Sample records for selects pollution monitoring

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The study was conducted to determine the pollutants of concern in the Istanbul metropolitan area, monitoring equipment specifications and monitoring and data analysis procedures for an air quality and meteorological monitoring program. This volume consists of: (1) Introduction; (2) Selection of Pollutants of Concern; (3) Selection of Monitoring Locations; (4) Equipment Specifications; (5) Site Preparation and Security; (6) Standard Operating Procedures; (7) Data Reduction and Analysis; (8) Future Phases; (9) References. Also included are Attachments A through G and List of Tables and List of Figures.

  2. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors.

    PubMed

    Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland

    2017-06-20

    Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.

  3. Evaluation and implementation of BMPs for NCDOT's highway and industrial facilities : final report, May 2006.

    DOT National Transportation Integrated Search

    2006-05-01

    This research has provided NCDOT with (1) scientific observations to validate the pollutant removal : performance of selected structural BMPs, (2) a database management option for BMP monitoring and : non-monitoring sites, (3) pollution prevention pl...

  4. Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies.

    PubMed

    Vedal, Sverre; Han, Bin; Xu, Jia; Szpiro, Adam; Bai, Zhipeng

    2017-12-15

    No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources.

  5. Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies

    PubMed Central

    Vedal, Sverre; Han, Bin; Szpiro, Adam; Bai, Zhipeng

    2017-01-01

    No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources. PMID:29244738

  6. Evaluating barnyard Best Management Practices in Wisconsin using upstream-downstream monitoring

    USGS Publications Warehouse

    Stuntebeck, Todd D.

    1995-01-01

    The Nonpoint Source Water Pollution Abatement Program was created in 1978 by the Wisconsin Legislature. The goal of the program is to improve and protect the water quality of lakes, streams, wetlands, and ground water within selected priority watersheds by controlling sources of nonpoint pollution. For each selected watershed, the Wisconsin Department of Natural Resources drafts a management plan that guides the implementation of pollution-control strategies known as Best Management Practices (BMP's). This plan summarizes resource and land-use inventories, describes the results of pollution-source modeling, and suggests pollution reduction goals. The U.S. Geological Survey, through a cooperative effort with the Wisconsin Department of Natural Resources, is monitoring water-quality improvements that result from the implementation of BMP's. The data collected are then compared to the watershed plans to assess progress and determine whether goals are being realized. This fact sheet describes the data-collection efforts, preliminary results, and planned data-analysis techniques of monitoring projects for pre-BMP conditions at two barnyards, one each on Otter Creek and Halfway Prairie Creek.

  7. Air Pollution Monitoring Site Selection by Multiple Criteria Decision Analysis

    EPA Science Inventory

    Criteria air pollutants (particulate matter, sulfur dioxide, oxides of nitrogen, volatile organic compounds, and carbon monoxide) as well as toxic air pollutants are a global concern. A particular scenario that is receiving increased attention in the research is the exposure to t...

  8. The laser absorption spectrometer - A new remote sensing instrument for atmospheric pollution monitoring

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1974-01-01

    An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.

  9. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  10. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    PubMed

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  11. Common plants as alternative analytical tools to monitor heavy metals in soil

    PubMed Central

    2012-01-01

    Background Herbaceous plants are common vegetal species generally exposed, for a limited period of time, to bioavailable environmental pollutants. Heavy metals contamination is the most common form of environmental pollution. Herbaceous plants have never been used as natural bioindicators of environmental pollution, in particular to monitor the amount of heavy metals in soil. In this study, we aimed at assessing the usefulness of using three herbaceous plants (Plantago major L., Taraxacum officinale L. and Urtica dioica L.) and one leguminous (Trifolium pratense L.) as alternative indicators to evaluate soil pollution by heavy metals. Results We employed Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) to assess the concentration of selected heavy metals (Cu, Zn, Mn, Pb, Cr and Pd) in soil and plants and we employed statistical analyses to describe the linear correlation between the accumulation of some heavy metals and selected vegetal species. We found that the leaves of Taraxacum officinale L. and Trifolium pratense L. can accumulate Cu in a linearly dependent manner with Urtica dioica L. representing the vegetal species accumulating the highest fraction of Pb. Conclusions In this study we demonstrated that common plants can be used as an alternative analytical tool for monitoring selected heavy metals in soil. PMID:22594441

  12. Long-term monitoring of air pollution effects on selected forest ecosystems in the Bucegi-Piatra Craiului and Retezat Mountains, southern Carpathians (Romania)

    Treesearch

    O. Badea; S. Neagu; Andrzej Bytnerowicz; D. Silaghi; I. Barbu; C. Iacoban; F. Popescu; M. Andrei; E. Preda; C. Iacob; I. Dumitru; H. Iuncu; C. Vezeanu; V. Huber

    2011-01-01

    The monitoring studies carried out in the southern Romanian Carpathians (Retezat and Bucegi - Piatra Craiului Mts) provide a scientific support for long term ecosystem research (LTER). Their general objective is to characterize the air pollution and its potential effects upon forest ecosystems' status and biodiversity in close connection with climatic changes. Two...

  13. Selecting optimal monitoring site locations for peak ambient particulate material concentrations using the MM5-CAMx4 numerical modelling system.

    PubMed

    Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman

    2011-01-15

    Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Selection, management and utilization of biosphere reserves.

    Treesearch

    Jerry F. Franklin; Stanley L. Krugman

    1979-01-01

    This publication is directed to the analysis of the selection, management, and utilization of Biosphere Reserves as viewed by scientists from the United States and the Union of Soviet Socialist Republics. Soviet papers focus on types of research and monitoring programs that should be developed on Biosphere Reserves, with emphasis on their use in pollutant monitoring....

  15. Noise pollution has limited effects on nocturnal vigilance in peahens.

    PubMed

    Yorzinski, Jessica L; Hermann, Fredrick S

    2016-01-01

    Natural environments are increasingly exposed to high levels of noise pollution. Noise pollution can alter the behavior of animals but we know little about its effects on antipredator behavior. We therefore investigated the impact of noise pollution on vigilance behavior and roost selection in an avian species, peafowl ( Pavo cristatus ), that inhabits urban environments. Captive peahens were exposed to noise pollution at night and their vigilance levels and roost selections were monitored. The vigilance levels of peahens were unaffected by exposure to noise pollution within trials. Furthermore, the peahens exhibited no preference for roosting farther or closer to noise pollution. Interestingly, predators often avoided the experimental area during nights with noise pollution, which could explain why vigilance rates were higher overall during control compared to noise trials. The results suggest that peahens' perception of risk is not drastically impacted by noise pollution but longer-term studies will be necessary to assess any chronic effects.

  16. Noise pollution has limited effects on nocturnal vigilance in peahens

    PubMed Central

    Hermann, Fredrick S.

    2016-01-01

    Natural environments are increasingly exposed to high levels of noise pollution. Noise pollution can alter the behavior of animals but we know little about its effects on antipredator behavior. We therefore investigated the impact of noise pollution on vigilance behavior and roost selection in an avian species, peafowl (Pavo cristatus), that inhabits urban environments. Captive peahens were exposed to noise pollution at night and their vigilance levels and roost selections were monitored. The vigilance levels of peahens were unaffected by exposure to noise pollution within trials. Furthermore, the peahens exhibited no preference for roosting farther or closer to noise pollution. Interestingly, predators often avoided the experimental area during nights with noise pollution, which could explain why vigilance rates were higher overall during control compared to noise trials. The results suggest that peahens’ perception of risk is not drastically impacted by noise pollution but longer-term studies will be necessary to assess any chronic effects. PMID:27703863

  17. Measuring concentrations of selected air pollutants inside California vehicles : final report

    DOT National Transportation Integrated Search

    1998-12-01

    This study provided the data needed to characterize in-transit exposures to air pollutants for California drivers. It also demonstrated a number of in-situ monitoring techniques in moving vehicles and provided findings that shed new light on particle...

  18. Optimal Design of Air Quality Monitoring Network and its Application in an Oil Refinery Plant: An Approach to Keep Health Status of Workers.

    PubMed

    ZoroufchiBenis, Khaled; Fatehifar, Esmaeil; Ahmadi, Javad; Rouhi, Alireza

    2015-01-01

    Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availability of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN) for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. A multi-pollutant method (implemented as a MATLAB program) was explored for configur-ing an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids) according to their ability to represent the ambient concentration. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a sta-tion's dosage to the total dosage in the network. Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network efficiency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health.

  19. Optimal Design of Air Quality Monitoring Network and its Application in an Oil Refinery Plant: An Approach to Keep Health Status of Workers

    PubMed Central

    ZoroufchiBenis, Khaled; Fatehifar, Esmaeil; Ahmadi, Javad; Rouhi, Alireza

    2015-01-01

    Background: Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availability of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN) for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. Methods: A multi-pollutant method (implemented as a MATLAB program) was explored for configur­ing an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids) according to their ability to represent the ambient concentration. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a sta­tion’s dosage to the total dosage in the network. Results: Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network efficiency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. Conclusion: The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health. PMID:26933646

  20. Assessment of an air pollution monitoring network to generate urban air pollution maps using Shannon information index, fuzzy overlay, and Dempster-Shafer theory, A case study: Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Pahlavani, Parham; Sheikhian, Hossein; Bigdeli, Behnaz

    2017-10-01

    Air pollution assessment is an imperative part of megacities planning and control. Hence, a new comprehensive approach for air pollution monitoring and assessment was introduced in this research. It comprises of three main sections: optimizing the existing air pollutant monitoring network, locating new stations to complete the coverage of the existing network, and finally, generating an air pollution map. In the first section, Shannon information index was used to find less informative stations to be candidate for removal. Then, a methodology was proposed to determine the areas which are not sufficiently covered by the current network. These areas are candidates for establishing new monitoring stations. The current air pollution monitoring network of Tehran was used as a case study, where the air pollution issue has been worsened due to the huge population, considerable commuters' absorption and topographic barriers. In this regard, O3, NO, NO2, NOx, CO, PM10, and PM2.5 were considered as the main pollutants of Tehran. Optimization step concluded that all the 16 active monitoring stations should be preserved. Analysis showed that about 35% of the Tehran's area is not properly covered by monitoring stations and about 30% of the area needs additional stations. The winter period in Tehran always faces the most severe air pollution in the year. Hence, to produce the air pollution map of Tehran, three-month of winter measurements of the mentioned pollutants, repeated for five years in the same period, were selected and extended to the entire area using the kriging method. Experts specified the contribution of each pollutant in overall air pollution. Experts' rankings aggregated by a fuzzy-overlay process. Resulted maps characterized the study area with crucial air pollution situation. According to the maps, more than 45% of the city area faced high pollution in the study period, while only less than 10% of the area showed low pollution. This situation confirms the need for effective plans to mitigate the severity of the problem. In addition, an effort made to investigate the rationality of the acquired air pollution map respect to the urban, cultural, and environmental characteristics of Tehran, which also confirmed the results.

  1. Monitoring atmospheric pollutants with a heterodyne radiometer transmitter-receiver

    NASA Technical Reports Server (NTRS)

    Menzies, R. T. (Inventor)

    1973-01-01

    The presence of selected atmospheric pollutants can be determined by transmitting an infrared beam of proper wavelength through the atmosphere, and detecting the reflections of the transmitted beam with a heterodyne radiometer transmitter-receiver using part of the laser beam as a local oscillator. The particular pollutant and its absorption line strength to be measured are selected by the laser beam wave length. When the round-trip path for the light is known or measured, concentration can be determined. Since pressure (altitude) will affect the shape of the molecular absorption line of a pollutant, tuning the laser through a range of frequencies, which includes a part of the absorption line of the pollutant of interest, yields pollutant altitude data from which the altitude and altitude profile is determined.

  2. Selection of monitoring locations for storm water quality assessment.

    PubMed

    Langeveld, J G; Boogaard, F; Liefting, H J; Schilperoort, R P S; Hof, A; Nijhof, H; de Ridder, A C; Kuiper, M W

    2014-01-01

    Storm water runoff is a major contributor to the pollution of receiving waters. Storm water characteristics may vary significantly between locations and events. Hence, for each given location, this necessitates a well-designed monitoring campaign prior to selection of an appropriate storm water management strategy. The challenge for the design of a monitoring campaign with a given budget is to balance detailed monitoring at a limited number of locations versus less detailed monitoring at a large number of locations. This paper proposes a methodology for the selection of monitoring locations for storm water quality monitoring, based on (pre-)screening, a quick scan monitoring campaign, and final selection of locations and design of the monitoring setup. The main advantage of the method is the ability to prevent the selection of monitoring locations that turn out to be inappropriate. In addition, in this study, the quick scan resulted in a first useful dataset on storm water quality and a strong indication of illicit connections at one of the monitoring locations.

  3. Ambient air quality programmes for health impact assessment in the WHO European region.

    PubMed

    Mücke, H G

    2000-06-01

    An important aim of air quality assessment is to provide information about population exposure and health impact assessment. Numerous epidemiological studies have already shown that exposure to excessive levels of ambient air pollutants are associated with either acute or chronic health effects. Until recently, the adequacy of monitoring population exposure in relation to quantitative assessment of health effects of air pollution was rarely considered in ambient air monitoring strategies. This made the formulation of health-related recommendations to risk management difficult and weakens preventive and other measures to reduce adverse health effects of air pollution. To improve local and national capacities for health impact assessment, the European Centre for Environment and Health of the World Health Organization has prepared methodology guidelines concerning selected aspects of air monitoring. The WHO Collaborating Centre for Air Quality Management and Air Pollution Control support efforts in line with international programmes on quality assurance and control for Europe.

  4. Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide-functionalized MOF

    NASA Astrophysics Data System (ADS)

    Hao, Ji-Na; Yan, Bing

    2016-01-01

    A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability.A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability. Electronic supplementary information (ESI) available: Experimental section; XPS spectra; N2 adsorption-desorption isotherms; ICP data; SEM image; PXRD patterns and other luminescence data. See DOI: 10.1039/c5nr06066d

  5. Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals.

    PubMed

    Pan, Yaoru; Wernberg, Thomas; de Bettignies, Thibaut; Holmer, Marianne; Li, Ke; Wu, Jiaping; Lin, Fang; Yu, Yan; Xu, Jiang; Zhou, Chaosheng; Huang, Zhixing; Xiao, Xi

    2018-06-01

    Seaweeds are good bio-monitors of heavy metal pollution and have been included in European coastal monitoring programs. However, data for seaweed species in China are scarce or missing. In this study, we explored the potential of seaweeds as bio-monitor by screening the natural occurring seaweeds in the "Kingdom of seaweed and shellfish" at Dongtou Islands, the East China Sea. Totally, 12 seaweed species were collected from six sites, with richness following the sequence of Rhodophyta > Phaeophyta > Chlorophyta. The concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Cd, As) in the seaweeds was determined, and the bioaccumulation coefficient was calculated. A combination of four seaweeds, Pachydictyon coriaceum, Gelidium divaricatum, Sargassum thunbergii, and Pterocladiella capillacea, were proposed as bio-monitors due to their high bioaccumulation capabilities of specific heavy metals in the East China Sea and hence hinted the importance of using seaweed community for monitoring of pollution rather than single species. Our results provide first-hand data for the selection of bio-monitor species for heavy metals in the East China Sea and contribute to selection of cosmopolitan bio-monitor communities over geographical large area, which will benefit the establishment of monitoring programs for coastal heavy metal contamination.

  6. Short-term monitoring of benzene air concentration in an urban area: a preliminary study of application of Kruskal-Wallis non-parametric test to assess pollutant impact on global environment and indoor.

    PubMed

    Mura, Maria Chiara; De Felice, Marco; Morlino, Roberta; Fuselli, Sergio

    2010-01-01

    In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6), concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a) node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b) node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c) node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW) non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%); most important, they suggest a possible procedure to optimize network design.

  7. End-user perspective of low-cost sensors for outdoor air pollution monitoring.

    PubMed

    Rai, Aakash C; Kumar, Prashant; Pilla, Francesco; Skouloudis, Andreas N; Di Sabatino, Silvana; Ratti, Carlo; Yasar, Ansar; Rickerby, David

    2017-12-31

    Low-cost sensor technology can potentially revolutionise the area of air pollution monitoring by providing high-density spatiotemporal pollution data. Such data can be utilised for supplementing traditional pollution monitoring, improving exposure estimates, and raising community awareness about air pollution. However, data quality remains a major concern that hinders the widespread adoption of low-cost sensor technology. Unreliable data may mislead unsuspecting users and potentially lead to alarming consequences such as reporting acceptable air pollutant levels when they are above the limits deemed safe for human health. This article provides scientific guidance to the end-users for effectively deploying low-cost sensors for monitoring air pollution and people's exposure, while ensuring reasonable data quality. We review the performance characteristics of several low-cost particle and gas monitoring sensors and provide recommendations to end-users for making proper sensor selection by summarizing the capabilities and limitations of such sensors. The challenges, best practices, and future outlook for effectively deploying low-cost sensors, and maintaining data quality are also discussed. For data quality assurance, a two-stage sensor calibration process is recommended, which includes laboratory calibration under controlled conditions by the manufacturer supplemented with routine calibration checks performed by the end-user under final deployment conditions. For large sensor networks where routine calibration checks are impractical, statistical techniques for data quality assurance should be utilised. Further advancements and adoption of sophisticated mathematical and statistical techniques for sensor calibration, fault detection, and data quality assurance can indeed help to realise the promised benefits of a low-cost air pollution sensor network. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Selection of Atmospheric Environmental Monitoring Sites based on Geographic Parameters Extraction of GIS and Fuzzy Matter-Element Analysis.

    PubMed

    Wu, Jianfa; Peng, Dahao; Ma, Jianhao; Zhao, Li; Sun, Ce; Ling, Huanzhang

    2015-01-01

    To effectively monitor the atmospheric quality of small-scale areas, it is necessary to optimize the locations of the monitoring sites. This study combined geographic parameters extraction by GIS with fuzzy matter-element analysis. Geographic coordinates were extracted by GIS and transformed into rectangular coordinates. These coordinates were input into the Gaussian plume model to calculate the pollutant concentration at each site. Fuzzy matter-element analysis, which is used to solve incompatible problems, was used to select the locations of sites. The matter element matrices were established according to the concentration parameters. The comprehensive correlation functions KA (xj) and KB (xj), which reflect the degree of correlation among monitoring indices, were solved for each site, and a scatter diagram of the sites was drawn to determine the final positions of the sites based on the functions. The sites could be classified and ultimately selected by the scatter diagram. An actual case was tested, and the results showed that 5 positions can be used for monitoring, and the locations conformed to the technical standard. In the results of this paper, the hierarchical clustering method was used to improve the methods. The sites were classified into 5 types, and 7 locations were selected. Five of the 7 locations were completely identical to the sites determined by fuzzy matter-element analysis. The selections according to these two methods are similar, and these methods can be used in combination. In contrast to traditional methods, this study monitors the isolated point pollutant source within a small range, which can reduce the cost of monitoring.

  9. PM2.5 monitoring system based on ZigBee wireless sensor network

    NASA Astrophysics Data System (ADS)

    Lin, Lukai; Li, Xiangshun; Gu, Weiying

    2017-06-01

    In the view of the haze problem, aiming at improving the deficiency of the traditional PM2.5 monitoring methods, such as the insufficient real-time monitoring, limited transmission distance, high cost and the difficulty to maintain, the atmosphere PM2.5 monitoring system based on ZigBee technology is designed. The system combines the advantages of ZigBee’s low cost, low power consumption, high reliability and GPRS/Internet’s capability of remote transmission of data. Furthermore, it adopts TI’s Z-Stack protocol stack, and selects CC2530 chip and TI’s MSP430 microcontroller as the core, which establishes the air pollution monitoring network that is helpful for the early prediction of major air pollution disasters.

  10. Investigation of Ground Water Pollution at Air Force Plant Number 4, Fort Worth Texas

    DTIC Science & Technology

    1986-10-01

    Dbtibz~o Ud~mxtm!UCTtq! - INVESTIGATION OF GROUND WATER POLLUTION AT - AIR FORCE PLANT NO. 4 FORT WORTH, TEXAS REPORT TO - UNITED STATES AIR FORCE...performed at the plant : Three pairs of Paluxy monitoring wells weze drilled along the south boundary of the plant to determine if pollutants discovered in...a nonhazardous dye tracer in selected wells. v U, INVESTIGATION OF POLLUTION OF GROUND WATER IN THE PALUXY AQUIFER AT AIR FORCE PLANT NO. 4, FORT

  11. Air pollution due to traffic, air quality monitoring along three sections of National Highway N-5, Pakistan.

    PubMed

    Ali, Mahboob; Athar, Makshoof

    2008-01-01

    Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.

  12. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  13. Estimation of Anticipated Performance Index and Air Pollution Tolerance Index and of vegetation around the marble industrial areas of Potwar region: bioindicators of plant pollution response.

    PubMed

    Noor, Mehwish Jamil; Sultana, Shazia; Fatima, Sonia; Ahmad, Mushtaq; Zafar, Muhammad; Sarfraz, Maliha; Balkhyour, Masour A; Safi, Sher Zaman; Ashraf, Muhammad Aqeel

    2015-06-01

    Mitigating industrial air pollution is a big challenge, in such scenario screening of plants as a bio monitor is extremely significant. It requires proper selection and screening of sensitive and tolerant plant species which are bio indicator and sink for air pollution. The present study was designed to evaluate the Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API) of the common flora. Fifteen common plant species from among trees, herb and shrubs i.e. Chenopodium album (Chenopodiaceae), Parthenium hysterophorus (Asteraceae), Amaranthus viridis (Amaranthaceae), Lantana camara (Verbenaceaea), Ziziphus nummulari (Rhamnaceae), Silibum merianum (Asteraceae), Cannabis sativa (Cannabinaceae), Calatropis procera (Asclepediaceae), Ricinus communis (Euphorbiaceae), Melia azadirachta (Meliaceae), Psidium guajava (Myrtaceae), Eucalyptus globules (Myrtaceae), Broussonetia papyrifera (Moraceae), Withania somnifera (Solanaceae) and Sapium sabiferum (Euphorbiaceae) were selected growing frequently in vicinity of Marble industries in Potwar region. APTI and API of selected plant species were analyzed by determining important biochemical parameter i.e. total chlorophyll, ascorbic acid, relative water content and pH etc. Furthermore the selected vegetation was studied for physiological, economic, morphological and biological characteristics. The soil of studied sites was analyzed. It was found that most the selected plant species are sensitive to air pollution. However B. papyrifera, E. globulus and R. communis shows the highest API and therefore recommended for plantation in marble dust pollution stress area.

  14. Applications of aerospace technology in the public interest: Pollution measurement

    NASA Technical Reports Server (NTRS)

    Heins, C. F.; Johnson, F. D.

    1974-01-01

    This study of selected NASA contributions to the improvement of pollution measurement examines the pervasiveness and complexity of the economic, political, and social issues in the environmental field; provides a perspective on the relationship between the conduct of aerospace R and D and specific improvements in on site air pollution monitoring equipment now in use; describes the basic relationship between the development of satellite-based monitoring systems and their influence on long-term progress in improving environmental quality; and comments on how both instrumentation and satellite remote sensing are contributing to an improved environment. Examples of specific gains that have been made in applying aerospace R and D to environmental problem-solving are included.

  15. Design of Laser Based Monitoring Systems for Compliance Management of Odorous and Hazardous Air Pollutants in Selected Chemical Industrial Estates at Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Sudhakar, P.; Kalavathi, P.; Ramakrishna Rao, D.; Satyanarayna, M.

    2014-12-01

    Industrialization can no longer sustain without internalization of the concerns of the receiving environment and land-use. Increased awareness and public pressure, coupled with regulatory instruments and bodies exert constant pressure on industries to control their emissions to a level acceptable to the receiving environment. However, when a group of industries come-up together as an industrial estate, the cumulative impacts of all the industries together often challenges the expected/desired quality of receiving environment, requiring stringent pollution control and monitoring measures. Laser remote sensing techniques provide powerful tools for environmental monitoring. These methods provide range resolved measurements of concentrations of various gaseous pollutants and suspended particulate matter (SPM) not only in the path of the beam but over the entire area. A three dimensional mapping of the pollutants and their dispersal can be estimated using the laser remote sensing methods on a continuous basis. Laser Radar (Lidar) systems are the measurements technology used in the laser remote sensing methods. Differential absorption lidar (DIAL) and Raman Lidar technologies have proved to be very useful for remote sensing of air pollutants. DIAL and Raman lidar systems can be applied for range resolved measurements of molecules like SO2, NO2, O3 Hg, CO, C2H4, H2O, CH4, hydrocarbons etc. in real time on a continuous basis. This paper describes the design details of the DAIL and Raman lidar techniques for measurement of various hazardous air pollutants which are being released into the atmosphere by the chemical industries operating in the Bachupally industrial Estate area at Hyderabad, India. The relative merits of the two techniques have been studied and the minimum concentration of pollutants that can be measured using these systems are presented. A dispersion model of the air pollutants in the selected chemical industrial estates at Hyderabad has been developed.

  16. Miniaturized Planar Room Temperature Ionic Liquid Electrochemical Gas Sensor for Rapid Multiple Gas Pollutants Monitoring.

    PubMed

    Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J

    2018-02-01

    The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.

  17. Indoor air quality of environments used for physical exercise and sports practice: Systematic review.

    PubMed

    Andrade, Alexandro; Dominski, Fábio Hech

    2018-01-15

    Systematic reviews have the potential to contribute substantially to environmental health and risk assessment. This study aimed to investigate indoor air quality of environments used for physical exercise and sports practice through a systematic review. The systematic review followed the PRISMA guidelines and was recorded in the PROSPERO registry (CRD42016036057). The search was performed using the SciELO, Science Direct, Scopus, LILACS, MEDLINE via PubMed, and SPORTDiscus databases, from their inception through April 2017. The search terms used in the databases were {air pollution" OR "air pollutants" OR "air quality"} AND {"physical exercise" OR "physical activity" OR "sport"}. The results of selected studies were divided into 5 categories for analysis: monitoring of air quality in the environment according to international guidelines, indoor-to-outdoor ratio (I/O), air quality during physical exercise, impact of air quality on health, and interventions to improve indoor air quality. Among 1281 studies screened, 34 satisfied the inclusion criteria. The monitoring of pollutants was conducted in 20 studies. CO and NO 2 were the most investigated pollutants, and guidelines were discussed in most studies. The I/O ratio was investigated in 12 studies, of which 9 showed a higher concentration of some pollutants in indoor rather than outdoor environments. Among the 34 studies selected, only 7 investigated the impact of indoor air pollution on human health. The population in most of these studies consisted of hockey players. Most studies conducted monitoring of pollutants in indoor environments used for physical exercise and sports practice. The earliest studies were conducted in ice skating rinks and the most recent evaluated gymnasiums, fitness centers, and sports centers. The CO, particulate matter, and NO 2 concentrations were the most investigated and have the longest history of investigation. These pollutants were within the limits established by guidelines in most studies. Studies that examined the association between air quality documented the adverse effects of pollution. There is a need for more studies focused on the relationship between pollution and health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide-functionalized MOF.

    PubMed

    Hao, Ji-Na; Yan, Bing

    2016-02-07

    A Eu(3+) post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu(3+)@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability.

  19. Lidar system for air-pollution monitoring over urban areas

    NASA Astrophysics Data System (ADS)

    Moskalenko, Irina V.; Shcheglov, Djolinard A.; Molodtsov, Nikolai A.

    1997-05-01

    The atmospheric environmental situation over the urban area of a large city is determined by a complex combination of anthropogenic pollution and meteorological factors. The efficient way to provide three-dimensional mapping of gaseous pollutants over wide areas is utilization of lidar systems employing tunable narrowband transmitters. The paper presented describes activity of RRC 'Kurchatov Institute' in the field of lidar atmospheric monitoring. The project 'mobile remote sensing system based on tunable laser transmitter for environmental monitoring' is developed under financial support of International Scientific and Technology Center (Moscow). The objective of the project is design, construction and field testing of a DIAL-technique system. The lidar transmitter consists of an excimer laser pumping dye laser, BBO crystal frequency doubler, and scanning flat mirror. Sulfur dioxide and atomic mercury have been selected as pollutants for field tests of the lidar system under development. A recent large increase in Moscow traffic stimulated taking into consideration also the remote sensing of lower troposphere ozone because of the photochemical smog problem. The status of the project is briefly discussed. The current activity includes also collecting of environmental data relevant to lidar remote sensing. Main attention is paid to pollutant concentration levels over Moscow city and Moscow district areas.

  20. Custom Search | ECHO | US EPA

    EPA Pesticide Factsheets

    The Custom Search allows users to search for and generate customized data downloads of pollutant loadings information. Users can select varying levels of detail for outputs: annual, monitoring period, and facility level.

  1. Response mechanisms of conifers to air pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyssek, R.; Reich, P.; Oren, R.

    1995-07-01

    Conifers are known to respond to SO{sub 2}, O{sub 3}, NO{sub x} and acid deposition. Of these pollutants, O{sub 3} is likely the most widespread and phytotoxic compound, and therefore of great interest to individuals concerned with forest resources Direct biological responses have a toxicological effects on metabolism which can then scale to effects on tree growth and forest ecology, including processes of competition and succession. Air pollution can cause reductions in photosynthesis and stomatal conductance, which are the physiological parameters most rigorously studied for conifers. Some effects air pollutants can have on plants are influenced by the presence ofmore » co-occurring environmental stresses. For example, drought usually reduces vulnerability of plants to air pollution. In addition, air pollution sensitivity may differ among species and with plant/leaf age. Plants may make short-term physiological adjustments to compensate for air pollution or may evolve resistance to air pollution through the processes of selection. Models are necessary to understand how physiological processes, growth processes, and ecological processes are affected by air pollutants. The process of defining the ecological risk that air pollutants pose for coniferous forests requires approaches that exploit existing databases, environmental monitoring of air pollutants and forest resources, experiments with well-defined air pollution treatments and environmental control/monitoring, modeling, predicting air pollution-caused changes in productivity and ecological processes over time and space, and integration of social values.« less

  2. Patterns of household concentrations of multiple indoor air pollutants in China.

    PubMed

    He, Gongli; Ying, Bo; Liu, Jiang; Gao, Shirong; Shen, Shaolin; Balakrishnan, Kalpana; Jin, Yinlong; Liu, Fan; Tang, Ning; Shi, Kai; Baris, Enis; Ezzati, Majid

    2005-02-15

    Most previous studies on indoor air pollution from household use of solid fuels have used either indirect proxies for human exposure or measurements of individual pollutants at a single point, as indicators of (exposure to) the mixture of pollutants in solid fuel smoke. A heterogeneous relationship among pollutant-location pairs should be expected because specific fuel-stove technology and combustion and dispersion conditions such as temperature, moisture, and air flow are likely to affect the emissions and dispersion of the various pollutants differently. We report on a study for monitoring multiple pollutants--including respirable particles (RPM), carbon monoxide, sulfur dioxide, fluoride, and arsenic--at four points inside homes that used coal and/or biomass fuels in Guizhou and Shaanxi provinces of China. All pollutants exhibited large variability in emissions and spatial dispersion within and between provinces and were generally poorly correlated. RPM, followed by SO2, was generally higher than common health-based guidelines/standards and provided sufficient resolution for assessing variations within and between households in both provinces. Indoor heating played an important role in the level and spatial patterns of pollution inside homes, possibly to an extent more important than cooking. The findings indicate the need for monitoring of RPM and selected other pollutants in longer-term health studies, with focus on both cooking and living/sleeping areas.

  3. Non-specific monitoring to resolve intermittent pollutant problems associated with wastewater treatment and potable supply.

    PubMed

    Stuetz, R M

    2004-01-01

    An online monitoring system based on an array of non-specific sensors was used for the detection of chemical pollutants in wastewater and water. By superimposing sensor profiles for defined sampling window, the identification of data points outside these normal sensor response patterns was used to represent potential pollution episodes or other abnormalities within the process stream. Principle component analysis supported the detection of outliers or rapid changes in the sensor responses as an indicator of chemical pollutants. A model based on the comparison of sensor relative responses to a moving average for a defined sample window was tested for detecting and identifying sudden changes in the online data over a 6-month period. These results show the technical advantages of using a non-specific based monitoring system that can respond to a range of chemical species, due to broad selectivity of the sensor compositions. The findings demonstrate how this non-invasive technique could be further developed to provide early warning systems for application at the inlet of wastewater treatment plants.

  4. [Temporal variation of water quality and driving factors in Yanghe watershed of Zhangjiakou].

    PubMed

    Pang, Bo; Wang, Tie-Yu; Lü, Yong-Long; Du, Li-Yu; Luo, Wei

    2013-01-01

    Yanghe is an important water source for Guanting Reservoir, which once supplied the Beijing city with drinking water, industrial process water and water-use in landscape. Based on the data of water quality monitored by Yanghe watershed monitoring stations from 1992 to 2009, 11 pollutants were selected for analysis. The trends of changes in water quality were figured out, and the major pollutants and driving factors were measured by the integrated standard index and grey correlation analytical methods. The results showed that there were two stages of water quality change in Yanghe watershed of Zhangjiakou. Firstly, the water was polluted seriously but recovered rapidly from 1992 to 1996. Secondly, although light pollution occurred in the watershed from 1997 to 2009, the pollution factors were still above the limits. The main pollution factors are ammonia nitrogen, petroleum, permanganate index, BOD5, Cr6+ and Cd. The main driving factor of water quality is the change of land use type, and the agricultural land showed less impact on water quality than the industrial land.

  5. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River

    PubMed Central

    Kirschner, A.K.T.; Reischer, G.H.; Jakwerth, S.; Savio, D.; Ixenmaier, S.; Toth, E.; Sommer, R.; Mach, R.L.; Linke, R.; Eiler, A.; Kolarevic, S.; Farnleitner, A.H.

    2017-01-01

    The microbial faecal pollution of rivers has wide-ranging impacts on a variety of human activities that rely on appropriate river water quality. Thus, detailed knowledge of the extent and origin of microbial faecal pollution is crucial for watershed management activities to maintain safe water use. In this study, the microbial faecal pollution levels were monitored by standard faecal indicator bacteria (SFIB) along a 2580 km stretch of the Danube, the world's most international river, as well as the Danube's most important tributaries. To track the origin of faecal pollution, host-associated Bacteroidetes genetic faecal marker qPCR assays for different host groups were applied in concert with SFIB. The spatial resolution analysis was followed by a time resolution analysis of faecal pollution patterns over 1 year at three selected sites. In this way, a comprehensive faecal pollution map of the total length of the Danube was created, combining substantiated information on both the extent and origin of microbial faecal pollution. Within the environmental data matrix for the river, microbial faecal pollution constituted an independent component and did not cluster with any other measured environmental parameters. Generally, midstream samples representatively depicted the microbial pollution levels at the respective river sites. However, at a few, somewhat unexpected sites, high pollution levels occurred in the lateral zones of the river while the midstream zone had good water quality. Human faecal pollution was demonstrated as the primary pollution source along the whole river, while animal faecal pollution was of minor importance. This study demonstrates that the application of host-associated genetic microbial source tracking markers in concert with the traditional concept of microbial faecal pollution monitoring based on SFIB significantly enhances the knowledge of the extent and origin of microbial faecal pollution patterns in large rivers. It constitutes a powerful tool to guide target-oriented water quality management in large river basins. PMID:28806705

  6. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River.

    PubMed

    Kirschner, A K T; Reischer, G H; Jakwerth, S; Savio, D; Ixenmaier, S; Toth, E; Sommer, R; Mach, R L; Linke, R; Eiler, A; Kolarevic, S; Farnleitner, A H

    2017-11-01

    The microbial faecal pollution of rivers has wide-ranging impacts on a variety of human activities that rely on appropriate river water quality. Thus, detailed knowledge of the extent and origin of microbial faecal pollution is crucial for watershed management activities to maintain safe water use. In this study, the microbial faecal pollution levels were monitored by standard faecal indicator bacteria (SFIB) along a 2580 km stretch of the Danube, the world's most international river, as well as the Danube's most important tributaries. To track the origin of faecal pollution, host-associated Bacteroidetes genetic faecal marker qPCR assays for different host groups were applied in concert with SFIB. The spatial resolution analysis was followed by a time resolution analysis of faecal pollution patterns over 1 year at three selected sites. In this way, a comprehensive faecal pollution map of the total length of the Danube was created, combining substantiated information on both the extent and origin of microbial faecal pollution. Within the environmental data matrix for the river, microbial faecal pollution constituted an independent component and did not cluster with any other measured environmental parameters. Generally, midstream samples representatively depicted the microbial pollution levels at the respective river sites. However, at a few, somewhat unexpected sites, high pollution levels occurred in the lateral zones of the river while the midstream zone had good water quality. Human faecal pollution was demonstrated as the primary pollution source along the whole river, while animal faecal pollution was of minor importance. This study demonstrates that the application of host-associated genetic microbial source tracking markers in concert with the traditional concept of microbial faecal pollution monitoring based on SFIB significantly enhances the knowledge of the extent and origin of microbial faecal pollution patterns in large rivers. It constitutes a powerful tool to guide target-oriented water quality management in large river basins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. [Monitoring and SWOT analysis of Ascaris eggs pollution in soil of rural China].

    PubMed

    Zhu, Hui-hui; Zhou, Chang-hai; Zang, Wei; Zhang, Xue-qiang; Chen, Ying-dan

    2014-06-01

    To understand the status of Ascaris eggs pollution in soil at national monitoring spots of soil-transmitted nematodiasis, so as to provide the evidence for making countermeasures and evaluating the control effect. Ten households were selected from each of the 22 national monitoring spots annually according to the National Surveillance Program of Soil-Transmitted Nematodiasis (Trial), and the soil samples from vegetable gardens, toilet periphery, courtyards and kitchens were collected and examined by using the modified floatation test with saturated sodium nitrate. Fertilized or unfertilized eggs as well as live or dead fertilized eggs were discriminated and identified. In addition, a SWOT analysis of monitoring of Ascaris eggs pollution in the soil of rural China was carried out. A total of 1 090 households were monitored in 22 monitoring spots from 2006 to 2010. The total detection rate of Ascaris eggs in the soil was 30.73%, and the detection rates of fertilized, unfertilized and live fertilized eggs were 13.21%, 26.42% and 20.28%, respectively. The total detection rates of Ascaris eggs in the vegetable garden, toilet periphery, courtyard and kitchen were 16.51%, 13.49%, 14.22% and 10.73% respectively. The SWOT analysis demonstrated that the monitoring work had both advantages and disadvantages, and was faced with opportunities as well as threats. The pollution status of Ascaris eggs in the soil is still quite severe at some national monitoring spots, and the counter-measures such as implementing hazard-free treatment of stool, improving water supply and sanitation and reforming environment should be taken to protect people from being infected.

  8. Continuous monitoring of water flow and solute transport using vadose zone monitoring technology

    NASA Astrophysics Data System (ADS)

    Dahan, O.

    2009-04-01

    Groundwater contamination is usually attributed to pollution events that initiate on land surface. These may be related to various sources such as industrial, urban or agricultural, and may appear as point or non point sources, through a single accidental event or a continuous pollution process. In all cases, groundwater pollution is a consequence of pollutant transport processes that take place in the vadose zone above the water table. Attempts to control pollution events and prevent groundwater contamination usually involve groundwater monitoring programs. This, however, can not provide any protection against contamination since pollution identification in groundwater is clear evidence that the groundwater is already polluted and contaminants have already traversed the entire vadose zone. Accordingly, an efficient monitoring program that aims at providing information that may prevent groundwater pollution has to include vadose-zone monitoring systems. Such system should provide real-time information on the hydrological and chemical properties of the percolating water and serve as an early warning system capable of detecting pollution events in their early stages before arrival of contaminants to groundwater. Recently, a vadose-zone monitoring system (VMS) was developed to allow continuous monitoring of the hydrological and chemical properties of percolating water in the deep vadose zone. The VMS includes flexible time-domain reflectometry (FTDR) probes for continuous tracking of water content profiles, and vadose-zone sampling ports (VSPs) for frequent sampling of the deep vadose pore water at multiple depths. The monitoring probes and sampling ports are installed through uncased slanted boreholes using a flexible sleeve that allows attachment of the monitoring devices to the borehole walls while achieving good contact between the sensors and the undisturbed sediment column. The system has been successfully implemented in several studies on water flow and contaminant transport in various hydrological and geological setups. These include floodwater infiltration in arid environments, land use impact on groundwater quality, and control of remediation process in a contaminated vadose zone. The data which is collected by the VMS allows direct measurements of flow velocities and fluxes in the vadose zone while continuously monitoring the chemical evolution of the percolating water. While real time information on the hydrological and chemical properties of the percolating water in the vadose is essential to prevent groundwater contamination it is also vital for any remediation actions. Remediation of polluted soils and aquifers essentially involves manipulation of surface and subsurface hydrological, physical and biochemical conditions to improve pollutant attenuation. Controlling the biochemical conditions to enhance biodegradation often includes introducing degrading microorganisms, applying electron donors or acceptors, or adding nutrients that can promote growth of the desired degrading organisms. Accordingly real time data on the hydrological and chemical properties of the vadose zone may be used to select remediation strategies and determine its efficiency on the basis of real time information.

  9. Multiple-Diode-Laser Gas-Detection Spectrometer

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Beer, Reinhard; Sander, Stanley P.

    1988-01-01

    Small concentrations of selected gases measured automatically. Proposed multiple-laser-diode spectrometer part of system for measuring automatically concentrations of selected gases at part-per-billion level. Array of laser/photodetector pairs measure infrared absorption spectrum of atmosphere along probing laser beams. Adaptable to terrestrial uses as monitoring pollution or control of industrial processes.

  10. Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review.

    PubMed

    Borghi, Francesca; Spinazzè, Andrea; Rovelli, Sabrina; Campagnolo, Davide; Del Buono, Luca; Cattaneo, Andrea; Cavallo, Domenico M

    2017-08-12

    Air quality has a huge impact on different aspects of life quality, and for this reason, air quality monitoring is required by national and international regulations. Technical and procedural limitations of traditional fixed-site stations for monitoring or sampling of air pollutants are also well-known. Recently, a different type of miniaturized monitors has been developed. These monitors, due to their characteristics (e.g., low cost, small size, high portability) are becoming increasingly important for individual exposure assessment, especially since this kind of instrument can provide measurements at high spatial and temporal resolution, which is a notable advantage when approaching assessment of exposure to environmental contaminants. The aim of this study is indeed to provide information regarding current knowledge regarding the use of miniaturized air pollutant sensors. A systematic review was performed to identify original articles: a literature search was carried out using an appropriate query for the search of papers across three different databases, and the papers were selected using inclusion/exclusion criteria. The reviewed articles showed that miniaturized sensors are particularly versatile and could be applied in studies with different experimental designs, helping to provide a significant enhancement to exposure assessment, even though studies regarding their performance are still sparse.

  11. WATER ANALYSIS

    EPA Science Inventory

    This review covers developments in water analysis from November 1996 to the end of October 1998, as found in the Chemical Abstracts Service CA Selects for gas chromatography, mass spectrometry, inorganic analytical chemistry, and pollution monitoring. In addition, because develop...

  12. Monitoring of Air Pollution by Satellites (MAPS), phase 1

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Malkmus, W.; Griggs, M.; Bartle, E. R.

    1972-01-01

    Results are reported upon which the design of a satellite remote gas filter correlation (RGFC) instrument can be based. Although a final decision about the feasibility of measuring some of the pollutants with the required accuracy is still outstanding and subject to further theoretical and experimental verifications, viable concepts are presented which permit the initiation of the design phase. The pollutants which are of concern in the troposphere and stratosphere were selected. The infrared bands of these pollutants were identified, together with the bands of interfering gases, and the line parameters of the pollutants as well as interfering gases were generated through a computer program. Radiative transfer calculations (line-by-line) were made to establish the radiation levels at the top of the atmosphere and the signal levels at the detector of the RGFC instrument. Based upon these results the channels for the RGFC were selected. Finally, the problem areas, which need further investigations, were delineated and the supporting data requirements were established.

  13. Spatial assessment of air quality patterns in Malaysia using multivariate analysis

    NASA Astrophysics Data System (ADS)

    Dominick, Doreena; Juahir, Hafizan; Latif, Mohd Talib; Zain, Sharifuddin M.; Aris, Ahmad Zaharin

    2012-12-01

    This study aims to investigate possible sources of air pollutants and the spatial patterns within the eight selected Malaysian air monitoring stations based on a two-year database (2008-2009). The multivariate analysis was applied on the dataset. It incorporated Hierarchical Agglomerative Cluster Analysis (HACA) to access the spatial patterns, Principal Component Analysis (PCA) to determine the major sources of the air pollution and Multiple Linear Regression (MLR) to assess the percentage contribution of each air pollutant. The HACA results grouped the eight monitoring stations into three different clusters, based on the characteristics of the air pollutants and meteorological parameters. The PCA analysis showed that the major sources of air pollution were emissions from motor vehicles, aircraft, industries and areas of high population density. The MLR analysis demonstrated that the main pollutant contributing to variability in the Air Pollutant Index (API) at all stations was particulate matter with a diameter of less than 10 μm (PM10). Further MLR analysis showed that the main air pollutant influencing the high concentration of PM10 was carbon monoxide (CO). This was due to combustion processes, particularly originating from motor vehicles. Meteorological factors such as ambient temperature, wind speed and humidity were also noted to influence the concentration of PM10.

  14. Detection of regional air pollution episodes utilizing satellite digital data in the visual range

    NASA Technical Reports Server (NTRS)

    Burke, H.-H. K.

    1982-01-01

    Digital analyses of satellite visible data for selected high-sulfate cases over the northeastern U.S., on July 21 and 22, 1978, are compared with ground-based measurements. Quantitative information on total aerosol loading derived from the satellite digitized data using an atmospheric radiative transfer model is found to agree with the ground measurements, and it is shown that the extent and transport of the haze pattern may be monitored from the satellite data over the period of maximum intensity for the episode. Attention is drawn to the potential benefits of satellite monitoring of pollution episodes demonstrated by the model.

  15. Research and application of a novel hybrid air quality early-warning system: A case study in China.

    PubMed

    Li, Chen; Zhu, Zhijie

    2018-06-01

    As one of the most serious meteorological disasters in modern society, air pollution has received extensive attention from both citizens and decision-makers. With the complexity of pollution components and the uncertainty of prediction, it is both critical and challenging to construct an effective and practical early-warning system. In this paper, a novel hybrid air quality early-warning system for pollution contaminant monitoring and analysis was proposed. To improve the efficiency of the system, an advanced attribute selection method based on fuzzy evaluation and rough set theory was developed to select the main pollution contaminants for cities. Moreover, a hybrid model composed of the theory of "decomposition and ensemble", an extreme learning machine and an advanced heuristic algorithm was developed for pollution contaminant prediction; it provides deterministic and interval forecasting for tackling the uncertainty of future air quality. Daily pollution contaminants of six major cities in China were selected as a dataset to evaluate the practicality and effectiveness of the developed air quality early-warning system. The superior experimental performance determined by the values of several error indexes illustrated that the proposed early-warning system was of great effectiveness and efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effects of sampling techniques on physical parameters and concentrations of selected persistent organic pollutants in suspended matter.

    PubMed

    Pohlert, Thorsten; Hillebrand, Gudrun; Breitung, Vera

    2011-06-01

    This study focusses on the effect of sampling techniques for suspended matter in stream water on subsequent particle-size distribution and concentrations of total organic carbon and selected persistent organic pollutants. The key questions are whether differences between the sampling techniques are due to the separation principle of the devices or due to the difference between time-proportional versus integral sampling. Several multivariate homogeneity tests were conducted on an extensive set of field-data that covers the period from 2002 to 2007, when up to three different sampling techniques were deployed in parallel at four monitoring stations of the River Rhine. The results indicate homogeneity for polychlorinated biphenyls, but significant effects due to the sampling techniques on particle-size, organic carbon and hexachlorobenzene. The effects can be amplified depending on the site characteristics of the monitoring stations.

  17. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-07-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreis, I.A.; Zihm, C.G.M.; Slob, W.

    We evaluated an association between episodes of high SO{sub 2} pollution of the air and school absenteeism during a 2-y period. Data on absenteeism were collected from 84 elementary schools in the first year and 111 schools in the second year. The schools were selected for their proximity to air pollution monitoring stations. The data were used as a nonspecific, but sensitive health indicator. Sulfur dioxide was selected because it was almost continuously available. The correlation between SO{sub 2} and absenteeism was assessed using the Box-Jenkins approach for the analysis of time series to correct for autocorrelation within the timemore » series. Next, the data were recalculated to a weekly figure to correct for influenza epidemics, as indicated by a countrywide monitoring program of general practitioners. The country was divided into four regions in accordance with data on influenza. We used a first-order moving-average transfer model, which assumed the absenteeism due to influenza was in proportion to the data on influenza reported for the whole population. Using this model, absenteeism was estimated and subtracted from the observed absenteeism. The residuals were correlated with the data on air pollution after correction for autocorrelation. We found a relationship between absenteeism and air pollution, with a delay of 1 to 2 wk. There is a clear relationship between influenza as registered by the general practitioners and air pollution as indicated by the level of SO{sub 2}. After correction for influenza by the transfer model, the correlation between air pollution and school absenteeism is reduced to being barely significant.« less

  19. A framework to determine the locations of the environmental monitoring in an estuary of the Yellow Sea.

    PubMed

    Kim, Nam-Hoon; Hwang, Jin Hwan; Cho, Jaegab; Kim, Jae Seong

    2018-06-04

    The characteristics of an estuary are determined by various factors as like as tide, wave, river discharge, etc. which also control the water quality of the estuary. Therefore, detecting the changes of characteristics is critical in managing the environmental qualities and pollution and so the locations of monitoring should be selected carefully. The present study proposes a framework to deploy the monitoring systems based on a graphical method of the spatial and temporal optimizations. With the well-validated numerical simulation results, the monitoring locations are determined to capture the changes of water qualities and pollutants depending on the variations of tide, current and freshwater discharge. The deployment strategy to find the appropriate monitoring locations is designed with the constrained optimization method, which finds solutions by constraining the objective function into the feasible regions. The objective and constrained functions are constructed with the interpolation technique such as objective analysis. Even with the smaller number of the monitoring locations, the present method performs well equivalently to the arbitrarily and evenly deployed monitoring system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Pollutant monitoring of aircraft exhaust with multispectral imaging

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-10-01

    Communities surrounding local airports are becoming increasingly concerned about the aircraft pollutants emitted during the landing-takeoff (LTO) cycle, and their potential for negative health effects. Chicago, Los Angeles, Boston and London have all recently been featured in the news regarding concerns over the amount of airport pollution being emitted on a daily basis, and several studies have been published on the increased risks of cancer for those living near airports. There are currently no inexpensive, portable, and unobtrusive sensors that can monitor the spatial and temporal nature of jet engine exhaust plumes. In this work we seek to design a multispectral imaging system that is capable of tracking exhaust plumes during the engine idle phase, with a specific focus on unburned hydrocarbon (UHC) emissions. UHCs are especially potent to local air quality, and their strong absorption features allow them to act as a spatial and temporal plume tracer. Using a Gaussian plume to radiometrically model jet engine exhaust, we have begun designing an inexpensive, portable, and unobtrusive imaging system to monitor the relative amount of pollutants emitted by aircraft in the idle phase. The LWIR system will use two broadband filters to detect emitted UHCs. This paper presents the spatial and temporal radiometric models of the exhaust plume from a typical jet engine used on 737s. We also select filters for plume tracking, and propose an imaging system layout for optimal detectibility. In terms of feasibility, a multispectral imaging system will be two orders of magnitude cheaper than current unobtrusive methods (PTR-MS) used to monitor jet engine emissions. Large-scale impacts of this work will include increased capabilities to monitor local airport pollution, and the potential for better-informed decision-making regarding future developments to airports.

  1. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  2. Temporal and spatial characteristics of the water pollutant concentration in Huaihe River Basin from 2003 to 2012, China.

    PubMed

    Dou, Ming; Zhang, Yan; Li, Guiqiu

    2016-09-01

    Based on the monitoring data of 78 monitoring stations from 2003 to 2012, five key water quality indexes (biochemical oxygen demand: BOD5, permanganate index: CODMn, dissolved oxygen: DO, ammonium nitrogen: NH3-N, and total phosphorus: TP) were selected to analyze their temporal and spatial characteristics in the highly disturbed Huaihe River Basin via Mann-Kendall trend analysis and boxplot analysis. The temporal and spatial variations of water pollutant concentrations in the Huaihe River Basin were investigated and analyzed to provide a scientific basis for water pollution control, water environment protection, and ecological restoration. The results indicated that the Yinghe River, Quanhe River, Honghe River, Guohe River, and Baohe River were the most seriously polluted rivers, followed by Hongze Lake, Luoma Lake, Yishuhe River, and Nansi Lake. BOD5, CODMn, and NH3-N were the major pollution indexes, for which the monitoring stations reported that more than 40 % of the water quality concentrations exceeded the class IV level. There were 21, 50, 36, and 21 monitoring stations that recorded significantly decreasing trends for BOD5, CODMn, NH3-N, and TP, respectively, and 39 monitoring stations showed a significantly increasing trend for DO. Moreover, the water quality concentrations had a certain concentricity and volatility according to boxplot analysis for the 20 monitoring stations. The majority of monitoring stations recorded a large fluctuation for the monitoring indexes in 2003 and 2004, which indicated that the water quality concentrations were unstable. According to the seasonal variations of the water quality concentrations in the mainstream of Huaihe River, the monthly variation trends of the BOD5, CODMn, DO, NH3-N, and TP concentrations were basically consistent among the seven monitoring stations. The BOD5, CODMn, NH3-N, and TP concentrations were affected by the change of the stream discharge; changes in DO and NH3-N concentrations were influenced by the regional environmental temperature, and the DO and NH3-N concentrations decreased when the water temperature increased.

  3. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Technical Reports Server (NTRS)

    Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; hide

    2016-01-01

    TEMPO (Tropospheric Emissions: Monitoring of Pollution) was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (approximately 2.1 kilometers N/S by 4.4 kilometers E/W at 36.5 degrees N, 100 degrees W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

  4. Characteristics of major volatile organic hazardous air pollutants in the urban air of Kaohsiung city.

    PubMed

    Huang, Mei-Chuan; Lin, Jim Juimin

    2007-10-01

    The concentrations and characteristics of volatile organic hazardous air pollutants (HAPs) in the urban city of Kaohsiung from motor vehicles and dense pollutant sources has become a national concern. To continuously monitor volatile organic HAPs, sampling sites were selected near the four air-quality monitoring stations established by Ethe nvironmental Protection Administration of Taiwan ROC, namely Nan-tz, Tso-ying, San-min and Hsiao-kang, from north to south. An on-site automated online monitor of volatile organic compounds (VOCs) was used for continuous monitoring. This study performed two consecutive days of 24-h monitoring of five volatile organic HAPs form August to October 2005 at the four monitoring sites, which cover the northern, central, and southern areas of Kaohsiung city. The average monitored concentration was 2.78-4.84 ppb for benzene, 5.90-9.66 ppb for toluene, 3.62-5.90 ppb for ethylbenzene, 3.73-5.34 ppb for m,p-xylene, 3.38-4.22 ppb for o-xylene, and 4.48-7.00 ppb for styrene. The average monitored concentrations of the major volatile organic HAPs tended to follow the pattern San-min > Nan-tz > Hsiao-kang > Tso-ying. Among all the species monitored in this study, toluene had the highest ambient concentration, followed by styrene, m,p-xylene, ethylbenzene, o-xylene, and benzene. The results showed that the concentration at night was higher than that in the day for toluene at Nan-tz, San-min, Hsiao-kang, and for benzene at Nan-tz and Hsiao-kang.

  5. Odor composition analysis and odor indicator selection during sewage sludge composting

    PubMed Central

    Zhu, Yan-li; Zheng, Guo-di; Gao, Ding; Chen, Tong-bin; Wu, Fang-kun; Niu, Ming-jie; Zou, Ke-hua

    2016-01-01

    ABSTRACT On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography–mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities. PMID:27192607

  6. Odor composition analysis and odor indicator selection during sewage sludge composting.

    PubMed

    Zhu, Yan-Li; Zheng, Guo-di; Gao, Ding; Chen, Tong-Bin; Wu, Fang-Kun; Niu, Ming-Jie; Zou, Ke-Hua

    2016-09-01

    On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities.

  7. VOC Monitoring to Understand Changes in Secondary Pollution in Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Jaimes-Palomera, M.; Retama, A.; Neria, A.; Rivera, O.; Elias, G.

    2015-12-01

    Previous studies have documented the distribution, diurnal pattern, magnitude, and reactivity of the volatile organic compounds (VOCs) within and downwind of Mexico City. These studies have provided valuable data, but their duration has been restricted to a few weeks since the majority have been part of intensive field campaigns. With the aim of addressing the VOC pollution problem during longer monitoring periods and evaluating control measures to reduce the production of ozone and secondary aerosols, the environmental authorities of Mexico City through its Air Quality Monitoring Network have developed a program to monitor over 50 VOC species every hour in selected existing air quality monitoring stations inside and outside the urban sprawl. The program started with a testing period of six months in 2012 covering the ozone-season (Mar-May). Results of this first campaign are presented in this paper. Using as reference VOC data collected in 2003, reductions in the mixing ratios of light alkanes associated with the consumption of liquefied petroleum gas and aromatic compounds related with the evaporation of fossil fuels and solvents were observed. In contrast, a clear increase in the mixing ratio of olefins was observed. This increase is of relevance to understand the moderate success in the reduction of ozone and fine aerosols in recent years in comparison to other criteria pollutants, which have substantially decreased. Particular features of the diurnal profiles, reactivity with the hydroxyl radical and correlations between individual VOCs and carbon monoxide are used to investigate the influence of specific emission sources. The results discussed here expect to highlight the importance of monitoring VOCs to better understand the drivers and impacts of secondary pollution in large cities like Mexico City.

  8. Development of a distance-to-roadway proximity metric to compare near-road pollutant levels to a central site monitor

    NASA Astrophysics Data System (ADS)

    Barzyk, Timothy M.; George, Barbara Jane; Vette, Alan F.; Williams, Ronald W.; Croghan, Carry W.; Stevens, Carvin D.

    The primary objective of the Detroit Exposure and Aerosol Research Study (DEARS) was to compare air pollutant concentrations measured at various neighborhoods, or exposure monitoring areas (EMAs), throughout a major metropolitan area to levels measured at a central site or community monitor. One of the EMAs was located near a busy freeway (annual average daily traffic (AADT) of ˜130,000) so that impacts of mobile sources could be examined. Air pollution concentrations from the roadway-proximate sites were compared to the central site monitor. The volatile organic compounds (VOCs) selected (benzene, toluene, ethylbenzene, m,p- and o-xylene, 1,3 butadiene, 1,3,5-trimethylbenzene and 4-ethyltoluene) are typically associated with mobile sources. Gradients were also evident that demonstrated the amplification of pollutant levels near the roadway compared to the community monitor. A novel distance-to-roadway proximity metric was developed to plot the measurements and model these gradients. Effective distance represents the actual distance an air parcel travels from the middle of a roadway to a site and varies as a function of wind direction, whereas perpendicular distance is a fixed distance oriented normal to the roadway. Perpendicular distance is often used as a proxy for exposures to traffic emissions in epidemiological studies. Elevated concentrations of all the compounds were found for both a summer and winter season. Effective distance was found to be a statistically significant ( p < 0.05) univariate predictor for concentrations of toluene, ethylbenzene, m,p-xylene and o-xylene for summer 2005. For each of these pollutants, effective distance yielded lower p-values than the corresponding perpendicular distance models, and model fit improved. Results demonstrate that this near-road EMA had elevated levels of traffic-related VOCs compared to the community monitor, and that effective distance was a more accurate predictor of the degree to which they were elevated as a function of distance. Effective distance produced a range of distance-to-roadway values for a single site based on wind direction, thus increasing the number and range of values that could be used to plot and predict relative differences in pollutant concentrations between two sites.

  9. International Conference on Environmental Sensing and Assessment, Las Vegas, Nev., September 14-19, 1975, Proceedings. Volumes 1 & 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The papers deal with the detection of hazardous environmental pollutants, the development of emission control plans, and the design of compliance monitoring systems. Topics include remote sensing techniques in environmental pollution monitoring, monitoring of atmospheric particulate matter, air pollution due to sulfur dioxide and other inorganic compounds, marine pollution, atmospheric aerosols, industrial pollution, and legal aspects of pollution monitoring. Other papers examine the toxic effects of heavy metals and halogenated hydrocarbons, pollution associated with waste-disposal processes, pesticide residues in soil and groundwater, evaluations of groundwater quality, and monitoring of nuclear wastes. The interaction of climate and pollution is also discussed along with global pollutant transport, environmental modeling, ambient environmental air quality, aircraft and ground-vehicle emissions, and pollution associated with energy extraction and utilization processes. Individual items are announced in this issue.

  10. Organic pollution and its effects in the marine mussel Mytilus galloprovincialis in Eastern Mediterranean coasts.

    PubMed

    Kasiotis, Konstantinos M; Emmanouil, Christina; Anastasiadou, Pelagia; Papadi-Psyllou, Asimina; Papadopoulos, Antonis; Okay, Oya; Machera, Kyriaki

    2015-01-01

    Persistent chemicals and emerging pollutants are continuously detected in marine waters and biota. Out of these, polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCs) are significant contaminants with decades of presence in the marine environment. The Mediterranean Sea is an ecosystem directly affected by a variety of anthropogenic activities including industry, municipal, touristic, commercial and agricultural. The Mediterranean mussel (Mytilus galloprovincialis) is a filter feeder, which presents wide distribution. In this regard, the specific organism was used as a biological indicator for the monitoring and evaluation of pollution in the studied areas with focus on the mentioned chemical groups. Pristine Turkish sites with minimum effect from anthropogenic activities, in contrast with Greek sites which were subjected to heavy industrial and shipping activity, were selected. A gas chromatographic tandem mass spectrometric method (GC-MS/MS) was developed and validated to monitor 34 compounds (16 EPA priority PAHs and 18 OCs). Analyses of mussel samples in 2011 from sites with the limited anthropogenic pollution shores have shown the occurrence of 11 pollutants (6 PAHs, 5 OCs), while in the samples from sites with intensive activity and expected pollution, 12 PAHs and 6 OCs were detected. Biochemical and biological responses studied only in mussels samples from the sites with the highest contamination showed a situation that was under strong seasonal influence. The intensity of the response was also influenced by deployment duration. Noteworthy correlations were detected among biochemical/biological effects and between mussel body burden and these effects. Continuous monitoring of priority pollutants of East Mediterranean Sea is vital both for ecological and human risk assessment purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [APPROACHES TO URBAN AREA RANKING ACCORDINGLY TO THE LEVEL OF HEAVY METAL POLLUTION].

    PubMed

    Stepanova, N V; Valeeva, E R; Fomina, S F

    2015-01-01

    Urban area ranking was performed according to the level of the heavy metal pollution based on the data of the snow and soil chemical characteristics. With reference to cumulative rates of the snow cover and soil pollution by heavy metals in the territory of the city of Kazan there were selected four areas: I--Derbyshki; II--Teplocontrol; III--Gorki; IV--Kirovsky district. The pollution level of snow cover in the territory of the city was determined by pollution level indices calculated with the application of Maximum Permissible Concentration (MPC) of chemical substances in ambient waters for household and recreational and service facilities use. The assessment of the pollution level in soils in the city showed the total territory of Kazan to be mildly polluted by manganese, concerning other heavy metals the categories of the soil pollution vary on areas. Results of hair biological monitoring in children are an informative auxiliary tool for the evaluation of the present ecological situation concerning heavy metals in certain territories of the city.

  12. Uncertainties of stormwater characteristics and removal rates of stormwater treatment facilities: implications for stormwater handling.

    PubMed

    Langeveld, J G; Liefting, H J; Boogaard, F C

    2012-12-15

    Stormwater runoff is a major contributor to the pollution of receiving waters. This study focuses at characterising stormwater in order to be able to determine the impact of stormwater on receiving waters and to be able to select the most appropriate stormwater handling strategy. The stormwater characterisation is based on determining site mean concentrations (SMCs) and their uncertainties as well as the treatability of stormwater by monitoring specific pollutants concentration levels (TSS, COD, BOD, TKN, TP, Pb, Cu, Zn, E.coli) at three full scale stormwater treatment facilities in Arnhem, the Netherlands. This has resulted in 106 storm events being monitored at the lamella settler, 59 at the high rate sand filter and 132 at the soil filter during the 2 year monitoring period. The stormwater characteristics in Arnhem in terms of SMCs for main pollutants TSS and COD and settling velocities differ from international data. This implies that decisions for stormwater handling made on international literature data will very likely be wrong due to assuming too high concentrations of pollutants and misjudgement of the treatability of stormwater. The removal rates monitored at the full scale treatment facilities are within the expected range, with the soil filter and the sand filter having higher removal rates than the lamella settler. The full scale pilots revealed the importance of incorporating gross solids removal in the design of stormwater treatment facilities, as the gross solids determine operation and maintenance requirements. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Analysis of selected volatile organic compounds at background level in South Africa.

    NASA Astrophysics Data System (ADS)

    Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang

    2017-04-01

    Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator

  14. The expanding scope of air pollution monitoring can facilitate sustainable development.

    PubMed

    Knox, Andrew; Mykhaylova, Natalia; Evans, Greg J; Lee, Colin J; Karney, Bryan; Brook, Jeffrey R

    2013-03-15

    This paper explores technologies currently expanding the physical scope of air pollution monitoring and their potential contributions to the assessment of sustainable development. This potential lies largely in the ability of these technologies to address issues typically on the fringe of the air pollution agenda. Air pollution monitoring tends to be primarily focused on human health, and largely neglects other aspects of sustainable development. Sensor networks, with their relatively inexpensive monitoring nodes, allow for monitoring with finer spatiotemporal resolution. This resolution can support more conclusive studies of air pollution's effect on socio-ecological justice and human quality of life. Satellite observation of air pollution allows for wider geographical scope, and in doing so can facilitate studies of air pollution's effects on natural capital and ecosystem resilience. Many air pollution-related aspects of the sustainability of development in human systems are not being given their due attention. Opportunities exist for air pollution monitoring to attend more to these issues. Improvements to the resolution and scale of monitoring make these opportunities realizable. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Methods for chemical analysis of water and wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-01

    This manual provides test procedures approved for the monitoring of water supplies, waste discharges, and ambient waters, under the Safe Drinking Water Act, the National Pollutant Discharge Elimination System, and Ambient Monitoring Requirements of Section 106 and 208 of Public Law 92-500. The test methods have been selected to meet the needs of federal legislation and to provide guidance to laboratories engaged in the protection of human health and the aquatic environment.

  16. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, andmore » (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.« less

  17. Method to Select Metropolitan Areas of Epidemiologic Interest for Enhanced Air Quality Monitoring

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s current Speciation Trends Network (STN) covers most major U.S. metropolitan areas and a wide range of particulate matter (PM) constituents and gaseous co-pollutants. However, using filter-based methods, most PM constituents are measured ...

  18. 40 CFR 60.57c - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 60.57c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... defined in § 60.50c(a)(3) and (4) that uses selective noncatalytic reduction technology shall install... date, time, and duration. (d) The owner or operator of an affected facility using an air pollution...

  19. 40 CFR 60.57c - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 60.57c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... defined in § 60.50c(a)(3) and (4) that uses selective noncatalytic reduction technology shall install... date, time, and duration. (d) The owner or operator of an affected facility using an air pollution...

  20. Special Advanced Studies for Pollution Prevention. Delivery Order 0058: The Monitor - Spring 2000

    DTIC Science & Technology

    2001-04-01

    Process complexity ➨ Strippability ➨ Maturity ➨ Process type and chemistry ➨ Licensing requirements ➨ Vendor information ➨ Niplate 700 (Surface...Courses of Action 4 Identify & Evaluate Potential Alternatives 5 Select Best Alternative & Develop Project 6 Prioritize Projects by Commodity 7 Rank...Burden CS Priority Process Specific P2 OASolution Selection Solution Planning Solution Implementation Solution Evaluation Phase 2 Phase 3 Phase 1

  1. Study of Water Pollution Early Warning Framework Based on Internet of Things

    NASA Astrophysics Data System (ADS)

    Chengfang, H.; Xiao, X.; Dingtao, S.; Bo, C.; Xiongfei, W.

    2016-06-01

    In recent years, with the increasing world environmental pollution happening, sudden water pollution incident has become more and more frequently in China. It has posed a serious threat to water safety of the people living in the water source area. Conventional water pollution monitoring method is manual periodic testing, it maybe miss the best time to find that pollution incident. This paper proposes a water pollution warning framework to change this state. On the basis of the Internet of things, we uses automatic water quality monitoring technology to realize monitoring. We calculate the monitoring data with water pollution model to judge whether the water pollution incident is happen or not. Water pollution warning framework is divided into three layers: terminal as the sensing layer, it with the deployment of the automatic water quality pollution monitoring sensor. The middle layer is the transfer network layer, data information implementation is based on GPRS wireless network transmission. The upper one is the application layer. With these application systems, early warning information of water pollution will realize the high-speed transmission between grassroots units and superior units. The paper finally gives an example that applying this pollution warning framework to water quality monitoring of Beijing, China, it greatly improves the speed of the pollution warning responding of Beijing.

  2. Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece.

    PubMed

    Karapanagioti, H K; Endo, S; Ogata, Y; Takada, H

    2011-02-01

    Plastic pellets found stranded on beaches are hydrophobic organic materials and thus, they are a favourable medium for persistent organic pollutants to absorb to. In the present study, plastic pellets are used to determine the diffuse pollution of selected Greek beaches. Samples of pellets were taken from these beaches and were analyzed for PCBs, DDTs, HCHs, and PAHs. The observed differences among pellets from various sampling sites are related to the pollution occurring at each site. Plastic pellets collected in Saronikos Gulf beaches demonstrate much higher pollutant loading than the ones collected in a remote island or close to an agricultural area. Based on data collected in this study and the International Pellet Watch program, pollution in Saronikos Gulf, Greece, is comparable to other heavily industrialized places of the world. The present study demonstrates the potential of pellet watch to be utilized as a detailed-scale monitoring tool within a single country. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  4. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils.

    PubMed

    Xu, Yongfeng; Dai, Shixiang; Meng, Ke; Wang, Yuting; Ren, Wenjie; Zhao, Ling; Christie, Peter; Teng, Ying

    2018-07-15

    The residual levels and risk assessment of several potentially toxic elements (PTEs), phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in rural soils near different types of pollution sources in Tianjin, China, were studied. The soils were found to be polluted to different extents with PTEs, PAEs and PAHs from different pollution sources. The soil concentrations of chromium (Cr), nickel (Ni), di-n-butyl phthalate (DnBP), acenaphthylene (Any) and acenaphthene (Ane) were higher than their corresponding regulatory reference limits. The health risk assessment model used to calculate human exposure indicates that both non-carcinogenic and carcinogenic risks from selected pollutants were generally acceptable or close to acceptable. Different types of pollution sources and soil physicochemical properties substantially affected the soil residual concentrations of and risks from these pollutants. PTEs in soils collected from agricultural lands around industrial and residential areas and organic pollutants (PAEs and PAHs) in soils collected from agricultural areas around livestock breeding were higher than those from other types of pollution sources and merit long-term monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Cardiovascular impacts and micro-environmental exposure factors associated with continuous personal PM2.5 monitoring

    EPA Science Inventory

    The US Environmental Protection Agency’s (US EPA) Detroit Exposure and Aerosol Research Study (DEARS) has provided extensive data on human exposures to a wide variety of air pollutants and their impact on human health. Previous analyses in the DEARS revealed select cardiovascul...

  6. Special Advanced Studies for Pollution Prevention Delivery Order 0065: The Monitor - Winter 2001

    DTIC Science & Technology

    2001-04-01

    were selected based on previous efforts. These alternatives included Alodine 2000, NCS Rainseal, Sanchem Full Process, and trivalent chromium . CTC’s IVD...12 Alternatives for Chromium Electroplating: ElectroSpark Deposition .................. 13...Requirements ............ 15 Aluminum Substitution for Cadmium/ Chromium ............................................... 16 Review of Cadmium Alternatives

  7. A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring.

    PubMed

    Jiang, Yong; Liang, Peng; Huang, Xia; Ren, Zhiyong Jason

    2018-07-01

    Toxicity monitoring is essential for the protection of public health and ecological safety. Microbial fuel cell (MFC) sensors demonstrated good potential in toxicity monitoring, but current MFC sensors can only be used for anaerobic water monitoring. In this study, a novel gas diffusion (GD)-biocathode sensing element was fabricated using a simple method. The GD-biocathode MFC sensor can directly be used for formaldehyde detection (from 0.0005% to 0.005%) in both aerobic and anaerobic water bodies. Electrochemical analysis indicated that the response by the sensor was caused by the toxic inhibition to the microbial activity for the oxygen reduction reaction (ORR). This study for the first time demonstrated that the GD-biocathode MFC sensor has a detection limit of 20 ppm for formaldehyde and can be used to monitor air pollution. Selective sensitivity to formaldehyde was not achieved as the result of using a mixed-culture, which confirms that it can serve as a generic biosensor for monitoring gaseous pollutants. This study expands the realm of knowledge for MFC sensor applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A multi-criteria evaluation system for marine litter pollution based on statistical analyses of OSPAR beach litter monitoring time series.

    PubMed

    Schulz, Marcus; Neumann, Daniel; Fleet, David M; Matthies, Michael

    2013-12-01

    During the last decades, marine pollution with anthropogenic litter has become a worldwide major environmental concern. Standardized monitoring of litter since 2001 on 78 beaches selected within the framework of the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) has been used to identify temporal trends of marine litter. Based on statistical analyses of this dataset a two-part multi-criteria evaluation system for beach litter pollution of the North-East Atlantic and the North Sea is proposed. Canonical correlation analyses, linear regression analyses, and non-parametric analyses of variance were used to identify different temporal trends. A classification of beaches was derived from cluster analyses and served to define different states of beach quality according to abundances of 17 input variables. The evaluation system is easily applicable and relies on the above-mentioned classification and on significant temporal trends implied by significant rank correlations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cell-Based Sensor System Using L6 Cells for Broad Band Continuous Pollutant Monitoring in Aquatic Environments

    PubMed Central

    Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria

    2012-01-01

    Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity. PMID:22737014

  10. Cell-based sensor system using L6 cells for broad band continuous pollutant monitoring in aquatic environments.

    PubMed

    Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria

    2012-01-01

    Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni(2+) and Cu(2+)) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity.

  11. Linkage of the National Health Interview Survey to air quality data.

    PubMed

    Parker, Jennifer D; Kravets, Nataliya; Woodruff, Tracey J

    2008-02-01

    This report describes the linkage between the National Health Interview Survey (NHIS) and air monitoring data from the U.S. Environmental Protection Agency (EPA). There have been few linkages of these data sources, partly because of restrictions on releasing geographic detail from NHIS on public-use files in order to protect participant confidentiality. Pollution exposures for NHIS respondents were calculated by averaging the annual average exposure estimates from EPA air monitors both within 5, 10, 15, and 20 miles of the respondent's block-group location (which is available on restricted NHIS data files) and by county of residence. The 1987-2005 linked data files--referred to as NHIS-EPAAnnualAir--were used to describe the percentage of NHIS respondents linked and the median exposures by linkage method, survey year, and pollutant. Using the 2005 NHIS-EPAAnnualAir data file, the percentage linked and median exposure were described by respondent characteristics, linkage method, and pollutant. Many decisions were made to define pollution exposures for NHIS respondents, including monitor selection, location assignment for NHIS respondents, and geographic linkage criteria. Geographic linkage criteria for assigning area-level exposure estimates affected the percentage and composition of respondents included in the resulting linked sample. Median exposure estimates, however, were similar among geographic linkage methods. NHIS-EPAAnnualAir data files for 1985 through 2005 are currently available to users in the NCHS Research Data Center.

  12. Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin: a case study of the town of Xueyan, China.

    PubMed

    Zhu, Q D; Sun, J H; Hua, G F; Wang, J H; Wang, H

    2015-10-01

    Non-point source pollution is a significant environmental issue in small watersheds in China. To study the effects of rainfall on pollutants transported by runoff, rainfall was monitored in Xueyan town in the Taihu Lake Basin (TLB) for over 12 consecutive months. The concentrations of different forms of nitrogen (N) and phosphorus (P), and chemical oxygen demand, were monitored in runoff and river water across different land use types. The results indicated that pollutant loads were highly variable. Most N losses due to runoff were found around industrial areas (printing factories), while residential areas exhibited the lowest nitrogen losses through runoff. Nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were the dominant forms of soluble N around printing factories and hotels, respectively. The levels of N in river water were stable prior to the generation of runoff from a rainfall event, after which they were positively correlated to rainfall intensity. In addition, three sites with different areas were selected for a case study to analyze trends in pollutant levels during two rainfall events, using the AnnAGNPS model. The modeled results generally agreed with the observed data, which suggests that AnnAGNPS can be used successfully for modeling runoff nutrient loading in this region. The conclusions of this study provide important information on controlling non-point source pollution in TLB.

  13. Geochemical modelling and speciation studies of metal pollutants present in selected water systems in South Africa

    NASA Astrophysics Data System (ADS)

    Magu, M. M.; Govender, P. P.; Ngila, J. C.

    2016-04-01

    Metal pollutants in water poses great threats to living beings and hence requires to be monitored regularly to avoid loss of lives. Various analytical methods are available to monitor these pollutants in water and can be improved with time. Modelling of metal pollutants in any water system helps chemists, engineers and environmentalists to greatly understand the various chemical processes in such systems. Water samples were collected from waste water treatment plant and river from highlands close to its source all the way to the ocean as it passing through areas with high anthropogenic activities. Pre-concentration of pollutants in the samples was done through acid digestion and metal pollutants were analysed using inductively coupled plasma-optical emission spectra (ICP-OES) to determine the concentration levels. Metal concentrations ranged between 0.1356-0.4658 mg/L for Al; 0.0031-0.0050 mg/L for Co, 0.0019-0.0956 mg/L for Cr; 0.0028-0.3484 mg/L for Cu; 0.0489-0.3474 mg/L for Fe; 0.0033-0.0285 mg/L for Mn; 0.0056-0.0222 mg/L for Ni; 0.0265-0.4753 mg/L for Pb and 0.0052-0.5594 mg/L for Zn. Modelling work was performed using PHREEQC couple with Geochemist's workbench (GWB) to determine speciation dynamics and bioavailability of these pollutants. Modelling thus adds value to analytical methods and hence a better complementary tool to laboratory-based experimental studies.

  14. 40 CFR 58.61 - Monitoring other pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Monitoring other pollutants. 58.61 Section 58.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Federal Monitoring § 58.61 Monitoring other pollutants. The...

  15. Smog episodes in the Lodz agglomeration in the years 2014-17

    NASA Astrophysics Data System (ADS)

    Wielgosiński, Grzegorz; Czerwińska, Justyna; Namiecińska, Olga; Cichowicz, Robert

    2018-01-01

    In recent years, in the winter season we are alarmed about the poor air quality in Poland and significantly exceeded permissible concentrations of certain pollutants, especially PM10 and PM2.5, which are a result of so-called low emissions. The authors analyze smog episodes in the Lodz agglomeration by comparing the recorded values of selected pollutant concentrations at monitoring stations of the Regional Inspectorate for Environmental Protection in Lodz with the meteorological conditions prevailing at this time. The analysis covers data from the years 2014-2017.

  16. Assessment of different route choice on commuters' exposure to air pollution in Taipei, Taiwan.

    PubMed

    Li, Hsien-Chih; Chiueh, Pei-Te; Liu, Shi-Ping; Huang, Yu-Yang

    2017-01-01

    The purposes of this study are to develop a healthy commute map indicating cleanest route in Taipei metropolitan area for any given journey and to evaluate the pollutant doses exposed in different commuting modes. In Taiwan, there are more than 13.6 million motorcycles and 7.7 million vehicles among the 23 million people. Exposure to traffic-related air pollutants can thus cause adverse health effects. Moreover, increasing the level of physical activity during commuting and longer distances will result in inhalation of more polluted air. In this study, we utilized air pollution monitoring data (CO, SO 2 , NO 2 , PM 10 , and PM 2.5 ) from Taiwan EPA's air quality monitoring stations in Taipei metropolitan area to estimate each pollutant exposure while commuting by different modes (motorcycling, bicycling, and walking). Spatial interpolation methods such as inverse distance weighting (IDW) were used to estimate each pollutant's distribution in Taipei metropolitan area. Three routes were selected to represent the variety of different daily commuting pathways. The cleanest route choice was based upon Dijkstra's algorithm to find the lowest cumulative pollutant exposure. The IDW interpolated values of CO, SO 2 , NO 2 , PM 10 , and PM 2.5 ranged from 0.42-2.2 (ppm), 2.6-4.8 (ppb), 17.8-42.9 (ppb), 32.4-65.6 (μg/m 3 ), and 14.2-38.9 (μg/m 3 ), respectively. To compare with the IDW results, concentration of particulate matter (PM 10 , PM 2.5 , and PM 1 ) along the motorcycle route was measured in real time. In conclusion, the results showed that the shortest commuting route for motorcyclists resulted in a much higher cumulative dose (PM 2.5 3340.8 μg/m 3 ) than the cleanest route (PM 2.5 912.5 μg/m 3 ). The mobile personal monitoring indicated that the motorcyclists inhaled significant high pollutants during commuting as a result of high-concentration exposure and short-duration peaks. The study could effectively present less polluted commuting routes for citizen health benefits.

  17. Monitoring pesticides in wildlife

    USGS Publications Warehouse

    Dustman, E.H.; Martin, W.E.; Heath, R.G.; Reichel, W.L.

    1971-01-01

    Early in the development of the wildlife monitoring program, certain criteria were recognized as being important in the selection of species of wild animals suitable for pesticide monitoring purposes. Ideally, the forms selected should be geographically well distributed, and they should be reasonably abundant and readily available for sampling. In addition, animals occurring near the top of food chains have the capacity to reflect residues in organisms occurring at lower levels in the same food chains. Based on these criteria, species chosen for monitoring include the starling (Sturnus vulgaris), mallard (Anas platyrhynchos) and black ducks (Anas rubripes), and the bald eagle (Haliaeetus leucocephalus). The black duck is substituted for the mallard in States where suitable numbers of mallards cannot be obtained. The Bureau of Sport Fisheries and Wildlife is held responsible for the execution of the wildlife portion of the National Pesticide Monitoring Program. The primary objective is to ascertain on a nationwide basis and independent of specific treatments the levels and trends of certain pesticidal chemicals and other pollutants in the bodies of selected forms of wildlife. The program was first described by Johnson et al. (4) in 1967. The purpose of this report is to update and redescribe the wildlife monitoring program and briefly review accomplishments.

  18. Sophisticated Clean Air Strategies Required to Mitigate Against Particulate Organic Pollution

    NASA Astrophysics Data System (ADS)

    Grigas, T.; Ovadnevaite, J.; Ceburnis, D.; Moran, E.; McGovern, F. M.; Jennings, S. G.; O'Dowd, C.

    2017-03-01

    Since the 1980’s, measures mitigating the impact of transboundary air pollution have been implemented successfully as evidenced in the 1980-2014 record of atmospheric sulphur pollution over the NE-Atlantic, a key region for monitoring background northern-hemisphere pollution levels. The record reveals a 72-79% reduction in annual-average airborne sulphur pollution (SO4 and SO2, respectively) over the 35-year period. The NE-Atlantic, as observed from the Mace Head research station on the Irish coast, can be considered clean for 64% of the time during which sulphate dominates PM1 levels, contributing 42% of the mass, and for the remainder of the time, under polluted conditions, a carbonaceous (organic matter and Black Carbon) aerosol prevails, contributing 60% to 90% of the PM1 mass and exhibiting a trend whereby its contribution increases with increasing pollution levels. The carbonaceous aerosol is known to be diverse in source and nature and requires sophisticated air pollution policies underpinned by sophisticated characterisation and source apportionment capabilities to inform selective emissions-reduction strategies. Inauspiciously, however, this carbonaceous concoction is not measured in regulatory Air Quality networks.

  19. Sophisticated Clean Air Strategies Required to Mitigate Against Particulate Organic Pollution.

    PubMed

    Grigas, T; Ovadnevaite, J; Ceburnis, D; Moran, E; McGovern, F M; Jennings, S G; O'Dowd, C

    2017-03-17

    Since the 1980's, measures mitigating the impact of transboundary air pollution have been implemented successfully as evidenced in the 1980-2014 record of atmospheric sulphur pollution over the NE-Atlantic, a key region for monitoring background northern-hemisphere pollution levels. The record reveals a 72-79% reduction in annual-average airborne sulphur pollution (SO 4 and SO 2 , respectively) over the 35-year period. The NE-Atlantic, as observed from the Mace Head research station on the Irish coast, can be considered clean for 64% of the time during which sulphate dominates PM 1 levels, contributing 42% of the mass, and for the remainder of the time, under polluted conditions, a carbonaceous (organic matter and Black Carbon) aerosol prevails, contributing 60% to 90% of the PM 1 mass and exhibiting a trend whereby its contribution increases with increasing pollution levels. The carbonaceous aerosol is known to be diverse in source and nature and requires sophisticated air pollution policies underpinned by sophisticated characterisation and source apportionment capabilities to inform selective emissions-reduction strategies. Inauspiciously, however, this carbonaceous concoction is not measured in regulatory Air Quality networks.

  20. Integrating sentinel watershed-systems into the monitoring and assessment of Minnesota's (USA) waters quality.

    PubMed

    Magner, J A; Brooks, K N

    2008-03-01

    Section 303(d) of the Clean Water Act requires States and Tribes to list waters not meeting water quality standards. A total maximum daily load must be prepared for waters identified as impaired with respect to water quality standards. Historically, the management of pollution in Minnesota has been focused on point-source regulation. Regulatory effort in Minnesota has improved water quality over the last three decades. Non-point source pollution has become the largest driver of conventional 303(d) listings in the 21st century. Conventional pollutants, i.e., organic, sediment and nutrient imbalances can be identified with poor land use management practices. However, the cause and effect relationship can be elusive because of natural watershed-system influences that vary with scale. Elucidation is complex because the current water quality standards in Minnesota were designed to work best with water quality permits to control point sources of pollution. This paper presents a sentinel watershed-systems approach (SWSA) to the monitoring and assessment of Minnesota waterbodies. SWSA integrates physical, chemical, and biological data over space and time using advanced technologies at selected small watersheds across Minnesota to potentially improve understanding of natural and anthropogenic watershed processes and the management of point and non-point sources of pollution. Long-term, state-of-the-art monitoring and assessment is needed to advance and improve water quality standards. Advanced water quality or ecologically-based standards that integrate physical, chemical, and biological numeric criteria offer the potential to better understand, manage, protect, and restore Minnesota's waterbodies.

  1. Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area.

    PubMed

    Zhao, Jian-wei; Shan, Bao-qing; Yin, Cheng-qing

    2007-01-01

    The pollutant loads of surface runoff in an urban tourist area have been investigated for two years in the Wuhan City Zoo, China. Eight sampling sites, including two woodlands, three animal yards, two roofs and one road, were selected for sampling and study. The results indicate that pollutants ranked in a predictable order of decreasing load (e.g. animal yard > roof > woodland > road), with animal yards acting as the key pollution source in the zoo. Pollutants were transported mainly by particulate form in runoff. Particulate nitrogen and particulate phosphorous accounted on average for 61%, 78% of total pollutant, respectively, over 13 monitored rainfall events. These results indicate the treatment practices should be implemented to improve particulate nutrient removal. Analysis of the M(V) curve indicate that no first flush effect existed in the surface runoff from pervious areas (e.g. woodland, animal ground yard), whereas a first flush effect was evident in runoff from impervious surfaces (e.g. animal cement yard, roof, road).

  2. Surface water monitoring in the mercury mining district of Asturias (Spain).

    PubMed

    Loredo, Jorge; Petit-Domínguez, María Dolores; Ordóñez, Almudena; Galán, María Pilar; Fernández-Martínez, Rodolfo; Alvarez, Rodrigo; Rucandio, María Isabel

    2010-04-15

    Systematic monitoring of surface waters in the area of abandoned mine sites constitutes an essential step in the characterisation of pollution from historic mine sites. The analytical data collected throughout a hydrologic period can be used for hydrological modelling and also to select appropriate preventive and/or corrective measures in order to avoid pollution of watercourses. Caudal River drains the main abandoned Hg mine sites (located in Mieres and Pola de Lena districts) in Central Asturias (NW Spain). This paper describes a systematic monitoring of physical and chemical parameters in eighteen selected sampling points within the Caudal River catchment. At each sampling station, water flow, pH, specific conductance, dissolved oxygen, salinity, temperature, redox potential and turbidity were controlled "in situ" and major and trace elements were analysed in the laboratory. In the Hg-mineralised areas, As is present in the form of As-rich pyrite, realgar and occasionally arsenopyrite. Mine drainage and leachates from spoil heaps exhibit in some cases acidic conditions and high As contents, and they are incorporated to Caudal River tributaries. Multivariate statistical analysis aids to the interpretation of the spatial and temporary variations found in the sampled areas, as part of a methodology applicable to different environmental and geological studies. 2009 Elsevier B.V. All rights reserved.

  3. Investigation of the application of remote sensing technology to environmental monitoring

    NASA Technical Reports Server (NTRS)

    Rader, M. L. (Principal Investigator)

    1980-01-01

    Activities and results are reported of a project to investigate the application of remote sensing technology developed for the LACIE, AgRISTARS, Forestry and other NASA remote sensing projects for the environmental monitoring of strip mining, industrial pollution, and acid rain. Following a remote sensing workshop for EPA personnel, the EOD clustering algorithm CLASSY was selected for evaluation by EPA as a possible candidate technology. LANDSAT data acquired for a North Dakota test sight was clustered in order to compare CLASSY with other algorithms.

  4. Dynamics of actual aggregation of petroleum products in snow cover

    NASA Astrophysics Data System (ADS)

    Begunova, L. A.; Kuznetsova, O. V.; Begunov, D. A.; Kuznetsova, A. N.

    2017-11-01

    The paper presents issues of snow cover pollution by petroleum products. Petroleum products content was determined using the fluorimetric method of analysis. The samples of snow were selected on the territory of Angarsk and Irkutsk cities. According to the obtained data, the content of petroleum products in the analyzed samples exceeds the background value up to 6 times. Analysis of the reference data for similar research confirms need for creation of an environmental monitoring centralized system to monitor atmospheric precipitation and, particularly, snow cover.

  5. SEASONAL AND REGIONAL AIR QUALITY AND ATMOSPHERIC DEPOSITION IN THE EASTERN US

    EPA Science Inventory

    Dry concentration and dry and wet deposition of selected air pollutants monitored over two 5-year periods in the 1990s at or near 34 rural Clean Air Status and Trends Network (CASTNET) sites located in the eastern US are adjusted for known biases, composed into seasonal values, a...

  6. Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection

    PubMed Central

    Elia, Angela; Di Franco, Cinzia; Lugarà, Pietro Mario; Scamarcio, Gaetano

    2006-01-01

    Various applications, such as pollution monitoring, toxic-gas detection, non invasive medical diagnostics and industrial process control, require sensitive and selective detection of gas traces with concentrations in the parts in 109 (ppb) and sub-ppb range. The recent development of quantum-cascade lasers (QCLs) has given a new aspect to infrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLs are attractive spectroscopic sources because of their excellent properties in terms of narrow linewidth, average power and room temperature operation. In combination with these laser sources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity, compact sensor platform, fast time-response and user friendly operation. This paper reports recent developments on quantum cascade laser-based photoacoustic spectroscopy for trace gas detection. In particular, different applications of a photoacoustic trace gas sensor employing a longitudinal resonant cell with a detection limit on the order of hundred ppb of ozone and ammonia are discussed. We also report two QC laser-based photoacoustic sensors for the detection of nitric oxide, for environmental pollution monitoring and medical diagnostics, and hexamethyldisilazane, for applications in semiconductor manufacturing process.

  7. Multiband infrared inversion for low-concentration methane monitoring in a confined dust-polluted atmosphere.

    PubMed

    Wang, Wenzheng; Wang, Yanming; Song, Wujun; Li, Xueqin

    2017-03-20

    A multiband infrared diagnostic (MBID) method for methane emission monitoring in limited underground environments was presented considering the strong optical background of gas/solid attenuation. Based on spatial distribution of aerosols and complex refractive index of dust particles, forward calculations were carried out with/without methane to obtain the spectral transmittance through the participating atmosphere in a mine roadway. Considering the concurrent attenuation and absorption behavior of dust and gases, four infrared wavebands were selected to retrieve the methane concentration combined with a stochastic particle swarm optimization (SPSO) algorithm. Inversion results prove that the presented MBID method is robust and effective in identifying methane at concentrations of 0.1% or even lower with inversed relative error within 10%. Further analyses illustrate that the four selected wavebands are indispensable, and the MBID method is still valid with transmission signal disturbance in a conventional dust-polluted atmosphere under mechanized mining condition. However, the effective detection distance should be limited within 50 m to ensure inversed relative error less than 5% at 1% methane concentration.

  8. Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water.

    PubMed

    Neale, Peta A; Altenburger, Rolf; Aït-Aïssa, Selim; Brion, François; Busch, Wibke; de Aragão Umbuzeiro, Gisela; Denison, Michael S; Du Pasquier, David; Hilscherová, Klára; Hollert, Henner; Morales, Daniel A; Novák, Jiří; Schlichting, Rita; Seiler, Thomas-Benjamin; Serra, Helene; Shao, Ying; Tindall, Andrew J; Tollefsen, Knut Erik; Williams, Timothy D; Escher, Beate I

    2017-10-15

    Surface waters can contain a diverse range of organic pollutants, including pesticides, pharmaceuticals and industrial compounds. While bioassays have been used for water quality monitoring, there is limited knowledge regarding the effects of individual micropollutants and their relationship to the overall mixture effect in water samples. In this study, a battery of in vitro bioassays based on human and fish cell lines and whole organism assays using bacteria, algae, daphnids and fish embryos was assembled for use in water quality monitoring. The selection of bioassays was guided by the principles of adverse outcome pathways in order to cover relevant steps in toxicity pathways known to be triggered by environmental water samples. The effects of 34 water pollutants, which were selected based on hazard quotients, available environmental quality standards and mode of action information, were fingerprinted in the bioassay test battery. There was a relatively good agreement between the experimental results and available literature effect data. The majority of the chemicals were active in the assays indicative of apical effects, while fewer chemicals had a response in the specific reporter gene assays, but these effects were typically triggered at lower concentrations. The single chemical effect data were used to improve published mixture toxicity modeling of water samples from the Danube River. While there was a slight increase in the fraction of the bioanalytical equivalents explained for the Danube River samples, for some endpoints less than 1% of the observed effect could be explained by the studied chemicals. The new mixture models essentially confirmed previous findings from many studies monitoring water quality using both chemical analysis and bioanalytical tools. In short, our results indicate that many more chemicals contribute to the biological effect than those that are typically quantified by chemical monitoring programs or those regulated by environmental quality standards. This study not only demonstrates the utility of fingerprinting single chemicals for an improved understanding of the biological effect of pollutants, but also highlights the need to apply bioassays for water quality monitoring in order to prevent underestimation of the overall biological effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    NASA Astrophysics Data System (ADS)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  10. A novel approach to water polution monitoring by combining ion exchange resin and XRF-scanning technique

    NASA Astrophysics Data System (ADS)

    Huang, J. J.; Lin, S. C.; Löwemark, L.; Liou, Y. H.; Chang, Q. M.; Chang, T. K.; Wei, K. Y.; Croudace, I. W. C.

    2017-12-01

    Due to the rapid industrial expansion, environments are subject to irregular fluctuations and spatial distributions in pollutant concentrations. This study proposes to use ion exchange resin accompanied with the XRF-scanning technique to monitor environmental pollution. As a passive sampling sorbent, the use of ion exchange resin provides a rapid, low cost and simple method to detect episodic pollution signals with a high spatial sampling density. In order to digest large quantities of samples, the fast and non-destructive Itrax-XRF core scanner has been introduced to assess elemental concentrations in the resin samples. Although the XRF scanning results are often considered as a semi-quantitative measurement due to possible absorption or scattering caused by the physical variabilities of scanned materials, the use of resin can minimize such influences owing to the standarization of the sample matrix. In this study, 17 lab-prepared standard resin samples were scanned with the Itrax-XRF core scanner (at 100 s exposure time with the Mo-tube) and compared with the absolute elemental concentrations. Six elements generally used in pollution studies (Cr, Mn, Ni, Cu, Zn, and Pb) were selected, and their regression lines and correlation coefficients were determined. In addition, 5 standard resin samples were scanned at different exposure time settings (1 s, 5 s, 15 s, 30 s, 100 s) to address the influence of exposure time on the accuracy of the measurements. The results show that within the test range (from few ppm to thousands ppm), the correlation coefficients are higher than 0.97, even at the shortest exposure time (1 s). Furthermore, a pilot field survey with 30 resin samples has been conducted in a potentially polluted farm area in central Taiwan to demonstrate the feasibility of this novel approach. The polluted hot zones could be identified and the properties and sources of wastewater pollution can therefore be traced over large areas for the purposes of environmental monitoring and environmental forensics.

  11. Large-scale monitoring of air pollution in remote and ecologically important areas

    Treesearch

    Andrzej Bytnerowicz; Witold Fraczek

    2013-01-01

    New advances in air quality monitoring techniques, such as passive samplers for nitrogenous (N) or sulphurous (S) pollutants and ozone (O3), have allowed for an improved understanding of concentrations of these pollutants in remote areas. Mountains create special problems with regard to the feasibility of establishing and maintaining air pollution monitoring networks,...

  12. Geohydrology of the Antelope Valley Area, California and design for a ground-water-quality monitoring network

    USGS Publications Warehouse

    Duell, L.F.

    1987-01-01

    A basinwide ideal network and an actual network were designed to identify ambient groundwater quality, trends in groundwater quality, and degree of threat from potential pollution sources in Antelope Valley, California. In general, throughout the valley groundwater quality has remained unchanged, and no specific trends are apparent. The main source of groundwater for the valley is generally suitable for domestic, irrigation, and most industrial uses. Water quality data for selected constituents of some network wells and surface-water sites are presented. The ideal network of 77 sites was selected on the basis of site-specific criteria, geohydrology, and current land use (agricultural, residential, and industrial). These sites were used as a guide in the design of the actual network consisting of 44 existing wells. Wells are currently being monitored and were selected whenever possible because of budgetary constraints. Of the remaining ideal sites, 20 have existing wells not part of a current water quality network, and 13 are locations where no wells exist. The methodology used for the selection of sites, constituents monitored, and frequency of analysis will enable network users to make appropriate future changes to the monitoring network. (USGS)

  13. A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria.

    PubMed

    Baloye, David O; Palamuleni, Lobina G

    2015-09-29

    Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies.

  14. A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria

    PubMed Central

    Baloye, David O.; Palamuleni, Lobina G.

    2015-01-01

    Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies. PMID:26426033

  15. Selected stormwater priority pollutants: a European perspective.

    PubMed

    Eriksson, E; Baun, A; Scholes, L; Ledin, A; Ahlman, S; Revitt, M; Noutsopoulos, C; Mikkelsen, P S

    2007-09-20

    The chemical characteristics of stormwater are dependent on the nature of surfaces (roads, roofs etc.) with which it comes into contact during the runoff process as well as natural processes and anthropogenic activities in the catchments. The different types of pollutants may cause problems during utilisation, detention or discharge of stormwater to the environment and may pose specific demands to decentralised treatment. This paper proposes a scientifically justifiable list of selected stormwater priority pollutants (SSPP) to be used, e.g., for evaluation of the chemical risks occurring in different handling strategies. The SSPP-list consists of 25 pollutant parameters including eight of the priority pollutants currently identified in the European Water Framework Directive. It contains general water quality parameters (organic and suspended matter, nutrients and pH); metals (Cd, Cr, Cu, Ni, Pb, Pt and Zn); PAH (naphthalene, pyrene and benzo[a]pyrene); herbicides (pendimethalin, phenmedipham, glyphosate and terbutylazine); and other representative industrially derived compounds (nonylphenol ethoxylates, pentachlorophenol, di(2-ethylhexyl)phthalate, PCB-28 and methyl tert-butyl ether). Tools for flux modelling, enabling calculation of predicted environmental concentrations (PECs), and for ranking the susceptibility of a pollutant to removal within a range of structural stormwater treatment systems or best management practices (BMPs) have been developed, but further work is required to allow all SSPPs to be addressed in the development of future stormwater pollution control measures. In addition, the identified SSPPs should be considered for inclusion in stormwater related monitoring campaigns.

  16. Aircraft versus spacecraft for remote monitoring of water quality in U.S. coastal zones

    NASA Technical Reports Server (NTRS)

    Darnell, W. L.

    1977-01-01

    To provide guidance for conducting future water monitoring missions over U.S. coasts, aircraft and spacecraft approaches were defined and quantitatively compared. Sensors, aircraft and spacecraft were selected from current or developmental types for the hardware concepts and monitoring was assumed to begin in 1981-1983. Comparative data are presented on capabilities and costs to monitor both recognized pollution sites and broad shelf areas. For these mission requirements, a large fleet of light aircraft provided better coverage and at lower costs generally than one spacecraft, assuming a single, multi-spectral sensor on each platform. This result could change, however, should additional useful sensors with low cost penalties be found for the spacecraft.

  17. Modelling the photochemical pollution over the metropolitan area of Porto Alegre, Brazil

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Monteiro, A.; Ferreira, J.; Moraes, M. R.; Carvalho, A.; Ribeiro, I.; Miranda, A. I.; Moreira, D. M.

    2010-01-01

    The main purpose of this study is to evaluate the photochemical pollution over the Metropolitan Area of Porto Alegre (MAPA), Brazil, where high concentrations of ozone have been registered during the past years. Due to the restricted spatial coverage of the monitoring air quality network, a numerical modelling technique was selected and applied to this assessment exercise. Two different chemistry-transport models - CAMx and CALGRID - were applied for a summer period, driven by the MM5 meteorological model. The meteorological model performance was evaluated comparing its results to available monitoring data measured at the Porto Alegre airport. Validation results point out a good model performance. It was not possible to evaluate the chemistry models performance due to the lack of adequate monitoring data. Nevertheless, the model intercomparison between CAMx and CALGRID shows a similar behaviour in what concerns the simulation of nitrogen dioxide, but some discrepancies concerning ozone. Regarding the fulfilment of the Brazilian air quality targets, the simulated ozone concentrations surpass the legislated value in specific periods, mainly outside the urban area of Porto Alegre. The ozone formation is influenced by the emission of pollutants that act as precursors (like the nitrogen oxides emitted at Porto Alegre urban area and coming from a large refinery complex) and by the meteorological conditions.

  18. Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain

    PubMed Central

    2014-01-01

    Background Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. Methods We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. Results During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Conclusions Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling. PMID:24735818

  19. Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain.

    PubMed

    Shmool, Jessie Lc; Michanowicz, Drew R; Cambal, Leah; Tunno, Brett; Howell, Jeffery; Gillooly, Sara; Roper, Courtney; Tripathy, Sheila; Chubb, Lauren G; Eisl, Holger M; Gorczynski, John E; Holguin, Fernando E; Shields, Kyra Naumoff; Clougherty, Jane E

    2014-04-16

    Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling.

  20. Tropospheric emissions: Monitoring of pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; Janz, S. J.; Andraschko, M. R.; Arola, A.; Baker, B. D.; Canova, B. P.; Chan Miller, C.; Cohen, R. C.; Davis, J. E.; Dussault, M. E.; Edwards, D. P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J. R.; Houck, J.; Jacob, D. J.; Joiner, J.; Kerridge, B. J.; Kim, J.; Krotkov, N. A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R. V.; McElroy, C. T.; McLinden, C.; Natraj, V.; Neil, D. O.; Nowlan, C. R.; O`Sullivan, E. J.; Palmer, P. I.; Pierce, R. B.; Pippin, M. R.; Saiz-Lopez, A.; Spurr, R. J. D.; Szykman, J. J.; Torres, O.; Veefkind, J. P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K.

    2017-01-01

    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution ( 2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

  1. Tunable Polarity Carbon Fibers, a Holistic Approach to Environmental Protection.

    PubMed

    García-Valverde, M Teresa; Ledesma-Escobar, Carlos A; Lucena, Rafael; Cárdenas, Soledad

    2018-04-27

    The pollution of environmental resources is an issue of social concern worldwide. Chemistry is essential for the design of decontamination strategies and analytical approaches to detect and monitor the contamination. Sorptive materials are usually required in both approaches and green synthesis should be used to minimize their own environmental impact. Carbon fibers (CFs) obtained by the pyrolysis of natural cellulose-rich materials fulfill these requirements. In this article, thirty CFs obtained under different conditions are chemically characterized and their sorption ability towards selected pollutants, covering a wide range of polarity, is evaluated. This study provides more profound knowledge related to the polarity of these materials, their interactions with chemical substances and allows the prediction of more appropriate materials (pyrolysis temperature and time) in order to remove the given pollutant. Furthermore, the use of CFs as sorptive materials for the extraction of contaminants from water samples to assist with their instrumental detection is outlined. In this sense, the use of CFs and gas chromatography with mass spectrometric detection allows the detection of selected pollutants in the low ng/mL range. Thus, this article provides an integrated approach to the potential of CFs for environmental protection.

  2. 40 CFR 63.9634 - How do I demonstrate continuous compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... selected for initial performance testing and defined within a group of similar emission units in accordance... similar air pollution control device applied to each similar emission unit within a defined group using... emission units within group “k”; Pi = Daily average parametric monitoring parameter value corresponding to...

  3. 40 CFR 63.9634 - How do I demonstrate continuous compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... selected for initial performance testing and defined within a group of similar emission units in accordance... similar air pollution control device applied to each similar emission unit within a defined group using... emission units within group “k”; Pi = Daily average parametric monitoring parameter value corresponding to...

  4. Distribution of persistent organic pollutants (POPS) IN wild Bluefin tuna (Thunnus thynnus) from different FAO capture zones.

    PubMed

    Chiesa, L M; Labella, G F; Panseri, S; Pavlovic, R; Bonacci, S; Arioli, F

    2016-06-01

    Residues of environmental contaminants in food represent a concern in food safety programs. In this study, the distribution of persistent organic pollutants (POPs) were evaluated in 79 tuna samples from FAO areas 51 (Indian Ocean), 71 (Pacific Ocean), 34 (Atlantic Ocean), and 37 (Mediterranean Sea). 6 polychlorinated biphenyls (PCBs), 16 organochlorines (OCs) and 7 polybrominated biphenyl ethers (PBDEs) were selected as representative compounds according to EFSA POPs monitoring guidelines. An analytical method, based on Accelerated Solvent Extraction (ASE), with an "in-line" clean-up step and GC-MS/MS detection, was developed, validated and applied. PCBs were detected in all FAO areas, with a prevalence of 100% for most of them. In the FAO area 37, only, all PBDEs were detected. Only 5 OCs were detected. The results showed that POPs contamination of tuna reflects FAO area contamination; in particular FAO area 37 was the most polluted. Moreover, tuna muscle was an appropriate matrix for monitoring contamination and for obtaining information about food safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  6. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  7. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  8. Tropospheric emissions: monitoring of pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David E.; Al-Saadi, Jassim; Janz, Scott J.

    2013-09-01

    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch circa 2018. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2 km N/S×4.5 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with European Sentinel-4 and Korean GEMS.

  9. Water resources by orbital remote sensing: Examples of applications

    NASA Technical Reports Server (NTRS)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  10. Assessment of the impacts of vehicular pollution on urban air quality.

    PubMed

    Ghose, Mrinal K; Paul, R; Banerjee, S K

    2004-01-01

    Air quality crisis in cities is mainly due to vehicular emissions. Owing to the expanding economic base Indian cities are growing at a faster rate. Transportation systems are increasing everywhere and the improved technology is insufficient to counteract growth. The effect of vehicular emission on urban air quality and human health has been described. A survey has been conducted in an Indian mega city to evaluate the status of air pollution at traffic intersections and the unique problem arising out of vehicular emissions in the study area has been narrated. Approach for the selection of the air monitoring stations, methodology adopted for data collection and the results have been discussed. Vulnerability analysis (VA) has been carried out to identify the zones at what pollution stress. Options for reducing mobile source emission have been discussed and a strategic air quality management plan has been proposed to mitigate the air pollution in the city.

  11. Measurement of Light Pollution of Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Son Hosseini, S.; Nasiri, S.

    2006-08-01

    The problem of Light pollution became important mainly since 1960, by growth of urban development and using more artificial lights and lamps at the nighttimes. Optical telescopes share the same range of wavelengths as are used to provide illumination of roadways, buildings and automobiles. The light glow that emanates from man made pollution will scatter off the atmosphere and affects the images taken by the observatory instruments. A method of estimating the night sky brightness produced by a city of known population and distance is useful in site testing of the new observatories, as well as in studying the likely future deterioration of existing sites. Now with planning the Iranian National Observatory that will house a 2-meter telescope and on the way of the site selection project, studying the light pollution is propounded in Iran. Thus, we need a site with the least light pollution, beside other parameters, i.e. seeing, meteorological, geophysical and local parameters. The seeing parameter is being measured in our 4 preliminary selected sites at Qom, Kashan, Kerman and Birjand since 2 years ago using an out of focus Differential Image Motion Monitor. These sites are selected among 33 candidate sites by studying the meteorological data obtained from the local synoptic stations and the Meteosat. We use the Walker's law to estimate the Sky glow of these sites having the population and the distances of the nearby regions. The results are corrected by the methods introduced by Treanor and Berry using the atmospheric extinction coefficients. The data obtained using an 11 inch telescope with a ST7 CCD camera for above sites are consistent with the estimated values of the light pollution mentioned above.

  12. Sophisticated Clean Air Strategies Required to Mitigate Against Particulate Organic Pollution

    PubMed Central

    Grigas, T.; Ovadnevaite, J.; Ceburnis, D.; Moran, E.; McGovern, F. M.; Jennings, S. G.; O’Dowd, C.

    2017-01-01

    Since the 1980’s, measures mitigating the impact of transboundary air pollution have been implemented successfully as evidenced in the 1980–2014 record of atmospheric sulphur pollution over the NE-Atlantic, a key region for monitoring background northern-hemisphere pollution levels. The record reveals a 72–79% reduction in annual-average airborne sulphur pollution (SO4 and SO2, respectively) over the 35-year period. The NE-Atlantic, as observed from the Mace Head research station on the Irish coast, can be considered clean for 64% of the time during which sulphate dominates PM1 levels, contributing 42% of the mass, and for the remainder of the time, under polluted conditions, a carbonaceous (organic matter and Black Carbon) aerosol prevails, contributing 60% to 90% of the PM1 mass and exhibiting a trend whereby its contribution increases with increasing pollution levels. The carbonaceous aerosol is known to be diverse in source and nature and requires sophisticated air pollution policies underpinned by sophisticated characterisation and source apportionment capabilities to inform selective emissions-reduction strategies. Inauspiciously, however, this carbonaceous concoction is not measured in regulatory Air Quality networks. PMID:28303958

  13. Joint Conference on Sensing of Environmental Pollutants, 4th, New Orleans, La., November 6-11, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Papers are presented on such topics as environmental chemistry, the effects of sulfur compounds on air quality, the prediction and monitoring of biological effects caused by environmental pollutants, environmental indicators, the satellite remote sensing of air pollution, weather and climate modification by pollution, and the monitoring and assessment of radioactive pollutants. Consideration is also given to empirical and quantitative modeling of air quality, disposal of hazardous and nontoxic materials, sensing and assessment of water quality, pollution source monitoring, and assessment of some environmental impacts of fossil and nuclear fuels.

  14. Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of partic...

  15. The economic impact of remote sensing data as the source of nonpoint pollution monitoring and control

    NASA Technical Reports Server (NTRS)

    Miller, W. L.

    1974-01-01

    Nonpoint pollution of streams with sediment as a result of runoff from alternative uses of land has become a socially unacceptable product of economic activity. This report describes a research approach to economically achieve correction of the nonpoint pollution problem. The research approach integrates the economic model with those data which may be obtainable from remotely sensed sources. The economic problem involves measurement of the direct benefits and costs associated with the changes in land management activities necessary to reduce the level of nonpoint pollution. Remotely sensed data from ERTS-1 may provide some of the information required for the economic model which indicates efficient solutions to the nonpoint pollution problem. Three classes of data (i.e., soil categories, vegetative cover, and water turbidity) have the potential to be measured by ERTS-1 systems. There is substantial research which indicates the ability of ERTS-1 to measure these classes of data under selected conditions.

  16. Multispectral imaging of aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  17. Ecological health monitoring of the Mekong River by using benthic algae in 2003-2004

    NASA Astrophysics Data System (ADS)

    Kunpradid, T.

    2005-05-01

    The monitoring of ecological health of the Mekong River by using benthic algae was carried out from 2003 - 2004. Thirty sampling sites along the Mekong River and its tributaries were selected in Laos, Thailand, Cambodia and Veitnam. In this investigation, the distribution of some species of benthic algae in different environments revealed that there was a significant relationship in the presence of them to the water quality, and these species could be used as a potential biomonitor of water quality in the Mekong River. One hundred and eighty six species of benthic diatoms and 46 species of macroalgae were found. Some dominant species of benthic algae could be used as biomonitors to assess water quality. Hydrodictyon recticulatum and Microspora floccosa and indicated clean-moderate water quality; Audouinella cylindrica, Cladophora glomerata, Achnanthes inflate and Cymbella turgidula indicated moderate water quality; Stigeoclonium flagelliforum, Aulacoseira granulata and Cymbella tumida indicated moderate-polluted water quality and Caloglossa leprieurii, Gomphonema parvulum and Nitzschia clausii indicated polluted water quality. The ecological health assessment of the Mekong River by using the species of benthic algae as biomonitors reveled that in the upstream and tributaries revealed moderate water quality. In contrast, some sites in the lower Mekong showed moderate-polluted to polluted water quality.

  18. Characteristics and applications of small, portable gaseous air pollution monitors.

    PubMed

    McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K

    2017-04-01

    Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed or acknowledged for the given use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...

  20. Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing a Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...

  1. 40 CFR 63.6655 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment) or the air pollution control and monitoring equipment. (3) Records of performance tests and... on the air pollution control and monitoring equipment. (5) Records of actions taken during periods of... malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of...

  2. 40 CFR 63.6655 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment) or the air pollution control and monitoring equipment. (3) Records of performance tests and... on the air pollution control and monitoring equipment. (5) Records of actions taken during periods of... malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of...

  3. Comparison of remote sensing and fixed-site monitoring approaches for examining air pollution and health in a national study population

    NASA Astrophysics Data System (ADS)

    Prud'homme, Genevieve; Dobbin, Nina A.; Sun, Liu; Burnett, Richard T.; Martin, Randall V.; Davidson, Andrew; Cakmak, Sabit; Villeneuve, Paul J.; Lamsal, Lok N.; van Donkelaar, Aaron; Peters, Paul A.; Johnson, Markey

    2013-12-01

    Satellite remote sensing (RS) has emerged as a cutting edge approach for estimating ground level ambient air pollution. Previous studies have reported a high correlation between ground level PM2.5 and NO2 estimated by RS and measurements collected at regulatory monitoring sites. The current study examined associations between air pollution and adverse respiratory and allergic health outcomes using multi-year averages of NO2 and PM2.5 from RS and from regulatory monitoring. RS estimates were derived using satellite measurements from OMI, MODIS, and MISR instruments. Regulatory monitoring data were obtained from Canada's National Air Pollution Surveillance Network. Self-reported prevalence of doctor-diagnosed asthma, current asthma, allergies, and chronic bronchitis were obtained from the Canadian Community Health Survey (a national sample of individuals 12 years of age and older). Multi-year ambient pollutant averages were assigned to each study participant based on their six digit postal code at the time of health survey, and were used as a marker for long-term exposure to air pollution. RS derived estimates of NO2 and PM2.5 were associated with 6-10% increases in respiratory and allergic health outcomes per interquartile range (3.97 μg m-3 for PM2.5 and 1.03 ppb for NO2) among adults (aged 20-64) in the national study population. Risk estimates for air pollution and respiratory/allergic health outcomes based on RS were similar to risk estimates based on regulatory monitoring for areas where regulatory monitoring data were available (within 40 km of a regulatory monitoring station). RS derived estimates of air pollution were also associated with adverse health outcomes among participants residing outside the catchment area of the regulatory monitoring network (p < 0.05). The consistency between risk estimates based on RS and regulatory monitoring as well as the associations between air pollution and health among participants living outside the catchment area for regulatory monitoring suggest that RS can provide useful estimates of long-term ambient air pollution in epidemiologic studies. This is particularly important in rural communities and other areas where monitoring and modeled air pollution data are limited or unavailable.

  4. Environment quality monitoring using ARM processor

    NASA Astrophysics Data System (ADS)

    Vinaya, C. H.; Krishna Thanikanti, Vamsi; Ramasamy, Sudha

    2017-11-01

    This paper of air quality monitoring system describes a model of sensors network to continuously monitoring the environment with low cost developed model. At present time all over the world turned into a great revolution in industrial domain and on the other hand environment get polluting in a dangerous value. There are so many technologies present to reduce the polluting contents but still there is no completely reduction of that pollution. Even there are different methods to monitor the pollution content; these are much costly that not everyone can adapt those methods or devices. Now we are proposing a sensors connected network to monitor the environment continuously and displaying the pollutant gases percentage in air surroundings and can transmit the results to our mobiles by message. The advantage of this system is easy to design, establish at area to monitor, maintenance and most cost effective as well.

  5. Assessing community exposure to hazardous air pollutants by combining optical remote sensing and "low-cost" sensor technologies

    NASA Astrophysics Data System (ADS)

    Pikelnaya, O.; Polidori, A.; Wimmer, R.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Andersson, P.; Brohede, S.; Izos, O.

    2017-12-01

    Industrial facilities such as refineries and oil processing facilities can be sources of chemicals adversely affecting human health, for example aromatic hydrocarbons and formaldehyde. In an urban setting, such as the South Coast Air Basin (SCAB), exposure to harmful air pollutants (HAP's) for residents of communities neighboring such facilities is of serious concern. Traditionally, exposure assessments are performed by modeling a community exposure using emission inventories and data collected at fixed air monitoring sites. However, recent field measurements found that emission inventories may underestimate HAP emissions from refineries; and HAP measurements data from fixed sites is lacking spatial resolution; as a result, the impact of HAP emissions on communities is highly uncertain. The next generation air monitoring technologies can help address these challenges. For example, dense "low-cost" sensors allow continuous monitoring of concentrations of pollutants within communities with high temporal- and spatial- resolution, and optical remote sensing (ORS) technologies offer measurements of emission fluxes and real-time ground-concentration mapping of HAPs. South Coast Air Quality Management District (SCAQMD) is currently conducting a multi-year study using ORS methods and "low-cost" Volatile Organic Compounds (VOCs) sensors to monitor HAP emissions from selected industrial facilities in the SCAB and their ambient concentrations in neighboring communities. For this purpose, quarterly mobile ORS surveys are conducted to quantify facility-wide emissions for VOCs, aromatic hydrocarbons and HCHO, and to collect ground-concentration profiles of these pollutants inside neighboring communities. Additionally, "low-cost" sensor nodes for deployment in neighborhood(s) downwind of the facilities have been developed in order to obtain long-term, granular data on neighborhood VOC concentrations, During this presentation we will discuss initial results of quarterly ORS surveys and pilot "low-cost" sensor deployments. We will also outline benefits of using a combination of mobile ORS surveys and "low-cost" sensor networks for community exposure monitoring.

  6. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment.

    PubMed

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. Copyright © 2015. Published by Elsevier B.V.

  7. Non-target screening analyses of organic contaminants in river systems as a base for monitoring measures

    NASA Astrophysics Data System (ADS)

    Schwarzbauer, J.

    2009-04-01

    Organic contaminants discharged to the aquatic environment exhibit a high diversity with respect to their molecular structures and the resulting physico-chemical properties. The chemical analysis of anthropogenic contamination in river systems is still an important feature, especially with respect to (i) the identification and structure elucidation of novel contaminants, (ii) to the characterisation of their environmental behaviour and (iii) to their risk for natural systems. A huge proportion of riverine contamination is caused by low-molecular weight organic compounds, like pesticides plasticizers, pharmaceuticals, personal care products, technical additives etc. Some of them, like PCB or PAH have already been investigated thoroughly and, consequently, their behaviour in aqueous systems is very well described. Although analyses on organic substances in river water traditionally focused on selected pollutants, in particular on common priority pollutants which are monitored routinely, the occurrence of further contaminants, e.g. pharmaceuticals, personal care products or chelating agents has received increasing attention within the last decade. Accompanied, screening analyses revealing an enormous diversity of low-molecular weight organic contaminants in waste water effluents and river water become more and more noticed. Since many of these substances have been rarely noticed so far, it will be an important task for the future to study their occurrence and fate in natural environments. Further on, it should be a main issue of environmental studies to provide a comprehensive view on the state of pollution of river water, in particular with respect to lipophilic low molecular weight organic contaminants. However, such non-target-screening analyses has been performed only rarely in the past. Hence, we applied extended non-target screening analyses on longitudinal sections of the rivers Rhine, Rur and Lippe (Germany) on the base of GC/MS analyses. The investigations revealed complex pattern of anthropogenic contaminants comprising a lot of still unnoticed pollutants (e.g. specific sulfones, trifluoromethyl substituted substances, nitrogen heterocycles etc.) or still unidentified compounds (such as selected brominated aromatics) of obviously high environmental relevance. In this presentation, a selection of several different contaminants will be discussed in detail comprising their emission sources, their emission behaviour, their fate within the river water bodies and in particular their structural properties. Generally. this investigation demonstrated the need to expand our analytical focus on a broader spectrum of organic contaminants, in particular to build up an adapted base for advanced monitoring studies.

  8. A study to identify and compare airborne systems for in-situ measurements of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Thomas, T. J.; Chace, A. S.

    1974-01-01

    An in-situ system for monitoring the concentration of HCl, CO, CO2, and Al2O3 in the cloud of reaction products that form as a result of a launch of solid propellant launch vehicle is studied. A wide array of instrumentation and platforms are reviewed to yield the recommended system. An airborne system suited to monitoring pollution concentrations over urban areas for the purpose of calibrating remote sensors is then selected using a similar methodology to yield the optimal configuration.

  9. Assessment of oxidative stress indices in a marine macro brown alga Padina tetrastromatica (Hauck) from comparable polluted coastal regions of the Arabian Sea, west coast of India.

    PubMed

    Maharana, Dusmant; Jena, Karmabeer; Pise, Navnath M; Jagtap, Tanaji G

    2010-01-01

    Oxidative stress and antioxidant defence systems were assessed in a marine brown alga Padina tetrastromatica, commonly occurring from the tropics. Lipid peroxidation (LPX) and H2O2 were measured as oxidative stress markers, and antioxidant defences were measured as catalase (CAT), glutathione S-transferase (GST) and ascorbic acid (AsA), in order to understand their dissimilarity with respect to pollution levels from selective locations along the central west coast of India. A significant increased levels of LPX, H2O2, CAT and GST were observed in samples from relatively polluted localities (Colaba and Karwar) when compared to less polluted locality (Anjuna), while AsA concentration was higher in algal samples from worst polluted region of Colaba. Heavy metals such as Cd and Pb were also higher in the vicinity of polluted areas compared to reference area. Variation of oxidative stress indices in response to accumulation of heavy metals within P. tetrastromatica could be used as molecular biomarkers in assessment and monitoring environmental quality of ecologically sensitive marine habitats.

  10. Screening of organic pollutants in pet hair samples and the significance of environmental factors.

    PubMed

    González-Gómez, Xiana; Cambeiro-Pérez, Noelia; Martínez-Carballo, Elena; Simal-Gándara, Jesús

    2018-06-01

    Organic pollutants (OPs) represent a wide range of chemicals that are potentially harmful for human and wildlife health. Many of these pollutants have been identified as endocrine disruptors that can alter hormonal balance producing adverse biological effects such as neurotoxicity, reproductive disorders, carcinogenicity and hepatotoxicity. For years, hair has been selected as a non-invasive source to assess levels of animal contamination. In the present study, a multiclass screening method for determining about 60 organic pollutants in pet hair was designed and validated for qualitative and quantitative purposes. Concentrations from different classes of organochlorine, and organophosphate pesticides (OCPs, and OPPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (NDL-PCBs and DL-PCBs), polybrominated diphenyl ethers (PBDEs) and organophosphate esters (OPEs) were identified in the selected pet hair samples from Ourense (NW, Spain). We detected most of these pollutants in the selected hair pets. The mean concentrations found ranged from 89 to 6556ng/g for OPEs, from 8.6 to 1031ng/g for PAHs, from 8.6 to 256ng/g for PBDEs, from 29 to 184ng/g for OPPs, from 0.29 to 139 for OCPs, from 0.30 to 59ng/g for NDL-PCBs and from 1.2 to 14ng/g for DL-PCBs. To our knowledge, this is the first study to document the presence of OPs in pets from North-West Spain and it could provide baseline information for future monitoring of OPs in the area. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Accumulation and potential health effects of organohalogenated compounds in the arctic fox (Vulpes lagopus)--a review.

    PubMed

    Pedersen, Kathrine Eggers; Styrishave, Bjarne; Sonne, Christian; Dietz, Rune; Jenssen, Bjørn Munro

    2015-01-01

    This review addresses biological effects of anthropogenic organohalogenated compounds in the arctic fox (Vulpes lagopus). When considering the current levels, spatial and tissue distributions of selected organic pollutants in arctic fox subpopulations, especially the Svalbard based populations accumulate high levels. The dominating contaminant groups are the polychlorinated biphenyls (PCBs) and chlordanes (CHLs), which reach high levels in adipose tissues, adrenals and liver. Recent controlled exposure studies on domesticated arctic fox and Greenland sledge dogs, show adverse health effects associated with OC concentrations lower than those measured in free-ranging populations. This indicates that especially populations at Svalbard may be at risk of experiencing OC related effects. The arctic fox as such may be an overlooked species in the Arctic Monitoring and Assessment Programs and it would add further information about pollution in the Arctic to include this species in the monitoring program. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Characterizing the spatial variability of local and background concentration signals for air pollution at the neighbourhood scale

    NASA Astrophysics Data System (ADS)

    Shairsingh, Kerolyn K.; Jeong, Cheol-Heon; Wang, Jonathan M.; Evans, Greg J.

    2018-06-01

    Vehicle emissions represent a major source of air pollution in urban districts, producing highly variable concentrations of some pollutants within cities. The main goal of this study was to identify a deconvolving method so as to characterize variability in local, neighbourhood and regional background concentration signals. This method was validated by examining how traffic-related and non-traffic-related sources influenced the different signals. Sampling with a mobile monitoring platform was conducted across the Greater Toronto Area over a seven-day period during summer 2015. This mobile monitoring platform was equipped with instruments for measuring a wide range of pollutants at time resolutions of 1 s (ultrafine particles, black carbon) to 20 s (nitric oxide, nitrogen oxides). The monitored neighbourhoods were selected based on their land use categories (e.g. industrial, commercial, parks and residential areas). The high time-resolution data allowed pollutant concentrations to be separated into signals representing background and local concentrations. The background signals were determined using a spline of minimums; local signals were derived by subtracting the background concentration from the total concentration. Our study showed that temporal scales of 500 s and 2400 s were associated with the neighbourhood and regional background signals respectively. The percent contribution of the pollutant concentration that was attributed to local signals was highest for nitric oxide (NO) (37-95%) and lowest for ultrafine particles (9-58%); the ultrafine particles were predominantly regional (32-87%) in origin on these days. Local concentrations showed stronger associations than total concentrations with traffic intensity in a 100 m buffer (ρ:0.21-0.44). The neighbourhood scale signal also showed stronger associations with industrial facilities than the total concentrations. Given that the signals show stronger associations with different land use suggests that resolving the ambient concentrations differentiates which emission sources drive the variability in each signal. The benefit of this deconvolution method is that it may reduce exposure misclassification when coupled with predictive models.

  13. Spatial analysis and land use regression of VOCs and NO(2) from school-based urban air monitoring in Detroit/Dearborn, USA.

    PubMed

    Mukerjee, Shaibal; Smith, Luther A; Johnson, Mary M; Neas, Lucas M; Stallings, Casson A

    2009-08-01

    Passive ambient air sampling for nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) was conducted at 25 school and two compliance sites in Detroit and Dearborn, Michigan, USA during the summer of 2005. Geographic Information System (GIS) data were calculated at each of 116 schools. The 25 selected schools were monitored to assess and model intra-urban gradients of air pollutants to evaluate impact of traffic and urban emissions on pollutant levels. Schools were chosen to be statistically representative of urban land use variables such as distance to major roadways, traffic intensity around the schools, distance to nearest point sources, population density, and distance to nearest border crossing. Two approaches were used to investigate spatial variability. First, Kruskal-Wallis analyses and pairwise comparisons on data from the schools examined coarse spatial differences based on city section and distance from heavily trafficked roads. Secondly, spatial variation on a finer scale and as a response to multiple factors was evaluated through land use regression (LUR) models via multiple linear regression. For weeklong exposures, VOCs did not exhibit spatial variability by city section or distance from major roads; NO(2) was significantly elevated in a section dominated by traffic and industrial influence versus a residential section. Somewhat in contrast to coarse spatial analyses, LUR results revealed spatial gradients in NO(2) and selected VOCs across the area. The process used to select spatially representative sites for air sampling and the results of coarse and fine spatial variability of air pollutants provide insights that may guide future air quality studies in assessing intra-urban gradients.

  14. The Predatory Bird Monitoring Scheme: identifying chemical risks to top predators in Britain.

    PubMed

    Walker, Lee A; Shore, Richard F; Turk, Anthony; Pereira, M Glória; Best, Jennifer

    2008-09-01

    The Predatory Bird Monitoring Scheme (PBMS) is a long term (>40 y), UK-wide, exposure monitoring scheme that determines the concentration of selected pesticides and pollutants in the livers and eggs of predatory birds. This paper describes how the PBMS works, and in particular highlights some of the key scientific and policy drivers for monitoring contaminants in predatory birds and describes the specific aims, scope, and methods of the PBMS. We also present previously unpublished data that illustrates how the PBMS has been used to demonstrate the success of mitigation measures in reversing chemical-mediated impacts; identify and evaluate chemical threats to species of high conservation value; and finally to inform and refine monitoring methodologies. In addition, we discuss how such schemes can also address wider conservation needs.

  15. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diluent gas, document the relationship between oxygen and carbon dioxide, as specified in § 60.1255. (h... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must...

  16. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diluent gas, document the relationship between oxygen and carbon dioxide, as specified in § 60.1255. (h... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must...

  17. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diluent gas, document the relationship between oxygen and carbon dioxide, as specified in § 60.1255. (h... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must...

  18. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diluent gas, document the relationship between oxygen and carbon dioxide, as specified in § 60.1255. (h... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must...

  19. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diluent gas, document the relationship between oxygen and carbon dioxide, as specified in § 60.1255. (h... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must...

  20. Air Pollution in the World's Megacities.

    ERIC Educational Resources Information Center

    Richman, Barbara T., Ed.

    1994-01-01

    Reports findings of the Global Environment Monitoring System study concerning air pollution in the world's megacities. Discusses sources of air pollution, air pollution impacts, air quality monitoring, air quality trends, and control strategies. Provides profiles of the problem in Beijing, Los Angeles, Mexico City, India, Cairo, Sao Paulo, and…

  1. Exposure of Paris taxi drivers to automobile air pollutants within their vehicles

    PubMed Central

    Zagury, E.; Le Moullec, Y.; Momas, I.

    2000-01-01

    OBJECTIVES—To study the exposure of Parisian taxi drivers to automobile air pollutants during their professional activity.
METHODS—A cross sectional study was carried out from 27 January to 27 March 1997, with measurements performed in the vehicles of 29 randomly selected drivers. Carbon monoxide (CO) content was measured over an 8 hour period by a CO portable monitor. The fine suspended particles were measured according to the black smoke index (BS), with a flow controlled portable pump provided with a cellulose filter. The nitrogen oxides, NO and NO2 were measured with a passive sampler.
RESULTS—These drivers are exposed during their professional activity to relatively high concentrations of pollutants (mean, median (SD) 3.8, 2 (1.7) ppm for CO, 168, 164 (53) µg/m3 for BS, 625, 598 (224) µg/m3 for NO, and 139, 131 (43) µg/m3 for NO2.) For CO the concentrations were clearly lower than the threshold values recommended by the World Health Organisation. The situation is less satisfactory for the other pollutants, especially for the BS index. All concentrations of pollutants recorded were noticeably higher than concentrations in air recorded by the ambient Parisian air monitoring network and were close to, or slightly exceeded, the concentrations measured at the fixed stations close to automobile traffic. Pollutant concentrations were also influenced greatly by weather conditions.
CONCLUSION—This first French study conducted in taxi drivers shows that they are highly exposed to automobile pollutants. The results would justify a medical follow up of this occupational group.


Keywords: taxi drivers; exposure assessment PMID:10810130

  2. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-03-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian Research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, a- and g-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar as observed for Arctic samples, HCB is the predominant POP compound with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART). The POP levels determined in Troll air were compared with 1 concentrations found in earlier measurement campaigns at other Antarctic research stations from the past 18 yr. Except for HCB for which similar concentration distributions were observed in all sampling campaigns, concentrations in the recent Troll samples were lower than in samples collected during the early 1990s. These concentration reductions are obviously a direct consequence of international regulations restricting the usage of POP-like chemicals on a worldwide scale.

  3. Status of marine pollution research in South Africa (1960-present).

    PubMed

    Wepener, V; Degger, N

    2012-07-01

    The published literature on marine pollution monitoring research in South Africa from 1960 to present was evaluated. There has been a general decline in the number of papers from the 1980s and this can be linked to the absence of a marine pollution monitoring programme in South Africa. General trends observed were that contaminant exposure monitoring of metals predominates the research conducted to date. Monitoring results indicate that there has been a general decrease in metal concentrations in South African coastal waters and concentrations of metals and most organics in mussels are lower than in other industrialised nations. This is reflected in the general pristine nature and high biodiversity of the South African coastline. The establishment of a national marine pollution monitoring framework would stimulate marine pollution research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Pollution Assessment of the Biobío River (Chile): Prioritization of Substances of Concern Under an Ecotoxicological Approach.

    PubMed

    Alonso, Álvaro; Figueroa, Ricardo; Castro-Díez, Pilar

    2017-05-01

    The water demand for human activities is rapidly increasing in developing countries. Under these circumstances, preserving aquatic ecosystems should be a priority which requires the development of quality criteria. In this study we perform a preliminary prioritization of the risky substances based on reported ecotoxicological studies and guidelines for the Biobío watershed (Central Chile). Our specific aims are (1) reviewing the scientific information on the aquatic pollution of this watershed, (2) determining the presence and concentration of potential toxic substances in water, sediment and effluents, (3) searching for quality criteria developed by other countries for the selected substances and (4) prioritizing the most risky substances by means of deterministic ecotoxicological risk assessment. We found that paper and mill industries were the main sources of point pollution, while forestry and agriculture were mostly responsible for non-point pollution. The most risky organic substances in the water column were pentachlorophenol and heptachlor, while the most relevant inorganic ones were aluminum, copper, unionized ammonia and mercury. The most risky organic and inorganic substances in the sediment were phenanthrene and mercury, respectively. Our review highlights that an important effort has been done to monitor pollution in the Biobío watershed. However there are emerging pollutants and banned compounds-especially in sediments-that require to be monitored. We suggest that site-specific water quality criteria and sediment quality criteria should be developed for the Biobío watershed, considering the toxicity of mixtures of chemicals to endemic species, and the high natural background level of aluminum in the Biobío.

  5. Pollution Assessment of the Biobío River (Chile): Prioritization of Substances of Concern Under an Ecotoxicological Approach

    NASA Astrophysics Data System (ADS)

    Alonso, Álvaro; Figueroa, Ricardo; Castro-Díez, Pilar

    2017-05-01

    The water demand for human activities is rapidly increasing in developing countries. Under these circumstances, preserving aquatic ecosystems should be a priority which requires the development of quality criteria. In this study we perform a preliminary prioritization of the risky substances based on reported ecotoxicological studies and guidelines for the Biobío watershed (Central Chile). Our specific aims are (1) reviewing the scientific information on the aquatic pollution of this watershed, (2) determining the presence and concentration of potential toxic substances in water, sediment and effluents, (3) searching for quality criteria developed by other countries for the selected substances and (4) prioritizing the most risky substances by means of deterministic ecotoxicological risk assessment. We found that paper and mill industries were the main sources of point pollution, while forestry and agriculture were mostly responsible for non-point pollution. The most risky organic substances in the water column were pentachlorophenol and heptachlor, while the most relevant inorganic ones were aluminum, copper, unionized ammonia and mercury. The most risky organic and inorganic substances in the sediment were phenanthrene and mercury, respectively. Our review highlights that an important effort has been done to monitor pollution in the Biobío watershed. However there are emerging pollutants and banned compounds—especially in sediments—that require to be monitored. We suggest that site-specific water quality criteria and sediment quality criteria should be developed for the Biobío watershed, considering the toxicity of mixtures of chemicals to endemic species, and the high natural background level of aluminum in the Biobío.

  6. Micro sensor node for air pollutant monitoring: hardware and software issues.

    PubMed

    Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan

    2009-01-01

    Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems.

  7. Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study

    PubMed Central

    2013-01-01

    Background A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Cyclists, however, are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. To promote safe bicycle commuting, the City of Berkeley, California, has designated a network of residential streets as “Bicycle Boulevards.” We hypothesized that cyclist exposure to air pollution would be lower on these Bicycle Boulevards when compared to busier roads and this elevated exposure may result in reduced lung function. Methods We recruited 15 healthy adults to cycle on two routes – a low-traffic Bicycle Boulevard route and a high-traffic route. Each participant cycled on the low-traffic route once and the high-traffic route once. We mounted pollutant monitors and a global positioning system (GPS) on the bicycles. The monitors were all synced to GPS time so pollutant measurements could be spatially plotted. We measured lung function using spirometry before and after each bike ride. Results We found that fine and ultrafine particulate matter, carbon monoxide, and black carbon were all elevated on the high-traffic route compared to the low-traffic route. There were no corresponding changes in the lung function of healthy non-asthmatic study subjects. We also found that wind-speed affected pollution concentrations. Conclusions These results suggest that by selecting low-traffic Bicycle Boulevards instead of heavily trafficked roads, cyclists can reduce their exposure to vehicle-related air pollution. The lung function results indicate that elevated pollutant exposure may not have acute negative effects on healthy cyclists, but further research is necessary to determine long-term effects on a more diverse population. This study and broader field of research have the potential to encourage policy-makers and city planners to expand infrastructure to promote safe and healthy bicycle commuting. PMID:23391029

  8. Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study.

    PubMed

    Jarjour, Sarah; Jerrett, Michael; Westerdahl, Dane; de Nazelle, Audrey; Hanning, Cooper; Daly, Laura; Lipsitt, Jonah; Balmes, John

    2013-02-07

    A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Cyclists, however, are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. To promote safe bicycle commuting, the City of Berkeley, California, has designated a network of residential streets as "Bicycle Boulevards." We hypothesized that cyclist exposure to air pollution would be lower on these Bicycle Boulevards when compared to busier roads and this elevated exposure may result in reduced lung function. We recruited 15 healthy adults to cycle on two routes - a low-traffic Bicycle Boulevard route and a high-traffic route. Each participant cycled on the low-traffic route once and the high-traffic route once. We mounted pollutant monitors and a global positioning system (GPS) on the bicycles. The monitors were all synced to GPS time so pollutant measurements could be spatially plotted. We measured lung function using spirometry before and after each bike ride. We found that fine and ultrafine particulate matter, carbon monoxide, and black carbon were all elevated on the high-traffic route compared to the low-traffic route. There were no corresponding changes in the lung function of healthy non-asthmatic study subjects. We also found that wind-speed affected pollution concentrations. These results suggest that by selecting low-traffic Bicycle Boulevards instead of heavily trafficked roads, cyclists can reduce their exposure to vehicle-related air pollution. The lung function results indicate that elevated pollutant exposure may not have acute negative effects on healthy cyclists, but further research is necessary to determine long-term effects on a more diverse population. This study and broader field of research have the potential to encourage policy-makers and city planners to expand infrastructure to promote safe and healthy bicycle commuting.

  9. A conceptual ground-water-quality monitoring network for San Fernando Valley, California

    USGS Publications Warehouse

    Setmire, J.G.

    1985-01-01

    A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)

  10. IOC/WMO Workshop on Marine Pollution Monitoring (3rd, New Delhi, India, February 11-15, 1980). Summary Report. Workshop Report No. 22.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.

    Provided is a summary report of the third IOC/WMO (Intergovernmental Oceanographic Commission/World Meteorological Organization) workshop of marine pollution monitoring. Summaries are presented in nine sections, including: (1) workshop opening; (2) welcoming addresses; (3) reports on the Marine Pollution (Petroleum) Monitoring Pilot Project…

  11. National-scale exposure prediction for long-term concentrations of particulate matter and nitrogen dioxide in South Korea.

    PubMed

    Kim, Sun-Young; Song, Insang

    2017-07-01

    The limited spatial coverage of the air pollution data available from regulatory air quality monitoring networks hampers national-scale epidemiological studies of air pollution. The present study aimed to develop a national-scale exposure prediction model for estimating annual average concentrations of PM 10 and NO 2 at residences in South Korea using regulatory monitoring data for 2010. Using hourly measurements of PM 10 and NO 2 at 277 regulatory monitoring sites, we calculated the annual average concentrations at each site. We also computed 322 geographic variables in order to represent plausible local and regional pollution sources. Using these data, we developed universal kriging models, including three summary predictors estimated by partial least squares (PLS). The model performance was evaluated with fivefold cross-validation. In sensitivity analyses, we compared our approach with two alternative approaches, which added regional interactions and replaced the PLS predictors with up to ten selected variables. Finally, we predicted the annual average concentrations of PM 10 and NO 2 at 83,463 centroids of residential census output areas in South Korea to investigate the population exposure to these pollutants and to compare the exposure levels between monitored and unmonitored areas. The means of the annual average concentrations of PM 10 and NO 2 for 2010, across regulatory monitoring sites in South Korea, were 51.63 μg/m3 (SD = 8.58) and 25.64 ppb (11.05), respectively. The universal kriging exposure prediction models yielded cross-validated R 2 s of 0.45 and 0.82 for PM 10 and NO 2 , respectively. Compared to our model, the two alternative approaches gave consistent or worse performances. Population exposure levels in unmonitored areas were lower than in monitored areas. This is the first study that focused on developing a national-scale point wise exposure prediction approach in South Korea, which will allow national exposure assessments and epidemiological research to answer policy-related questions and to draw comparisons among different countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sensitive and Selective NH₃ Monitoring at Room Temperature Using ZnO Ceramic Nanofibers Decorated with Poly(styrene sulfonate).

    PubMed

    Andre, Rafaela S; Kwak, Dongwook; Dong, Qiuchen; Zhong, Wei; Correa, Daniel S; Mattoso, Luiz H C; Lei, Yu

    2018-04-01

    Ammonia (NH₃) gas is a prominent air pollutant that is frequently found in industrial and livestock production environments. Due to the importance in controlling pollution and protecting public health, the development of new platforms for sensing NH₃ at room temperature has attracted great attention. In this study, a sensitive NH₃ gas device with enhanced selectivity is developed based on zinc oxide nanofibers (ZnO NFs) decorated with poly(styrene sulfonate) (PSS) and operated at room temperature. ZnO NFs were prepared by electrospinning followed by calcination at 500 °C for 3 h. The electrospun ZnO NFs are characterized to evaluate the properties of the as-prepared sensing materials. The loading of PSS to prepare ZnO NFs/PSS composite is also optimized based on the best sensing performance. Under the optimal composition, ZnO NFs/PSS displays rapid, reversible, and sensitive response upon NH₃ exposure at room temperature. The device shows a dynamic linear range up to 100 ppm and a limit of detection of 3.22 ppm and enhanced selectivity toward NH₃ in synthetic air, against NO₂ and CO, compared to pure ZnO NFs. Additionally, a sensing mechanism is proposed to illustrate the sensing performance using ZnO NFs/PSS composite. Therefore, this study provides a simple methodology to design a sensitive platform for NH₃ monitoring at room temperature.

  13. Operational evaluation of the RLINE dispersion model for studies of traffic-related air pollutants

    NASA Astrophysics Data System (ADS)

    Milando, Chad W.; Batterman, Stuart A.

    2018-06-01

    Exposure to traffic-related air pollutants (TRAP) remains a key public health issue, and improved exposure measures are needed to support health impact and epidemiologic studies and inform regulatory responses. The recently developed Research LINE source model (RLINE), a Gaussian line source dispersion model, has been used in several epidemiologic studies of TRAP exposure, but evaluations of RLINE's performance in such applications have been limited. This study provides an operational evaluation of RLINE in which predictions of NOx, CO and PM2.5 are compared to observations at air quality monitoring stations located near high traffic roads in Detroit, MI. For CO and NOx, model performance was best at sites close to major roads, during downwind conditions, during weekdays, and during certain seasons. For PM2.5, the ability to discern local and particularly the traffic-related portion was limited, a result of high background levels, the sparseness of the monitoring network, and large uncertainties for certain processes (e.g., formation of secondary aerosols) and non-mobile sources (e.g., area, fugitive). Overall, RLINE's performance in near-road environments suggests its usefulness for estimating spatially- and temporally-resolved exposures. The study highlights considerations relevant to health impact and epidemiologic applications, including the importance of selecting appropriate pollutants, using appropriate monitoring approaches, considering prevailing wind directions during study design, and accounting for uncertainty.

  14. Comparison of Remote Sensing and Fixed-Site Monitoring Approaches for Examining Air Pollution and Health in a National Study Population

    NASA Technical Reports Server (NTRS)

    Prud'homme, Genevieve; Dobbin, Nina A.; Sun, Liu; Burnet, Richard T.; Martin, Randall V.; Davidson, Andrew; Cakmak, Sabit; Villeneuve, Paul J.; Lamsal, Lok N.; vanDonkelaar, Aaron; hide

    2013-01-01

    Satellite remote sensing (RS) has emerged as a cutting edge approach for estimating ground level ambient air pollution. Previous studies have reported a high correlation between ground level PM2.5 and NO2 estimated by RS and measurements collected at regulatory monitoring sites. The current study examined associations between air pollution and adverse respiratory and allergic health outcomes using multi-year averages of NO2 and PM2.5 from RS and from regulatory monitoring. RS estimates were derived using satellite measurements from OMI, MODIS, and MISR instruments. Regulatory monitoring data were obtained from Canada's National Air Pollution Surveillance Network. Self-reported prevalence of doctor-diagnosed asthma, current asthma, allergies, and chronic bronchitis were obtained from the Canadian Community Health Survey (a national sample of individuals 12 years of age and older). Multi-year ambient pollutant averages were assigned to each study participant based on their six digit postal code at the time of health survey, and were used as a marker for long-term exposure to air pollution. RS derived estimates of NO2 and PM2.5 were associated with 6e10% increases in respiratory and allergic health outcomes per interquartile range (3.97 mg m3 for PM2.5 and 1.03 ppb for NO2) among adults (aged 20e64) in the national study population. Risk estimates for air pollution and respiratory/ allergic health outcomes based on RS were similar to risk estimates based on regulatory monitoring for areas where regulatory monitoring data were available (within 40 km of a regulatory monitoring station). RS derived estimates of air pollution were also associated with adverse health outcomes among participants residing outside the catchment area of the regulatory monitoring network (p < 0.05).

  15. Air quality mapping using GIS and economic evaluation of health impact for Mumbai City, India.

    PubMed

    Kumar, Awkash; Gupta, Indrani; Brandt, Jørgen; Kumar, Rakesh; Dikshit, Anil Kumar; Patil, Rashmi S

    2016-05-01

    Mumbai, a highly populated city in India, has been selected for air quality mapping and assessment of health impact using monitored air quality data. Air quality monitoring networks in Mumbai are operated by National Environment Engineering Research Institute (NEERI), Maharashtra Pollution Control Board (MPCB), and Brihanmumbai Municipal Corporation (BMC). A monitoring station represents air quality at a particular location, while we need spatial variation for air quality management. Here, air quality monitored data of NEERI and BMC were spatially interpolated using various inbuilt interpolation techniques of ArcGIS. Inverse distance weighting (IDW), Kriging (spherical and Gaussian), and spline techniques have been applied for spatial interpolation for this study. The interpolated results of air pollutants sulfur dioxide (SO2), nitrogen dioxide (NO2) and suspended particulate matter (SPM) were compared with air quality data of MPCB in the same region. Comparison of results showed good agreement for predicted values using IDW and Kriging with observed data. Subsequently, health impact assessment of a ward was carried out based on total population of the ward and air quality monitored data within the ward. Finally, health cost within a ward was estimated on the basis of exposed population. This study helps to estimate the valuation of health damage due to air pollution. Operating more air quality monitoring stations for measurement of air quality is highly resource intensive in terms of time and cost. The appropriate spatial interpolation techniques can be used to estimate concentration where air quality monitoring stations are not available. Further, health impact assessment for the population of the city and estimation of economic cost of health damage due to ambient air quality can help to make rational control strategies for environmental management. The total health cost for Mumbai city for the year 2012, with a population of 12.4 million, was estimated as USD8000 million.

  16. A Pilot System for Environmental Monitoring Through Domestic Animals

    NASA Technical Reports Server (NTRS)

    Schwabe, Calvin W.; Sawyer, John; Martin, Wayne

    1971-01-01

    A pilot system for environmental monitoring is in its early phases of development in Northern California. It is based upon the existing nation wide Federal-State Market Cattle Testing (14CT) program for brucellosis in cattle. This latter program depends upon the collection of blood program at the time of identified cattle. As the cattle Population of California is broadly distributed throughout the state, we intend to utilize these blood samples to biologically monitor the distribution and intensity of selected environmental pollutants. In a 2-year preliminary trial, the feasibility of retrieving, utilizing for a purpose similar to this, and tracing back to their geographic areas of origin of MCT samples have been demonstrated.

  17. Polycyclic Aromatic Hydrocarbons (PAHs) and Hopanes in Plastic Resin Pellets as Markers of Oil Pollution via International Pellet Watch Monitoring.

    PubMed

    Yeo, Bee Geok; Takada, Hideshige; Hosoda, Junki; Kondo, Atsuko; Yamashita, Rei; Saha, Mahua; Maes, Thomas

    2017-08-01

    Oil pollution in the marine environment is an unavoidable problem due to chronic input from local sources, particularly in urban areas and oil spills. Oil pollution not only causes immediate physical damages to surrounding wildlife but also some components, including higher molecular weight PAHs, can persist in the environment for many years and pose insidious threats to the ecosystem. Long-term and nontargeted monitoring of oil pollution is important. This paper examines the ability of International Pellet Watch (IPW) for initial identification and monitoring of oil pollution by analysing PAHs and hopanes in plastic pellet samples collected globally by volunteers. PAH concentrations with the sum of 28 parent and methyl PAHs vary geographically, ranging from 0.035 to 24.4 µg/g-pellet, in line with the presence or absence of local oil pollution sources, such as oil refineries or oil spill sites. This suggests that PAHs can be used to monitor petroleum pollution in IPW. A colour-coded categorization for PAH concentrations within IPW monitoring also is established to facilitate data presentation and understanding. PAH concentrations are generally higher in Western Europe, especially around the North Sea shorelines, moderate in East Asia and North America, and lower in South East Asia, Oceania, South America, and Africa. Hopane concentrations, with a smaller spatial variation (1.7-101 µg/g-pellet), showed no spatial pattern. This result and the poor correlation between hopanes and PAHs suggest that hopane concentrations alone are unsuited to identify petroleum pollution. However, hopane compositions can be used for fingerprinting sources of oil pollution. Thus, both PAHs and hopanes in IPW allow for low cost, remote monitoring of global oil pollution.

  18. Air pollution and climate change effects on health of the Ukrainian forests: monitoring and evalution

    Treesearch

    Igor F. Buksha; Valentina L. Meshkova; Oleg M. Radchenko; Alexander S. Sidorov

    1998-01-01

    Forests in the Ukraine are affected by environmental pollution, intensive forestry practice, and recreational uses. These factors make them sensitive to impacts of climate change. Since 1989 Ukraine has participated in the International Cooperative Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests). A network of monitoring plots has...

  19. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    PubMed

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved twenty percent of the data to validate the predictions. The models' performances were measured with a coefficient of determination at 0.78 and 0.34 for PM2.5 and NO2, respectively. We apply a relative importance measure to identify the importance of each variable in the neural network to partially overcome the black box issues of neural network models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Characterizing Intra-Urban Air Quality Gradients with a Spatially-Distributed Network

    NASA Astrophysics Data System (ADS)

    Zimmerman, N.; Ellis, A.; Schurman, M. I.; Gu, P.; Li, H.; Snell, L.; Gu, J.; Subramanian, R.; Robinson, A. L.; Apte, J.; Presto, A. A.

    2016-12-01

    City-wide air pollution measurements have typically relied on regulatory or research monitoring sites with low spatial density to assess population-scale exposure. However, air pollutant concentrations exhibit significant spatial variability depending on local sources and features of the built environment, which may not be well captured by the existing monitoring regime. To better understand urban spatial and temporal pollution gradients at 1 km resolution, a network of 12 real-time air quality monitoring stations was deployed beginning July 2016 in Pittsburgh, PA. The stations were deployed at sites along an urban-rural transect and in urban locations with a range of traffic, restaurant, and tall building densities to examine the impact of various modifiable factors. Measurements from the stationary monitoring stations were further supported by mobile monitoring, which provided higher spatial resolution pollutant measurements on nearby roadways and enabled routine calibration checks. The stationary monitoring measurements comprise ultrafine particle number (Aerosol Dynamics "MAGIC" CPC), PM2.5 (Met One Neighborhood PM Monitor), black carbon (Met One BC 1050), and a new low-cost air quality monitor, the Real-time Affordable Multi-Pollutant (RAMP) sensor package for measuring CO, NO2, SO2, O3, CO2, temperature and relative humidity. High time-resolution (sub-minute) measurements across the distributed monitoring network enable insight into dynamic pollutant behaviour. Our preliminary findings show that our instruments are sensitive to PM2.5 gradients exceeding 2 micro-grams per cubic meter and ultrafine particle gradients exceeding 1000 particles per cubic centimeter. Additionally, we have developed rigorous calibration protocols to characterize the RAMP sensor response and drift, as well as multiple linear regression models to convert sensor response into pollutant concentrations that are comparable to reference instrumentation.

  1. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  2. Reconnaissance evaluation of surface-water quality in Eagle, Grand, Jackson, Pitkin, Routt, and Summit counties, Colorado

    USGS Publications Warehouse

    Britton, Linda J.

    1979-01-01

    Water-quality data were collected from streams in a six-county area in northwest Colorado to determine if the streams were polluted and, if so, to determine the sources of the pollution. Eighty-three stream sites were selected for sampling in Eagle, Grand, Jackson, Pitkin, Routt, and Summit Counties. A summary of data collected prior to this study, results of current chemical and biological sampling, and needs for future water-quality monitoring are reported for each county. Data collected at selected sites included temperature, pH, specific conductance, dissolved oxygen, and stream discharge. Chemical data collected included nutrients, inorganics, organics, and trace elements. Biological data collected included counts and species composition of total and fecal-coliform bacteria, fecal-streptococcus bacteria, benthic invertebrates, and phytoplankton. Most of the sites were sampled three times: in April-June 1976, August 1976, and January 1977. (Woodard-USGS)

  3. Review of air pollution and health impacts in Malaysia.

    PubMed

    Afroz, Rafia; Hassan, Mohd Nasir; Ibrahim, Noor Akma

    2003-06-01

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.

  4. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  5. 40 CFR 63.1250 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring...

  6. 40 CFR 63.1250 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring...

  7. 40 CFR 63.1250 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring...

  8. 40 CFR 63.1250 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize... were caused by a sudden, infrequent, and unavoidable failure of air pollution control and monitoring...

  9. Occurrence of polycyclic aromatic hydrocarbons in urban streams as assessed using semipermeable membrane devices, Dallas-Fort Worth metropolitan area, Texas

    USGS Publications Warehouse

    Moring, J. Bruce

    1996-01-01

    The objectives of this fact sheet are to summarize the occurrence of water-borne PAHs in three urban streams in the Dallas- Fort Worth metropolitan area and to assess the use of semipermeable membrane devices (SPMDs) as PAH samplers. One site on each of three streams was selected for monitoring the occurrence of PAHs (fig. 1). The sites were chosen to reflect varied urban land uses and the influences of point- and nonpointsource pollution. The monitoring was done using SPMDs during a 30-day period in late May and June 1994.

  10. Study of meteorological aspects and urban concentration of SO2 in atmospheric environment of La Plata, Argentina.

    PubMed

    Ratto, Gustavo; Videla, Fabián; Almandos, J Reyna; Maronna, Ricardo; Schinca, Daniel

    2006-10-01

    This article presents and discusses SO(2) (ppbv) concentration measurements combined with meteorological data (mainly wind speed and direction) for a five-year campaign (1996 to 2000), in a site near an oil refinery plant close to the city of La Plata and surroundings (aprox. 740.000 inh.), considered one of the six most affected cities by air pollution in the country. Since there is no monitoring network in the area, the obtained results should be considered as medium term accumulated data that enables to determine trends by analyzing together gas concentrations and meteorological parameters. Preliminary characterization of the behaviour of the predominant winds of the region in relation with potential atmospheric gas pollutants from seasonal wind roses is possible to carry out from the data. These results are complemented with monthly averaged SO(2) measurements. In particular, for year 2000, pollutant roses were determined which enable predictions about contamination emission sources. As a general result we can state that there is a clear increase in annual SO(2) concentration and that the selected site should be considered as a key site for future survey monitoring network deployment. Annual SO(2) average concentration and prevailing seasonal winds determined in this work, together with the potential health impact of SO(2) reveals the need for a comprehensive and systematic study involving particulate matter an other basic pollutant gases.

  11. A Comparative Study of Three Spatial Interpolation Methodologies for the Analysis of Air Pollution Concentrations in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Deligiorgi, Despina; Philippopoulos, Kostas; Thanou, Lelouda; Karvounis, Georgios

    2010-01-01

    Spatial interpolation in air pollution modeling is the procedure for estimating ambient air pollution concentrations at unmonitored locations based on available observations. The selection of the appropriate methodology is based on the nature and the quality of the interpolated data. In this paper, an assessment of three widely used interpolation methodologies is undertaken in order to estimate the errors involved. For this purpose, air quality data from January 2001 to December 2005, from a network of seventeen monitoring stations, operating at the greater area of Athens in Greece, are used. The Nearest Neighbor and the Liner schemes were applied to the mean hourly observations, while the Inverse Distance Weighted (IDW) method to the mean monthly concentrations. The discrepancies of the estimated and measured values are assessed for every station and pollutant, using the correlation coefficient, the scatter diagrams and the statistical residuals. The capability of the methods to estimate air quality data in an area with multiple land-use types and pollution sources, such as Athens, is discussed.

  12. A review of AirQ Models and their applications for forecasting the air pollution health outcomes.

    PubMed

    Oliveri Conti, Gea; Heibati, Behzad; Kloog, Itai; Fiore, Maria; Ferrante, Margherita

    2017-03-01

    Even though clean air is considered as a basic requirement for the maintenance of human health, air pollution continues to pose a significant health threat in developed and developing countries alike. Monitoring and modeling of classic and emerging pollutants is vital to our knowledge of health outcomes in exposed subjects and to our ability to predict them. The ability to anticipate and manage changes in atmospheric pollutant concentrations relies on an accurate representation of the chemical state of the atmosphere. The task of providing the best possible analysis of air pollution thus requires efficient computational tools enabling efficient integration of observational data into models. A number of air quality models have been developed and play an important role in air quality management. Even though a large number of air quality models have been discussed or applied, their heterogeneity makes it difficult to select one approach above the others. This paper provides a brief review on air quality models with respect to several aspects such as prediction of health effects.

  13. Next-generation air monitoring

    EPA Science Inventory

    Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...

  14. Characterization Urban Heat Island Effect and Modelling of Secondary Pollutant Formations at Urban Hotspots

    NASA Astrophysics Data System (ADS)

    Undi, G. S. N. V. K. S. N. S.

    2017-12-01

    More than 60 percent of the world population is living the urban zones by 2020. This socio of economic transformations will bring considerable changes to the ambient atmosphere. More than 70 percent of the air pollutants in the urban hotspots are from vehicular emissions. in the urban hotspots. In the urban hotspots, the meteorological and dispersion conditions will have different characteristics than in surrounding rural areas. Reactive pollutants transformations are drastically influenced by the local meteorological conditions. The complexity of urban structure alters the pollutants dispersion in the hotspots. This relationship between urban meteorology and air pollution is an important aspect of consideration. In the atmosphere, drastic changes have been noticed from micro to regional and global scales. However, the characteristics of air pollutant emissions vary with time and space, favorable dispersion conditions transport them from local to regional scale. In the present study, the impact of land cover change on Urban Heat Island effect (UHI) has been characterized by considering the three different zones with varying land use patterns. An attempt has been made to estimate the impact of UHI on secondary pollutants (O3) transformations. Envi-Met model has been used to characterize the UHI intensity for the selected zones. Meteorological and air quality measurements were carried out at the selected locations. The diurnal variations of Ozone (O3) concentration for three zones are correlated with the UHI intensity. And the monitoring and model results of O3 concentrations are in good agreement. It is observed from the obtained model results that the metrological parameters influence on local air quality is significant in urban zones.

  15. Characterization of the air pollution in the urban area of Madrid

    NASA Astrophysics Data System (ADS)

    Climent-Font, Aurelio; Swietlicki, Erik; Revuelta, Antonio

    1994-03-01

    An attempt is made to characterize for the first time the urban pollution of Madrid using the combination of conventional gas measurements and an ion beam analytical technique (PIXE) for aerosol monitoring. Different sets of samples were collected selecting different seasons of the year; winter and summer 1992, and also different sampling times; 3 h and 24 h. A group of 18 elements in the mass range from Si to Pb could be analyzed. Concentration of gases in the air was recorded for the following: CO, NO x, NO 2, SO 2 and C xH y. Four sources contributing to the air pollution were obtained by means of absolute principal component analysis where automotive transport emerges as the dominating one. The combination of aerosol (PIXE) and gas data as input to a receptor model proved to be fruitful for the understanding of the underlying chemical and physical processes governing the observed pollution levels. This is a preliminary study whose results will supply the trends and strategies for a more thorough characterization.

  16. Analysis of marine sediment, water and biota for selected organic pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, H.E.; Ray, L.E.; Giam, C.S.

    1981-12-01

    The concentrations of various organic pollutants (benzo(a)pyrene (BaP), hexachlorobenzene (HCB) and pentachlorophenol (PCP) were determined in samples of water, sediment and biota (flounder, killifish, shrimp, crabs, and squid) from San Luis Pass, Texas. Sediment was also analyzed for polychlorinated biphenyls (PCBs), phthalic acid esters (PAEs) and various pesticides. Only PCP was detectable in water. In sediment, the relative concentrations were PAEs >> BaP > (PCBs approx. HCB) > PCP. In biota, BaP was not detectable in any animal; HCB was highest in crabs and PCP was highest in all others (flounder, killifish, shrimp and squid). The relative concentrations of HCBmore » and PCP were different in the different organisms. The differences between the relative concentrations in the biota and in sediment are discussed. The results of this study are compared to values measured at other sites. This study is part of a larger effort to identify and quantitate pollutants in various Texas estuaries and to serve as a basis for monitoring marine pollution.« less

  17. Assessment of biological effects of environmental pollution in Mersin Bay (Turkey, northeastern Mediterranean Sea) using Mullus barbatus and Liza ramada as target organisms.

    PubMed

    Yılmaz, Doruk; Kalay, Mustafa; Dönmez, Erdem; Yılmaz, Nejat

    2016-01-01

    The increasing emphasis on the assessment and monitoring of marine ecosystems has revealed the need to use appropriate biological indicators for these areas. Enzyme activities and histopathology are increasingly being used as indicators of environmental stress since they provide a definite biological end-point of pollutant exposure. As part of an ecotoxicological assessment of Mersin Bay, EROD enzyme activity and histopathological response in selected organs and tissues of two species of fish, Mullus barbatus (red mullet) and Liza ramada (thinlip grey mullet), captured from area were examined. Pollutant (Organochlorines (OC), alkylphenols (APs) and BPA) levels and biomarker responses in tissue samples were evaluated together for their potential to alter the metabolism and cellular aspects in liver and gonad. Elevated induction of EROD activity and histopathological alterations in contaminated samples from Mersin Bay was observed compared to reference site indicating the exposure to potential pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ecophysiological evaluation of tree species for biomonitoring of air quality and identification of air pollution-tolerant species.

    PubMed

    Sen, Abhishek; Khan, Indrani; Kundu, Debajyoti; Das, Kousik; Datta, Jayanta Kumar

    2017-06-01

    Identification of tree species that can biologically monitor air pollution and can endure air pollution is very much important for a sustainable green belt development around any polluted place. To ascertain the species, ten tree species were selected on the basis of some previous study from the campus of the University of Burdwan and were studied in the pre-monsoon and post-monsoon seasons. The study has been designed to investigate biochemical and physiological activities of selected tree species as the campus is presently exposed to primary air pollutants and their impacts on plant community were observed through the changes in several physical and biochemical constituents of plant leaves. As the plant species continuously exchange different gaseous pollutants in and out of the foliar system and are very sensitive to gaseous pollutants, they serve as bioindicators. Due to air pollution, foliar surface undergoes different structural and functional changes. In the selected plant species, it was observed that the concentration of primary air pollutants, proline content, pH, relative water holding capacity, photosynthetic rate, and respiration rate were higher in the pre-monsoon than the post-monsoon season, whereas the total chlorophyll, ascorbic acid, sugar, and conductivity were higher in the post-monsoon season. From the entire study, it was observed that the concentration of sulfur oxide (SO x ), nitrogen oxide (NO x ), and suspended particulate matter (SPM) all are reduced in the post-monsoon season than the pre-monsoon season. In the pre-monsoon season, SO x , NO x , and SPM do not have any significant correlation with biochemical as well as physiological parameters. SPM shows a negative relationship with chlorophyll 'a' (r = -0.288), chlorophyll 'b' (r = -0.267), and total chlorophyll (r = -0.238). Similarly, chlorophyll a, chlorophyll b, and the total chlorophyll show negative relations with SO x and NO x (p < 0.005) during the post-monsoon season. Proline shows a positive relationship with SO x in the pre-monsoon season whereas in the post-monsoon season proline content shows a positive relationship with both SO x and NO x . The present study facilitates to screen eight sensitive and two moderately tolerant tree species according to their air pollution tolerance index (APTI) values.

  19. Leaves of Bauhinia blakeana as indicators of atmospheric pollution in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lau, O. W.; Luk, S. F.

    Bauhinia blakeana was used as a biomonitor to monitor the air quality in Hong Kong. Equations were set up to relate the ambient iron, copper, zinc and lead concentrations with those in leaves of the biomonitor and good correlations were observed. The concentration of sulphate in the leaves of Bauhinia blakeana was found to be directly related to ambient sulphur dioxide and total suspended particulates. Using these equations the ambient pollutant levels in different districts of Hong Kong were determined quantitatively according to the concentrations of pollutants in leaves. As many residential buildings are close to congested roads, the ambient pollutant concentrations at selected roads were evaluated. Many temples are known to be heavily polluted with air particulates, and thus the air quality inside are suspected to be poor. The air quality inside temples may be reflected by the air quality outside these buildings, which were also assessed using the proposed method of biomonitoring. The levels of ambient lead and copper outside these temples were higher than their respective background levels while the levels of pollutants at the kerbsides were reported to be 10-300% higher than those of the background.

  20. Novel Approaches for Estimating Human Exposure to Air Pollutants

    EPA Science Inventory

    Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying on solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal varia...

  1. An analogy on assessment of urban air pollution in Turkey over the turn of the millennium (1992-2001).

    PubMed

    Ozdilek, Hasan Goksel

    2006-11-01

    Rapid industrialization and urbanization in Turkey, especially over the last twenty five years, has provided better living standards to its residents, but it also caused a decrease in environmental quality. In late 1970's, air quality monitoring activities were started in some major cities by individual researchers in Turkey. It was just around the 1990's that a countrywide program on continuous air pollution monitoring in major province centers and selected large towns was launched. The impact of air pollution on people depend on various factors, such as existence and magnitude of coal powered energy generation plants, type of urban heating and their efficiency, and the numbers and specifications of vehicles. In this study, current Turkish urban air quality over the turn of the Millennium (1992-2001) is studied in the light of the country's worst cities in terms of outdoor air quality, the number of upper respiratory diseases, sinusitis, bronchitis, and pneumonia cases in these provinces reported by the state medical treatment facilities in 2001. The population that is under outdoor urban air pollution hazard was computed. A comparative analysis between the provinces that use natural gas and others that use fossil fuels was also completed in order to project monetary gains if the studied provinces will transform their indoor heating and industrial operations to be run by natural gas or other cleaner energy sources. If natural gas use in air polluted urban centers could be realized in the near future, approximately 212 to 350 million US dollars per annum could to be saved just by reducing health related problems caused by outdoor air pollution.

  2. Long-term benthic macroinvertebrate community monitoring to assess pollution abatement effectiveness.

    PubMed

    Smith, John G; Brandt, Craig C; Christensen, Sigurd W

    2011-06-01

    The benthic macroinvertebrate community of East Fork Poplar Creek (EFPC) in East Tennessee was monitored for 18 years to evaluate the effectiveness of a water pollution control program implemented at a major United States (U.S.) Department of Energy facility. Several actions were implemented to reduce and control releases of pollutants into the headwaters of the stream. Four of the most significant actions were implemented during different time periods, which allowed assessment of each action. Macroinvertebrate samples were collected annually in April from three locations in EFPC (EFK24, EFK23, and EFK14) and two nearby reference streams from 1986 through 2003. Significant improvements occurred in the macroinvertebrate community at the headwater sites (EFK24 and EFK23) after implementation of each action, while changes detected 9 km further downstream (EFK14) could not be clearly attributed to any of the actions. Because the stream was impacted at its origin, invertebrate recolonization was primarily limited to aerial immigration, thus, recovery has been slow. As recovery progressed, abundances of small pollution-tolerant taxa (e.g., Orthocladiinae chironomids) decreased and longer lived taxa colonized (e.g., hydropsychid caddisflies, riffle beetles, Baetis). While assessments lasting three to four years may be long enough to detect a response to new pollution controls at highly impacted locations, more time may be needed to understand the full effects. Studies on the effectiveness of pollution controls can be improved if impacted and reference sites are selected to maximize spatial and temporal trending, and if a multidisciplinary approach is used to broadly assess environmental responses (e.g., water quality trends, invertebrate and fish community assessments, toxicity testing, etc.).

  3. Long-Term Benthic Macroinvertebrate Community Monitoring to Assess Pollution Abatement Effectiveness

    NASA Astrophysics Data System (ADS)

    Smith, John G.; Brandt, Craig C.; Christensen, Sigurd W.

    2011-06-01

    The benthic macroinvertebrate community of East Fork Poplar Creek (EFPC) in East Tennessee was monitored for 18 years to evaluate the effectiveness of a water pollution control program implemented at a major United States (U.S.) Department of Energy facility. Several actions were implemented to reduce and control releases of pollutants into the headwaters of the stream. Four of the most significant actions were implemented during different time periods, which allowed assessment of each action. Macroinvertebrate samples were collected annually in April from three locations in EFPC (EFK24, EFK23, and EFK14) and two nearby reference streams from 1986 through 2003. Significant improvements occurred in the macroinvertebrate community at the headwater sites (EFK24 and EFK23) after implementation of each action, while changes detected 9 km further downstream (EFK14) could not be clearly attributed to any of the actions. Because the stream was impacted at its origin, invertebrate recolonization was primarily limited to aerial immigration, thus, recovery has been slow. As recovery progressed, abundances of small pollution-tolerant taxa (e.g., Orthocladiinae chironomids) decreased and longer lived taxa colonized (e.g., hydropsychid caddisflies, riffle beetles, Baetis). While assessments lasting three to four years may be long enough to detect a response to new pollution controls at highly impacted locations, more time may be needed to understand the full effects. Studies on the effectiveness of pollution controls can be improved if impacted and reference sites are selected to maximize spatial and temporal trending, and if a multidisciplinary approach is used to broadly assess environmental responses (e.g., water quality trends, invertebrate and fish community assessments, toxicity testing, etc.).

  4. Long-Term Benthic Macroinvertebrate Community Monitoring to Assess Pollution Abatement Effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John G; Brandt, Craig C; Christensen, Sigurd W

    2011-01-01

    The benthic macroinvertebrate community of East Fork Poplar Creek (EFPC) in East Tennessee was monitored for 18 years to evaluate the effectiveness of a water pollution control program implemented at a major United States (U.S.) Department of Energy facility. Several actions were implemented to reduce and control releases of pollutants into the headwaters of the stream. Four of the most significant actions were implemented during different time periods, which allowed assessment of each action. Macroinvertebrate samples were collected annually in April from three locations in EFPC (EFK24, EFK23, and EFK14) and two nearby reference streams from 1986 through 2003. Significantmore » improvements occurred in the macroinvertebrate community at the headwater sites (EFK24 and EFK23) after implementation of each action, while changes detected 9 km further downstream (EFK14) could not be clearly attributed to any of the actions. Because the stream was impacted at its origin, invertebrate recolonization was primarily limited to aerial immigration, thus, recovery has been slow. As recovery progressed, abundances of small pollution-tolerant taxa (e.g., Orthocladiinae chironomids) decreased and longer lived taxa colonized (e.g., hydropsychid caddisflies, riffle beetles, Baetis). While assessments lasting three to four years may be long enough to detect a response to new pollution controls at highly impacted locations, more time may be needed to understand the full effects. Studies on the effectiveness of pollution controls can be improved if impacted and reference sites are selected to maximize spatial and temporal trending, and if a multidisciplinary approach is used to broadly assess environmental responses (e.g., water quality trends, invertebrate and fish community assessments, toxicity testing, etc.).« less

  5. Stochastic univariate and multivariate time series analysis of PM2.5 and PM10 air pollution: A comparative case study for Plovdiv and Asenovgrad, Bulgaria

    NASA Astrophysics Data System (ADS)

    Gocheva-Ilieva, S.; Stoimenova, M.; Ivanov, A.; Voynikova, D.; Iliev, I.

    2016-10-01

    Fine particulate matter PM2.5 and PM10 air pollutants are a serious problem in many urban areas affecting both the health of the population and the environment as a whole. The availability of large data arrays for the levels of these pollutants makes it possible to perform statistical analysis, to obtain relevant information, and to find patterns within the data. Research in this field is particularly topical for a number of Bulgarian cities, European country, where in recent years regulatory air pollution health limits are constantly being exceeded. This paper examines average daily data for air pollution with PM2.5 and PM10, collected by 3 monitoring stations in the cities of Plovdiv and Asenovgrad between 2011 and 2016. The goal is to find and analyze actual relationships in data time series, to build adequate mathematical models, and to develop short-term forecasts. Modeling is carried out by stochastic univariate and multivariate time series analysis, based on Box-Jenkins methodology. The best models are selected following initial transformation of the data and using a set of standard and robust statistical criteria. The Mathematica and SPSS software were used to perform calculations. This examination showed measured concentrations of PM2.5 and PM10 in the region of Plovdiv and Asenovgrad regularly exceed permissible European and national health and safety thresholds. We obtained adequate stochastic models with high statistical fit with the data and good quality forecasting when compared against actual measurements. The mathematical approach applied provides an independent alternative to standard official monitoring and control means for air pollution in urban areas.

  6. A novel mobile monitoring approach to characterize spatial and temporal variation in traffic-related air pollutants in an urban community

    NASA Astrophysics Data System (ADS)

    Yu, Chang Ho; Fan, Zhihua; Lioy, Paul J.; Baptista, Ana; Greenberg, Molly; Laumbach, Robert J.

    2016-09-01

    Air concentrations of traffic-related air pollutants (TRAPs) vary in space and time within urban communities, presenting challenges for estimating human exposure and potential health effects. Conventional stationary monitoring stations/networks cannot effectively capture spatial characteristics. Alternatively, mobile monitoring approaches became popular to measure TRAPs along roadways or roadsides. However, these linear mobile monitoring approaches cannot thoroughly distinguish spatial variability from temporal variations in monitored TRAP concentrations. In this study, we used a novel mobile monitoring approach to simultaneously characterize spatial/temporal variations in roadside concentrations of TRAPs in urban settings. We evaluated the effectiveness of this mobile monitoring approach by performing concurrent measurements along two parallel paths perpendicular to a major roadway and/or along heavily trafficked roads at very narrow scale (one block away each other) within short time period (<30 min) in an urban community. Based on traffic and particulate matter (PM) source information, we selected 4 neighborhoods to study. The sampling activities utilized real-time monitors, including battery-operated PM2.5 monitor (SidePak), condensation particle counter (CPC 3007), black carbon (BC) monitor (Micro-Aethalometer), carbon monoxide (CO) monitor (Langan T15), and portable temperature/humidity data logger (HOBO U12), and a GPS-based tracker (Trackstick). Sampling was conducted for ∼3 h in the morning (7:30-10:30) in 7 separate days in March/April and 6 days in May/June 2012. Two simultaneous samplings were made at 5 spatially-distributed locations on parallel roads, usually distant one block each other, in each neighborhood. The 5-min averaged BC concentrations (AVG ± SD, [range]) were 2.53 ± 2.47 [0.09-16.3] μg/m3, particle number concentrations (PNC) were 33,330 ± 23,451 [2512-159,130] particles/cm3, PM2.5 mass concentrations were 8.87 ± 7.65 [0.27-46.5] μg/m3, and CO concentrations were 1.22 ± 0.60 [0.22-6.29] ppm in the community. The traffic-related air pollutants, BC and PNC, but not PM2.5 or CO, varied spatially depending on proximity to local stationary/mobile sources. Seasonal differences were observed for all four TRAPs, significantly higher in colder months than in warmer months. The coefficients of variation (CVs) in concurrent measurements from two parallel routes were calculated around 0.21 ± 0.17, and variations were attributed by meteorological variation (25%), temporal variability (19%), concentration level (6%), and spatial variability (2%), respectively. Overall study findings suggest this mobile monitoring approach could effectively capture and distinguish spatial/temporal characteristics in TRAP concentrations for communities impacted by heavy motor vehicle traffic and mixed urban air pollution sources.

  7. A Coupled model for ERT monitoring of contaminated sites

    NASA Astrophysics Data System (ADS)

    Wang, Yuling; Zhang, Bo; Gong, Shulan; Xu, Ya

    2018-02-01

    The performance of electrical resistivity tomography (ERT) system is usually investigated using a fixed resistivity distribution model in numerical simulation study. In this paper, a method to construct a time-varying resistivity model by coupling water transport, solute transport and constant current field is proposed for ERT monitoring of contaminated sites. Using the proposed method, a monitoring model is constructed for a contaminated site with a pollution region on the surface and ERT monitoring results at different time is calculated by the finite element method. The results show that ERT monitoring profiles can effectively reflect the increase of the pollution area caused by the diffusion of pollutants, but the extent of the pollution is not exactly the same as the actual situation. The model can be extended to any other case and can be used to scheme design and results analysis for ERT monitoring.

  8. Assessment of Near-Source Air Pollution at a Fine Spatial ...

    EPA Pesticide Factsheets

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous pollutants – was used to map air pollution levels near the Port of Charleston in South Carolina. High-resolution monitoring was performed along driving routes near several port terminals and rail yard facilities, recording geospatial coordinates and concentrations of pollutants including black carbon, size-resolved particle count ranging from ultrafine to coarse (6 nm to 20 um), carbon monoxide, carbon dioxide, and nitrogen dioxide. Additionally, a portable meteorological station was used to characterize local conditions. The primary objective of this work is to characterize the impact of port facilities on local scale air quality. It is found that elevated concentration measurements of Black Carbon and PM correlate to periods of increased port activity and a significant elevation in concentration is observed downwind of ports. However, limitations in study design prevent a more complete analysis of the port effect. As such, we discuss the ways in which this study is limited and how future work could be improved. Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollut

  9. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  10. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  11. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  12. Geodiametris: an integrated geoinformatic approach for monitoring land pollution from the disposal of olive oil mill wastes

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios D.; Sarris, Apostolos; Papadopoulos, Nikos; Soupios, Pantelis; Doula, Maria; Cavvadias, Victor

    2014-08-01

    The olive-oil industry is one of the most important sectors of agricultural production in Greece, which is the third in olive-oil production country worldwide. Olive oil mill wastes (OOMW) constitute a major factor in pollution in olivegrowing regions and an important problem to be solved for the agricultural industry. The olive-oil mill wastes are normally deposited at tanks, or directly in the soil or even on adjacent torrents, rivers and lakes posing a high risk to the environmental pollution and the community health. GEODIAMETRIS project aspires to develop integrated geoinformatic methodologies for performing monitoring of land pollution from the disposal of OOMW in the island of Crete -Greece. These methodologies integrate GPS surveys, satellite remote sensing and risk assessment analysis in GIS environment, application of in situ and laboratory geophysical methodologies as well as soil and water physicochemical analysis. Concerning project's preliminary results, all the operating OOMW areas located in Crete have been already registered through extensive GPS field campaigns. Their spatial and attribute information has been stored in an integrated GIS database and an overall OOMW spectral signature database has been constructed through the analysis of multi-temporal Landsat-8 OLI satellite images. In addition, a specific OOMW area located in Alikianos village (Chania-Crete) has been selected as one of the main case study areas. Various geophysical methodologies, such as Electrical Resistivity Tomography, Induced Polarization, multifrequency electromagnetic, Self Potential measurements and Ground Penetrating Radar have been already implemented. Soil as well as liquid samples have been collected for performing physico-chemical analysis. The preliminary results have already contributed to the gradual development of an integrated environmental monitoring tool for studying and understanding environmental degradation from the disposal of OOMW.

  13. Second-hand smoke in four English prisons: an air quality monitoring study.

    PubMed

    Jayes, Leah R; Ratschen, Elena; Murray, Rachael L; Dymond-White, Suzy; Britton, John

    2016-02-04

    To measure levels of indoor pollution in relation to smoking in four English prisons. TSI SidePak AM510 Personal Aerosol Monitors were used to measure concentrations of particulate matter less than 2.5 μm in diameter (PM2.5) for periods of up to 9 h in selected smoking and non-smoking areas, and personal exposure monitoring of prison staff during a work shift, in four prisons. PM2.5 data were collected for average periods of 6.5 h from 48 locations on 25 wing landings where smoking was permitted in cells, on 5 non-smoking wings, 13 prisoner cells, and personal monitoring of 22 staff members. Arithmetic mean PM2.5 concentrations were significantly higher on smoking than non-smoking wing landings (43.9 μg/m(3) and 5.9 μg/m(3) respectively, p < 0.001) and in smoking than non-smoking cells (226.2 μg/m(3) and 17.0 μg/m(3) respectively, p < 0.001). Staff members wore monitors for an average of 4.18 h, during which they were exposed to arithmetic mean PM2.5 concentration of 23.5 μg/m(3). The concentration of PM2.5 pollution in smoking areas of prisons are extremely high. Smoking in prisons therefore represents a significant health hazard to prisoners and staff members.

  14. Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle.

    PubMed

    Wu, Chang-fu; Liu, L-J Sally; Cullen, Alison; Westberg, Hal; Williamson, John

    2011-01-01

    In the Seattle Air Toxics Monitoring Pilot Program, we measured 15 hazardous air pollutants (HAPs) at 6 sites for more than a year between 2000 and 2002. Spatial-temporal variations were evaluated with random-effects models and principal component analyses. The potential health risks were further estimated based on the monitored data, with the incorporation of the bootstrapping technique for the uncertainty analysis. It is found that the temporal variability was generally higher than the spatial variability for most air toxics. The highest temporal variability was observed for tetrachloroethylene (70% temporal vs. 34% spatial variability). Nevertheless, most air toxics still exhibited significant spatial variations, even after accounting for the temporal effects. These results suggest that it would require operating multiple air toxics monitoring sites over a significant period of time with proper monitoring frequency to better evaluate population exposure to HAPs. The median values of the estimated inhalation cancer risks ranged between 4.3 × 10⁻⁵ and 6.0 × 10⁻⁵, with the 5th and 95th percentile levels exceeding the 1 in a million level. VOCs as a whole contributed over 80% of the risk among the HAPs measured and arsenic contributed most substantially to the overall risk associated with metals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Detection of Greenhouse Gas Precursors from Diesel Engines Using Electrochemical and Photoacoustic Sensors

    PubMed Central

    Mothé, Geórgia; Castro, Maria; Sthel, Marcelo; Lima, Guilherme; Brasil, Laisa; Campos, Layse; Rocha, Aline; Vargas, Helion

    2010-01-01

    Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO2 Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NOx and SO2 from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel) at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range. PMID:22163437

  16. Identification and influence of spatio-temporal outliers in urban air quality measurements.

    PubMed

    O'Leary, Brendan; Reiners, John J; Xu, Xiaohong; Lemke, Lawrence D

    2016-12-15

    Forty eight potential outliers in air pollution measurements taken simultaneously in Detroit, Michigan, USA and Windsor, Ontario, Canada in 2008 and 2009 were identified using four independent methods: box plots, variogram clouds, difference maps, and the Local Moran's I statistic. These methods were subsequently used in combination to reduce and select a final set of 13 outliers for nitrogen dioxide (NO 2 ), volatile organic compounds (VOCs), total benzene, toluene, ethyl benzene, and xylene (BTEX), and particulate matter in two size fractions (PM 2.5 and PM 10 ). The selected outliers were excluded from the measurement datasets and used to revise air pollution models. In addition, a set of temporally-scaled air pollution models was generated using time series measurements from community air quality monitors, with and without the selected outliers. The influence of outlier exclusion on associations with asthma exacerbation rates aggregated at a postal zone scale in both cities was evaluated. Results demonstrate that the inclusion or exclusion of outliers influences the strength of observed associations between intraurban air quality and asthma exacerbation in both cities. The box plot, variogram cloud, and difference map methods largely determined the final list of outliers, due to the high degree of conformity among their results. The Moran's I approach was not useful for outlier identification in the datasets studied. Removing outliers changed the spatial distribution of modeled concentration values and derivative exposure estimates averaged over postal zones. Overall, associations between air pollution and acute asthma exacerbation rates were weaker with outliers removed, but improved with the addition of temporal information. Decreases in statistically significant associations between air pollution and asthma resulted, in part, from smaller pollutant concentration ranges used for linear regression. Nevertheless, the practice of identifying outliers through congruence among multiple methods strengthens confidence in the analysis of outlier presence and influence in environmental datasets. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Identifying exposure disparities in air pollution epidemiology specific to adverse birth outcomes

    NASA Astrophysics Data System (ADS)

    Geer, Laura A.

    2014-10-01

    More than 147 million people in the US live in areas where pollutant levels are above regulatory limits and pose a risk to health. Most of the vast network of air pollutant monitors in the US are located in places with higher pollution levels and a higher density of pollutant sources (e.g., point sources from industrial pollution). Vulnerable populations are more likely to live closer to pollutant sources, and thus closer to pollutant monitors. These differential exposures have an impact on maternal and child health; maternal air pollutant exposures have been linked to adverse outcomes such as preterm birth and infant low birth weight. Several studies are highlighted that address methodological approaches in the study of air pollution and health disparities.

  18. Non-methane hydrocarbons in the atmosphere of Mexico City: Results of the 2012 ozone-season campaign

    NASA Astrophysics Data System (ADS)

    Jaimes-Palomera, Mónica; Retama, Armando; Elias-Castro, Gabriel; Neria-Hernández, Angélica; Rivera-Hernández, Olivia; Velasco, Erik

    2016-05-01

    With the aim to strengthen the verification capabilities of the local air quality management, the air quality monitoring network of Mexico City has started the monitoring of selected non-methane hydrocarbons (NMHCs). Previous information on the NMHC characterization had been obtained through individual studies and comprehensive intensive field campaigns, in both cases restricted to sampling periods of short duration. This new initiative will address the NMHC pollution problem during longer monitoring periods and provide robust information to evaluate the effectiveness of new control measures. The article introduces the design of the monitoring network and presents results from the first campaign carried out during the first six months of 2012 covering the ozone-season (Mar-May). Using as reference data collected in 2003, results show reductions during the morning rush hour (6-9 h) in the mixing ratios of light alkanes associated with the consumption and distribution of liquefied petroleum gas and aromatic compounds related with the evaporation of fossil fuels and solvents, in contrast to olefins from vehicular traffic. The increase in mixing ratios of reactive olefins is of relevance to understand the moderate success in the ozone and fine aerosols abatement in recent years in comparison to other criteria pollutants. In the case of isoprene, the typical afternoon peak triggered by biogenic emissions was clearly observed for the first time within the city. The diurnal profiles of the monitored compounds are analyzed in terms of the energy balance throughout the day as a surrogate of the boundary layer evolution. Particular features of the diurnal profiles and correlation between individual NMHCs and carbon monoxide are used to investigate the influence of specific emission sources. The results discussed here highlight the importance of monitoring NMHCs to better understand the drivers and impacts of air pollution in large cities like Mexico City.

  19. Applications of MODIS satellite data and products for monitoring air quality in the state of Texas

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.

    The Center for Space Research (CSR), in conjunction with the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ), is evaluating the use of remotely sensed satellite data to assist in monitoring and predicting air quality in Texas. The challenges of meeting air quality standards established by the US Environmental Protection Agency (US EPA) are impacted by the transport of pollution into Texas that originates from outside our borders and are cumulative with those generated by local sources. In an attempt to quantify the concentrations of all pollution sources, MOD has installed ground-based monitoring stations in rural regions along the Texas geographic boundaries including the Gulf coast, as well as urban regions that are the predominant sources of domestic pollution. However, analysis of time-lapse GOES satellite imagery at MOD, clearly demonstrates the shortcomings of using only ground-based observations for monitoring air quality across Texas. These shortcomings include the vastness of State borders, that can only be monitored with a large number of ground-based sensors, and gradients in pollution concentration that depend upon the location of the point source, the meteorology governing its transport to Texas, and its diffusion across the region. With the launch of NASA's MODerate resolution Imaging Spectroradiometer (MODIS), the transport of aerosol-borne pollutants can now be monitored over land and ocean surfaces. Thus, CSR and MOD personnel have applied MODIS data to several classes of pollution that routinely impact Texas air quality. Results demonstrate MODIS data and products can detect and track the migration of pollutants. This paper presents one case study in which continental haze from the northeast moved into the region and subsequently required health advisories to be issued for 150 counties in Texas. It is concluded that MODIS provides the basis for developing advanced data products that will, when used in conjunction with ground-based observations, create a cost-effective and accurate pollution monitoring system for the entire state of Texas.

  20. Adapting an ambient monitoring program to the challenge of managing emerging pollutants in the San Francisco Estuary.

    PubMed

    Hoenicke, Rainer; Oros, Daniel R; Oram, John J; Taberski, Karen M

    2007-09-01

    While over seven million organic and inorganic compounds that have been indexed by the American Chemical Society's Chemical Abstracts Service in their CAS Registry are commercially available, most pollution monitoring programs focus only on those chemical stressors for which regulatory benchmarks exist, and have been traditionally considered responsible for the most significant human and environmental health risks. Until the late 1990s, the San Francisco Estuary Regional Monitoring Program was no exception in that regard. After a thorough external review, the monitoring program responded to the need for developing a pro-active surveillance approach for emerging pollutants in recognition of the fact that the potential for the growing list of widely used chemical compounds to alter the integrity of water is high. We describe (1) the scientific and analytical bases underlying a new surveillance monitoring approach; (2) summarize approaches used and results obtained from a forensic retrospective; (3) present the growing data set on emerging pollutants from surveillance monitoring and related efforts in the San Francisco Bay Area to characterize newly targeted compounds in wastewater streams, sediment, storm water runoff, and biota; and (4) suggest next steps in monitoring program development and applied research that could move beyond traditional approaches of pollutant characterization. Based on the forensic analysis of archived chromatograms and chemical and toxicological properties of candidate compounds, we quantified a variety of synthetic organic compounds which had previously not been targeted for analysis. Flame retardant compounds, pesticides and insecticide synergists, insect repellents, pharmaceuticals, personal care product ingredients, plasticizers, non-ionic surfactants, and other manufacturing ingredients were detected in water, sediment, and/or biological tissue samples. Several of these compounds, especially polybrominated diphenyl ether flame retardants, exhibited concentrations of environmental concern. We also describe environmental management challenges associated with emerging pollutants and how pro-active surveillance monitoring might assist in implementing a more holistic approach to pollution prevention and control before emerging pollutants become a burden on future generations.

  1. Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Yenilmez, F.; Duzgun, S.

    2013-12-01

    Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water quality in the reservoir due to inflows, point and diffuse inputs, and reservoir hydromorphology. Moreover, hot spots were determined based on kriging and standard error maps. Locations of minimum number of sampling points that represent the actual spatial structure of DO distribution in the Porsuk Dam Reservoir

  2. 40 CFR 62.14595 - What are the operator training and qualification requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation of air pollution... the incinerator and air pollution control devices. (vii) Actions to correct malfunctions or conditions... requirements. (xiii) Methods to continuously monitor CISWI unit and air pollution control device operating...

  3. 40 CFR 62.14595 - What are the operator training and qualification requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation of air pollution... the incinerator and air pollution control devices. (vii) Actions to correct malfunctions or conditions... requirements. (xiii) Methods to continuously monitor CISWI unit and air pollution control device operating...

  4. Radioisotope Concentration in Lake Sediments of Maracaibo, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, A. Rangel; Viloria, T.; Sajo-Bohus, L.

    2007-10-26

    Maracaibo Lake is one of the most important water basing and oil producing regions in Venezuela. Changes in the local environment have been monitored for chemical pollution in the past. For this study we selected a set of sediment samples collected in the shore and analyzed for its radioisotope content. Results show the gamma emitting isotopes distribution. Isotopes concentrations have been determined within the natural K, Th and U families.

  5. Evaluating hazardous air pollutants in Australia.

    PubMed

    Hinwood, A L; Di Marco, P N

    2002-12-27

    Hazardous air pollutants (HAPS) have been evaluated for their health and environmental significance on a targeted and campaign basis in Australia until recently. Individual States and Territories have been undertaking targeted monitoring studies and have numerous control strategies aimed at controlling HAPS emissions with the focus largely on volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and selected heavy metals, with some limited work on exposure assessment. There has been little evaluation of the potential health or environmental effects of the monitored concentrations of these substances and few toxicological or epidemiological studies have been conducted-none in the community setting in Australia. Moreover, there has not been an agreed method for assessing risks from HAPS in ambient air, with different jurisdictions utilising different international benchmarks. Recently, the National Environmental Health (EnHealth) Council commenced developing a risk assessment methodology, which is being used in the development of ambient air quality guidelines for selected HAPS in Western Australia. In 1999, the Commonwealth Government established the Living Cities-Toxics Program, designed to assess the state of knowledge on HAPS in Australia with the aims of identifying and prioritising HAPS, identifying information gaps and informing the development of national air quality standards and national management strategies. The Commonwealth Government commenced a number of projects in 2000 to progress these aims.

  6. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments

    PubMed Central

    Pejcic, Bobby; Myers, Matthew; Ross, Andrew

    2009-01-01

    The development of chemical sensors for monitoring the levels of organic pollutants in the aquatic environment has received a great deal of attention in recent decades. In particular, the mid-infrared (MIR) sensor based on attenuated total reflectance (ATR) is a promising analytical tool that has been used to detect a variety of hydrocarbon compounds (i.e., aromatics, alkyl halides, phenols, etc.) dissolved in water. It has been shown that under certain conditions the MIR-ATR sensor is capable of achieving detection limits in the 10–100 ppb concentration range. Since the infrared spectral features of every single organic molecule are unique, the sensor is highly selective, making it possible to distinguish between many different analytes simultaneously. This review paper discusses some of the parameters (i.e., membrane type, film thickness, conditioning) that dictate MIR-ATR sensor response. The performance of various chemoselective membranes which are used in the fabrication of the sensor will be evaluated. Some of the challenges associated with long-term environmental monitoring are also discussed. PMID:22454582

  7. Catalytic nanomotors for environmental monitoring and water remediation.

    PubMed

    Soler, Lluís; Sánchez, Samuel

    2014-07-07

    Self-propelled nanomotors hold considerable promise for developing innovative environmental applications. This review highlights the recent progress in the use of self-propelled nanomotors for water remediation and environmental monitoring applications, as well as the effect of the environmental conditions on the dynamics of nanomotors. Artificial nanomotors can sense different analytes-and therefore pollutants, or "chemical threats"-can be used for testing the quality of water, selective removal of oil, and alteration of their speeds, depending on the presence of some substances in the solution in which they swim. Newly introduced micromotors with double functionality to mix liquids at the microscale and enhance chemical reactions for the degradation of organic pollutants greatly broadens the range of applications to that of environmental. These "self-powered remediation systems" could be seen as a new generation of "smart devices" for cleaning water in small pipes or cavities difficult to reach with traditional methods. With constant improvement and considering the key challenges, we expect that artificial nanomachines could play an important role in environmental applications in the near future.

  8. Catalytic nanomotors for environmental monitoring and water remediation

    NASA Astrophysics Data System (ADS)

    Soler, Lluís; Sánchez, Samuel

    2014-06-01

    Self-propelled nanomotors hold considerable promise for developing innovative environmental applications. This review highlights the recent progress in the use of self-propelled nanomotors for water remediation and environmental monitoring applications, as well as the effect of the environmental conditions on the dynamics of nanomotors. Artificial nanomotors can sense different analytes--and therefore pollutants, or ``chemical threats''--can be used for testing the quality of water, selective removal of oil, and alteration of their speeds, depending on the presence of some substances in the solution in which they swim. Newly introduced micromotors with double functionality to mix liquids at the microscale and enhance chemical reactions for the degradation of organic pollutants greatly broadens the range of applications to that of environmental. These ``self-powered remediation systems'' could be seen as a new generation of ``smart devices'' for cleaning water in small pipes or cavities difficult to reach with traditional methods. With constant improvement and considering the key challenges, we expect that artificial nanomachines could play an important role in environmental applications in the near future.

  9. Network modeling of PM10 concentration in Malaysia

    NASA Astrophysics Data System (ADS)

    Supian, Muhammad Nazirul Aiman Abu; Bakar, Sakhinah Abu; Razak, Fatimah Abdul

    2017-08-01

    Air pollution is not a new phenomenon in Malaysia. The Department of Environment (DOE) monitors the country's ambient air quality through a network of 51 stations. The air quality is measured using the Air Pollution Index (API) which is mainly recorded based on the concentration of particulate matter, PM10 readings. The Continuous Air Quality Monitoring (CAQM) stations are located in various places across the country. In this study, a network model of air quality based on PM10 concen tration for selected CAQM stations in Malaysia has been developed. The model is built using a graph formulation, G = (V, E) where vertex, V is a set of CAQM stations and edges, E is a set of correlation values for each pair of vertices. The network measurements such as degree distributions, closeness centrality, and betweenness centrality are computed to analyse the behaviour of the network. As a result, a rank of CAQM stations has been produced based on their centrality characteristics.

  10. A statistical inference for concentrations of benzo[a]pyrene partially measured in the ambient air of an industrial city in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Yongku; Seo, Young-Kyo; Baek, Sung-Ok

    2013-12-01

    Although large quantities of air pollutants are released into the atmosphere, they are partially monitored and routinely assessed for their health implications. This paper proposes a statistical model describing the temporal behavior of hazardous air pollutants (HAPs), which can have negative effects on human health. Benzo[a]pyrene (BaP) is selected for statistical modeling. The proposed model incorporates the linkage between BaP and meteorology and is specifically formulated to identify meteorological effects and allow for seasonal trends. The model is used to estimate and forecast temporal fields of BaP conditional on observed (or forecasted) meteorological conditions, including temperature, precipitation, wind speed, and air quality. The effects of BaP on human health are examined by characterizing health indicators, namely the cancer risk and the hazard quotient. The model provides useful information for the optimal monitoring period and projection of future BaP concentrations for both industrial and residential areas in Korea.

  11. Status of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Suleiman, R. M.; Chance, K.; Liu, X.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2015-12-01

    TEMPO is now well into its implementation phase, having passed both its Key Decision Point C and the Critical Design Review (CDR) for the instrument. The CDR for the ground systems will occur in March 2016 and the CDR for the Mission component at a later date, after the host spacecraft has been selected. TEMPO is on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available.TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Instruments from Europe (Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, with a major focus on intercontinental pollution transport. TEMPO will launch at a prime time to be a component of this constellation

  12. Status of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2016-12-01

    TEMPO is now in the Assembly, Integration and Test (AI&T) phase, having passed its Key Decision Point C, Critical Design Reviews (CDRs) for the instrument and the ground systems, and the Test Readiness Review (TRR). The TEMPO instrument is scheduled for delivery in August 2017. The request for proposals to host TEMPO on a commercial geostationary satellite is scheduled for release by May 2017, with host selection hopefully completed by the end of calendar 2017. TEMPO is thus on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City and Cuba to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. It provides a measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the high variability in the diurnal cycle of emissions and chemistry. The small spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.TEMPO takes advantage of a GEO host spacecraft to provide a mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available.TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Instruments from Europe (Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, with a major focus on intercontinental pollution transport. TEMPO will launch at a prime time to be a component of this constellation.

  13. Tropospheric Emissions: Monitoring of Pollution Overview

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David; Al-Saadi, Jay; Janz, Scott

    2015-01-01

    TEMPO is now well into its implementation phase, having passed both its Key Decision Point C and the Critical Design Review (CDR) for the instrument. The CDR for the ground systems will occur in March 2016 and the CDR for the Mission component at a later date, after the host spacecraft has been selected. TEMPO is on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions by 50 percent. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Instruments from Europe (Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, with a major focus on intercontinental pollution transport. TEMPO will launch at a prime time to be a component of this constellation.

  14. Pollution monitoring using bees: a new service provided by honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Thomas, J.M.; Simpson, J.C.

    1983-10-01

    The objectives are to provide a tool for assessing pollutant distributions and the effects of pollutants on living systems. The potential of bees as pollution monitors was studied by examining bees exposed to toxic metals near a smelter in Montana and bees in the area surrounding a hazardous waste disposal site near Puget Sound, Washington. Levels of toxic metals in the bees and brood survival were examined. It was concluded bees were, indeed, suitable indicators of pollution levels. (ACR)

  15. 40 CFR Table 3 to Subpart Bbbbbb... - Applicability of General Provisions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Maintain monitoring system in a manner consistent with good air pollution control practices Yes. § 63.8(c...) Maintenance records Recordkeeping of maintenance on air pollution control and monitoring equipment Yes. § 63... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  16. 40 CFR 63.7113 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitor an add-on air pollution control device, you must meet the requirements in paragraphs (g)(1) and (2... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  17. 40 CFR 63.7113 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitor an add-on air pollution control device, you must meet the requirements in paragraphs (g)(1) and (2... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  18. 40 CFR 63.7113 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitor an add-on air pollution control device, you must meet the requirements in paragraphs (g)(1) and (2... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  19. 40 CFR 63.7113 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitor an add-on air pollution control device, you must meet the requirements in paragraphs (g)(1) and (2... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  20. 40 CFR Table 3 to Subpart Bbbbbb... - Applicability of General Provisions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Maintain monitoring system in a manner consistent with good air pollution control practices Yes. § 63.8(c...) Maintenance records Recordkeeping of maintenance on air pollution control and monitoring equipment Yes. § 63... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  1. 40 CFR Table 3 to Subpart Bbbbbb... - Applicability of General Provisions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Maintain monitoring system in a manner consistent with good air pollution control practices Yes. § 63.8(c...) Maintenance records Recordkeeping of maintenance on air pollution control and monitoring equipment Yes. § 63... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  2. Pollution Analyzing and Monitoring Instruments.

    ERIC Educational Resources Information Center

    1972

    Compiled in this book is basic, technical information useful in a systems approach to pollution control. Descriptions and specifications are given of what is available in ready made, on-the-line commercial equipment for sampling, monitoring, measuring and continuously analyzing the multitudinous types of pollutants found in the air, water, soil,…

  3. Assessment of near-source air pollution at a fine spatial scale utilizing a mobile measurement platform approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle, an all-electric vehicle measuring real-time concentrations of particulate and gaseous poll...

  4. Monitoring of phenolic compounds and surfactants in water of Ganga Canal, Haridwar (India)

    NASA Astrophysics Data System (ADS)

    Seth, Richa; Singh, Prashant; Mohan, Manindra; Singh, Rakesh; Aswal, Ravinder Singh

    2013-12-01

    The Ganga Canal emerging out from Ganga River has great ritual importance among pilgrims and tourists at Haridwar, Uttarakhand, India. The Canal is being polluted due to mass bathing, washing, disposal of sewage, industrial waste and these human activities are deteriorating its water quality. To determine the impact of these activities, Ganga Canal water quality at five sites between Haridwar and Roorkee namely Pantdweep, Har Ki Pauri, Singhdwar, Piran Kaliyar and Old Bridge, Roorkee has been analyzed for organic pollutants phenolic compounds and surfactants, which have rarely been assessed and reported so far. The results of analysis show that phenolic compounds are not present in water samples of selected five sites during bi-monthly monitoring from January 2012 to November 2012. The Har Ki Pauri, Singhdwar, Piran Kaliyar and Old Bridge, Roorkee sites have been detected with surfactant concentrations (1.18, 1.63, 3.2 and 2.5 mg/l) more than permissible limit (1.00 mg/l). Also at most of the sites, surfactants' concentration crossed the desirable limit of BIS during the period of analysis. This distribution of surfactants in water has potential risk for skin diseases and cancer and requires regular monitoring with appropriate measures.

  5. Statistical analysis of long-term monitoring data for persistent organic pollutants in the atmosphere at 20 monitoring stations broadly indicates declining concentrations.

    PubMed

    Kong, Deguo; MacLeod, Matthew; Hung, Hayley; Cousins, Ian T

    2014-11-04

    During recent decades concentrations of persistent organic pollutants (POPs) in the atmosphere have been monitored at multiple stations worldwide. We used three statistical methods to analyze a total of 748 time series of selected POPs in the atmosphere to determine if there are statistically significant reductions in levels of POPs that have had control actions enacted to restrict or eliminate manufacture, use and emissions. Significant decreasing trends were identified in 560 (75%) of the 748 time series collected from the Arctic, North America, and Europe, indicating that the atmospheric concentrations of these POPs are generally decreasing, consistent with the overall effectiveness of emission control actions. Statistically significant trends in synthetic time series could be reliably identified with the improved Mann-Kendall (iMK) test and the digital filtration (DF) technique in time series longer than 5 years. The temporal trends of new (or emerging) POPs in the atmosphere are often unclear because time series are too short. A statistical detrending method based on the iMK test was not able to identify abrupt changes in the rates of decline of atmospheric POP concentrations encoded into synthetic time series.

  6. Near-Port Air Quality Assessment Utilizing a Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...

  7. Chemical pollution assessment and prioritisation model for the Upper and Middle Vaal water management areas of South Africa.

    PubMed

    Dzwairo, B; Otieno, F A O

    2014-12-01

    A chemical pollution assessment and prioritisation model was developed for the Upper and Middle Vaal water management areas of South Africa in order to provide a simple and practical Pollution Index to assist with mitigation and rehabilitation activities. Historical data for 2003 to 2008 from 21 river sites were cubic-interpolated to daily values. Nine parameters were considered for this purpose, that is, ammonium, chloride, electrical conductivity, dissolved oxygen, pH, fluoride, nitrate, phosphate and sulphate. Parameter selection was based on sub-catchment pollution characteristics and availability of a consistent data range, against a harmonised guideline which provided five classes. Classes 1, 2, 3 and 4 used ideal catchment background values for Vaal Dam, Vaal Barrage, Blesbokspruit/Suikerbosrant and Klip Rivers, respectively. Class 5 represented values which fell above those for Klip River. The Pollution Index, as provided by the model, identified pollution prioritisation monitoring points on Rietspruit-W:K2, Natalspruit:K12, Blesbokspruit:B1, Rietspruit-L:R1/R2, Taaibosspruit:T1 and Leeuspruit:L1. Pre-classification indicated that pollution sources were domestic, industrial and mine effluent. It was concluded that rehabilitation and mitigation measures should prioritise points with high classes. Ability of the model to perform simple scenario building and analysis was considered to be an effective tool for acid mine drainage pollution assessment.

  8. Impact of wildfires on regional air pollution | Science Inventory ...

    EPA Pesticide Factsheets

    We examine the impact of wildfires and agricultural/prescribed burning on regional air pollution and Air Quality Index (AQI) between 2006 and 2013. We define daily regional air pollution using monitoring sites for ozone (n=1595), PM2.5 collected by Federal Reference Method (n=1058), and constituents of PM2.5 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network (n=264) and use satellite image analysis from the NOAA Hazard Mapping System (HMS) to determine days on which visible smoke plumes are detected in the vertical column of the monitoring site. To examine the impact of smoke from these fires on regional air pollution we use a two stage approach, accounting for within site (1st stage) and between site (2nd stage) variations. At the first stage we estimate a monitor-specific plume day effect describing the relative change in pollutant concentrations on the days impacted by smoke plume while accounting for confounding effects of season and temperature_. At the second stage we combine monitor-specific plume day effects with a Bayesian hierarchical model and estimate a pooled nationally-averaged effect. HMS visible smoke plumes were detected on 6% of ozone, 8% of PM2.5 and 6% of IMPROVE network monitoring days. Our preliminary results indicate that the long range transport of air pollutants from wildfires and prescribed burns increase ozone concentration by 11% and PM2.5 mass by 34%. On all of the days where monitoring sites were AQI

  9. Assessment of the use of space technology in the monitoring of oil spills and ocean pollution: Executive summary

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R. (Editor)

    1980-01-01

    The adequacy of current technology in terms of stage of maturity, of sensing, support systems, and information extraction was assessed relative to oil spills, waste pollution, and inputs to pollution trajectory models. Needs for advanced techniques are defined and the characteristics of a future satellite system are determined based on the requirements of U.S. agencies involved in pollution monitoring.

  10. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  11. Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media.

    PubMed

    Baltrėnaitė, Edita; Baltrėnas, Pranas; Lietuvninkas, Arvydas; Serevičienė, Vaida; Zuokaitė, Eglė

    2014-01-01

    The composition of the ambient air is constantly changing; therefore, the monitoring of ambient air quality to detect the changes caused by aerogenic pollutants makes the essential part of general environmental monitoring. To achieve more effective improvement of the ambient air quality, the Directive 2008/50/EC on 'Ambient Air Quality and Cleaner Air for Europe' was adopted by the European Parliament and the European Council. It informed the public and enterprises about a negative effect of pollution on humans, animals and plants, as well as about the need for monitoring aerogenic pollutants not only at the continuous monitoring stations but also by using indicator methods, i.e. by analysing natural deposit media. The problem of determining the relationship between the accumulation level of pollutants by a deposit medium and the level of air pollution and its risks is constantly growing in importance. The paper presents a comprehensive analysis of the response of the main four deposit media, i.e. snow cover, soil, pine bark and epigeic mosses, to the long-term pollution by aerogenic pollutants which can be observed in the area of oil refinery influence. Based on the quantitative expressions of the amounts of the accumulated pollutants in the deposit media, the territory of the oil refinery investigated in this paper has been referred to the areas of mild or moderate pollution.

  12. Water Quality Monitoring Manual.

    ERIC Educational Resources Information Center

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  13. Spontaneous plant colonization of brownfield soil and sludges and effects on substrate properties and pollutants mobility

    NASA Astrophysics Data System (ADS)

    Rocco, Claudia; Agrelli, Diana; Gonzalez, Maria Isabel; Mingo, Antonio; Motti, Riccardo; Stinca, Adriano; Coppola, Ida; Adamo, Paola

    2017-04-01

    This work was done on brownfield soil and sludges from a dismantled steel plant, moderately polluted by heavy metals (mainly Pb and Zn), 1) to analyzed the effects of substrate properties and environmental conditions on spontaneous vegetation; 2) to assess changes in the chemical properties of soils and sludges, with particular reference to the mobility and bioavailability of pollutants, induced by spontaneous plants revegetation. From 2006 to 2011, spontaneous plant colonization was monitored in the presence or absence of acidic peat both inside the degraded brownfield site and after transferal into a nearby Oak Park environment. During the five experimental years the vegetation growth was monitored using phytosociological method and data analyzed statistically. Both substrates, before and after plant growth, were analyzed for main chemical properties. Metals mobility and bioavailability was assessed using single (H2O; DTPA) and sequential extractions (EU-BCR). At the end of the experiment, plant ability to uptake metal was evaluated on selected species. Overall, 57 plant species grew healthily on the substrates. The combination of soil and sludges with peat resulted in an effective revegetation with a sensible increasing of plants biomass. Most of the species were found in the park (91%), showing plant colonization was mainly affected by the immediate environment rather than by substrate properties. Furthermore, after the five years, the substrate properties (pH, O.C.) were slightly affected by plant growth and, although metal pollutants in both substrates are characterized by low water solubility and DTPA availability, after plants growth an increase (even if not significant) of rhizospheric Cu, Fe, Mn and Zn solubility in H2O was detected. Metals speciation indicated a low risk of Pb and Zn mobility being either largely trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. Restricted metal uptake and tissue accumulation by selected plants were measured, with only Daucus carota showing a higher ability to translocate metals to shoots (shoot/root metal concentration quotient >1 with peat). Water always underestimated plant uptake, while DTPA and sequential extractions better predicted Pb and Zn uptake. Phytostabilization with native plant species can be an efficient, environmentally appropriate and low cost technology for rehabilitation of industrial sites. The addition of organic matter may help the spontaneous re-vegetation and could facilitate the recovery of degraded environment. However, the changing induced by peat and plants might induced a solubilization of metal pollutants. A continuous monitoring of the potential changes of pollutants mobility-bioavailability by plants is crucial to prevent risks to the environment and human health. Key words: Heavy metals, phytoremediation, Peat addition, bioavailability, sequential extractions

  14. 40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specific air pollution concentration at a particular air quality monitoring location. (2) Demonstration to... exceptional event caused a specific air pollution concentration in excess of one or more national ambient air... specific air pollution concentration in excess of one or more national ambient air quality standards at a...

  15. Combined-sewer overflow data and methods of sample collection for selected sites, Detroit, Michigan

    USGS Publications Warehouse

    Sweat, M.J.; Wolf, J.R.

    1997-01-01

    The discharge of untreated sewage is illegal in Michigan unless permitted under Act 245 due to public health concerns. In October, 1992, the Michigan Department of Natural Resources (MDNR, now the Michigan Department of Environmental Quality) issued a discharge permit to Detroit authorizing discharge from the City's 78 combined-sewer overflows (CSOs), and requiring that a long-term control plan be developed to achieve mandated waterquality standards in receiving waters. The U.S. Environmental Protection Agency (USEPA) issued a national CSO policy in April, 1994, which requires (1) operational improvements of existing systems to minimize discharges and prevent their occurrence in dry weather; (2) publicly operated treatment works (POTW) to characterize the frequency and volume of discharges; and (3) construction of CSO discharge control projects where necessary.In 1993, the Southeast Michigan Council of Governments (SEMCOG) requested assistance from the U.S. Geological Survey (USGS), in cooperation with Detroit Water and Sewerage Department (DWSD) and MDNR, Surface Water Quality Division, to address part of the technical data requirements for requirement 2. The USGS scope of services for this interdisciplinary, multiagency investigation consisted of collection, compilation, and interpretation of the necessary hydrologic data, and documentation of results. In addition to USGS personnel, personnel from DWSD assisted with the field collection of samples and in alerting USGS personnel to CSO effluent discharges.From October 1, 1994 through December 31, 1995, four CSOs discharging to the Detroit River in Detroit, Michigan (figure 1) were monitored to characterize storm-related water quantity and quality. Water velocity, stage, and precipitation were measured continuously and recorded at 5-minute intervals. Water-quality samples were collected at discrete times during storms and analyzed for inorganic and organic pollutants. Discharges were sampled between 30 and 78 times for inorganic pollutants, and between 14 and 22 times for organic pollutants, depending on the site. These samples represented between 8 and 17 storms during which one or more of the four selected CSOs discharged. The monitored pollutants included fecal coliform, fecal streptococci, and Escherichia coli; antimony, arsenic, beryllium, cadmium, hexavalent chromium, total chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, silver, thallium and zinc; and polychlorinated biphenyl congeners, volatile organic compounds, and polynuclear aromatic hydrocarbons. Metal and non-metal inorganic pollutants were detected at all sites. Many organic pollutants were not detected at all.

  16. Comparison between air pollution concentrations measured at the nearest monitoring station to the delivery hospital and those measured at stations nearest the residential postal code regions of pregnant women in Fukuoka.

    PubMed

    Michikawa, Takehiro; Morokuma, Seiichi; Nitta, Hiroshi; Kato, Kiyoko; Yamazaki, Shin

    2017-06-13

    Numerous earlier studies examining the association of air pollution with maternal and foetal health estimated maternal exposure to air pollutants based on the women's residential addresses. However, residential addresses, which are personally identifiable information, are not always obtainable. Since a majority of pregnant women reside near their delivery hospitals, the concentrations of air pollutants at the respective delivery hospitals may be surrogate markers of pollutant exposure at home. We compared air pollutant concentrations measured at the nearest monitoring station to Kyushu University Hospital with those measured at the closest monitoring stations to the respective residential postal code regions of pregnant women in Fukuoka. Aggregated postal code data for the home addresses of pregnant women who delivered at Kyushu University Hospital in 2014 was obtained from Kyushu University Hospital. For each of the study's 695 women who resided in Fukuoka Prefecture, we assigned pollutant concentrations measured at the nearest monitoring station to Kyushu University Hospital and pollutant concentrations measured at the nearest monitoring station to their respective residential postal code regions. Among the 695 women, 584 (84.0%) resided in the proximity of the nearest monitoring station to hospital or one of the four other stations (as the nearest stations to their respective residential postal code region) in Fukuoka city. Pearson's correlation for daily mean concentrations among the monitoring stations in Fukuoka city was strong for fine particulate matter (PM 2.5 ), suspended particulate matter (SPM), and photochemical oxidants (Ox) (coefficients ≥0.9), but moderate for coarse particulate matter (the result of subtracting the PM 2.5 from the SPM concentrations), nitrogen dioxide, and sulphur dioxide. Hospital-based and residence-based concentrations of PM 2.5 , SPM, and Ox were comparable. For PM 2.5 , SPM, and Ox, exposure estimation based on the delivery hospital is likely to approximate that based on the home of pregnant women.

  17. Noise monitoring and adverse health effects in residents in different functional areas of Luzhou, China.

    PubMed

    Han, Zhi-Xia; Lei, Zhang-Heng; Zhang, Chun-Lian; Xiong, Wei; Gan, Zhong-Lin; Hu, Ping; Zhang, Qing-Bi

    2015-03-01

    The purpose of the study was to investigate the noise pollution situation and the resulting adverse effect on residents' health in Luzhou, China, to provide data for noise pollution prevention policies and interventions. Four different functional areas (commercial, construction, residential, and transportation hub areas) were chosen to monitor noise level for 3 months. The survey was performed by questionnaire on the spot on randomly selected individuals; it collected data on the impact of noise on residents' health (quality of sleep, high blood pressure, subjective feeling of nervous system damage, and attention) as well as the knowledge of noise-induced health damage, the degree of adaptation to noise, and their solutions. The noise levels of residential, commercial, transportation, and construction areas exceeded the national standards (P < .001). Sleep quality, prevalence of hypertension, and attention in transportation hub areas were significantly different from those in the other 3 areas (P < .05); only 24.46% of people knew the health hazards associated with noise; 64.57% of residents have adapted to the current noise environment. Most of them have to close the doors and windows to reduce noise. The noise pollution situation in Luzhou, China, is serious, especially the traffic noise pollution. Residents pay less attention to it and adopt single measures to reduce the noise. We should work toward the prevention and control of traffic noise and improve the residents' awareness to reduce the adverse health effects of noise. © 2014 APJPH.

  18. Monitoring of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multiphoton Ionization/Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA’s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as...

  19. Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…

  20. The relationship between changes in daily air pollution and hospitalizations in Perth, Australia 1992-1998: a case-crossover study.

    PubMed

    Hinwood, A L; De Klerk, N; Rodriguez, C; Jacoby, P; Runnion, T; Rye, P; Landau, L; Murray, F; Feldwick, M; Spickett, J

    2006-02-01

    A case-crossover study was undertaken to investigate the relationship between daily air pollutant concentrations and daily hospitalizations for selected disease categories in Perth, Western Australia. Daily measurements of particles (measured by nephelometry and PM2.5), photochemical oxidants (measured as ozone), nitrogen dioxide (NO2) and carbon monoxide (CO) concentrations were obtained from 1992 to 1998 via a metropolitan network of monitoring stations. Daily PM2.5 concentrations were estimated using monitored data, modelling and interpolation. Hospital morbidity data for respiratory, cardiovascular (CVD), gastrointestinal (GI) diseases, chronic obstructive pulmonary diseases (COPD) excluding asthma; pneumonia/influenza diseases; and asthma were obtained and categorized into all ages, less than 15 years and greater than 65 years. Gastrointestinal morbidity was used as a control disease. The data were analyzed using conditional logistic regression. The results showed a small number of significant associations for daily changes in particle concentrations, nitrogen dioxide and carbon monoxide for the respiratory diseases, CODP, pneumonia, asthma and CVD hospitalizations. Changes in ozone concentrations were not significantly associated with any disease outcomes. These data provide useful information on the potential health impacts of air pollution in an airshed with very low sulphur dioxide concentrations and lower nitrogen dioxide concentrations commonly found in many other cities.

  1. Using remote sensing imagery to monitoring sea surface pollution cause by abandoned gold-copper mine

    NASA Astrophysics Data System (ADS)

    Kao, H. M.; Ren, H.; Lee, Y. T.

    2010-08-01

    The Chinkuashih Benshen mine was the largest gold-copper mine in Taiwan before the owner had abandoned the mine in 1987. However, even the mine had been closed, the mineral still interacts with rain and underground water and flowed into the sea. The polluted sea surface had appeared yellow, green and even white color, and the pollutants had carried by the coast current. In this study, we used the optical satellite images to monitoring the sea surface. Several image processing algorithms are employed especial the subpixel technique and linear mixture model to estimate the concentration of pollutants. The change detection approach is also applied to track them. We also conduct the chemical analysis of the polluted water to provide the ground truth validation. By the correlation analysis between the satellite observation and the ground truth chemical analysis, an effective approach to monitoring water pollution could be established.

  2. International co-operative program on assessment and monitoring of air pollution effects on forests: The Sierra Ancha Experimental Forest, Arizona

    Treesearch

    Boris Poff; Daniel G. Neary

    2008-01-01

    At the end of the 2007 Fiscal Year, the Experimental Forests and Ranges (EFR) Synthesis Network Committee awarded funds to 18 sites to establish a strategic ICP Level II (described below) synthesis network in the United States. Eleven Experimental Forest were selected to be included in the network, as well as seven Long Term Ecological Research (LTER) sites. This will...

  3. Special Advanced Studies for Pollution Prevention. Delivery Order 0065: The Monitor - Spring 2001

    DTIC Science & Technology

    2001-06-01

    coating) baths by remov- ing trace contaminant metals as well as restoring and maintaining the hexavalent chromium or ferric species. The oxidizing...power for the process acid is restored by oxidation (trivalent chromium to hexavalent chromium or ferrous to ferric) at the anode. Other sources of...selection to the application. UF membranes are suitable for particles in the molecular range of 0.1-0.01microns. Microfiltration membranes are similar

  4. Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles.

    PubMed

    Dmuchowski, W; Bytnerowicz, A

    1995-01-01

    Maps of the distribution of environmental pollution by sulfur (S), zinc (Zn), cadmium (Cd), lead (Pb), copper (Cu), and arsenic (As) for the territory of Poland and the Warsaw (Warszawa) district were developed on the basis of chemical analysis of Scots pine (Pinus sylvestris L.) needles collected from randomly selected sampling points during 1983-1985. The maps show deposition zones for the studied elements and can help in identification of sources and directions of air pollution dispersion. This study indicated that vegetation in Poland is greatly endangered by sulfur dioxide (SO(2)) and other sulfurous air pollutants, whereas Zn, Cd, Pb, and As do not pose an immediate threat to vegetation in most of the country's territory. However, in the urban-industrial agglomeration of Katowice-Cracow, very high pollution with Z, Cd, Pb and As could limit growth and development of some sensitive plant species. Higher than normal levels of As in some areas of Poland (Upper Silesia, Glogow-Lubin Copper Region, and areas close to the Russian border near Braniewo) might affect the health of humans and animals. Results of this study indicated that Poland's environment was not contaminated with Cu.

  5. Indoor air pollution in old people's homes related to some health problems: a survey study.

    PubMed

    Coelho, C; Steers, M; Lutzler, P; Schriver-Mazzuoli, L

    2005-08-01

    The present research reports on a survey of 96 subjects between the ages of 60 and 95 years, living close to Paris in a social collective habitat. The aim was to show, using goodness-of-fit statistical tests (P < 0.1), how old people lifestyles can subject them to generated chemical or bacteriological indoor pollutants. Risk factors due to lifestyles were analyzed in relation to complaints and to health condition. There are many ways that old people are exposed to pollutants: difficulty in maintaining the residence, preference for staying in the kitchens, substantial use of cleaning chemicals. However, the principal risk for health problems is arguably inadequate ventilation (unclean screens, blocked air vents, etc.), which increases the concentration of indoor pollutants. These risks are amplified by ignorance about the hazards of inadequate ventilation. The present investigation suggests that the lifestyle and the behavior of old people could be the cause of an interior air pollution of their housing. Measures realized in representative dwellings selected in relation to results must confirm that these risks would require the installation of an automatic monitoring system of the indoor air near these people.

  6. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution.

    PubMed

    Gillings, Michael R; Gaze, William H; Pruden, Amy; Smalla, Kornelia; Tiedje, James M; Zhu, Yong-Guan

    2015-06-01

    Around all human activity, there are zones of pollution with pesticides, heavy metals, pharmaceuticals, personal care products and the microorganisms associated with human waste streams and agriculture. This diversity of pollutants, whose concentration varies spatially and temporally, is a major challenge for monitoring. Here, we suggest that the relative abundance of the clinical class 1 integron-integrase gene, intI1, is a good proxy for pollution because: (1) intI1 is linked to genes conferring resistance to antibiotics, disinfectants and heavy metals; (2) it is found in a wide variety of pathogenic and nonpathogenic bacteria; (3) its abundance can change rapidly because its host cells can have rapid generation times and it can move between bacteria by horizontal gene transfer; and (4) a single DNA sequence variant of intI1 is now found on a wide diversity of xenogenetic elements, these being complex mosaic DNA elements fixed through the agency of human selection. Here we review the literature examining the relationship between anthropogenic impacts and the abundance of intI1, and outline an approach by which intI1 could serve as a proxy for anthropogenic pollution.

  7. Control of Pollutants in the Trans-Boundary Area of Taihu Basin, Yangtze Delta.

    PubMed

    Wang, Xiao; Katopodes, Nikolaos; Shen, Chunqi; Wang, Hua; Pang, Yong; Zhou, Qi

    2016-12-17

    This work focuses on pollution control in the trans-boundary area of Taihu Basin. Considering the unique characteristics of the river network in the study area, a new methodology of pollution control is proposed aiming at improving the water quality in the trans-boundary area and reducing conflicts between up and downstream regions. Based on monitoring data and statistical analysis, important trans-boundary cross sections identified by the regional government were selected as important areas for consideration in developing management objectives; using a 1-D mathematicmodel and an effective weight evaluation model, the trans-boundary effective control scope (TECS) of the study area was identified as the scope for pollutant control; the acceptable pollution load was then estimated using an established model targeting bi-directional flow. The results suggest that the water environmental capacity for chemical oxygen demand (COD), in order to guarantee reaching the target water quality standard in the TECS, is 160,806 t/year, and amounts to 16,098 t/year, 3493 t/year, and 39,768 t/year for ammonia nitrogen, total nitrogen, and total phosphorus, respectively. Our study method and results have been incorporated into the local government management project, and have been proven to be useful in designing a pollution control strategy and management policy.

  8. Control of Pollutants in the Trans-Boundary Area of Taihu Basin, Yangtze Delta

    PubMed Central

    Wang, Xiao; Katopodes, Nikolaos; Shen, Chunqi; Wang, Hua; Pang, Yong; Zhou, Qi

    2016-01-01

    This work focuses on pollution control in the trans-boundary area of Taihu Basin. Considering the unique characteristics of the river network in the study area, a new methodology of pollution control is proposed aiming at improving the water quality in the trans-boundary area and reducing conflicts between up and downstream regions. Based on monitoring data and statistical analysis, important trans-boundary cross sections identified by the regional government were selected as important areas for consideration in developing management objectives; using a 1-D mathematicmodel and an effective weight evaluation model, the trans-boundary effective control scope (TECS) of the study area was identified as the scope for pollutant control; the acceptable pollution load was then estimated using an established model targeting bi-directional flow. The results suggest that the water environmental capacity for chemical oxygen demand (COD), in order to guarantee reaching the target water quality standard in the TECS, is 160,806 t/year, and amounts to 16,098 t/year, 3493 t/year, and 39,768 t/year for ammonia nitrogen, total nitrogen, and total phosphorus, respectively. Our study method and results have been incorporated into the local government management project, and have been proven to be useful in designing a pollution control strategy and management policy. PMID:27999331

  9. Sulfur Dioxide Pollution Monitor.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  10. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  11. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  12. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  13. Integrated monitoring approach to investigate the contamination, mobilization and risks of sediments

    NASA Astrophysics Data System (ADS)

    Bölscher, Jens; Schulte, Achim; Terytze, Konstantin

    2017-04-01

    The use of surface water bodies for manufacturing purposes has been common not only in Germany since the beginning of industrialization, and this has led to a high accumulation of different chemical contaminants in the sediments of aquatic ecosystems. In particular, water bodies with very low flow conditions like the "Rummelsburger See", an anabranch of the Spree River located in the centre of Berlin, have been highly affected. Given that, it has become necessary to obtain improved knowledge concerning the current sediment dynamics, the rate of sedimentation and the current level of contamination and toxicity compared to earlier conditions. Against this background, a survey was set up, consisting of an integrated monitoring approach that focuses on hydraulics, sediment dynamics and contamination, including boundary conditions, such as weather and motor-boat activities to find information, which would help design appropriate treatment in the future. To detect the spatial distribution of pollutants in the sediment, over 200 sediment samples were collected via drill cores at 16 locations. The upper 15 cm of each drill core was systematically divided into 5 layers (each of 3 cm) for separate examination. The investigation of sediment deposition and remobilisation rates was accomplished by installing 18 sediment traps. The presence of selected heavy metals and organic pollutants in the sediments was determined for every sampling location and layer of the drill cores, as well as for all sediment traps. Changes in boundary conditions which influence the spatial and temporal distribution of deposition and resuspension were monitored by placing devices within the water body and taking different mobile measurements (3-D flow conditions, oxygen, turbidity, chlorophyll-a, temperature). The analysis of sediment and suspended matter included the determination of the total content of inorganic (Hg, Cd, Cr, Pb, Ni, Cu, Zn) and organic compounds (polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH), selected nitro-compounds, selected organotin compounds and polychlorinated biphenyls (PCB, AOX and EOX) in the sediment and suspended matter. The physico-chemical conditions of the samples were examined as well. The research into soluble and mobilizable sediment-bounded pollutants is based upon a 24 hour batch test. Certain toxic effects of the sediments were determined by different ecotoxicological test methods. In addition, the thresholds of the sediment quality guidelines published by de Deckere et al. (2011) were used to assess the solid contents. Because of the high concentrations of the pollutants, the consensus 2 values are used as thresholds in this study. The results provide important details on the spatial and temporal distribution of sedimentation and contamination. All sediments of the analysed cores and traps remain highly contaminated with heavy metals and organic compounds. The results indicate the resuspension, transport and accumulation of these sediments and show at least that toxic effects for the benthic taxa are expected. This kind of approach is necessary to create a basis for a remediation programme for, and a risk assessment of, polluted water bodies.

  14. Monitoring key organic indoor pollutants and their elimination in a biotrickling biofilter.

    PubMed

    Saucedo-Lucero, José Octavio; Revah, Sergio

    2018-04-01

    A biotrickling filter was evaluated to treat the air of the interior of a bioprocess research laboratory. Initially, various solid-phase microextraction (SPME) fibers were used to identify and quantify the volatile organic pollutants and hexane, methyl isobutyl ketone, benzene, toluene, and xylene were further selected as indicators due to their prevalence and relative abundance. The system treated organic loading rates between 0.16 mg carbon  m -3  h -1 and close to 30 mg carbon  m -3  h -1 achieving removal efficiencies (RE) over 85% during 136 operational days. Respirometry experiments demonstrated that moderate acidification (below 5.0), due to microbial activity, adversely affected biofilter performance and consequently pH control was necessary to maintain performance.

  15. Trends in atmospheric heavy metals abundances over the Russian part of EMEP region in 1990-2012

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Konkova, Elizaveta S.

    2016-04-01

    The European part of Russia is covered by two atmospheric environment monitoring networks established in the 1970s-1980s to monitor and evaluate anthropogenic pollution of regional/background natural environment. These are EMEP - European Monitoring and Evaluation Program of transboundary atmospheric pollutant transmission (under the UN ECE Convention on Long-Range Transboundary Air Pollution) and IBMoN - Integrated Background Monitoring Network of environmental toxic pollution (prior to 1990 under the UNEP/GEMS supervision, mostly for East European countries). IGCE laboratories operate as analytical centers for both networks. Historically, IBMoN was partly implemented at EMEP sites to support this international program with additional (optional) data. IBMoN datasets were selected for analysis of atmospheric heavy metal trends in the Russian territory of EMEP region for the last twenty three years due to more intensive operation up to now [1, 2]. Atmospheric heavy metals are collected at the remote sites with the air samples of atmospheric aerosols deposited on Petryanov's cellulose acetate filters through high-volume pumping during 24 hours. To measure lead and cadmium content, filters are transferred into the solution to determine total amounts by the Atomic Absorption Spectroscopy (AAS) with flameless atomization. Precipitation samples (collected monthly with acidic preserving) are directly injected into the AAS detection module after filtering. The sampling procedure, special processing and analytical techniques allow us to measure concentrations at substantially low levels [3, 2]. In this study we investigate the long term trends of lead and cadmium in air and precipitation at two stations, viz. Astrakhan Biosphere Reserve (46°N, 49°E) and Danki (Oka-Terrace Biosphere Reserve, 54.9°N, 37.8°E). Following the EMEP general recommendations, the evaluation was done for two continuous periods covering 1990-2001 and 2002-2012, respectively. We apply the common methodology recommended by WMO/EMEP Task Force for trend evaluation, implemented in software developed and distributed by EMEP [4]. This methodology allows approximation of apparent trends using the superposition of the exponential (main) and residual components obtained using the ad hoc trend regression model. We further use so-called reduction parameters to investigate quantitatively the nature of trends: The total over the period (Rtot) and annual average (Rave), with the latter corresponding to increasing trend at negative values. Overall, temporal tendencies of airborne cadmium and lead demonstrate similar behaviour, however on top of different average concentration levels. For both species our analysis confirms the increase in air and precipitation abundances at the regional and remote sites over the European part of Russia for the period of 2002-2012. References: 1. Gromov S.A., and S.G. Paramonov, 2015. Current status and prospects for the development of integrated background monitoring of environmental pollution. Problems of Ecological Monitoring and Ecosystem Modelling, v. XXVI, N 1, p. 205-221. 2. Rovinsky F.Ya. (Ed.), 1989. Analytical review of environmental pollution with heavy metals in background areas of the CMEA member countries (1982-1989). Moscow, Gidrometeoizdat, 88 p. 3. Izrael Yu.A., and F.Ya. Rovinsky, 1991. Integrated background monitoring of environmental pollution in mid-latitude Eurasia. WMO Global Atmospheric Watch No 72, WMO/TD No. 434, 104 p. 4. MSC-East, 2015. Methodology of trend analysis of air quality data (http://www.msceast.org/documents/ Methodology_of_trend_analysis.pdf).

  16. Air Emissions Monitoring for Permits

    EPA Pesticide Factsheets

    Operating permits document how air pollution sources will demonstrate compliance with emission limits and also how air pollution sources will monitor, either periodically or continuously, their compliance with emission limits and all other requirements.

  17. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  18. Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK.

    PubMed

    Samoli, Evangelia; Atkinson, Richard W; Analitis, Antonis; Fuller, Gary W; Green, David C; Mudway, Ian; Anderson, H Ross; Kelly, Frank J

    2016-05-01

    There is evidence of adverse associations between short-term exposure to traffic-related pollution and health, but little is known about the relative contribution of the various sources and particulate constituents. For each day for 2011-2012 in London, UK over 100 air pollutant metrics were assembled using monitors, modelling and chemical analyses. We selected a priori metrics indicative of traffic sources: general traffic, petrol exhaust, diesel exhaust and non-exhaust (mineral dust, brake and tyre wear). Using Poisson regression models, controlling for time-varying confounders, we derived effect estimates for cardiovascular and respiratory hospital admissions at prespecified lags and evaluated the sensitivity of estimates to multipollutant modelling and effect modification by season. For single day exposure, we found consistent associations between adult (15-64 years) cardiovascular and paediatric (0-14 years) respiratory admissions with elemental and black carbon (EC/BC), ranging from 0.56% to 1.65% increase per IQR change, and to a lesser degree with carbon monoxide (CO) and aluminium (Al). The average of past 7 days EC/BC exposure was associated with elderly (65+ years) cardiovascular admissions. Indicated associations were higher during the warm period of the year. Although effect estimates were sensitive to the adjustment for other pollutants they remained consistent in direction, indicating independence of associations from different sources, especially between diesel and petrol engines, as well as mineral dust. Our results suggest that exhaust related pollutants are associated with increased numbers of adult cardiovascular and paediatric respiratory hospitalisations. More extensive monitoring in urban centres is required to further elucidate the associations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK

    PubMed Central

    Samoli, Evangelia; Atkinson, Richard W; Analitis, Antonis; Fuller, Gary W; Green, David C; Mudway, Ian; Anderson, H Ross; Kelly, Frank J

    2016-01-01

    Objectives There is evidence of adverse associations between short-term exposure to traffic-related pollution and health, but little is known about the relative contribution of the various sources and particulate constituents. Methods For each day for 2011–2012 in London, UK over 100 air pollutant metrics were assembled using monitors, modelling and chemical analyses. We selected a priori metrics indicative of traffic sources: general traffic, petrol exhaust, diesel exhaust and non-exhaust (mineral dust, brake and tyre wear). Using Poisson regression models, controlling for time-varying confounders, we derived effect estimates for cardiovascular and respiratory hospital admissions at prespecified lags and evaluated the sensitivity of estimates to multipollutant modelling and effect modification by season. Results For single day exposure, we found consistent associations between adult (15–64 years) cardiovascular and paediatric (0–14 years) respiratory admissions with elemental and black carbon (EC/BC), ranging from 0.56% to 1.65% increase per IQR change, and to a lesser degree with carbon monoxide (CO) and aluminium (Al). The average of past 7 days EC/BC exposure was associated with elderly (65+ years) cardiovascular admissions. Indicated associations were higher during the warm period of the year. Although effect estimates were sensitive to the adjustment for other pollutants they remained consistent in direction, indicating independence of associations from different sources, especially between diesel and petrol engines, as well as mineral dust. Conclusions Our results suggest that exhaust related pollutants are associated with increased numbers of adult cardiovascular and paediatric respiratory hospitalisations. More extensive monitoring in urban centres is required to further elucidate the associations. PMID:26884048

  20. Predictive monitoring and diagnosis of periodic air pollution in a subway station.

    PubMed

    Kim, YongSu; Kim, MinJung; Lim, JungJin; Kim, Jeong Tai; Yoo, ChangKyoo

    2010-11-15

    The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollutants in a subway system using a lifting technique with a multiway principal component analysis (MPCA) which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination. The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics of all of the indoor air samples collected during each day. These characteristics could then be used to improve the handling of strong periodic fluctuations in the air quality environment in subway systems and will allow important changes in the indoor air quality to be quickly detected. The predictive monitoring approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS) that indicated some periodic variations in the air pollutants and multivariate relationships between the measured variables. Two monitoring models--global and seasonal--were developed to study climate change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer false alarms and missed faults due to non-stationary behavior than that were experienced with the conventional methods. This method could be used to identify the contributions of various pollution sources. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Temporal variability of selected air toxics in the United States

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Hafner, Hilary R.; Chinkin, Lyle R.; Charrier, Jessica G.

    Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990-2005, 1995-2005, and 2000-2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.

  2. Appraising city-scale pollution monitoring capabilities of multi-satellite datasets using portable pollutant monitors

    NASA Astrophysics Data System (ADS)

    Aliyu, Yahaya A.; Botai, Joel O.

    2018-04-01

    The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.

  3. Water Pollution Search | ECHO | US EPA

    EPA Pesticide Factsheets

    The Water Pollution Search within the Water Pollutant Loading Tool gives users options to search for pollutant loading information from Discharge Monitoring Report (DMR) and Toxic Release Inventory (TRI) data.

  4. Use of multi-objective air pollution monitoring sites and online air pollution monitoring system for total health risk assessment in Hyderabad, India.

    PubMed

    Anjaneyulu, Y; Jayakumar, I; Hima Bindu, V; Sagareswar, G; Mukunda Rao, P V; Rambabu, N; Ramani, K V

    2005-08-01

    A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad "it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM". These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000-15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced electrochemical sensor systems (sulphur dioxide, oxides of nitrogen, carbon monoxide, hydrocarbons, ozone, mercaptans and hydrogen sulphide) and a particulate matter analyzer (total suspended particulate matter TSPM), PM2.5 and PM10). The sensor and data acquisition systems are programmed to monitor pollution levels at 1/2 hour durations during peak hours and at 1-hour intervals at other times. Presently, extensive statistical and numerical simulations are being carried out at our center to correlate the individuals living in the monitored areas with respiratory infections with air pollution.

  5. Use of Multi-Objective Air Pollution Monitoring Sites and Online Air Pollution Monitoring System for Total Health Risk Assessment in Hyderabad, India

    PubMed Central

    Anjaneyulu, Y.; Jayakumar, I.; Bindu, V. Hima; Sagareswar, G.; Rao, P.V. Mukunda; Rambabu, N.; Ramani, K. V.

    2005-01-01

    A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad “it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM”. These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000–15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced electrochemical sensor systems (sulphur dioxide, oxides of nitrogen, carbon monoxide, hydrocarbons, ozone, mercaptans and hydrogen sulphide) and a particulate matter analyzer (total suspended particulate matter TSPM), PM2.5 and PM10). The sensor and data acquisition systems are programmed to monitor pollution levels at ½ hour durations during peak hours and at 1-hour intervals at other times. Presently, extensive statistical and numerical simulations are being carried out at our center to correlate the individuals living in the monitored areas with respiratory infections with air pollution. PMID:16705838

  6. Next-generation air monitoring – an overview of EPA research to develop real-time instrumentation packages for stationary and mobile monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards small-scale, real-time, wireless detectors, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developi...

  7. A comparative analysis of modeled and monitored ambient hazardous air pollutants in Texas: a novel approach using concordance correlation.

    PubMed

    Lupo, Philip J; Symanski, Elaine

    2009-11-01

    Often, in studies evaluating the health effects of hazardous air pollutants (HAPs), researchers rely on ambient air levels to estimate exposure. Two potential data sources are modeled estimates from the U.S. Environmental Protection Agency (EPA) Assessment System for Population Exposure Nationwide (ASPEN) and ambient air pollutant measurements from monitoring networks. The goal was to conduct comparisons of modeled and monitored estimates of HAP levels in the state of Texas using traditional approaches and a previously unexploited method, concordance correlation analysis, to better inform decisions regarding agreement. Census tract-level ASPEN estimates and monitoring data for all HAPs throughout Texas, available from the EPA Air Quality System, were obtained for 1990, 1996, and 1999. Monitoring sites were mapped to census tracts using U.S. Census data. Exclusions were applied to restrict the monitored data to measurements collected using a common sampling strategy with minimal missing values over time. Comparisons were made for 28 HAPs in 38 census tracts located primarily in urban areas throughout Texas. For each pollutant and by year of assessment, modeled and monitored air pollutant annual levels were compared using standard methods (i.e., ratios of model-to-monitor annual levels). Concordance correlation analysis was also used, which assesses linearity and agreement while providing a formal method of statistical inference. Forty-eight percent of the median model-to-monitor values fell between 0.5 and 2, whereas only 17% of concordance correlation coefficients were significant and greater than 0.5. On the basis of concordance correlation analysis, the findings indicate there is poorer agreement when compared with the previously applied ad hoc methods to assess comparability between modeled and monitored levels of ambient HAPs.

  8. Air quality assessment on human well-being in the vicinity of quarry site

    NASA Astrophysics Data System (ADS)

    Ibrahim, W. H. W.; Marinie, E.; Yunus, J.; Asra, N.; Sukor, K. Mohd

    2018-02-01

    This study aims to investigate the variation of air pollutants associated with the quarry activities prior to classified distance from quarry site. Air pollutants were monitored with the use of instruments which are Rae System Multirae Lite Pumped (PGM-6208) to measure indoor air quality while TSI 8533 Dusttrack Drx Desktop Aerosol Monitor to measure outdoor air quality. Sampling will be replicated two times. The locations of quarry are at Bandar Saujana Putra and Taman Kajang Perdana 2, Selangor. The objectives of this study are to investigate the impact of quarry mining by preparing the suitable Indoor Air Quality Index and to prepare preventive measure for residential that caused from quarry mining activities. Both Qualitative and Quantitative approaches will be implemented in this study, which employed case study and interview survey. Both quarries identified previously will be the main case study. The Respondent’s interviews are from Local Authority and Quarry Management Staff while questionnaire surveys from selected residences. Measurement method will be used to measure the Particle Matter (PM2.5) for indoor and outdoor in selected resident’s area. However, this paper is primed to discuss the method used in this study. It is not only presents the beneficial information for future research on methodologies employed but also it is anticipated the benefit to environment which can increased residents’ well-being in the vicinity of quarry sites.

  9. Interpolation of extensive routine water pollution monitoring datasets: methodology and discussion of implications for aquifer management.

    PubMed

    Yuval, Yuval; Rimon, Yaara; Graber, Ellen R; Furman, Alex

    2014-08-01

    A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanisation often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data is thus an important tool for supplementing monitoring observations. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range of values (up to a few orders of magnitude) in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. A local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. The inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the coastal aquifer along the Israeli shoreline. The implications for aquifer management are discussed.

  10. Biofilm as a bioindicator of Cr VI pollution in the Lotic Ecosystems

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Sukandar; Satriya, C.; Guntur

    2018-04-01

    Biofilm is ubiquitous in aquatic ecosystems such as river. Biofilm have been reported to have high sorption capacities that promote the accumulation of nutrient ions inside biofilm matrix. The ion that can be accumulated inside the biofilm is not only nutrient ions but also other ions such as heavy metal ions. The pollution of heavy metal ions emerge as one of the biggest aquatic ecosystem problems. Thus, the effort to monitor the heavy metal pollution in the aquatic ecosystem in the aquatic ecosystems is needed. The difficulty to monitor the water pollution particularly in the lotic ecosystems is mainly related to the water flow. Therefore, the utilization of indicator of pollution in such ecosystem is fundamentally important. The present study investigated the accumulation of Cr VI inside biofilm matrices in the river ecosystems in order to develop biofilm as a bioindicator for pollution in the lotic ecosystems. The result indicates that biofilm can accumulate Cr VI from the surrounding water and reserve the ion. According to the result of this study, biofilm is a promising bioindicator to monitor the Cr VI pollution in the lotic ecosystems.

  11. Using geo-targeted social media data to detect outdoor air pollution

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Wang, Y.; Tsou, M. H.; Fu, X.

    2016-06-01

    Outdoor air pollution has become a more and more serious issue over recent years (He, 2014). Urban air quality is measured at air monitoring stations. Building air monitoring stations requires land, incurs costs and entails skilled technicians to maintain a station. Many countries do not have any monitoring stations and even lack any means to monitor air quality. Recent years, the social media could be used to monitor air quality dynamically (Wang, 2015; Mei, 2014). However, no studies have investigated the inter-correlations between real-space and cyberspace by examining variation in micro-blogging behaviors relative to changes in daily air quality. Thus, existing methods of monitoring AQI using micro-blogging data shows a high degree of error between real AQI and air quality as inferred from social media messages. In this paper, we introduce a new geo-targeted social media analytic method to (1) investigate the dynamic relationship between air pollution-related posts on Sina Weibo and daily AQI values; (2) apply Gradient Tree Boosting, a machine learning method, to monitor the dynamics of AQI using filtered social media messages. Our results expose the spatiotemporal relationships between social media messages and real-world environmental changes as well suggesting new ways to monitor air pollution using social media.

  12. A real-time monitoring and assessment method for calculation of total amounts of indoor air pollutants emitted in subway stations.

    PubMed

    Oh, TaeSeok; Kim, MinJeong; Lim, JungJin; Kang, OnYu; Shetty, K Vidya; SankaraRao, B; Yoo, ChangKyoo; Park, Jae Hyung; Kim, Jeong Tai

    2012-05-01

    Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well. Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.

  13. Next Generation Air Monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a rang...

  14. Monitor-based evaluation of pollutant load from urban stormwater runoff in Beijing.

    PubMed

    Liu, Y; Che, W; Li, J

    2005-01-01

    As a major pollutant source to urban receiving waters, the non-point source pollution from urban runoff needs to be well studied and effectively controlled. Based on monitoring data from urban runoff pollutant sources, this article describes a systematic estimation of total pollutant loads from the urban areas of Beijing. A numerical model was developed to quantify main pollutant loads of urban runoff in Beijing. A sub-procedure is involved in this method, in which the flush process influences both the quantity and quality of stormwater runoff. A statistics-based method was applied in computing the annual pollutant load as an output of the runoff. The proportions of pollutant from point-source and non-point sources were compared. This provides a scientific basis for proper environmental input assessment of urban stormwater pollution to receiving waters, improvement of infrastructure performance, implementation of urban stormwater management, and utilization of stormwater.

  15. The Impact of Multi-pollutant Clusters on the Association between Fine Particulate Air Pollution and Microvascular Function

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2016-01-01

    Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062

  16. Recent biosensing developments in environmental security.

    PubMed

    Wanekaya, Adam K; Chen, Wilfred; Mulchandani, Ashok

    2008-06-01

    Environmental security is one of the fundamental requirements of our well being. However, it still remains a major global challenge. Therefore, in addition to reducing and/or eliminating the amounts of toxic discharges into the environment, there is need to develop techniques that can detect and monitor these environmental pollutants in a sensitive and selective manner to enable effective remediation. Because of their integrated nature, biosensors are ideal for environmental monitoring and detection as they can be portable and provide selective and sensitive rapid responses in real time. In this review we discuss the main concepts behind the development of biosensors that have most relevant applications in the field of environmental monitoring and detection. We also review and document recent trends and challenges in biosensor research and development particularly in the detection of species of environmental significance such as organophosphate nerve agents, heavy metals, organic contaminants, pathogenic microorganisms and their toxins. Special focus will be given to the trends that have the most promising applications in environmental security. We conclude by highlighting the directions towards which future biosensors research in environmental security sector might proceed.

  17. Isotopic Recorders of Pollution in Heterogeneous Urban Areas

    NASA Astrophysics Data System (ADS)

    Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.

    2017-12-01

    A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.

  18. 40 CFR 63.1505 - Emission standards for affected sources and emission units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-on air pollution control device if a continuous opacity monitor (COM) or visible emissions monitoring... percent opacity from any PM add-on air pollution control device if a COM is chosen as the monitoring.../delacquering kiln/decoating kiln is equipped with an afterburner having a design residence time of at least 1...

  19. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide...

  20. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide...

  1. Prioritizing hazardous pollutants in two Nigerian water supply schemes: a risk-based approach.

    PubMed

    Etchie, Ayotunde T; Etchie, Tunde O; Adewuyi, Gregory O; Krishnamurthi, Kannan; Saravanadevi, S; Wate, Satish R

    2013-08-01

    To rank pollutants in two Nigerian water supply schemes according to their effect on human health using a risk-based approach. Hazardous pollutants in drinking-water in the study area were identified from a literature search and selected pollutants were monitored from April 2010 to December 2011 in catchments, treatment works and consumer taps. The disease burden due to each pollutant was estimated in disability-adjusted life years (DALYs) using data on the pollutant's concentration, exposure to the pollutant, the severity of its health effects and the consumer population. The pollutants identified were microbial organisms, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead and zinc. All were detected in the catchments but only cadmium, cobalt, chromium, manganese and lead exceeded World Health Organization (WHO) guideline values after water treatment. Post-treatment contamination was observed. The estimated disease burden was greatest for chromium in both schemes, followed in decreasing order by cadmium, lead, manganese and cobalt. The total disease burden of all pollutants in the two schemes was 46 000 and 9500 DALYs per year or 0.14 and 0.088 DALYs per person per year, respectively, much higher than the WHO reference level of 1 × 10(-6) DALYs per person per year. For each metal, the disease burden exceeded the reference level and was comparable with that due to microbial contamination reported elsewhere in Africa. The estimated disease burden of metal contamination of two Nigerian water supply systems was high. It could best be reduced by protection of water catchment and pretreatment by electrocoagulation.

  2. Catalytic nanomotors for environmental monitoring and water remediation

    PubMed Central

    Soler, Lluís

    2014-01-01

    Self-propelled nanomotors hold considerable promise for developing innovative environmental applications. This review highlights the recent progress in the use of self-propelled nanomotors for water remediation and environmental monitoring applications, as well as the effect of the environmental conditions on the dynamics of nanomotors. Artificial nanomotors can sense different analytes—and therefore pollutants, or “chemical threats”—can be used for testing the quality of water, selective removal of oil, and alteration of their speeds, depending on the presence of some substances in the solution in which they swim. Newly introduced micromotors with double functionality to mix liquids at the microscale and enhance chemical reactions for the degradation of organic pollutants greatly broadens the range of applications to that of environmental. These “self-powered remediation systems” could be seen as a new generation of “smart devices” for cleaning water in small pipes or cavities difficult to reach with traditional methods. With constant improvement and considering the key challenges, we expect that artificial nanomachines could play an important role in environmental applications in the near future. PMID:24752489

  3. [Application of lysosomal detection in marine pollution monitoring: research progress].

    PubMed

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  4. 40 CFR 63.548 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 63.548 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants from Secondary Lead Smelting § 63.548 Monitoring requirements. (a) Owners...

  5. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling.

    PubMed

    Shie, Ruei-Hao; Chan, Chang-Chuan

    2013-10-15

    The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography-mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Indoor air pollutants from unvented kerosene-heater emissions in mobile homes: Studies on particles, semivolatile organics, carbon monoxide, and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumford, J.L.; Williams, R.W.; Walsh, D.B.

    1991-01-01

    The study was conducted to assess human exposure to air pollutants resulting from the use of kerosene heaters in mobile homes. It has been estimated that 15-17 million unvented kerosene heaters have been sold in the United States, and 33% of these heaters have been sold to mobile home residents. The emissions from kerosene heaters can result in high pollutants levels in mobile homes that have a small air volume and low ventilation rate. Eight totally electric mobile homes with no smokers living in the homes were monitored for indoor air particles < 10 micrometer (PM10), semivolatile organics, carbon monoxidemore » (CO), and mutagenicity of semivolatile and particle-phase organics in Salmonella typhimurium TA98 without S9 using a microsuspension reverse-mutation assay. Each home was monitored for an average of 6.5 h/day, 3 days/week, for 4 weeks (2 weeks with the heater on and 2 weeks with the heater off) during the heating season of 1989. Indoor air exchange rate, temperature, and humidity were measured. Chemical analyses, including polycyclic aromatic hydrocarbon (PAH) and nitro PAH, also were performed on the indoor air samples from a selected home with the kerosene heater on and off. Increases in CO and organic concentrations resulting from the use of kerosene heaters were found in most homes monitored. Chemical analysis data also suggested the presence of evaporated, unburned kerosene fuel present in semivolatile organics collected in the XAD samples. In comparison with the U.S. national ambient air standards, four out of the eight heaters investigated in the study emitted pollutants that exceeded the ambient air standards some days. These data suggested that emissions from unvented kerosene heaters can significantly impact indoor air quality in mobile homes and that these emissions contain carcinogenic compounds and can be potentially carcinogenic in humans.« less

  7. Analysis of air quality in Dire Dawa, Ethiopia.

    PubMed

    Kasim, Oluwasinaayomi Faith; Woldetisadik Abshare, Muluneh; Agbola, Samuel Babatunde

    2017-12-07

    Ambient air quality was monitored and analyzed to develop air quality index and its implications for livability and climate change in Dire Dawa, Ethiopia. Using survey research design, 16 georeferenced locations, representing different land uses, were randomly selected and assessed for sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO),volatile organic compounds (VOCs), and meteorological parameters (temperature and relative humidity). The study found mean concentrations across all land uses for SO 2 of 0.37 ± 0.08 ppm, NO 2 of 0.13 ± 0.17 ppm, CO 2 of 465.65 ± 28.63 ppm, CO of 3.35 ± 2.04 ppm, and VOCs of 1850.67 ± 402 ppm. An air quality index indicated that ambient air quality for SO 2 was very poor, NO 2 ranged from moderate to very poor, whereas CO rating was moderate. Significant positive correlations existed between temperature and NO 2 , CO 2 , and CO and between humidity and VOCs. Significant relationships were also recorded between CO 2 and NO 2 and between CO and CO 2 . Poor urban planning, inadequate pollution control measure, and weak capacity to monitor air quality have implications for energy usage, air quality, and local meteorological parameters, with subsequent feedback into global climate change. Implementation of programs to monitor and control emissions in order to reduce air pollution will provide health, economic, and environmental benefits to the city. The need to develop and implement emission control programs to reduce air pollution in Dire Dawa City is urgent. This will provide enormous economic, health, and environmental benefits. It is expected that economic effects of air quality improvement will offset the expenditures for pollution control. Also, strategies that focus on air quality and climate change present a unique opportunity to engage different stakeholders in providing inclusive and sustainable development agenda for Dire Dawa.

  8. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David E.; Al-Saadi, Jassim; Janz, Scott J.

    2014-06-01

    TEMPO, selected by NASA as the first Earth Venture Instrument, will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest-cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50 %. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well-proven technique, able to produce a revolutionary data set. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. GEO-CAPE is not planned for implementation this decade. However, instruments from Europe (Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, with a major focus on intercontinental pollution transport. TEMPO will launch at a prime time to be a component of this constellation.

  9. Automobile gross emitter screening with remote sensing data using objective-oriented neural network.

    PubMed

    Chen, Ho-Wen; Yang, Hsi-Hsien; Wang, Yu-Sheng

    2009-11-01

    One of the costs of Taiwan's massive economic development has been severe air pollution problems in many parts of the island. Since vehicle emissions are the major source of air pollution in most of Taiwan's urban areas, Taiwan's government has implemented policies to rectify the degrading air quality, especially in areas with high population density. To reduce vehicle pollution emissions an on-road remote sensing and monitoring system is used to check the exhaust emissions from gasoline engine automobiles. By identifying individual vehicles with excessive emissions for follow-up inspection and testing, air quality in the urban environment is expected to improve greatly. Because remote sensing is capable of measuring a large number of moving vehicles in a short period, it has been considered as an assessment technique in place of the stationary emission-sampling techniques. However, inherent measurement uncertainty of remote sensing instrumentation, compounded by the indeterminacy of monitoring site selection, plus the vagaries of weather, causes large errors in pollution discrimination and limits the application of the remote sensing. Many governments are still waiting for a novel data analysis methodology to clamp down on heavily emitting vehicles by using remote sensing data. This paper proposes an artificial neural network (ANN), with vehicle attributes embedded, that can be trained by genetic algorithm (GA) based on different strategies to predict vehicle emission violation. Results show that the accuracy of predicting emission violation is as high as 92%. False determinations tend to occur for vehicles aged 7-13 years, peaking at 10 years of age.

  10. Fast and simultaneous monitoring of organic pollutants in a drinking water treatment plant by a multi-analyte biosensor followed by LC-MS validation.

    PubMed

    Rodriguez-Mozaz, Sara; de Alda, Maria J López; Barceló, Damià

    2006-04-15

    This work describes the application of an optical biosensor (RIver ANALyser, RIANA) to the simultaneous analysis of three relevant environmental organic pollutants, namely, the pesticides atrazine and isoproturon and the estrogen estrone, in real water samples. This biosensor is based on an indirect inhibition immunoassay which takes place at a chemically modified optical transducer chip. The spatially resolved modification of the transducer surface allows the simultaneous determination of selected target analytes by means of "total internal reflection fluorescence" (TIRF). The performance of the immunosensor method developed was evaluated against a well accepted traditional method based on solid-phase extraction followed by liquid chromatography-mass spectrometry (LC-MS). The chromatographic method was superior in terms of linearity, sensitivity and accuracy, and the biosensor method in terms of repeatability, speed, cost and automation. The application of both methods in parallel to determine the occurrence and removal of atrazine, isoproturon and estrone throughout the treatment process (sand filtration, ozonation, activated carbon filtration and chlorination) in a waterworks showed an overestimation of results in the case of the biosensor, which was partially attributed to matrix and cross-reactivity effects, in spite of the addition of ovalbumin to the sample to minimize matrix interferences. Based on the comparative performance of both techniques, the biosensor emerges as a suitable tool for fast, simple and automated screening of water pollutants without sample pretreatment. To the author's knowledge, this is the first description of the application of the biosensor RIANA in the multi-analyte configuration to the regular monitoring of pollutants in a waterworks.

  11. Uncertainty in the relationship between criteria pollutants and low birth weight in Chicago

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh

    2012-03-01

    Using the data on all live births (˜400,000) and criteria pollutants from the Chicago Metropolitan Statistical Area (MSA) between 2000 and 2004, this paper empirically demonstrates how mismatches in the spatiotemporal scales of health and air pollution data can result in inconsistency and uncertainty in the linkages between air pollution and birth outcomes. This paper suggests that the risks of low birth weight associated with air pollution exposure changes significantly as the distance interval (around the monitoring stations) used for exposure estimation changes. For example, when the analysis was restricted within 3 miles distance of the monitoring stations the odds of LBW (births <2500 g) increased by a factor of 1.045 (±0.0285 95% CI) with a unit increase in the average daily exposure to PM10 (in μg m-3) during the gestation period; the value dropped to 1.028 when the analysis was restricted within 6 miles distance of air pollution monitoring stations. The effect of PM10 exposure on LBW became null when controlled for confounders. But PM2.5 exposure showed a significant association with low birth weight when controlled for confounders. These results must be interpreted with caution, because the distance to monitoring station does not influence the risks of adverse birth outcomes, but uncertainty in exposure increases with the increase in distance from the monitoring stations, especially for coarse particles such as PM10 that settle with gravity within short distance and time interval. The results of this paper have important implications for the research design of environmental epidemiological studies, and the way air pollution (and potentially other environmental) and health data are collocated to compute exposure. While this paper challenges the findings of pervious epidemiological studies that have relied on coarse resolution air pollution data (such as county level aggregated data), the paper also calls for time-space resolved estimate of air pollution to minimize uncertainty in exposure estimation.

  12. [Impact of atmospheric total suspended particulate pollution on photosynthetic parameters of street mango trees in Xiamen City].

    PubMed

    Yu, Yu-xian; Chen, Jin-sheng; Ren, Yin; Li, Fang-yi; Cui, Sheng-hui

    2010-05-01

    With the development of urbanization, total suspended particulate (TSP) pollution is getting serious, and the normal physiological processes of urban vegetation are profoundly affected while adsorbing and purifying the particulates. In this study, four areas were selected, i.e., Tingxi reservoir (clean control area), Xiamen University (cultural and educational area), Xianyue (business area), and Haicang (industrial area), with their atmospheric TSP concentrations and the photosynthetic parameters of street Mango (Mangifera indica) trees monitored in April and May, 2009. The daily average concentration of TSP in Tingxi, Xiamen University, Xianyue, and Haicang was 0.061, 0.113, 0.120 and 0.205 mg x m(-3), respectively, and the impact of TSP stress on M. indica was in the sequence of Haicang > Xianyue > Xiamen University > Tingxi. TSP pollution negatively affected the net photosynthetic rate, stomatal conductance, and transpiration rate of M. indica, and induced intercellular CO2 concentration changed significantly. High TSP concentration could cause the decline of net photosynthetic rate via stomatal limitation.

  13. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    PubMed

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Environmental monitoring of phenolic pollutants in water by cloud point extraction prior to micellar electrokinetic chromatography.

    PubMed

    Stege, Patricia W; Sombra, Lorena L; Messina, Germán A; Martinez, Luis D; Silva, María F

    2009-05-01

    Many aromatic compounds can be found in the environment as a result of anthropogenic activities and some of them are highly toxic. The need to determine low concentrations of pollutants requires analytical methods with high sensitivity, selectivity, and resolution for application to soil, sediment, water, and other environmental samples. Complex sample preparation involving analyte isolation and enrichment is generally necessary before the final analysis. The present paper outlines a novel, simple, low-cost, and environmentally friendly method for the simultaneous determination of p-nitrophenol (PNP), p-aminophenol (PAP), and hydroquinone (HQ) by micellar electrokinetic capillary chromatography after preconcentration by cloud point extraction. Enrichment factors of 180 to 200 were achieved. The limits of detection of the analytes for the preconcentration of 50-ml sample volume were 0.10 microg L(-1) for PNP, 0.20 microg L(-1) for PAP, and 0.16 microg L(-1) for HQ. The optimized procedure was applied to the determination of phenolic pollutants in natural waters from San Luis, Argentina.

  15. Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor.

    PubMed

    Figueiredo, A M G; Nogueira, C A; Saiki, M; Milian, F M; Domingos, M

    2007-01-01

    Tillandsia usneoides L. is an epiphytic bromeliad plant able to absorb water and nutrients directly from the air. For this reason this species was selected to carry out a monitoring study of air pollution in the metropolitan region of São Paulo, Brazil. Five consecutive transplantation experiments (8 weeks each) were performed in 10 sites of the city, submitted to different sources of air pollution (industrial, vehicular), using plants collected from an unpolluted area. After exposure, trace metals were analyzed in the plant by instrumental neutron activation analysis. Traffic-related elements such as Zn and Ba presented high concentrations in exposure sites near to heavy traffic avenues (cars, buses and trucks) and may be associated to vehicular sources. For Zn and Co the highest contents were related to industrial zones and can be associated to the presence of anthropogenic emission sources. The rare earth elements, Fe and Rb, probably have soil particles as main source.

  16. Design and implementation air quality monitoring robot

    NASA Astrophysics Data System (ADS)

    Chen, Yuanhua; Li, Jie; Qi, Chunxue

    2017-01-01

    Robot applied in environmental protection can break through the limitations in working environment, scope and mode of the existing environmental monitoring and pollution abatement equipments, which undertake the innovation and improvement in the basin, atmosphere, emergency and pollution treatment facilities. Actually, the relevant technology is backward with limited research and investment. Though the device companies have achieved some results in the study on the water quality monitoring, pipeline monitoring and sewage disposal, this technological progress on the whole is still much slow, and the mature product has not been formed. As a result, the market urges a demand of a new type of device which is more suitable for environmental protection on the basis of robot successfully applied in other fields. This paper designs and realizes a tracked mobile robot of air quality monitoring, which can be used to monitor air quality for the pollution accident in industrial parks and regular management.

  17. Possibilities of observing air pollution from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Barringer, A.

    1972-01-01

    Research carried out over a number of years has indicated the feasibility of monitoring global air pollution from orbiting satellites. Optical methods show considerable promise of measuring the burdens of pollution, both gaseous and particulates. Important pollution gases, such as sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone, as well as some hydrocarbon vapors, appear amenable to optical remote sensing. Satellite platforms for carrying out this work would not compete with ground monitoring stations but rather supplement them with a different type of data which could be integrated with ground level measurements to provide an all-embracing picture of pollution buildup, mass migration, and dissipation.

  18. Research on numerical simulation technology about regional important pollutant diffusion of haze

    NASA Astrophysics Data System (ADS)

    Du, Boying; Ma, Yunfeng; Li, Qiangqiang; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In order to analyze the formation of haze in Shenyang and the factors that affect the diffusion of pollutants, the simulation experiment adopted in this paper is based on the numerical model of WRF/CALPUFF coupling. Simulation experiment was conducted to select PM10 of Shenyang City in the period from March 1 to 8, and the PM10 in the regional important haze was simulated. The survey was conducted with more than 120 enterprises section the point of the emission source of this experiment. The contrastive data were analyzed with 11 air quality monitoring points, and the simulation results were compared. Analyze the contribution rate of each typical enterprise to the air quality, verify the correctness of the simulation results, and then use the model to establish the prediction model.

  19. Seasonal variation of copper and zinc concentrations in the oyster Saccostrea cuccullata from the Dampier Archipelago, Western Australia: implications for pollution monitoring.

    PubMed

    Talbot, V

    1986-12-01

    The intertidal rock oyster Saccostrea cuccullata, sampled at eight sites on eight occasions over a 1-year period, contained mean Cu and Zn concentrations ranging between 34 and 267 and 206 and 4078 mg kg-1 dry weight, respectively. In the study area, Cu and Zn emanate from sewage and boat slips (antifouling paints), while Zn probably also originates from coolant water from an electricity power generating station and iron ore exporting facilities. Highest oyster wet weight, Cu and Zn concentrations and loads occurred in January (spawning period), indicating that metal variation was not reciprocating wet weight. Lowest metal concentrations and loads occurred in October (period of onset of gametogenesis), while lowest wet weight occurred in April (post-spawning period). No significant (P less than 0.001) variation in the wet to dry weight ratio was noted temporally. However, significant, though slight, variation was noted between polluted and unpolluted oysters. Results of this study indicate that pollution control monitoring programs should consider: seasonal variation of metal concentrations; portion of the year during which standards are exceeded; oyster size and availability for human consumption; suitability of standards where shellfish are not consumed as a staple diet; appropriate size indicies which can be used for selecting specimens for intersite comparisons; wet to dry weight calculations: techniques, spatial and temporal variations; and the physical dynamics of sites used.

  20. Low Cost Sensor Calibration Options

    EPA Science Inventory

    Low-cost sensors ($1 D0-500) represent a unique class of air monitoring devices that may provide for more ubiquitous pollutant monitoring. They vary widely in design and measure pollutants, ranging from ozone, particulate matter, to volatile organic compounds. Many of these senso...

  1. Changing the Paradigm of Air Pollution Monitoring

    EPA Science Inventory

    Historically, approaches for monitoring air pollution generally use expensive, complex, stationary equipment,1,2 which limits who collects data, why data are collected, and how data are accessed. This paradigm is changing with the materialization of lower-cost, easy-to...

  2. Compliance Assurance Monitoring Technical Guidance Document Appendix A: Scrubbers for Gaseous Pollutants Control Devices

    EPA Pesticide Factsheets

    Compliance assurance monitoring is intended to provide a reasonable assurance of compliance with applicable requirements under the Clean Air Act for large emission units that rely on pollution control device equipment to achieve compliance.

  3. Ammonia, phosphate, phenol, and copper(II) removal from aqueous solution by subsurface and surface flow constructed wetland.

    PubMed

    Mojiri, Amin; Ahmad, Zakiah; Tajuddin, Ramlah Mohd; Arshad, Mohd Fadzil; Gholami, Ali

    2017-07-01

    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.

  4. Assessment and application of national environmental databases and mapping tools at the local level to two community case studies.

    PubMed

    Hammond, Davyda; Conlon, Kathryn; Barzyk, Timothy; Chahine, Teresa; Zartarian, Valerie; Schultz, Brad

    2011-03-01

    Communities are concerned over pollution levels and seek methods to systematically identify and prioritize the environmental stressors in their communities. Geographic information system (GIS) maps of environmental information can be useful tools for communities in their assessment of environmental-pollution-related risks. Databases and mapping tools that supply community-level estimates of ambient concentrations of hazardous pollutants, risk, and potential health impacts can provide relevant information for communities to understand, identify, and prioritize potential exposures and risk from multiple sources. An assessment of existing databases and mapping tools was conducted as part of this study to explore the utility of publicly available databases, and three of these databases were selected for use in a community-level GIS mapping application. Queried data from the U.S. EPA's National-Scale Air Toxics Assessment, Air Quality System, and National Emissions Inventory were mapped at the appropriate spatial and temporal resolutions for identifying risks of exposure to air pollutants in two communities. The maps combine monitored and model-simulated pollutant and health risk estimates, along with local survey results, to assist communities with the identification of potential exposure sources and pollution hot spots. Findings from this case study analysis will provide information to advance the development of new tools to assist communities with environmental risk assessments and hazard prioritization. © 2010 Society for Risk Analysis.

  5. Transfer of European Approach to Groundwater Monitoring in China

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2007-12-01

    Major groundwater development in North China has been a key factor in the huge economic growth and the achievement of self sufficiency in food production. Groundwater accounts for more than 70 percent of urban water supply and provides important source of irrigation water during dry period. This has however caused continuous groundwater level decline and many associated problems: hundreds of thousands of dry wells, dry river beds, land subsidence, seawater intrusion and groundwater quality deterioration. Groundwater levels in the shallow unconfined aquifers have fallen 10m up to 50m, at an average rate of 1m/year. In the deep confined aquifers groundwater levels have commonly fallen 30m up to 90m, at an average rate of 3 to 5m/year. Furthermore, elevated nitrate concentrations have been found in shallow groundwater in large scale. Pesticides have been detected in vulnerable aquifers. Urgent actions are necessary for aquifer recovery and mitigating groundwater pollution. Groundwater quantity and quality monitoring plays a very important role in formulating cost-effective groundwater protection strategies. In 2000 European Union initiated a Water Framework Directive (2000/60/EC) to protect all waters in Europe. The objective is to achieve good water and ecological status by 2015 cross all member states. The Directive requires monitoring surface and groundwater in all river basins. A guidance document for monitoring was developed and published in 2003. Groundwater monitoring programs are distinguished into groundwater level monitoring and groundwater quality monitoring. Groundwater quality monitoring is further divided into surveillance monitoring and operational monitoring. The monitoring guidance specifies key principles for the design and operation of monitoring networks. A Sino-Dutch cooperation project was developed to transfer European approach to groundwater monitoring in China. The project aims at building a China Groundwater Information Centre. Case studies in 3 pilot areas have been conducted to build research capacities of the central and provincial groundwater information centers in providing groundwater information services to decision makers and public. Groundwater regime zoning and pollution risk maps were used to lay-out groundwater quantity and quality monitoring networks, respectively. Automatic groundwater recorders were installed in selected observation wells. ArcGIS based regional groundwater information systems were constructed and used to create groundwater regime zoning and pollution risk maps. Steady state groundwater models have been constructed and calibrated. Transient groundwater models are under calibration. Groundwater resources development scenarios were formulated. The model will be used to predict what will be consequences in next 20 years if current situation continues as business as usual. Possibilities of reducing groundwater abstraction and opportunities of artificially enhanced groundwater recharge will be analyzed. Combination of decreasing abstraction and increasing recharge may lead to a sustainable plan of future groundwater resources development.

  6. The Role of Monitoring in Controlling Water Pollution

    NASA Technical Reports Server (NTRS)

    Hirsch, Allan

    1971-01-01

    The purpose of this paper is to provide an overview of trends in the national water pollution control effort and to describe the role of monitoring in that effort, particularly in relation to the responsibilities of the Environmental Protection Agency (EPA). I hope the paper will serve as a useful framework for the more specific discussions of monitoring technology to follow.

  7. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  8. Summary of the land-use inventory for the nonpoint-source evaluation monitoring watersheds in Wisconsin

    USGS Publications Warehouse

    Wierl, J.A.; Rappold, K.F.; Amerson, F.U.

    1996-01-01

    In 1992, the Wisconsin Department of Natural Resources (WDNR) in cooperation with the U.S. Geological Survey initiated a land-use inventory to identify sources of pollutants and track the land-management changes for eight evaluation monitoring watersheds established as part of the WDNR's Nonpoint Source Program. Each evaluation monitoring watershed is within a WDNR priority watershed. The U.S. Geological Survey is responsible for collection of water-quality data in the evaluation monitoring watersheds. An initial inventory was completed for each of the WDNR priority watersheds before nonpoint-source plans were developed for the control of nonpoint pollution. The land-use inventory described in this report expands upon the initial inventory by including nonpoint pollution sources that were not identified and also by updating changes in landuse and land-management practices. New sources of nonpoint pollution, not identified in the initial inventory, could prove to be important when monitored and modeled data are analyzed. This effort to inventory the evaluation monitoring watersheds will help with the interpretation of future land-use and water-quality data. This report describes landuse inventory methods, presents results of the inventory, and lists proposed future activities.

  9. The Impact of Multipollutant Clusters on the Association Between Fine Particulate Air Pollution and Microvascular Function.

    PubMed

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Austin, Elena; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Benjamin, Emelia J; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Hamburg, Naomi M; Mittleman, Murray A

    2016-03-01

    Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003 to 2008. In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction P value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% confidence interval: 4.6%, 33%) higher baseline pulse amplitude per 5 μg/m and days with high contributions of oil and wood combustion with 16% (95% confidence interval: 0.2%, 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil, and wood combustion was associated with higher baseline pulse amplitude but not hyperemic response. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences.

  10. Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream.

    PubMed

    Bonet, Berta; Corcoll, Natàlia; Acuňa, Vicenç; Sigg, Laura; Behra, Renata; Guasch, Helena

    2013-02-01

    While seasonal variations in fluvial communities have been extensively investigated, effects of seasonality on community responses to environmental and/or chemical stress are poorly documented. The aim of this study was to describe antioxidant enzyme activity (AEA) variability in fluvial biofilms over an annual cycle, under multi-stress scenarios due to environmental variability (e.g., light intensity, water flow, and temperature) and metal pollution (Zn, Mn and Fe). The annual monitoring study was performed at three sites according to their water and biofilm metal concentrations. Metal concentration was affected by water flow due to dilution. Low flow led to higher dissolved Zn concentrations, and thus to higher Zn accumulation in the biofilm. Water temperature, light intensity and phosphate concentration were the environmental factors which determined the seasonality of biofilm responses, whereas dissolved Zn and Zn accumulation in biofilms were the parameters linked to sites and periods of highest metal pollution. Community algal succession, from diatoms in cold conditions to green algae in warm conditions, was clearer in the non metal-polluted site than in those metal-polluted, presumably due to the selection pressure exerted by metals. Most AEA were related with seasonal environmental variability at the sites with low or no-metal pollution, except glutathione-S-transferase (GST) which was related with Zn (dissolved and accumulated in biofilm) pollution occurring at the most polluted site. We can conclude that seasonal variations of community composition and function are masked by metal pollution. From this study we suggest the use of a multi-biomarker approach, including AEA and a set of biological and physicochemical parameters as an effect-based field tool to assess metal pollution. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Monitoring of persistent organic pollutants in Africa. Part 2: design of a network to monitor the continental and intercontinental background.

    PubMed

    Lammel, G; Dobrovolný, P; Dvorská, A; Chromá, K; Brázdil, R; Holoubek, I; Hosek, J

    2009-11-01

    A network for the study of long-term trends of the continental background in Africa and the intercontinental background of persistent organic pollutants as resulting from long-range transport of contaminants from European, South Asian, and other potential source regions, as well as by watching supposedly pristine regions, i.e. the Southern Ocean and Antarctica is designed. The results of a pilot phase sampling programme in 2008 and meteorological and climatological information from the period 1961-2007 was used to apply objective criteria for the selection of stations for the monitoring network: out the original 26 stations six have been rejected because of suggested strong local sources of POPs and three others because of local meteorological effects, which may prevent part of the time long-range transported air to reach the sampling site. Representativeness of the meteorological patterns during the pilot phase with respect to climatology was assessed by comparison of the more local airflow situation as given by climatological vs. observed wind roses and by comparison of backward trajectories with the climatological wind (NCEP/NCAR re-analyses). With minor exceptions advection to nine inspected stations was typical for present-day climate during the pilot phase, 2008. Six to nine stations would cover satisfyingly large and densely populated regions of North-eastern, West and East Africa and its neighbouring seas, the Mediterranean, Northern and Equatorial Atlantic Ocean, the Western Indian Ocean and the Southern Ocean. Among the more densely populated areas Southern Cameroon, parts of the Abessinian plateau and most of the Great Lakes area would not be covered. The potential of the network is not hampered by on-going long-term changes of the advection to the selected stations, as these do hardly affect the coverage of target areas.

  12. Assessment of ambient air quality in Eskişehir, Turkey.

    PubMed

    Ozden, O; Döğeroğlu, T; Kara, S

    2008-07-01

    This paper presents an assessment of air quality of the city Eskişehir, located 230 km southwest to the capital of Turkey. Only five of the major air pollutants, most studied worldwide and available for the region, were considered for the assessment. Available sulphur dioxide (SO(2)), particulate matter (PM), nitrogen dioxide (NO(2)), ozone (O(3)), and non-methane volatile organic carbons (NMVOCs) data from local emission inventory studies provided relative source contributions of the selected pollutants to the region. The contributions of these typical pollution parameters, selected for characterizing such an urban atmosphere, were compared with the data established for other cities in the nation and world countries. Additionally, regional ambient SO(2) and PM concentrations, determined by semi-automatic monitoring at two sites, were gathered from the National Ambient Air Monitoring Network (NAAMN). Regional data for ambient NO(2) (as a precursor of ozone as VOCs) and ozone concentrations, through the application of the passive sampling method, were provided by the still ongoing local air quality monitoring studies conducted at six different sites, as representatives of either the traffic-dense-, or coal/natural gas burning residential-, or industrial/rural-localities of the city. Passively sampled ozone data at a single rural site were also verified with the data from a continuous automatic ozone monitoring system located at that site. Effects of variations in seasonal-activities, newly established railway system, and switching to natural gas usage on the temporal changes of air quality were all considered for the assessment. Based on the comparisons with the national [AQCR (Air Quality Control Regulation). Ministry of Environment (MOE), Ankara. Official Newspaper 19269; 1986.] and a number of international [WHO (World Health Organization). Guidelines for Air Quality. Geneva; 2000. Downloaded in January 2006, website: http://www.who.int/peh/; EU (European Union). Council Directive 1999/30/EC relating to limit values for sulfur dioxide, nitrogen dioxide and lead in ambient air. Of J Eur Communities L 163: 14-30; 29.6.1999; EU (European Union). Council Directive 2002/3/EC relating to ozone in ambient air. Of J Eur Communities. L 67: 14-30; 9.3.2002.; USEPA (U.S. Environmental Protection Agency). National Ambient Air Quality Standards (NAAQS). Downloaded in January 2006, website: http://www.epa.gov/ttn/naaqs/] ambient air standards, among all the pollutants studied, only the annual average SO(2) concentration was found to exceed one specific limit value (EU limit for protection of the ecosystem). A part of the data (VOC/NO(x) ratio), for determining the effects of photochemical interactions, indicated that VOC-limited regime was prevailing throughout the city.

  13. Water quality bioassay using selected protozoa. I. [Paramecium candatum; Amoeba proteus; Euglena gracilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, W.L.

    1976-01-01

    The suitability of certain species of protozoa as indicators of water quality has been determined. Experiments were conducted under laboratory conditions to standardize a bioassay procedure for water quality using either Paramecium caudatum, Amoeba proteus, or Euglena gracilis as the indicator organism. The bioassay, which consists of exposing the organisms to a known concentration of pollutant under laboratory conditions, followed by microscopic observation to establish the time of death, affords a reliable, convenient and inexpensive way to monitor for water quality.

  14. Requirements for developing a regional monitoring capacity for aerosols in Europe within EMEP.

    PubMed

    Kahnert, Michael; Lazaridis, Mihalis; Tsyro, Svetlana; Torseth, Kjetil

    2004-07-01

    The European Monitoring and Evaluation Programme (EMEP) has been established to provide information to Parties to the Convention on Long Range Transboundary Air Pollution on deposition and concentration of air pollutants, as well as on the quantity and significance of long-range transmission of pollutants and transboundary fluxes. To achieve its objectives with the required scientific credibility and technical underpinning, a close integration of the programme's main elements is performed. These elements are emission inventories, chemical transport modelling, and the monitoring of atmospheric chemistry and deposition fluxes, which further are integrated towards abatement policy development. A critical element is the air pollution monitoring that is performed across Europe with a focus not only on health effect aspects and compliance monitoring, but also on process studies and source receptor relationships. Without a strong observational basis a predictive modelling capacity cannot be developed and validated. Thus the modelling success strongly depends on the quality and quantity of available observations. Particulate matter (PM) is a relatively recent addition to the EMEP monitoring programme, and the network for PM mass observations is still evolving. This article presents the current status of EMEP aerosol observations, followed by a critical evaluation in view of EMEP's main objectives and its model development requirements. Specific recommendations are given for improving the PM monitoring programme within EMEP.

  15. [Weight parameters of water quality impact and risk grade determination of water environmental sensitive spots in Jiashan].

    PubMed

    Xie, Rong-Rong; Pang, Yong; Zhang, Qian; Chen, Ke; Sun, Ming-Yuan

    2012-07-01

    For the safety of the water environment in Jiashan county in Zhejiang Province, one-dimensional hydrodynamic and water quality models are established based on three large-scale monitoring of hydrology and water quality in Jiashan county, three water environmental sensitive spots including Hongqitang dam Chijia hydrological station and Luxie pond are selected to investigate weight parameters of water quality impact and risk grade determination. Results indicate as follows (1) Internal pollution impact in Jiashan areas was greater than the external, the average weight parameters of internal chemical oxygen demand (COD) pollution is 55.3%, internal ammonia nitrogen (NH(4+)-N) is 67.4%, internal total phosphor (TP) is 63.1%. Non-point pollution impact in Jiashan areas was greater than point pollution impact, the average weight parameters of non-point COD pollutions is 53.7%, non-point NH(4+)-N is 65.9%, non-point TP is 57.8%. (2) The risk of Hongqitang dam and Chijia hydrological station are in the middle risk. The risk of Luxie pond is also in the middle risk in August, and in April and December the risk of Luxie pond is low. The strategic decision will be suggested to guarantee water environment security and social and economic security in the study.

  16. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    PubMed

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles.

  17. Monitoring biological effects of contamination in marine fish along French coasts by measurement of ethoxyresorufin-O-deethylase activity.

    PubMed

    Burgeot, T; Bocquené, G; Pingray, G; Godefroy, D; Legrand, J; Dimeet, J; Marco, F; Vincent, F; Henocque, Y; Jeanneret, H O

    1994-11-01

    The use of bioindicators to evaluate exposure to the biological effects of chemical pollutants in marine organisms constitutes a new tool in the monitoring field. The establishment of a North Sea monitoring network in 1991, involving such international organizations as the North Sea Task Force, the International Council for the Exploration of the Sea, and the Intergovernmental Oceanography Commission, led French researchers to develop an enzymatic biomarker to monitor biological effects within the National Observation Network. The biomarker, ethoxyresorufin-O-deethylase (EROD), dependent on the CP450 system, has been monitored biannually since 1992 in several species of fish (Callionymus lyra, Limanda limanda, Serranus sp., Mullus barbatus) in two coastal sites particularly exposed to industrial and domestic pollution. A rapid method is used to assay EROD enzymatic activity determined along a pollution gradient, and results are interpreted on a microplate reader. The strategy of this approach is to assess the effects on the marine ecosystem during prolonged exposure to specific pollutants such as polyaromatic hydrocarbons, polychlorinated biphenyls, and dioxins.

  18. Environmental noise forecasting based on support vector machine

    NASA Astrophysics Data System (ADS)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  19. [Design and implementation of online statistical analysis function in information system of air pollution and health impact monitoring].

    PubMed

    Lü, Yiran; Hao, Shuxin; Zhang, Guoqing; Liu, Jie; Liu, Yue; Xu, Dongqun

    2018-01-01

    To implement the online statistical analysis function in information system of air pollution and health impact monitoring, and obtain the data analysis information real-time. Using the descriptive statistical method as well as time-series analysis and multivariate regression analysis, SQL language and visual tools to implement online statistical analysis based on database software. Generate basic statistical tables and summary tables of air pollution exposure and health impact data online; Generate tendency charts of each data part online and proceed interaction connecting to database; Generate butting sheets which can lead to R, SAS and SPSS directly online. The information system air pollution and health impact monitoring implements the statistical analysis function online, which can provide real-time analysis result to its users.

  20. An Overview of the 3C-STAR project

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-04-01

    Over the past three decades, city clusters have played a leading role in the economic growth of China, owing to their collective economic capacity and interdependency. However, pollution prevention lags behind the economic boom, led to a general decline in air quality in city clusters. As a result, industrial emissions and traffic exhausts together contribute to high levels of ozone (O3) and fine particulate matter (PM2.5) pollution problems ranging from urban to regional scale. Such high levels of both primary and secondary airborne pollutants lead to the development of a (perhaps typically Chinese) "air pollution complex" concept. Air pollution complex is particularly true and significant in Beijing-Tianjin area, Pearl River Delta (PRD) and Yangtze River Delta. The concurrent high concentrations of O3 and PM2.5 in PRD as well as in other China city clusters have led to rather unique pollution characteristics due to interactions between primary emissions and photochemical processes, between gaseous compounds and aerosol phase species, and between local and regional scale processes. The knowledge and experience needed to find solutions to the unique pollution complex in China are still lacking. Starting from 2007, we launch a major project "Synthesized Prevention Techniques for Air Pollution Complex and Integrated Demonstration in Key City-Cluster Region" (3C-STAR) to address those problems scientifically and technically. The purpose of the project is to build up the capacity of regional air pollution control and to establish regional coordination mechanism for joint implementation of pollution control. The project includes a number of key components technically: regional air quality monitoring network and super-sites, regional dynamic emission inventory of multi-pollutants, regional ensemble air quality forecasting model system, and regional management system supported by decision making platform. The 3C-STAR project selected PRD as a core area to have technical demonstration, and thus provide opportunities as well as challenges for PRD to improve its regional air quality. An integrated field measurement campaign 3C-STAR2008 was organized during October 15-November 19, 2008, including 3-D regional air quality monitoring network, two super-sites, and in-site meteorological and air quality forecasting. With the efforts of more than 100 scientists and students from 12 research institutes, the 3C-STAR2008 was conducted with great success. A great amount of data with rigorous QA/QC procedures has been obtained and data analysis is underway. In this talk, an overview of the 3C-STAR project will be presented, together with major findings from previous PRD campaigns (PRD2004 and PRD2006).

  1. HANDBOOK: CONTINUOUS EMISSION MONITORING SYSTEMS FOR NON-CRITERIA POLLUTANTS

    EPA Science Inventory

    This Handbook provides a description of the methods used to continuously monitor non-criteria pollutants emitted from stationary sources. The Handbook contains a review of current regulatory programs, the state-of-the-art sampling system design, analytical techniques, and the use...

  2. 40 CFR 63.605 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.605... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an...

  3. Continuous emission monitoring and accounting automated systems at an HPP

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Ionkin, I. L.; Kondrateva, O. E.; Borovkova, A. M.; Seregin, V. A.; Morozov, I. V.

    2015-03-01

    Environmental and industrial emission monitoring at HPP's is a very urgent task today. Industrial monitoring assumes monitoring of emissions of harmful pollutants and optimization of fuel combustion technological processes at HPP's. Environmental monitoring is a system to assess ambient air quality with respect to a number of separate sources of harmful substances in pollution of atmospheric air of the area. Works on creating an industrial monitoring system are carried out at the National Research University Moscow Power Engineering Institute (MPEI) on the basis of the MPEI combined heat and power plant, and environmental monitoring stations are installed in Lefortovo raion, where the CHPP is located.

  4. Scientific Framework for Stormwater Monitoring by the Washington State Department of Transportation

    USGS Publications Warehouse

    Sheibley, R.W.; Kelly, V.J.; Wagner, R.J.

    2009-01-01

    The Washington State Department of Transportation municipal stormwater monitoring program, in operation for about 8 years, never has received an external, objective assessment. In addition, the Washington State Department of Transportation would like to identify the standard operating procedures and quality assurance protocols that must be adopted so that their monitoring program will meet the requirements of the new National Pollutant Discharge Elimination System municipal stormwater permit. As a result, in March 2009, the Washington State Department of Transportation asked the U.S. Geological Survey to assess their pre-2009 municipal stormwater monitoring program. This report presents guidelines developed for the Washington State Department of Transportation to meet new permit requirements and regional/national stormwater monitoring standards to ensure that adequate processes and procedures are identified to collect high-quality, scientifically defensible municipal stormwater monitoring data. These include: (1) development of coherent vision and cooperation among all elements of the program; (2) a comprehensive approach for site selection; (3) an effective quality assurance program for field, laboratory, and data management; and (4) an adequate database and data management system.

  5. Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application.

    PubMed

    Wu, Qimei; Wang, Xin; Zhou, Qixing

    2014-05-01

    Persistent organic pollutants (POPs) have aroused environmentalists and public concerns due to their toxicity, bioaccumulation and persistency in the environment. However, monitoring atmospheric POPs using conventional instrumental methods is difficult and expensive, and POP levels in air samples represent an instantaneous value at a sampling time. Biomonitoring methods can overcome this limitation, because biomonitors can accumulate POPs, serve as long-term integrators of POPs and provide reliable information to assess the impact of pollutants on the biota and various ecosystems. Recently, mosses are increasingly employed to monitor atmospheric POPs. Mosses have been applied to indicate POP pollution levels in the remote continent of Antarctica, trace distribution of POPs in the vicinity of pollution sources, describe the spatial patterns at the regional scale, and monitor the changes in the pollution intensity along time. In the future, many aspects need to be improved and strengthened: (i) the relationship between the concentrations of POPs in mosses and in the atmosphere (different size particulates and vapor phases); and (ii) the application of biomonitoring with mosses in human health studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China

    PubMed Central

    Chen, Kai; Ni, Minjie; Wang, Jun; Huang, Dongren; Chen, Huorong; Wang, Xiao; Liu, Mengyang

    2016-01-01

    Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO4-P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas. PMID:27777951

  7. Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China.

    PubMed

    Chen, Kai; Ni, Minjie; Cai, Minggang; Wang, Jun; Huang, Dongren; Chen, Huorong; Wang, Xiao; Liu, Mengyang

    2016-01-01

    Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO 4 -P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas.

  8. Satellite passive remote sensing of off-shore pollutants, volume 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Satellite detection and monitoring of off-shore dumped pollutants, other than oil, are discussed. Summaries of satellite sensor performance in three spectral bands (visible, infrared, and microwave) are presented. The bulk of the report gives all the calculations, trade-offs and limitations of the three sensor systems. It is asserted that the problem of pollution monitoring is not a sensor problem but a problem of mathematical modeling and data processing.

  9. Monitoring of raptors and their contamination levels in Norway.

    PubMed

    Gjershaug, Jan Ove; Kålås, John Atle; Nygård, Torgeir; Herzke, Dorte; Folkestad, Alv Ottar

    2008-09-01

    This article summarizes results from raptor monitoring and contamination studies in Norway of the golden eagle, gyrfalcon, white-tailed sea eagle, osprey, peregrine, and merlin. Golden eagle and gyrfalcon populations have been monitored since 1990 as part of the "Monitoring Programme for Terrestrial Ecosystems" (TOV). No long-term trend in the population size or productivity of golden eagle has been shown in any of the 5 study areas. The reproductive output of gyrfalcon is monitored in 3 areas. It is positively correlated with the populations of its main prey species, the rock ptarmigan and the willow ptarmigan. The white-tailed sea eagle population has been monitored since 1974 by the Norwegian Ornithological Society, and the population is increasing. The levels of pesticides and polychlorinated biphenyls are low in the eggs of both the golden eagle and the gyrfalcon, but elevated levels and effects on reproduction have been indicated for a coastal subpopulation of golden eagle. The pollutant levels in white-tailed sea eagle are lower than in the Baltic population of sea eagles, and shell thinning was never severe overall, but individual eggs have contained pollutant concentrations above critical levels. The levels of pollutants in the bird-eating falcons, peregrine, and merlin were higher than in other species. New emerging pollutants, like brominated diphenylethers and perfluorinated organic compounds, could be detected in all species. By incorporating available published and unpublished data, we were able to produce time trends for pollutants and shell thickness over 4 decades.

  10. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  11. HISTORICAL RECONSTRUCTION OF POLLUTION STRESS AND RECOVERY IN AN URBAN ESTUARY

    EPA Science Inventory

    The major problems in the coastal areas result from human overutilization of the environment. Pollution is correlated with population density and there is currently a major effort to monitor estuaries to assess their ecological status. These monitoring efforts are important becau...

  12. NETWORK DESIGN FOR OZONE MONITORING

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks from air pollution. A major cr...

  13. Exposure prediction approaches used in air pollution epidemiology studies: Keyfindings and future recommendations

    EPA Science Inventory

    Many epidemiologic studies of the health effects of exposure to ambient air pollution use measurements from central-site monitors as their exposure estimate. However, measurements from central-site monitors may lack the spatial and temporal resolution required to capture exposure...

  14. Design and research of built-in sample cell with multiple optical reflections

    NASA Astrophysics Data System (ADS)

    Liu, Jianhui; Wang, Shuyao; Lv, Jinwei; Liu, Shuyang; Zhou, Tao; Jia, Xiaodong

    2017-10-01

    In the field of trace gas measurement, with the characteristics of high sensitivity, high selectivity and rapid detection, tunable diode laser absorption spectroscopy (TDLAS) is widely used in industrial process and trace gas pollution monitoring. Herriott cell is a common form of multiple reflections of the sample cell, the structure of the Herriott cell is relatively simple, which be used to application of trace gas absorption spectroscopy. In the pragmatic situation, the gas components are complicated, and the continuous testing process for a long time can lead to different degree of pollution and corrosion for the reflector in the sample cell. If the mirror is not cleaned up in time, it will have a great influence on the detection accuracy. In order to solve this problem in the process of harsh environment detection, this paper presents a design of the built-in sample cell to avoid the contact of gas and the mirror, thereby effectively reducing corrosion pollution. If there is optical pollution, direct replacement of the built-in optical sample cell can easily to be disassembled, and cleaned. The advantage of this design is long optical path, high precision, cost savings and so on.

  15. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  16. REMOVAL OF SELECTED POLLUTANTS FROM AQUEOUS MEDIA BY HARDWOOD MULCH

    EPA Science Inventory

    Generic hardwood mulch, usually used for landscaping, was utilized to remove several selected pollutants (heavy metals and toxic organic compounds) typically found in urban stormwater (SW) runoff. The hardwood mulch sorbed all the selected pollutants from a spiked stormwater mix...

  17. AirData

    EPA Pesticide Factsheets

    The AirData site provides access to yearly summaries of United States air pollution data, taken from EPA's air pollution databases. AirData has information about where air pollution comes from (emissions) and how much pollution is in the air outside our homes and work places (monitoring).

  18. Air quality measurements and monitoring network in the Republic of Latvia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinman, A.; Lyulko, J.; Dubrovskaja, R.

    1996-12-31

    The territory of Latvia is covered with a wide environmental monitoring network, that falls under 2 main categories: (1) regional network featuring the region and involved in international monitoring programs, including EMEP, GAW, IM; (2) state network providing for local pollution monitoring of the atmosphere (19 posts), precipitation (5 station) and radioactivity (46 station). In 1994, measurements were made at 20 stationary posts located in Daugavpils (2), Jekabpils (2), Jurmala, (2), Liepaja (2), Nigrande (1), Olaine (1), Rezekne (1), Riga (5), Valn-dera (2), Ventspils (2). This atmospheric air observation network covers mostly towns densely populated with industrial objects and othermore » pollutant emitting sources. Thus, the observation programs encompass measurements of pollutants that have higher concentrations in the ambient air. Results indicate that the annual pollution dynamics are closely connected with concentration fluctuations in the seasons. The sulfur dioxide and nitrogen dioxide concentrations increased during the heating season in Jekabpils, Jurmala and Valmiera, i.e., in the town that have many small heating installations. The data obtained allow to trace a dependence of measurement values upon the location of the observational posts vis-a-vis the pollutant emitting sources.« less

  19. Linking Meteorology, Air Quality Models and Observations to ...

    EPA Pesticide Factsheets

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion

  20. Interpolation of extensive routine water pollution monitoring datasets: methodology and discussion of implications for aquifer management

    NASA Astrophysics Data System (ADS)

    Yuval; Rimon, Y.; Graber, E. R.; Furman, A.

    2013-07-01

    A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanization often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data between points is thus an important tool for supplementing measured data. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range (up to a few orders of magnitude) of values in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. Local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. That inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the Coastal aquifer along the Israeli shoreline.

  1. Modeling extreme PM10 concentration in Malaysia using generalized extreme value distribution

    NASA Astrophysics Data System (ADS)

    Hasan, Husna; Mansor, Nadiah; Salleh, Nur Hanim Mohd

    2015-05-01

    Extreme PM10 concentration from the Air Pollutant Index (API) at thirteen monitoring stations in Malaysia is modeled using the Generalized Extreme Value (GEV) distribution. The data is blocked into monthly selection period. The Mann-Kendall (MK) test suggests a non-stationary model so two models are considered for the stations with trend. The likelihood ratio test is used to determine the best fitted model and the result shows that only two stations favor the non-stationary model (Model 2) while the other eleven stations favor stationary model (Model 1). The return level of PM10 concentration that is expected to exceed the maximum once within a selected period is obtained.

  2. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    PubMed

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Two Methods to Derive Ground-level Concentrations of PM2.5 with Improved Accuracy in the North China, Calibrating MODIS AOD and CMAQ Model Predictions

    NASA Astrophysics Data System (ADS)

    Lyu, Baolei; Hu, Yongtao; Chang, Howard; Russell, Armistead; Bai, Yuqi

    2016-04-01

    Reliable and accurate characterizations of ground-level PM2.5 concentrations are essential to understand pollution sources and evaluate human exposures etc. Monitoring network could only provide direct point-level observations at limited locations. At the locations without monitors, there are generally two ways to estimate the pollution levels of PM2.5. One is observations of aerosol properties from the satellite-based remote sensing, such as Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD). The other one is from deterministic atmospheric chemistry models, such as the Community Multi-Scale Air Quality Model (CMAQ). In this study, we used a statistical spatio-temporal downscaler to calibrate the two datasets to monitor observations to derive fine-scale ground-level concentrations of PM2.5 with improved accuracy. We treated both MODIS AOD and CMAQ model predictions as biased proxy estimations of PM2.5 pollution levels. The downscaler proposed a Bayesian framework to model the spatially and temporally varying coefficients of the two types of estimations in the linear regression setting, in order to correct biases. Especially for calibrating MODIS AOD, a city-specific linear model was established to fill the missing AOD values, and a novel interpolation-based variable, i.e. PM2.5 Spatial Interpolator, was introduced to account for the spatial dependence among grid cells. We selected the heavy polluted and populated North China as our study area, in a grid setting of 81×81 12-km cells. For the evaluation of calibration performance for retrieved MODIS AOD, the R2 was 0.61 by the full model with PM2.5 Spatial Interpolator being presented, and was 0.48 with PM2.5 Spatial Interpolator not being presented. The constructed AOD values effectively predicted PM2.5 concentrations under our model structure, with R2=0.78. For the evaluation of calibrated CMAQ predictions, the R2 was 0.51, a little less than that of calibrated AOD. Finally we obtained two sets of calibrated estimations of ground-level PM2.5 concentrations with complete spatial coverage. By comparing the two datasets, we found that the prediction from AOD have a little smoother texture than that from CMAQ. The former also predicted larger heavy pollution area in the southern Hebei province than the latter, but in a small margin. In general, they have pretty similar spatial patterns, indicating the reliability of our data fusion method. In summary, the statistical spatio-temporal downscaler could provide improvements on MODIS AOD and CMAQ's predictions on PM2.5 pollution levels. Future work would focus on fusing three datasets, as aforementioned monitor observations, MODIS AOD and CMAQ predictions, to derive predictions of ground-level PM2.5 pollution levels with even increased accuracy.

  4. Evaluation of pollutant source strengths and control strategies in an innovative residential high-rise building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    Describes a study undertaken to assess the indoor air quality in the Clos St-Andre, a 78-unit residential complex in downtown Montreal, through the implementation of a monitoring protocol in three of the building`s suites; and to examine the relationships between mechanical ventilation, material emissions, occupant lifestyle, and indoor air pollutant concentrations. The monitoring protocol consisted of tracer gas, air exchange testing, material emission testing, airtightness testing, and the monitoring of air temperature, relative humidity, carbon dioxide, carbon monoxide, formaldehyde, and total volatile organic carbon in the suites. Trends in pollutant concentrations over time in the post-construction period are noted.

  5. Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Qunfang; Zhu, Yifang

    2010-01-01

    Increasing evidence has demonstrated toxic effects of vehicular emitted ultrafine particles (UFPs, diameter < 100 nm), with the highest human exposure usually occurring on and near roadways. Children are particularly at risk due to immature respiratory systems and faster breathing rates. In this study, children's exposure to in-cabin air pollutants, especially UFPs, was measured inside four diesel-powered school buses. Two 1990 and two 2006 model year diesel-powered school buses were selected to represent the age extremes of school buses in service. Each bus was driven on two routine bus runs to study school children's exposure under different transportation conditions in South Texas. The number concentration and size distribution of UFPs, total particle number concentration, PM 2.5, PM 10, black carbon (BC), CO, and CO 2 levels were monitored inside the buses. The average total particle number concentrations observed inside the school buses ranged from 7.3 × 10 3 to 3.4 × 10 4 particles cm -3, depending on engine age and window position. When the windows were closed, the in-cabin air pollutants were more likely due to the school buses' self-pollution. The 1990 model year school buses demonstrated much higher air pollutant concentrations than the 2006 model year ones. When the windows were open, the majority of in-cabin air pollutants came from the outside roadway environment with similar pollutant levels observed regardless of engine ages. The highest average UFP concentration was observed at a bus transfer station where approximately 27 idling school buses were queued to load or unload students. Starting-up and idling generated higher air pollutant levels than the driving state. Higher in-cabin air pollutant concentrations were observed when more students were on board.

  6. Détente from the Air: Monitoring Air Pollution during the Cold War.

    PubMed

    Rothschild, Rachel

    During the period of détente in the 1970s, a Norwegian proposal to construct an air pollution monitoring network for the European continent resulted in the first concrete collaboration between the communist and capitalist blocs after the 1975 Helsinki Accords. Known as the "European-wide monitoring programme" or EMEP, the network earned considerable praise from diplomats for facilitating cooperation across the Iron Curtain. Yet as this article argues, EMEP was strongly influenced by the politics of détente and the constraints of the Cold War even as it helped to decrease tensions. Concerns about national security and sharing data with the enemy shaped both the construction of the monitoring network and the modeling of pollution transport. The article also proposes that environmental monitoring systems like EMEP reveal the ways in which observational technologies can affect conceptions of the natural world and the role of science in public policy.

  7. 40 CFR 63.11454 - What are the monitoring requirements for new and existing sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for.... (1) You must install each sensor of your monitoring system in a location that provides representative...

  8. Mobile Air Monitoring Data Processing Strategies and Effects on Spatial Air Pollution Trends

    EPA Science Inventory

    The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data an...

  9. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  10. Comprehensive assessment of toxic emissions from coal-fired power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T D; Schmidt, C E; Radziwon, A S

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS)more » to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.« less

  11. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    NASA Astrophysics Data System (ADS)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  12. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    PubMed

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-02-05

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  13. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    PubMed Central

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  14. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing...

  15. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing...

  16. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing...

  17. Development of New Sensing Materials Using Combinatorial and High-Throughput Experimentation

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Mirsky, Vladimir M.

    New sensors with improved performance characteristics are needed for applications as diverse as bedside continuous monitoring, tracking of environmental pollutants, monitoring of food and water quality, monitoring of chemical processes, and safety in industrial, consumer, and automotive settings. Typical requirements in sensor improvement are selectivity, long-term stability, sensitivity, response time, reversibility, and reproducibility. Design of new sensing materials is the important cornerstone in the effort to develop new sensors. Often, sensing materials are too complex to predict their performance quantitatively in the design stage. Thus, combinatorial and high-throughput experimentation methodologies provide an opportunity to generate new required data to discover new sensing materials and/or to optimize existing material compositions. The goal of this chapter is to provide an overview of the key concepts of experimental development of sensing materials using combinatorial and high-throughput experimentation tools, and to promote additional fruitful interactions between computational scientists and experimentalists.

  18. Evaluation of the dual differential radiometer for remote sensing of sediment and chlorophyll in turbid waters

    NASA Technical Reports Server (NTRS)

    Witte, W. G.

    1975-01-01

    The dual differential radiometer (DDR) was tested to determine its capability for measuring suspended sediment and chlorophyll in turbid waters. Measurements were obtained from a boat dock and from a helicopter with combinations of sample and reference filters with peak transmissions at various wavelengths. Water samples were taken concurrently and were analyzed for light scattering, particle count, and total chlorophyll. Least-squares estimates of the linear relationship between DDR output and the water parameters yielded correlation coefficients of less than 0.7. Under the turbid water conditions of the present tests, the DDR did not accurately measure either suspended sediment or chlorophyll. A precise knowledge of the spectral signatures of various pollutants might enable appropriate filters to be selected for tuning the DDR to monitor a particular pollutant.

  19. Review on methods for determination of metallothioneins in aquatic organisms.

    PubMed

    Shariati, Fatemeh; Shariati, Shahab

    2011-06-01

    One aspect of environmental degradation in coastal areas is pollution from toxic metals, which are persistent and are bioaccumulated by marine organisms, with serious public health implications. A conventional monitoring system of environmental metal pollution includes measuring the level of selected metals in the whole organism or in respective organs. However, measuring only the metal content in particular organs does not give information about its effect at the subcellular level. Therefore, the evaluation of biochemical biomarker metallothionein may be useful in assessing metal exposure and the prediction of potential detrimental effects induced by metal contamination. There are some methods for the determination of metallothioneins including spectrophotometric method, electrochemical methods, chromatography, saturation-based methods, immunological methods, electrophoresis, and RT-PCR. In this paper, different methods are discussed briefly and the comparison between them will be presented.

  20. Environmental Pollution: Noise Pollution - Sonic Boom. Volume I.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    The unclassified, annotated bibliography is Volume I of a two-volume set on Noise Pollution - Sonic Boom in a series of scheduled bibliographies on Environmental Pollution. Volume II is Confidential. Corporate author-monitoring agency, subject, title, contract, and report number indexes are included. (Author/JR)

  1. 40 CFR 63.7120 - How do I monitor and collect data to demonstrate continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Lime Manufacturing Plants Continuous Compliance Requirements § 63.7120 How do I monitor and collect data to...

  2. 40 CFR 63.7120 - How do I monitor and collect data to demonstrate continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Lime Manufacturing Plants Continuous Compliance Requirements § 63.7120 How do I monitor and collect data to...

  3. 40 CFR 63.7120 - How do I monitor and collect data to demonstrate continuous compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Lime Manufacturing Plants Continuous Compliance Requirements § 63.7120 How do I monitor and collect data to...

  4. 40 CFR 63.7120 - How do I monitor and collect data to demonstrate continuous compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Lime Manufacturing Plants Continuous Compliance Requirements § 63.7120 How do I monitor and collect data to...

  5. Shell Chemical LP To Install $10 Million In Pollution Monitoring And Control Equipment At Norco Chemical Facility In Louisiana To Resolve Alleged Federal And State Clean Air Violations

    EPA Pesticide Factsheets

    EPA News Release: Shell Chemical LP To Install $10 Million In Pollution Monitoring And Control Equipment At Norco Chemical Facility In Louisiana To Resolve Alleged Federal And State Clean Air Violations

  6. 40 CFR 63.1657 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollution control practices that minimizes emissions per § 63.6(e)(1)(i). (c) Shop opacity. The owner or... monitoring device that continuously records the volumetric flow rate through each separately ducted hood. (3... records the volumetric flow rate at the inlet of the air pollution control device and must check and...

  7. 40 CFR 63.1657 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollution control practices that minimizes emissions per § 63.6(e)(1)(i). (c) Shop opacity. The owner or... monitoring device that continuously records the volumetric flow rate through each separately ducted hood. (3... records the volumetric flow rate at the inlet of the air pollution control device and must check and...

  8. 40 CFR 63.1657 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollution control practices that minimizes emissions per § 63.6(e)(1)(i). (c) Shop opacity. The owner or... monitoring device that continuously records the volumetric flow rate through each separately ducted hood. (3... records the volumetric flow rate at the inlet of the air pollution control device and must check and...

  9. Determination of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multi Photon Ionization - Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA?s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as a pro...

  10. New microwave spectrometer/imager has possible applications for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Tooley, R. D.

    1970-01-01

    Microwave imager forms thermal-emissivity image of solid portion of planet Venus and provides data on the planet's atmosphere, surface, terminator, and temperature changes. These thermally produced multifrequency microwaves for image production of temperature profiles can be applied to water pollution monitoring, agriculture, and forestry survey.

  11. Measurement error in time-series analysis: a simulation study comparing modelled and monitored data.

    PubMed

    Butland, Barbara K; Armstrong, Ben; Atkinson, Richard W; Wilkinson, Paul; Heal, Mathew R; Doherty, Ruth M; Vieno, Massimo

    2013-11-13

    Assessing health effects from background exposure to air pollution is often hampered by the sparseness of pollution monitoring networks. However, regional atmospheric chemistry-transport models (CTMs) can provide pollution data with national coverage at fine geographical and temporal resolution. We used statistical simulation to compare the impact on epidemiological time-series analysis of additive measurement error in sparse monitor data as opposed to geographically and temporally complete model data. Statistical simulations were based on a theoretical area of 4 regions each consisting of twenty-five 5 km × 5 km grid-squares. In the context of a 3-year Poisson regression time-series analysis of the association between mortality and a single pollutant, we compared the error impact of using daily grid-specific model data as opposed to daily regional average monitor data. We investigated how this comparison was affected if we changed the number of grids per region containing a monitor. To inform simulations, estimates (e.g. of pollutant means) were obtained from observed monitor data for 2003-2006 for national network sites across the UK and corresponding model data that were generated by the EMEP-WRF CTM. Average within-site correlations between observed monitor and model data were 0.73 and 0.76 for rural and urban daily maximum 8-hour ozone respectively, and 0.67 and 0.61 for rural and urban loge(daily 1-hour maximum NO2). When regional averages were based on 5 or 10 monitors per region, health effect estimates exhibited little bias. However, with only 1 monitor per region, the regression coefficient in our time-series analysis was attenuated by an estimated 6% for urban background ozone, 13% for rural ozone, 29% for urban background loge(NO2) and 38% for rural loge(NO2). For grid-specific model data the corresponding figures were 19%, 22%, 54% and 44% respectively, i.e. similar for rural loge(NO2) but more marked for urban loge(NO2). Even if correlations between model and monitor data appear reasonably strong, additive classical measurement error in model data may lead to appreciable bias in health effect estimates. As process-based air pollution models become more widely used in epidemiological time-series analysis, assessments of error impact that include statistical simulation may be useful.

  12. Assessment of heavy metal pollution in surface soils and plant material in the post-industrial city of Katowice, Poland.

    PubMed

    Steindor, Karolina A; Franiel, Izabella J; Bierza, Wojciech M; Pawlak, Beata; Palowski, Bernard F

    2016-01-01

    This investigation was undertaken to assess the level of environment pollution by biological monitoring. The leaves and bark of popular ornamental trees Acer pseudoplatanus L. and Acer platanoides L. and soil from the sampling sites were used to perform heavy metals pollution monitoring in urban areas with different pollution sources, as well to investigate the suitability of the leaves and bark as bioindicators of Pb, Zn, Cd and Cu pollution. Plant samples were collected at nine locations classified into three pollution groups based on metal content in the soils. The chosen pollution indices were used to assess the level of contamination according to background values. Soils in the Katowice area are found to be relatively heavily contaminated with Pb, Zn and Cd. Both of the maple tree species did not statistically differ in terms of the investigated elements' concentration in leaves or bark. Only bark samples reflected the pollution level, showing differences between the sampling points, and therefore are recommended for biomonitoring purposes.

  13. Numerical evaluation of bioaccumulation and depuration kinetics of PAHs in Mytilus galloprovincialis.

    PubMed

    Yakan, S D; Focks, A; Klasmeier, J; Okay, O S

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are important organic pollutants in the aquatic environment due to their persistence and bioaccumulation potential both in organisms and in sediments. Benzo(a)anthracene (BaA) and phenanthrene (PHE), which are in the priority pollutant list of the U.S. EPA (Environmental Protection Agency), are selected as model compounds of the present study. Bioaccumulation and depuration experiments with local Mediterranean mussel species, Mytilus galloprovincialis were used as the basis of the study. Mussels were selected as bioindicator organisms due to their broad geographic distribution, immobility and low enzyme activity. Bioaccumulation and depuration kinetics of selected PAHs in Mytilus galloprovincialis were described using first order kinetic equations in a three compartment model. The compartments were defined as: (1) biota (mussel), (2) surrounding environment (seawater), and (3) algae (Phaeodactylum tricornutum) as food source of the mussels. Experimental study had been performed for three different concentrations. Middle concentration of the experimental data was used as the model input in order to represent other high and low concentrations of selected PAHs. Correlations of the experiment and model data revealed that they are in good agreement. Accumulation and depuration trend of PAHs in mussels regarding also the durations can be estimated effectively with the present study. Thus, this study can be evaluated as a supportive tool for risk assessment in addition to monitoring studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    PubMed

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  15. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model

    NASA Astrophysics Data System (ADS)

    Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.

    2012-08-01

    Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.

  16. Strengthen the collaboration between the River Basin Management Organization of China and International Environmental Specimen Bank Group.

    PubMed

    Tan, Lingzhi; Liu, Hui; Shu, Jinxiang; Xia, Fan

    2015-02-01

    Several types of emerging organic contaminants were investigated in many recent researches, such as persistent toxic substance (PTS), persistent organic pollutants (POPs), endocrine disrupters (EDs), and volatile organic compounds (VOCs). But the Chinese country standard detection methods of emerging organic pollutants were not developed with the dramatic increasing of the organic substances production. Hence, it is necessary to obtain the latest informations about the long-term storage of representative environmental specimens, which could provide scientific basis for environmental management and environmental decision-making of the water resources protection and management organization. As the significant water resource conservation organization, the Water Environment Monitoring Center of Yangtze River Basin is experienced in water environmental monitoring and records many useful water resources and environment informations. It is also our responsibility to monitor all the pollutants in water environment of the Yangtze River valley, especially the emerging organic contaminants. Meanwhile, the International Environmental Specimen Bank (IESB) accumulates lots environmental organic pollution specimens and plays a significant role in environmental monitoring. Thus, the collaboration between the two parties will be greatly helpful for each further researches and monitoring work of organic contaminants in Yangtze River Basin.

  17. Toward the Next Generation of Air Quality Monitoring Indicators

    NASA Technical Reports Server (NTRS)

    Hsu, Angel; Reuben, Aaron; Shindell, Drew; deSherbinin, Alex; Levy, Marc

    2013-01-01

    This paper introduces an initiative to bridge the state of scientific knowledge on air pollution with the needs of policymakers and stakeholders to design the "next generation" of air quality indicators. As a first step this initiative assesses current monitoring and modeling associated with a number of important pollutants with an eye toward identifying knowledge gaps and scientific needs that are a barrier to reducing air pollution impacts on human and ecosystem health across the globe. Four outdoor air pollutants were considered e particulate matter, ozone, mercury, and Persistent Organic Pollutants (POPs) e because of their clear adverse impacts on human and ecosystem health and because of the availability of baseline data for assessment for each. While other papers appearing in this issue will address each pollutant separately, this paper serves as a summary of the initiative and presents recommendations for needed investments to provide improved measurement, monitoring, and modeling data for policyrelevant indicators. The ultimate goal of this effort is to enable enhanced public policy responses to air pollution by linking improved data and measurement methods to decision-making through the development of indicators that can allow policymakers to better understand the impacts of air pollution and, along with source attribution based on modeling and measurements, facilitate improved policies to solve it. The development of indicators represents a crucial next step in this process.

  18. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt...

  19. [Monitoring of the chemical composition of snow cover pollution in the Moscow region].

    PubMed

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2014-01-01

    Monitoring of snow cover pollution as an indicator of ambient air pollution in 20 districts in the Moscow region during 2009-2013 was performed. The identification with a quantitative assessment of a wide array of organic compounds and the control of the main physical and chemical and inorganic indices of snow water pollution were carried out. More than 60 organic substances for most of which there are no the hygienic standards were established. The assessment of pollution levels of basic inorganic indices was given by means of the comparing them with the average values in the snow cover in the European territory of Russia and natural content in areas not been exposed to human impact.

  20. Artificial neural network model for ozone concentration estimation and Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Gao, Meng; Yin, Liting; Ning, Jicai

    2018-07-01

    Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.

  1. Assessment of near-source air pollution at a fine spatial scale ...

    EPA Pesticide Factsheets

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle, an all-electric vehicle measuring real-time concentrations of particulate and gaseous pollutants, was utilized to map air pollution trends near the Port of Charleston in South Carolina. High-resolution monitoring was performed along driving routes near several port terminals and rail yard facilities, recording geospatial coordinates and measurements of pollutants including black carbon, size-resolved particle count ranging from ultrafine to coarse (6 nm to 20 µm), carbon monoxide, carbon dioxide, and nitrogen dioxide. Additionally, a portable meteorological station was used to characterize local meteorology. Port activity data was provided by the Port Authority of Charleston and includes counts of ships and trucks, and port service operations such as cranes and forklifts during the sampling time periods. Measurements are supplemented with modeling performed with AERMOD and RLINE in order to characterize the impact of the various terminals at the Port of Charleston on local air quality. Specifically, the data are used to determine the magnitude of the increase in local, near-port pollutant concentrations as well as the spatial extent to which concentration is elevated above background. These effects are studied in relation to a number of potentially significant factors such

  2. Gender Differences and Effect of Air Pollution on Asthma in Children with and without Allergic Predisposition: Northeast Chinese Children Health Study

    PubMed Central

    Dong, Guang-Hui; Chen, Tao; Liu, Miao-Miao; Wang, Da; Ma, Ya-Nan; Ren, Wan-Hui; Lee, Yungling Leo; Zhao, Ya-Dong; He, Qin-Cheng

    2011-01-01

    Background Males and females exhibit different health responses to air pollution, but little is known about how exposure to air pollution affects juvenile respiratory health after analysis stratified by allergic predisposition. The aim of the present study was to assess the relationship between air pollutants and asthmatic symptoms in Chinese children selected from multiple sites in a heavily industrialized province of China, and investigate whether allergic predisposition modifies this relationship. Methodology/Principal Findings 30139 Chinese children aged 3-to-12 years were selected from 25 districts of seven cities in northeast China in 2009. Information on respiratory health was obtained using a standard questionnaire from the American Thoracic Society. Routine air-pollution monitoring data was used for particles with an aerodynamic diameter ≤10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxides (NO2), ozone (O3) and carbon monoxide (CO). A two-stage regression approach was applied in data analyses. The effect estimates were presented as odds ratios (ORs) per interquartile changes for PM10, SO2, NO2, O3, and CO. The results showed that children with allergic predisposition were more susceptible to air pollutants than children without allergic predisposition. Amongst children without an allergic predisposition, air pollution effects on asthma were stronger in males compared to females; Current asthma prevalence was related to PM10 (ORs = 1.36 per 31 µg/m3; 95% CI, 1.08–1.72), SO2 (ORs = 1.38 per 21 µg/m3; 95%CI, 1.12–1.69) only among males. However, among children with allergic predisposition, more positively associations between air pollutants and respiratory symptoms and diseases were detected in females; An increased prevalence of doctor-diagnosed asthma was significantly associated with SO2 (ORs = 1.48 per 21 µg/m3; 95%CI, 1.21–1.80), NO2 (ORs = 1.26 per 10 µg/m3; 95%CI, 1.01–1.56), and current asthma with O3 (ORs = 1.55 per 23 µg/m3; 95%CI, 1.18–2.04) only among females. Conclusion/Significance Ambient air pollutions were more evident in males without an allergic predisposition and more associations were detected in females with allergic predisposition. PMID:21811617

  3. The development of "fab-chips" as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications.

    PubMed

    Robinson, Ashley M; Zhao, Lili; Shah Alam, Marwa Y; Bhandari, Paridhi; Harroun, Scott G; Dendukuri, Dhananjaya; Blackburn, Jonathan; Brosseau, Christa L

    2015-02-07

    The demand for methods and technologies capable of rapid, inexpensive and continuous monitoring of health status or exposure to environmental pollutants persists. In this work, the development of novel surface-enhanced Raman spectroscopy (SERS) substrates from metal-coated silk fabric, known as zari, presents the potential for SERS substrates to be incorporated into clothing and other textiles for the routine monitoring of important analytes, such as disease biomarkers or environmental pollutants. Characterization of the zari fabric was completed using scanning electron microscopy, energy dispersive X-ray analysis and Raman spectroscopy. Silver nanoparticles (AgNPs) were prepared, characterized by transmission electron microscopy and UV-vis spectroscopy, and used to treat fabric samples by incubation, drop-coating and in situ synthesis. The quality of the treated fabric was evaluated by collecting the SERS signal of 4,4'-bipyridine on these substrates. When AgNPs were drop-coated on the fabric, sensitive and reproducible substrates were obtained. Adenine was selected as a second probe molecule, because it dominates the SERS signal of DNA, which is an important class of disease biomarker, particularly for pathogens such as Plasmodium spp. and Mycobacterium tuberculosis. Excellent signal enhancement could be achieved on these affordable substrates, suggesting that the developed fabric chips have the potential for expanding the use of SERS as a diagnostic and environmental monitoring tool for application in wearable sensor technologies.

  4. Climate Change Indicator for Hazard Identification of Indian North West Coast Marine Environment Using Synthetic Aperture Radar (sar)

    NASA Astrophysics Data System (ADS)

    Gambheer, Phani Raj

    2012-07-01

    Stormwater runoff, Petroleum Hydrocarbon plumes are found abundantly near coastal cities, coastal population settlements especially in developing nations as more than half the world's human population. Ever increasing coastal populations and development in coastal areas have led to increased loading of toxic substances, nutrients and pathogens. These hazards cause deleterious effects on the population in many ways directly or indirectly which lead to algal blooms, hypoxia, beach closures, and damage to coastal fisheries. Hence these pollution hazards are important and the coastal administrations and people need to be aware of such a danger lurking very close to them. These hazards due to their small size, dynamic and episodic in nature are difficult to be visualized or to sample using in-situ traditional scientific methods. Natural obstructions like cloud cover and complex coastal circulations can hinder to detect and monitor such occurrences in the selected areas chosen for observations. This study takes recourse to Synthetic Aperture Radar (SAR) imagery because the pollution hazards are easily detectable as surfactants are deposited on the sea surface, along with nutrients and pathogens, smoothing capillary and small gravity waves to produce areas of reduced backscatter compared with surrounding ocean. These black spots can be termed as `Ecologic Indicator' and formed probably due to stronger thermal stratification, a deepening event of thermocline. SAR imagery that delivers useful data better than others regardless of darkness or cloud cover, should be made as an important observational tool for assessment and monitoring marine pollution hazards in the areas close to coastal regions. Till now the effects of climate change, sea level rise and global warming seems to have not affected the coastal populace of India in intrusions of sea water but it takes significance to the human health as the tides dominate these latitudes with bringing these polluted waters. KEY WORDS Coastal, ecologic, estuarine, hazard, indicator, marine, pollution, stressor, tides

  5. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China.

    PubMed

    Liu, Chao; Henderson, Barron H; Wang, Dongfang; Yang, Xinyuan; Peng, Zhong-Ren

    2016-09-15

    Intra-urban assessment of air pollution exposure has become a priority study while international attention was attracted to PM2.5 pollution in China in recent years. Land Use Regression (LUR), which has previously been proved to be a feasible way to describe the relationship between land use and air pollution level in European and American cities, was employed in this paper to explain the correlations and spatial variations in Shanghai, China. PM2.5 and NO2 concentrations at 35-45 monitoring locations were selected as dependent variables, and a total of 44 built environmental factors were extracted as independent variables. Only five factors showed significant explanatory value for both PM2.5 and NO2 models: longitude, distance from monitors to the ocean, highway intensity, waterbody area, and industrial land area for PM2.5 model; residential area, distance to the coast, industrial area, urban district, and highway intensity for NO2 model. Respectively, both PM2.5 and NO2 showed anti-correlation with coastal proximity (an indicator of clean air dilution) and correlation with highway and industrial intensity (source indicators). NO2 also showed significant correlation with local indicators of population density (residential intensity and urban classification), while PM2.5 showed significant correlation with regional dilution (longitude as a indicator of distance from polluted neighbors and local water features). Both adjusted R squared values were strong with PM2.5 (0.88) being higher than NO2 (0.62). The LUR was then used to produce continuous concentration fields for NO2 and PM2.5 to illustrate the features and, potentially, for use by future studies. Comparison to PM2.5 studies in New York and Beijing show that Shanghai PM2.5 pollutant distribution was more sensitive to geographic location and proximity to neighboring regions. Copyright © 2015. Published by Elsevier B.V.

  6. Fukushima's lessons from the blue butterfly: A risk assessment of the human living environment in the post-Fukushima era.

    PubMed

    Otaki, Joji M

    2016-10-01

    A series of studies on the pale grass blue butterfly that were carried out to assess the biological effects of the Fukushima nuclear accident teach 3 important lessons. First, it is necessary to have an environmental indicator species, such as the pale grass blue butterfly in Japan, that is common (not endangered), shares a living environment (air, water, and soil) with humans, and is amenable to laboratory experiments. The monitoring of such indicator species before and immediately after a nuclear accident likely reflects acute impacts caused by initial exposure. To assess transgenerational and chronic effects, continuous monitoring over time is encouraged. Second, it is important to understand the actual health status of a polluted region and comprehend the whole picture of the pollution impacts, rather than focusing on the selected effects of radiation alone. In our butterfly experiments, plant leaves from Fukushima were fed to larval butterflies to access whole-body effects, focusing on survival rate and morphological abnormalities (rather than focusing on a specific disease or biochemical marker). Our results revealed that ionizing radiation is unlikely to be the exclusive source of environmental disturbances. Airborne particulate matter from a nuclear reactor, regardless of its radioactivity, is likely equally important. Finally, our butterfly experiments demonstrate that there is considerable variation in sensitivities to nuclear pollution within a single species or even within a local population. Based on these results, it is speculated that high pollution sensitivity in humans may be caused not only by low levels of functional DNA repair enzymes but also by immunological responses to particulate matter in the respiratory tract. These lessons from the pale grass blue butterfly should be integrated in studying future nuclear pollution events and decision making on nuclear and environmental policies at the local and international levels in the postFukushima era. Integr Environ Assess Manag 2016;12:667-672. © 2016 SETAC. © 2016 SETAC.

  7. 40 CFR Table 3 to Subpart Bbbbbb... - Applicability of General Provisions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Maintenance Maintain monitoring system in a manner consistent with good air pollution control... pollution control equipment; maintenance on air pollution control equipment; actions during SSM Yes. § 63.10... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  8. 40 CFR 464.25 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Copper Casting... existing sources. (a) Casting Quench Operations. PSES Pollutant or pollutant property Maximum for any 1 day... monitoring) 1.2 0.399 (b) Direct Chill Casting Operations. PSES Pollutant or pollutant property Maximum for...

  9. Absolute quantification of Dehalococcoides proteins: enzyme bioindicators of chlorinated ethene dehalorespiration.

    PubMed

    Werner, Jeffrey J; Ptak, A Celeste; Rahm, Brian G; Zhang, Sheng; Richardson, Ruth E

    2009-10-01

    The quantification of trace proteins in complex environmental samples and mixed microbial communities would be a valuable monitoring tool in countless applications, including the bioremediation of groundwater contaminated with chlorinated solvents. Measuring the concentrations of specific proteins provides unique information about the activity and physiological state of organisms in a sample. We developed sensitive (< 5 fmol), selective bioindicator assays for the absolute quantification of select proteins used by Dehalococcoides spp. when reducing carbon atoms in the common pollutants trichloroethene (TCE) and tetrachloroethene (PCE). From complex whole-sample digests of two different dechlorinating mixed communities, we monitored the chromatographic peaks of selected tryptic peptides chosen to represent 19 specific Dehalococcoides proteins. This was accomplished using multiple-reaction monitoring (MRM) assays using nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), which provided the selectivity, sensitivity and reproducibility required to quantify Dehalococcoides proteins in complex samples. We observed reproducible peak areas (average CV = 0.14 over 4 days, n = 3) and linear responses in standard curves (n = 5, R(2) > 0.98) using synthetic peptide standards spiked into a background matrix of sediment peptides. We detected and quantified TCE reductive dehalogenase (TceA) at 7.6 +/- 1.7 x 10(3) proteins cell(-1) in the KB1 bioaugmentation culture, previously thought to be lacking TceA. Fragmentation data from MS/MS shotgun proteomics experiments were helpful in developing the MRM targets. Similar shotgun proteomics data are emerging in labs around the world for many environmentally relevant microbial proteins, and these data are a valuable resource for the future development of MRM assays. We expect targeted peptide quantification in environmental samples to be a useful tool in environmental monitoring.

  10. Determining organic pollutants in automotive industry sludge.

    PubMed

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  11. A review of traffic-related air pollution exposure assessment studies in the developing world.

    PubMed

    Han, Xianglu; Naeher, Luke P

    2006-01-01

    Exposure assessment studies in the developing world are important. Although recent years have seen an increasing number of traffic-related pollution exposure studies, exposure assessment data on this topic are still limited. Differences among measuring methods and a lack of strict quality control in carrying out exposure assessment make it difficult to generalize and compare findings between studies. In this article, exposure assessment studies carried out in the developing world on several traffic-related air pollutants are reviewed. These pollutants include particulate matter (PM), carbon monoxide (CO), nitrogen dioxide (NO(2)), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). In addition, it discusses advantages and disadvantages of various monitoring methods (ambient fixed-site monitoring, microenvironment monitoring, and personal exposure assessment using portable samplers) for these pollutants in exposure assessment studies. Also included in this paper is a brief introduction of standards for these pollutants in ambient air or in occupational settings established by the United States Environmental Protection Agency (USEPA), the United States Occupational Safety and Health Administration (OSHA) and the World Health Organization (WHO). The review ends with a summary of the limitations and gaps in recent studies and suggestions for future research in the developing world.

  12. Recent trends in nanomaterials applications in environmental monitoring and remediation.

    PubMed

    Das, Sumistha; Sen, Biswarup; Debnath, Nitai

    2015-12-01

    Environmental pollution is one of the greatest problems that the world is facing today, and it is increasing with every passing year and causing grave and irreparable damage to the earth. Nanomaterials, because of their novel physical and chemical characteristics, have great promise to combat environment pollution. Nanotechnology is being used to devise pollution sensor. A variety of materials in their nano form like iron, titanium dioxide, silica, zinc oxide, carbon nanotube, dendrimers, polymers, etc. are increasingly being used to make the air clean, to purify water, and to decontaminate soil. Nanotechnology is also being used to make renewable energy cheaper and more efficient. The use of nanotechnology in agriculture sector will reduce the indiscriminate use of agrochemicals and thus will reduce the load of chemical pollutant. While remediating environment pollution with nanomaterials, it should also be monitored that these materials do not contribute further degradation of the environment. This review will focus broadly on the applications of nanotechnology in the sustainable development with particular emphasis on renewable energy, air-, water-, and soil-remediation. Besides, the review highlights the recent developments in various types of nanomaterials and nanodevices oriented toward pollution monitoring and remediation.

  13. Using large volume samplers for the monitoring of particle bound micro pollutants in rivers

    NASA Astrophysics Data System (ADS)

    Kittlaus, Steffen; Fuchs, Stephan

    2015-04-01

    The requirements of the WFD as well as substance emission modelling at the river basin scale require stable monitoring data for micro pollutants. The monitoring concepts applied by the local authorities as well as by many scientists use single sampling techniques. Samples from water bodies are usually taken in volumes of about one litre and depending on predetermined time steps or through discharge thresholds. For predominantly particle bound micro pollutants the small sample size of about one litre results in a very small amount of suspended particles. To measure micro pollutant concentrations in these samples is demanding and results in a high uncertainty of the measured concentrations, if the concentration is above the detection limit in the first place. In many monitoring programs most of the measured values were below the detection limit. This results in a high uncertainty if river loads were calculated from these data sets. The authors propose a different approach to gain stable concentration values for particle bound micro pollutants from river monitoring: A mixed sample of about 1000 L was pumped in a tank with a dirty-water pump. The sampling usually is done discharge dependant by using a gauge signal as input for the control unit. After the discharge event is over or the tank is fully filled, the suspended solids settle in the tank for 2 days. After this time a clear separation of water and solids can be shown. A sample (1 L) from the water phase and the total mass of the settled solids (about 10 L) are taken to the laboratory for analysis. While the micro pollutants can't hardly be detected in the water phase, the signal from the sediment is high above the detection limit, thus certain and very stable. From the pollutant concentration in the solid phase and the total tank volume the initial pollutant concentration in the sample can be calculated. If the concentration in the water phase is detectable, it can be used to correct the total load. This relatively low cost approach (less costs for analysis because of small sample number) allows to quantify the pollutant load, to derive dissolved-solid partition coefficients and to quantify the pollutant load in different particle size classes.

  14. Measurement results obtained from air quality monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracowmore » area could be more intelligible.« less

  15. [Retrieval of Copper Pollution Information from Hyperspectral Satellite Data in a Vegetation Cover Mining Area].

    PubMed

    Qu, Yong-hua; Jiao, Si-hong; Liu, Su-hong; Zhu, Ye-qing

    2015-11-01

    Heavy metal mining activities have caused the complex influence on the ecological environment of the mining regions. For example, a large amount of acidic waste water containing heavy metal ions have be produced in the process of copper mining which can bring serious pollution to the ecological environment of the region. In the previous research work, bare soil is mainly taken as the research target when monitoring environmental pollution, and thus the effects of land surface vegetation have been ignored. It is well known that vegetation condition is one of the most important indictors to reflect the ecological change in a certain region and there is a significant linkage between the vegetation spectral characteristics and the heavy metal when the vegetation is effected by the heavy metal pollution. It means the vegetation is sensitive to heavy metal pollution by their physiological behaviors in response to the physiological ecology change of their growing environment. The conventional methods, which often rely on large amounts of field survey data and laboratorial chemical analysis, are time consuming and costing a lot of material resources. The spectrum analysis method using remote sensing technology can acquire the information of the heavy mental content in the vegetation without touching it. However, the retrieval of that information from the hyperspectral data is not an easy job due to the difficulty in figuring out the specific band, which is sensitive to the specific heavy metal, from a huge number of hyperspectral bands. Thus the selection of the sensitive band is the key of the spectrum analysis method. This paper proposed a statistical analysis method to find the feature band sensitive to heavy metal ion from the hyperspectral data and to then retrieve the metal content using the field survey data and the hyperspectral images from China Environment Satellite HJ-1. This method selected copper ion content in the leaves as the indicator of copper pollution level, using stepwise multiple linear regression and cross validation on the dataset which is consisting of 44 groups of copper ion content information in the polluted vegetation leaves from Dexing Copper Mine in Jiangxi Province to build up a statistical model by also incorporating the HJ-1 satellite images. This model was then used to estimate the copper content distribution over the whole research area at Dexing Copper Mine. The result has shown that there is strong statistical significance of the model which revealed the most sensitive waveband to copper ion is located at 516 nm. The distribution map illustrated that the copper ion content is generally in the range of 0-130 mg · kg⁻¹ in the vegetation covering area at Dexing Copper Mine and the most seriously polluted area is located at the South-east corner of Dexing City as well as the mining spots with a higher value between 80 and 100 mg · kg⁻¹. This result is consistent with the ground observation experiment data. The distribution map can certainly provide some important basic data on the copper pollution monitoring and treatment.

  16. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  17. ENVIRONMENTAL SYSTEMS MANAGEMENT / POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    Goal 8.4 Improve Environmental Systems Management (Formally Pollution Prevention and New Technology) Background The U.S. Environmental Protection Agency (EPA) has developed and evaluated tools and technologies to monitor, prevent, control, and clean-up pollution through...

  18. Real Time Monitoring System of Pollution Waste on Musi River Using Support Vector Machine (SVM) Method

    NASA Astrophysics Data System (ADS)

    Fachrurrozi, Muhammad; Saparudin; Erwin

    2017-04-01

    Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.

  19. [Monitoring of environmental pollution in Armenia and certain issues on reproductive health and cytogenetic status of organism].

    PubMed

    Tadevosian, N S; Muradian, S A; Tadevosian, A E; Khachatrian, B G; Dzhandzhapanian, A N; Parsadanian, G G; Pogosian, S B; Gevorkian, N B; Guloian, A A

    2012-01-01

    Investigations aimed at the study on the state of environment from the point of pollution by organochlorine pesticides and their metabolites (HCH, DDT, DDE and DDD), as well as on possible unfavorable impact due to carriage of mentioned persistent organic pollutants (POPs) towards reproductive health and cytogenetic status of organism were done. In parallel, monitoring of possible mutagenic components of the environment was also conducted. As to obtained data, residues of organochlorine pesticides are continually determined with high frequency both in environmental media, agricultural foodstuffs and biomedia of rural population of observed region (Aragatsotn marz, Armenia). No changes in mutagenic background were registered. The represented results of the study make fragment of complex social-hygienic, monitoring investigations on environmental quality that would further serve as a platform for working out the recommendations on reduction of environmental pollution and improvement of health protection issues in Armenia.

  20. Applicability of a bioelectronic cardiac monitoring system for the detection of biological effects of pollution in bioindicator species in the Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Kholodkevich, Sergey V.; Kuznetsova, Tatiana V.; Sharov, Andrey N.; Kurakin, Anton S.; Lips, Urmas; Kolesova, Natalia; Lehtonen, Kari K.

    2017-07-01

    Field testing of an innovative technology based on a bioelectronic cardiac monitoring system was carried out in the Gulf of Finland (Baltic Sea). The study shows that the bioelectronic system is suitable for the selected bivalve mollusks Mytilus trossulus, Macoma balthica and Anodonta anatina. Specimens taken from reference sites demonstrated a heart rate recovery time of < 60 min after testing with changed salinity load, while those collected from sites characterized by high anthropogenic pressure demonstrated a prolonged recovery time of up to 110-360 min. These results make possible a discrimination of the study sites based on the assessment of physiological adaptive capacities of inhabiting species. In addition, the approach of measuring heart rate characteristics in M. balthica transplanted in cages to specific target areas was successfully used to evaluate the decline in the adaptive potential of mollusks exposed at polluted sites. Application of the novel system is a useful tool for the biomonitoring of freshwater and brackish water areas. Development of methodological basis for the testing of adaptive capacities (health) of key aquatic organisms provides new knowledge of biological effects of anthropogenic chemical stress in aquatic organisms.

  1. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loar, J. M.; Adams, S. M.; Blaylock, B. G.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4)more » instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.« less

  2. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution.

    PubMed

    Shin, Hae Ja

    2011-02-01

    Microbial biosensors are compact, portable, cost effective, and simple to use, making them seem eminently suitable for the in situ monitoring of environmental pollution. One promising approach for such applications is the fusion of reporter genes with regulatory genes that are dose-dependently responsive to the target chemicals or physiological signals. Their biosensor capabilities, such as target range and sensitivity, could be improved by modification of regulatory genes. Recent uses of such genetically engineered microbial biosensors include the development of portable biosensor kits and high-throughput cell arrays on chips, optic fibers, or other platforms for on-site and on-line monitoring of environmental pollution. This mini-review discusses recent advances in microbial biosensors and their future prospects, with a focus on the development and application of genetically modified microbial biosensors for in situ environmental monitoring.

  3. Scale-dependency of macroinvertebrate communities: responses to contaminated sediments within run-of-river dams.

    PubMed

    Colas, Fanny; Archaimbault, Virginie; Devin, Simon

    2011-03-01

    Due to their nutrient recycling function and their importance in food-webs, macroinvertebrates are essential for the functioning of aquatic ecosystems. These organisms also constitute an important component of biodiversity. Sediment evaluation and monitoring is an essential aspect of ecosystem monitoring since sediments represent an important component of aquatic habitats and are also a potential source of contamination. In this study, we focused on macroinvertebrate communities within run-of-river dams, that are prime areas for sediment and pollutant accumulation. Little is known about littoral macroinvertebrate communities within run-of-river dam or their response to sediment levels and pollution. We therefore aimed to evaluate the following aspects: the functional and structural composition of macroinvertebrate communities in run-of-river dams; the impact of pollutant accumulation on such communities, and the most efficient scales and tools needed for the biomonitoring of contaminated sediments in such environments. Two run-of-river dams located in the French alpine area were selected and three spatial scales were examined: transversal (banks and channel), transversal x longitudinal (banks/channel x tail/middle/dam) and patch scale (erosion, sedimentation and vegetation habitats). At the patch scale, we noted that the heterogeneity of littoral habitats provided many available niches that allow for the development of diversified macroinvertebrate communities. This implies highly variable responses to contamination. Once combined on a global 'banks' spatial scale, littoral habitats can highlight the effects of toxic disturbances. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Is human fecundity declining in Western countries?

    PubMed

    te Velde, Egbert; Burdorf, Alex; Nieschlag, Eberhard; Eijkemans, René; Kremer, Jan A M; Roeleveld, Nel; Habbema, Dik

    2010-06-01

    Since Carlsen and co-workers reported in 1992 that sperm counts have decreased during the second half of the last century in Western societies, there has been widespread anxiety about the adverse effects of environmental pollutants on human fecundity. The Carlsen report was followed by several re-analyses of their data set and by many studies on time trends in sperm quality and on secular trends in fecundity. However, the results of these studies were diverse, complex, difficult to interpret and, therefore, less straightforward than the Carlsen report suggested. The claims that population fecundity is declining and that environmental pollutants are involved, can neither be confirmed nor rejected, in our opinion. However, it is of great importance to find out because the possible influence of widespread environmental pollution, which would adversely affect human reproduction, should be a matter of great concern triggering large-scale studies into its causes and possibilities for prevention. The fundamental reason we still do not know whether population fecundity is declining is the lack of an appropriate surveillance system. Is such a system possible? In our opinion, determining total sperm counts (as a measure of male reproductive health) in combination with time to pregnancy (as a measure of couple fecundity) in carefully selected populations is a feasible option for such a monitoring system. If we want to find out whether or not population fecundity will be declining within the following 20-30 years, we must start monitoring now.

  5. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment.

    PubMed

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2017-08-01

    Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran.

    PubMed

    Moore, Farid; Sheykhi, Vahideh; Salari, Mohammad; Bagheri, Adel

    2016-04-01

    This paper is a comprehensive assessment of the quality of soil in the Nakhlak mining district in Central Iran with special reference to potentially toxic metals. In this regard, an integrated approach involving geostatistical, correlation matrix, pollution indices, and chemical fractionation measurement is used to evaluate selected potentially toxic metals in soil samples. The fractionation of metals indicated a relatively high variability. Some metals (Mo, Ag, and Pb) showed important enrichment in the bioavailable fractions (i.e., exchangeable and carbonate), whereas the residual fraction mostly comprised Sb and Cr. The Cd, Zn, Co, Ni, Mo, Cu, and As were retained in Fe-Mn oxide and oxidizable fractions, suggesting that they may be released to the environment by changes in physicochemical conditions. The spatial variability patterns of 11 soil heavy metals (Ag, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, and Zn) were identified and mapped. The results demonstrated that Ag, As, Cd, Mo, Cu, Pb, Sb, and Zn pollution are associated with mineralized veins and mining operations in this area. Further environmental monitoring and remedial actions are required for management of soil heavy metals in the study area. The present study not only enhanced our knowledge regarding soil pollution in the study area but also introduced a better technique to analyze pollution indices by multivariate geostatistical methods.

  7. Prioritizing hazardous pollutants in two Nigerian water supply schemes: a risk-based approach

    PubMed Central

    Etchie, Ayotunde T; Etchie, Tunde O; Krishnamurthi, Kannan; SaravanaDevi, S; Wate, Satish R

    2013-01-01

    Abstract Objective To rank pollutants in two Nigerian water supply schemes according to their effect on human health using a risk-based approach. Methods Hazardous pollutants in drinking-water in the study area were identified from a literature search and selected pollutants were monitored from April 2010 to December 2011 in catchments, treatment works and consumer taps. The disease burden due to each pollutant was estimated in disability-adjusted life years (DALYs) using data on the pollutant’s concentration, exposure to the pollutant, the severity of its health effects and the consumer population. Findings The pollutants identified were microbial organisms, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead and zinc. All were detected in the catchments but only cadmium, cobalt, chromium, manganese and lead exceeded World Health Organization (WHO) guideline values after water treatment. Post-treatment contamination was observed. The estimated disease burden was greatest for chromium in both schemes, followed in decreasing order by cadmium, lead, manganese and cobalt. The total disease burden of all pollutants in the two schemes was 46 000 and 9500 DALYs per year or 0.14 and 0.088 DALYs per person per year, respectively, much higher than the WHO reference level of 1 × 10−6 DALYs per person per year. For each metal, the disease burden exceeded the reference level and was comparable with that due to microbial contamination reported elsewhere in Africa. Conclusion The estimated disease burden of metal contamination of two Nigerian water supply systems was high. It could best be reduced by protection of water catchment and pretreatment by electrocoagulation. PMID:23940402

  8. Measuring concentrations of selected air pollutants inside California vehicles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodes, C.; Sheldon, L.; Whitaker, D.

    1999-01-01

    This project measured 2-hour integrated concentrations of PM10, PM2.5, metals and a number of organic chemicals including benzene and MTBE inside vehicles on California roadways. Using continuous samplers, particle counts, black carbon, and CO were also measured. In addition to measuring in-vehicle levels, the investigators measured pollutant levels just outside the vehicle, at roadside stations, and ambient air monitoring stations. Different driving scenarios were designed to assess the effects of a number of factors on in-vehicle pollutant levels. These factors included roadway type, carpool lanes, traffic conditions, geographical locations, vehicle type, and vehicle ventilation conditions. The statewide average in-vehicle concentrationsmore » of benzene, MTBE, and formaldehyde ranged from 3--22 {micro}g/m{sup 3}, 3--90 {micro}g/m{sup 3}, and 0---22 {micro}g/m{sup 3}, respectively. The ranges of mean PM10 and PM2.5 in-vehicle levels in Sacramento were 20--40 {micro}g/m{sup 3} and 6--22 {micro}g/m{sup 3}, respectively. In general, pollutant levels inside or just outside the vehicles were higher than those measured at the roadside stations or the ambient air stations. In-vehicle pollutant levels were consistently higher in Los Angeles than Sacramento. Pollutant levels measured inside vehicles traveling in a carpool lane were much lower than those in the right-hand, slower lanes. Under the study conditions, factors such as vehicle type and ventilation and little effect on in-vehicle pollutant levels. Other factors, such as roadway type, freeway congestion level, and time-of-day had some influence on in-vehicle pollution levels.« less

  9. Ambient Air Pollutants Have Adverse Effects on Insulin and Glucose Homeostasis in Mexican Americans

    PubMed Central

    Chen, Zhanghua; Salam, Muhammad T.; Toledo-Corral, Claudia; Watanabe, Richard M.; Xiang, Anny H.; Buchanan, Thomas A.; Habre, Rima; Bastain, Theresa M.; Lurmann, Fred; Wilson, John P.; Trigo, Enrique

    2016-01-01

    OBJECTIVE Recent studies suggest that air pollution plays a role in type 2 diabetes (T2D) incidence and mortality. The underlying physiological mechanisms have yet to be established. We hypothesized that air pollution adversely affects insulin sensitivity and secretion and serum lipid levels. RESEARCH DESIGN AND METHODS Participants were selected from BetaGene (n = 1,023), a study of insulin resistance and pancreatic β-cell function in Mexican Americans. All participants underwent DXA and oral and intravenous glucose tolerance tests and completed dietary and physical activity questionnaires. Ambient air pollutant concentrations (NO2, O3, and PM2.5) for short- and long-term periods were assigned by spatial interpolation (maximum interpolation radius of 50 km) of data from air quality monitors. Traffic-related air pollution from freeways (TRAP) was estimated using the dispersion model as NOx. Variance component models were used to analyze individual and multiple air pollutant associations with metabolic traits. RESULTS Short-term (up to 58 days cumulative lagged averages) exposure to PM2.5 was associated with lower insulin sensitivity and HDL-to-LDL cholesterol ratio and higher fasting glucose and insulin, HOMA-IR, total cholesterol, and LDL cholesterol (LDL-C) (all P ≤ 0.036). Annual average PM2.5 was associated with higher fasting glucose, HOMA-IR, and LDL-C (P ≤ 0.043). The effects of short-term PM2.5 exposure on insulin sensitivity were largest among obese participants. No statistically significant associations were found between TRAP and metabolic outcomes. CONCLUSIONS Exposure to ambient air pollutants adversely affects glucose tolerance, insulin sensitivity, and blood lipid concentrations. Our findings suggest that ambient air pollutants may contribute to the pathophysiology in the development of T2D and related sequelae. PMID:26868440

  10. Development of a Distance-to-Roadway Proximity Metric to Compare Near-Road Pollutant Levels to a Central Site Monitor

    EPA Science Inventory

    The primary objective of the Detroit Exposure and Aerosol Research Study (DEARS) was to compare air pollutant concentrations measured at various neighborhoods, or exposure monitoring areas (EMAs), throughout a major metropolitan area to levels measured at a central site or commun...

  11. Passive monitoring techniques for evaluating atmospheric ozone and nitrogen exposure and deposition to California ecosystems

    Treesearch

    Mark E. Fenn; Andrzej Bytnerowicz; Susan L. Schilling

    2018-01-01

    Measuring the exposure of ecosystems to ecologically relevant pollutants is needed for evaluating ecosystem effects and to identify regions and resources at risk. In California, ozone (O3) and nitrogen (N) pollutants are of greatest concern for ecological effects. "Passive" monitoring methods have been developed to obtain spatially...

  12. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide, as specified in § 60.1745. (h) Records of calendar dates. Include the calendar date on... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... or Before August 30, 1999 Model Rule-Recordkeeping § 60.1850 What records must I keep for...

  13. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide, as specified in § 60.1745. (h) Records of calendar dates. Include the calendar date on... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... or Before August 30, 1999 Model Rule-Recordkeeping § 60.1850 What records must I keep for...

  14. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide, as specified in § 60.1745. (h) Records of calendar dates. Include the calendar date on... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... or Before August 30, 1999 Model Rule-Recordkeeping § 60.1850 What records must I keep for...

  15. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide, as specified in § 60.1745. (h) Records of calendar dates. Include the calendar date on... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... or Before August 30, 1999 Model Rule-Recordkeeping § 60.1850 What records must I keep for...

  16. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide, as specified in § 60.1745. (h) Records of calendar dates. Include the calendar date on... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... or Before August 30, 1999 Model Rule-Recordkeeping § 60.1850 What records must I keep for...

  17. Proceedings of Naval Environmental Protection Data Base Instrumentation Workshop. Held at Channel Islands Harbor, California on 11-12 July 1972.

    DTIC Science & Technology

    with other activities measuring and monitoring environmental pollution , open and/or expand avenues of communication with other environmental activities...measuring and monitoring environmental pollution , and provide a vehicle for participants to review and update their current and future techniques and instrumentation needs.

  18. Influence of satellite alerts on the efficiency of aircraft monitoring of maritime oil pollution in German waters

    NASA Astrophysics Data System (ADS)

    Helmke, Peer; Baschek, Björn; Hunsänger, Thomas; Kranz, Susanne

    2014-10-01

    For detecting accidental and illegal pollution by mineral oil, the German exclusive economic zone and surrounding waters have been monitored by aircraft operationally for more than 25 years. Aircraft surveillance uses predominantly Side-Looking-Airborne-Radar for visualization of the effect of oil to smoothen capillary waves. A set of near range sensors complements the remote sensing data available for the human operator to classify the detected features as "mineral oil", "natural phenomenon", "other substance" or "unknown" pollution. Today, as an add-on to aerial surveillance, the German Central Command of Maritime Emergencies uses the operational satellite service "CleanSeaNet" provided by the European Maritime Safety Agency: Radar satellite data is analyzed in near real time and alerts of potential pollution are sent out. Shortly after receiving the results, aircraft surveillance flights are started by the 3rd Naval Air Wing and the locations of the satellite alerts are checked. Thus, a combined system of satellite and aerial surveillance is in place. The German Federal Institute of Hydrology, BfG, has access to the data of the pollution events detected during these flights and the corresponding meta-data of flights and satellite images. In this work, a period of two years of this data is analyzed. The probability to detect pollutions is evaluated for (A) flight missions associated with satellite scenes, and (B) additional flights performed independently from satellite scenes. Thus, the influence of satellite alerts on the efficiency of aircraft monitoring is investigated. Coverage and coordination of the monitoring by aircraft and satellite are assessed and implications for the operational monitoring are discussed.

  19. Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino

    2011-11-01

    Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.

  20. Intra-urban and street scale variability of BTEX, NO 2 and O 3 in Birmingham, UK: Implications for exposure assessment

    NASA Astrophysics Data System (ADS)

    Vardoulakis, Sotiris; Solazzo, Efisio; Lumbreras, Julio

    2011-09-01

    Automatic monitoring networks have the ability of capturing air pollution episodes, as well as short- and long-term air quality trends in urban areas that can be used in epidemiological studies. However, due to practical constraints (e.g. cost and bulk of equipment), the use of automatic analysers is restricted to a limited number of roadside and background locations within a city. As a result, certain localised air pollution hotspots may be overlooked or overemphasised, especially near heavily trafficked street canyons and intersections. This has implications for compliance with regulatory standards and may cause exposure misclassification in epidemiological studies. Apart from automatic analysers, low cost passive diffusion tubes can be used to characterise the spatial variability of air pollution in urban areas. In this study, BTEX, NO 2 and O 3 data from a one-year passive sampling survey were used to characterise the intra-urban and street scale spatial variability of traffic-related pollutants in Birmingham (UK). In addition, continuous monitoring of NO 2, NO x, O 3, CO, SO 2, PM 10 and PM 2.5 from three permanent monitoring sites was used to identify seasonal and annual pollution patterns. The passive sampling measurements allowed us to evaluate the representativeness of a permanent roadside monitoring site that has recorded some of the highest NO 2 and PM 10 concentrations in Birmingham in recent years. Dispersion modelling was also used to gain further insight into pollutant sources and dispersion characteristics at this location. The strong spatial concentration gradients observed in busy streets, as well as the differences between roadside and urban background levels highlight the importance of appropriate positioning of air quality monitoring equipment in cities.

  1. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.; Tempo Science Team

    2013-05-01

    TEMPO has been selected by NASA as the first Earth Venture Instrument. It will measure atmospheric pollution for greater North America from space using ultraviolet/visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar/oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (Mexico City is measured at 1.6 km N/S by 4.5 km E/W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well proven technique, able to produce a revolutionary data set. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. GEO-CAPE is not planned for implementation this decade. However, instruments from Europe (Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, with a major focus on intercontinental pollution transport. TEMPO will launch at a prime time to be a component of this constellation.

  2. Water-quality data for canals in eastern Broward County, Florida, 1975-78

    USGS Publications Warehouse

    Sonntag, W.H.

    1980-01-01

    Increased urbanization in Broward County has contributed to canals being used as receptacles for urban wastes, sewage effluent, and stormwater runoff. The introduction of contaminants into the canals may affect the water quality. In 1969 the U.S. Geological Survey, in cooperation with the Broward County Pollution Control Board and the South Florida Water Management District, began to monitor the water-quality in canals of eastern Broward County. This report presents selected water-quality data collected from the canals, October 1974 through September 1978, in eastern Broward County. (Kosco-USGS)

  3. Development of nanosensors in nuclear technology

    NASA Astrophysics Data System (ADS)

    Hassan, Thamir A. A.

    2017-01-01

    Selectivity, sensitivity, and stability (three S parameters) are developed as a new range of sensor this provided instruments for harsh, radioactive waste polluted environment monitoring. Isotope effect is very effective for nuclear radiation sensors preparation.in this presentation are reviewed of the development of Nanosensors in nuclear technology, such as high temperature boron and its compounds with suitable physical and chemical features as sensitive element for temperature and nuclear sensor, Boron isotopes based semiconductor nanosensors and studies of the mechanism of the removal uranium from radioactive wastewater with graphene oxide (GO).

  4. Comparison of land use regression models for NO2 based on routine and campaign monitoring data from an urban area of Japan.

    PubMed

    Kashima, Saori; Yorifuji, Takashi; Sawada, Norie; Nakaya, Tomoki; Eboshida, Akira

    2018-08-01

    Typically, land use regression (LUR) models have been developed using campaign monitoring data rather than routine monitoring data. However, the latter have advantages such as low cost and long-term coverage. Based on the idea that LUR models representing regional differences in air pollution and regional road structures are optimal, the objective of this study was to evaluate the validity of LUR models for nitrogen dioxide (NO 2 ) based on routine and campaign monitoring data obtained from an urban area. We selected the city of Suita in Osaka (Japan). We built a model based on routine monitoring data obtained from all sites (routine-LUR-All), and a model based on campaign monitoring data (campaign-LUR) within the city. Models based on routine monitoring data obtained from background sites (routine-LUR-BS) and based on data obtained from roadside sites (routine-LUR-RS) were also built. The routine LUR models were based on monitoring networks across two prefectures (i.e., Osaka and Hyogo prefectures). We calculated the predictability of the each model. We then compared the predicted NO 2 concentrations from each model with measured annual average NO 2 concentrations from evaluation sites. The routine-LUR-All and routine-LUR-BS models both predicted NO 2 concentrations well: adjusted R 2 =0.68 and 0.76, respectively, and root mean square error=3.4 and 2.1ppb, respectively. The predictions from the routine-LUR-All model were highly correlated with the measured NO 2 concentrations at evaluation sites. Although the predicted NO 2 concentrations from each model were correlated, the LUR models based on routine networks, and particularly those based on all monitoring sites, provided better visual representations of the local road conditions in the city. The present study demonstrated that LUR models based on routine data could estimate local traffic-related air pollution in an urban area. The importance and usefulness of data from routine monitoring networks should be acknowledged. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Monitoring Street-Level Spatial-Temporal Variations of Carbon Monoxide in Urban Settings Using a Wireless Sensor Network (WSN) Framework

    PubMed Central

    Wen, Tzai-Hung; Jiang, Joe-Air; Sun, Chih-Hong; Juang, Jehn-Yih; Lin, Tzu-Shiang

    2013-01-01

    Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN)-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO) in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management. PMID:24287859

  6. Monitoring street-level spatial-temporal variations of carbon monoxide in urban settings using a wireless sensor network (WSN) framework.

    PubMed

    Wen, Tzai-Hung; Jiang, Joe-Air; Sun, Chih-Hong; Juang, Jehn-Yih; Lin, Tzu-Shiang

    2013-11-27

    Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN)-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO) in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management.

  7. Community-based participatory research for the study of air pollution: a review of motivations, approaches, and outcomes.

    PubMed

    Commodore, Adwoa; Wilson, Sacoby; Muhammad, Omar; Svendsen, Erik; Pearce, John

    2017-08-01

    Neighborhood level air pollution represents a long-standing issue for many communities that, until recently, has been difficult to address due to the cost of equipment and lack of related expertise. Changes in available technology and subsequent increases in community-based participatory research (CBPR) have drastically improved the ability to address this issue. However, much still needs to be learned as these types of studies are expected to increase in the future. To assist, we review the literature in an effort to improve understanding of the motivations, approaches, and outcomes of air monitoring studies that incorporate CBPR and citizen science (CS) principles. We found that the primary motivations for conducting community-based air monitoring were concerns for air pollution health risks, residing near potential pollution sources, urban sprawl, living in "unmonitored" areas, and a general quest for improved air quality knowledge. Studies were mainly conducted using community led partnerships. Fixed site monitoring was primarily used, while mobile, personal, school-based, and occupational sampling approaches were less frequent. Low-cost sensors can enable thorough neighborhood level characterization; however, keeping the community involved at every step, understanding the limitations and benefits of this type of monitoring, recognizing potential areas of debate, and addressing study challenges are vital for achieving harmony between expected and observed study outcomes. Future directions include assessing currently unregulated pollutants, establishing long-term neighborhood monitoring sites, performing saturation studies, evaluating interventions, and creating CS databases.

  8. Risk Assessment for Toxic Air Pollutants: A Citizen's Guide

    MedlinePlus

    ... from the source(s). Engineers use either monitors or computer models to estimate the amount of pollutant released ... measure how much of the pollutant is present. Computer models use mathematical equations that represent the processes ...

  9. Vadose Zone Monitoring as a Key to Groundwater Protection from Pollution Hazard

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer

    2016-04-01

    Minimization subsurface pollution is much dependent on the capability to provide real-time information on the chemical and hydrological properties of the percolating water. Today, most monitoring programs are based on observation wells that enable data acquisitions from the saturated part of the subsurface. Unfortunately, identification of pollutants in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer water to detectable concentration. Therefore, effective monitoring programs that aim at protecting groundwater from pollution hazard should include vadose zone monitoring technologies that are capable to provide real-time information on the chemical composition of the percolating water. Obviously, identification of pollution process in the vadose zone may provide an early warning on potential risk to groundwater quality, long before contaminates reach the water-table and accumulate in the aquifers. Since productive agriculture must inherently include down leaching of excess lower quality water, understanding the mechanisms controlling transport and degradation of pollutants in the unsaturated is crucial for water resources management. A vadose-zone monitoring system (VMS), which was specially developed to enable continuous measurements of the hydrological and chemical properties of percolating water, was used to assess the impact of various agricultural setups on groundwater quality, including: (a) intensive organic and conventional greenhouses, (b) citrus orchard and open field crops , and (c) dairy farms. In these applications frequent sampling of vadose zone water for chemical and isotopic analysis along with continuous measurement of water content was used to assess the link between agricultural setups and groundwater pollution potential. Transient data on variation in water content along with solute breakthrough at multiple depths were used to calibrate flow and transport models. These models where then used to assess the long term impact of various agricultural setups on the quantity and quality of groundwater recharge. Relevant publications: Turkeltaub et al., WRR. 2016; Turkeltaub et al., J. Hydrol. 2015: Dahan et al., HESS 2014. Baram et al., J. Hydrol. 2012.

  10. Monitoring-well network and sampling design for ground-water quality, Wind River Indian Reservation, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Sebree, Sonja K.; Quinn, Thomas L.

    2005-01-01

    The Wind River Indian Reservation, located in parts of Fremont and Hot Springs Counties, Wyoming, has a total land area of more than 3,500 square miles. Ground water on the Wind River Indian Reservation is a valuable resource for Shoshone and Northern Arapahoe tribal members and others who live on the Reservation. There are many types of land uses on the Reservation that have the potential to affect the quality of ground-water resources. Urban areas, rural housing developments, agricultural lands, landfills, oil and natural gas fields, mining, and pipeline utility corridors all have the potential to affect ground-water quality. A cooperative study was developed between the U.S. Geological Survey and the Wind River Environmental Quality Commission to identify areas of the Reservation that have the highest potential for ground-water contamination and develop a comprehensive plan to monitor these areas. An arithmetic overlay model for the Wind River Indian Reservation was created using seven geographic information system data layers representing factors with varying potential to affect ground-water quality. The data layers used were: the National Land Cover Dataset, water well density, aquifer sensitivity, oil and natural gas fields and petroleum pipelines, sites with potential contaminant sources, sites that are known to have ground-water contamination, and National Pollutant Discharge Elimination System sites. A prioritization map for monitoring ground-water quality on the Reservation was created using the model. The prioritization map ranks the priority for monitoring ground-water quality in different areas of the Reservation as low, medium, or high. To help minimize bias in selecting sites for a monitoring well network, an automated stratified random site-selection approach was used to select 30 sites for ground-water quality monitoring within the high priority areas. In addition, the study also provided a sampling design for constituents to be monitored, sampling frequency, and a simple water-table level observation well network.

  11. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.

  12. An assessment the effects of human-caused air pollution on resources within the interior Columbia River basin

    USGS Publications Warehouse

    Schoettle, A.W.; Tonnessen, K.; Turk, J.; Vimont, J.; Amundson, Ronald; Acheson, A.; Peterson, J.

    1999-01-01

    An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides, particulates, carbon, and ozone. Ecosystems and resources at risk are identified, including certain forests, lichens, cryptogamic crusts, high-elevation lakes and streams, arid lands, and class I areas. Current monitoring data are summarized and air pollution sources identified. The assessment also includes a summary of data gaps and suggestions for future research and monitoring related to air pollution and its effects on resources in the interior Columbia River basin.

  13. Georeferenced model simulations efficiently support targeted monitoring

    NASA Astrophysics Data System (ADS)

    Berlekamp, Jürgen; Klasmeier, Jörg

    2010-05-01

    The European Water Framework Directive (WFD) demands the good ecological and chemical status of surface waters. To meet the definition of good chemical status of the WFD surface water concentrations of priority pollutants must not exceed established environmental quality standards (EQS). Surveillance of the concentrations of numerous chemical pollutants in whole river basins by monitoring is laborious and time-consuming. Moreover, measured data do often not allow for immediate source apportionment which is a prerequisite for defining promising reduction strategies to be implemented within the programme of measures. In this context, spatially explicit model approaches are highly advantageous because they provide a direct link between local point emissions (e.g. treated wastewater) or diffuse non-point emissions (e.g. agricultural runoff) and resulting surface water concentrations. Scenario analyses with such models allow for a priori investigation of potential positive effects of reduction measures such as optimization of wastewater treatment. The geo-referenced model GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers) has been designed to calculate spatially resolved averaged concentrations for different flow conditions (e.g. mean or low flow) based on emission estimations for local point source emissions such as treated effluents from wastewater treatment plants. The methodology was applied to selected pharmaceuticals (diclofenac, sotalol, metoprolol, carbamazepin) in the Main river basin in Germany (approx. 27,290 km²). Average concentrations of the compounds were calculated for each river reach in the whole catchment. Simulation results were evaluated by comparison with available data from orienting monitoring and used to develop an optimal monitoring strategy for the assessment of water quality regarding micropollutants at the catchment scale.

  14. Satellite Monitoring of Oil Spills in the Mediterranean Sea For 1999-2004

    NASA Astrophysics Data System (ADS)

    Topouzelis, Konstantinos; Muellenhoff, Oliver; Tarchi, Dario; Ferraro, Guido

    2008-01-01

    Besides accidental pollution caused by ships in distress, different types of routine ship operations lead to deliberate discharges of oil in the sea. Accidental pollution at sea can be reduced but never completely eliminated. On the other hand, deliberate illegal discharges from ships can indeed be reduced by the strict enforcement of existing regulations and the control, monitoring and surveillance of maritime traffic. Operational discharges are the greatest source of marine pollution from ships, and the one which poses a long-term threat to the marine and coastal environment.The present activities of the Joint Research Centre (JRC), in the field of monitoring sea-based oil pollution using space-borne radar imagery are described. The results obtained for the period 1999-2004 for the Mediterranean Sea are presented. This analysis is of special interest due to the lack of a regular aerial surveillance as that in the North and Baltic Sea. This action helped to reveal what the dimension of the oil pollution problem is, thus stressing the need for more concerted international actions.

  15. Association of Traffic-Related Air Pollution with Children’s Neurobehavioral Functions in Quanzhou, China

    PubMed Central

    Wang, Shunqin; Zhang, Jinliang; Zeng, Xiaodong; Zeng, Yimin; Wang, Shengchun; Chen, Shuyun

    2009-01-01

    Background With the increase of motor vehicles, ambient air pollution related to traffic exhaust has become an important environmental issue in China. Because of their fast growth and development, children are more susceptible to ambient air pollution exposure. Many chemicals from traffic exhaust, such as carbon monoxide, nitrogen dioxide, and lead, have been reported to show adverse effects on neurobehavioral functions. Several studies in China have suggested that traffic exhaust might affect neurobehavioral functions of adults who have occupational traffic exhaust exposure. However, few data have been reported on the effects on neurobehavioral function in children. Objectives The objective of this study was to explore the association between traffic-related air pollution exposure and its effects on neurobehavioral function in children. Methods This field study was conducted in Quanzhou, China, where two primary schools were chosen based on traffic density and monitoring data of ambient air pollutants. School A was located in a clear area and school B in a polluted area. We monitored NO2 and particulate matter with aerodynamic diameter ≤ 10 μm as indicators for traffic-related air pollution on the campuses and in classrooms for 2 consecutive days in May 2005. The children from second grade (8–9 years of age) and third grade (9–10 years of age) of the two schools (n = 928) participated in a questionnaire survey and manual-assisted neurobehavioral testing. We selected 282 third-grade children (school A, 136; school B, 146) to participate in computer-assisted neurobehavioral testing. We conducted the fieldwork between May and June 2005. We used data from 861 participants (school A, 431; school B, 430) with manual neurobehavioral testing and from all participants with computerized testing for data analyses. Results Media concentrations of NO2 in school A and school B campus were 7 μg/m3 and 36 μg/m3, respectively (p < 0.05). The ordinal logistic regression analyses showed that, after controlling the potential confounding factors, participants living in the polluted area showed poor performance on all testing; differences in results for six of nine tests (66.7%) achieved statistical significance: Visual Simple Reaction Time with preferred hand and with nonpreferred hand, Continuous Performance, Digit Symbol, Pursuit Aiming, and Sign Register. Conclusion We found a significant relationship between chronic low-level traffic-related air pollution exposure and neurobehavioral function in exposed children. More studies are needed to explore the effects of traffic exhaust on neurobehavioral function and development. PMID:20019914

  16. The effects of short- and long-term air pollutants on plant phenology and leaf characteristics.

    PubMed

    Jochner, Susanne; Markevych, Iana; Beck, Isabelle; Traidl-Hoffmann, Claudia; Heinrich, Joachim; Menzel, Annette

    2015-11-01

    Pollution adversely affects vegetation; however, its impact on phenology and leaf morphology is not satisfactorily understood yet. We analyzed associations between pollutants and phenological data of birch, hazel and horse chestnut in Munich (2010) along with the suitability of leaf morphological parameters of birch for monitoring air pollution using two datasets: cumulated atmospheric concentrations of nitrogen dioxide and ozone derived from passive sampling (short-term exposure) and pollutant information derived from Land Use Regression models (long-term exposure). Partial correlations and stepwise regressions revealed that increased ozone (birch, horse chestnut), NO2, NOx and PM levels (hazel) were significantly related to delays in phenology. Correlations were especially high when rural sites were excluded suggesting a better estimation of long-term within-city pollution. In situ measurements of foliar characteristics of birch were not suitable for bio-monitoring pollution. Inconsistencies between long- and short-term exposure effects suggest some caution when interpreting short-term data collected within field studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Urban rivers as hotspots of regional nitrogen pollution.

    PubMed

    Zhang, Xiaohong; Wu, Yiyun; Gu, Baojing

    2015-10-01

    Excess nitrogen inputs to terrestrial ecosystems via human activities have deteriorated water qualities on regional scales. Urban areas as settlements of over half global population, however, were usually not considered in the analysis of regional water pollution. Here, we used a 72-month monitoring data of water qualities in Hangzhou, China to test the role of urban rives in regional nitrogen pollution and how they response to the changes of human activities. Concentrations of ammonium nitrogen in urban rivers were 3-5 times higher than that in regional rivers. Urban rivers have become pools of reactive nitrogen and hotspots of regional pollution. Moreover, this river pollution is not being measured by current surface water monitoring networks that are designed to measure broader regional patterns, resulting in an underestimation of regional pollution. This is crucial to urban environment not only in China, but also in other countries, where urban rivers are seriously polluted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Potential of monitoring nuclides with the epiphyte Tillandsia usneoides: Uptake and localization of 133Cs.

    PubMed

    Li, Peng; Zheng, Guiling; Chen, Xuan; Pemberton, Robert

    2012-12-01

    Epiphytic Tillandsia plants are efficient air pollution biomonitors and traditionally used to monitor atmospheric heavy metal pollution, but rarely nuclides monitoring. Here we evaluated the potential of Tillandsia usneoides for monitoring (133)Cs and investigated if Cs was trapped by the plant external surface structures. The results showed that T. usneoides was able to survive relatively high Cs stress. With the increase of Cs solution concentration, the total of Cs in plants increased significantly, which suggests that the plants could accumulate Cs quickly and effectively. Therefore, T. usneoides has considerable potential for monitoring Cs polluted environments. In addition, scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analysis showed that Cs was detected in each type of cells in foliar trichomes, and the ratio of Cs in the internal disc cell was higher than that in ring cell and wing cell, which indicates that the mechanism of adsorption Cs in Tillandsia has an active component. Copyright © 2012. Published by Elsevier Inc.

  19. Reflectance spectroscopy: a novel approach to better understand and monitor the impact of air pollution on Mediterranean plants.

    PubMed

    Cotrozzi, Lorenzo; Townsend, Philip A; Pellegrini, Elisa; Nali, Cristina; Couture, John J

    2018-03-01

    The Mediterranean basin can be considered a hot spot not only in terms of climate change (CC) but also for air quality. Assessing the impact of CC and air pollution on ecosystem functions is a challenging task, and adequate monitoring techniques are needed. This paper summarizes the present knowledge on the use of reflectance spectroscopy for the evaluation of the effects of air pollution on plants. First, the history of this technique is outlined. Next, we describe the vegetation reflectance spectrum, how it can be scaled from leaf to landscape levels, what information it contains, and how it can be exploited to understand plant and ecosystem functions. Finally, we review the literature concerning this topic, with special attention to Mediterranean air pollutants, showing the increasing interest in this technique. The ability of spectroscopy to detect the influence of air pollution on plant function of all major and minor Mediterranean pollutants has been evaluated, and ozone and its interaction with other gases (carbon dioxide, nitrogen oxides, and sulfur dioxide) have been the most studied. In the recent years, novel air pollutants, such as particulate matter, nitrogen deposition, and heavy metals, have drawn attention. Although various vegetation types have been studied, few of these species are representative of the Mediterranean environment. Thus, major emphasis should be placed on using vegetation spectroscopy for better understanding and monitoring the impact of air pollution on Mediterranean plants in the CC era.

  20. Assessing exposures to household air pollution in public health research and program evaluation.

    PubMed

    Northcross, Amanda L; Hwang, Nina; Balakrishnan, Kalpana; Mehta, Sumi

    2015-03-01

    Exposure to smoke from the use of solid fuels and inefficient stoves for cooking and heating is responsible for approximately 4 million premature deaths yearly. As increasing investments are made to tackle this important public health issue, there is a need for identifying and providing guidance on best practices for exposure and stove performance monitoring, particularly for public health research and evaluation studies. This paper, which builds upon the discussion at an expert consultation on exposure assessment convened by the Global Alliance for Clean Cookstoves, the Centers for Disease Control and Prevention, and PATH in late 2012, aims to provide general guidance on what to monitor, who and where to monitor, and how to monitor household air pollution exposures. In addition, we summarize information about commercially available monitoring equipment and the technical properties of these monitors most important for household air pollution exposure assessment. The target audience includes epidemiologists conducting health studies and program evaluators aiming to quantify changes in exposures to estimate the potential health benefits of cookstoves intervention projects.

  1. Differential gene expression revealed with RNA-Seq and parallel genotype selection of the ornithine decarboxylase gene in fish inhabiting polluted areas.

    PubMed

    Vega-Retter, C; Rojas-Hernandez, N; Vila, I; Espejo, R; Loyola, D E; Copaja, S; Briones, M; Nolte, A W; Véliz, D

    2018-03-19

    How organisms adapt to unfavorable environmental conditions by means of plasticity or selection of favorable genetic variants is a central issue in evolutionary biology. In the Maipo River basin, the fish Basilichthys microlepidotus inhabits polluted and non-polluted areas. Previous studies have suggested that directional selection drives genomic divergence between these areas in 4% of Amplified Fragment Length Polymorphism (AFLP) loci, but the underlying genes and functions remain unknown. We hypothesized that B. microlepidotus in this basin has plastic and/or genetic responses to these conditions. Using RNA-Seq, we identified differentially expressed genes in individuals from two polluted sites compared with fish inhabiting non-polluted sites. In one polluted site, the main upregulated genes were related to cellular proliferation as well as suppression and progression of tumors, while biological processes and molecular functions involved in apoptotic processes were overrepresented in the upregulated genes of the second polluted site. The ornithine decarboxylase gene (related to tumor promotion and progression), which was overexpressed in both polluted sites, was sequenced, and a parallel pattern of a heterozygote deficiency and increase of the same homozygote genotype in both polluted sites compared with fish inhabiting the non-polluted sites was detected. These results suggest the occurrence of both a plastic response in gene expression and an interplay between phenotypic change and genotypic selection in the face of anthropogenic pollution.

  2. Air pollution exposure prediction approaches used in air pollution epidemiology studies

    EPA Science Inventory

    Epidemiological studies of the health effects of air pollution have traditionally relied upon surrogates of personal exposures, most commonly ambient concentration measurements from central-site monitors. However, this approach may introduce exposure prediction errors and miscla...

  3. Stable Isotope Mixing Models as a Tool for Tracking Sources of Water and Water Pollutants

    EPA Science Inventory

    One goal of monitoring pollutants is to be able to trace the pollutant to its source. Here we review how mixing models using stable isotope information on water and water pollutants can help accomplish this goal. A number of elements exist in multiple stable (non-radioactive) i...

  4. Risk management in air protection in the Republic of Croatia.

    PubMed

    Peternel, Renata; Toth, Ivan; Hercog, Predrag

    2014-03-01

    In the Republic of Croatia, according to the Air Protection Act, air pollution assessment is obligatory on the whole State territory. For individual regions and populated areas in the State a network has been established for permanent air quality monitoring. The State network consists of stations for measuring background pollution, regional and cross-border remote transfer and measurements as part of international government liabilities, then stations for measuring air quality in areas of cultural and natural heritage, and stations for measuring air pollution in towns and industrial zones. The exceeding of alert and information threshold levels of air pollutants are related to emissions from industrial plants, and accidents. Each excess represents a threat to human health in case of short-time exposure. Monitoring of alert and information threshold levels is carried out at stations from the state and local networks for permanent air quality monitoring according to the Air Quality Measurement Program in the State network for permanent monitoring of air quality and air quality measurement programs in local networks for permanent air quality monitoring. The State network for permanent air quality monitoring has a developed automatic system for reporting on alert and information threshold levels, whereas many local networks under the competence of regional and local self-governments still lack any fully installed systems of this type. In case of accidents, prompt action at all responsibility levels is necessary in order to prevent crisis and this requires developed and coordinated competent units of State Administration as well as self-government units. It is also necessary to be continuously active in improving the implementation of legislative regulations in the field of crises related to critical and alert levels of air pollutants, especially at local levels.

  5. Field-lysimeter and Column Studies As Complementary Survey Tools For Monitored Natural Attenuation (mna)

    NASA Astrophysics Data System (ADS)

    Totsche, K. U.; Hensel, D.; Jann, S.; Jaesche, P.; Kögel-Knabner, I.; Scheibke, R.

    The contamination of the unsaturated soil zone with organic pollutants (PAH, BTEX, PCB, Phenols, etc.) and pollutant mixtures, e.g. light/dense non-aqueous phase liq- uids (L/D-NAPLs), represents a specific challenge for sanitation and remediation of contaminated sites. Monitored natural attenuation as an alternative option for remedi- ation of such sites requires (1) the proof of an effective pollutant reduction potential and (2) the proof that a further spreading of the contaminants and their potentially toxic metabolites is minimized to an acceptable minimum concentration level. These demands apply equally likely to contaminated soil and groundwater environments. However, a major problem arises when the task is to monitor the release and transport of contaminants within the unsaturated soil zone over a longer period (> 10 years) of time at an expenditure as small as possible. The aim of our presentation is to employ and test a survey technique to monitor pollutant release and redistribution within the unsaturated soil zone in the context of MNA. The proposed technique is based on the combination of laboratory-column and field-lysimeter studies. The first is used to ac- quire knowledge on the governing processes, the latter is used to monitor release and transport of the contaminants.

  6. Lichen elements as pollution indicators: evaluation of methods for large monitoring programmes

    Treesearch

    Susan Will-Wolf; Sarah Jovan; Michael C. Amacher

    2017-01-01

    Lichen element content is a reliable indicator for relative air pollution load in research and monitoring programmes requiring both efficiency and representation of many sites. We tested the value of costly rigorous field and handling protocols for sample element analysis using five lichen species. No relaxation of rigour was supported; four relaxed protocols generated...

  7. 40 CFR 63.1505 - Emission standards for affected sources and emission units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... any PM add-on air pollution control device if a continuous opacity monitor (COM) or visible emissions... percent opacity from any PM add-on air pollution control device if a COM is chosen as the monitoring.../delacquering kiln/decoating kiln is equipped with an afterburner having a design residence time of at least 1...

  8. Summer-time distribution of air pollutants in Sequoia National Park, California

    Treesearch

    Andrzej Bytnerowicz; Michael Tausz; Rocio Alonso; David Jones; Ronald Johnson; Nancy Grulke

    2002-01-01

    Concentrations of air pollutants were monitored during the May–November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric...

  9. Monitoring the Effectiveness of Measures to Contain the Primary Sources of Mercury Pollution on the Site of a Former Chlor-Akali Plant in Kazakhstan

    EPA Science Inventory

    An extensive sampling campaign was conducted in 2005-2007 to monitor the effectiveness of remedial measures to contain mercury pollution at the site of a former mercury cell chlor-alkali plant in Pavlodar, Kazakhstan. Containment measures consisted of cutoff walls and capping of ...

  10. Small, Smart, Fast, and Cheap: Microchip-Based Sensors to Estimate Air Pollution Exposures in Rural Households

    PubMed Central

    Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Johnson, Michael; Litton, Charles D.; Lam, Nicholas L.; Pennise, David; Smith, Kirk R.

    2017-01-01

    Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley—in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions—has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO2-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them. PMID:28812989

  11. Small, Smart, Fast, and Cheap: Microchip-Based Sensors to Estimate Air Pollution Exposures in Rural Households.

    PubMed

    Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Hill, L Drew; Johnson, Michael; Litton, Charles D; Lam, Nicholas L; Pennise, David; Smith, Kirk R

    2017-08-16

    Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley-in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions-has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO₂-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them.

  12. Recent Progress in Biosensors for Environmental Monitoring: A Review

    PubMed Central

    2017-01-01

    The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals. PMID:29244756

  13. Recent Progress in Biosensors for Environmental Monitoring: A Review.

    PubMed

    Justino, Celine I L; Duarte, Armando C; Rocha-Santos, Teresa A P

    2017-12-15

    The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals.

  14. Long-term ambient air pollution and lung function impairment in Chinese children from a high air pollution range area: The Seven Northeastern Cities (SNEC) study

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Wen; Vivian, Elaina; Mohammed, Kahee A.; Jakhar, Shailja; Vaughn, Michael; Huang, Jin; Zelicoff, Alan; Xaverius, Pamela; Bai, Zhipeng; Lin, Shao; Hao, Yuan-Tao; Paul, Gunther; Morawska, Lidia; Wang, Si-Quan; Qian, Zhengmin; Dong, Guang-Hui

    2016-08-01

    Epidemiological studies have reported inconsistent and inconclusive associations between long-term exposure to ambient air pollution and lung function in children from Europe and America, where air pollution levels were typically low. The aim of the present study is to examine the relationship between air pollutants and lung function in children selected from heavily industrialized and polluted cities in northeastern China. During 2012, 6740 boys and girls aged 7-14 years were recruited in 24 districts of seven northeastern cities. Portable electronic spirometers were used to measure lung function. Four-year average concentrations of particulate matter with an aerodynamic diameter ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) were measured at monitoring stations in the 24 districts. Two-staged regression models were used in the data analysis, controlling for covariates. Overall, for all subjects, the increased odds of lung function impairment associated with exposure to air pollutants, ranged from 5% (adjusted odds ratio [aOR] = 1.05; 95% confidence interval [CI] = 1.01, 1.10) for FVC < 85% predicted per 46.3 μg/m3 for O3 to 81% (aOR = 1.81; 95%CI = 1.44, 2.28) for FEV1 < 85% predicted per 30.6 μg/m3 for PM10. The linear regression models consistently showed a negative relationship between all air pollutants and lung function measures across subjects. There were significant interaction terms indicating gender differences for lung function impairment and pulmonary function from exposure to some pollutants (P < 0.10). In conclusion, long term exposure to high concentrations of ambient air pollution is associated with decreased pulmonary function and lung function impairment, and females appear to be more susceptible than males.

  15. Remote sensing of coal mine pollution in the upper Potomac River basin

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A survey of remote sensing data pertinent to locating and monitoring sources of pollution resulting from surface and shaft mining operations was conducted in order to determine the various methods by which ERTS and aircraft remote sensing data can be used as a replacement for, or a supplement to traditional methods of monitoring coal mine pollution of the upper Potomac Basin. The gathering and analysis of representative samples of the raw and processed data obtained during the survey are described, along with plans to demonstrate and optimize the data collection processes.

  16. A state of the art regarding urban air quality prediction models

    NASA Astrophysics Data System (ADS)

    Croitoru, Cristiana; Nastase, Ilinca

    2018-02-01

    Urban pollution represents an increasing risk to residents of urban regions, particularly in large, over-industrialized cities knowing that the traffic is responsible for more than 25% of air gaseous pollutants and dust particles. Air quality modelling plays an important role in addressing air pollution control and management approaches by providing guidelines for better and more efficient air quality forecasting, along with smart monitoring sensor networks. The advances in technology regarding simulations, forecasting and monitoring are part of the new smart cities which offers a healthy environment for their occupants.

  17. Annual and seasonal spatial models for nitrogen oxides in Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Amini, Heresh; Taghavi-Shahri, Seyed-Mahmood; Henderson, Sarah B.; Hosseini, Vahid; Hassankhany, Hossein; Naderi, Maryam; Ahadi, Solmaz; Schindler, Christian; Künzli, Nino; Yunesian, Masud

    2016-09-01

    Very few land use regression (LUR) models have been developed for megacities in low- and middle-income countries, but such models are needed to facilitate epidemiologic research on air pollution. We developed annual and seasonal LUR models for ambient oxides of nitrogen (NO, NO2, and NOX) in the Middle Eastern city of Tehran, Iran, using 2010 data from 23 fixed monitoring stations. A novel systematic algorithm was developed for spatial modeling. The R2 values for the LUR models ranged from 0.69 to 0.78 for NO, 0.64 to 0.75 for NO2, and 0.61 to 0.79 for NOx. The most predictive variables were: distance to the traffic access control zone; distance to primary schools; green space; official areas; bridges; and slope. The annual average concentrations of all pollutants were high, approaching those reported for megacities in Asia. At 1000 randomly-selected locations the correlations between cooler and warmer season estimates were 0.64 for NO, 0.58 for NOX, and 0.30 for NO2. Seasonal differences in spatial patterns of pollution are likely driven by differences in source contributions and meteorology. These models provide a basis for understanding long-term exposures and chronic health effects of air pollution in Tehran, where such research has been limited.

  18. Air quality assessment of Estarreja, an urban industrialized area, in a coastal region of Portugal.

    PubMed

    Figueiredo, M L; Monteiro, A; Lopes, M; Ferreira, J; Borrego, C

    2013-07-01

    Despite the increasing concern given to air quality in urban and industrial areas in recent years, particular emphasis on regulation, control, and reduction of air pollutant emissions is still necessary to fully characterize the chain emissions-air quality-exposure-dose-health effects, for specific sources. The Estarreja region was selected as a case study because it has one of the largest chemical industrial complexes in Portugal that has been recently expanded, together with a growing urban area with an interesting location in the Portuguese coastland and crossed by important road traffic and rail national networks. This work presents the first air quality assessment for the region concerning pollutant emissions and meteorological and air quality monitoring data analysis, over the period 2000-2009. This assessment also includes a detailed investigation and characterization of past air pollution episodes for the most problematic pollutants: ozone and PM10. The contribution of different emission sources and meteorological conditions to these episodes is investigated. The stagnant meteorological conditions associated with local emissions, namely industrial activity and road traffic, are the major contributors to the air quality degradation over the study region. A set of measures to improve air quality--regarding ozone and PM10 levels--is proposed as an air quality management strategy for the study region.

  19. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin.

    PubMed

    Mirauda, Domenica; Ostoich, Marco

    2018-02-23

    The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC-WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

  20. Annual and seasonal spatial models for nitrogen oxides in Tehran, Iran

    PubMed Central

    Amini, Heresh; Taghavi-Shahri, Seyed-Mahmood; Henderson, Sarah B.; Hosseini, Vahid; Hassankhany, Hossein; Naderi, Maryam; Ahadi, Solmaz; Schindler, Christian; Künzli, Nino; Yunesian, Masud

    2016-01-01

    Very few land use regression (LUR) models have been developed for megacities in low- and middle-income countries, but such models are needed to facilitate epidemiologic research on air pollution. We developed annual and seasonal LUR models for ambient oxides of nitrogen (NO, NO2, and NOX) in the Middle Eastern city of Tehran, Iran, using 2010 data from 23 fixed monitoring stations. A novel systematic algorithm was developed for spatial modeling. The R2 values for the LUR models ranged from 0.69 to 0.78 for NO, 0.64 to 0.75 for NO2, and 0.61 to 0.79 for NOx. The most predictive variables were: distance to the traffic access control zone; distance to primary schools; green space; official areas; bridges; and slope. The annual average concentrations of all pollutants were high, approaching those reported for megacities in Asia. At 1000 randomly-selected locations the correlations between cooler and warmer season estimates were 0.64 for NO, 0.58 for NOX, and 0.30 for NO2. Seasonal differences in spatial patterns of pollution are likely driven by differences in source contributions and meteorology. These models provide a basis for understanding long-term exposures and chronic health effects of air pollution in Tehran, where such research has been limited. PMID:27622593

  1. Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity.

    PubMed

    Nissim, Werther Guidi; Hasbroucq, Séverine; Kadri, Hafssa; Pitre, Frederic E; Labrecque, Michel

    2015-01-01

    In this preliminary screening study, we tested the phytoextraction potential of nine Canadian native/well-adapted plant species on a soil highly polluted by trace elements (TE) from a copper refinery. Plant physiological parameters and soil cover index were monitored for a 12-week period. At the end of the trial, biomass yield, bioconcentration (BFC) and translocation (TF) factors for the main TE as well as phytoextraction potential were determined. Most plants were severely injured by the high pollution levels, showing symptoms of toxicity including chlorosis, mortality and very low biomass yield. However, Indian mustard showed the highest selenium extraction potential (65 mg m(-2)), even under harsh growing conditions. Based on our results, tall fescue and ryegrass, which mainly stored As, Cu, Pb and Zn within roots, could be used effectively for phytostabilization.

  2. Nitrogen and phosphorus losses from agricultural systems in China: a meta-analysis.

    PubMed

    Cao, Di; Cao, Wenzhi; Fang, Jing; Cai, Longyan

    2014-08-30

    Studies worldwide have indicated that agricultural pollution is the main source of nitrogen and phosphorus (N and P) in surface waters. A systematic understanding of N and P sources and sinks in agricultural systems is important for selecting the appropriate remedial strategies to control nutrient losses and water pollution. Based on nationwide data and a long-term monitoring program in Southeast China, the nationwide spatial and temporal patterns of N and P losses and the relationships between such losses and N and P inputs and rainfall were analyzed. The results showed that the annual nutrient losses from agricultural systems in China strongly varied, and the N/P values ranged from 0.01 to 51.0, with a majority at approximately 0-20, and an arithmetic mean of 9.73; these values mostly overlap the suitable range of N/P (6-15) for red bloom algae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Temporal Characterisation of Ground-level Ozone Concentration in Klang Valley

    NASA Astrophysics Data System (ADS)

    Izzah Mohamad Hashim, Nur; Noor, Norazian Mohamed; Yasina Yusof, Sara

    2018-03-01

    In Malaysia, ground-level ozone (O3) is one of the most significant air pollutants due to the increasing sources of ozone precursors. Hence, the surface O3 concentration should have received substantial attention because of its negative effects to human health, vegetation and the environment. In this study, hourly air pollutants dataset (i.e O3, Carbon monoxide (CO), Nitrogen dioxide (NO2), Particulate matter (PM10), Non-methane hydrocarbon (NmHC), Sulphur dioxide (SO2)) and weather parameters (i.e. wind speed (WS), wind direction (WD), temperature (T), ultraviolet B (UVB)) for ten years period (2003-2012) in Klang Valley were selected for analysis in this study. Two monitoring stations were selected that are Petaling Jaya and Shah Alam. The aim of the study is to determine the diurnal variations of O3 concentrations according to the seasonal monsoon and the correlation between the ground-level O3 concentration and others parameter. A high concentration of ground-level O3 was observed during the first transition (April to May) for both of the stations. While at a low surface, O3 concentration was found out during the southwest monsoon within June to September. Pearson correlation was used to find the correlation between the O3 concentration and all other pollutants and weather parameters. Most of the relationship between O3concentrationswas positively correlated with NO2 and negative relationship was found out with NMHC. These results were expected since these pollutants are known as the O3 precursors. Besides that, O3 concentration and its precursors show a positive significant correlation with all meteorological factors except for relative humidity.

  4. Estuarine Macroinvertebrate Pollution Indicator Species in the Virginian Biogeographic Province

    EPA Science Inventory

    Macroinvertebrates are commonly used as biomonitors to detect pollution impacts in estuaries. In this study we identified estuarine benthic invertebrates that could be used to detect presence or absence of pollution in the Virginian Biogeographic Province using available monitor...

  5. 40 CFR 63.342 - Standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the requirements of this subpart, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for..., infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a process to...

  6. 40 CFR 63.342 - Standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to the requirements of this subpart, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for..., infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a process to...

  7. Quantitative CrAssphage PCR Assays for Human Fecal Pollution Measurement

    EPA Science Inventory

    Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal indicator bacteria are used; however, they cannot distinguish human fecal waste from pollution from other animals. Recently, a novel bacteriophage, cr...

  8. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  9. [Evaluating comprehensive quality of sediment in Dianchi Lake using adjusted AHP method and 137Cs dating].

    PubMed

    Zhang, Yan; Deng, Xi-Hai; Peng, Bu-Zhuo

    2006-08-01

    It is difficult to evaluate comprehensive quality of sediment and to understand development trend of pollution because of absence of monitoring data, especially history data. Combining the method of 137Cs dating with the ways of general sampling and measurement can easily resolve the problem of absence of data and also provide the possibility for calculating weighted environmental quality comprehensive index using the adjusted analytical hierarchy process (AHP) method. In order to overcome the willfulness the judgment matrix is formed objectively based on calculating monitoring data. Based on the monitoring data of sediment pollution and the weights of various factors gained by adjusted AHP method the comprehensive quality of sediment in each zone of Dianchi Lake was evaluated and the results indicated that the pollution of sediments in each zone at the present be serious more than that in the history. The condition may be related to the industrial development and distribution of industries in Dianchi Lake basin. Therefore, in order to improve the comprehensive quality of sediment in Dianchi Lake and to prevent the secondary pollution of heavy metals in sediment from happening, it is necessary to control the pollutants discharge and to remove the pollutants with various ways.

  10. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  11. Trace metal concentrations in forest and lawn soils of Paris region (France) along a gradient of urban pressure

    NASA Astrophysics Data System (ADS)

    Ludovic, Foti

    2017-04-01

    Urban soils differ greatly from natural ones as they are located in areas of intense anthropogenic activity (e.g. pollution, physical disturbance, surface transformation). Urban soils are a crucial component of urban ecosystems, especially in public green spaces, and contribute to many ecosystem services from the mitigation of urban heat island to recreational services. In the last decade, the study of urban soils has emerged as an important frontier in environmental research, at least because of their impact on the quality of life of urban populations, because of the services they deliver and because they are more and more recognized as a valuable resource. One of the key issues is the pollution of urban soils because they receive a variety of deposits from local (vehicle emissions, industrial discharges, domestic heating, waste incineration and other anthropogenic activities) and from remote sources (through atmospheric transport). Typical contaminants include persistent toxic substances, such as trace metals (TMs) that have drawn wide attention due to their long persistence in the environment, their tendency to bioaccumulate in the food chain and their toxicity for humans and other organisms. Concentrations, spatial distributions, dynamics, impacts and sources of TMs (e.g. industry or fossil fuels combustion) have attracted a global interest in urban soils and are the subject of ongoing research (e.g. ecotoxicological urban ecology). Some studies have already documented soil pollution with TMs at both the town and regional scales. So far, several monitoring programs (e.g. National Network for the long term Monitoring of Forest Ecosystem, Regional Monitoring Quality of Soil in France) and studies have been carried out on a national scale to measure the ranges of TM concentrations and natural background values in French soils. These studies have focused on French agricultural and forest soils and have not tackled urban soils. No study has described TM concentrations and subsequent risks in soils of Paris and Paris region (Île-de-France). Our study aims at filling this knowledge gap, focusing on contamination and pollution by TMs in lawns and forests that constitute the main types of vegetation in urban areas of Paris region. Considering the rational described above, the aims of the present study were (i) to examine the concentration of eight selected TMs (As, Cd, Cr, Cu, Fe, Ni, Pb, Zn) in soils of two land-uses (public lawns and woods) along an urban pressure gradient in Paris region, (ii) to distinguish origins and sources of contamination or pollution, (iii) to evaluate the individual and overall TM contamination degree as well as the individual and overall TM pollution degree, (iiii) to use soil characteristics to better understand soil origins and histories along the urban pressure gradient and the relationship between these characteristics and TM concentrations. Ultimately, this study provides a baseline TM assessment for the long-term monitoring of the evolution of TM soil contents in urban area of the Paris region.

  12. An integrated Bayesian model for estimating the long-term health effects of air pollution by fusing modelled and measured pollution data: A case study of nitrogen dioxide concentrations in Scotland.

    PubMed

    Huang, Guowen; Lee, Duncan; Scott, Marian

    2015-01-01

    The long-term health effects of air pollution can be estimated using a spatio-temporal ecological study, where the disease data are counts of hospital admissions from populations in small areal units at yearly intervals. Spatially representative pollution concentrations for each areal unit are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over grid level concentrations from an atmospheric dispersion model. We propose a novel fusion model for estimating spatially aggregated pollution concentrations using both the modelled and monitored data, and relate these concentrations to respiratory disease in a new study in Scotland between 2007 and 2011. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Noninvasive monitoring of moisture uptake in Ca(NO3)2 -polluted calcareous stones by 1H-NMR relaxometry.

    PubMed

    Casieri, Cinzia; Terenzi, Camilla; De Luca, Francesco

    2015-01-01

    NMR transverse relaxation time (T(2)) distribution of (1)H nuclei of water has been used to monitor the moisture condensation kinetics in Ca(NO(3))(2)  · (4)H(2)O-polluted Lecce stone, a calcareous stone with highly regular porous structure often utilized as basic material in Baroque buildings. Polluted samples have been exposed to water vapor adsorption at controlled relative humidity to mimic environmental conditions. In presence of pollutants, the T(2) distributions of water in stone exhibit a range of relaxation time values and amplitudes not observed in the unpolluted case. These characteristics could be exploited for in situ noninvasive detection of salt pollution in Lecce stone or as damage precursors in architectural buildings of cultural heritage interest. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Aircraft engine and auxiliary power unit emissions from combusting JP-8 fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimm, L.T.; Sylvia, D.A.; Gerstle, T.C.

    1997-12-31

    Due to safety considerations and in an effort to standardize Department of Defense fuels, the US Air Force (USAF) replaced the naptha-based JP-4, MIL-T-5624, with the kerosene-based JP-8, MIL-T-83133, as the standard turbine fuel. Although engine emissions from combustion of JP-4 are well documented for criteria pollutants, little information exists for criteria and hazardous air pollutants from combustion of JP-8 fuel. Due to intrinsic differences between these two raw fuels, their combustion products were expected to differ. As part of a broader engine testing program, the Air Force, through the Human Systems Center at Brooks AFB, TX, has contracted tomore » have the emissions characterized from aircraft engines and auxiliary power units (APUs). Criteria pollutant and targeted HAP emissions of selected USAF aircraft engines were quantified during the test program. Emission test results will be used to develop emission factors for the tested aircraft engines and APUs. The Air Force intends to develop a mathematical relationship, using the data collected during this series of tests and from previous tests, to extrapolate existing JP-4 emission factors to representative JP-8 emission factors for other engines. This paper reports sampling methodologies for the following aircraft engine emissions tests: F110-GE-100, F101-GE-102, TF33-P-102, F108-CF-100, T56-A-15, and T39-GE-1A/C. The UH-60A helicopter engine, T700-GE-700, and the C-5A/B and C-130H auxiliary power units (GTCP165-1 and GTCP85-180, respectively) were also tested. Testing was performed at various engine settings to determine emissions of particulate matter, carbon monoxide, nitrogen oxides, sulfur oxides, total hydrocarbon, and selected hazardous air pollutants. Ambient monitoring was conducted concurrently to establish background pollutant concentrations for data correction.« less

  15. Lethal and sub-lethal effects on the Asian common toad Duttaphrynus melanostictus from exposure to hexavalent chromium.

    PubMed

    Fernando, Vindhya A K; Weerasena, Jagathpriya; Lakraj, G Pemantha; Perera, Inoka C; Dangalle, Chandima D; Handunnetti, Shiroma; Premawansa, Sunil; Wijesinghe, Mayuri R

    2016-08-01

    Chromium discharged in industrial effluents frequently occurs as an environmental pollutant, but the lethal and sub-lethal effects the heavy metal might cause in animals exposed to it have been insufficiently investigated. Selecting the amphibian Duttaphrynus melanostictus, we carried out laboratory tests to investigate the effects of short and long term exposure to hexavalent chromium (Cr(VI)) in both tadpoles and adult toads. The concentrations used were 0.002, 0.02, 0.2, 1.0 and 2.0mg/L, the first three corresponding to field levels. In vitro exposures were also carried out using toad erythrocytes and Cr(VI) concentrations of 0.0015, 0.003, 0.015, 0.03, 0.15mg/L. Mortality, growth retardation, developmental delays and structural aberrations were noted in the metal-treated tadpoles, with increasing incidence corresponding to increase in Cr(VI) level and duration of exposure. Many of the sub-lethal effects were evident with long term exposure to environmentally relevant levels of the toxicant. Changes in selected blood parameters and erythrocyte morphometry were also detected in Cr(VI) exposed toads, indicating anaemic and leucopenic conditions. In the genotoxicity study, DNA damage indicated by comet assay and increased micronuclei frequency, occurred at the low Cr(VI) concentrations tested. The multiple deleterious effects of exposure to chromium signal the need for monitoring and controlling the discharge of chromium to the environment. The dose-dependency and genotoxic effects observed in this widely distributed Asian toad indicates its suitability for monitoring heavy metal pollution in aquatic systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. DETERMINATION OF HENRY'S LAW CONSTANTS OF SELECTED PRIORITY POLLUTANTS

    EPA Science Inventory

    The Henry's law constants (H) for 41 selected priority pollutants were determined to characterize these pollutants and provide information on their fate as they pass through wastewater treatment systems. All experimental values presented for H are averages of two or more replicat...

  17. Nonlinear dynamics of the atmospheric pollutants in Mexico City

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, Alejandro; Barrera-Ferrer, Amilcar; Angulo-Brown, Fernando

    2014-05-01

    The atmospheric pollution in the Metropolitan Zone of Mexico City (MZMC) is a serious problem with social, economical and political consequences, in virtue that it is the region which concentrates both the greatest country population and a great part of commercial and industrial activities. According to the World Health Organization, maximum permissible concentrations of atmospheric pollutants are exceeded frequently. In the MZMC, the environmental monitoring has been limited to criteria pollutants, named in this way due to when their levels are measured in the atmosphere, they indicate in a precise way the air quality. The Automatic Atmospheric Monitoring Network monitors and registers the values of pollutants concentration in air in the MZMC. Actually, it is integrated by approximately 35 automatic-equipped remote stations, which report an every-hour register. Local and global invariant quantities have been widely used to describe the fractal properties of diverse time series. In the study of certain time series, many times it is assumed that they are monofractal, which means that they can be described only with one fractal dimension. But this hypothesis is unrealistic because a lot of time series are heterogeneous and non stationary, so their scaling properties are not the same throughout time and therefore they may require more fractal dimensions for their description. Complexity of the atmospheric pollutants dynamics suggests us to analyze its time series of hourly concentration registers with the multifractal formalism. So, in this work, air concentration time series of MZMC criteria pollutants were studied with the proposed method. The chosen pollutants to perform this analysis are ozone, sulfur dioxide, carbon monoxide, nitrogen dioxide and PM10 (particles less than 10 micrometers). We found that pollutants air concentration time series are multifractal. When we calculate the degree of multifractality for each time series we know that while more multifractal are the time series, there is more complexity both in the time series and in the system from which the measurements were obtained. We studied the variation of the degree of multifractality over time, by calculating the multifractal spectra of the time series for each year; we see the variation in each monitoring station from 1990 until 2013. Multifractal analysis can tell us what kinds of correlations are present in the time series, and it is interesting to consider how these correlations vary over time. Our results show that for all the pollutants and all the monitoring stations the time series have long range correlations and they are highly persistent.

  18. Towards innovative roadside monitoring

    NASA Astrophysics Data System (ADS)

    Ojha, G.; Appel, E.; Magiera, T.

    2012-04-01

    Soil contamination along roadsides is an important factor of anthropogenic point source pollution. Climatic and traffic-specific factors influence the amount and characteristics of pollution emitted and deposited in the roadside soil. In our present study we focus on monitoring typical traffic pollutants (heavy metals HM, platinum group elements, polycyclic hydrocarbons PAH), and investigate the use of magnetic parameters, especially magnetic susceptibility (MS) as proxy. Monitoring plots were installed along roadside in areas with different climatic conditions and different traffic-specific activities (traffic density and speed, vehicle types, abrasion of tires, brake linings, petrol/diesel compounds and road maintenance). For monitoring we removed 10-15 cm of top soil at 1 m distance from the roadside edge and placed 30 plastic boxes there filled with clean quartz sand, to be sampled after regular intervals within two years. Preliminary data from the first year of monitoring are presented. Magnetic results revealed that a coarse grained magnetite-like phase is responsible for the enhancement of magnetic concentration. The mass-specific MS and concentration of pollutants (HM, PAH) all show a significant increase with time, however, there are obviously also seasonal and site-dependent effects which lead to more stable values over several months or even some decrease in the upper few cm due to migration into depth. Source identification indicates that the accumulated PAHs are primarily emissions from traffic. In order to be able to discriminate in between different kinds of transport and deposition (surface run off from the road and neighbouring soil material, splash water, air transport), we additionally established pillars at the roadside with clean quartz sampling boxes at different heights (surface, 0.5 m, 2 m). As a first surprising result we observed that the increase in the boxes at surface is not necessarily higher than at 0.5 m height. The results from our monitoring studies will be utilized to understand site-specific characteristics and to develop new innovative roadside pollution monitoring concepts.

  19. 40 CFR Table 4 to Subpart F of... - Organic Hazardous Air Pollutants Subject to Cooling Tower Monitoring Requirements in § 63.104

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Organic Hazardous Air Pollutants...

  20. 40 CFR Table 4 to Subpart F of... - Organic Hazardous Air Pollutants Subject to Cooling Tower Monitoring Requirements in § 63.104

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Organic Hazardous Air Pollutants...

Top