess Gene Essentiality.
Grassian, A R; Scales, T M E; Knutson, S K; Kuntz, K W; McCarthy, N J; Lowe, C E; Moore, J D; Copeland, R A; Keilhack, H; Smith, J J; Wickenden, J A; Ribich, S
2015-01-01
Target selection for oncology is a crucial step in the successful development of therapeutics. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 editing of specific loci offers an alternative method to RNA interference and small molecule inhibitors for determining whether a cell line is dependent on a specific gene product for proliferation or survival. In our initial studies using CRISPR-Cas9 to verify the dependence on EZH2 activity for proliferation of a SMARCB1/SNF5/INI1 mutant malignant rhabdoid tumor (MRT) cell line, we noted that the initial reduction in proliferation was lost over time. We hypothesized that in the few cells that retain proliferative capacity, at least one allele of EZH2 remains functional. To verify this, we developed an assay to analyze 10s-100s of clonal cell populations for target gene disruption using restriction digest and fluorescent fragment length analyses. Our results clearly show that in cell lines in which EZH2 is essential for proliferation, at least one potentially functional allele of EZH2 is retained in the clones that survive. This assay clearly indicates whether or not a specific gene is essential for survival and/or proliferation in a given cell line. Such data can aid the development of more robust therapeutics by increasing confidence in target selection.
Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes
Poreba, Marcin; Solberg, Rigmor; Rut, Wioletta; Lunde, Ngoc Nguyen; Kasperkiewicz, Paulina; Snipas, Scott J.; Mihelic, Marko; Turk, Dusan; Turk, Boris; Salvesen, Guy S.; Drag, Marcin
2018-01-01
SUMMARY Legumain (AEP) is a lysosomal cysteine protease that is a lysosomal cysteine protease that was first characterized in leguminous seeds and later discovered in higher eukaryotes. AEP up-regulation is linked to a number of diseases including inflammation, arteriosclerosis and tumorigenesis. Thus legumain is an excellent molecular target for the development of new chemical markers. We deployed a hybrid combinatorial substrate library (HyCoSuL) approach to obtain P1-Asp fluorogenic substrates and biotin-labeled inhibitors that targeted legumain. Since this approach led to probes that were also recognized by caspases, we introduced a Counter Selection Substrate Library (CoSeSuL) approach that biases the peptidic scaffold against caspases, thus delivering highly selective legumain probes. The selectivity of these tools was validated using M38L and HEK293 cells. We also propose that the CoSeSuL methodology can be considered as a general principle in the design of selective probes for other protease families where selectivity is difficult to achieve by conventional sequence-based profiling. PMID:27478158
Multistate and phase change selection in constitutional multivalent systems.
Barboiu, Mihail
2012-01-01
Molecular architectures and materials can be constitutionally self-sorted in the presence of different biomolecular targets or external physical stimuli or chemical effectors, thus responding to an external selection pressure. The high selectivity and specificity of different bioreceptors or self-correlated internal interactions may be used to describe the complex constitutional behaviors through multistate component selection from a dynamic library. The self-selection may result in the dynamic amplification of self-optimized architectures during the phase change process. The sol-gel resolution of dynamic molecular/supramolecular libraries leads to higher self-organized constitutional hybrid materials, in which organic (supramolecular)/inorganic domains are reversibily connected.
Xu, Leyuan; Kittrell, Shannon; Yeudall, W Andrew; Yang, Hu
2016-11-01
Folic acid (FA)-decorated polyamidoamine dendrimer G4 (G4-FA) was synthesized and studied for targeted delivery of genes to head and neck cancer cells expressing high levels of folate receptors (FRs). Cellular uptake, targeting specificity, cytocompatibility and transfection efficiency were evaluated. G4-FA competes with free FA for the same binding site. G4-FA facilitates the cellular uptake of DNA plasmids in a FR-dependent manner and selectively delivers plasmids to FR-high cells, leading to enhanced gene expression. G4-FA is a suitable vector to deliver genes selectively to head and neck cancer cells. The fundamental understandings of G4-FA as a vector and its encouraging transfection results for head and neck cancer cells provided support for its further testing in vivo.
Prospective identification of parasitic sequences in phage display screens
Matochko, Wadim L.; Cory Li, S.; Tang, Sindy K.Y.; Derda, Ratmir
2014-01-01
Phage display empowered the development of proteins with new function and ligands for clinically relevant targets. In this report, we use next-generation sequencing to analyze phage-displayed libraries and uncover a strong bias induced by amplification preferences of phage in bacteria. This bias favors fast-growing sequences that collectively constitute <0.01% of the available diversity. Specifically, a library of 109 random 7-mer peptides (Ph.D.-7) includes a few thousand sequences that grow quickly (the ‘parasites’), which are the sequences that are typically identified in phage display screens published to date. A similar collapse was observed in other libraries. Using Illumina and Ion Torrent sequencing and multiple biological replicates of amplification of Ph.D.-7 library, we identified a focused population of 770 ‘parasites’. In all, 197 sequences from this population have been identified in literature reports that used Ph.D.-7 library. Many of these enriched sequences have confirmed function (e.g. target binding capacity). The bias in the literature, thus, can be viewed as a selection with two different selection pressures: (i) target-binding selection, and (ii) amplification-induced selection. Enrichment of parasitic sequences could be minimized if amplification bias is removed. Here, we demonstrate that emulsion amplification in libraries of ∼106 diverse clones prevents the biased selection of parasitic clones. PMID:24217917
An infrastructure to mine molecular descriptors for ligand selection on virtual screening.
Seus, Vinicius Rosa; Perazzo, Giovanni Xavier; Winck, Ana T; Werhli, Adriano V; Machado, Karina S
2014-01-01
The receptor-ligand interaction evaluation is one important step in rational drug design. The databases that provide the structures of the ligands are growing on a daily basis. This makes it impossible to test all the ligands for a target receptor. Hence, a ligand selection before testing the ligands is needed. One possible approach is to evaluate a set of molecular descriptors. With the aim of describing the characteristics of promising compounds for a specific receptor we introduce a data warehouse-based infrastructure to mine molecular descriptors for virtual screening (VS). We performed experiments that consider as target the receptor HIV-1 protease and different compounds for this protein. A set of 9 molecular descriptors are taken as the predictive attributes and the free energy of binding is taken as a target attribute. By applying the J48 algorithm over the data we obtain decision tree models that achieved up to 84% of accuracy. The models indicate which molecular descriptors and their respective values are relevant to influence good FEB results. Using their rules we performed ligand selection on ZINC database. Our results show important reduction in ligands selection to be applied in VS experiments; for instance, the best selection model picked only 0.21% of the total amount of drug-like ligands.